Science.gov

Sample records for absorptiometry dexa scan

  1. Distal metacarpal bone mineral density by dual energy X-ray absorptiometry (DEXA) scan. Methodological investigation and application in rheumatoid arthritis.

    PubMed

    Florescu, A; Pødenphant, J; Thamsborg, G; Hansen, M; Leffers, A M; Andersen, V

    1993-01-01

    Dual energy X-ray absorptiometry scanning was performed along the axis of the third metacarpal bone of the non-dominant hand and including metacarpal bones 2, 3, 4 and 5. The Bone Mineral Density (BMD) was calculated for the distal 1/4 of each metacarpal bone. Ten patients with seropositive, erosive rheumatoid arthritis (RA) and 10 healthy, sex- and age-matched persons were investigated twice. The average BMD in RA patients was 73.6% of the value found in normals. The coefficient of variation on double determinations (in patients and controls) was 0.9-3.0%. We suggest that dual energy X-ray absorptiometry scanning with the scanning procedure proposed here may be an important instrument for the quantification of disease progression.

  2. [Dual X-ray absorptiometry (DEXA) in children with chronic diseases].

    PubMed

    Feber, J; Janda, J; Krasnićanova, H

    2000-04-01

    Dual energy X-ray absorptiometry (DEXA) can be used for the measurement of bone density at the level of lumbar spine, whole body scan, and also for the measurement of bone mass content (BMC), lean body mass (LBM), and fat body mass (FBM). Although this method has been originally developed for the diagnosis and monitoring of osteoporosis in adults, it is used in children with chronic diseases like chronic renal failure, chronic gastrointestinal and rheumatological diseases. However, children with chronic disease often demonstrate statural growth disturbances and decreased growth velocity. Therefore, their actual height does not correspond to the actual chronological age. Normal values of DEXA for a given age are based on data from children with normal height. Interpretation of DEXA regardless of the actual height, which is usually stunted, may lead to false conclusions and wrong therapeutic attitudes. Thus, when interpreting results obtained in such patients a few transformations and calculations should be done.

  3. Assessment of trabecular bone quality in human cadaver calcaneus using scanning confocal ultrasound and dual x-ray absorptiometry (DEXA) measurements

    NASA Astrophysics Data System (ADS)

    Qin, Yixian; Xia, Yi; Lin, Wei; Rubin, Clinton; Gruber, Barry

    2004-10-01

    Microgravity and aging induced bone loss is a critical skeleton complication, occurring particularly in the weight-supporting skeleton, which leads to osteoporosis and fracture. Advents in quantitative ultrasound (QUS) provide a unique method for evaluating bone strength and density. Using a newly developed scanning confocal acoustic diagnostic (SCAD) system, QUS assessment for bone quality in the real body region was evaluated. A total of 19 human cadaver calcanei, age 66 to 97 years old, were tested by both SCAD and nonscan mode. The scanning region covered an approximate 40×40 mm2 with 0.5 mm resolution. Broadband ultrasound attenuation (BUA, dB/MHz), energy attenuation (ATT, dB), and ultrasound velocity (UV, m/s) were measured. The QUS properties were then correlated to the bone mineral density (BMD) measured by DEXA. Correlations between BMD and QUS parameters were significantly improved by using SCAD as compared to nonscan mode, yielding correlations between BMD and SCAD QUS parameters as R=0.82 (BUA), and R=0.86 (est. BMD). It is suggested that SCAD is feasible for in vivo bone quality mapping. It can be potentially used for monitoring instant changes of bone strength and density. [Work supported by the National Space Biomedical Research Institute (TD00207), and New York Center for Biotechnology.

  4. Measurement of bone by dual-photon absorptiometry (DPA) and dual-energy X-ray absorptiometry (DEXA).

    PubMed

    Mazess, R B; Barden, H S

    1988-01-01

    Bone densitometry is essential for (a) confirming a diagnosis of osteoporosis, (b) determining the degree of osteopenia and risk of fracture, and (c) monitoring the response of bone to therapeutic agents. Fracture risk at specific axial fracture sites (spine, proximal femur), is associated directly with bone mineral density (BMD) at these sites. ROC analysis demonstrates that the diagnostic sensitivity of spine and femur BMD for spine and/or femur fracture is substantially superior to BMD of appendicular sites in the immediate postmenopausal period. Femoral neck BMD affords high diagnostic sensitivity for proximal femur fracture even in the elderly. Recent prospective studies have shown that bone densitometry can predict future fractures in postmenopausal women. Conventional DPA with 153Gd provides high accuracy for total body, spine, and femur BMD with adequate clinical precision of 1%, 2% and 3%, respectively. Dual-energy x-ray absorptiometry (DEXA), using either switched kVp or by k-edge filtering, offers better precision; typically the precision error is halved. The higher flux available from x-ray sources provides other advantages over DPA, including: improved spatial resolution (2 vs 4 mm), reduced radiation exposure (1 vs 2 mrem), and decreased scan times (3 to 10X). Improved DPA systems, with automatic gain stabilization to minimize drift, could offer clinical precision comparable to DEXA but the scan time and spatial resolution remain as before. Both DPA and DEXA allow detection of therapeutic efficacy in individual patients over the first year or two of therapy.

  5. Wool Base determination using dual energy X-ray absorptiometry (DEXA).

    PubMed

    Kröger, Chris; Murray Bartle, C; West, John G; van Rensburg, Brendon

    2006-12-01

    An industry grade dual energy X-ray absorptiometry (DEXA) scanner was calibrated for Wool Base determination. The calibration used 201 Crossbred and Merino wool samples, and a further 72 samples to validate the calibration. The prediction correlation had the smallest residual standard deviation (RSD) when the independently measured mean fibre diameter (MFD) was included in the multiple regression analysis. Best results were achieved when separate calibrations were used for individual wool breeds. The RSD for the Merino calibration set of 44 samples was 1.88, when the MFD was included in the regression, and 2.1 without. The RSD for 144 Crossbred samples was 1.73 including the MFD, and 2.59 without. The validation trial with 46 Crossbred and 24 Merino wool samples resulted in RSD of 2.35 and 2.23, respectively. An excellent DEXA repeatability was achieved at a standard deviation of approximately 0.2%. Improvement of the calibration is expected from concurrent laboratory testing and scanning. The research shows the promising potential for DEXA as a tool to determine Wool Base.

  6. CZT detector for dual-energy x-ray absorptiometry (DEXA)

    NASA Astrophysics Data System (ADS)

    Wear, James; Buchholz, Michael; Payne, Randall K.; Gorsuch, Darrell; Bisek, Joseph; Ergun, David L.; Grosholz, Joe; Falk, Ron

    2000-12-01

    A cadmium-zinc-telluride (CZT) detector has been developed for a bone densitometer that uses dual-energy x-ray absorptiometry (DEXA) to determine bone mineral density in vivo. A linear array of 16 discrete CZT detectors is used with a narrow fan-shaped x-ray beam to scan the patient. Each detector is 3 mm thick and 7 mm by 3 mm in area and has simple planar contacts. The x-ray beam has two broad energy lobes with effective energies of approximately 38 keV and approximately 65 keV. The energy sensitivity of the CZT detectors allows discrimination between low and high energy x-rays. Using DEXA, the relative difference in these two count rates permits a quantitative measurement of the real densities of bone mineral and soft tissue. The detectors demonstrate good performance characteristics and stable operation in a clinical environment. This paper discusses the suitability of CZT for use in DEXA applications and describes its successful implementation and performance in this bone densitometer.

  7. Body composition by DEXA in older adults: accuracy and influence of scan mode.

    PubMed

    Clasey, J L; Hartman, M L; Kanaley, J; Wideman, L; Teates, C D; Bouchard, C; Weltman, A

    1997-04-01

    Dual energy x-ray absorptiometry (DEXA) measures bone mineral content (BMC), bone mineral density (BMD), fat-free mass (FFM), and provides estimates of percent body fat. Changes in scan mode geometry (pencil beam vs array) may impact these measures and body composition estimates using multi-compartment models. Forty-one adults, ages 59-79 yr, were scanned in each mode and also underwent hydrostatic weighing and measurement of total body water (tritiated water dilution). The effect of scan mode on measurement of DEXA BMC, BMD, FFM, and percent body fat (DEXA %Fat) was examined. The effect of scan mode on percentage body fat determined by a 4-compartment body composition model (4 Comp %Fat) and comparison of DEXA %Fat and 4 Comp %Fat were also examined. BMC and DEXA %Fat were greater (1.3% and 3.9%, respectively, P < 0.01), and BMD and FFM were lower (1.1% and 1.9%, respectively, P < 0.01) with the array scan mode. The 4 Comp %Fat was significantly greater (0.2%) when the array scan mode measurements of total body bone mineral were used; however, these differences were physiologically inconsequential. Comparison between DEXA %Fat and 4 Comp %Fat measures revealed a total error of +/-5.0% in the older adults examined. These results indicate significant scan mode differences in total body BMC, BMD, FFM, and DEXA %Fat measurements and demonstrate the importance of using a single DEXA scan mode for clinical investigation, particularly with longitudinal studies. For all investigations with DEXA, the scan mode should be reported. Furthermore, the error associated with using DEXA alone to estimate percent fat in an older population suggests that this technique is unacceptable in a research setting.

  8. [DEXA (dual-energy x-ray absorptiometry) and DPA (dual photon absorptiometry) in densitometry of the femoral neck: correlation of the measurements of three commercially available instruments].

    PubMed

    Hübsch, P; Schneider, B; Seidl, G; Kalchhauser, G; Klaushofer, K; Popovic, R

    1991-07-01

    The bone mineral density measurements of three different instruments at the femoral head were compared using 12 cadaver specimens. Two of these instruments were operated by x-rays (dual energy x-ray absorptiometry = DEXA), whereas one system was based on a gadolinium source (dual photon absorptiometry = DPA). Although excellent correlation between the measurements was obtained (r greater than 0,9), the measurements of one of the DEXA-instruments were significantly higher than the measurements of the two other systems. We conclude that a comparison of bone mineral density measurements obtained on different densitometry instruments may pose problems. Follow-up examinations should be done on one single densitometry unit.

  9. The lateral distal femoral DEXA scan in children: a chronology of growing bone?

    PubMed

    Tryon, Elyce; Szalay, Elizabeth A

    2008-11-01

    Dual energy x-ray absorptiometry (DEXA) is the current standard for measuring bone mineral density (BMD) in children. The International Society for Clinical Densitometry recommends scanning the total body and spine in children. However, in orthopedics, the total-body and spine DEXA scans are often rendered useless by the presence of metallic hardware and/or contractures. The lateral distal femoral DEXA scan was developed as a scan mode for children such as those with cerebral palsy who have contractures or metallic implants, which make it impossible to do total-body or spine scans. Unlike other DEXA scans, a single scan of the lateral distal femoral illustrates the density of the metaphyseal cancellous (newer) bone, the transitional, and the cortical (older) bone in 1 image. Because of this, we hypothesized that an individual lateral distal femoral scan could provide a map of bone health over time. The lateral distal femoral scans of 40 children whose bone growth was tainted by distant chemotherapy (chemotherapy group) were compared to the lateral distal femoral scans of 40 children whose bone environment had remained relatively stable over time (control group). The hypothesis was not confirmed by the data. The "Z-score difference," the difference between the Z-scores of the cancellous and cortical bone, for the chemotherapy group (0.16) and the control group (0.32) were not statistically different. While these results did not confirm the hypothesis, the lateral distal femoral scan remains a reproducible and useful DEXA scan in pediatric orthopedic clinical practice.

  10. Ice core stratigraphy using dual energy x-ray absorptiometry (DEXA)

    NASA Astrophysics Data System (ADS)

    Kroger, Chris; Thomson, Julian; Bertler, Nancy; Morgenstern, Uwe

    2006-05-01

    We are presenting a technique using x-rays to detect strata caused by density variation in 94 mm diameter ice cores. Moreover, high resolution density is determined. A 54 m long ice core retrieved from the Tasman Glacier of the Southern Alps in New Zealand has been x-ray scanned and the images were analysed. As a dual energy capable x-ray (DEXA) scanner was used, DEXA analysis techniques were used where appropriate, such as for the enhancement of strata visibility in the images. Density calculations though were based on a single energy model, using the fundamental law of x-ray attenuation. As the model does not precisely reflect realistic conditions, calibrations were made for the material properties and pixel scaling. Results of detected strata were compared to traditional visual light methods, where up to a depth of ~35 m better detail was achieved using x-rays. Density data was checked against the average volumetric density. Results compare well with the volumetric density, however a small bias exists, which at present requires further investigation.

  11. Comparison of body composition with bioelectric impedance (BIA) and dual energy X-ray absorptiometry (DEXA) among Singapore Chinese.

    PubMed

    Gupta, Nidhi; Balasekaran, Govindasamy; Victor Govindaswamy, Visvasuresh; Hwa, Chia Yong; Shun, Lim Meng

    2011-01-01

    The purpose of the study was to determine the agreement of bioelectric impedance (BIA) with dual energy X-ray absorptiometry (DEXA) among Singapore Chinese adults. Hundred subjects [63 healthy males (age: 25.2±0.5 yrs; weight: 69.7±1.9 kg; BMI: 22.8±0.4 kg m⁻²) and 37 females (age: 22.9±0.3 yrs; weight: 51.8±0.8 kg; BMI: 20.2±0.4 kg m⁻²)] were selected and body fat percentage (%BF) was measured by DEXA and BIA. Paired t test and coefficient of correlation statistics were utilized to compare the relationship between %BF(BIA) and %BF(DEXA). Bland and Altman plot was employed to investigate the agreement of %BF(BIA) with %BF(DEXA). The limits of agreement between different methods were defined as mean (M; bias)±1.96SD of the difference between the methods (95% confidence interval; CI). %BF(BIA), when compared to %BF(DEXA), revealed non-significant underestimation of %BF in females (24.1%<24.4%, p>0.05) and significant overestimation in males (15.5%<17.7%, p<0.01). There was good absolute agreement between %BF(BIA) and %BF(DEXA) among the whole cohort (1.3±6.9%) as well as among both genders (male: 2.2±6.7%, female: -0.3±6.1%) due to small mean differences between both methods. However, wider limits of agreement were revealed for %BF(BIA) among whole cohort and as well as on gender basis. The results indicate a good agreement between BIA and DEXA in measuring %BF among Singapore Chinese adults, but may not be a suitable method of measuring %BF for clinical purposes among this population due to wider limits of agreement.

  12. Lean body mass by Dual Energy X-ray Absorptiometry (DEXA) and by urine and dialysate creatinine recovery in CAPD and pre-dialysis patients compared to normal subjects.

    PubMed

    Nielsen, P K; Ladefoged, J; Olgaard, K

    1994-01-01

    The urinary creatinine excretion rate is a function of the muscle mass which, in normal subjects, is shown to be correlated with lean body mass. Dual Energy X-ray Absorptiometry (DEXA) has been shown to correlate well with other methods for the measurement of body composition. The purpose of the present study was to compare estimates of lean body mass (LBM) by DEXA scan with urine and dialysate creatinine recovery in uremic patients and in normal subjects. We included 63 normal subjects with a creatinine clearance of 60-120 mL/min, 30 uremic predialysis patients with creatinine clearance below 30 mL/min, and 20 continuous ambulatory peritoneal dialysis (CAPD) patients. LBM was measured by DEXA scan on the same day as urine collection and was estimated from creatinine recovery with and without correction for extrarenal creatinine clearance. Results from the normal subjects showed no difference in estimates of LBM by the different methods but, in predialysis and CAPD patients, a significant difference between methods of estimating LBM was found, even when correction for extrarenal clearance in uremic patients was performed. In normal subjects: DEXA 43.6 kg versus creatinine excretion 43.2 kg (NS). In predialysis patients: DEXA 47.8 kg versus 37.6 kg (p < 0.001) corrected 44.8 kg (p < 0.05). In CAPD patients: DEXA 47.2 kg versus 32 kg (p < 0.001) corrected 42.6 kg (p < 0.05). In conclusion, the urine and dialysate creatinine excretion is an inaccurate estimate of LBM, but reflects the muscle mass and, in that respect, is an important tool in the nutritional evaluation of uremic patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Are patients with newly diagnosed breast cancer getting appropriate DEXA scans? A District General Hospital experience.

    PubMed

    Dong, Huan; Dayananda, Pete; Preece, Shay-Anne; Carmichael, Amtul

    2015-01-01

    Breast cancer patients are often at high risk of fragility fractures partly due to adjuvant endocrine therapy such as aromatase inhibitors and chemotherapy. Baseline dual energy X-ray absorptiometry (DEXA) scanning is recommended as a standard of care in identifying patients who are at risk so they can be commenced on bone protective therapy. NICE guideline 80 - "Early and locally advanced breast cancer"[1] states that patients with early invasive breast cancer should have a baseline DEXA scan to assess BMD before the commencement of aromatase inhibitor treatment; if patients have treatment-induced menopause or are starting ovarian ablation/suppression therapy. We have audited the performance of a DGH against these guidelines with a target of 100% concordance. During a one year period (April 2012-April 2013), 100 patients with a new diagnosis of breast cancer were selected at random from the hospital coding database. 100 patients were chosen as this was a convenient sample size. We gathered information for these patients using electronic records, letters, and imaging. This showed a poor compliance of 38% against NICE guidelines. This in turn means that patients with low BMD at diagnosis of breast cancer are being under diagnosed and under treated, resulting in increased potential morbidity associated with fragility fractures. The interventions that resulted from this audit were: dissemination of these results to surgical and oncology departments, posters summarising the guidelines put up in breast clinics, and breast MDTs to discuss the need for DEXA scans for patients with breast cancer. A re-audit was performed for patients diagnosed with early, invasive breast cancer in January 2014 where a compliance of 90% was achieved. This represents a huge improvement in compliance from the baseline measure of 38%. In order to show that this improvement could be sustained, two further cycles were performed in February and March 2014, where the compliance was 92% and 100

  14. `I'd rather go and know': women's understanding and experience of DEXA scanning for osteoporosis

    PubMed Central

    Richardson, Jane C.; Hassell, Andrew B.; Hay, Elaine M.; Thomas, Elaine

    2002-01-01

    Objective  To explore women's knowledge and understanding of osteoporosis and of dual energy x‐ray absorptiometer (DEXA) scans; the factors influencing their decision to have a scan and their experience of undergoing a DEXA scan. Design  In‐depth interviews (using a topic guide) were carried out with 12 women [before a DEXA scan and after they had discussed the results with their general practitioner (GP)] and with three women who chose not to have a scan. Setting  Stoke‐on‐Trent, Staffordshire, UK. Participants  Women who responded to a primary‐care based questionnaire were purposively selected for interview. Results  The women interviewed had varied levels of understanding of osteoporosis. For the majority of participants the scan was an overwhelmingly positive experience, despite some women's negative expectations. Findings are also explored in terms of the influences on women's decision‐making about whether to have a scan and the concept of `knowing' one's risk status. Conclusions  The main implication for primary care is how to improve women's understanding of osteoporosis and DEXA scans in order to promote the strategy of scanning high‐risk women. PMID:12031052

  15. Association between Body Mass Index and Bone Mineral Density in Patients Referred for Dual-Energy X-Ray Absorptiometry Scan in Ajman, UAE.

    PubMed

    Fawzy, Tarek; Muttappallymyalil, Jayakumary; Sreedharan, Jayadevan; Ahmed, Amal; Alshamsi, Salma Obaid Saeed; Al Ali, Mariyam Saif Salim Humaid Bin Bader; Al Balsooshi, Khawla Ahmed

    2011-01-01

    Body Mass Index (BMI) is a good indicator for measurements of Bone Mineral Density (BMD) which measures the density of minerals present in the bones using a special scan. This study was conducted to assess the association between BMI and status of BMD among 101 individuals who underwent Dual-Energy X-ray Absorptiometry (DEXA) scan. 39 subjects had normal and 62 had low bone mineral density. BMD was low in 82.4% of people with normal BMI, 78.1% among overweight, and 44.2% among obese. There was a statistically significant association between these two variables (P < .001). Low BMD was recorded in 59.1% of females and 76.9% of males. Association between advancing age and lower BMI is an important risk factor in the occurrence of low BMD.

  16. Bone mineral content measured by DEXA scan in preterm neonates receiving total parentral nutrition with and without phosphorus supplementation.

    PubMed

    Awad, H A; Farid, T M; Khafagy, S M; Nofal, R I

    2010-09-15

    Intravenous phosphorus preparation was not available in Egypt till recently. So we aimed to prove the positive effect of adding intravenous phosphorus to total parentral nutrition (TPN) on calcium (Ca) and phosphorus (PO4) metabolism ofpreterm neonates by measuring bone mineral content (BMC) using DEXA scan. A case-control study was conducted in NICU of Obstetric and Gynecology Hospital of Ain Shams University which is a tertiary care unit in Cairo. Thirty preterm infants were prospectively enrolled in the study divided into 2 groups; 15 preterm infants received TPN with phosphorus supplementation (group 1) and 15 preterm received TPN without phosphorus supplementation (group 2). Serum Ca, PO4 and alkaline phosphatase (ALP) assay were done together with urinary calcium/creatinine (Ca/Cr) ratio, abdominal ultrasound and DEXA scan. There were no significant difference regarding serum Ca and PO4 between group 1 and 2. Yet there were highly significant increase in serum ALP and urinary Ca/Cr ratio in group 2 compared to group 1 (p = 0.001). Also group 1 had significantly higher BMC compared to group 2 even with TPN duration less than 15 days (p = 0.001). BMC was significantly positively correlated with G.A and B.W in both groups and was significantly negatively correlated with serum ALP in group 2 and with urinary calcium/creatinine ratio in group 1. Duration of TPN as short as 2 weeks can affect negatively the BMC as documented by DEXA scan in preterm infants receiving TPN without phosphorus supplementation.

  17. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  18. Abdominal fat analyzed by DEXA scan reflects visceral body fat and improves the phenotype description and the assessment of metabolic risk in mice.

    PubMed

    Chen, Weiyi; Wilson, Jenny L; Khaksari, Mohammad; Cowley, Michael A; Enriori, Pablo J

    2012-09-01

    Clinical studies have demonstrated a strong relationship between visceral fat content and metabolic diseases, such as type 2 diabetes and liver steatosis. Obese mouse models are an excellent tool to study metabolic diseases; however, there are limited methods for the noninvasive measurement of fat distribution in mice. Although micromagnetic resonance imaging and microcomputed tomography are the "gold standards" in the measurement of fat distribution, more economical and accessible methods are required. Dual energy X-ray absorptiometry (DEXA) is an effective method in characterizing fat content; however, it cannot discriminate between visceral and subcutaneous fat depots. We demonstrate that an evaluation of abdominal fat content measured by DEXA through the selection of one localized abdominal area strongly correlates with visceral fat content in C57BL/6J mice. We found that DEXA is able to measure fat pad volume ex vivo with high accuracy; however, the measurement of visceral fat in vivo shows an overestimation caused by subcutaneous tissue interference. The overestimation is almost constant for a wide range of values, and thus it is possible to correct the data for a more accurate estimation of visceral fat content. We demonstrate the utility of this technique in characterizing phenotypes of several obese mouse models (ob/ob, db/db, MC4R-KO, and DIO) and evaluating the effect of treatments on visceral fat content in longitudinal studies. Additionally, we also establish abdominal obesity as a potential biomarker for metabolic abnormalities (liver fat accumulation, insulin resistance/diabetes) in mice, similar to that described in humans.

  19. Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine

    SciTech Connect

    Wahner, H.W.; Dunn, W.L.; Brown, M.L.; Morin, R.L.; Riggs, B.L.

    1988-11-01

    A new x-ray-based (dual-energy x-ray absorptiometry (DEXA)) instrument for measurement of bone mineral in the spine and hips was compared with a commercial dual photon absorptiometry (DPA) instrument that uses a 153Gd source (DP3, Lunar Radiation Corporation). Measurements were made on phantoms and lumbar spines of patients to study accuracy, precision, limitations, and compatibility of results between instruments. Both instruments measure bone mineral of integral bone in terms of area bone density with an entrance exposure of less than 5 mR. For spinal bone mineral measurements, the DEXA instrument had a shorter scanning time and higher resolution images than the DPA system. The DEXA instrument also showed better precision in a spine phantom and reduced influence of thickness for patient measurement. For bone mineral content, accuracy was about equal for both instruments; for measurements of the area of the region of interest, accuracy was better with the DEXA instrument. With both instruments, fat had little effect on bone mineral density in bone phantom studies. Measurements on both instruments were influenced by the location of a bone phantom within the photon beam. Results in patients showed good correlation (r = 0.988) for bone mineral density. Measurements of bone mineral density in patients were consistently lower with the DEXA instrument because of better accuracy in area measurements. The new x-ray-based instrument is a major advance in bone mineral absorptiometry and provides improved, yet less expensive, measurements in research and clinical applications.

  20. QA/acceptance testing of DEXA X-ray systems used in bone mineral densitometry.

    PubMed

    Larkin, A; Sheahan, N; O'Connor, U; Gray, L; Dowling, A; Vano, E; Torbica, P; Salat, D; Schreiner, A; Neofotistou, V; Malone, J F

    2008-01-01

    New developments in dual energy X-ray absorptiometry (DEXA) imaging technology [fan beam and cone beam (CB)] result in higher exposure levels, shorter scan times, increased patient throughput and increased shielding requirements. This study presents the results of a European survey detailing the number and location of DEXA systems in SENTINEL partner states and the QA (quality assurance) currently performed by physicists and operators in these centres. The results of a DEXA equipment survey based on an in-house developed QA protocol are presented. Measurements show that the total effective dose to the patient from a spine and dual femur DEXA examination on the latest generation DEXA systems is comparable with a few microSv at most. Scatter measurements showed that the use of a mobile lead screen for staff protection was necessary for fan and CB systems. Scattered dose from newer generation systems may also exceed the exposure limits for the general public so structural shielding may also be required. Considerable variation in the magnitude and annual repeatability of half value layer was noted between different models of DEXA scanners. A comparative study of BMD (bone mineral density) accuracy using the European Spine Phantom highlighted a deviation of up to 7% in BMD values between scanners of different manufacturers.

  1. DEXA as a Predictor of Fixator Removal in Distraction Osteogenesis

    PubMed Central

    Saran, Neil

    2008-01-01

    Premature removal of the fixator after a lengthening procedure can result in gradual bending or acute fracture of the regenerate. We reviewed the records of 26 patients who underwent 28 limb lengthenings between 1997 and 2005 to assess the post lengthening regenerate fracture rate and bone healing index when using dual energy xray absorptiometry (DEXA) to aid in deciding on when to remove the fixator. Sixteen male and 10 female patients with an average age at lengthening of 12.3 years underwent an average lengthening of 5.2 cm (range, 3–9.1 cm). Nineteen femurs and nine tibiae were lengthened. Serial monthly DEXA scans were analyzed for bone mineral density. Bone healing indices and post fixator removal complications were assessed. The fixators were removed once the bone mineral density had plateaued to a less than 10% increase and plain radiographs showed no obvious defects precluding fixator removal. There were no regenerate fractures and only one fracture in the proximal segment of the lengthened bone after apparatus removal and the healing index for the series averaged 47 d/cm (range, 20–73 d/cm). Using serial DEXA scans during the consolidation phase of lengthening has a low rate (3.6%) of fractures while maintaining an acceptable bone healing index without excessively increasing fixation time. Level of Evidence: Level IV, therapeutic retrospective study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18820988

  2. Rapid small-animal dual-energy X-ray absorptiometry using digital radiography.

    PubMed

    Holdsworth, D W; Thornton, M M; Drost, D; Watson, P H; Fraher, L J; Hodsman, A B

    2000-12-01

    Although dual-energy X-ray absorptiometry (DEXA) is an established technique for clinical assessment of areal bone mineral density (BMD), the spatial resolution, signal-to-noise ratio, scan time, and availability of clinical DEXA systems may be limiting factors for small-animal investigations using a large number of specimens. To avoid these limitations, we have implemented a clinical digital radiography system to perform rapid area DEXA analysis on in vitro rat bone specimens. A crossed step-wedge (comprised of epoxy-based materials that mimic the radiographic properties of tissue and bone) was used to calibrate the system. Digital radiographs of bone specimens (pelvis, spine, femur, and tibia from sham-ovariectomized [SHAM] and ovariectomized [OVX] rats) were obtained at 40 kilovolt peak (kVp) and 125 kVp, and the resulting areal BMD values were compared with those obtained with a clinical fan-beam DEXA system (Hologics QDR 4500). Our investigation indicates that the cross-wedge calibrated (CWC) DEXA technique provides high-precision measurements of bone mineral content (BMC; CV = 0.6%) and BMD (CV = 0.8%) within a short acquisition time (<30 s). Areal BMD measurements reported by the CWC-DEXA system are within 8.5% of those reported by a clinical fan-beam scanner, and BMC values are within 5% of the known value of test specimens. In an in vivo application, the CWC-DEXA system is capable of reporting significant differences between study groups (SHAM and OVX) that are not reported by a clinical fan-beam DEXA system, because of the reduced variance and improved object segmentation provided by the CWC-DEXA system.

  3. Measurement of body composition in cats using computed tomography and dual energy X-ray absorptiometry.

    PubMed

    Buelund, Lene E; Nielsen, Dorte H; McEvoy, Fintan J; Svalastoga, Eiliv L; Bjornvad, Charlotte R

    2011-01-01

    Dual energy X-ray absorptiometry (DEXA) is a reference method for assessing body composition but is seldom `accessible in veterinary settings. Computed tomography (CT) can provide similar body composition estimates and we propose that it can be used in body composition studies in animals. We compared CT and DEXA data from 73 healthy adult neutered domestic cats. Three approaches for measuring adipose tissue percentage from full-body CT scans were explored. By examining the frequency distribution of voxels by Hounsfield unit (HU) value, it is possible to calculate a fat index (Fat%) that is in close agreement with the fat percentages obtained from DEXA scans. Fat% values obtained by the best of the methods had a mean difference of 0.96% (95% confidence interval 0.33-1.59%) from the DEXA results. Fat% obtained by the other two methods were characterized by good correlation but poor agreement and in one of the methods, the difference between the values from the two modalities was proportional to their mean. By using CT, it is possible to obtain body composition estimates that are in close agreement with those available using DEXA. While the significance of individual Fat% measurements obtained from CT can be difficult to interpret and to compare between centers, CT can contribute to research studies concerned either with nutrition or with obesity-related disorders.

  4. No change detected by DEXA in bone mineral density after periacetabular osteotomy.

    PubMed

    Mechlenburg, Inger; Kold, Søren; Søballe, Kjeld

    2009-12-01

    The purpose of this study was to assess acetabular bone mineral density after periacetabular osteotomy and to examine whether bone mineral density correlates with postoperative migration of the osteotomised acetabular fragment. Twenty-five female and three male patients scheduled for periacetabular osteotomy were consecutively included. The patients were scanned by dual energy X-ray absorptiometry (DEXA) at 1 week, 1 year, and 2 1/2 years after surgery. Radiostereometric analyses (RSA) were done at 1, 4, 8, and 24 weeks after surgery. Two and a half years after periacetabular osteotomy, no significant changes in bone mineral density or any biological effect on bone remodelling due a changed loading pattern in the acetabulum could be detected. There was no significant correlation between bone mineral density and migration of the acetabulum. Dual energy X-ray absorptiometry is not an appropriate method to demonstrate the changes in bone mineral density after periacetabular osteotomy or to predict postoperative acetabular migration.

  5. Comparative investigation of bone mineral density using CT and DEXA in a canine femoral model.

    PubMed

    Lucas, Karin; Behrens, Bernd-Arno; Nolte, Ingo; Galindo-Zamora, Vladimir; Betancur, Stefanie; Almohallami, Amer; Bouguecha, Anas; Mostafa, Ayman; Lerch, Matthias; Stukenborg-Colsman, Christina; Wefstaedt, Patrick

    2017-04-07

    Bone density measurements using computed tomography (CT) instead of dual-energy X-ray absorptiometry (DEXA) are currently of great interest in human and veterinary medical research as it would be beneficial to use CT scans obtained for other indications also for determining bone density. For Hounsfield units (HU) measured with CT in specific regions of interests (ROIs) in one or several slice/s a corrrelation with bone mineral density (BMD) measured by DEXA in humans and dogs of between 0.44 and 0.77 is reported in the literature. In the present study instead certain volumes of interest (VOIs) obtained by CT scan and the corresponding HU to the respective VOIs were compared with the bone mineral density of the corresponding areas measured by DEXA. The aim of the study was to investigate whether this procedure gives more accurate information about bone density of the bones as 3-dimensional objects of the respective patient. Correlation between measured HU in the respective VOI and BMD measured with DEXA in the corresponding ROI showed a very good correlation of 0.93. Linear regression with R(2) = 0.85 (p = 0.0262) was calculated. Except for VOI5, similar distribution of values and significant differences (p < 0.0001-0.0087) between ROIs/VOIs were detected. Determining HU for assessing bone mineral density in a certain volume provides more accurate results than those previously reported from 2-dimensional (2D) CT measurements. This article is protected by copyright. All rights reserved.

  6. Validation and calibration of DEXA body composition in mice.

    PubMed

    Brommage, Robert

    2003-09-01

    Validated methods of determining murine body composition are required for studies of obesity in mice. Dual-energy X-ray absorptiometry (DEXA) provides a noninvasive approach to assess body fat and lean tissue contents. Similar to DEXA analyses in other species, body fat measurements in mice show acceptable precision but suffer from poor accuracy. Because fat and lean tissues each contain various components, these inaccuracies likely result from selection of inappropriate calibration standards. Analysis of solvents showed that the PIXImus2 DEXA gave results consistent with theoretical calculations. Male mice weighing 26-60 g and having body fat percentages ranging from 3 to 49% were analyzed by both PIXImus2 DEXA and chemical carcass analysis. DEXA overestimated mouse fat content by an average of 3.3 g, and algorithms were generated to calculate body fat from both measured body fat values and the measured ratio of high- to low-energy X-ray attenuations. With calibration to mouse body fat content measured by carcass analysis, the PIXImus2 DEXA gives accurate body composition values in mice.

  7. A long femur scan field does not alter proximal femur bone mineral density measurements by dual-energy X-ray absorptiometry.

    PubMed

    McKiernan, Fergus Eoin; Hocking, Jane; Cournoyer, Susan; Berg, Richard L; Linneman, James

    2011-01-01

    A longer dual-energy X-ray absorptiometry (DXA) femur scan field might be useful for the detection of atypical, subtrochanteric femur fractures (ASFF). Thirty adult subjects underwent triplicate measures of femoral neck (FN) and total hip (TH) bone mineral density (BMD) by DXA using a conventional (i.e., short) and a longer femur scan field. Differences in measured BMD between the 2 scan field lengths were small and less than the precision error inherent in DXA testing. A longer proximal femur scan field does not substantially alter BMD measurements made at the FN and TH and may be useful for the detection of ASFF in clinical practice.

  8. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  9. Social isolation in HIV-infected patients according to subjective patient assessment and DEXA-confirmed severity of lipodystrophy.

    PubMed

    Casado, José L; Iglesias, Verónica; del Palacio, María; Marín, Ana; Perez-Elías, María J; Moreno, Ana; Moreno, Santiago

    2013-01-01

    This study was designed to investigate the persistence of lipodystrophy (LD)-related social distress and isolation in HIV-infected patients in the current era, according to confirmatory dual energy X-ray absorptiometry (DEXA) measurements. Cross-sectional interview data were collected from 168 HIV-positive adult patients taking more than 2 years of antiretroviral therapy (133 cases with LD diagnosed a mean of 7.2 years before; 35 without LD, controls). Mean time of HIV infection was 16.2 years (2.1-27.3), and the mean time of exposure to highly active antiretroviral therapy of 11.7 years (2.1-21.1). The presence and severity of LD, confirmed by DEXA measurements, correlated with social isolation through a validated scale, including avoidance of social relationships, sex, work, or sport activities. In comparison with control patients, social distress was observed for patients having moderate body changes. The significant correlation between LD and social isolation was irrespective of age, CD4+ count, HIV RNA level, AIDS diagnosis, time of HIV infection, anxiety, or depressive symptoms. These results confirm that patient assessment of LD is correlated with whole-body DEXA scan, and they highlight the role of LD as an independent cause of social isolation even after years of the diagnosis.

  10. DEXA body composition changes among 140 conscripts.

    PubMed

    Mattila, V M; Tallroth, K; Marttinen, M; Ohrankammen, O; Pihlajamaki, H

    2009-05-01

    The aim of the study was to determine changes in body composition and physical fitness during military service. A prospective cohort study of 140 healthy male conscripts was conducted. We examined subject characteristics, aerobic performance and muscle strength, and assessed body composition using dual-energy X-ray absorptiometry (DEXA) three times. Conscripts' mean baseline weight (79.5 kg) decreased by 2 kg during the first 3 months, but increased by 0.9 kg during the second 3-month period (p<0.001). Fat mass measured by DEXA decreased by 3.2 kg during the first but increased by 0.8 kg during the second 3-month period (p<0.001). Throughout the 6-month study, an increase was seen in distance of 12-min run test (from 2 380 m to 2 530 m; p<0.001), and muscle strength score (from 6.5 to 9.5 p<0.001). Finnish military training seems to have beneficial effects on physical fitness. However, considering the relatively modest changes in body fat and physical fitness seen in conscripts with average BMIs at baseline, design of diverse training programmes for the varying baseline BMI levels are warranted to improve the physical fitness results.

  11. Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects.

    PubMed

    Nana, Alisa; Slater, Gary J; Hopkins, Will G; Burke, Louise M

    2012-10-01

    Dual-energy X-ray absorptiometry (DXA) is becoming a popular tool to measure body composition, owing to its ease of operation and comprehensive analysis. However, some people, especially athletes, are taller and/or broader than the active scanning area of the DXA bed and must be scanned in sections. The aim of this study was to investigate the reliability of DXA measures of whole-body composition summed from 2 or 3 partial scans. Physically active young adults (15 women, 15 men) underwent 1 whole-body and 4 partial DXA scans in a single testing session under standardized conditions. The partial scanning areas were head, whole body from the bottom of the chin down, and right and left sides of the body. Body-composition estimates from whole body were compared with estimates from summed partial scans to simulate different techniques to accommodate tall and/or broad subjects relative to the whole-body scan. Magnitudes of differences in the estimates were assessed by standardization. In simulating tall subjects, summation of partial scans that included the head scan overestimated whole-body composition by ~3 kg of lean mass and ~1 kg of fat mass, with substantial technical error of measurement. In simulating broad subjects, summation of right and left body scans produced no substantial differences in body composition than those of the whole-body scan. Summing partial DXA scans provides accurate body-composition estimates for broad subjects, but other strategies are needed to accommodate tall subjects.

  12. Comparison of DEXA and QMR for assessing fat and lean body mass in adult rats.

    PubMed

    Miller, Colette N; Kauffman, Tricia G; Cooney, Paula T; Ramseur, Keshia R; Brown, Lynda M

    2011-04-18

    There are several techniques used to measure body composition in experimental models including dual energy X-ray absorptiometry (DEXA) and quantitative magnetic resonance (QMR). DEXA/QMR data have been compared in mice, but have not been compared previously in rats. The goal of this study was to compare DEXA and QMR data in rats. We used rats that varied by sex, diet, and age, in addition we compared dissected samples containing subcutaneous (pelt) or visceral fat (carcass). The data means were compared by focusing on the differences between DEXA/QMR data using a series of scatter plots without assuming that either method is more accurate as suggested by Bland and Altman. DEXA/QMR data did not agree sufficiently in carcass or pelt FM or in pelt LBM. The variation observed within these groups suggests that DEXA and QMR measurements are not comparable. Carcass LBM in young rats did yield comparable data once the data for middle-aged rats was removed. The variation in our data may be a result of different direct and indirect measures that DEXA and QMR technologies use to quantify FM and LBM. DEXA measures FM and estimates fat-free mass. In contrast, QMR uses separate equations of magnetic resonance to measure FM, LBM, total body water and free water. We found that QMR overestimated body mass in our middle-aged rats, and this increased the variation between methods. Our goal was to evaluate the precision of DEXA/QMR data in rats to determine if they agree sufficiently to allow direct comparison of data between methods. However DEXA and QMR did not yield the same estimates of FM or LBM for the majority of our samples.

  13. Body segment parameter estimation of the human lower leg using an elliptical model with validation from DEXA.

    PubMed

    Durkin, Jennifer L; Dowling, James J

    2006-09-01

    Accurate estimates of human body segment parameters (BSPs) are required for kinetic analyses of motion. The purpose of this study was to develop a geometric model of the human lower leg based on the mass distribution properties of the segment. Forty subjects were recruited from 4 human populations. Each population was randomly divided equally into model development (MD) and model validation (MV) groups. Participants underwent frontal and sagittal plane dual energy X-ray absorptiometry (DEXA) scans and anthropometric measurements. Leg BSPs were calculated from the scan information and mass distribution properties in the two planes were determined. Further, a geometric model was developed based on the ensemble averages of the mass distribution information from the MD groups. The model was applied to the MV groups and mean absolute errors were calculated for each BSP and each population. Finally, BSP estimates from literature sources were also determined and compared against DEXA. The model developed produced the lowest errors overall. Additionally, the results showed that the model developed estimated BSPs for all four populations with consistent accuracy whereas the other 4 models tested provided different levels of accuracy depending on the age and gender categories of the group tested. The results of this study present a model that accurately estimates BSPs of the lower leg for individuals varying in age, gender, race, and morphology. This study also presents a modelling technique that may successfully provide similar results for other body segments.

  14. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  15. Differential EXAFS analysis using DEXA.

    PubMed

    Ruffoni, M P

    2009-07-01

    Differential EXAFS is a new XAS technique dedicated to directly measuring the tiny atomic displacements that arise from such strain-inducing phenomena as magnetostriction, piezoelectricity and thermal expansion. These new experiments have presented the need for new analysis tools to extract and quantify the measured atomic strains, a need that has been addressed by the development of the DEXA code.

  16. Comparison of CT and dual-energy DEXA using a modified trunk compartment in the measurement of abdominal fat.

    PubMed

    Lane, James T; Mack-Shipman, Lynn R; Anderson, Joseph C; Moore, Timothy E; Erickson, Judi M; Ford, Timothy C; Stoner, Julie A; Larsen, Jennifer L

    2005-08-01

    The quantification of abdominal fat is a marker of health risk. While dual-energy x-ray absorptiometry (DEXA) is easily applied, it measures overall fat, although abdominal fat may be a better indicator of health risk from obesity. We have evaluated whether a subcomponent of DEXA measurements correlates better with computed tomography (CT) for body fat than those traditionally used. Forty-seven healthy adults (22 M/25 F), aged 54.5+/-15.8 yr (mean+/-SD), with BMI of 27.1+/-4.6 kg/m2 participated in a cross-sectional study. Body fat was measured using abdominal CT and DEXA for total fat, trunk fat, and a modified trunk measurement that excludes the chest, termed "lower trunk," and compared. The coefficient of variation for DEXA measurements for trunk, lower trunk, and total body were 1.98, 3.12, and 0.85%, respectively. Mean DEXA for percentage fat ranged from 31.7% to 34.1% for trunk, lower trunk, and total body, compared to 54.2% for abdominal CT (p<0.003 for each pairwise comparison). Lower trunk, whole trunk, and total body DEXA measurements were not different. Measurement of subcomponents of fat content by DEXA is not superior to whole body measurements and remains consistently lower than measurements by CT.

  17. Comparison of dual-photon absorptiometry systems for total-body bone and soft tissue measurements: Dual-energy X-rays versus gadolinium 153

    SciTech Connect

    Russell-Aulet, M.; Wang, J.; Thornton, J.; Pierson, R.N. Jr. )

    1991-04-01

    A total of 81 subjects (41 males and 40 females) were scanned by dual-photon absorptiometry by 153Gd source (DPA; Lunar DP4) and by dual-energy x-ray absorptiometry (DEXA; Lunar-DPX) within a 24 h period. Total-body bone mineral density (TBMD), calcium content (Ca), and soft tissue mass (ST) were determined with a precision of about 1-1.5% using DPA and 0.5-1.0% using DEXA. Measurements of TBMD, Ca, ST, bone area (area), percentage fat, and regional bone mineral densities (BMD) were compared. Paired t-tests showed small but significant differences between all measurements. Correlations (r) for TBMD, Ca, area, ST, percentage fat, arm BMD, leg BMD, and trunk BMD were 0.99, 0.99, 0.97, 0.99, 0.97, 0.99, 0.99, and 0.98. There were small systematic differences for TBMD (less than 1%), calcium (3%), bone area (3%), soft tissue mass (7%), and percentage fat (9%) between the two approaches. Regression equations are given relating these measurements.

  18. Changes in Body Fat Distribution on Dual-Energy X-Ray Absorptiometry in Black South Africans Starting First-Line Antiretroviral Therapy.

    PubMed

    Abrahams, Zulfa; Levitt, Naomi; Lesosky, Maia; Maartens, Gary; Dave, Joel

    2016-10-01

    Long-term use of antiretroviral therapy (ART) increases the risk of developing lipodystrophy. Few studies from Africa have used longitudinal data to assess the development of lipoatrophy and lipohypertrophy. We use clinical anthropometry and dual-energy X-ray absorptiometry (DEXA) to describe changes in body fat distribution over a 24-month period in individuals initiated on ART. A convenience sample of black South Africans (55 men and 132 women) were recruited and followed for 24 months after commencing ART. Body fat distribution was assessed using anthropometric measurements and DEXA scans at baseline and then at 3, 6, 12, 18, and 24 months after commencing ART. DEXA was also used to estimate abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Women gained more overall weight and more regional fat in all areas analyzed on DEXA scans. Women, not men, experienced a significant increasing trend in trunk fat and a significant decreasing trend in limb fat, when expressed as a percentage of total body fat. In men, the risk of developing lipoatrophy was more than two times greater than that of women, after adjusting for age, baseline body mass index, and ART regimen. Lipohypertrophy occurred similarly in men and women. VAT and SAT increased significantly in men and women, with women gaining considerably more than men. These findings are of great concern as an increased waist circumference is associated with increased mortality in HIV-infected populations. Further investigation is required to understand the mechanisms underlying the sex differences in changes in body fat distribution and its effects on cardiovascular risk.

  19. Percent body fat via DEXA: comparison with a four-compartment model.

    PubMed

    Van Der Ploeg, Grant E; Withers, Robert T; Laforgia, Joe

    2003-02-01

    This study compared body composition by dual-energy X-ray absorptiometry (DEXA; Lunar DPX-L) with that via a four-compartment (4C; water, bone mineral mass, fat, and residual) model. Relative body fat was determined for 152 healthy adults [30.0 +/- 11.1 (SD) yr; 75.10 +/- 14.88 kg; 176.3 +/- 8.7 cm] aged from 18 to 59 yr. The 4C approach [20.7% body fat (%BF)] resulted in a significantly (P < 0.001) higher mean %BF compared with DEXA (18.9% BF), with intraindividual variations ranging from -2.6 to 7.3% BF. Linear regression and a Bland and Altman plot demonstrated the tendency for DEXA to progressively underestimate the %BF of leaner individuals compared with the criterion 4C model (4C %BF = 0.862 x DEXA %BF + 4.417; r(2) = 0.952, standard error of estimate = 1.6% BF). This bias was not attributable to variations in fat-free mass hydration but may have been due to beam-hardening errors that resulted from differences in anterior-posterior tissue thickness.

  20. [Dual energy X-ray absorptiometry in Ilizarov lower extremity lengthening: preliminary study].

    PubMed

    Wroński, S; Wojciechowski, P; Wójcik, K; Kusz, D

    1999-01-01

    Ilizarov method for lower extremity lengthening has been employed in 107 patients. Some 25% of numerous complications are bony union disturbances. Dual energy X-ray absorptiometry (DEXA) for assessment of new bone formation was introduced to reduce these problems. Detailed densitometry methodology developed on the ground of 93 measurements in 11 patients is presented. Pre-operative measurement was followed by subsequent evaluations done every 3 weeks after the onset of distraction. DEXA was capable of showing the callus 3-4 weeks earlier than conventional radiography. DEXA allows for adjusting the pace of lengthening to the extent of new bone mineralization, evaluation of lengthening achieved, determining the timing for safe removal of the apparatus. The need for temporary rearranging of the apparatus and troublesome image analysis are among the drawbacks of the method.

  1. Long-term experiment to study the development, interaction, and influencing factors of DEXA parameters.

    PubMed

    Fuchs, Helmut; Gau, Christine; Hans, Wolfgang; Gailus-Durner, Valerie; Hrabě de Angelis, Martin

    2013-10-01

    Dual-energy X-ray absorption (DEXA) is commonly used to measure bone mineral density (BMD), bone mineral content (BMC), and body composition data (fat mass and lean mass) for phenotype assessment in mice. We were interested in the long-term development of BMD, BMC, lean mass, and fat mass of mice, also taking into account sex and genetic background. The dataset was used to analyze correlations among the different parameters. We analyzed males and females from inbred strains C3HeB/FeJ and C57BL/6J, starting from 42 until 528 days of age. To evaluate the effect of husbandry systems, we repeated a part of the study in a second facility with a different caging system. We also assessed different DEXA settings and repeatability of the scans. The results of this study were used to draw conclusions for the use of DEXA analysis in mouse phenotyping approaches.

  2. Heel Ultrasound Scan in Detecting Osteoporosis in Low Trauma Fracture Patients.

    PubMed

    Hashmi, Faiz R; Elfandi, Khaled O

    2016-06-27

    Osteoporosis is the most common metabolic disease with significant impact on the morbidity and mortality of affected patients. Osteoporosis has a significant impact on the economy worldwide. The aim of this study was to find out whether heel ultrasound is as good as central bone densitometry scanning in diagnosing osteoporosis in patients who are at high risk of osteoporosis. This was a prospective study of patients comparing heel ultrasound to central bone densitometry scanning (dual X-ray absorptiometry, DEXA) in patients. The recruited patients attended for a DEXA scan of the left hip and lumbar spine. All subjects had an ultrasound of the left heel using the quantitative heel ultrasound machine. The results of DEXA scan were blinded from the results of ultrasound and vice versa. There were 59 patients who took part in the study, 12 men and 47 women. The mean age was 66 years (SD 11.9) and mean weight was 62.5 kg (SD 10.7). The sensitivity and specificity of the ultrasound heel test to predict osteoporosis were 53% (95%CI: 29-77) and 86% (95%CI: 75-96) respectively. Specificity for predicting bone mineral density (BMD)-defined osteoporosis was high (86%), but sensitivity was low (53%). A heel ultrasound result in the osteoporotic range was highly predictive of BMD-defined osteoporosis. A positive ultrasound heel test in high risk patients is more useful in ruling in osteoporosis than a negative test to rule out osteoporosis.

  3. Determination of Percent Body Fat Using 3D Whole Body Laser Scanning: A Preliminary Investigation

    DTIC Science & Technology

    2006-11-01

    circumferences, 3D whole body laser scans and DEXA scans were performed on fifty-one men and women age 18-62. Mean percent body fat was not statistically...3D whole body laser scan , and DEXA scan to measure individuals during a one hour measurement session. 1 Report Documentation Page Form...underwent a 6 minute whole body DEXA scan using a GE Lunar Prodigy DEXA scanner running software version 7.53. Percent body fat was calculated from the

  4. Variation between femurs as measured by dual energy X-ray absorptiometry (DEXA).

    PubMed

    Hall, M L; Heavens, J; Ell, P J

    1991-01-01

    It is commonly assumed that there is minimal variation between the hips in an individual, but is densitometry of one femur representative of the other? We performed bone mineral density (BMD) measurements of both hips using a Hologic QDR 1000 densitometer. There were 110 patients, all of whom were right handed, and three main groups of subjects: (1) normal volunteers (n = 36); (2) subjects with known hip pathology (n = 36); (3) subjects with medical conditions not affecting the hip (n = 38). The mean age of the subjects was 46 (21-87) years and a standard analysis protocol was followed in all patients. The coefficient of variation (COV) for femurs was 0.9-3%, depending upon the region studied and the BMD. The left femur had a greater BMD 48% of the time and there were variable differences between femurs in each group studied. While the greatest differences were found in people with unilateral hip pathology, all groups had mean differences greater than the COV. It may be acceptable to study only one hip, but the large variation between femurs in individuals should be borne in mind when interpreting data.

  5. Predictive Validity of the Body Adiposity Index in Overweight and Obese Adults Using Dual-Energy X-ray Absorptiometry

    PubMed Central

    Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Vivas, Andrés; García-Hermoso, Antonio; Triana-Reina, Hector Reynaldo

    2016-01-01

    The body adiposity index (BAI) is a recent anthropometric measure proven to be valid in predicting body fat percentage (BF%) in some populations. However, the results have been inconsistent across populations. This study was designed to verify the validity of BAI in predicting BF% in a sample of overweight/obese adults, using dual-energy X-ray absorptiometry (DEXA) as the reference method. A cross-sectional study was conducted in 48 participants (54% women, mean age 41.0 ± 7.3 years old). DEXA was used as the “gold standard” to determine BF%. Pearson’s correlation coefficient was used to evaluate the association between BAI and BF%, as assessed by DEXA. A paired sample t-test was used to test differences in mean BF% obtained with BAI and DEXA methods. To evaluate the concordance between BF% as measured by DEXA and as estimated by BAI, we used Lin’s concordance correlation coefficient and Bland–Altman agreement analysis. The correlation between BF% obtained by DEXA and that estimated by BAI was r = 0.844, p < 0.001. Paired t-test showed a significant mean difference in BF% between methods (BAI = 33.3 ± 6.2 vs. DEXA 39.0 ± 6.1; p < 0.001). The bias of the BAI was −6.0 ± 3.0 BF% (95% CI = −12.0 to 1.0), indicating that the BAI method significantly underestimated the BF% compared to the reference method. Lin’s concordance correlation coefficient was considered stronger (ρc = 0.923, 95% CI = 0.862 to 0.957). In obese adults, BAI presented low agreement with BF% measured by DEXA; therefore, BAI is not recommended for BF% prediction in this overweight/obese sample studied. PMID:27916871

  6. Predictive Validity of the Body Adiposity Index in Overweight and Obese Adults Using Dual-Energy X-ray Absorptiometry.

    PubMed

    Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; González-Ruíz, Katherine; Vivas, Andrés; García-Hermoso, Antonio; Triana-Reina, Hector Reynaldo

    2016-11-30

    The body adiposity index (BAI) is a recent anthropometric measure proven to be valid in predicting body fat percentage (BF%) in some populations. However, the results have been inconsistent across populations. This study was designed to verify the validity of BAI in predicting BF% in a sample of overweight/obese adults, using dual-energy X-ray absorptiometry (DEXA) as the reference method. A cross-sectional study was conducted in 48 participants (54% women, mean age 41.0 ± 7.3 years old). DEXA was used as the "gold standard" to determine BF%. Pearson's correlation coefficient was used to evaluate the association between BAI and BF%, as assessed by DEXA. A paired sample t-test was used to test differences in mean BF% obtained with BAI and DEXA methods. To evaluate the concordance between BF% as measured by DEXA and as estimated by BAI, we used Lin's concordance correlation coefficient and Bland-Altman agreement analysis. The correlation between BF% obtained by DEXA and that estimated by BAI was r = 0.844, p < 0.001. Paired t-test showed a significant mean difference in BF% between methods (BAI = 33.3 ± 6.2 vs. DEXA 39.0 ± 6.1; p < 0.001). The bias of the BAI was -6.0 ± 3.0 BF% (95% CI = -12.0 to 1.0), indicating that the BAI method significantly underestimated the BF% compared to the reference method. Lin's concordance correlation coefficient was considered stronger (ρc = 0.923, 95% CI = 0.862 to 0.957). In obese adults, BAI presented low agreement with BF% measured by DEXA; therefore, BAI is not recommended for BF% prediction in this overweight/obese sample studied.

  7. Evaluation of locally induced osteoarthritis by the complete and incomplete Freund's adjuvant in mice. The application of DEXA measurements.

    PubMed

    Włodarski, K H; Dickson, G R

    2002-01-01

    The inflammatory reactions elicited in mice by subcutaneous injections of IFA and CFA had opposite effects when tested on local metacarpal shank bones and the distal epiphysis of shank bones. Although the intensity of the immune reactions was similar, IFA induced bone loss, while CFA induced bone formation, which was mostly periosteal in nature. BMC and BMD measurements were assessed by means of high resolution DEXA, using a hologic 4500A bone scanner with software dedicated for the analysis of small animal bones. DEXA scans were evaluated and related to histological and bone ash content analyses. The morphological and quantitative ash weight analyses of bones exposed to the adjuvants were consistent with DEXA bone density scan measurements.

  8. Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level

    PubMed Central

    Verney, Julien; Schwartz, Chloé; Amiche, Saliha; Pereira, Bruno; Thivel, David

    2015-01-01

    This study aimed at comparing BIA and DXA results in assessing body composition in young adults depending on their physical activity level. Eighty healthy 19–30 years old subjects were enrolled and their body composition (Fat Mass and Fat-Free Mass) was assessed by dual-energy X-ray absorptiometry (DXA) and by a newly developed Bioelectrical Impedance Analyzer (BIA - Tanita MC780). A seven-day physical activity level was assessed using a 3-axial accelerometer. DXA-FM% and BIA-FM% were correlated (p<0.001; r= 0.852; ICC [IC95%]: 0.84 [0.75 – 0.90]; concordance coefficient: 0.844). DXA-FFM and BIA FFM were correlated (p<0.001; r=0.976; ICC [IC95%]: 0.95 [0.93 – 0.97], concordance coefficient: 0.955). DXA and BIA measurements of FM% and FFM were highly correlated in both boys and girls regardless of the physical activity level. Compared with DXA scans, newly developed bioelectrical impedance analyzers provide satisfactory fat mass and lean mass measures in healthy young women and men, despite their physical activity level. PMID:26557191

  9. Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level.

    PubMed

    Verney, Julien; Schwartz, Chloé; Amiche, Saliha; Pereira, Bruno; Thivel, David

    2015-09-29

    This study aimed at comparing BIA and DXA results in assessing body composition in young adults depending on their physical activity level. Eighty healthy 19-30 years old subjects were enrolled and their body composition (Fat Mass and Fat-Free Mass) was assessed by dual-energy X-ray absorptiometry (DXA) and by a newly developed Bioelectrical Impedance Analyzer (BIA - Tanita MC780). A seven-day physical activity level was assessed using a 3-axial accelerometer. DXA-FM% and BIA-FM% were correlated (p<0.001; r= 0.852; ICC [IC95%]: 0.84 [0.75 - 0.90]; concordance coefficient: 0.844). DXA-FFM and BIA FFM were correlated (p<0.001; r=0.976; ICC [IC95%]: 0.95 [0.93 - 0.97], concordance coefficient: 0.955). DXA and BIA measurements of FM% and FFM were highly correlated in both boys and girls regardless of the physical activity level. Compared with DXA scans, newly developed bioelectrical impedance analyzers provide satisfactory fat mass and lean mass measures in healthy young women and men, despite their physical activity level.

  10. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  11. A novel approach to fracture-risk-assessment in osteoporosis by ROI-oriented application of the Minkowski-functionals to dual x-ray absorptiometry scans of the hip

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Panteleon, Alexandra; Vogel, Tobias; Burklein, Dominik; Reiser, Maximilian

    2008-03-01

    Fractures of the proximal femur represent the worst complication in osteoporosis with a mortality rate of up to 50% during the first post-traumatic year. Bone mineral density (BMD) as obtained from dual energy x-ray absorptiometry (DXA) is a good predictor of fracture risk. However, there is a considerable overlap in the BMD-results between individuals who have fractured and those who have not. As DXA uses highly standardized radiographic projection images to obtain the densitometric information, it can be postulated that these images contain much more information than just mineral density. Lately, geometric dimensions, e.g. hip axis length (HAL) or femoral neck axis length (FNAL), are considered in conjunction with BMD, which may allow to enhance the predictive potential of bone mass measurements. In recent studies we sucessfully introduced a novel methodology for topological analysis of multi-dimensional graylevel datasets, that, for instance, allows to predict the ultimate mechanical strength of femoral bone specimens. The new topolocial parameters are based on the so called Minkowski Functionals (MF), which represent a set of topographical descriptors that can be used universally. Since the DXA-images are multi-graylevel datasets in 2D obtained in a standardized way, they are ideally suited to be processed by the new method. In this study we introduce a novel algorithm to evaluate DXA-scans of the proximal femur using quantitative image analysis procedures based on the MF in 2D. The analysis is conducted in four defined regions of interest in analogy to the standard densitometric evaluation. The objective is to provide a tool to identifiy individuals with critically reduced mechanical competence of the hip. The result of the new method is compared with the evaluation bone mineral density obtained by DXA, which - at present - is the clinical standard of reference.

  12. The limitation of DEXA analysis for bone mass determination in mice.

    PubMed

    Dickson, Glenn R; Luczak, Mirosław; Włodarski, Krzysztof H

    2004-01-01

    An increase in femoral and tibio/fibular bone mass following periosteal membrane stimulation by Moloney sarcoma virus inoculation into thigh muscles of mice was measured in situ on formalin fixed excised hind limbs using a Hologic 4500A Fan Beam X-ray bone densitometer adapted for small bone samples. These results were verified by measurements of constant dry bone mass of the same bones liberated from soft limb tissues by NaOH hydrolysis. There was no consistent data correlation found between the DEXA scan and dry bone mass evaluations. It is concluded that the sensitivity of the DEXA measurement is unsuitable when assessing very small bone samples, weighing merely 20-30 mg.

  13. Regional bone density changes in anterior cruciate ligament deficient knees: a DEXA study.

    PubMed

    Bayar, Ahmet; Sarikaya, Selda; Keser, Selçuk; Ozdolap, Senay; Tuncay, Ibrahim; Ege, Ahmet

    2008-10-01

    Bone mineral density (BMD) loss is one of the secondary problems occurring in knee joint after injury of anterior cruciate ligament (ACL). The effect of this injury on BMDs of specific regions is not clear. The aim of this study was to investigate BMD changes in unreconstructed ACL-deficient knees with subregion analysis of dual energy X-ray absorptiometry (DEXA). Precision and reliability studies of DEXA revealed that two region of interests (ROI) in medial condyle, two ROIs in lateral femoral condyle (LFC) and one ROI in medial tibial plateau (MTP) in anteroposterior (AP) DXA view and one ROI for each of distal femur, proximal tibia and patella in lateral view had high reproducibility and reliability. Thirty-two patients with complete ACL ruptures were collected for the study and uninjured sides served as the control. All the patients were male with a mean age of 30 years. Mean duration of ACL rupture was 24 months. There were significant BMD losses in both ROIs of LFC and ROI of MTP in AP view and all three ROIs of lateral view. Greatest BMD losses in AP and lateral views were at MTP and patella respectively. There was a significant association between patellar BMD loss and duration after trauma. Bone bruises in lateral condyle might be the cause of selective involvement of LFC. Periarticular bone mineral loss in ACL-deficient knees has a predilection for the specified region of interest rather than uniform periarticular loss. This may be important for graft fixation or a factor in tunnel enlargement.

  14. Dual x-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2011-04-01

    Dual x-ray absorptiometry is widely used in analyzing body composition and imaging. We discuss the physics of the method and exhibit its limitations and show it is related to the Compton and photoelectric contributions to the x-ray absorption coefficients of materials.

  15. The use of dual-energy X-ray absorptiometry to assess the impact of Eimeria infections in broiler chicks.

    PubMed

    Fetterer, Raymond H; Miska, Katarzyna B; Mitchell, Alva D; Jenkins, Mark C

    2013-06-01

    A number of parameters have been used to assess the impact ofcoccidiosis on chickens in clinical settings as well as in experimental studies. However, a rapid way to determine body composition would be useful to evaluate or compare responses to coccidia and could give further insight into the metabolic impact of infection. The current study evaluates the use of dual X-ray absorptiometry (DEXA) to determine the impact of coccidiosis on body composition in chicks receiving inoculations with single or mixed species of Eimeria. Chicks infected with Eimeria maxima, Eimeria acervulina, or Eimeria tenella had altered parameters of body composition as measured by DEXA at 6 days postinfection (PI). The greatest effects were noted in birds infected with E. acervulina or E. maxima, where lean mass and fat were reduced from control values about 75% and 85%, respectively. In chicks infected with E. tenella, tissue and fat were reduced about 10%. Bone mineral content (BMC) was about 75% of control values in birds infected with E. acervulina or E. maxima, but only E. acervulina altered bone mineral density (BMD). The decreases in BMC and BMD are likely due to malabsorption. In chicks receiving a mixed coccidian infection, all DEXA parameters were significantly decreased at 8 days PI compared with age-matched controls. As with single infections, BMD and BMC were significantly depressed (P < 0.05). Values of all DEXA parameters were near 92% of control values by day 16 PI. Analysis of all birds in the current study indicates DEXA tissue weight slightly underestimated the gravimetrically measured weight by about 3%. The current results demonstrate that DEXA is a potentially important tool for the rapid evaluation of the effect of coccidiosis on broiler chicks and suggest it can be useful for evaluation of vaccines and other disease controls.

  16. Predicting Football Players' Dual-Energy X-Ray Absorptiometry Body Composition Using Standard Anthropometric Measures

    PubMed Central

    Oliver, Jonathan M.; Lambert, Brad S.; Martin, Steven E.; Green, John S.; Crouse, Stephen F.

    2012-01-01

    Context: The recent increase in athlete size, particularly in football athletes of all levels, coupled with the increased health risk associated with obesity warrants continued monitoring of body composition from a health perspective in this population. Equations developed to predict percentage of body fat (%Fat) have been shown to be population specific and might not be accurate for football athletes. Objective: To develop multiple regression equations using standard anthropometric measurements to estimate dual-energy x-ray absorptiometry %Fat (DEXA%Fat) in collegiate football players. Design: Controlled laboratory study. Patients and Other Participants: One hundred fifty-seven National Collegiate Athletic Association Division IA football athletes (age  =  20 ± 1 years, height  =  185.6 ± 6.5 cm, mass  =  103.1 ± 20.4 kg, DEXA%Fat  =  19.5 ± 9.1%) participated. Main Outcome Measure(s): Participants had the following measures: (1) body composition testing with dual-energy x-ray absorptiometry; (2) skinfold measurements in millimeters, including chest, triceps, subscapular, midaxillary, suprailiac, abdominal (SFAB), and thigh; and (3) standard circumference measurements in centimeters, including ankle, calf, thigh, hip (AHIP), waist, umbilical (AUMB), chest, wrist, forearm, arm, and neck. Regression analysis and fit statistics were used to determine the relationship between DEXA%Fat and each skinfold thickness, sum of all skinfold measures (SFSUM), and individual circumference measures. Results: Statistical analysis resulted in the development of 3 equations to predict DEXA%Fat: model 1, (0.178 • AHIP) + (0.097 • AUMB) + (0.089 • SFSUM) − 19.641; model 2, (0.193 • AHIP) + (0.133 • AUMB) + (0.371 • SFAB) − 23.0523; and model 3, (0.132 • SFSUM) + 3.530. The R2 values were 0.94 for model 1, 0.93 for model 2, and 0.91 for model 3 (for all, P < .001). Conclusions: The equations developed provide an accurate way to assess DEXA

  17. Muscle strength and soft tissue composition as measured by dual energy x-ray absorptiometry in women aged 18-87 years.

    PubMed

    Madsen, O R; Lauridsen, U B; Hartkopp, A; Sørensen, O H

    1997-01-01

    Dual energy x-ray absorptiometry (DEXA) offers the possibility of assessing regional soft tissue composition, i.e. lean mass (LM) and fat mass: LM may be considered a measure of muscle mass. We examined age-related differences in LM, percentage fat (%fat) and muscle strength in 100 healthy non-athletic women aged 18-87 years. Relationships between muscle strength and leg LM in 20 elite female weight lifters and in 18 inactive women with previous hip fractures were also studied. The LM and %fat of the whole body, trunk, arms and legs were derived from a whole body DEXA scan. Isokinetic knee extensor strength (KES) and flexor strength (KFS) at 30 degrees.s-1 were assessed using an isokinetic dynamometer. The women aged 71-87 years had 35% lower KES and KFS than the women aged 18-40 years (P < 0.0001). Differences in LM were less pronounced. The LM of the legs, for instance, was 15% lower in the old than in the young women (P < 0.0001). In a multiple regression analysis with age, body mass, height and leg LM or KES as independent variables and KES or leg LM as the dependent variable, age was the most important predictor of KES (r(partial) = -0.74, P < 0.0001). The same applied to KFS. Body mass, not age, was the most important predictor of leg LM (r(partial) = 0.65, P < 0.0001) and of LM at all other measurement sites. The LM measured at different regions decreased equally with increasing age. The KES:leg LM ratio was negatively correlated with age (r = -0.70, P < 0.0001). The weight lifters had significantly higher KES:leg LM ratios than age-matched controls (+ 12%, P < 0.0001) and vice versa for the women with previous hip fractures (-36%, P < 0.0001). In conclusion, from our study it would seem that in healthy nonathletic women, age is a more important determinant of muscle strength than is LM as measured by DEXA. Muscle strengthening exercises and inactivity seem to have a considerably stronger influence on muscle strength than on LM.

  18. Five-year DEXA study of 88 hips with cemented femoral stem.

    PubMed

    Digas, Georgios; Kärrholm, Johan

    2009-12-01

    We performed repeated dual-energy X-ray absorptiometry (DEXA) measurements over five years in a homogeneous patient population to study the effect of a cemented stem on proximal femoral bone remodelling. Data from 88 patients (88 hips) implanted with total hip arthroplasty (THA) prostheses were extracted from three randomised studies. Femoral bone mineral density (BMD) was measured using a Lunar DPX-IQ densitometer for five years postoperatively. At one year the BMD changes had decreased between -2.0% [region of interest (ROI) 1] and -11.5% (ROI 7). During the follow-up period the BMD initially increased during the second year and thereafter decreased again in ROIs 5, 6 and 7. The loss of BMD at five years was more pronounced in region 7 (12.9%) and decreased with increasing age, total hip replacement (THR) on the right side and decreasing weight of the patient. We found that after the initial phase of early bone loss a period of recovery follows. Thereafter the BMD decreases again, which probably reflects the normal ageing of bone after uncomplicated cemented THA.

  19. Multiple projection DEXA scanner for precision bone and muscle loss measurements and analysis during prolonged spaceflight

    NASA Astrophysics Data System (ADS)

    Charles, H. K.; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2000-01-01

    Bone structural information derived from DEXA data is shown to be relevant in explaining BMD loss versus strength-related observations in both aging populations and individuals exposed to microgravity for prolonged periods. Commercial DEXA instruments are limited (and not optimized) to make these critical structural measurements. Progress on the development of a multiple projection DEXA scanner system for making precision bone and muscle loss measurements and their resultant implications on bone strength and fracture risk is described. .

  20. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  1. Body composition in heavy smokers: comparison of segmental bioelectrical impedance analysis and dual-energy X-ray absorptiometry.

    PubMed

    Rom, O; Reznick, A Z; Keidar, Z; Karkabi, K; Aizenbud, D

    2015-01-01

    Smokers tend to have lower body mass index, on one hand, and increased abdominal obesity, on the other hand. Also, low levels of lean mass (LM) and bone mineral content (BMC) were found among older smokers compared with non-smokers. This altered body composition and its consequences raise the need for simple and reliable methods for assessment of body composition in smokers. This study aimed to compare body composition assessment by segmental bioelectrical impedance analysis (sBIA) with the reference method, dual energy X-ray absorptiometry (DEXA). Body composition was measured by sBIA (Tanita BC-545) and DEXA (Hologic) in 49 heavy smokers (>15 cigarettes/day, mean age 43.8±12.0). The comparison included correlations and differences between measurements obtained using the two methods as well as the Blande-Altman analysis. Whole-body fat mass (FM) and LM measured by the two methods were found to be highly correlated (r>0.9, p<0.001). Compared with DEXA, sBIA significantly overestimated whole-body LM and BMC (1,126 g and 382 g, respectively, p<0.01). The Bland-Altman analysis revealed a good agreement for whole-body FM and LM, but a poor agreement for BMC. The segmental FM percentage and LM were also highly correlated (r>0.9, p<0.001). However, sBIA significantly overestimated LM of the trunk and legs and underestimated the appendicular FM percentage. Verified by DEXA, sBIA provides reliable measures of whole-body LM, FM, and trunk FM in heavy smokers. A lesser degree of agreement was found for BMC, appendicular LM, and FM.

  2. Comparisons of obesity assessments in over-weight elementary students using anthropometry, BIA, CT and DEXA.

    PubMed

    Yu, Ok-Kyeong; Rhee, Yang-Keun; Park, Tae-Sun; Cha, Youn-Soo

    2010-04-01

    Obesity was characterized in Korean elementary students using different obesity assessment tests on 103 overweight elementary students from three schools of Jeonbuk Province. The body mass index (BMI) and obesity index (OI) were compared, and the data using DEXA and CT were compared with the data using BIA and a tape measure. The results of this study are as follows: first, 27 students who were classified as obese by OI were classified as overweight by BMI, and 3 students who were classified as standard weight by BMI were classified as overweight by OI. Secondly, by DEXA and BIA measurements, there was 1.51% difference in body fat percentage (boys 1.66%, girls 1.17%) and the difference in body fat mass between boys and girls was 0.77 kg (boys 0.85 kg, girls 0.59 kg), but those differences in body fat percentage and mass were not statistically significant. Thirdly, the average total abdominal fat (TAF) measured by CT scans of obese children was more significantly related with subcutaneous fat (r = 0.983, P < 0.01) than visceral fat (r = 0.640, P < 0.01). Also, TAF were highest significant with waist circumference by a tape measure (r = 0.744, P < 0.01). In summary, as there are some differences of assessment results between two obesity test methods (BMI, OI), we need more definite standards to determine the degree of obesity. The BIA seems to be the most simple and effective way to measure body fat mass, whereas waist/hip ratio (WHR) using a tape measurer is considered to be the most effective method for assessing abdominal fat in elementary students.

  3. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  4. DEXA-assessed regional body composition changes in young female military soldiers following 12-weeks of periodised training.

    PubMed

    Wood, Paola S; Krüger, Pieter E; Grant, Catharina C

    2010-04-01

    Dual-energy X-ray absorptiometry (DEXA) was used to assess whole body and regional soft tissue mass, fat mass and lean body mass compositional changes in 68 female recruits (age 20.8 +/- 1.14 years; body mass 59.5 +/- 8.79 kg; stature 159.57 +/- 5.53 cm) pre- and post 12-weeks of military basic training. A decrease in total body fat tissue mass (10.2%) and regional percent fat (10.9%) was measured with an increase in total lean body mass (8.7%). Of interest were the differences in the responses in the tissue composition of the arms (16.2% loss in fat mass with an 11.6% gain in lean mass), trunk (17.0% decrease in fat mass with a 10.4% increase in lean mass) and the legs (10.5% increase in lean mass but no change in fat mass). These findings show the importance of considering regional rather than whole body composition changes when assessing the effects of a training programme. STATEMENT OF RELEVANCE: Female soldiers experienced a change in total body fat tissue (-10.2%) and lean body mass (+8.7%) after basic training; however, no significant fat mass decrease was evident in the leg region. Regional rather than whole body composition changes need to be considered when assessing the effects of a training programme.

  5. Validation of a body condition scoring system in rhesus macaques (Macaca mulatta): assessment of body composition by using dual-energy X-ray absorptiometry.

    PubMed

    Summers, Laura; Clingerman, Karen J; Yang, Xiaowei

    2012-01-01

    Body condition scoring (BCS) is a subjective semiquantitative method of assessing body fat and muscle by palpation of key anatomic features. A previously published BCS system for rhesus macaques (Macaca mulatta) uses a scale comprising both whole and half units, in which the midrange represents optimal body condition (3.0), lower values represent emaciated to lean conditions (1.0 to 2.0), and higher values (4.0 to 5.0) indicate excessive body fat. A valid BCS system is well described, relevant to the species, has agreement within and between raters, and is consistent with objective measures. Here we correlate the subjective BCS assigned during physical exam with percentage body fat as determined by dual-energy X-ray absorptiometry (DEXA). Adult rhesus monkeys from an indoor-housed breeding colony were evaluated by the veterinary staff and assigned to 1 of 9 BCS score groups to give a minimum of 6 animals in each group. DEXA was used to obtain objective body composition measurements for macaques in each BCS group. Animals in the 'optimal' BCS group (3.0) had 25% body fat on average. Each full unit change in BCS was associated with an approximate 10% change in body fat percentage for macaques in the 2.0-to-5.0 BCS range. Absolute body fat in animals with BCS of 1.0 or 1.5 may be too low for accurate assessment by DEXA.

  6. Study of bone remodeling of two models of femoral cementless stems by means of DEXA and finite elements

    PubMed Central

    2010-01-01

    -Ray Absorptiometry (DEXA). PMID:20509883

  7. A 4-compartment model based validation of air displacement plethysmography, dual energy X-ray absorptiometry, skinfold technique & bio-electrical impedance for measuring body fat in Indian adults

    PubMed Central

    Kuriyan, Rebecca; Thomas, Tinku; Ashok, Sangeetha; J, Jayakumar; Kurpad, Anura V.

    2014-01-01

    Background & objectives: Many methods are available for measuring body fat of an individual, each having its own advantages and limitations. The primary objective of the present study was to validate body fat estimates from individual methods using the 4-compartment (4C) model as reference. The second objective was to obtain estimates of hydration of fat free mass (FFM) using the 4C model. Methods: The body fat of 39 adults (19 men and 20 women) aged 20-40 yr was estimated using air displacement plethysmography (ADP), dual energy X-ray absorptiometry (DEXA), 4-skinfold technique and bio-electrical impedance (BIA). Total body water was estimated using isotope dilution method. Results: All the methods underestimated body fat when compared to 4C model, except for DEXA and the mean difference from the reference was lowest for DEXA and ADP. The precision of the fat mass estimated from 4C model using the propagation of error was 0.25 kg, while the mean hydration factor obtained by the 4C model was found to be 0.74 ± 0.02 in the whole group of men and women. Interpretations & conclusion: The results of the present study suggest that DEXA and ADP methods can provide reasonably accurate estimates of body fat, while skinfold and bio-electrical impedance methods require the use of population specific equations. PMID:25027079

  8. [Body composition analysis in patients with cystic fibrosis. Comparison of 3 methods: dual energy x-ray absorptiometry, bioelectrical impedance analysis, and skinfold measurements].

    PubMed

    Beaumesnil, M; Chaillou, E; Wagner, A-C; Rouquette, A; Audran, M; Giniès, J-L

    2011-04-01

    Nutritional status must be closely monitored in cystic fibrosis (CF) patients. This study compared three methods of measuring body composition in CF patients and then examined the relationships between two simple anthropometric markers of nutritional status - tricipital skinfold thickness (TSK) and arm muscular circumference (AMC) - and the results given by each method. Fifty-five patients with CF, 27 females and 28 males, participated in this study. The mean age at the time of the study was 14 ± 5 years, ranging from 4 to 29 years. The four skinfolds (SK) and arm circumference were measured in all patients and fat mass (FM) and AMC were calculated. Fifty patients underwent dual energy x-ray absorptiometry (DEXA) and 38 underwent bioelectrical impedance analysis (BIA). The values for FM as calculated by the three methods were highly correlated, as were the values for lean body mass (LM) (p<0.001). The LM assessed by anthropometry was overestimated by 8 ± 4% compared with DEXA and by 6 ± 7% compared with BIA. BIA overestimated LM by 4 ± 6% compared with DEXA (p<0.001). The LM values measured by SK, DEXA, and BIA were highly correlated with AMC (p<0.001) and FM calculated using these three techniques were highly correlated with TSK (p<0.001). The measurement of TSK and AMC are simple and rapid ways to evaluate body composition. The excellent correlation between the three methods used to measure body composition suggests that they are valid for use in patients with CF, but the results were not identical. The measurement from each technique must be interpreted according to its own norms and comparisons can only be made if the same technique is used in the same patient.

  9. Technical principles of dual energy x-ray absorptiometry.

    PubMed

    Blake, G M; Fogelman, I

    1997-07-01

    Since its introduction nearly ten years ago, dual-energy x-ray absorptiometry (DXA) has become the single most widely used technique for performing bone densitometry studies. One reason for its popularity is the ability of DXA systems to measure bone mineral density (BMD) in the spine and proximal femur, the two most common sites for osteoporotic fractures. Other advantages of DXA include the exceptionally low radiation dose to patients, short scan times, high resolution images, good precision and inherent stability of calibration. For these reasons DXA scans are widely used to diagnose osteoporosis, assist making decisions in treatment, and as a follow-up response to therapy. Another important application has been the use of DXA in many clinical trials of new treatments for osteoporosis. Since the first generation pencil beam DXA systems became available, the most significant technical innovation has been the introduction of fan beam systems with shorter scan times, increased patient throughput, and improved image quality. New clinical applications include the measurement of lateral spine and total body BMD, body composition, and vertebral morphometry. Despite these advances, posteroanterior (PA) spine and proximal femur scans remain the most widely used application because of their utility in treatment decisions and monitoring response to therapy.

  10. The lymphoma-like polychemotherapy regimen "Dexa-BEAM" in advanced and extramedullary multiple myeloma.

    PubMed

    Rasche, Leo; Strifler, Susanne; Duell, Johannes; Rosenwald, Andreas; Buck, Andreas; Maeder, Uwe; Einsele, Hermann; Knop, Stefan

    2014-07-01

    Extramedullary disease (EMD) in multiple myeloma (MM) is characterised by an aggressive biology and an adverse prognosis especially when occurring at relapse. Due to the high proliferation found in EMD lesions, we analysed outcome data of patients treated with a lymphoma-type therapy not based on novel compounds, the Dexa-BEAM protocol. Retrospective analysis of MM patients having received Dexa-BEAM (including dexamethasone, carmustine, cytarabine, etoposide and melphalan) at our institution from January 2007 to November 2012. In all, 18 patients were identified, 11 of whom had EMD. Objective response (≥PR) to Dexa-BEAM was achieved in more than half of the patients with EMD (6/11); consecutive high-dose consolidation strategy with autologous or allogeneic stem cell transplantation improved upon the depth of remission in two thirds of EMD patients (4/6) with ongoing remissions in three patients. In contrast, all patients without consolidation relapsed. Progression-free survival after Dexa-BEAM was short in both patient groups with intramedullary or extramedullary myeloma with a median of 3 and 4 months, respectively. Toxicity was relevant with one treatment-related death and grades 3 and 4 toxicities in all 18 patients. Dexa-BEAM is an effective induction regimen in medically fit patients with extramedullary manifestations to regain disease control prior to an intended autologous or allogeneic transplantation.

  11. The use of dual-energy X-ray absorptiometry (DEXA) to assess the impact of Eimeria infections in broiler chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of parameters have been used to assess the impact of coccidosis on chickens in both clinical settings as well as in experimental studies. However a rapid way to determine body composition would be useful to evaluate or compare responses to coccidia and could give further insight into the m...

  12. Are adult patients with Laron syndrome osteopenic? A comparison between dual-energy X-ray absorptiometry and volumetric bone densities.

    PubMed

    Benbassat, Carlos A; Eshed, Varda; Kamjin, Moshe; Laron, Zvi

    2003-10-01

    Severe short stature resulting from a deficiency in IGF-I is a prominent feature of Laron syndrome (LS). Although low bone mineral density (BMD) has been noted in LS patients examined by dual energy x-ray absorptiometry (DEXA), this technique does not take volume into account and may therefore underestimate the true bone density in patients with small bones. The aim of the present study was to evaluate the BMD yielded by DEXA in our LS patients using estimated volumetric values. Volumetric density was calculated with the following formulas: bone mineral apparent density (BMAD) = bone mineral content (BMC)/(area)(3/2) for the lumbar spine and BMAD = BMC/area(2) for the femoral neck. The study sample included 12 patients (mean age, 43.9 yr; mean height, 123.7 cm). Findings were compared with 10 osteopenic subjects without developmental abnormalities (mean age, 56 yr; mean height, 164.8 cm) and 10 healthy control subjects matched for sex and age to the LS patients (mean height, 165.5 cm). BMAD in the LS group was 0.201 +/- 0.02 g/cm(3) at the lumbar spine and 0.201 +/- 0.04 g/cm(3) at the femoral neck; corresponding values for the osteopenic group were 0.130 +/- 0.01 and 0.140 +/- 0.01 g/cm(3), and for the controls, 0.178 +/- 0.03 and 0.192 +/- 0.02 g/cm(3). Although areal BMD was significantly lower in the LS and osteopenic subjects compared with controls (P < 0.02) at both the lumbar spine and femoral neck, BMAD was low (P < 0.01) in the osteopenic group only. In conclusion, DEXA does not seem to be a reliable measure of osteoporosis in patients with LS.

  13. DUAL-ENERGY X-RAY ABSORPTIOMETRY AND CALCULATED FRAX RISK SCORES MAY UNDERESTIMATE OSTEOPOROTIC FRACTURE RISK IN VITAMIN D–DEFICIENT VETERANS WITH HIV INFECTION

    PubMed Central

    Stephens, Kelly I.; Rubinsztain, Leon; Payan, John; Rentsch, Chris; Rimland, David; Tangpricha, Vin

    2017-01-01

    Objective We evaluated the utility of the World Health Organization Fracture Risk Assessment Tool (FRAX) in assessing fracture risk in patients with human immunodeficiency virus (HIV) and vitamin D deficiency. Methods This was a retrospective study of HIV-infected patients with co-existing vitamin D deficiency at the Atlanta Veterans Affairs Medical Center. Bone mineral density (BMD) was assessed by dual-energy X-ray absorptiometry (DEXA), and the 10-year fracture risk was calculated by the WHO FRAX algorithm. Two independent radiologists reviewed lateral chest radiographs for the presence of subclinical vertebral fractures. Results We identified 232 patients with HIV and vitamin D deficiency. Overall, 15.5% of patients met diagnostic criteria for osteoporosis on DEXA, and 58% had low BMD (T-score between −1 and −2.5). The median risk of any major osteoporotic and hip fracture by FRAX score was 1.45 and 0.10%, respectively. Subclinical vertebral fractures were detected in 46.6% of patients. Compared to those without fractures, those with fractures had similar prevalence of osteoporosis (15.3% versus 15.7%; P>.999), low BMD (53.2% versus 59.3%; P = .419), and similar FRAX hip scores (0.10% versus 0.10%; P = .412). While the FRAX major score was lower in the nonfracture group versus fracture group (1.30% versus 1.60%; P = .025), this was not clinically significant. Conclusion We found a high prevalence of subclinical vertebral fractures among vitamin D–deficient HIV patients; however, DEXA and FRAX failed to predict those with fractures. Our results suggest that traditional screening tools for fragility fractures may not be applicable to this high-risk patient population. PMID:26684149

  14. Some applications of gamma absorptiometry and spectrometry for the control of nuclear materials

    NASA Astrophysics Data System (ADS)

    Guery, M.

    1991-02-01

    In nuclear fuels, and neutrons absorbers used in control rods, the thermal power generated is locally dependent on the concentration of the fissile or absorbing nucleus. In order to control the homogeneity of such materials, non-destructive methods using either gamma absorptiometry or gamma spectrometry were developed; some applications of these methods are presented in this paper. The fuel of the High Temperature Reactor (HTR) is frequently composed of UO 2 and ThO 2 spherical particles dispersed in a carbon matrix; the axial distribution of the particles along the fuel rods can be controlled in two ways: with gamma absorptiometry the heavy elements atoms (U+Th) can be detected but without discrimination between U and Th; with gamma spectrometry, separate distributions of uranium and thorium, deduced from the intensity of characteristic gamma rays are obtained. In nuclear power plants (PWR, FBR) the control rods are made usually with boron carbide (B 4C) pellets. By mean of gamma absorptiometry scanning the density distribution along the axis and the radius of the pellets are obtained. The originality of the method consists in the use of a self-calibration process, then the knowledge of the mass absorption coefficient is not required to perform the examinations. A computerized apparatus has been developed for these controls.

  15. Ultimate fracture load of cadaver proximal humeri correlates more strongly with mean combined cortical thickness than with areal cortical index, DEXA density, or canal-to-calcar ratio

    PubMed Central

    Mears, C. S.; Burkhead, W. Z.

    2017-01-01

    Objectives This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal femurs can be applied to humeri. Materials and Methods A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio. Results The three new parameters showed the following correlations with ultimate fracture load: areal cortical index (r = 0.56, p < 0.001); canal-to-calcar ratio (r = 0.38, p = 0.03); and medial cortical ratio (r = 0.49, p < 0.005). These correlations were weaker when compared with those that we previously reported: mean cortical thickness of the proximal diaphysis versus ultimate fracture load (r = 0.71; p < 0.001); and mean density in the central humeral head versus ultimate fracture load (r = 0.70; p < 0.001). Conclusion Simple-to-measure radiographic parameters of the proximal humerus reported previously are more useful in predicting ultimate fracture load than are areal cortical index, canal-to-calcar ratio, and medial cortical ratio. Cite this article: J. G. Skedros, C

  16. Feasibility study for DEXA using synchrotron CT at 20-35 keV

    NASA Astrophysics Data System (ADS)

    Midgley, S. M.

    2013-02-01

    A nonlinear model for the x-ray linear attenuation coefficient μ is employed for dual energy x-ray analysis (DEXA). Nonlinear simultaneous equations formed by μ and energy dependent model parameters are solved for the electron density Ne and fourth compositional ratio R4 which has the same ‘units’ as the atomic number. Computed tomography data was acquired at 20-35 keV using bending magnet synchrotron radiation, a double crystal monochromator, a rotation stage and an area detector. Test objects contained liquid samples as mixtures of ethanol, water and salt solutions with known density and composition. Various noise sources are identified and give μ uncertainties of 1-2%. A fan beam geometry allowed the detection of forward scattered radiation with measured μ being 6% lower than expectations for a narrow beam. Energy dependent model parameters were obtained by solving linear simultaneous equations formed by μ and material parameters based upon Ne and R4. DEXA accuracy was studied as a function of photon energy and sample composition. Propagation of errors analysis identifies the importance of the fractional compositional cross-products whose difference at the two beam energies should exceed 0.1, requiring 10 keV or more separation. For a reasonable approximation for the adjustable model parameters, the mean difference between the DEXA solution and true values (ΔNe, ΔR4) are (1.0%, 0.5%) for soft tissue and (1.5%, 0.8%) for bone like samples.

  17. Dexa-BEAM as salvage therapy in patients with primary refractory aggressive non-Hodgkin lymphoma.

    PubMed

    Atta, Johannes; Chow, Kai U; Weidmann, Eckhart; Mitrou, Paris S; Hoelzer, Dieter; Martin, Hans

    2007-02-01

    Although aggressive NHL in relapse after remission can still be cured by second-line treatment followed by high-dose therapy and autologous stem cell transplantation, the long-term prognosis of patients who fail to obtain remission after first-line therapy remains extremely poor. We retrospectively evaluated a series of 29 consecutive patients with primary refractory high-grade NHL who were treated with Dexa-BEAM (DB) as uniform salvage therapy at a single institution. Twenty-nine patients with aggressive NHL primary refractory to CHOP or CHOP-like induction therapy with a median age of 47 (range, 22 - 64) years received 1 - 2 cycles of DB and were candidates for subsequent autologous stem cell (PBSC) mobilization and transplantation (PBSCT). Follow-up of all patients was updated in March 2004. Eight of 29 patients (28%) responded to one cycle of DB (1 complete/7 partial remissions); 2 of whom are alive after PBSCT (1 autologous/1 matched unrelated donor), 1 patient died after autologous PBSCT. Reasons for failure to proceed to high-dose therapy in spite of response to DB were recurrent progressive disease (n = 2), septicemia (n = 1), and allogeneic transplant-related mortality after mobilization failure to DB (n = 2). Twenty-one patients failed to respond to DB and died of progressive disease. Overall survival was 7% after 41 months. We conclude that Dexa-BEAM salvage therapy is not effective in patients with truly primary refractory high-grade NHL. The efficiency of rituximab combined with Dexa-BEAM or novel chemotherapeutic strategies needs to be established.

  18. Feasibility study for DEXA using synchrotron CT at 20-35 keV.

    PubMed

    Midgley, S M

    2013-02-21

    A nonlinear model for the x-ray linear attenuation coefficient μ is employed for dual energy x-ray analysis (DEXA). Nonlinear simultaneous equations formed by μ and energy dependent model parameters are solved for the electron density N(e) and fourth compositional ratio R(4) which has the same 'units' as the atomic number. Computed tomography data was acquired at 20-35 keV using bending magnet synchrotron radiation, a double crystal monochromator, a rotation stage and an area detector. Test objects contained liquid samples as mixtures of ethanol, water and salt solutions with known density and composition. Various noise sources are identified and give μ uncertainties of 1-2%. A fan beam geometry allowed the detection of forward scattered radiation with measured μ being 6% lower than expectations for a narrow beam. Energy dependent model parameters were obtained by solving linear simultaneous equations formed by μ and material parameters based upon N(e) and R(4). DEXA accuracy was studied as a function of photon energy and sample composition. Propagation of errors analysis identifies the importance of the fractional compositional cross-products whose difference at the two beam energies should exceed 0.1, requiring 10 keV or more separation. For a reasonable approximation for the adjustable model parameters, the mean difference between the DEXA solution and true values (ΔN(e), ΔR(4)) are (1.0%, 0.5%) for soft tissue and (1.5%, 0.8%) for bone like samples.

  19. Optimization of MR-Relaxometry for BMD-measurements and its Correlation with DEXA.

    PubMed

    Riyahi Alam, N; Bakhtiary, M; Oghabian, M; Sarkar, S; Ghasemzadeh, A; Ghanaati, H; Larijani, B; Hamidy, Z; Shakery, N

    2005-01-01

    The aim of this study was to optimize MRI conventional protocols for BMD measurements using MR-Relaxometry in systems not facilitated with special multi echo protocols. Since, cortical and trabecular bone separation can not be performed in DEXA, so the results might lead to erroneous interpretation of BMD values. One method for bone quality determination is MR relaxometry that derives R2(=1/T2), R2*(=1/T2*) and R2'(=R2*-R2). This study was performed by 1.5T MRI system(Picker Vista-Q800), an uniformity phantom(1.25gr/l CuSO4, with T2=200ms for calibration), a body RF-Coil, 7 normal, 7 osteopenia, 7 osteoporosis volunteers and Lunar DEXA system(DPX-MD). To determine R2*and R2, multi GE and SE protocols with different TE/TR were used. Then in phantom and in coronal section of femoral-neck, relaxation rates were compared with BMD. The slope of neperian-logarithm of signal vs. TE in GE as -R2*used for protocol optimization. Therefore, for phantom calibration, optimized GE parameters of TE=13.42/18/26.8 ms, TR=800ms and ST=8mm used for the measurement of R2*, while, the measurement of R2 required the optimized SE parameters of TE=30/60/90/120ms, TR=800ms and ST=8mm, with CV(R2*)=2.96%, CV(R2)=3%, respectively. In volunteers for SE, TE of 36/54/63/72ms and TR=800ms were used, while, for GE the TEs/TR were the same as those of phantom study. R2*and R2' showed a significant positive correlation with BMD, r=0.62(p<0.05) & r=0.62(p<0.05) respectively. Finally, in accordance with DEXA values, the results showed that MR-Relaxometry is a proper tool for BMD-measurements in femoral-neck. Also it may be used as a complement method for DEXA failure in BMD-assessments.

  20. Dual Energy X-Ray Densitometry Apparatus and Method Using Single X-Ray Pulse

    DTIC Science & Technology

    1999-10-13

    absorptiometry ( DEXA ) projection scanning units have been developed by Hologic Inc. (Waltham, MA) and Lunar Corp. (Madison, Wl). Using dual-energy...of the techniques that have been used, quantitative computed tomography (QCT) x-ray scanning techniques produce three- PATENT NC 79,057...determined by most DEXA instruments, and this quantity is usually referred to as the bone mineral density (BMD). The primary goal for a DEXA instrument

  1. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  2. Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry.

    PubMed

    Sabo, D; Blaich, S; Wenz, W; Hohmann, M; Loew, M; Gerner, H J

    2001-01-01

    In a cross-sectional study, 46 male patients with paralysis after spinal cord injury (average age 32 years; injuries sustained from 1 to 26 years ago; 33 Frankel A, 13 Frankel B, C, D) were examined clinically and by dual-energy X-ray absorptiometry (DEXA). Their bone mineral density (BMD) values were compared with age-related controls and correlated to clinical parameters. BMD was reduced in the proximal femur (p < 0.05) and the distal forearm (p < 0.05), but not in the lumbar spine. Demineralisation was influenced in the proximal femur (Z-score -2.95) by immobilisation after surgical treatment. Patients suffering from complete lesions had significantly lower BMD in the lumbar spine (-1.47) compared with patients with incomplete lesions (+0.02). BMD was not significantly influenced by the level of the lesion and the ambulatory status. Long-term monitoring showed significant demineralisation in the proximal femur (r = -0.36) and the distal forearm (r = -0.4), but not in the lumbar spine (r = -0.21). By correlating BMD with clinical parameters, it can be deduced that, firstly, immobilisation after surgical treatment should be reduced to a minimum; secondly, that every effort must be expended to prevent turning an incomplete into a complete lesion; and finally, that rehabilitation treatment should be lifelong.

  3. Is ultrasound of bone relevant for corticosteroid-treated patients? A comparative study with bone densitometry measured by DEXA.

    PubMed

    Oliveri, Beatriz; Di Gregorio, Silvana; Parisi, Muriel Solange; Solís, Fabiana; Mautalen, Carlos

    2003-02-01

    Corticosteroid treatment diminishes bone mass and alters bone quality. The objective was to evaluate bone in corticosteroid-treated patients and controls and in fractured and non-fractured patients treated with corticosteroids using both X-ray densitometry (DEXA) and ultrasound. We evaluated 34 women aged 58 +/- 14 years (X +/- SD), who had been on long-term low dose prednisone therapy for at least 6 months, and who had never received specific treatment for osteoporosis. Bone mineral density of total skeleton (TS), lumbar spine (LS), femoral neck (FN), and vertebral morphometry (MXA) were measured by DEXA. Speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness were measured using an Achilles Plus system. Forty-two healthy women served as controls. Both densitometric and ultrasound parameters in the patients were significantly diminished compared with controls: TS: P < 0.002, LS: P < 0.025, FS: P < 0.005, Stiffness: P < 0.001, BUA: P < 0.002 and SOS: P < 0.002. The percentage of patients with a Z score below -2 was higher in Stiffness and BUA: 38% and 47%, respectively, compared with a range of 16-24% in the other parameters (P < 0.05 BUA vs. DEXA measurements). Eleven patients with previous bone fracture had values lower than the non-fractured patients, both according to DEXA and ultrasound measurements, but the difference was only significant for BUA (P < 0.02). BUA of the calcaneus was more effective in detecting the specific skeletal alterations and fracture risk of the group of patients receiving chronic corticosteroid treatment.

  4. Effect of a novel procedure for limiting motion on body composition and bone estimates by dual-energy X-ray absorptiometry in children.

    PubMed

    Rawal, Rita; Miller, Freeman; Modlesky, Christopher M

    2011-10-01

    We studied the effect of using the BodyFIX (Medical Intelligence Inc, Schwabmunchen, Germany) to immobilize children during a dual-energy X-ray absorptiometry scan on body composition and bone estimates. Overestimates of soft tissue and bone introduced by the BodyFIX were avoided by using a modified version of the system or were corrected by using mathematical models developed in this study.

  5. Sandwich-type Au-PEI/DNA/PEI-Dexa nanocomplex for nucleus-targeted gene delivery in vitro and in vivo.

    PubMed

    Chen, Zhenzhen; Zhang, Lifen; He, Yuling; Li, Yanfeng

    2014-08-27

    Many synthetic Au-based cationic nanoparticles (AuNPs) for nonviral gene delivery show high efficiency in vitro, but their excessive charge density, harsh reducing conditions, and nontarget delivery prevent their application in vivo. Herein, we constructed a sandwich-type layered polyethylenimine (PEI)-coated gold nanocomposite outerlaid with a nucleus-targeted Dexamethasone (Dexa), namely, Au-PEI/DNA/PEI-Dexa nanocomplex, for DNA delivery system using a low molecular weight PEI as a mild reducing agent. The nucleus-targeting Au-PEI/DNA/PEI-Dexa nanocomplex with low positive charge and low cytotoxicity condensed DNA and protected from enzymatic degradation. In vitro transfection studies demonstrated that Au-PEI/DNA/PEI-Dexa nanocomplex exhibited much more efficient nucleus transfection than Au-PEI/DNA/PEI without nucleus-targeted residues and commercially available PEI 25 kDa due to the Dexa targeting of the nucleus. Furthermore, the nanocomplex markedly transfected pTRAIL (TRAIL = tumor-necrosis-factor-related apoptosis-inducing ligand) to tumors in vivo and subsequently inhibited the tumor growth with minimal side effects. These findings suggest that nucleus-targeting Au-PEI/DNA/PEI-Dexa ternary complexes have promising potential in gene delivery.

  6. Detecting meaningful body composition changes in athletes using dual-energy x-ray absorptiometry.

    PubMed

    Colyer, Steffi L; Roberts, Simon P; Robinson, Jonathan B; Thompson, Dylan; Stokes, Keith A; Bilzon, James L J; Salo, Aki I T

    2016-04-01

    Dual-energy x-ray absorptiometry (DXA) imaging is considered to provide a valid and reliable estimation of body composition when stringent scanning protocols are adopted. However, applied practitioners are not always able to achieve this level of control and the subsequent impact on measurement precision is not always taken into account when evaluating longitudinal body composition changes. The primary aim of this study was to establish the reliability of DXA in an applied elite sport setting to investigate whether real body composition changes can be detected. Additionally, the performance implications of these changes during the training year were investigated. Forty-eight well-trained athletes (from four diverse sports) underwent two DXA scans using a 'real-world' approach (with limited pre-scan controls), typically within 48 h, to quantify typical error of measurement (TEM). Twenty-five athletes underwent further scans, before and after specific training and competition blocks. 'True' body composition changes were evaluated using 2  ×  TEM thresholds. Twelve bob skeleton athletes also performed countermovement jump and leg press tests at each time point. Many 'true' body composition changes were detected and coincided with the primary training emphases (e.g. lean mass gains during hypertrophy-based training). Clear relationships (r  ±  90% CI) were observed between performance changes (countermovement jump and leg press) and changes in lean mass (0.53  ±  0.26 and 0.35  ±  0.28, respectively) and fat mass (-0.44  ±  0.27 and  -0.37  ±  0.28, respectively). DXA was able to detect real body composition changes without the use of stringent scanning controls. Associations between changes in body composition and performance demonstrated the potential influence of these changes on strength and power indices.

  7. Inverted BMI rather than BMI is a better predictor of DEXA determined body fatness in children.

    PubMed

    Duncan, M J; Martins, C; Silva, G; Marques, E; Mota, J; Aires, L

    2014-05-01

    This study compared body mass index (BMI) and inverted BMI (iBMI) as predictors of body fatness in 177 Portuguese children (149 girls and 96 boys) aged 7-16 years. Participants undertook measures of height and body mass from which BMI (kg/m(2)) and iBMI (cm(2)/kg) were determined. Maturation was determined via self-report and fat mass index (FMI, kg/m(2)) via dual-energy X-ray absorptiometry. Significant relationships were evident between BMI and iBMI and FMI (both P=0.0001). BMI was not normally distributed (P=0.0001) but iBMI was (P>0.05). Analysis of covariance identified that BMI and iBMI, controlling for maturation, were both significant predictors of FMI (both P=0.0001) but that iBMI predicted a slightly greater amount of the variance (adjusted R(2)=0.970) compared with BMI (adjusted R(2)=0.968). This study suggests that iBMI is a similar proxy for body fatness compared with BMI in children.

  8. Periosteum and bone marrow in bone lengthening: a DEXA quantitative evaluation in rabbits.

    PubMed

    Guichet, J M; Braillon, P; Bodenreider, O; Lascombes, P

    1998-10-01

    We quantitatively studied the role of periosteum and bone marrow-endosteum during lengthening in 18 growing rabbits, comparing four surgical procedures: 1) periosteum and bone marrow preservation, 2) periosteum preservation, bone marrow destruction, 3) periosteum destruction, bone marrow preservation, 4) periosteum and bone marrow destruction. An external fixator was set on one femur, the other serving as a control. Distraction began on day 5 and stopped on day 25 (0.25 mm/12 hours). On day 30, femora were harvested with a layer of muscle. Area, bone mineral content and density were measured by dual-energy x-ray absorptiometry. Procedure 2 showed the highest increase in bone mineral content around the elongated callus (127%) compared to procedures: 1 (81%), 3 (25%) and 4 (-8%, i.e., resorption of bone ends). A statistically significant effect on bone formation was observed when preserving (vs. destroying): 1) periosteum, 2) bone marrow (effect observed only around the distraction gap), 3) periosteum and bone marrow in combination. Periosteum alone forms a larger callus, with more mineral content than bone marrow alone, and destruction of both results in the absence of bone formation around the distraction area. Careful preservation of periosteum is essential to bone healing. Formation of bone with a large mineral content does not require bone marrow preservation, but there is an interaction effect on healing between bone marrow and periosteum.

  9. Dual energy x-ray absorptiometry: the effects of beam hardening on bone density measurements.

    PubMed

    Blake, G M; McKeeney, D B; Chhaya, S C; Ryan, P J; Fogelman, I

    1992-01-01

    X-ray tubes have superseded radionuclide sources for dual photon absorptiometry of the spine and hip. However, the use of a polyenergetic spectrum is a potential source of error for x-ray absorptiometers since beam hardening may result in a nonlinear measurement scale for bone mineral density (BMD). A quantitative study of the effects of beam hardening on measurements made with a commercial dual energy x-ray scanner has been performed. Bone was represented by layers of aluminum of linearly increasing thickness which were scanned under water thicknesses ranging from 0 to 25 cm to represent different body thicknesses of soft tissue. Beam hardening had two effects on measured BMD: (i) at a constant true BMD, measured BMD varied with water thickness; (ii) at a constant water thickness, the BMD scale was not precisely linear. For conditions appropriate to spine and hip studies (BMD) values in the range 0.7 to 1.4 g/cm2 and body thickness between 15 and 25 cm) the maximum deviation of measured BMD from a linear scale was 0.023 g/cm2, while the root-mean-square deviation (0.01 g/cm2) was comparable to the measurement precision for a spine or femoral neck scan (about 1%). The largest departures from linearity were found to occur at the thinnest water thicknesses for BMD values in the range 0.2 to 0.6 g/cm2. The effect of scale nonlinearity on the results of longitudinal studies was examined: for a spine scan at 20-cm body thickness, measured changes in BMD slightly overestimated the true change and implied an error of 0.15%/year for a measurement of a true rate of loss of 3% year in a postmenopausal woman.

  10. Determination of Cutoff Values for DEXA-Based Body Composition Measurements for Determining Metabolic and Cardiovascular Health

    PubMed Central

    Lang, Pierre-Olivier; Trivalle, Christophe; Vogel, Thomas; Proust, Jacques; Papazyan, Jean-Pierre; Dramé, Moustapha

    2015-01-01

    Abstract The two components of the body weight (i.e., fat mass and muscle mass) appeared to be of high interest to consider in predicting metabolic health related risks. We aimed to determine cutoff values for fat mass index (FMI) and muscle mass index (MMI), FM/MM, and BMI for metabolic and cardiovascular health. This study was a cross-sectional analysis study conducted in a center of preventive medicine. It included 616 consecutive outpatients: mean age was 56.0±10.0 years (74.6% aged ≥50), and 61.4% were female. Fat and muscle mass were obtained with dual energy X-ray absorptiometry scan analyses. Metabolically unhealthy individuals were defined as people with biological features of dyslipidemia, hyperuricemia, diabetes, and/or hepatitis steatosis. Documented hypertension and/or atherosclerosis of at least one major artery defined individuals with cardiovascular complications. Receiver-operating characteristic curve analysis revealed that the cutoff values for MMI, FMI, and FM/MM were respectively 18.8kg/m2 (sensitivity [Se]=58%; specificity [Sp]=59%), 5.5kg/m2 (Se=61%; Sp=62%), and 0.31 (Se=62%; Sp=62%) in men; and 14.1kg/m2 (Se=52%; Sp=54%), 5.5kg/m2 (Se=65%; Sp=67%), 0.39 (Se=73%; Sp=73%) in women for predicting metabolic health. Values were 19.3kg/m2 (Se=58%; Sp=59%), 7.0kg/m2 (Se=61%; Sp=62%) and 0.49 (Se=62%; Sp=62%) in men; and 15.7kg/m2 (Se=58%; Sp=59%), 6.4kg/m2 (Se=61%; Sp=62%) and 0.35 (Se=62%; Sp=62%) in women for cardiovascular complications. Whatever the outcomes considered, the Youden indexes for BMI values were systematically below 25 kg/m2, except for cardiovascular complications in men, where the threshold for the best Se/Sp was 25.7 kg/m2. These cutoff values for FMI, MMI, and FM/MM could be of practical value for the clinical evaluation of a deficit in MM with or without excess of FM. They complement the classical concept of BMI in a more qualitative manner and extend the analysis of its impact on health outcomes to all BMI categories

  11. Determination of Cutoff Values for DEXA-Based Body Composition Measurements for Determining Metabolic and Cardiovascular Health.

    PubMed

    Lang, Pierre-Olivier; Trivalle, Christophe; Vogel, Thomas; Proust, Jacques; Papazyan, Jean-Pierre; Dramé, Moustapha

    2015-01-01

    The two components of the body weight (i.e., fat mass and muscle mass) appeared to be of high interest to consider in predicting metabolic health related risks. We aimed to determine cutoff values for fat mass index (FMI) and muscle mass index (MMI), FM/MM, and BMI for metabolic and cardiovascular health. This study was a cross-sectional analysis study conducted in a center of preventive medicine. It included 616 consecutive outpatients: mean age was 56.0±10.0 years (74.6% aged ≥50), and 61.4% were female. Fat and muscle mass were obtained with dual energy X-ray absorptiometry scan analyses. Metabolically unhealthy individuals were defined as people with biological features of dyslipidemia, hyperuricemia, diabetes, and/or hepatitis steatosis. Documented hypertension and/or atherosclerosis of at least one major artery defined individuals with cardiovascular complications. Receiver-operating characteristic curve analysis revealed that the cutoff values for MMI, FMI, and FM/MM were respectively 18.8kg/m(2) (sensitivity [Se]=58%; specificity [Sp]=59%), 5.5kg/m(2) (Se=61%; Sp=62%), and 0.31 (Se=62%; Sp=62%) in men; and 14.1kg/m(2) (Se=52%; Sp=54%), 5.5kg/m(2) (Se=65%; Sp=67%), 0.39 (Se=73%; Sp=73%) in women for predicting metabolic health. Values were 19.3kg/m(2) (Se=58%; Sp=59%), 7.0kg/m(2) (Se=61%; Sp=62%) and 0.49 (Se=62%; Sp=62%) in men; and 15.7kg/m(2) (Se=58%; Sp=59%), 6.4kg/m(2) (Se=61%; Sp=62%) and 0.35 (Se=62%; Sp=62%) in women for cardiovascular complications. Whatever the outcomes considered, the Youden indexes for BMI values were systematically below 25 kg/m(2), except for cardiovascular complications in men, where the threshold for the best Se/Sp was 25.7 kg/m(2). These cutoff values for FMI, MMI, and FM/MM could be of practical value for the clinical evaluation of a deficit in MM with or without excess of FM. They complement the classical concept of BMI in a more qualitative manner and extend the analysis of its impact on health outcomes to all BMI

  12. Total and regional body volumes derived from dual-energy X-ray absorptiometry output.

    PubMed

    Wilson, Joseph P; Fan, Bo; Shepherd, John A

    2013-01-01

    Total body volume is an important health metric used to measure body density, shape, and multicompartmental body composition but is currently only available through underwater weighing or air displacement plethysmography (ADP). The objective of this investigation was to derive an accurate body volume from dual-energy X-ray absorptiometry (DXA)-reported measures for advanced body composition models. Volunteers received a whole body DXA scan and an ADP measure at baseline (N = 25) and 6 mo (N = 22). Baseline measures were used to calibrate body volume from the reported DXA masses of fat, lean, and bone mineral content. A second population (N = 385) from the National Health and Nutrition Examination Survey was used to estimate the test-retest precision of regional (arms, legs, head, and trunk) and total body volumes. Overall, we found that DXA-volume was highly correlated to ADP-volume (R² = 0.99). The 6-mo change in total DXA-volume was highly correlated to change in ADP-volume (R² = 0.98). The root mean square percent coefficient of variation precision of DXA-volume measures ranged from 1.1% (total) to 3.2% (head). We conclude that the DXA-volume method can measure body volume accurately and precisely, can be used in body composition models, could be an independent health indicator, and is useful as a prospective or retrospective biomarker of body composition.

  13. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  14. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components.

    PubMed

    Malkov, Serghei; Shepherd, John

    2014-02-17

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  15. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  16. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  17. Elemental quantification using multiple-energy x-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Kozul, N.; Davis, G. R.; Anderson, P.; Elliott, J. C.

    1999-03-01

    A novel implementation of multiple-energy x-ray absorptiometry (MEXA) for elemental quantification has been developed. Species are resolved on the basis of their differential attenuation spectra across a wide energy range, ideally including absorption edges. By measuring the incident and exiting x-ray spectra and using known values of mass attenuation coefficients over selected energy bands, the density line integral of the species along the x-ray path can be calculated from all the selected energy channels simultaneously by non-linear least squares methods. Effects of `escape' peak phenomena are modelled and corrections for them are included in the MEXA software. The applications of MEXA are illustrated by single measurements on aluminium and zirconium foils, quantitation of aqueous KI diffusing into a porous solid, simultaneous measurement of acidic diffusant 0957-0233/10/3/023/img1 and porous solid with which it reacts and which it dissolves and microtomographic reconstructions of liquid and solid specimens containing caesium and/or iodine.

  18. Evaluation of growth patterns and body composition in C57Bl/6J mice using dual energy X-ray absorptiometry.

    PubMed

    Gargiulo, Sara; Gramanzini, Matteo; Megna, Rosario; Greco, Adelaide; Albanese, Sandra; Manfredi, Claudio; Brunetti, Arturo

    2014-01-01

    The normal growth pattern of female C57BL/6J mice, from 5 to 30 weeks of age, has been investigated in a longitudinal study. Weight, body surface area (BS), and body mass index (BMI) were evaluated in forty mice. Lean mass and fat mass, bone mineral content (BMC), and bone mineral density (BMD) were monitored by dual energy X-ray absorptiometry (DEXA). Weight and BS increased linearly (16.15 ± 0.64-27.64 ± 1.42 g; 51.13 ± 0.74-79.57 ± 2.15 cm(2), P < 0.01), more markedly from 5 to 9 weeks of age (P < 0.001). BMD showed a peak at 17 weeks (0.0548 ± 0.0011 g/cm(2) ∗ m, P < 0.01). Lean mass showed an evident gain at 9 (15.8 ± 0.8 g, P < 0.001) and 25 weeks (20.5 ± 0.3 g, P < 0.01), like fat mass from 13 to 17 weeks (2.0 ± 0.4-3.6 ± 0.7 g, P < 0.01). BMI and lean mass index (LMI) reached the highest value at 21 weeks (3.57 ± 0.02-0.284 ± 0.010 g/cm(2), resp.), like fat mass index (FMI) at 17 weeks (0.057 ± 0.009 g/cm(2)) (P < 0.01). BMI, weight, and BS showed a moderate positive correlation (0.45-0.85) with lean mass from 5 to 21 weeks. Mixed linear models provided a good prediction for lean mass, fat mass, and BMD. This study may represent a baseline reference for a future comparison of wild-type C57BL/6J mice with models of altered growth.

  19. Long-term precision of dual-energy X-ray absorptiometry body composition measurements and association with their covariates.

    PubMed

    Powers, Cassidy; Fan, Bo; Borrud, Lori G; Looker, Anne C; Shepherd, John A

    2015-01-01

    Few studies have described the long-term repeatability of dual-energy X-ray absorptiometry scans. Even fewer studies have been performed with enough participants to identify possible precision covariates such as sex, age, and body mass index (BMI). Our objective was to investigate the long-term repeatability of both total and subregional body composition measurements and their associations with covariates in a large sample. Two valid whole-body dual-energy X-ray absorptiometry scans were available for 609 participants in the National Health and Nutrition Examination Survey 2000-2002. Participants with scan-quality issues were excluded. Participants varied in race and ethnicity, sex, age (mean 38.8±17.5; range 16-69 yr), and BMI (mean, 26.9±5.2; range 14.1-43.5 kg/m2). The length of time between scans ranged from 3 to 51 days (mean, 18.7±8.4). Precision error estimates for total body measures (bone mineral density, bone mineral content, lean mass, total mass, fat mass, and percent body fat) were calculated as root mean square percent coefficients of variation and standard deviations. The average root mean square percent coefficients of variation and root mean square standard deviations of the precision error for total body variables were 1.12 and 0.01 g/cm2 for bone mineral density, 1.14 and 27.3 g for bone mineral content, 1.97 and 505 g for fat mass, 1.46 and 760 g for lean mass, 1.10 and 858 g for total mass, and 1.80 and 0.59 for percent body fat. In general, only fat and lean masses were impacted by participant and scan qualities (obesity category, sex, the magnitude of the body composition variables, and time between scans). We conclude that long-term precision error values are impacted by BMI, and sex. Our long-term precision error estimates may be more suitable than short-term precision for calculating least significant change and monitoring time intervals.

  20. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    PubMed

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults.

  1. Assessing body composition in healthy newborn infants: reliability of dual-energy x-ray absorptiometry.

    PubMed

    Godang, Kristin; Qvigstad, Elisabeth; Voldner, Nanna; Isaksen, Gunhild A; Frøslie, Kathrine F; Nøtthellen, Jacob; Henriksen, Tore; Bollerslev, Jens

    2010-01-01

    Dual-energy X-ray absorptiometry (DXA) is used to measure body composition in newborns; however, data on DXA accuracy are limited. We investigated the reliability of body composition measurements by DXA. The present study included 207 normal-term newborn babies, recruited from a larger study on the determinants of birth weight in healthy pregnancies (STORK) between 2005 and 2008. Reliability analysis of total fat mass (FM(DxA)), fat-free mass, lean mass (LM(DxA)), bone mineral content (BMC), and bone mineral density (BMD) were based on 2 DXA scans of 50 neonates. We also performed a comparison analysis for DXA (FM(DxA)) measurements and caliper (CLP) or circumference (CF) measurements of trunk and extremities (performed on all neonates, n=207). Reliability: All intraclass correlation coefficients (ICC) were satisfactory to excellent for total body and the extremity-compartment FM(DxA), LM(DxA), BMD, and BMC; ICC ranged from 0.86 to 0.96 but with a lower ICC for trunk FM(DxA). For comparison analysis, the Pearson correlation coefficients for CLP vs DXA and CF vs DXA ranged from 0.48 to 0.79 and 0.41 to 0.77, respectively. Quadriceps CLP and CF measurements correlated best with the most reliable DXA results, whereas more modest correlations were found for the trunk region. DXA measurements of body composition demonstrated good reliability and can be used as a reference method in neonates. CLP and CF measurements are appropriate for larger cohorts or when DXA is unavailable, and they provide fair rough estimations of fat mass.

  2. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry.

    PubMed

    Keil, Mhairi; Totosy de Zepetnek, Julia O; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2016-01-01

    The purpose of this study was to assess the reproducibility of body composition measurements by dual-energy X-ray absorptiometry (DXA) in 12 elite male wheelchair basketball players (age 31 ± 7 years, BMI 21 ± 2 kg/m(2) and onset of disability 25 ± 9 years). Two whole body scans were performed on each participant in the supine position on the same day, using Lunar Prodigy Advance DXA (GE Lunar, Madison, WI, USA). Participants dismounted from the scanning table and were repositioned in-between the first and second scan. Whole body coefficient of variation (CV) values for bone mineral content (BMC), fat mass (FM) and soft tissue lean mass (LTM) were all <2.0%. With the exclusion of arm FM (CV = 7.8%), CV values ranged from 0.1 to 3.7% for all total body and segmental measurements of BMC, FM and LTM. The least significant change that can be attributed to the effect of treatment intervention in an individual is 1.0 kg, 1.1 kg, 0.12 kg for FM, LTM, and BMC, respectively. This information can be used to determine meaningful changes in body composition when assessed using the same methods longitudinally. Whilst there may be challenges in the correct positioning of an individual with disability that can introduce greater measurement error, DXA is a highly reproducible technique in the estimation of total and regional body composition of elite wheelchair basketball athletes.

  3. Assessment of adiposity in psoriatic patients by dual energy X-ray absorptiometry compared to conventional methods*

    PubMed Central

    Diniz, Michelle dos Santos; Bavoso, Nádia Couto; Kakehasi, Adriana Maria; Lauria, Márcio Weissheimer; Soares, Maria Marta Sarquis; Machado-Pinto, Jackson

    2016-01-01

    BACKGROUND Obesity is considered a chronic low-grade inflammatory disease that shares mediators of inflammation with psoriasis, such as TNF-α and IL-6. The relationship between these two conditions involves factors such as predisposition and response to therapy, in addition to an association with cardiovascular disease. OBJECTIVES The aim of the present study was to investigate the prevalence of adiposity as determined by body mass index (BMI), waist circumference (WC), and dual energy X-ray absorptiometry (DXA) evaluation in patients with psoriasis. METHODS BMI, WC and body composition by DXA were measured in 42 psoriatic patients without joint complaints and in 41 control patients using standard procedures. In the comparison between cases and controls, we used Pearson’s Χ2 test or Fisher’s exact test, and the nonparametric Mann-Whitney test. The difference between the diverse classification methods for obesity was evaluated using McNemar’s test. To test the level of agreement between those variables, we used the weighted kappa coefficient. RESULTS There was no difference in the prevalence of obesity among cases and controls. Both BMI and WC had low agreement with measures of body fat evaluated by DXA. With the use of DXA scanning, prevalence of overweight and obesity in patients with psoriasis was 83.3%, which constitutes a strong evidence of the need for intervention on this metabolic parameter. CONCLUSION Dual energy X-ray absorptiometry was more capable of identifying obesity compared with BMI and WC both in psoriatic and control patients. PMID:27192512

  4. Photon absorptiometry for non-invasive measurement of bone mineral content

    SciTech Connect

    Gupta, S.; Luna, E.; Belsky, J.; Gelfman, N.; Miller, K.; Davies, T.

    1984-08-01

    Bone mineral content of the distal radius was determined in 106 patients by single photon absorptiometry using iodine-125 monochromatic source. The technique provided a reliable means to assess the degree of mineral loss in conditions such as osteoporosis, renal osteodystrophy in patients on chronic maintenance dialysis, subjects on long-term steroid therapy, and those with diabetes mellitus. It is more sensitive than conventional radiography and completely noninvasive compared to bone biopsy. It is suggested that photon absorptiometry is a simple, sensitive, and reliable technique for assessment and follow-up of the bone mineral content in a host of disorders associated with bone demineralization.

  5. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  6. Annual Historical Report - AMEDD Activities, Calendar Year 1991

    DTIC Science & Technology

    1992-03-01

    consumption, urine samples, and body weights were collected. In addition, body composition measures (whole-body x-ray scanning procedure ( DEXA ) and...and A. Cymerman. The use of dual energy x-ray absorptiometry ( DEXA ) for the assessment of body composition before and after an altitude exposure...greater flexibility in the hip extensor on one side of the body were 2.6 times more likely to suffer lower extremity injuries than athletes without this

  7. DEXA analysis on the bones of rats exposed in utero and neonatally to static and 50 Hz electric fields.

    PubMed

    Okudan, Berna; Keskin, Ali Umit; Aydin, Mustafa Asim; Cesur, Gökhan; Cömlekçi, Selçuk; Süslü, Harun

    2006-10-01

    Effects of the electromagnetic fields on living bodies, bones in particular, are among the relevant issues of contemporary life. In this study, we report the influences of 50 Hz and 0 Hz (static) electric fields (EF), on intact rat bones, as evaluated by dual energy X-ray absorbtion (DEXA) measurements on bone content and density when these animals (n = 27) are continuously exposed in utero and neonatally to EFs (10 kV/m) 14 days before and 14 days after their birth, for 28 days in total. Differences between 50 Hz EF and static EF groups are found to be significant (95% confidence level) for total bone mineral content (BMC), TBMC (P = .002). Differences between 50 Hz and control groups are found to be significant for total bone mineral density (BMD), TBMD (P = .002), lumbar BMC, LBMC (P = .023), and TBMC (P = .001). Differences between static EF and control groups are found to be significant for femoral BMD, FBMD (P = .009), TBMD (P = .002), LBMC (P = .001), and TBMC (P = .001). Note that TBMC parameters are jointly significant for all differences between the three groups of test animals. These results have shown that both static and 50 Hz EFs influence the early development of rat bones. However, the influence of static EFs is more pronounced than that of the 50 Hz field.

  8. Comparison of Anthropometry to Dual Energy X-Ray Absorptiometry: A New Prediction Equation for Women

    ERIC Educational Resources Information Center

    Ball, Stephen; Swan, Pamela D.; DeSimone, Rosemarie

    2004-01-01

    The purpose of this study was to assess the accuracy of three recommended anthropometric equations for women and then develop an updated prediction equation using dual energy x-ray absorptiometry (DXA). The percentage of body fat (%BF) by anthropometry was significantly correlated (r = .896-. 929; p [is less than] .01) with DXA, but each equation…

  9. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    ERIC Educational Resources Information Center

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  10. DXA performance in a pediatric population: precision of body composition measurements in healthy term-born infants using dual-energy X-ray absorptiometry.

    PubMed

    de Knegt, Victoria Elizabeth; Carlsen, Emma Malchau; Bech Jensen, Jens-Erik; Lade Rasmussen, Anne Mette; Pryds, Ole

    2015-01-01

    Dual-energy X-ray absorptiometry (DXA) has been hailed as a golden standard for measuring body composition in adults but remains to be fully assessed for the infant population. A total of 64 newborn infants were allocated to 1 of 3 groups. All underwent 2 Hologic Discovery A DXA scans. Suboptimal scans were reconstructed, and an investigation into the success of adjustment was carried out. Depending on group, the factors of weight change and repositioning were investigated. Test-retest variation and coefficients of variation for DXA body composition estimates were calculated. Furthermore, the effects of flannel sheets and breast milk were investigated using a pediatric phantom. Reconstruction of suboptimal scans resulted in more accurate body weight estimates. Moderate weight change and repositioning had no significant effect on the variation between scans. No significant body composition changes occurred between scans. The test-retest variation varied between 6.3% and 11.8%. Flannel sheets and breast milk affected DXA results significantly. High precision of DXA measurements was obtained in our newborn population. Reconstructing scans is a viable way of correcting minor movement artifacts. Moderate weight changes and repositioning have no significant effect on DXA results, whereas flannel sheets and milk do.

  11. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are

  12. Enhancing Quality of Life for Breast Cancer Patients with Bone Metastases

    DTIC Science & Technology

    2008-04-01

    12- hour day/night cycle and were fed a diet of autoclaved food and water ad libitum. Bone Densitometry Dual-energy X-ray absorptiometry ( DEXA ...slow the progression of osteolysis (Figure 1.1c-e), however significant bone loss was still observed at the end of study (Figure 2.1e). Terminal DEXA ...available for use in a pre-clinical setting, ranging from X-rays and DEXA scans to more sophisticated techniques that involve the imaging of

  13. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance.

    PubMed

    Lewiecki, E Michael; Binkley, Neil; Morgan, Sarah L; Shuhart, Christopher R; Camargos, Bruno Muzzi; Carey, John J; Gordon, Catherine M; Jankowski, Lawrence G; Lee, Joon-Kiong; Leslie, William D

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring.

  14. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses.

  15. Precision Error in Dual-Energy X-Ray Absorptiometry Body Composition Measurements in Elite Male Rugby League Players.

    PubMed

    Barlow, Matthew J; Oldroyd, Brian; Smith, Debbie; Lees, Matthew J; Brightmore, Amy; Till, Kevin; Jones, Benjamin; Hind, Karen

    2015-01-01

    Body composition analysis using dual-energy X-ray absorptiometry (DXA) is becoming increasingly popular in both clinical and sports science settings. Obesity, characterized by high fat mass (FM), is associated with larger precision errors; however, precision error for athletic groups with high levels of lean mass (LM) are unclear. Total (TB) and regional (limbs and trunk) body composition were determined from 2 consecutive total body scans (GE Lunar iDXA) with re-positioning in 45 elite male rugby league players (age: 21.8 ± 5.4 yr; body mass index: 27.8 ± 2.5 kg m(-1)). The root mean squared standard deviation (percentage co-efficient of variation) were TB bone mineral content: 24g (1.7%), TB LM: 321 g (1.6%), and TB FM: 280 g (2.3%). Regional precision values were superior for measurements of bone mineral content: 4.7-16.3 g (1.7-2.1%) and LM: 137-402 g (2.0-2.4%), than for FM: 63-299 g (3.1-4.1%). Precision error of DXA body composition measurements in elite male rugby players is higher than those reported elsewhere for normal adult populations and similar to those reported in those who are obese. It is advised that caution is applied when interpreting longitudinal DXA-derived body composition measurements in male rugby players and population-specific least significant change should be adopted.

  16. Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people.

    PubMed

    Nana, Alisa; Slater, Gary J; Stewart, Arthur D; Burke, Louise M

    2015-04-01

    Dual energy X-ray absorptiometry (DXA) is rapidly becoming more accessible and popular as a technique to monitor body composition, especially in athletic populations. Although studies in sedentary populations have investigated the validity of DXA assessment of body composition, few studies have examined the issues of reliability in athletic populations and most studies which involve DXA measurements of body composition provide little information on their scanning protocols. This review presents a summary of the sources of error and variability in the measurement of body composition by DXA, and develops a theoretical model of best practice to standardize the conduct and analysis of a DXA scan. Components of this protocol include standardization of subject presentation (subjects rested, overnight-fasted and in minimal clothing) and positioning on the scanning bed (centrally aligned in a standard position using custom-made positioning aids) as well as manipulation of the automatic segmentation of regional areas of the scan results. Body composition assessment implemented with such protocol ensures a high level of precision, while still being practical in an athletic setting. This ensures that any small changes in body composition are confidently detected and correctly interpreted. The reporting requirements for studies involving DXA scans of body composition include details of the DXA machine and software, subject presentation and positioning protocols, and analysis protocols.

  17. Dexamethasone, carmustine, etoposide, cytarabine, and melphalan (dexa-BEAM) followed by high-dose chemotherapy and stem cell rescue--a highly effective regimen for patients with refractory or relapsed indolent lymphoma.

    PubMed

    Josting, A; Reiser, M; Wickramanayake, P D; Rueffer, U; Draube, A; Söhngen, D; Tesch, H; Wolf, J; Diehl, V; Engert, A

    2000-03-01

    We performed a phase II study to determine the efficacy of maximal cytoreductive therapy with up to five cycles of Dexa-BEAM (dexamethasone, carmustine [BCNU], etoposide, cytarabine, and melphalan) followed by high-dose chemotherapy (HDCT) and autologous stem cell transplantation (ASCT) for patients with advanced relapsed or refractory indolent lymphoma. Thirty-two patients with primary refractory or relapsed indolent lymphoma were treated with the Dexa-BEAM regimen. Thirteen patients had primary refractory disease, 4 patients partial remission, and 15 patients first or subsequent relapse. Patients achieving PR or CR received HDCT with ASCT. The conditioning regimen used was BEAM (carmustine [BCNU], etoposide, cytarabine, and melphalan). Twenty-two patients responded to Dexa-BEAM resulting in a response rate of 78%. Maximum response was observed after 3.2 (range 2-5) courses. One patient with progressive disease died in septic shock during neutropenia. Nineteen patients with partial or complete remission after Dexa-BEAM received HDCT. Hematopoietic stem cells (HSC) were collected after two cycles of Dexa-BEAM. The median number of CD34+ HSC reinfused was 3.1 x 10(6)/kg (range 1.6-8.2 x 10(6)/kg). There was no transplantation-related death. All patients receiving HDCT achieved complete remission. Overall survival (OS) and freedom from treatment failure (FFTF) for all patients are estimated to be 68% and 65% at two years, respectively. With a mean follow-up of 20 months (range 8-42 months), 16/19 patients receiving HDCT are in continuous complete remission. The Dexa-BEAM regimen is effective in overcoming drug resistance in patients with indolent lymphoma who failed to respond to conventional treatment or who relapsed. The CR rate of 100% of those patients receiving HDCT and ASCT after maximal cytoreductive treatment with Dexa-BEAM suggests the use of HDCT at the time of maximal response.

  18. Measurement of the subcutaneous fat in the distal forearm by single photon absorptiometry

    SciTech Connect

    Hassager, C.; Borg, J.; Christiansen, C.

    1989-02-01

    The influence of subcutaneous fat on single photon (/sup 125/I) absorptiometry (SPA) measurement of bone mineral content of the distal forearm was investigated. A fat correction model was tested by measurements on eight lean subjects with different amounts of porcine fat around their forearm, and further validated from measurements on 128 females. In addition, it is shown that the fat content in the distal forearm can be measured by SPA with a short-term precision at 1.9% in an obese subject and that it correlates well with total body fat (r2 = .7) measured by dual photon absorptiometry, skinfold thickness (r2 = .5), and body mass index (r2 = .6). By using this method in a double-blind placebo-controlled trial, hormonal substitutional therapy significantly decreased the forearm fat content without affecting the body weight in postmenopausal osteoporotic women.

  19. Precision error in dual-photon absorptiometry related to source age

    SciTech Connect

    Ross, P.D.; Wasnich, R.D.; Vogel, J.M.

    1988-02-01

    An average, variable precision error of up to 6% related to source age was observed for dual-photon absorptiometry of the spine in a longitudinal study of bone mineral content involving 393 women. Application of a software correction for source decay compensated for only a portion of this error. The authors conclude that measurement of bone-loss rates using serial dual-photon bone mineral measurements must be interpreted with caution.

  20. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  1. Relationship between alveolar bone measured by /sup 125/I absorptiometry with analysis of standardized radiographs: 1. Magiscan

    SciTech Connect

    Hausmann, E.; Ortman, L.F.; McHenry, K.; Fallon, J.

    1982-05-01

    Previous studies have shown that /sup 125/I absorptiometry gives an accurate and sensitive measure of alveolar bone mass. The purpose of this study was to determine the relationship between alveolar bone mass determined by /sup 125/I absorptiometry and bone density obtained by analysis of standardized intraoral radiographs by the Magiscan System. A defect of increasing size was made at one site of the alveolar bone in a human skull. The amount of bone remaining at each step was calculated using /sup 125/I absorptiometry. Standardized radiographs were also taken at each step and the relative density in the area of the defect was determined by the Magiscan System. The Magiscan's System Computer Memory permits analysis of identical areas on a longitudinal series of films of the same alveolar bone location. The results indicate that in estimating amounts of alveolar bone the Magiscan analysis of standardized intraoral radiography is similar in sensitivity and accuracy to /sup 125/I absorptiometry.

  2. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  3. WBC scan

    MedlinePlus

    ... in the body. It is a type of nuclear scan . How the Test is Performed Blood will ... radiation. Due to the slight radiation exposure, most nuclear scans (including WBC scan) are not recommended for ...

  4. Liver scan

    MedlinePlus

    ... Nuclear scan - technetium; Nuclear scan - liver or spleen Images Liver scan References Lidofsky S. Jaundice. In: Feldman M, ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  5. PET scan

    MedlinePlus

    ... may have an allergic reaction to the tracer material. Some people have pain, redness, or swelling at ... with diabetes. Most PET scans are now performed along with a CT scan. This combination scan ...

  6. Longitudinal DXA Studies: Minimum scanning interval for pediatric assessment of body fat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased prevalence of obesity in the United States, has led to the increased use of dual-energy X-ray absorptiometry (DXA) for assessment of body fat mass (TBF) in pediatric populations. We examined DXA precision, in order to determine suitable scanning intervals for the measurement of change...

  7. Immediate changes of bone density caused by the implantation of a femoral stem--a DEXA study. Ulf.Leichtle@med.uni-tuebingen.de.

    PubMed

    Leichtle, Ulf G; Leasure, Jeremi; Martini, Franz; Leichtle, Carmen I

    2011-01-01

    Considerable immediate periprosthetic bone density changes after implantation of femoral stems have been observed comparing DEXA measurements taken pre- and post-operatively. This is important in relation to the interpretation of DEXA studies. We analysed these density changes under standardised experimental conditions. Five human femora were implanted with a custom made femoral stem and ten femora with a standard cementless prosthesis. Densitometry was performed at various stages of implantation. Following rasping only slight density changes were noted (-2.7% to +0.7%). Comparing post-implantation and pre-operative measurements, all custom made stems with a proximal press-fit demonstrated clear increases in proximal periprosthetic bone density of +11% and +14%. In contrast, the standard prosthesis with a distal press-fit showed a loss of -5% and -2% in the proximal zones. Measurements following removal of the implants demonstrated hardly any density changes (0% to -4%) compared to the pre-operative measurements. We concluded that compacting of trabecular bone or bone loss due to rasping are not the main causes of density changes. Substantial measuring errors exist. For examination of periprosthetic bone density changes, pre-operative initial measurements should not be used as a baseline for comparison. Studies should commence with an immediate postoperative measurement.

  8. Measurement of composition changes using dual-photon absorptiometry in obese patients undergoing semistarvation.

    PubMed

    Koyama, H; Nishizawa, Y; Yamashita, N; Furumitsu, Y; Hagiwara, S; Ochi, H; Morii, H

    1990-03-01

    The changes in total fat mass (TFM) and lean body mass (LBM) under semistarvation treatment were measured by dual-photon absorptiometry (DPA) in this study. Three females with massive obesity were followed over two periods consuming a very-low-calorie diet (VLCD). Although LBM changes attributed to water shifts related to sodium balance were observed, DPA proved sensitive enough to measure LBM and TFM changes in semistarvation treatment. LBM measured by DPA did not change significantly following 4 weeks of VLCD. However, TFM decreased significantly (70.9 +/0 24.1 kg to 62.4 +/- 21.7 kg) and paralleled body weight.

  9. Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Cleek, Tammy

    1993-01-01

    Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.

  10. Repeatability of Volume and Regional Body Composition Measurements of the Lower Limb Using Dual-energy X-ray Absorptiometry.

    PubMed

    Gjorup, Caroline A; Zerahn, Bo; Juul, Sarah; Hendel, Helle W; Christensen, Karl Bang; Hölmich, Lisbet R

    Lower limb lymphedema is a dynamic condition in which tissue composition and volume measurements are affected. Various definitions of lower limb lymphedema exist but volume differences between the limbs are widely used. It is therefore necessary to have a readily available noninvasive measurement technique allowing multiple measurements of the lower limbs. This study investigated the repeatability of duplicate volume and regional body composition measurements of the lower limb using the GE Lunar Prodigy dual-energy X-ray absorptiometry (DXA) scanner Prodigy (GE Medical Systems, Madison, WI). Twenty-seven participants (54 limbs), 14 women and 13 men aged 33-71 years with body mass index ranging from 14 to 32 kg/m(2) were recruited. Duplicate whole-body DXA scans were performed with repositioning between examinations. Regions of interest were manually drawn for the thigh, lower leg, and foot, and total volume was calculated using the density of bone mineral content, fat, and lean mass. The repeatability of the volume of the lower limb and regional thigh and lower leg tissue composition (bone mineral content, fat, and lean mass) was good with intraclass correlation coefficient values of 0.97 to 0.99, and narrow limits of agreement on the Bland-Altman plots. These results confirm DXA to be a highly repeatable method for volume and tissue composition measurements of the lower limb. In a population at risk of lymphedema, DXA offers a clinically readily available noninvasive method allowing multiple measurements of volume and tissue composition on a routine basis, important for diagnosing, monitoring, managing, and researching lymphedema.

  11. Cortical thickness estimation of the proximal femur from multi-view dual-energy X-ray absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Tsaousis, N.; Gee, A. H.; Treece, G. M.; Poole, K. E. S.

    2013-02-01

    Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 +/- 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 +/- 0:79 mm.

  12. Reconstructing the 3D shape and bone mineral density distribution of the proximal femur from dual-energy X-ray absorptiometry.

    PubMed

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; Del Rio Barquero, Luis M; Frangi, Alejandro F

    2011-12-01

    The accurate diagnosis of osteoporosis has gained increasing importance due to the aging of our society. Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is an established criterion in the diagnosis of osteoporosis. This measure, however, is limited by its two-dimensionality. This work presents a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image used in clinical routine. A statistical model of the combined shape and BMD distribution is presented, together with a method for its construction from a set of quantitative computed tomography (QCT) scans. A reconstruction is acquired in an intensity based 3D-2D registration process whereby an instance of the model is found that maximizes the similarity between its projection and the DXA image. Reconstruction experiments were performed on the DXA images of 30 subjects, with a model constructed from a database of QCT scans of 85 subjects. The accuracy was evaluated by comparing the reconstructions with the same subject QCT scans. The method presented here can potentially improve the diagnosis of osteoporosis and fracture risk assessment from the low radiation dose and low cost DXA devices currently used in clinical routine.

  13. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity.

  14. Bone Scan

    MedlinePlus

    ... Mayo Clinic Staff A bone scan is a nuclear imaging test that helps diagnose and track several ... you're nursing. A bone scan is a nuclear imaging procedure. In nuclear imaging, tiny amounts of ...

  15. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  16. Discriminative ability of total body bone-mineral measured by dual photon absorptiometry.

    PubMed

    Gotfredsen, A; Pødenphant, J; Nilas, L; Christiansen, C

    1989-04-01

    We investigated the discriminative ability of total body bone-mineral expressed as the total body bone-density (TBBD) measured by dual photon absorptiometry (DPA) in 79 healthy premenopausal women, 27 healthy postmenopausal women, and 120 female osteoporotic fracture patients presenting with either Colles' fracture, vertebral fracture or femoral neck-fracture. TBBD was compared to the bone-mineral density of the lumbar spine (BMDspine) also measured by DPA, and to the bone-mineral content of the forearms (BMCforearm) measured by single photon absorptiometry (SPA). TBBD, BMDspine and BMCforearm showed that all the fracture patient groups had significantly reduced bone-mass. Using receiver operating characteristic (ROC) analysis, we found that TBBD had a tendency towards better discriminative ability than BMDspine or BMCforearm with regard to the discrimination between healthy premenopausal women and the three types of osteoporotic fractures (not significant in spinal fracture patients). BMCforearm had an intermediate position, whereas BMDspine had the smallest discriminative ability. TBBD also discriminated better between healthy postmenopausal women and hip-fracture patients than BMDspine or BMCforearm, whereas there was no significant difference between the three methods regarding the discrimination between the healthy postmenopausal women and the Colles' and spinal fracture patients. We conclude that the TBBD measurement by DPA has a discriminative potential which is better than the local spine or forearm measurements.

  17. Reliability of 2 Different Positioning Protocols for Dual-Energy X-ray Absorptiometry Measurement of Body Composition in Healthy Adults.

    PubMed

    Kerr, Ava; Slater, Gary J; Byrne, Nuala; Nana, Alisa

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is an accepted time-efficient method of body composition assessment for total body and regional fat mass (FM), lean mass (LM), and bone mineral content (BMC), but for longitudinal monitoring the measurements must be sufficiently reliable. The aim of this study was to compare the reliability of a new positioning protocol (Nana et al) with the current reference (National Health and Nutrition Examination Survey [NHANES]) protocol and investigate their within-protocol precision. Thirty healthy adults (16 females and 14 males) underwent 4 whole-body DXA scans in succession with full repositioning between scans. The scan order was randomized, with 2 scans undertaken in accordance with the current NHANES protocol and 2 using the Nana et al protocol. Magnitudes of typical errors of measurement and changes in the mean of DXA body composition estimates were assessed as standardized effect sizes. The Nana et al protocol repositioning produced trivial typical errors for total body across all LM estimates except for FM in the arms and trunk which were moderately substantial. The NHANES protocol produced similar typical errors for all measurements in LM except for FM and BMC in the trunk and arms which were substantially larger than the smallest worthwhile effect. The difference between protocols produced substantially large typical errors in estimations of both total body FM and regional FM and BMC, but differences in LM were all less than the smallest worthwhile effect. Although both protocols demonstrated acceptable intratest reliability, the Nana et al protocol produced enhanced precision in regional (arms and trunk) FM and BMC. The protocols were substantially different in body composition assessment especially for FM and thus should not to be interchanged. Anecdotally, subjects felt more comfortable and supported during the scan with the Nana et al protocol.

  18. RT-PCR-based evidence for the in vivo stimulation of renal tubularp-aminohippurate (PAH) transport by triiodothyronine (T3) or dexamethasone (DEXA) in kidney tissue of immature and adult rats.

    PubMed

    Bahn, Andrew; Hauss, Achim; Appenroth, Dorothea; Ebbinghaus, Diana; Hagos, Yohannes; Steinmetzer, Peter; Burckhardt, Gerhard; Fleck, Christian

    2003-06-01

    Our previous studies have shown that a pre-treatment of rats with triiodothyronine (T3) or dexamethasone (DEXA) increases renal PAH excretion significantly. This stimulation was accompanied by an enhanced protein synthesis within the renal cortex. To explore the molecular basis for this sub-chronic induction process, we investigated the stimulation of PAH accumulation in renal cortical slices as well as the expression level of organic anion transporter 1 (OAT1), the recently cloned renal basolateral PAH-transporter, using RT-PCR techniques under the applied conditions. 10- and 55-day-old Han:WIST rats were treated in vivo with T3 (20 microg/100 g b.wt.) or DEXA (60 microg/100 g b.wt.), both for 3 days, once daily. Renal cortical slices were incubated for 2 hours in Cross-Taggart medium and PAH uptake into kidney tissue was measured time dependently (slice to medium ratio, QS/M). The accumulation capacity is comparable between immature and mature rats (control-QS/M: 6.7 +/- 0.1 vs. 6.9 +/- 0.2, respectively). Both age groups showed a significant increase of PAH accumulation capacity after T3 treatment (10-day-old rats: 15.0 +/- 0.2; 55-day-old rats: 11.7 +/- 1.3). After DEXA pre-treatment, PAH accumulation was only slightly changed (10-day-old rats: 5.9 +/- 0.2; 55-day-old rats: 8.2 +/- 1.3). Semi-quantitative measurements of OAT1 mRNA expression level showed a significant increase of OAT1 mRNA after pre-treatment with both T3 and DEXA in the two age groups. Thus, this is the first evidence that T3 and DEXA pre-treatment induces the expression of OAT1.

  19. Periprosthetic bone density changes after MiniHipTM cementless femoral short stem: one-year results of dual-energy X-ray absorptiometry study

    PubMed Central

    Ercan, Ahmet; Sokkar, Sherif M.; Schmid, Gebhard; Filler, Timm J.; Abdelkafy, Ashraf; Jerosch, Joerg

    2016-01-01

    Introduction: The purpose of the current study was to investigate the reaction of the femur to the implantation of the MiniHipTM in terms of: (1) bone density change during one year; (2) correlations between stem length, CCD (caput-collum-diaphyseal), femoral offset, T-value, and bone density; (3) other co-variables that influence the change of bone density. Patients and methods: MiniHipTM implant was performed for 62 patients. The age range of the patients who underwent treatment was 25–78 years. Periprothestic bone density was determined within two weeks postoperatively, after three, six, and twelve months utilizing the DEXA scan. Results: The highest change was observed in the first three months post-implantation, while significant decrease in density was recorded at proximal Gruen zones 1, 2, and 7, and at distal Gruen zone 4. The decrease in density reached a plateau between the third and sixth months after operation. Afterwards, bone density recovered up to the 12th postoperative month. The correlation analysis showed significant difference between Gruen zone 1 and stem size and CCD. The same significant trend was not reached for Gruen zone 7. Femoral offset showed no correlation. Covariance analysis was unable to establish connection of the results with diagnosis, pairings, or gender. Discussion: MiniHipTM densitometric results are promising and comparable to good results of the other representatives of the femoral neck partially-sustaining short stem prostheses with a lower proximal bone density reduction. Periprosthetic bone resorption is a multifactorial process where stem size, CCD angle, and patient-specific variables such as T-value have an impact on the periprosthetic bone remodeling. In particular, this applies to Gruen zone 1. PMID:27855776

  20. Dual-energy X-ray absorptiometry measured regional body composition least significant change: effect of region of interest and gender in athletes.

    PubMed

    Buehring, Bjoern; Krueger, Diane; Libber, Jessie; Heiderscheit, Bryan; Sanfilippo, Jennifer; Johnson, Brian; Haller, Irina; Binkley, Neil

    2014-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used to evaluate body composition in athletes. Knowledge of measurement precision is essential for monitoring body composition changes over time. This study begins characterizing DXA body composition precision in 60 (30 males and 30 females) Division 1 athletes focusing on gender, regional, and tissue type differences. Two total body scans with repositioning between were performed on the same day. Least significant change (LSC) for the root-mean-square deviation (LSCRMSD) and the percent coefficient of variation (LSC%CV) for total, lean, and fat mass was calculated for 6 regions of interest. The effect of gender, region, tissue type, and mass on the standard deviation (SD) and percent coefficient of variation (%CV) between the 2 scans was evaluated using repeated measures regression analysis. Statistically significant effects of gender, region, tissue type, and mass on SD and %CV were noted. To generalize, a nonlinear positive relationship between LSCRMSD and mass and a nonlinear negative relationship between LSC%CV and mass were observed. In conclusion, DXA body composition LSC varies among genders, regions, tissues, and mass. As such, when evaluating serial body composition in athletes, especially if assessing regional change, knowledge of precision in individuals of similar body size and gender to the population of interest is needed.

  1. Determination of oxygen content in magnesium and its alloys by inert gas fusion-infrared absorptiometry.

    PubMed

    Tsuge, Akira; Achiwa, Hatsumi; Morikawa, Hisashi; Uemoto, Michihisa; Kanematsu, Wataru

    2011-01-01

    A method for the determination of the oxygen content in magnesium and magnesium alloys has been developed. Inert gas fusion-infrared absorptiometry was modified by introducing a multistep heating process; a sample containing oxygen is fused with tin to form an eutectic mixture at 900°C in a graphite crucible, followed by a subsequent gradual temperature increase of up to 2000°C, which enables the evaporation of magnesium from the mixture, and subsequent solidification at the rim of the crucible. Residual tin including magnesium oxide remained at the bottom of the crucible. The oxygen in the tin is measured by a conventional inert gas fusion (IGF) method. From a comparison with the results of charged particle activation analysis, the IGF method is considered to be an attractive candidate for measuring the oxygen content in Mg and its alloys.

  2. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination

    PubMed Central

    2016-01-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  3. Dual-energy X-ray absorptiometry of birds: an examination of excised skeletal specimens.

    PubMed

    Dirrigl, F J; Dalsky, G P; Warner, S E

    2004-08-01

    The ability of dual-energy X-ray absorptiometry (DXA) to measure bone mineral content and density of bird bones has received little attention. This paper represents the first comprehensive study of the methods, precision, and reproducibility of DXA (GE-Lunar DPX-L) for the uniquely shaped, thin and pneumatic bones of birds. Skeletal elements and portions represented by 26 regions of interest (ROIs) are presented and evaluated for the gallinaceous bird species, wild turkey (Meleagris gallopavo), ruffed grouse (Bonasa umbellus) and bobwhite quail (Colinus virginianus). Using Lunar small animal software and the methods described in this paper, photodensitometry of bird bones is possible and opens new opportunities for using birds in clinical models in veterinarian science, osteoporosis studies, space biology, and even archaeological and paleontological research.

  4. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  5. Renal scan

    MedlinePlus

    ... and urinate often to help remove the radioactive material from the body. How to Prepare for the Test Tell your health care provider if you take ... drink additional fluids before the scan. How the Test will ... into the vein. However, you will not feel the radioactive material. The scanning table may be hard and cold. ...

  6. Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes

    ERIC Educational Resources Information Center

    Company, Joe; Ball, Stephen

    2010-01-01

    The primary purpose of this study was to investigate the accuracy of the DF50 (ImpediMed Ltd, Eight Mile Plains, Queensland, Australia) bioelectrical impedance analysis device using dual-energy x-ray absorptiometry as the criterion in two groups: endurance athletes and power athletes. The secondary purpose was to develop accurate body fat…

  7. Assessing Body Composition of Children and Adolescents Using Dual-Energy X-Ray Absorptiometry, Skinfolds, and Electrical Impedance

    ERIC Educational Resources Information Center

    Mooney, Angela; Kelsey, Laurel; Fellingham, Gilbert W.; George, James D.; Hager, Ron L.; Myrer, J. William; Vehrs, Pat R.

    2011-01-01

    To determine the validity and reliability of percent body fat estimates in 177 boys and 154 girls between 12-17 years of age, percent body fat was assessed once using dual-energy X-ray absorptiometry and twice using the sum of two skinfolds and three bioelectrical impedance analysis devices. The assessments were repeated on 79 participants on a…

  8. Relationship between alveolar bone measured by /sup 125/I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique

    SciTech Connect

    Ortman, L.F.; McHenry, K.; Hausmann, E.

    1982-05-01

    The Bjorn technique is widely used in periodontal studies as a standardized measure of alveolar bone. Recent studies have demonstrated the feasibility of using /sup 125/I absorptiometry to measure bone mass. The purpose of this study was to compare /sup 125/I absorptiometry with the Bjorn technique in detecting small sequential losses of alveolary bone. Four periodontal-like defects of incrementally increasing size were produced in alveolar bone in the posterior segment of the maxilla of a human skull. An attempt was made to sequentially reduce the amount of bone in 10% increments until no bone remained, a through and through defect. The bone remaining at each step was measured using /sup 125/I absorptiometry. At each site the /sup 125/I absorptiometry measurements were made at the same location by fixing the photon source to a prefabricated precision-made occlusal splint. This site was just beneath the crest and midway between the borders of two adjacent teeth. Bone loss was also determined by the Bjorn technique. Standardized intraoral films were taken using a custom-fitted acrylic clutch, and bone measurements were made from the root apex to coronal height of the lamina dura. A comparison of the data indicates that: (1) in early bone loss, less than 30%, the Bjorn technique underestimates the amount of loss, and (2) in advanced bone loss, more than 60% the Bjorn technique overestimates it.

  9. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.

    PubMed

    Pearce, K L; Ferguson, M; Gardner, G; Smith, N; Greef, J; Pethick, D W

    2009-01-01

    Fifty merino wethers (liveweight range from 44 to 81kg, average of 58.6kg) were lot fed for 42d and scanned through a dual X-ray absorptiometry (DXA) as both a live animal and whole carcass (carcass weight range from 15 to 32kg, average of 22.9kg) producing measures of total tissue, lean, fat and bone content. The carcasses were subsequently boned out into saleable cuts and the weights and yield of boned out muscle, fat and bone recorded. The relationship between chemical lean (protein+water) was highly correlated with DXA carcass lean (r(2)=0.90, RSD=0.674kg) and moderately with DXA live lean (r(2)=0.72, RSD=1.05kg). The relationship between the chemical fat was moderately correlated with DXA carcass fat (r(2)=0.86, RSD=0.42kg) and DXA live fat (r(2)=0.70, RSD=0.71kg). DXA carcass and live animal bone was not well correlated with chemical ash (both r(2)=0.38, RSD=0.3). DXA carcass lean was moderately well predicted from DXA live lean with the inclusion of bodyweight in the regression (r(2)=0.82, RSD=0.87kg). DXA carcass fat was well predicted from DXA live fat (r(2)=0.86, RSD=0.54kg). DXA carcass lean and DXA carcass fat with the inclusion of carcass weight in the regression significantly predicted boned out muscle (r(2)=0.97, RSD=0.32kg) and fat weight, respectively (r(2)=0.92, RSD=0.34kg). The use of DXA live lean and DXA live fat with the inclusion of bodyweight to predict boned out muscle (r(2)=0.83, RSD=0.75kg) and fat (r(2)=0.86, RSD=0.46kg) weight, respectively, was moderate. The use of DXA carcass and live lean and fat to predict boned out muscle and fat yield was not correlated as weight. The future for the DXA will exist in the determination of body composition in live animals and carcasses in research experiments but there is potential for the DXA to be used as an online carcass grading system.

  10. Gallium scan

    MedlinePlus

    ... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...

  11. CT Scan

    MedlinePlus

    ... exposing your baby to radiation. Reactions to contrast material In certain cases, your doctor may recommend you ... for a few hours before your scan Contrast material A special dye called a contrast material is ...

  12. The effect of 99mTc on dual-energy X-ray absorptiometry measurement of body composition and bone mineral density.

    PubMed

    Fosbøl, Marie Øbro; Dupont, Anders; Alslev, Louise; Zerahn, Bo

    2013-01-01

    Whether the γ-emission by radioisotopes influences the outcome of dual-energy X-ray absorptiometry (DXA) measurements is not fully elucidated. The aim of this study was to evaluate the effect of antecedent administration of 99mTc on DXA measurements regarding body composition and bone mineral density (BMD) using a K-edge filter scanner. The phantom measurements were performed by placing a urinary bladder phantom containing 40 mL of radioisotope solution on the pelvic region of a whole-body phantom. Twenty-seven patients attending our department for a routine examination involving the administration of a tracer marked with 99mTc were included. The patients underwent a whole-body DXA scan before and within 2 h after tracer injection using a GE/Lunar Prodigy scanner. Control scans were performed on 40 volunteers, who had not received any radioactive tracer. In both phantom and patient measurements, we found a significant dose-related decrease in fat mass and BMD and a corresponding increase in fat-free mass (p < 0.001). Based on the linear regression analysis, we suggest upper dose limits for the measurement of BMD at 0.77 μSv/h and body composition at 0.21 μSv/h (dose rate measured at a distance of 1m from the patient). Caution should be taken when interpreting the results of DXA scans performed in close temporal proximity to procedures involving the administration of 99mTc.

  13. The long-term effects of feeding honey compared with sucrose and a sugar-free diet on weight gain, lipid profiles, and DEXA measurements in rats.

    PubMed

    Chepulis, L; Starkey, N

    2008-01-01

    To determine whether honey and sucrose would have differential effects on weight gain during long-term feeding, 45 2-mo-old Sprague Dawley rats were fed a powdered diet that was either sugar-free or contained 7.9% sucrose or 10% honey ad libitum for 52 wk (honey is 21% water). Weight gain was assessed every 1 to 2 wk and food intake was measured every 2 mo. At the completion of the study blood samples were removed for measurement of blood sugar (HbA1c) and a fasting lipid profile. DEXA analyses were then performed to determine body composition and bone mineral densities. Overall weight gain and body fat levels were significantly higher in sucrose-fed rats and similar for those fed honey or a sugar-free diet. HbA1c levels were significantly reduced, and HDL-cholesterol significantly increased, in honey-fed compared with rats fed sucrose or a sugar free diet, but no other differences in lipid profiles were found. No differences in bone mineral density were observed between honey- and sucrose-fed rats, although it was significantly increased in honey-fed rats compared with those fed the sugar-free diet.

  14. Bone Densitometry (Bone Density Scan)

    MedlinePlus

    ... x-rays. top of page What does the equipment look like? There are two types of DEXA equipment: a central device and a peripheral device. Central ... within 10 to 30 minutes, depending on the equipment used and the parts of the body being ...

  15. Body fat from body density: Underwater weighing vs. dual-photon absorptiometry

    SciTech Connect

    Wang, J.; Heymsfield, S.B.; Aulet, M.; Thornton, J.C.; Pierson, R.N. Jr.

    1989-06-01

    We measured fat in 286 healthy volunteers by underwater weighing (FUWW) and dual-photon absorptiometry (FDPA) to develop a translation table for the differing results from these entirely different techniques and to study the sources of these differences. In 99 males and 187 females aged 19-94 yr, fatness was 7-47%. Prediction equations are presented for FUWW-FDPA (delta F), density of lean body mass (DLBM), and FDPA. FUWW and FDPA were significantly different from each other (P less than 0.01). Calculated DLBM is less than the assumed constant of 1.10 (P less than 0.01), ranging widely from 1.05 to 1.13 and being highly correlated with the ratio of total body bone mineral to lean body mass (TBBM/LBM). delta F, the differences between FUWW and FDPA measurements in individual subjects, varied widely (-7 to +11% in males and -18 to +13% in females). The difference was positively correlated with the DLBM. FUWW was no better than anthropometrics in equations for predicting FDPA. The FDPA predicted from anthropometrics showed smaller standard errors than when FUWW was used. Neither anthropometrics nor FUWW equations are clearly superior to those previously available.

  16. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits.

    PubMed

    Beck, T J; Ruff, C B; Mourtada, F A; Shaffer, R A; Maxwell-Williams, K; Kao, G L; Sartoris, D J; Brodine, S

    1996-05-01

    A total of 626 U.S. male Marine Corps recruits underwent anthropometric measurements and dual-energy X-ray absorptiometry (DXA) scans of the femoral midshaft and the distal third of the tibia prior to a 12 week physical training program. Conventionally obtained frontal plane DXA scan data were used to measure the bone mineral density (BMD) as well as to derive the cross-sectional area, moment of inertia, section modulus, and bone width in the femur, tibia, and fibula. During training, 23 recruits (3.7%) presented with a total of 27 radiologically confirmed stress fractures in various locations in the lower extremity. After excluding 16 cases of shin splints, periostitis, and other stress reactions that did not meet fracture definition criteria, we compared anthropometric and bone structural geometry measurements between fracture cases and the remaining 587 normals. There was no significant difference in age (p = 0.8), femur length (p = 0.2), pelvic width (p = 0.08), and knee width at the femoral condyles (p = 0.06), but fracture cases were shorter (p = 0.01), lighter (p = 0.0006), and smaller in most anthropometric girth dimensions (p < 0.04). Fracture case bone cross-sectional areas (p < 0.001), moments of inertia (p < 0.001), section moduli (p < 0.001), and widths (p < 0.001) as well as BMD (p < 0.03) were significantly smaller in the tibia and femur. After correcting for body weight differences, the tibia cross-sectional area (p = 0.03), section modulus (p = 0.05), and width (p = 0.03) remained significantly smaller in fracture subjects. We conclude that both small body weight and small diaphyseal dimensions relative to body weight are factors predisposing to the development of stress fractures in this population. These results suggest that bone structural geometry measurements derived from DXA data may provide a simple noninvasive methodology for assessing the risk of stress fracture.

  17. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry

    PubMed Central

    Ido, Ayumi; Nakayama, Yuki; Ishii, Kojiro; Iemitsu, Motoyuki; Sato, Koji; Fujimoto, Masahiro; Kurihara, Toshiyuki; Hamaoka, Takafumi; Satoh-Asahara, Noriko; Sanada, Kiyoshi

    2015-01-01

    Sarcopenia has never been diagnosed based on site-specific muscle loss, and little is known about the relationship between site-specific muscle loss and metabolic syndrome (MetS) risk factors. To this end, this cross-sectional study aimed to investigate the relationship between site-specific muscle size and MetS risk factors. Subjects were 38 obese men and women aged 40–82 years. Total body fat and lean body mass were assessed by whole-body dual-energy X-ray absorptiometry (DXA) scan. Muscle thickness (MTH) was measured using B-mode ultrasound scanning in six body regions. Subjects were classified into general obesity (GO) and sarcopenic obesity (SO) groups using the threshold values of one standard deviation below the sex-specific means of either MTH or skeletal muscle index (SMI) measured by DXA. MetS risk score was acquired by standardizing and summing the following continuously distributed variables: visceral fat area, mean blood pressure, HbA1c, and serum triglyceride / high density lipoprotein cholesterol, to obtain the Z-score. Multiple regression analysis revealed that the MetS risk score was independently associated with abdominal MTH in all subjects, but not with MTH in other muscle regions, including the thigh. Although HbA1c and the number of MetS risk factors in the SO group were significantly higher than those in the GO group, there were no significant differences between GO and SO groups as defined by SMI. Ultrasound-derived abdominal MTH would allow a better assessment of sarcopenia in obese patients and can be used as an alternative to the conventionally-used SMI measured by DXA. PMID:26700167

  18. Comparison of resting and total energy expenditure in peritoneal dialysis patients and body composition measured by dual-energy X-ray absorptiometry.

    PubMed

    El-Kateb, S; Sridharan, S; Farrington, K; Davenport, A

    2016-11-01

    Under basal resting conditions muscle metabolism is reduced, whereas metabolism increases with physical activity. We wished to determine whether there was an association between resting energy expenditure (REE) and total energy expenditure (TEE) in peritoneal dialysis (PD) patients and lean body mass (LBM). We determined REE and TEE by recently validated equations, using doubly labelled isotopic water, and LBM by dual-energy X-ray absorptiometry (DXA) scanning. We studied 87 patients, 50 male (57.4%), 25 diabetic (28.7%), mean age 60.3±17.6 years, with a median PD treatment of 11.4 (4.7-29.5) months. The mean weight was 70.1±17.7 kg with a REE of 1509±245 kcal/day and TEE 1947±378 kcal/day. REE was associated with body size (weight r=0.78 and body mass index (BMI) r=0.72) and body composition (LBM r=0.77, lean body mass index (LBMI) r=0.76, r=0.62), all P<0.001). For TEE, there was an association with weight r=0.58, BMI r=0.49 and body composition (LBM r=0.64, LBMI (r=0.54), all P<0.001). We compared LBMI measured by DXA and that estimated by the Boer equation using anthropomorphic measurements, which overestimated and underestimated LBM for smaller patients and heavier patients, respectively. Muscle metabolism is reduced at rest and increases with physical activity. Whereas previous reports based on REE did not show any association with LBM, we found an association between both REE and TEE, using a recently validated equation derived from dialysis patients, and LBM measured by DXA scanning. Estimation of muscle mass from anthropomorphic measurements systematically overestimated LBM for small patients and conversely underestimated for heavier patients.

  19. Predictors of femoral neck fracture following hip resurfacing: a cadaveric study.

    PubMed

    Davis, Edward T; Olsen, Michael; Zdero, Rad; Smith, Gemma M; Waddell, James P; Schemitsch, Emil H

    2013-01-01

    We aimed to establish if radiological parameters, dual energy x-ray absorptiometry (DEXA) and quantitative CT (qCT) could predict the risk of sustaining a femoral neck fracture following hip resurfacing. Twenty-one unilateral fresh frozen femurs were used. Each femur had a plain digital anteroposterior radiograph, DEXA scan and qCT scan. Femurs were then prepared for a Birmingham Hip Resurfacing femoral component and loaded to failure. Results demonstrated that gender and qCT measurements showed strong correlation with failure load. QCT could be used as an individual measure to predict risk of post-operative femoral neck fracture. However, when qCT is unavailable; gender, pre-operative DEXA scan and Neck Width measurements can be used together to assess risk of post-operative femoral neck fracture in patients due to undergo hip resurfacing.

  20. Irreversible bone loss in osteomalacia. Comparison of radial photon absorptiometry with iliac bone histomorphometry during treatment.

    PubMed Central

    Parfitt, A M; Rao, D S; Stanciu, J; Villanueva, A R; Kleerekoper, M; Frame, B

    1985-01-01

    We examined the relationships between the changes in bone mineral deficit in the radius, determined by single-energy photon absorptiometry at standard proximal and distal sites, and in the ilium, determined by bone histomorphometry, during the treatment of osteomalacia of diverse etiology in 28 patients. In the ilium, relative osteoid volume decreased by 75-80% in both cortical bone (from 6.0% to 1.5%) and trabecular bone (from 30.1% to 6.6%) during a mean treatment duration of 2 yr. There was also a significant fall in iliac cortical porosity from 10.3% to 7.8%. As a result, mineralized bone volume increased by 7.5% in cortical and by 40.1% in trabecular bone; the cortical and trabecular increments were correlated (r = 0.69, P less than 0.001). The properly weighted increase for the entire tissue sample was 18.6%. By contrast, there was no change in bone mineral at either radial site, although there was a 2% increase at both sites when allowance was made for age-related bone loss during treatment. The proximal and distal age-adjusted increments was correlated (r = 0.76, P less than 0.001), but there was no correlation between the changes in any photon absorptiometric and any histomorphometric index. In that iliac cortical bone turnover in normal subjects was 7.2%/yr, we estimated the rate of bone turnover to be less than 2%/yr at both proximal and distal radial sites, including any trabecular bone present at the distal site. Compared to appropriate control subjects, the bone mineral deficits fell during treatment from 19.2% to 17.1% at the proximal radius (greater than 95% cortical bone) and from 20.5% to 18.5% at the distal radius (greater than 75% cortical bone). In the ilium the deficits, assuming attainment of normal values for osteoid volume and cortical porosity, fell from 41.7% to 36.1% in cortical and from 31.5% to 6.3% in trabecular bone, the properly weighted combined deficit falling from 38.6% to 27.7%. The irreversible iliac cortical deficit was

  1. Errors in dual energy x-ray absorptiometry estimation of body composition induced by hypohydration.

    PubMed

    Rodriguez-Sanchez, Nidia; Galloway, Stuart D R

    2015-02-01

    Dual energy x-ray absorptiometry (DXA) is a popular tool to determine body composition (BC) in athletes, and is used for analysis of fat-free soft tissue mass (FFST) or fat mass (FM) gain/loss in response to exercise or nutritional interventions. The aim of the current study was to assess the effect of exercise-heat stress induced hypohydration (HYP, >2% of body mass (BM) loss) vs. maintenance of euhydration (EUH) on DXA estimates of BC, sum of skinfolds (SF), and impedance (IMP) measurements in athletes. Competitive athletes (23 males and 15 females) recorded morning nude BM for 7 days before the first main trial. Measurements on the first trial day were conducted in a EUH condition, and again after exercise-heat stress induced HYP. On the second trial day, fluid and electrolyte losses were replaced during exercise using a sports drink. A reduction in total BM (1.6 ± 0.4 kg; 2.3 ± 0.4% HYP) and total FFST (1.3 ± 0.4 kg), mainly from trunk (1.1 ± 0.5 kg), was observed using DXA when participants were HYP, reflecting the sweat loss. Estimated fat percent increased (0.3 ± 0.3%), however, total FM did not change (0.1 ± 0.2 kg). SF and IMP declined with HYP (losses of 1.5 ± 2.9% and 1.6 ± 3% respectively) suggesting FM loss. When EUH was maintained there were no significant changes in BM, DXA estimates, or SF values pre to post exercise, but IMP still declined. We conclude that use of DXA for FFST assessment in athletes must ensure a EUH state, particularly when considering changes associated with nutritional or exercise interventions.

  2. Medical management of fragility fractures of the distal radius.

    PubMed

    Morgan, Emily N; Crawford, David A; Scully, William F; Noce, Nicholas J

    2014-12-01

    Fragility fractures of the distal radius represent an opportunity to diagnose and treat osteoporosis before further fractures occur. The goal of this study was to determine the prevalence of prescriptions for calcium/vitamin D supplementation and the prevalence of dual-energy x-ray absorptiometry (DEXA) scans in patients who sustained fragility fractures of the distal radius. A further goal was to determine the prevalence of patients who received prescriptions for the treatment of osteoporosis after DEXA scans. The authors performed a retrospective review of all patients 50 years and older who sustained a fragility fracture of the distal radius and were treated by the orthopedic surgery service at the authors' institution from 2004 to 2010. After a fragility fracture of the distal radius, fewer than 25% of previously unidentified at-risk patients received a prescription for vitamin supplementation and underwent a DEXA scan. Women were 7 times more likely than men to receive calcium/vitamin D supplementation, 14 times more likely to undergo a DEXA scan for the evaluation of osteoporosis, and 25 times more likely to receive a prescription for bisphosphonates. Patients who underwent a DEXA scan were 9 times more likely to receive pharmacologic treatment than those who did not undergo this scan. More than half of patients did not receive a prescription for calcium/vitamin D supplementation and did not undergo DEXA scanning as recommended by current National Osteoporosis Foundation guidelines. Most patients who received prescriptions or underwent DEXA scans did so before rather than after fracture, indicating poor compliance with National Osteoporosis Foundation guidelines.

  3. Absorbed dose measurements in dual energy X-ray absorptiometry (DXA).

    PubMed

    Bezakova, E; Collins, P J; Beddoe, A H

    1997-02-01

    In this study a predominantly film dosimetric method was used to measure the effective dose from posteroanterior (PA) lumbar spine and proximal femur scans performed on a Lunar DPX-L machine. Because of the very low dose rate in scanning mode, the depth dose data were determined using a stationary detector configuration. The characteristic curve for the film (Kodak TMAT-H) was obtained and depth dose measurements were made using slabs of "solid water". The film was calibrated using a superficial X-ray unit (calibrated against a standard traceable to a national standard). To assess the change in film response with beam hardening at depth, the film was exposed to calibration beams of different half value layer (HVL). The HVL of the DXA beam was determined for surface and depth doses using aluminium filters and a diamond detector (an energy independent device). All measurements were performed three times. Beam size was measured using film, and the scan areas and times were determined by scanning phantoms. The dose from a scan was calculated using Dsc = DTscAb/Asc, where D = dose rate (stationary), Tsc = scan time, Ab = beam area, and Asc = scan area. Organ doses were determined using an anatomical atlas and ICRP 23 female reference. All film measurements had good precision (coefficient of variation < 4%). There was little variation in film sensitivity with change in HVL (< 1% change for the first three HVLs) and consequently no corrections were applied to the depth dose data. Skin entrance dose was 11.5 microGy. Effective dose in females was 0.19 microSv for the PA lumbar spine. For the proximal femur scan, the effective dose was 0.14 microSv (ovaries included) and 0.023 microSv (ovaries excluded) for pre-menopausal and pos-menopausal women, respectively.

  4. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  5. Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance.

    PubMed

    Halldorsdottir, Solveig; Carmody, Jill; Boozer, Carol N; Leduc, Charles A; Leibel, Rudolph L

    2009-01-01

    OBJECTIVE: To assess the accuracy and reproducibility of dual-energy absorptiometry (DXA; PIXImus(™)) and time domain nuclear magnetic resonance (TD-NMR; Bruker Optics) for the measurement of body composition of lean and obese mice. SUBJECTS AND MEASUREMENTS: Thirty lean and obese mice (body weight range 19-67 g) were studied. Coefficients of variation for repeated (x 4) DXA and NMR scans of mice were calculated to assess reproducibility. Accuracy was assessed by comparing DXA and NMR results of ten mice to chemical carcass analyses. Accuracy of the respective techniques was also assessed by comparing DXA and NMR results obtained with ground meat samples to chemical analyses. Repeated scans of 10-25 gram samples were performed to test the sensitivity of the DXA and NMR methods to variation in sample mass. RESULTS: In mice, DXA and NMR reproducibility measures were similar for fat tissue mass (FTM) (DXA coefficient of variation [CV]=2.3%; and NMR CV=2.8%) (P=0.47), while reproducibility of lean tissue mass (LTM) estimates were better for DXA (1.0%) than NMR (2.2%) (

  6. Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance

    PubMed Central

    Halldorsdottir, Solveig; Carmody, Jill; Boozer, Carol N.; Leduc, Charles A.; Leibel, Rudolph L.

    2011-01-01

    Objective To assess the accuracy and reproducibility of dual-energy absorptiometry (DXA; PIXImus™) and time domain nuclear magnetic resonance (TD-NMR; Bruker Optics) for the measurement of body composition of lean and obese mice. Subjects and measurements Thirty lean and obese mice (body weight range 19–67 g) were studied. Coefficients of variation for repeated (x 4) DXA and NMR scans of mice were calculated to assess reproducibility. Accuracy was assessed by comparing DXA and NMR results of ten mice to chemical carcass analyses. Accuracy of the respective techniques was also assessed by comparing DXA and NMR results obtained with ground meat samples to chemical analyses. Repeated scans of 10–25 gram samples were performed to test the sensitivity of the DXA and NMR methods to variation in sample mass. Results In mice, DXA and NMR reproducibility measures were similar for fat tissue mass (FTM) (DXA coefficient of variation [CV]=2.3%; and NMR CV=2.8%) (P=0.47), while reproducibility of lean tissue mass (LTM) estimates were better for DXA (1.0%) than NMR (2.2%) (

  7. Three-compartment body composition changes in elite rugby league players during a super league season, measured by dual-energy X-ray absorptiometry.

    PubMed

    Harley, Jamie A; Hind, Karen; O'hara, John P

    2011-04-01

    This study investigated the acute changes in body composition that occur over the course of a competitive season in elite rugby league players. Twenty elite senior players from an English Super League rugby league team underwent a total-body dual-energy X-ray absorptiometry scan at 3 phases of a competitive season: preseason (February), midseason (June), and postseason (September). Body mass (BM), fat mass (FM), lean mass, percentage body fat, and bone mineral content (BMC) were reported at each phase. Between the start and midpoint of the season, BM, lean mass, FM, and body fat percentage showed no significant change (p > 0.05); however, BMC was significantly increased (+0.71%; 30.70 ± 38.00 g; p < 0.05). Between the midseason and postseason phase, BM and BMC showed no significant change (p > 0.05); however, significant changes were observed in lean mass (-1.54%; 1.19 ± 1.43 kg), FM (+4.09%; 0.57 ± 1.10 kg), and body fat percentage (+4.98%; 0.78 ± 1.09%; p < 0.05). The significant changes in body composition seen over the latter stages of the competitive season may have implications for performance capabilities at this important stage of competition. An increase in FM and decrease in lean mass may have a negative effect on the power/BM ratio, and therefore may be a cause for concern for playing, coaching, and medical staff. Coaching and strength and conditioning staff should aim to prescribe appropriate training and nutritional practices with the aim of maintaining the players' optimal body composition until the conclusion of the competitive season, in order that performance capabilities are maximized over the entire competition period.

  8. Bone remodeling after total hip arthroplasty with a short stemmed metaphyseal loading implant: finite element analysis validated by a prospective DEXA investigation.

    PubMed

    Lerch, Matthias; Kurtz, Agnes; Stukenborg-Colsman, Christina; Nolte, Ingo; Weigel, Nelly; Bouguecha, Anas; Behrens, Bernd A

    2012-11-01

    In total hip arthroplasty (THA), short stemmed cementless implants are used because they are thought to stimulate physiological bone remodeling and reduce stress shielding. We performed a numerical investigation on bone remodeling after implantation of a specific short stemmed implant using finite element analysis (FEA). Overall bone mass loss was 2.8% in the entire femur. Bone mass decrease was mostly found in the proximal part of the calcar and in the greater trochanter due to the vast cross section of the implant, probably leading to stress shielding. In the diaphysis, no change in the apparent bone density was proven. The assumptions made agreed well with bone remodeling data from THA recipients who underwent dual-energy X-ray absorptiometry. However, the clinical investigation revealed a bone mass increase in the minor trochanter region that was less pronounced in the FEA. Further comparisons to other stem designs must be done to verify if the relative advantages of the investigated implant can be accepted.

  9. Randomized comparison between the cemented Scientific Hip Prosthesis and Omnifit: 2-year DEXA and minimum 10-year clinical follow-up.

    PubMed

    Broeke, René H M Ten; Harings, Steffie E J M; Emans, Pieter J; Jutten, Liesbeth M C; Kessels, Alfons G H; Geesink, Rudolph G T

    2013-09-01

    Radiostereometry (RSA) of the cemented Scientific Hip Prosthesis (SHP) reported excessive migration and predicted high failure rates. In a prospective randomized clinical trial we compared minimum 10 years results of the SHP (n=38) with the Omnifit-stem (n=37). Two-year bone remodelling, compared with dual energy x-ray absorptiometry and assessed in regions of interest A-D based on the 7 Gruen zones, showed better periprosthetic bone preservation around the SHP in all but one regions (P<.05). At 10 years Harris Hip Score was better for the SHP (P=.0001) but Oxford Hip Score was the same (P=.79). There were no revisions in either group, but radiographic loosening was definite in 1 SHP and 1 Omnifit. Based on earlier RSA studies, the rough surface finish of the SHP was expected to cause cement abrasion, osteolysis and inferior survival. However our clinical and remodelling results could not confirm these expectations, suggesting that the link of early migration and mid-term clinical results is not sufficiently clear for the SHP.

  10. Automated assessment of exclusion criteria for DXA lumbar spine scans.

    PubMed

    Barden, Howard S; Markwardt, Paul; Payne, Randy; Hawkins, Brent; Frank, Matt; Faulkner, Kenneth G

    2003-01-01

    Modern bone densitometry systems using dual-energy X-ray absorptiometry (DXA) automatically analyze lumbar spine scans and provide clinically important information concerning spine bone mineral density (BMD) and fracture risk. Lumbar spine BMD accurately reflects skeletal health and fracture risk in most cases, but degenerative diseases associated with aging may lead to the formation of reactive bone (osteophytes) and other confounding conditions that elevate BMD without a concomitant increase in bone strength or decrease in fracture risk. Automated densitometry software known as computer-aided densitometry (CAD) (GE Medical Systems Lunar) assists the user in identifying scans with common acquisition and analysis irregularities known to influence BMD values. Visual examination of 231 female spine scans measured with DXA found abnormal conditions that could influence BMD results in 29% of scans. The sensitivity and specificity of several criteria for identifying scans with conditions that could influence BMD were determined. A good criterion for identifying scans with abnormal conditions was a T-score difference of greater than 0.9 or 1.0 between L1-L4 mean and individual vertebrae. Criteria for excluding affected vertebrae were determined. Exclusion of affected vertebrae resulted in a mean BMD decrease of nearly 0.6 SD (T-score) among affected scans.

  11. Root hard-tissue demineralization rate measured by sup 125 I absorptiometry: Comparison with lesion-depth measurements

    SciTech Connect

    Almqvist, H.; Wefel, J.S.; Lagerloef, F. )

    1990-08-01

    The aim of the present study was to compare demineralization of root hard tissue, monitored by {sup 125}I absorptiometry, with lesion-depth measurements under polarized light microscopy. The intact roots of ten human molars, which had not been exposed to the oral environment, were divided into 39 cementum/dentin blocks and exposed to a buffer solution of pH 4.5 containing 2.2 mmol/L calcium and inorganic phosphate. After demineralization for 3.5, 7, 14, and 21 days, transmission measurements by {sup 125}I absorptiometry were performed, and one block from each tooth was taken out of the solution for lesion-depth measurement. The results showed a high degree of correlation (r = 0.952) between lesion depth and change in transmission, with a more rapid increase initially in both variables. A linear relationship with the square root of time was found. Conversion of transmission data to lesion-depth data was possible when this caries model system was used on cementum dentin blocks.

  12. Breast Density Assessment by Dual Energy X-ray Absorptiometry in Women and Girls

    DTIC Science & Technology

    2008-07-01

    technician had previously been trained in conducting Tanner-stage assessments of pubertal development (breast and pubic hair ), and has performed the...and scan width equal to 20 cm and length of 30 cm. The pixel dimensions were 1.0 1.5 mm2. After removing all clothing, and wearing cotton hospital

  13. National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems.

    PubMed

    Fan, Bo; Shepherd, John A; Levine, Michael A; Steinberg, Dee; Wacker, Wynn; Barden, Howard S; Ergun, David; Wu, Xin P

    2014-01-01

    The National Health and Nutrition Examination Survey (NHANES 1999-2004) includes adult and pediatric comparisons for total body bone and body composition results. Because dual-energy x-ray absorptiometry (DXA) measurements from different manufacturers are not standardized, NHANES reference values currently are applicable only to a single make and model of Hologic DXA system. The purpose of this study was to derive body composition reference curves for GE Healthcare Lunar DXA systems. Published values from the NHANES 1999-2004 survey were acquired from the Centers for Disease Control and Prevention website. Using previously reported cross-calibration equations between Hologic and GE-Lunar, we converted the total body and regional bone and soft-tissue measurements from NHANES 1999-2004 to GE-Lunar values. The LMS (LmsChartMaker Pro Version 3.5) curve fitting method was used to generate GE-Lunar reference curves. Separate curves were generated for each sex and ethnicity. The reference curves were also divided into pediatric (≤20 years old) and adult (>20 years old) groups. Adult reference curves were derived as a function of age. Additional relationships of pediatric DXA values were derived as a function of height, lean mass, and bone area. Robustness was tested between Hologic and GE-Lunar Z-score values. The NHANES 1999-2004 survey included a sample of 20,672 participants' (9630 female) DXA scans. A total of 8056 participants were younger than 20 yr and were included in the pediatric reference data set. Participants enrolled in the study who weighed more than 136 kg (over scanner table limit) were excluded. The average Z-scores comparing the new GE-Lunar reference curves are close to zero, and the standard deviation of the Z-scores are close to one for all variables. As expected, all measurements on the GE-Lunar reference curves for participants younger than 20 yr increase monotonically with age. In the adult population, most of the curves are constant at younger

  14. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... scanners can perform the exam without stopping.) A computer creates separate images of the body area, called ...

  15. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... scanners can perform the exam without stopping.) A computer creates separate images of the arm area, called ...

  16. X-ray scatter correction for dual-energy x-ray absorptiometry: compensation of patient's lean/fat composition

    NASA Astrophysics Data System (ADS)

    Dinten, Jean-Marc; Darboux, Michel; Bordy, Thomas; Robert-Coutant, Christine; Gonon, Georges

    2004-05-01

    At CEA-LETI, a DEXA approach for systems using a digital 2D radiographic detector has been developed. It relies on an original X-rays scatter management method, based on a combined use of an analytical model and of scatter calibration data acquired through different thicknesses of Lucite slabs. Since Lucite X-rays interaction properties are equivalent to fat, the approach leads to a scatter flux map representative of a 100% fat region. However, patients" soft tissues are composed of lean and fat. Therefore, the obtained scatter map has to be refined in order to take into account the various fat ratios that can present patients. This refinement consists in establishing a formula relating the fat ratio to the thicknesses of Low and High Energy Lucite slabs leading to same signal level. This proportion is then used to compute, on the basis of X-rays/matter interaction equations, correction factors to apply to Lucite equivalent X-rays scatter map. Influence of fat ratio correction has been evaluated, on a digital 2D bone densitometer, with phantoms composed of a PVC step (simulating bone) and different Lucite/water thicknesses as well as on patients. The results show that our X-rays scatter determination approach can take into account variations of body composition.

  17. Fundamental Movement Skill Proficiency and Body Composition Measured by Dual Energy X-Ray Absorptiometry in Eight-Year-Old Children

    ERIC Educational Resources Information Center

    Slotte, Sari; Sääkslahti, Arja; Metsämuuronen, Jari; Rintala, Pauli

    2015-01-01

    Objective: The main aim was to examine the association between fundamental movement skills (FMS) and objectively measured body composition using dual energy X-ray absorptiometry (DXA). Methods: A study of 304 eight-year-old children in Finland. FMS were assessed with the "Test of gross motor development," 2nd ed. Total body fat…

  18. Knee CT scan

    MedlinePlus

    CAT scan - knee; Computed axial tomography scan - knee; Computed tomography scan - knee ... scanners can perform the exam without stopping.) A computer makes several images of the body area. These ...

  19. HIDA Scan (Cholescintigraphy)

    MedlinePlus

    HIDA scan Overview By Mayo Clinic Staff A hepatobiliary (HIDA) scan is an imaging procedure used to diagnose ... the liver, gallbladder and bile ducts. For a HIDA scan, also known as cholescintigraphy and hepatobiliary scintigraphy, ...

  20. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  1. Coronary Calcium Scan

    MedlinePlus

    ... Scan Coronary Calcium Scan Related Topics Angina Atherosclerosis Coronary Heart Disease Electrocardiogram Heart Attack Send a link to NHLBI ... calcium, or calcifications, are a sign of atherosclerosis, coronary heart disease, or coronary microvascular disease. A coronary calcium scan ...

  2. X-ray absorptiometry of the breast using mammographic exposure factors: application to units featuring automatic beam quality selection.

    PubMed

    Kotre, C J

    2010-06-01

    A number of studies have identified the relationship between the visual appearance of high breast density at mammography and an increased risk of breast cancer. Approaches to quantify the amount of glandular tissue within the breast from mammography have so far concentrated on image-based methods. Here, it is proposed that the X-ray parameters automatically selected by the mammography unit can be used to estimate the thickness of glandular tissue overlying the automatic exposure sensor area, provided that the unit can be appropriately calibrated. This is a non-trivial task for modern mammography units that feature automatic beam quality selection, as the number of tube potential and X-ray target/filter combinations used to cover the range of breast sizes and compositions can be large, leading to a potentially unworkable number of curve fits and interpolations. Using appropriate models for the attenuation of the glandular breast in conjunction with a constrained set of physical phantom measurements, it is demonstrated that calibration for X-ray absorptiometry can be achieved despite the large number of possible exposure factor combinations employed by modern mammography units. The main source of error on the estimated glandular tissue thickness using this method is shown to be uncertainty in the measured compressed breast thickness. An additional correction for this source of error is investigated and applied. Initial surveys of glandular thickness for a cohort of women undergoing breast screening are presented.

  3. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence

    NASA Technical Reports Server (NTRS)

    van der Meulen, M. C.; Marcus, R.; Bachrach, L. K.; Carter, D. R.

    1997-01-01

    We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.

  4. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    PubMed

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs.

  5. Body composition analysis of inter-county Gaelic athletic association players measured by dual energy X-ray absorptiometry.

    PubMed

    Davies, Robert W; Toomey, Clodagh; McCormack, William; Hughes, Katie; Cremona, Alexandra; Jakeman, Philip

    2016-01-01

    Gaelic Football and Hurling are two sporting codes within the Gaelic Athletic Association. The purpose of this study was to report the body composition phenotype of inter-county Gaelic athletic association players, comparing groups by code and field position. 190 senior, male, outfield inter-county players (144 hurlers and 46 Gaelic footballers) were recruited. Stature and body mass was measured, estimates of three components of body composition, i.e., lean mass, fat mass and bone mineral content was obtained by dual energy X-ray absorptiometry (DXA), and normative data for Gaelic athletic association athletes by code and position was compared. Other than in the midfield, there was limited difference in body composition between codes or playing position. Stature-corrected indices nullified any existing group differences between midfielders for both codes. Further comparisons with a non-athletic control group (n = 431) showed no difference for body mass index (BMI); however, the athletic group has a lower fat mass index, with a greater lean mass in accounting for the matched BMI between groups. In addition to providing previously unknown normative data for the Gaelic athletic association athlete, a proportional and independent tissue evaluation of body composition is given.

  6. Qualitative Evaluation of Digital Hand X-rays Is Not a Reliable Method to Assess Bone Mineral Density

    PubMed Central

    Miller, Andrew J.; Jones, Christopher; Liss, Frederick; Abboudi, Jack; Kirkpatrick, William; Beredjiklian, Pedro

    2017-01-01

    Background: The gold standard for evaluating bone mineral density is dual energy x-ray absorptiometry (DEXA). Prior studies have shown poor reliability using analog wrist X-rays in diagnosing osteoporosis. Our goal was to investigate if there was improved diagnostic value to visual assessment of digital hand X-rays in osteoporosis screening. We hypothesized that similar to analog counterparts, digital hand X-rays have poor correlation and reliability in determining bone mineral density (BMD) relative to DEXA. Methods: We prospectively evaluated female patients older than 65 years who presented to our hand clinic with digital hand and wrist X-rays as part of their evaluation over six months. Patients who had a fracture and were without DEXA scans within the past two years were excluded. Five fellowship-trained hand surgeons, blinded to DEXA T-scores, evaluated the x-rays over two assessments separated by four weeks and classified them as osteoporotic, osteopenic, or normal BMD. Accuracy relative to DEXA T-score, interobserver and intraobserver rates were calculated. Results: Thirty four patients met the inclusion criteria and a total of 340 x-rays reviews were performed. The assessments were correct in 169 cases (49%) as compared to the DEXA T-scores. A mean weighted kappa coefficient of agreement between observers was 0.29 (range 0.02-0.41) reflecting a fair agreement. The first and second assessment for all five physicians was 0.46 (range 0.19-0.78) reflecting a moderate agreement. Grouping osteoporosis and osteopenia together compared to normal, the accuracy, interobserver and intraobserver rates increased to 63%, 0.42 and 0.54 respectively. Conclusion: Abnormally low BMD is a common occurrence in patients treated for upper extremity disorders. There is poor accuracy relative to DEXA scan and only fair agreement in diagnosing osteoporosis using visual assessments of digital x-rays. PMID:28271081

  7. Complex regional pain syndrome in a competitive athlete and regional osteoporosis assessed by dual-energy X-ray absorptiometry: a case report

    PubMed Central

    2014-01-01

    Introduction Dual-energy X-ray absorptiometry is rarely utilized in the clinical care of patients with complex regional pain syndrome, but may be useful for the non-invasive determination of regional bone fragility and fracture risk, as well as muscular atrophy and regional body composition. This is the first report in the literature of complex regional pain syndrome and musculoskeletal co-morbidities in an athlete, and is the first to focus on dual-energy X-ray absorptiometry for the clinical assessment of complex regional pain syndrome. Case presentation In this report, we describe the case of a 29-year-old Caucasian man with type 1 complex regional pain syndrome. His body mass index was 29.4kg/m2 at the time of presentation. Despite severe complex regional pain syndrome in the left limb and long term use of a wheelchair, the patient participated in high-performance powerlifting. Dual-energy X-ray absorptiometry revealed marked unilateral differences in bone strength and lean mass between the affected regions and the contralateral regions. Low bone mineral density for age was found in the left hip, with Z-scores ranging from −2.2 to −3.0, and the patient had previously suffered two fractures. Bone density Z-scores in the right hip and legs were normal. Conclusions Dual-energy X-ray absorptiometry is a valuable tool for the clinical investigation of musculoskeletal health in patients with complex regional pain syndrome. Regional osteoporosis in complex regional pain syndrome patients is complicated and should be investigated and monitored. Physical activity is possible for some complex regional pain syndrome patients, depending on the type of exercise and the region affected, and it may protect bone density and strength at non affected skeletal sites. PMID:24885227

  8. RBC nuclear scan

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  9. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  10. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  11. Bone density scan (image)

    MedlinePlus

    ... bone the higher the risk of fractures. A bone scan, along with a patient's medical history, is a ... and whether any preventative treatment is needed. A bone density scan has the advantage of being painless and exposing ...

  12. Cardiac CT Scan

    MedlinePlus

    ... CT Scan Related Topics Aneurysm Coronary Calcium Scan Coronary Heart Disease Heart Attack Pulmonary Embolism Send a link to ... imaging test can help doctors detect or evaluate coronary heart disease, calcium buildup in the coronary arteries, problems with ...

  13. Association of Coronary Aortic Calcium with Abdominal Aortic Calcium Detected on Lateral Dual Energy X-Ray Absorptiometry Spine Images

    PubMed Central

    Schousboe, John T.; Claflin, Diane; Barrett-Connor, Elizabeth

    2009-01-01

    The association of abdominal aortic calcium (AAC) on lateral spine bone densitometry with coronary artery calcium (CAC) has not been reported. We studied 33 men and 73 women who had CAC scored with electron beam computed tomography at the 8th visit of the Rancho Bernardo study and lateral spine dual energy x-ray absorptiometry (DXA) images fully evaluable for AAC done at the 9th study visit. The association between CAC level and AAC tertile was assessed by ordinal logistic regression. The odds ratio of having a higher level of CAC score for those in the top tertile of AAC score (24-point scale score ≥ 5) was 6.42 (95% C.I. 2.28 – 18.1) and on an 8-point scale (score ≥ 3) was 3.38 (95% C.I. 1.26 – 9.07), compared to those with AAC scores in the bottom tertiles, adjusted for age, sex, systolic blood pressure, total and high density lipoprotein (HDL) cholesterol, smoking status, and diabetes. A 24-point AAC score of ≥ 5 had a sensitivity of 65% and a specificity of 70% to detect a high CAC score (≥ 400 units). An 8-point AAC score ≥ 3 had a sensitivity of 45% and a specificity of 78%. In conclusion, a high level of AAC on lateral spine DXA is strongly associated with coronary artery disease and may be commonly encountered since bone densitometry is indicated in all women age ≥ 65 and all men age ≥ 70. Its presence should be reported to the patient's physician to identify and manage modifiable risk factors. PMID:19616658

  14. Accuracy of measurements of small changes in soft tissue mass by use of dual-photon absorptiometry.

    PubMed

    Lands, L C; Heigenhauser, G J; Gordon, C; Jones, N L; Webber, C E

    1991-08-01

    Dual-photon absorptiometry (DPA) has recently been applied to the assessment of body composition. To evaluate the accuracy of DPA in detecting small changes in the lean soft tissue mass, we performed DPA with the use of the Norland 2600 Dichromatic densitometer on six healthy adult males before and after a 30-ml/kg transfusion of saline and before and after exercise in a warm environment, resulting in a greater than or equal to 1-kg weight loss. Absolute weight [baseline pretransfusion r2 = 0.999, standard error of estimate (SEE) = 590 g; posttransfusion r2 = 0.999, SEE = 300 g; baseline pretranspiration r2 = 0.999, SEE = 230 g; posttranspiration r2 = 0.999, SEE = 240 g] was accurately reflected in DPA total mass. Weight changes due to transfusion were poorly reflected by changes in DPA total mass (r2 = 0.417, SEE = 404 g). However, changes posttranspiration were accurately reflected in the DPA total mass (r2 = 0.886, SEE = 106 g posttranspiration). Similarly, weight changes due to transfusion were poorly measured by changes in DPA soft mass (r2 = 0.478, SEE = 365 g), but changes posttranspiration were highly correlated with DPA soft mass changes (r2 = 0.909, SEE = 92 g). Weight changes were not reflected by changes in the DPA lean soft tissue mass (r2 = 0.006, SEE = 1,737 posttransfusion, r2 = 0.094, SEE = 1,038 g posttranspiration). DPA-derived nonfat mass was highly correlated with skinfold-derived nonfat mass (r2 = 0.96, SEE = 2,400 g). Accuracy of total and soft tissue measurements implied correct mineral mass assessment.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Comparison of Bioimpedance and Dual-Energy X-Ray Absorptiometry for Measurement of Fat Mass in Hemodialysis Patients

    PubMed Central

    Molfino, Alessio; Don, Burl R.; Kaysen, George A.

    2014-01-01

    Background Fat mass (FM) is measured with dual-energy X-ray absorptiometry (DXA), but is expensive and not portable. Multifrequency bioimpedance spectroscopy (BIS) measures total body water (TBW) and intracellular and extracellular water (ICW, ECW). Fat mass (FM) is calculated subtracting Fat Free Mass (FFM) from weight assuming fractional hydration of FFM of 0.73. Hemodialysis patients (HD), however, have non physiologic expansion of ECW. Our aim was to apply a model to estimate FM in HD and controls. Methods We estimated the hydration of FFM in healthy subjects (C) and HD with BIS (Impedimed multifrequency) assuming hydration of 0.73 or using a formula allowing ECW and ICW to vary, deriving a value for FM accounting for variances in ECW and ICW. FM was measured by DXA (Hologic Discovery W) in 25 C and in 11 HD. We measured TBW, ECW and ICW with BIS and calculated FM using either Weight - TBW/.73 or with a formula accounting for variations in ECW/ICW to estimate FM. Results ECW/ICW was greater in HD than in C (0.83±0.08 vs 0.76± 0.04; p=0.001). FM (Kg) measured by DXA, or estimated from TBW using constant hydration or accounting for variations in ECW/ICW were not significantly different in C or in HD. Values obtained by all methods correlated (p<0.001) and none of the Bland-Altman plots regressed (r2=0.00). FM measured by DXA and by BIS in both C and HD combined correlated (r2=0.871). Conclusion Expansion of ECW in HD is statistically significant, however the effect on hydration of FFM is insufficient to cause significant deviation from values derived using a hydration value of 0.73 within the range of expansion of ECW in the HD population studied here. PMID:23689544

  16. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition

    NASA Astrophysics Data System (ADS)

    Wang, ZiMian; Heymsfield, Steven B.; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N.

    2010-05-01

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated RST value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the RST concept depends on the mass of each major element in the human body. The DXA RST values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA RST value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body 40K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the RST values. The DXA RST values were strongly associated with the RST values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted RST to systematically exceed the DXA-measured RST (mean ± SD, 1.389 ± 0.024 versus 1.341 ± 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 ± 12.0% versus 24.9 ± 11.1%, r = 0.983, P < 0.001). DXA RST is evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat.

  17. Correlation of a feline muscle mass score with body composition determined by dual-energy X-ray absorptiometry.

    PubMed

    Michel, Kathryn E; Anderson, Wendy; Cupp, Carolyn; Laflamme, Dorothy P

    2011-10-01

    Body condition scoring (BCS) systems primarily assess body fat. Both overweight and underweight animals may have loss of lean tissue that may not be noted using standard BCS systems. Catabolism of lean tissue can occur rapidly, may account for a disproportionate amount of body mass loss in sick cats and can have deleterious consequences for outcome. Therefore, along with evaluation of body fat, patients should undergo evaluation of muscle mass. The aims of the present study were first to evaluate the repeatability and reproducibility of a 4-point feline muscle mass scoring (MMS) system and second to assess the convergent validity of MMS by dual-energy X-ray absorptiometry (DXA). MMS was as follows: 3, normal muscle mass; 2, slight wasting; 1, moderate wasting; 0, severe wasting. For the first aim, forty-four cats were selected for evaluation based on age and BCS, and for the second aim, thirty-three cats were selected based on age, BCS and MMS. Cats were scored by ten different evaluators on three separate occasions. Body composition was determined by DXA. Inter- and intra-rater agreement were assessed using kappa analysis. Correlation between MMS and BCS, age, percentage lean body mass and lean body mass (LBM) was determined using Spearman's rank-order correlation. The MMS showed moderate inter-rater agreement in cats that scored normal or severely wasted (κ = 0.48-0.53). Intra-rater agreement was substantial (κ = 0.71-0.73). The MMS was significantly correlated with BCS (r 0.76, P < 0.0001), age (r - 0.75, P < 0.0001), LBM (g) (r 0.62, P < 0.0001) and percentage LBM (r - 0.49, P < 0.0035). Additional investigation is needed to determine whether the MMS can be refined and to assess its clinical applicability.

  18. Body composition at 6 months of life: comparison of air displacement plethysmography and dual-energy X-ray absorptiometry.

    PubMed

    Fields, David A; Demerath, Ellen W; Pietrobelli, Angelo; Chandler-Laney, Paula C

    2012-11-01

    Body composition assessment during infancy is important because it is a critical period for obesity risk development, thus valid tools are needed to accurately, precisely, and quickly determine both fat and fat-free mass. The purpose of this study was to compare body composition estimates using dual-energy x-ray absorptiometry (DXA) and air displacement plethysmography (ADP) at 6 months old. We assessed the agreement between whole body composition using DXA and ADP in 84 full-term average-for-gestational-age boys and girls using DXA (Lunar iDXA v11-30.062; Infant whole body analysis enCore 2007 software, GE, Fairfield, CT) and ADP (Infant Body Composition System v3.1.0, COSMED USA, Concord, CA). Although the correlations between DXA and ADP for %fat (r = 0.925), absolute fat mass (r = 0.969), and absolute fat-free mass (r = 0.945) were all significant, body composition estimates by DXA were greater for both %fat (31.1 ± 3.6% vs. 26.7 ± 4.7%; P < 0.001) and absolute fat mass (2,284 ± 449 vs. 1,921 ± 492 g; P < 0.001), and lower for fat-free mass (5,022 ± 532 vs. 5,188 ± 508 g; P < 0.001) vs. ADP. Inter-method differences in %fat decreased with increasing adiposity and differences in fat-free mass decreased with increasing infant age. Estimates of body composition determined by DXA and ADP at 6 months of age were highly correlated, but did differ significantly. Additional work is required to identify the technical basis for these rather large inter-method differences in infant body composition.

  19. Assessment of body composition in Indian adults: comparison between dual-energy X-ray absorptiometry and isotope dilution technique.

    PubMed

    Kulkarni, Bharati; Kuper, Hannah; Taylor, Amy; Wells, Jonathan C; Radhakrishna, K V; Kinra, Sanjay; Ben-Shlomo, Yoav; Smith, George Davey; Ebrahim, Shah; Kurpad, A V; Byrne, Nuala M; Hills, Andrew P

    2014-10-14

    Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19-70 years, n 152, 48 % men) with a wide range of BMI (14-40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement between the estimates of body composition measured by the two techniques was assessed by the Bland-Altman method. The mean age and BMI were 37 (sd 15) years and 23·3 (sd 5·1) kg/m2, respectively, for men and 37 (sd 14) years and 24·1 (sd 5·8) kg/m2, respectively, for women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI - 18, - 23) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI - 8·2, - 6·6) % as obtained by DXA compared with the isotope dilution technique. The Bland-Altman analysis showed wide limits of agreement that indicated poor agreement between the methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition are method-dependent, the two methods cannot be used interchangeably.

  20. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition.

    PubMed

    Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N

    2010-05-07

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated R(ST) value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the R(ST) concept depends on the mass of each major element in the human body. The DXA R(ST) values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA R(ST) value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body (40)K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the R(ST) values. The DXA R(ST) values were strongly associated with the R(ST) values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted R(ST) to systematically exceed the DXA-measured R(ST) (mean +/- SD, 1.389 +/- 0.024 versus 1.341 +/- 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 +/- 12.0% versus 24.9 +/- 11.1%, r = 0.983, P < 0.001). DXA R(ST) is evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat.

  1. Validation of dual x-ray absorptiometry for body-composition assessment of rats exposed to dietary stressors.

    PubMed

    Lukaski, H C; Hall, C B; Marchello, M J; Siders, W A

    2001-01-01

    Evidence of the validity and accuracy of dual x-ray absorptiometry (DXA) to measure soft-tissue composition of laboratory rats with altered body composition associated with nutritional perturbations is lacking. We compared DXA determinations made in prone and supine positions with measurements of chemical composition of 49 male, weanling Sprague-Dawley rats that were fed the basal AIN-93 growth diet, were fed the basal diet modified to contain 30% fat, were fasted for 2 d, were limit fed 6 g of the basal diet daily for 1 wk, or were treated with furosemide (10 mg/kg intraperitoneally 2 h before DXA). DXA produced similar estimates of body mass and soft-tissue composition in the prone and supine positions. DXA estimates of body composition were significantly correlated with reference composition values (R(2) = 0.371-0.999). DXA discriminated treatment effects on body mass, fat-free and bone-free mass, fat mass, and body fatness; it significantly underestimated body mass (1% to 2%) and fat-free and bone-free mass (3%) and significantly overestimated fat mass and body fatness (3% to 25%). The greatest errors occurred in treatment groups in which body mass was diminished and body hydration was decreased. These findings suggest that DXA can determine small changes in fat-free, bone-free mass in response to obesity and weight loss. Errors in DXA determination of fat mass and body fatness associated with extra corporeal fluid and dehydration indicate the need for revision of calculation algorithms for soft-tissue determination.

  2. Precision and accuracy of in vivo bone mineral measurement in rats using dual-energy X-ray absorptiometry.

    PubMed

    Rozenberg, S; Vandromme, J; Neve, J; Aguilera, A; Muregancuro, A; Peretz, A; Kinthaert, J; Ham, H

    1995-01-01

    The aim of this study was to evaluate the precision and accuracy of dual-energy X-ray absorptiometry (DXA) for measuring bone mineral content at different sites of the skeleton in rats. In vitro the reproducibility error was very small (< 1%), but in vivo the intra-observer variability ranged from 0.9% to 6.0%. Several factors have been shown to affect in vivo reproducibility: the reproducibility was better when the results were expressed as bone mineral density (BMD) rather than bone mineral content (BMC), intra-observer variability was better than the inter-observer variability, and a higher error was observed for the tibia compared with that for vertebrae and femur. The accuracy of measurement at the femur and tibia was assessed by comparing the values with ash weight and with biochemically determined calcium content. The correlation coefficients (R) between the in vitro BMC and the dry weight or the calcium content were higher than 0.99 for both the femur and the tibia. SEE ranged between 0.0 g (ash weight) and 2.0 mg (Ca content). Using in vitro BMC, ash weight could be estimated with an accuracy error close to 0 and calcium content with an error ranging between 0.82% and 6.80%. The R values obtained between the in vivo and in vitro BMC were 0.98 and 0.97 respectively for femur and tibia, with SEE of 0.04 and 0.02 g respectively. In conclusion, the in vivo precision of the technique was found to be too low. To be of practical use it is important in the design of experimentation to try to reduce the measurement error.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Multipurpose binocular scanning apparatus

    NASA Technical Reports Server (NTRS)

    Chamberlain, F. R.; Parker, G. L.

    1969-01-01

    Optical gimballing apparatus directs narrow fields of view throughout solid angle approaching 4 pi steradians. Image rotation produced by scanning can be eliminated or altered by gear trains directly linked to the scanning drive assembly. It provides the basis for a binocular scanning capability.

  4. A study on the effects of a calcium drug on the bone mineral density (BMD) by using dual-energy X-ray Absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hye; Kim, Ho-Sung; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    Measurements of osteoporosis might contain errors caused by the calcium drug used in the prevention and the treatment of osteoporosis. This study conducted a lumbar spine phantom experiment to examine whether a calcium drug can influence the measured values of the bone mineral density (BMD) because of the drug taken by a real patient remaining undigested in the stomach. Dual-energy X-ray Absorptiometry (DXA) was used to measure the BMD for a calcium-drug in an equipment-dedicated lumbar spine phantom and 10 patients selected for the BMD measurement. Three types of drugs that are prescribed in actual clinical practice calcium drugs were used for the phantom experiment, and the drugs were divided into a fixed dose, 1/2 of the fixed dose, 1/4 of the fixed dose and 1/8 of the fixed dose. Without the drugs included, the phantom was scanned 60 times continuously to calculate the baseline BMD. The BMD was measured as the calcium drug coated with paraffin was placed in the lumbar vertebra 2 and the soft tissue region of the phantom. To determine when the drug was invisible to the naked eye are measured, the BMD at different drug dilutions. The measurements were conducted three times to calculate the mean. In the patient experiment, patients were selected who visited hospital after taking the drug before measuring the BMD. After a certain time had passed, the BMD was measured again to examine the difference in images and the change in BMD values due to the calcium-drug intake. The BMD measurements of lumbar 1-4 in the phantom were higher, with statistical significant, than the least significant change (LSC) in the bone region for all three drugs (Ca carbonate, Ca citrate and Ca cholecalciferol), showing a significant increase. On the other hand, there was no significant change in the soft tissue. When Ca Cholecalciferol was used in a fixed dose, the BMD of L2 increased by 11.6%, showing the largest increase among the drugs examined, but only a 2.8% increase in the BMD of L1

  5. Dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and micro-computed tomography techniques are discordant for bone density and geometry measurements in the guinea pig.

    PubMed

    Mak, Ivy L; DeGuire, Jason R; Lavery, Paula; Agellon, Sherry; Weiler, Hope A

    2016-05-01

    This study aims to examine agreement among bone mineral content (BMC) and density (BMD) estimates obtained using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro-computed tomography (μCT) against high-resolution μCT and bone ash of the guinea pig femur. Middle-aged (n = 40, 86 weeks) male guinea pigs underwent in vivo followed by ex vivo DXA (Hologic QDR 4500A) scanning for intact and excised femur BMC and areal density. To assess bone architecture and strength, excised femurs were scanned on pQCT (Stratec XCT 2000L) as well as on two μCT scanners (LaTheta LCT-200; Skyscan 1174), followed by three-point bending test. Reproducibility was determined using triplicate scans; and agreement assessed using Bland-Altman plots with reference methods being high-resolution μCT (Skyscan) for BMD and bone ashing for BMC. All techniques showed satisfactory ex vivo precision (CV 0.05-4.3 %). However, bias compared to the reference method was highest (207.5 %) in trabecular bone volume fraction (BV/TV) measured by LaTheta, and unacceptable in most total femur and cortical bone measurements. Volumetric BMD (vBMD) and BV/TV derived by LaTheta and pQCT at the distal metaphysis were biased from the Skyscan by an average of 49.3 and 207.5 %, respectively. Variability of vBMD, BV/TV and cross-sectional area at the diaphysis ranged from -5.5 to 30.8 %. LaTheta best quantified total femur BMC with an upper bias of 3.3 %. The observed differences among imaging techniques can be attributable to inherent dissimilarity in construction design, calibration, segmentation and scanning resolution used. These bone imaging tools are precise but are not comparable, at least when assessing guinea pig bones.

  6. Rapid frequency scan EPR.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-08-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation.

  7. Rapid Frequency Scan EPR

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5 T2, even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B1, periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  8. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  9. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  10. Radionucleotide scanning in osteomyelitis

    SciTech Connect

    Sachs, W.; Kanat, I.O.

    1986-07-01

    Radionucleotide bone scanning can be an excellent adjunct to the standard radiograph and clinical findings in the diagnosis of osteomyelitis. Bone scans have the ability to detect osteomyelitis far in advance of the standard radiograph. The sequential use of technetium and gallium has been useful in differentiating cellulitis and osteomyelitis. Serial scanning with technetium and gallium may be used to monitor the response of osteomyelitis to antibiotic therapy.

  11. Seven-site versus three-site method of body composition using BodyMetrix ultrasound compared to dual-energy X-ray absorptiometry.

    PubMed

    Baranauskas, Marissa N; Johnson, Kelly E; Juvancic-Heltzel, Judith A; Kappler, Rachele M; Richardson, Laura; Jamieson, Scott; Otterstetter, Ronald

    2015-10-22

    Obesity is a steadily growing epidemic affecting all segments of the population including college-aged students. The weight gain that is evidenced amid the transitional stage of college years increases the risks associated with cardiovascular and metabolic diseases. The BodyMetrix® BX-2000 (ULTRA) using a seven-site method has been evaluated against dual-energy X-ray absorptiometry (DXA) for estimation of body composition, which has yielded conflicting results. To date, no studies have compared the three-site method Jackson and Pollock three-site method to DXA.

  12. Bone scanning in otolaryngology.

    PubMed

    Noyek, A M

    1979-09-01

    Modern radionuclide bone scanning has introduced a new concept in physiologic and anatomic diagnostic imaging to general medicine. As otolaryngologists must diagnose and treat disease in relation to the bony and/or cartilaginous supporting structures of the neurocranium and upper airway, this modality should be included in the otolaryngologist's diagnostic armamentarium. It is the purpose of this manuscript to study the specific applications of bone scanning to our specialty at this time, based on clinical experience over the past three years. This thesis describes the development of bone scanning in general (history of nuclear medicine and nuclear physics; history of bone scanning in particular). General concepts in nuclear medicine are then presented; these include a discussion of nuclear semantics, principles of radioactive emmissions, the properties 99mTc as a radionuclide, and the tracer principle. On the basis of these general concepts, specific concepts in bone scanning are then brought forth. The physiology of bone and the action of the bone scan agents is presented. Further discussion considers the availability and production of the bone scan agent, patient factors, the gamma camera, the triphasic bone scan and the ultimate diagnostic principle of the bone scan. Clinical applications of bone scanning in otolaryngology are then presented in three sections. Proven areas of application include the evaluation of malignant tumors of the head and neck, the diagnosis of temporomandibular joint disorders, the diagnosis of facial fractures, the evaluation of osteomyelitis, nuclear medicine imaging of the larynx, and the assessment of systemic disease. Areas of adjunctive or supplementary value are also noted, such as diagnostic imaging of meningioma. Finally, areas of marginal value in the application of bone scanning are described.

  13. Skeletal status and soft tissue composition in astronauts. Tissue and fluid changes by radionuclide absorptiometry in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Mazess, R. B.; Wilson, C. R.

    1973-01-01

    A device has been constructed and tested which provides immediate readout of bone mineral content and bone width from absorptiometric scans with low energy radionuclides. The basis of this analog system is a logarithmic converter-integrator coupled with a precision linear ratemeter. The system provided accurate and reliable results on standards and ashed bone sections. Clinical measurements were made on about 100 patients with the direct readout system, and these were highly correlated with the results from digital scan data on the same patients. The direct readout system has been used successfully in field studies and surveys as well as for clinical observations.

  14. Resonant scanning mechanism

    NASA Astrophysics Data System (ADS)

    Wallace, John; Newman, Mike; Gutierrez, Homero; Hoffman, Charlie; Quakenbush, Tim; Waldeck, Dan; Leone, Christopher; Ostaszewski, Miro

    2014-10-01

    Ball Aerospace & Technologies Corp. developed a Resonant Scanning Mechanism (RSM) capable of combining a 250- Hz resonant scan about one axis with a two-hertz triangular scan about the orthogonal axis. The RSM enables a rapid, high-density scan over a significant field of regard (FOR) while minimizing size, weight, and power requirements. The azimuth scan axis is bearing mounted allowing for 30° of mechanical travel, while the resonant elevation axis is flexure and spring mounted with five degrees of mechanical travel. Pointing-knowledge error during quiescent static pointing at room temperature across the full range is better than 100 μrad RMS per axis. The compact design of the RSM, roughly the size of a soda can, makes it an ideal mechanism for use on low-altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) resonant springs which allow for a high-frequency scan axis with low power consumption; and ii) an independent lower-frequency scan axis allowing for a wide FOR. The pointing control system operates each axis independently and employs i) a position loop for the azimuth axis; and ii) a unique combination of parallel frequency and amplitude control loops for the elevation axis. All control and pointing algorithms are hosted on a 200-MHz microcontroller with 516 KB of RAM on a compact 3"×4" digital controller, also of Ball design.

  15. Frequency of and variation in low-value care in primary care: a retrospective cohort study

    PubMed Central

    Pendrith, Ciara; Bhatia, Meghan; Ivers, Noah M.; Mecredy, Graham; Tu, Karen; Hawker, Gillian A.; Jaglal, Susan B.; Wilson, Lynn; Wintemute, Kimberly; Glazier, Richard H.; Levinson, Wendy; Bhatia, R. Sacha

    2017-01-01

    Background: Low-value care, defined as care with a lack of benefit, can lead to higher health care costs, inconvenience to patients and, in some cases, harm to patients. The objectives of this study are to conduct exploratory analyses to understand how frequently selected low-value tests are ordered, to assess the degree of variation in ordering that exists across regions and practices, and to identify services that may warrant further investigation and targeted interventions. Methods: We conducted a population-based retrospective cohort study using administrative health care databases from Ontario to identify rates of use of the following low-value services between fiscal years 2008/09 and 2012/13: computed tomography (CT) or magnetic resonance imaging (MRI) after a diagnosis of low back pain, Papanicolaou testing in women less than 21 years of age or older than 69 years of age and repeated dual-energy X-ray absorptiometry (DEXA) scanning within 2 years of an index scan. Regional and practice-level rates were calculated. Bivariate analyses were conducted to explore associations between patient factors and repeat DEXA scans. Results: Repeated DEXA scans were the most common service (21.0%), whereas cervical cancer screening among women less than 21 years of age or older than 69 years of age (8.0%) and CT or MRI imaging for low back pain (4.5%) were less common. There was substantial variation across practices with rates of repeated DEXA scans, ranging from 4.0% to 54.9%, and cervical cancer screening, ranging from 0.9% to 35.2%. Patients with a high-risk index DEXA were more likely to receive a repeat scan (28.1%) than those with a baseline (8.9%) or low-risk (8.1%) scan. Interpretation: There is significant, practice-level variation in the frequency of low-value testing for DEXA scans, back imaging and cervical cancer screening. There is a particular need for interventions that aim to reduce unnecessary DEXA scans.

  16. Nuclear Heart Scan

    MedlinePlus

    ... into your blood and travels to your heart. Nuclear heart scans use single photon emission computed tomography (SPECT) or cardiac positron emission tomography (PET) to detect the energy from the tracer to make pictures of your ...

  17. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  18. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  19. Thoracic spine CT scan

    MedlinePlus

    ... Narrowing of the spine ( spinal stenosis ) Scoliosis Tumor Risks Risks of CT scans include: Exposure to radiation ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  20. Brain PET scan

    MedlinePlus

    ... Tell the difference between Parkinson disease and other movement disorders Several PET scans may be taken to determine ... identify where the seizures start in your brain Movement disorders (such as Parkinson disease )

  1. Cervical MRI scan

    MedlinePlus

    ... magnetic resonance imaging) scan uses energy from strong magnets to create pictures of the part of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  2. Leg MRI scan

    MedlinePlus

    ... resonance imaging) scan of the leg uses strong magnets to create pictures of the leg. This may ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  3. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  4. Thyroid Scan and Uptake

    MedlinePlus Videos and Cool Tools

    ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  5. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  6. Fiber-Scanned Microdisplays

    NASA Technical Reports Server (NTRS)

    Crossman-Bosworth, Janet; Seibel, Eric

    2010-01-01

    Helmet- and head-mounted display systems, denoted fiber-scanned microdisplays, have been proposed to provide information in an "augmented reality" format (meaning that the information would be optically overlaid on the user's field of view).

  7. Multiple Reflector Scanning Antennas

    NASA Astrophysics Data System (ADS)

    Shen, Bing

    Narrow beamwidth antenna systems are important to remote sensing applications and point-to-point communication systems. In many applications the main beam of the antenna radiation pattern must be scannable over a region of space. Scanning by mechanically skewing the entire antenna assembly is difficult and in many situations is unacceptable. Performance during scan is, of course, also very important. Traditional reflector systems employing the well-focused paraboloidal -shaped main reflector accomplish scan by motion of a few feeds, or by phase steering a focal plane feed array. Such scanning systems can experience significant gain loss. Traditional reflecting systems with a spherical main reflector have low aperture efficiency and poor side lobe and cross polarization performance. This dissertation introduces a new approach to the design of scanning spherical reflector systems, in which the performance weaknesses of high cross polarization and high side lobe levels are avoided. Moreover, the low aperture utilization common in spherical reflectors is overcome. As an improvement to this new spherical main reflector configuration, a flat mirror reflector is introduced to minimize the mechanical difficulties to scan the main beam. In addition to the reflector system design, reflector antenna performance evaluation is also important. The temperature resolution issue important for earth observation radiometer antennas is studied, and a new method to evaluate and optimize such temperature resolution is introduced.

  8. Wide scanning spherical antenna

    NASA Technical Reports Server (NTRS)

    Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)

    1995-01-01

    A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.

  9. Femtosecond scanning tunneling microscope

    SciTech Connect

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  10. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  11. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  12. Agreement of bioelectric impedance analysis and dual-energy X-ray absorptiometry for body composition evaluation in adults with cystic fibrosis.

    PubMed

    Ziai, S; Coriati, A; Chabot, K; Mailhot, M; Richter, M V; Rabasa-Lhoret, R

    2014-09-01

    Malnutrition in cystic fibrosis (CF) is associated with increased mortality and can lead to fat-free (FFM) and fat mass (FM) loss. Dual-energy X-ray absorptiometry (DXA) is used and validated to measure FFM and FM. DXA's high cost has led to the utilization of less costly techniques such as bioelectrical impedance analysis (BIA). The aim of this study was to determine the agreement of FFM, FM and %FM measurements taken with DXA and BIA in adults with CF. We measured FFM, FM and %FM in 34 adults with CF with a leg-to-leg BIA and an iDXA and determined agreement using Bland-Altman analysis. While DXA and BIA measurements were well correlated (r > 0.8), mean biases between both methods were between 8 and 11%. BIA underestimated FM and %FM and overestimated FFM. In a clinical research setting where these measurements are used to phenotype patients, BIA cannot replace DXA.

  13. Nutritional secondary hyperparathyroidism in two cats: evaluation of bone mineral density with dual-energy X-ray absorptiometry and computed tomography.

    PubMed

    Dimopoulou, M; Kirpensteijn, J; Nielsen, D H; Buelund, L; Hansen, M S

    2010-01-01

    Two three-month-old, intact female Abyssinian cats were presented with a history of lameness, constipation and ataxia. The cats had been fed a diet composed almost exclusively of meat. Both showed severe osteopenia and multiple pathological fractures on radiography. Following euthanasia of the more severely affected cat, postmortem examination revealed changes consistent with nutritional secondary hyperparathyroidism and fibrous osteodystrophy, such as cortical thinning, massive connective tissue invasion in the diaphysis of long bones, and hypertrophy of the chief cells in both parathyroid glands. After introducing a balanced commercial diet to the surviving cat, bone mineralisation improved from the baseline value, and at subsequent examinations at three, six and 22 weeks later, as indicated by bone mineral density measurements obtained by dual-energy X-ray absorptiometry and computed tomography.

  14. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  15. Adaptive Optical Scanning Holography

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-02-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably.

  16. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  17. A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults.

    PubMed

    Leahy, Siobhan; O'Neill, Cian; Sohun, Rhoda; Jakeman, Philip

    2012-02-01

    The aim of this study was to investigate the accuracy of BIA in the measurement of total body composition and regional fat and the fat free mass in the healthy young adults. Four hundred and three healthy young adults (167 women and 236 men) aged 18-29 years were recruited from the Mid-West region of Ireland. Multi frequency, eight-polar bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA) were used to measure the total body and segmental (arm, leg and trunk) fat mass and the fat free mass. BIA was found to underestimate the percentage total body fat in men and women (p < 0.001). This underestimate increased in men with >24.6% body fat and women with >32% body fat (p < 0.001). Fat tissue mass in the trunk segment was overestimated by 2.1 kg (p < 0.001) in men and underestimated by 0.4 kg (p < 0.001) in women. BIA was also found to underestimate the fat free mass in the appendages by 1.0 kg (p < 0.001) in men and 0.9 kg (p < 0.001) in women. Compared to dual energy X-ray absorptiometry, bioelectrical impedance analysis underestimates the total body fat mass and overestimates fat free mass in healthy young adults. BIA should, therefore, be used with caution in the measurement of total body composition in women and men with >25% total body fat. Though statistically significant, the small difference (~ 4%) between the methods indicates that the BIA may be used interchangeably with DXA in the measurement of appendicular fat free mass in healthy young adults.

  18. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  19. Teaching the SCANS Competencies.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Secretary's Commission on Achieving Necessary Skills.

    SCANS (the Secretary's Commission on Achieving Necessary Skills) provides definitions of the knowledge students and workers need for workplace success and methods for applying these principles in communities throughout the United States. This document contains six articles that give education and training practitioners practical suggestions for…

  20. SCANS: The Missing Link.

    ERIC Educational Resources Information Center

    Price-Machado, Donna

    Three specific classroom techniques for teaching vocational English as a Second Language to adults are discussed. They are three items on the SCANS (Secretary's Commission on Achieving Necessary Skills) list of "easy things" to do to integrate workplace basics into the classroom, designed to encourage a student-focused classroom. They…

  1. The Organizational Scan.

    ERIC Educational Resources Information Center

    Tosti, Donald; Jackson, Stephanie D.

    1997-01-01

    Performance technologists like quick, cheap analysis that is rigorous and comprehensive. This article presents the organization scan model which makes successful compromises between the technologist's obligation to be rigorous and comprehensive and the sponsor's obligation to save money and time. Includes "Societal Bottom Line: Measurable…

  2. Gallbladder radionuclide scan

    MedlinePlus

    ... please enable JavaScript. Gallbladder radionuclide scan is a test that uses radioactive material to check gallbladder function. It is also used ... for bile duct blockage or leak. How the Test is Performed ... called a gamma emitting tracer into a vein. This material collects mostly in the liver. It will then ...

  3. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  4. In vivo body composition in autochthonous and conventional pig breeding groups by dual-energy X-ray absorptiometry and magnetic resonance imaging under special consideration of Cerdo Ibérico.

    PubMed

    Kremer, P V; Fernández-Fígares, I; Förster, M; Scholz, A M

    2012-12-01

    The improvement of carcass quality is one of the main breeding goals in pig production. To select appropriate breeding animals, it is of major concern to exactly and reliably analyze the body composition in vivo. Therefore, the objective of the study was to examine whether the combination of dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) offers the opportunity to reliably analyze quantitative and qualitative body composition characteristics of different pig breeding groups in vivo. In this study, a total of 77 pigs were studied by DXA and MRI at an average age of 154 days. The pigs originated from different autochthonous or conventional breeds or crossbreeds and were grouped into six breed types: Cerdo Ibérico (Ib); Duroc × Ib (Du_Ib); White Sow Lines (WSL, including German Landrace and German Large White); Hampshire/Pietrain (Pi_Ha, including Hampshire, Pietrain × Hampshire (PiHa) and Pietrain × PiHa); Pietrain/Duroc (Pi_Du, including Pietrain × Duroc (PiDu) and Pietrain × PiDu); crossbred WSL (PiDu_WSL, including Pietrain × WSL and PiDu × WSL). A whole-body scan was performed by DXA with a GE Lunar DPX-IQ in order to measure the amount and percentage of fat tissue (FM; %FM), lean tissue (LM; %LM) and bone mineral, whereas a Siemens Magnetom Open with a large body coil was used for MRI in the thorax region between 13th and 14th vertebrae in order to measure the area of the loin (LA) and the above back fat area (FA) of both body sides. A GLM procedure using SAS 9.2 was used to analyze the data. As expected, the native breed Ib followed by Du_Ib crossbreeds showed the highest %FM (27.2%, 25.0%) combined with the smallest LA (46.2 cm2, 73.6 cm2), whereas Ib had the lowest BW at an average age of 154 days. Pigs with Pi_Ha origin presented the least %FM (12.4%) and largest LA (99.5 cm2). The WSL and PiDu_WSL showed an intermediate body composition. Therefore, it could be concluded that DXA and MRI and especially their combination

  5. Bone scanning in clinical practice

    SciTech Connect

    Fogelman, I. )

    1987-01-01

    The topics covered in this book include the history of bone scanning, mechanisms of uptake of diphosphonate in bone, the normal bone scan, and the role of bone scanning in clinical practice. The aim of this book is to provide a source of reference relating to bone scan imaging for all those who are interested in the skeleton.

  6. Optical scanning holographic microscopy

    NASA Astrophysics Data System (ADS)

    Poon, Ting-Chung; Doh, Kyu B.; Schilling, Bradley W.; Wu, Ming H.; Shinoda, Kazunori K.; Suzuki, Yoshiji

    1995-03-01

    We first review a newly developed 3D imaging technique called optical scanning holography (OSH), and discuss recording and reconstruction of a point object using the principle of OSH. We then derive 3D holographic magnification, using three points configured as a 3D object. Finally, we demonstrated 3D imaging capability of OSH by holographically recording two planar objects at different depths and reconstructing the hologram digitally.

  7. Fly-scan ptychography

    DOE PAGES

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; ...

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  8. Scanning micro-sclerometer

    DOEpatents

    Oliver, Warren C.; Blau, Peter J.

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  9. Scanning micro-sclerometer

    DOEpatents

    Oliver, W.C.; Blau, P.J.

    1994-11-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  10. Forensic Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  11. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  12. Is calcaneal broadband ultrasound attenuation a valid index of dual-energy x-ray absorptiometry-derived bone mass in children?

    PubMed Central

    Hirsch, R.; Nogueira, R. C.; Beck, B. R.

    2016-01-01

    Objectives The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. Methods A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings. Results For the whole sample, BUA predicted 29% of the study population variance in whole body BMC and BMD, 23% to 24% of the study population variance in lumbar spine BMC and BMD, and 21% to 24% of the variance in femoral neck BMC and BMD (p < 0.001). BUA predictions were strongest for the most mature participants (pre-APHV R2 = 0.03 to 0.19; peri-APHV R2 = 0.05 to 0.17; post-APHV R2 = 0.18 to 0.28) and marginally stronger for girls (R2 = 0.25-0.32, p < 0.001) than for boys (R2 = 0.21-0.27, p < 0.001). Agreement in quartile rankings between QUS and DXA measures of bone mass was generally poor (27.3% to 38.2%). Conclusion Calcaneal BUA has a weak to moderate relationship with DXA measurements of bone mass in children, and has a tendency to misclassify children on the basis of quartile rankings. Cite this article: B. K. Weeks, R. Hirsch, R. C. Nogueira, B. R. Beck. Is calcaneal broadband ultrasound attenuation a valid index of dual-energy x-ray absorptiometry-derived bone mass

  13. Utility of multifrequency bioelectrical impedance compared with dual-energy x-ray absorptiometry for assessment of total and regional body composition varies between men and women.

    PubMed

    Anderson, Lindsey J; Erceg, David N; Schroeder, E Todd

    2012-07-01

    Multifrequency bioelectrical impedance analysis of body composition may be an appropriate alternative to dual-energy x-ray absorptiometry. We hypothesized that there would be no significant differences between dual-energy x-ray absorptiometry and either the Biospace (Los Angeles, CA, USA) InBody 520 or 720 multifrequency bioelectrical impedance analysis devices for total lean body mass (LBM), appendicular lean mass (ALM), trunk lean mass (TM), and total fat mass (FM) in 25 men and 25 women (including lean, healthy, and obese individuals according to body mass index), age 18 to 49 years, weight of 73.6 ± 15.4 kg. Both devices overestimated LBM in women (~2.5 kg, P < .001) and underestimated ALM in men (~3.0 kg, P < .05) and women (~1.0 kg, P < .05). The 720 overestimated FM in men (1.6 kg, P < .05) and underestimated TM in women (0.6 kg, P ≤ .05). Regression analyses in men revealed R² (0.87-0.91), standard error of the estimate (SEE; 2.3-2.8 kg), and limits of agreement (LOAs; 4.5-5.7 kg) for LBM; R(2) (0.62-0.87), SEE (1.5-2.6 kg), and LOA (3.2-6.0 kg) for ALM; R² (0.52-0.71), SEE (2.4-3.0 kg), and LOA (4.6-6.1 kg) for TM; and R(2) (0.87-0.93), SEE (1.9-2.6 kg), and LOA (5.9-6.2 kg) for FM. Regression analyses in women revealed R² (0.87-0.88), SEE (1.8-1.9 kg), and LOA (4.1-4.2 kg) for LBM; R² (0.78-0.79), SEE (1.4-1.5 kg), and LOA (2.7-2.9 kg) for ALM; R² (0.76-0.77), SEE (1.0 kg), and LOA (2.2-2.3 kg) for TM; and R² (0.95), SEE (2.2 kg), and LOA (4.3-4.4 kg) for FM. The InBody 520 and 720 are valid estimators of LBM and FM in men and of LBM, ALM, and FM in women; the 720 and 520 are valid estimators of TM in men and women, respectively.

  14. Scanning radiographic apparatus

    SciTech Connect

    Albert, R.D.

    1980-04-01

    Visual display of dental, medical or other radiographic images is realized with an x-ray tube in which an electron beam is scanned through an x-y raster pattern on a broad anode plate, the scanning being synchronized with the x-y sweep signals of a cathode ray tube display and the intensity signal for the display being derived from a small x-ray detector which receives x-rays that have passed through the subject to be imaged. Positioning and support of the detector are provided for by disposing the detector in a probe which may be attached to the x-ray tube at any of a plurality of different locations and by providing a plurality of such probes of different configuration in order to change focal length, to accommodate to different detector placements relative to the subject, to enhance patient comfort and to enable production of both periapical images and wider angle pantomographic images. High image definition with reduced radiation dosage is provided for by a lead glass collimator situated between the x-ray tube and subject and having a large number of spaced-apart minute radiation transmissive passages convergent on the position of the detector. Releasable mounting means enable changes of collimator in conjunction with changes of the probe to change focal length. A control circuit modifies the x-y sweep signals applied to the x-ray tube and modulates electron beam energy and current in order to correct for image distortions and other undesirable effects which can otherwise be present in a scanning x-ray system.

  15. Novel single x-ray absorptiometry method to solve for volumetric breast density in mammograms with paddle tilt

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Wang, Jeff; Shepherd, John

    2007-03-01

    We report on the design and validation of a breast tissue equivalent phantom for automated measurement of breast composition in film/screen and digital mammography systems. This phantom is a multi-step phantom made of a single material and containing nine lead positioning markers around its periphery. The markers allow for the phantom position to be solved relative to the x-ray gantry. The phantom was adhered to the top of the mammographic compression paddle such that it projected an attenuation image onto the unused corner of the image without overlapping with CC- nor MLO-view breast edges. The markers and their centroids were identified using automatic morphological image processing operations. The phantom, and thus the paddle, orientation is then obtained by minimizing a simple least-square error function of the difference between a pseudo projection image of the phantom markers at known coordinates and the actual marker image. Fibroglandular-equivalent breast attenuation values were found directly from step phantom projections. Fat attenuation values were derived from the attenuation coefficient ratios of fat to fibroglandular tissue. Finally, breast density was calculated by comparing image pixel values to the fat/fibroglandular references at the same thickness. Multiple scans of a test object (a density step phantom with 7 densities) at nine different compression thicknesses and six paddle-tilt angles were acquired. We found the precision for determining the breast thickness to be 0.015 cm (standard deviation) and for determining individual paddle angles to be 0.05 degrees. Multiple clinical studies using the technique on film/screen and digital mammography machines are also currently under way.

  16. Controlled Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Sarid, Dror; Workman, Richard K.; Pyle, Jason L.

    1997-03-01

    A method for real-time monitoring of the quality and quantity of silicon oxide grown on silicon using conducting-tip scanning probe lithography has been developed. The sub-picoampere tip-sample currents measured during lithography in ambient conditions are shown to be proportional to the amount of silicon oxide being grown. In addition, we have demonstrated the ability to control the composition of the grown material by altering the lithographic environment. Silicon nitride growth is shown to result from lithography on silicon samples in an environment of annhydrous ammonia.

  17. Battery scanning system

    SciTech Connect

    Dieu, L.F.

    1984-11-20

    A battery scanning system which is capable of monitoring and displaying the voltage of each cell in a battery or upon command provides the cell voltage distribution by displaying the cell number and voltage value of highest and lowest cell. The system has a digital logic system, display, input switches for operator generated variables, an alarm, relays, relay selection gates, an optically coupled isolation amplifier, power source and an analog-digital converter. The optically coupled analog amplifier electrically isolates the system from the battery so that large voltage offsets will not adversely affect the automatic measuring of the cells.

  18. Scanning Quantum Dot Microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Green, Matthew F. B.; Leinen, Philipp; Deilmann, Thorsten; Krüger, Peter; Rohlfing, Michael; Temirov, Ruslan; Tautz, F. Stefan

    2015-07-01

    We introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with subnanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of an atomic force microscope operated at 5 K, equipped with a qPlus tuning fork, we image the quadrupole field of a single molecule. To demonstrate quantitative measurements, we investigate the dipole field of a single metal adatom adsorbed on a metal surface. We show that because of its high sensitivity the technique can probe electrostatic potentials at large distances from their sources, which should allow for the imaging of samples with increased surface roughness.

  19. Real Scan Evolution.

    DTIC Science & Technology

    1982-02-01

    Computer Image Generation Visual Simulation Computer Graphics Al gortthm Geometric Model tng 1%ABSTRACT (C.tla. -mm. .00n ad N ue-e""V ONd Ofmi* OF 61"knsee...envtronments. modeled as a single valued el evatYo fnction of horizontal location. The objecttve of the development was to analyze the feasibility of a real...generator capable of creating complex Imagery .in real time? Is the solution amenable to efficient off-lne modeling of complex environments? The Real Scan

  20. Alternating Days of Intermittent Hypoxic Exposure (IHE) on Physical and Cognitive Performance

    DTIC Science & Technology

    2011-03-01

    Colorado Altitude Tent C-IHE Consecutive Intermittent Normobaric Hypoxic Exposures Cm Centimeters DEXA Dual Energy X-ray Analysis EPOC Excessive...and passing standards were used:  Body Composition. Measured by dual energy X-ray absorptiometry ( DEXA ) (Lunar Prodigy, GE, Waukesha, WI, USA

  1. Scans Solo: A One-Person Environmental Scanning Process.

    ERIC Educational Resources Information Center

    Clagett, Craig A.

    An effective environmental scan will improve the quality of community college planning and decision making by alerting institutional leaders to the challenges and opportunities in the environment. Scanning can be done in three ways: (1) establishing a scanning committee to gather and synthesize information to guide planning; (2) sponsoring a…

  2. Free motion scanning system

    DOEpatents

    Sword, Charles K.

    2000-01-01

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  3. Ultrafast scanning tunneling microscopy

    SciTech Connect

    Botkin, D.A. |

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  4. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... JavaScript. A pulmonary ventilation/perfusion scan involves two nuclear scan tests to measure breathing (ventilation) and circulation ( ... In: Mettler FA, Guiberteau MJ, eds. Essentials of Nuclear Medicine Imaging . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  5. Influence of a two-year steroid treatment on body composition as measured by dual X-ray absorptiometry in boys with Duchenne muscular dystrophy.

    PubMed

    Vuillerot, Carole; Braillon, Pierre; Fontaine-Carbonnel, Stephanie; Rippert, Pascal; André, Elisabeth; Iwaz, Jean; Poirot, Isabelle; Bérard, Carole

    2014-06-01

    Steroids are nowadays routinely used as a long-term treatment in Duchenne muscular dystrophy (DMD). Their effects on body composition were assessed using dual X-ray absorptiometry. The study followed over 2 years 29 genetically confirmed DMD patients: 21 in the steroid-treated group and 8 in the steroid-naïve group. After 2 years of steroid treatment, the lean tissue mass values increased significantly (p<0.0001), the percentage of body fat mass remained practically constant (p=0.94) in comparison with the initial visit. In the steroid-naïve patients, there were no significant increases in the lean tissue mass but deterioration in body composition confirmed by a significant increase in the percentage of body fat mass. Besides, significant negative correlations were found between the percentage of body fat mass and the MFM total score (R=-0.79, n=76, p<0.0001). A 2-year steroid treatment improves significantly body composition of boys with DMD through a significant increase in lean tissue mass. We suggest that a thorough check of body composition should be carried out before steroid treatment discontinuation in case of overweight gain.

  6. Comparison of Body Composition Assessed by Dual-Energy X-Ray Absorptiometry and BMI in Current and Former U.S. Navy Service Members

    PubMed Central

    Gasier, Heath G.; Hughes, Linda M.; Young, Colin R.; Richardson, Annely M.

    2015-01-01

    Background Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Methods Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20–91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. Results The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. Conclusions From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs. PMID:26197480

  7. Correlation of visceral adipose tissue measured by Lunar Prodigy dual X-ray absorptiometry with MRI and CT in older men.

    PubMed

    Cheung, A S; de Rooy, C; Hoermann, R; Gianatti, E J; Hamilton, E J; Roff, G; Zajac, J D; Grossmann, M

    2016-08-01

    Quantification of abdominal visceral adipose tissue (VAT) is important to understand obesity-related comorbidities. We hypothesized that dual X-ray absorptiometry (DXA) measurements of VAT would correlate with traditional gold standards of magnetic resonance imaging (MRI) and computed tomography (CT) in older men. Deming regression and Bland-Altman plots were used to assess the agreement between VAT measured simultaneously by DXA and MRI (n=95) in a cohort of older males participating in a randomized trial of testosterone replacement for diabetes. We also correlated DXA with single-slice CT (n=102) in a cohort of older males undergoing testosterone deprivation for prostate cancer. Lunar Prodigy DXA scanners using enCORE software was used to measure VAT. DXA VAT volume strongly correlated with MRI VAT volume (r=0.90, P<0.0001) and CT VAT area (r=0.83, P<0.0001). As DXA assesses VAT volume in a smaller compartment than MRI, Bland-Altman analysis demonstrated DXA systematically underestimated VAT by an approximately 30% proportional bias. DXA VAT volume measured by Lunar Prodigy DXA scanners correlate well with gold standard MRI and CT quantification methods, and provides a low radiation, efficient, cost-effective option. Future clinical studies examining the effects of interventions on body composition and regional fat distribution may find DXA an appropriate volumetric method to quantify VAT.

  8. Comparison of circumference measures and height-weight tables with dual-energy x-ray absorptiometry assessment of body composition in r.o.t.c. Cadets.

    PubMed

    Pritchett, Kelly L; Mitchell, Katherine M; Pritchett, Robert C; Gee, David L

    2017-03-13

    Height-weight tables and circumference measures are used by the U.S. Army to predict body composition because they require little equipment/expertise. However, agreement between the Army's new 2002 circumference equation and an established laboratory technique has not been determined. The purpose of this study was to quantify agreement in body fat percentages between the Army's circumference measures (taping) and dual-energy x-ray absorptiometry (DXA); second to determine categorical agreement between height-weight tables and DXA. Male Reserve Officer Training Corps (R.O.T.C.) cadets (N=23; 20.6 ± 1.6 years, 179.1 ± 6.6 cm; 81.4 ± 10.3 kg) were taped according to Army protocol to predict body fat. % body fat prediction was compared to DXA via a Bland-Altman Plot with ±2-4% body fat established as a zone of agreement (ZOA). 13/23 cadets fell outside the ZOA. No cadet was over the compliance threshold (20-22% fat) using the tape method, however with DXA, 7/23 cadets were non-compliant. Height-weight tables provided a moderate level of categorical agreement with DXA. The results depict poor agreement between taping and DXA, as taping generally underestimated % body fat. Compared to taping, heightweight tables were better able to identify excess fat weight.

  9. Bioelectrical impedance and dual-energy x-ray absorptiometry assessments of changes in body composition following exercise in patients with type 2 diabetes mellitus.

    PubMed

    Miyatani, Masae; Yang, Pearl; Thomas, Scott; Craven, B Catharine; Oh, Paul

    2012-01-01

    We aimed to compare the level of agreement between leg-to-leg bioelectrical impedance analysis (LBIA) and dual-energy X-ray absorptiometry (DXA) for assessing changes in body composition following exercise intervention among individuals with Type 2 diabetes mellitus (T2DM). Forty-four adults with T2DM, age 53.2 ± 9.1 years; BMI 30.8 ± 5.9 kg/m(2) participated in a 6-month exercise program with pre and post intervention assessments of body composition. Fat free mass (FFM), % body fat (%FM) and fat mass (FM) were measured by LBIA (TBF-300A) and DXA. LBIA assessments of changes in %FM and FM post intervention showed good relative agreements with DXA variables (P < 0.001). However, Bland-Altman plot(s) indicated that there were systematic errors in the assessment of the changes in body composition using LBIA compared to DXA such that, the greater the changes in participant body composition, the greater the disparity in body composition data obtained via LBIA versus DXA data (FFM, P = 0.013; %FM, P < 0.001; FM, P < 0.001). In conclusion, assessment of pre and post intervention body composition implies that LBIA is a good tool for assessment qualitative change in body composition (gain or loss) among people with T2DM but is not sufficiently sensitive to track quantitative changes in an individual's body composition.

  10. Evaluation of the effects of hypergravity exposure and caging restraint on bone mineralization in the Beagle by in vivo photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Fisher, G. L.; Berding, K. L.; Goldman, M.

    1975-01-01

    Photon absorptiometry was used to evaluate bone mineral kinetics associated with normal development and the possible perturbations to bone development resulting from hypergravity exposure over a period of six months in developing Beagles. A series of seven measurements were performed at specific times with the first measurement prior to treatment and subsequent measurements at 2, 5, 9, 14, 20 and 26 weeks from the onset of the experiment. Four groups of six male Beagle pups, ranging in age from 85 to 92 days were studied. Two groups were chronically exposed to hypergravity treatments by centrifugation of 2.0 G (18.0 RPM, 11.7 ft radius) and 2.6 G (18.0 RPM, 19.8 ft radius) for the 26 week period. A third group of six dogs served as a caged control to evaluate possible changes due to confinement in small plexiglass cages similar to those of the centrifuge. Thus this control group was subjected to limited exercise due to caging restraint. The fourth group of animals was housed in open runs to allow exercise without the spatial confinement of the smaller plexiglass cages. Results show highly significant differences in body weight, bone length, increase in bone density of control group relative to other groups, and a decrease in bone mineral content in the two gravity treated groups.

  11. Rotational scanning atomic force microscopy.

    PubMed

    Ulčinas, A; Vaitekonis, Š

    2017-03-10

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  12. Rotational scanning atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ulčinas, A.; Vaitekonis, Š.

    2017-03-01

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  13. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  14. The Scanning Process: Getting Started.

    ERIC Educational Resources Information Center

    Renfro, William L.; Morrison, James L.

    1983-01-01

    Scanning the external environment will become more essential to colleges in the coming decade. Developing an environmental scanning system can identify important emerging issues that may constitute either threats or opportunities. The organizational features of a mature scanning process are described. (MLW)

  15. A scanning cavity microscope

    PubMed Central

    Mader, Matthias; Reichel, Jakob; Hänsch, Theodor W.; Hunger, David

    2015-01-01

    Imaging the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a high-finesse scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1,700-fold signal enhancement compared with diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross-section of gold nanoparticles with a sensitivity less than 1 nm2; we show a method to improve the spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for optical studies of nanomaterials, molecules and biological nanosystems. PMID:26105690

  16. Fetal cardiac scanning today.

    PubMed

    Allan, Lindsey

    2010-07-01

    The ability to examine the structure of the fetal heart in real-time started over 30 years ago now. The field has seen very great advances since then, both in terms of technical improvements in ultrasound equipment and in dissemination of operator skills. A great deal has been learnt about normal cardiac function in the human fetus throughout gestation and how it is affected by pathologies of pregnancy. There is increasing recognition of abnormal heart structure during routine obstetric scanning, allowing referral for specialist diagnosis and counselling. It is now possible to make accurate diagnosis of cardiac malformations as early as 12 weeks of gestation. Early diagnosis of a major cardiac malformation in the fetus can provide the parents with a comprehensive prognosis, enabling them to make the most informed choice about the management of the pregnancy.

  17. Telescopic horizon scanning.

    PubMed

    Koenderink, Jan

    2014-12-20

    The problem of "distortionless" viewing with terrestrial telescopic systems (mainly "binoculars") remains problematic. The so called "globe effect" is only partially counteracted in modern designs. Theories addressing the phenomenon have never reached definitive closure. In this paper, we show that exact distortionless viewing with terrestrial telescopic systems is not possible in general, but that it is in principle possible in-very frequent in battle field and marine applications-the case of horizon scanning. However, this involves cylindrical optical elements. For opto-electronic systems, a full solution is more readily feasible. The solution involves a novel interpretation of the relevant constraints and objectives. For final design decisions, it is not necessary to rely on a corpus of psychophysical (or ergonomic) data, although one has to decide whether the instrument is intended as an extension of the eye or as a "pictorial" device.

  18. Scanning the periphery.

    PubMed

    Day, George S; Schoemaker, Paul J H

    2005-11-01

    Companies often face new rivals, technologies, regulations, and other environmental changes that seem to come out of left field. How can they see these changes sooner and capitalize on them? Such changes often begin as weak signals on what the authors call the periphery, or the blurry zone at the edge of an organization's vision. As with human peripheral vision, these signals are difficult to see and interpret but can be vital to success or survival. Unfortunately, most companies lack a systematic method for determining where on the periphery they should be looking, how to interpret the weak signals they see, and how to allocate limited scanning resources. This article provides such a method-a question-based framework for helping companies scan the periphery more efficiently and effectively. The framework divides questions into three categories: learning from the past (What have been our past blind spots? What instructive analogies do other industries offer? Who in the industry is skilled at picking up weak signals and acting on them?); evaluating the present (What important signals are we rationalizing away? What are our mavericks, outliers, complainers, and defectors telling us? What are our peripheral customers and competitors really thinking?); and envisioning the future (What future surprises could really hurt or help us? What emerging technologies could change the game? Is there an unthinkable scenario that might disrupt our business?). Answering these questions is a good first step toward anticipating problems or opportunities that may appear on the business horizon. The article concludes with a self-test that companies can use to assess their need and capability for peripheral vision.

  19. Earth observing scanning polarimeter

    NASA Technical Reports Server (NTRS)

    Travis, Larry

    1993-01-01

    Climate forcing by tropospheric aerosols is receiving increased attention because of the realization that the climate effects may be large, while our knowledge of global aerosol characteristics and temporal changes is very poor. Tropospheric aerosols cause a direct radiative forcing due simply to their scattering and absorption of solar radiation, as well as an indirect effect as cloud condensation nuclei which can modify the shortwave reflectivity of clouds. Sulfate aerosols tend to increase planetary albedo through both the direct and indirect effects; a cooling due to anthropogenic sulfate aerosols has been estimated of order 1 W/sq m, noting that this is similar in magnitude to the present anthropogenic greenhouse gas warming. Other aerosols, including those from biomass burning and wind-blown desert dust are also of potential climatic importance. At present, the only global monitoring of tropospheric aerosols is a NOAA operational product, aerosol optical thickness, obtained using channel-1 (0.58-0.68 mu m) radiances from the AVHRR. With this single channel radiance data, one must use an approach which is based on the inferred excess of reflected radiance owing to scattering by the aerosols over that expected from theoretical calculations. This approach is suited only for situations where the surface has a low albedo that is well known a priori. Thus, the NOAA operational product is restricted to coverage over the ocean at AVHRR scan angles well away from sun glint, and aerosol changes are subject to confusion with changes caused by either optically thin or subpixel clouds. Because optically thin aerosols have only a small effect on the radiance, accurate measurements for optical thickness less than 0.1 (which is a typical background level) are precluded. Moreover, some of the largest and most important aerosol changes are expected over land. The Earth Observing Scanning Polarimeter (EOSP) instrument, based upon design heritage and analysis techniques

  20. LANL Robotic Vessel Scanning

    SciTech Connect

    Webber, Nels W.

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  1. Differential scanning calorimetry.

    PubMed

    Spink, Charles H

    2008-01-01

    Differential scanning calorimetry (DSC) has emerged as a powerful experimental technique for determining thermodynamic properties of biomacromolecules. The ability to monitor unfolding or phase transitions in proteins, polynucleotides, and lipid assemblies has not only provided data on thermodynamic stability for these important molecules, but also made it possible to examine the details of unfolding processes and to analyze the characteristics of intermediate states involved in the melting of biopolymers. The recent improvements in DSC instrumentation and software have generated new opportunities for the study of the effects of structure and changes in environment on the behavior of proteins, nucleic acids, and lipids. This review presents some of the details of application of DSC to the examination of the unfolding of biomolecules. After a brief introduction to DSC instrumentation used for the study of thermal transitions, the methods for obtaining basic thermodynamic information from the DSC curve are presented. Then, using DNA unfolding as an example, methods for the analysis of the melting transition are presented that allow deconvolution of the DSC curves to determine more subtle characteristics of the intermediate states involved in unfolding. Two types of transitions are presented for analysis, the first example being the unfolding of two large synthetic polynucleotides, which display high cooperativity in the melting process. The second example shows the application of DSC for the study of the unfolding of a simple hairpin oligonucleotide. Details of the data analysis are presented in a simple spreadsheet format.

  2. GPR scan assessment

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas M.; Salah, Hany; Massoud, Usama; Fouad, Mona; Abdel-Hafez, Mahmoud

    2015-06-01

    Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD). The building has a rectangle shape plan (13 × 6 m) with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench) and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR) scan was accomplished against the walls of the opened floor (RADWAN Bench) to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  3. How Accurate Are the Anthropometry Equations in in Iranian Military Men in Predicting Body Composition?

    PubMed Central

    Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza

    2015-01-01

    Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964

  4. Reference Values of Total Lean Mass, Appendicular Lean Mass, and Fat Mass Measured with Dual-Energy X-ray Absorptiometry in a Healthy Mexican Population.

    PubMed

    Clark, Patricia; Denova-Gutiérrez, Edgar; Ambrosi, Regina; Szulc, Pawel; Rivas-Ruiz, Rodolfo; Salmerón, Jorge

    2016-11-01

    The aim of this study was to develop age- and gender-specific reference values of total lean body mass (LBM), appendicular lean body mass (ALBM), and fat mass (FM) by dual-energy X-ray absorptiometry (DXA) data in a healthy Mexican population. A cross-sectional analysis was conducted on 9518 healthy subjects 7-89 years of age participating in the baseline measurement of the Health Workers Cohort Study. Using DXA, LBM, ALBM, and FM were measured. Using these data, LBM index (LBMI), ALBM index (ALBMI), and fat mass index (FMI) were calculated. LMI, ALMI, and FMI were calculated as the LBM, ALBM, and FM kg divided by the height in meters squared. Males and females were analyzed separately; sex-specific means and standard deviations for LBM, ALBM, FM, LBMI, ALBMI, and FMI were calculated. A total of 2829 males and 6694 females were included in the final analysis. Strong sex gaps were observed after 12 years in LBM, ALBM, LBMI, and ALBMI (P < 0.01). LBM and ALBM values continue to increase for males up to age 20; females plateaued approximately after age 15. Significant sex differences were also observed for FM and FMI. Significant sex- and age-related differences exist in LBM, ALBM, and FM in the Mexican population. In addition, given the null data available in this area, these reference values may be useful in the evaluation of a variety of childhood and adult abnormalities involving lean body mass deficits, mainly in the assessment of muscle wasting, with important medical and epidemiological uses.

  5. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-01-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.

  6. Comparing non contrast computerized tomography criteria versus dual X-ray absorptiometry as predictors of radio-opaque upper urinary tract stone fragmentation after electromagnetic shockwave lithotripsy.

    PubMed

    Hameed, Diaa A; Elgammal, Mohammed A; ElGanainy, Ehab O; Hageb, Adel; Mohammed, Khaled; El-Taher, Ahmed Mohamed; Mostafa, Mostafa Mohamed; Ahmed, Abdelfatah Ibrahim

    2013-11-01

    The objective of this study was to assess the value of dual X-ray absorptiometry (DXA) in comparison to non contrast computed tomography (NCCT) density as possible predictors of upper urinary tract stone disintegration by shock wave lithotripsy (SWL). This study included 100 consecutive patients, with solitary renal stone 0.5-2 cm or upper ureteral stone up to 1 cm. DXA to calculate stone mineral density (SMD) and stone mineral content (SMC) was done. NCCT was performed to measure Hounsfield units (HU). SWL was performed with an electromagnetic lithotripsy, plain X-ray documented disintegration after SWL. Successful treatment was defined as stone free or complete fragmentation after 1 or 2 sessions of SWL. The impact of patients age, sex, body mass index, stone laterality, location, volume, length, mean SMC and SMD, HU and Hounsfield density (HD), skin to stone distance (SSD) and number of shock waves were evaluated by univariate and multivariate analysis. Only 76 patients were available for follow-up. Success of disintegration was observed in 50 out of 76 patients (65.8 %). On multivariate analysis, SMC and number of shock wave were the significant independent factors affecting SWL outcome (p = 0.04 and p = 0.000, respectively). SMC as detected by DXA is a significant predictor of success of stone disintegration by SWL. SMC measured by DXA is more accurate than HU measured by CT. Patients with high stone mineral content (SMC greater than 0.65 g) should be directly offered another treatment option.

  7. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  8. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

    PubMed Central

    Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka

    2016-01-01

    Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617

  9. ADRB2 gene variants, dual-energy x-ray absorptiometry body composition, and hypertension in Tobago men of African descent.

    PubMed

    Beason, Tracey Samantha; Bunker, Clareann H; Zmuda, Joseph M; Wilson, John W; Patrick, Alan L; Wheeler, Victor W; Weissfeld, Joel L

    2011-05-01

    Classic tissue effects of β(2)-adrenergic receptor activation include skeletal muscle glycogenolysis and vascular smooth muscle relaxation, factors relevant to obesity and hypertension, respectively. In a population-based study, we examined 2 common amino acid substitutions in the β(2)-adrenergic receptor gene (ADRB2) in relation to body composition and blood pressure. A cross-sectional analysis of 1893 African-descent men living in Tobago and participating in a prostate cancer screening study was performed. Body mass index, waist circumference, blood pressure, dual-energy x-ray absorptiometry body composition, and ADRB2 (Arg16Gly; Gln27Glu) genotype were determined. Twenty-six percent were obese (body mass index ≥30 kg/m(2)), and 50% were hypertensive. ADRB2 Arg16Gly and Gln27Glu alleles were in linkage disequilibrium (D' = 0.96, r(2) = 0.15). ADRB2 16Gly-containing and 27Glu-containing genotypes were equally frequent in low, medium, and high tertiles of percentage of body fat mass (16Gly-containing genotypes: 73.4%, 74.4%, and 74.5%, P(trend) = .66; 27Glu-containing genotypes: 27.6%, 23.8%, and 25.4%, P(trend) = .39) and in normal blood pressure, prehypertensive, and hypertensive men (16Gly-containing genotypes: 73.4%, 72.8%, and 74.4%, P(trend) = .61; 27Glu-containing genotypes: 25.6%, 24.1%, and 26.7%, P(trend) = .50). In a high-obesity and high-hypertension risk population with ancestry in common with African Americans, genetic variation defined by 2 common ADRB2 amino acid substitutions was not associated with body composition or hypertension.

  10. Dual-Energy X-Ray Absorptiometry, Skinfold Thickness, and Waist Circumference for Assessing Body Composition in Ambulant and Non-Ambulant Wheelchair Games Players.

    PubMed

    Willems, Annika; Paulson, Thomas A W; Keil, Mhairi; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2015-01-01

    Field-based assessments provide a cost-effective and accessible alternative to dual-energy X-ray absorptiometry (DXA) for practitioners determining body composition in athletic populations. It remains unclear how the range of physical impairments classifiable in wheelchair sports may affect the utility of field-based body composition techniques. The present study assessed body composition using DXA in 14 wheelchair games players who were either wheelchair dependent (non-walkers; n = 7) or relied on a wheelchair for sports participation only (walkers; n = 7). Anthropometric measurements were used to predict body fat percentage with existing regression equations established for able-bodied persons by Sloan and Weir, Durnin and Womersley, Lean et al, Gallagher et al, and Pongchaiyakul et al. In addition, linear regression analysis was performed to calculate the association between body fat percentage and BMI, waist circumference, sum of 6 skinfold thickness and sum of 8 skinfold thickness. Results showed that non-walkers had significantly lower total lean tissue mass (46.2 ± 6.6 kg vs. 59.4 ± 8.2 kg, P = 0.006) and total body mass (65.8 ± 4.2 kg vs. 79.4 ± 14.9 kg; P = 0.05) than walkers. Body fat percentage calculated from most existing regression equations was significantly lower than that from DXA, by 2 to 9% in walkers and 8 to 14% in non-walkers. Of the anthropometric measurements, the sum of 8 skinfold thickness had the lowest standard error of estimation in predicting body fat content. In conclusion, existing anthropometric equations developed in able-bodied populations substantially underestimated body fat content in wheelchair athletes, particularly non-walkers. Impairment specific equations may be needed in wheelchair athletes.

  11. Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition.

    PubMed

    Wang, Ji-Guang; Zhang, Yi; Chen, Han-E; Li, Yan; Cheng, Xiao-Guang; Xu, Li; Guo, Zhe; Zhao, Xing-Shan; Sato, Tetsuya; Cao, Qi-Yun; Chen, Ke-Min; Li, Biao

    2013-01-01

    We compared a 4-limb bioelectrical impedance analysis (BIA) system, HBF 359 (Omron), and a 2-limb foot-to-foot device, BC 532 (Tanita), with the standard dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) methods for the measurement of body fat percentage (BF), skeletal muscle mass percentage (SMM, or fat-free mass [FFM] for BC 532), and visceral fat level (VF). Body composition was measured in 200 healthy volunteers (100 men and 100 women, mean age 48 years) by HBF 359 and BC 532 and by DXA and MRI. The agreement was assessed by correlation analysis and paired t-test. The correlation coefficients between BIA and DXA or MRI ranged from 0.71 to 0.89 for BF, SMM, and VF by HBF 359 and from 0.77 to 0.90 for BF, FFM, and VF by BC 532 in all subjects and in men and women separately (p < 0.001 for all). Compared with DXA, HBF 359 significantly (p < 0.001) underestimated BF by -5.8% in men and -9.6% in women. Compared with MRI, the corresponding underestimatons (negative) or overestimations (positive) by HBF 359 in men and women were, respectively, +1.9% (p = 0.02) and +1.7% (p = 0.10) for SMM, and +13.3% (p < 0.001) and -8.5% (p = 0.006), for VF. The corresponding values by BC 532 in men and women were -10.7 and -6.2% for BF, -1.4 and -2.5% for FFM, and +20.4 and -18.0% for VF. The BIA devices are accurate in the estimation of body composition, especially skeletal muscle mass or FFM.

  12. Reference data and percentile curves of body composition measured with dual energy X-ray absorptiometry in healthy Chinese children and adolescents.

    PubMed

    Guo, Bin; Xu, Yi; Gong, Jian; Tang, Yongjin; Shang, Jingjie; Xu, Hao

    2015-09-01

    Measurements of body composition by dual-energy X-ray absorptiometry (DXA) have evident value in evaluating skeletal and muscular status in growing children and adolescents. This study aimed to generate age-related trends for body composition in Chinese children and adolescents, and to establish gender-specific reference percentile curves for the assessment of muscle-bone status. A total of 1541 Chinese children and adolescents aged from 5 to 19 years were recruited from southern China. Bone mineral content (BMC), lean mass (LM) and fat mass (FM) were measured for total body and total body less head (TBLH). After 14 years, total body LM was significantly higher in boys than girls (p < 0.001). However, total body FM was significantly higher in girls than boys in age groups 13-19 years (p < 0.01). Both LM and FM were consistent independent predictors of total body and subcranial bone mass in both sexes, even after adjustment for the well-known predictors of BMC. The results of multiple linear regression identified LM as the stronger predictor of total body and subcranial skeleton BMC while the fat mass contributed less. For all the subjects, significant positive correlations were observed between total body LM, height, total body BMC and subcranial BMC (p < 0.01). Subcranial BMC had a better correlation with LM than total body BMC. We have also presented gender-specific percentile curves for LM-for-height and BMC-for-LM which could be used to evaluate and follow various pediatric disorders with skeletal manifestations in this population.

  13. Air displacement plethysmography, dual-energy X-ray absorptiometry, and total body water to evaluate body composition in preschool-age children.

    PubMed

    Crook, Tina A; Armbya, Narain; Cleves, Mario A; Badger, Thomas M; Andres, Aline

    2012-12-01

    Anthropometrics and body mass index are only proxies in the evaluation of adiposity in the pediatric population. Air displacement plethysmography technology was not available for children aged 6 months to 9 years until recently. Our study was designed to test the precision of air displacement plethysmography (ADP) in measuring body fat mass in children at ages 3 to 5 years compared with a criterion method, deuterium oxide dilution (D(2)O), which estimates total body water and a commonly used methodology, dual-energy x-ray absorptiometry (DXA). A prospective, cross-sectional cohort of 66 healthy children (35 girls) was recruited in the central Arkansas region between 2007 and 2009. Weight and height were obtained using standardized procedures. Fat mass (%) was measured using ADP, DXA, and D(2)O. Concordance correlation coefficient and Bland-Altman plots were used to investigate the precision of the ADP techniques against D(2)O and DXA in children at ages 3 to 5 years. ADP concordance correlation coefficient for fat mass was weak (0.179) when compared with D(2)O. Bland-Altman plots revealed a low accuracy and large scatter of ADP fat mass (%) results (mean=-2.5, 95% CI -20.3 to 15.4) compared with D(2)O. DXA fat mass (%) results were more consistent although DXA systematically overestimated fat mass by 4% to 5% compared with D(2)O. Compared with D(2)O, ADP does not accurately assess percent fat mass in children aged 3 to 5 years. Thus, D(2)O, DXA, or quantitative nuclear magnetic resonance may be considered better options for assessing fat mass in young children.

  14. Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases.

    PubMed

    Dimai, Hans P

    2016-12-29

    Dual-energy X-ray absorptiometry (DXA) is a two-dimensional imaging technology developed to assess bone mineral density (BMD) of the entire human skeleton and also specifically of skeletal sites known to be most vulnerable to fracture. In order to simplify interpretation of BMD measurement results and allow comparability among different DXA-devices, the T-score concept was introduced. This concept involves an individual's BMD which is then compared with the mean value of a young healthy reference population, with the difference expressed as a standard deviation (SD). Since the early nineties of the past century, the diagnostic categories "normal, osteopenia, and osteoporosis", as recommended by a WHO working Group, are based on this concept. Thus, DXA is still the globally accepted "gold-standard" method for the noninvasive diagnosis of osteoporosis. Another score obtained from DXA measurement, termed Z-score, describes the number of SDs by which the BMD in an individual differs from the mean value expected for age and sex. Although not intended for diagnosis of osteoporosis in adults, it nevertheless provides information about an individual's fracture risk compared to peers. DXA measurement can either be used as a "stand-alone" means in the assessment of an individual's fracture risk, or incorporated into one of the available fracture risk assessment tools such as FRAX® or Garvan, thus improving the predictive power of such tools. The issue which reference databases should be used by DXA-device manufacturers for T-score reference standards has been recently addressed by an expert group, who recommended use National Health and Nutrition Examination Survey III (NHANES III) databases for the hip reference standard but own databases for the lumbar spine. Furthermore, in men it is recommended use female reference databases for calculation of the T-score and use male reference databases for calculation of Z-score.

  15. Evaluation of mandibular bone mineral density using the dual-energy X-ray absorptiometry technique in edentulous subjects living in an endemic fluorosis region

    PubMed Central

    Buyukkaplan, US; Guldag, MU

    2012-01-01

    Objectives Fluoride is one of the biological trace elements with a strong affinity for osseous, cartilaginous and dental tissue. The dental and skeletal effects of high fluoride intake have already been studied in the literature, but little is known about the effects of high fluoride intake on edentulous mandibles. The purpose of this study was to evaluate the effects of high fluoride intake on mandibular bone mineral density (BMD) measured by the dual-energy X-ray absorptiometry (DXA) technique in edentulous individuals with systemic fluorosis. Methods 32 people who were living in an endemic fluorosis area since birth and 31 people who were living in a non-endemic fluorosis area since birth (control group) participated in this study. Systemic fluorosis was diagnosed in the patients using the sialic acid (NANA)/glycosaminoglycan (GAG) ratio. The BMDs of the mandibles were determined by the DXA technique. Results The serum NANA/GAG ratios in the fluorosis group were significantly lower than those in the control group (p < 0.001). There was also a statistically significant difference in mandibular BMD measurements (p < 0.05) between the systemic fluorosis and control groups, as measured by the DXA technique. Mandibular body BMD measurements were higher in the fluorosis group (1.25 ± 0.24 g cm−2) than in the control group (1.01 ± 0.31 g cm−2). Conclusions The results of the study showed that fluoride intake higher than the optimum level causes increased mandibular BMD in edentulous individuals. Further dose-related studies are needed to determine the effects of high fluoride intake on bony structures of the stomatognathic system. PMID:22241885

  16. Factors that determine body composition of female systemic lupus erythematosus (SLE) patients in Sri Lanka: a comparative study using dual-energy x-ray absorptiometry.

    PubMed

    Liyanage, A; Lekamwasam, S; Dissanayake, S P; Munidasa, D

    2013-08-01

    Studies on body composition and its determinants among SLE patients are limited. Estimation of body composition, analysis of determinants and associations of different body compartments are important in planning long-term care of these patients. The aim of the study was to identify the changes in body composition among SLE patients and assess the effect of corticosteroid use, patient and disease-related variables on body composition. We compared lean mass, fat mass, bone mineral density (BMD), and bone mineral content (BMC) determined by dual-energy x-ray absorptiometry technology, in a group of premenopausal women with SLE (n = 27) and an age-matched healthy group of women (n = 27). The median (IQR) duration of SLE was 3 (2-5) years while median (IQR) duration and dose of prednisolone therapy were 108 (88 - 172) weeks and 9730 (6160-15360) mg, respectively. No significant difference was observed in body mass index (BMI) or total fat mass between the two groups. SLE patients, however, had significantly lower lean mass (p < 0.001), BMD (p < 0.001) and BMC (p < 0.005) than healthy controls. Among cases, compared with lean mass, total body fat content showed stronger associations with total body BMD (r = 0.49, p < 0.01) and total body BMC (r = 0.63, p < 0.01). When a stepwise regression model was fitted, lean mass among controls and total fat mass among cases emerged as the best predictors of BMC/BMD. No significant correlations were found between the disease duration or cumulative glucocorticosteroid dose and total body BMD, total body BMC, lean mass or total fat content in SLE patients.

  17. Continuous scanning mode for ptychography

    SciTech Connect

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian K.

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. The impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  18. Continuous scanning mode for ptychography

    SciTech Connect

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-01-01

    Here, we outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Furthermore, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  19. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... Scan Lung VQ Scan Related Topics Arrhythmia Cough Deep Vein Thrombosis Pulmonary Embolism Send a link to NHLBI to someone by ... this topic. Related reading Chest X Ray Cough Deep Vein Thrombosis Pulmonary Embolism Rate This Content: Updated: December 9, 2016 Twitter ...

  20. An interchangeable scanning Hall probe/scanning SQUID microscope

    SciTech Connect

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  1. The value of brain scanning

    PubMed Central

    Riddoch, D.; Drolc, Z.

    1972-01-01

    Over a 3-year period, 667 brain scans were performed, of which the results in 632 have been analysed. Positive scans were found in 68% of 204 cerebral tumours. There was a high rate of detection of meningiomas and malignant gliomas. Scanning was less helpful in visualizing slowly growing gliomas, and those tumours situated in the mid-line or posterior fossa. Metastases occupied an intermediate position. Positive scans occurred in a proportion of patients following acute cerebro-vascular accidents, and in a few other miscellaneous disorders. Virtually all patients with transient cerebral ischaemia, migraine, epilepsy and presenile dementia had normal brain scans. The value and limitations of this investigation have been discussed. PMID:5076491

  2. Usefulness of calcaneal quantitative ultrasound stiffness for the evaluation of bone health in HIV-1-infected subjects: comparison with dual X-ray absorptiometry

    PubMed Central

    Fantauzzi, Alessandra; Floridia, Marco; Ceci, Fabrizio; Cacciatore, Francesco; Vullo, Vincenzo; Mezzaroma, Ivano

    2016-01-01

    Objectives With the development of effective treatments and the resulting increase in life expectancy, bone mineral density (BMD) alteration has emerged as an important comorbidity in human immunodeficiency virus type-1 (HIV-1)-infected individuals. The potential contributors to the pathogenesis of osteopenia/osteoporosis include a higher prevalence of risk factors, combined antiretroviral therapy (cART)-exposure, HIV-1 itself and chronic immune activation/inflammation. Dual-energy X-ray absorptiometry (DXA) is the “gold standard” technique for assessing bone status in HIV-1 population. Methods We conducted a cross-sectional study to investigate bone mineral status in a group of 158 HIV-1-infected subjects. The primary endpoint was the feasibility of calcaneal quantitative ultrasound (QUS) as a screening tool for BMD. All subjects were receiving stable cART and were virologically suppressed (HIV-RNA <37 copies/mL) from at least 12 months. Calcaneal QUS parameters were analyzed to obtain information on bone mass and microarchitecture. The results were compared with those obtained by DXA. Results No correlations were found between DXA/QUS parameters and demographic or HIV-1-specific characteristics, also including cART strategies. In the univariate analyses BMD, QUS indexes, and Fracture Risk Assessment Tool scores conversely showed significant associations with one or more demographic or HIV-1-related variables. Moreover, a significant relationship between calcaneal quantitative ultrasound index/stiffness and femoral/lumbar BMD values from DXA was described. The multivariate analysis showed an independent association between calcaneal quantitative ultrasound index/stiffness and body mass index, higher CD4+ T-cell numbers and low 25-OH D2/D3 vitamin D levels <10 ng/mL (P-values: 0.004, 0.016, and 0.015, respectively). Conclusion As an alternative and/or integrative examination to DXA, calcaneal QUS could be proposed as a useful screening in HIV-1-infected

  3. Cross-mode bioelectrical impedance analysis in a standing position for estimating fat-free mass validated against dual-energy x-ray absorptiometry.

    PubMed

    Huang, Ai-Chun; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Lu, Hsueh-Kuan; Lin, Hung-Chi; Chen, Kuen-Tsann; Hsiao, An-Chi; Hsieh, Kuen-Chang

    2015-11-01

    Bioelectrical impedance analysis (BIA) is commonly used to assess body composition. Cross-mode (left hand to right foot, Z(CR)) BIA presumably uses the longest current path in the human body, which may generate better results when estimating fat-free mass (FFM). We compared the cross-mode with the hand-to-foot mode (right hand to right foot, Z(HF)) using dual-energy x-ray absorptiometry (DXA) as the reference. We hypothesized that when comparing anthropometric parameters using stepwise regression analysis, the impedance value from the cross-mode analysis would have better prediction accuracy than that from the hand-to-foot mode analysis. We studied 264 men and 232 women (mean ages, 32.19 ± 14.95 and 34.51 ± 14.96 years, respectively; mean body mass indexes, 24.54 ± 3.74 and 23.44 ± 4.61 kg/m2, respectively). The DXA-measured FFMs in men and women were 58.85 ± 8.15 and 40.48 ± 5.64 kg, respectively. Multiple stepwise linear regression analyses were performed to construct sex-specific FFM equations. The correlations of FFM measured by DXA vs. FFM from hand-to-foot mode and estimated FFM by cross-mode were 0.85 and 0.86 in women, with standard errors of estimate of 2.96 and 2.92 kg, respectively. In men, they were 0.91 and 0.91, with standard errors of the estimates of 3.34 and 3.48 kg, respectively. Bland-Altman plots showed limits of agreement of -6.78 to 6.78 kg for FFM from hand-to-foot mode and -7.06 to 7.06 kg for estimated FFM by cross-mode for men, and -5.91 to 5.91 and -5.84 to 5.84 kg, respectively, for women. Paired t tests showed no significant differences between the 2 modes (P > .05). Hence, cross-mode BIA appears to represent a reasonable and practical application for assessing FFM in Chinese populations.

  4. Prenatal pesticide exposure and PON1 genotype associated with adolescent body fat distribution evaluated by dual X-ray absorptiometry (DXA).

    PubMed

    Tinggaard, J; Wohlfahrt-Veje, C; Husby, S; Christiansen, L; Skakkebaek, N E; Jensen, T K; Grandjean, P; Main, K M; Andersen, H R

    2016-07-01

    Many modern pesticides have endocrine disrupting abilities and early-life exposure may affect growth and disease risk later in life. Previously, we reported associations between prenatal pesticide exposure and higher childhood body fat content measured by anthropometry. The associations were affected by child PON1 Q192R genotype. We aimed to study whether prenatal pesticide exposure was still associated with body fat content and distribution in the children at puberty and the potential impact of both maternal and child PON1 Q192R genotype. In this prospective cohort study of 247 children born by occupationally exposed or unexposed women (greenhouse workers and controls) two follow-up examinations (age 10-15 and 11-16 years) including simple anthropometry, skinfold measurements, pubertal staging and blood sampling were performed. Total and regional fat% was determined by dual X-ray absorptiometry (DXA) at age 10-15. Prenatal pesticide exposure was associated with increased total, android, and gynoid fat percentage (DXA) at age 10-15 years after adjustment for sex, socioeconomic status, and puberty (all β = 0.5 standard deviation score (SDS) p < 0.05). Stratified by sex, the associations were significant in girls (total fat: β = 0.7 SDS, android-gynoid ratio: β = 0.1, both p < 0.05), but not in boys. Carrying the R-allele (child or mother, separately, or both) augmented the differences between exposed and unexposed children (total fat: β = 1.0 SDS, β = 0.8 SDS, p < 0.05, respectively, and β = 1.2 SDS, p < 0.01). No exposure-related differences were found if either the child or mother had the QQ wild-type. At age 11-16, exposed children tended to have a higher total fat% estimated by skinfolds than unexposed children (p = 0.06). No significant associations between prenatal exposure and body mass index or waist circumference were found. Prenatal pesticide exposure was associated with higher adolescent body fat content, including android

  5. Associations Between Sedentary Time, Physical Activity, and Dual-Energy X-ray Absorptiometry Measures of Total Body, Android, and Gynoid Fat Mass in Children.

    PubMed

    McCormack, Lacey; Meendering, Jessica; Specker, Bonny; Binkley, Teresa

    2016-01-01

    Negative health outcomes are associated with excess body fat, low levels of physical activity (PA), and high sedentary time (ST). Relationships between PA, ST, and body fat distribution, including android and gynoid fat, assessed using dual-energy X-ray absorptiometry (DXA) have not been measured in children. The purpose of this study was to test associations between levels of activity and body composition in children and to evaluate if levels of activity predict body composition by DXA and by body mass index percentile in a similar manner. PA, ST, and body composition from 87 children (8.8-11.8 yr, grades 3-5, 44 boys) were used to test the association among study variables. Accelerometers measured PA and ST. Body composition measured by DXA included bone mineral content (BMC) and fat and lean mass of the total body (TB, less head), android, and gynoid regions. ST (range: 409-685 min/wk) was positively associated with TB percent fat (0.03, 95% confidence interval [CI]: 0.00-0.05) and android fat mass (1.5 g, 95% CI: 0.4-3.0), and inversely associated with the lean mass of the TB (-10.7 g, 95% CI: -20.8 to -0.63) and gynoid regions (-2.2 g, 95% CI: -4.3 to -0.2), and with BMC (-0.43 g, 95% CI: 0.77-0.09). Moderate-to-vigorous PA was associated with lower TB (-53 g, 95% CI: -87 to -18), android (-5 g, 95% CI: -8 to -2]), and gynoid fat (-6 g, 95% CI: -11 to -0.5). Vigorous activity results were similar. Light PA was associated with increased TB (17.1 g, 95% CI: 3.0-31.3) and gynoid lean mass (3.9 g, 95% CI: 1.0-6.8) and BMC (0.59 g, 95% CI: 0.10-1.07). In boys, there were significant associations between activity and DXA percent body fat measures that were not found with the body mass index percentile. Objective measures of PA were inversely associated with TB, android, and gynoid fat, whereas ST was directly associated with TB percent fat and, in particular, android fat. Activity levels predict body composition measures by DXA and, in

  6. Body composition in older community-dwelling adults with hip fracture: portable field methods validated by dual-energy X-ray absorptiometry.

    PubMed

    Villani, Anthony M; Miller, Michelle; Cameron, Ian D; Kurrle, Susan; Whitehead, Craig; Crotty, Maria

    2013-04-14

    Ageing is associated with weight loss and subsequently poor health outcomes. The present study assessed agreement between two field methods, bioelectrical impedance spectroscopy (BIS) and corrected arm muscle area (CAMA) for assessment of body composition against dual-energy X-ray absorptiometry (DXA), the reference technique. Agreement between two predictive equations estimating skeletal muscle mass (SMM) from BIS against SMM from DXA was also determined. Assessments occurred at baseline < 14 d post-surgery (n 79), and at 6 months (6M; n 75) and 12 months (12M; n 63) in community-living older adults after surgical treatment for hip fracture. The 95 % limits of agreement (LOA) between BIS and DXA, CAMA and DXA and the equations and DXA were assessed using Bland-Altman analyses. Mean bias and LOA for fat-free mass (FFM) between BIS and DXA were: baseline, 0.7 (-10.9, 12.4) kg; 6M, - 0.5 (-20.7, 19.8) kg; 12M, 0.1 (-8.7, 8.9) kg and for SMM between CAMA and DXA were: baseline, 0.3 (-11.7, 12.3) kg; 6M, 1.3 (-4.5, 7.1) kg; 12M, 0.9 (-5.4, 7.2) kg. Equivalent data for predictive equations against DXA were: equation 1: baseline, 15.1 (-9.5, 20.6) kg; 6M, 17.1 (-12.0, 22.2) kg; 12M, 17.5 (-13.0, 22.0) kg; equation 2: baseline, 12.6 (-7.3, 19.9) kg; 6M, 14.4 (-9.7, 19.1) kg; 12M, 14.8 (-10.7, 18.9) kg. Proportional bias (BIS: β = -0.337, P< 0.001; CAMA: β = -0.294, P< 0.001) was present at baseline but not at 6M or 12 M. Clinicians should be cautious in using these field methods to predict FFM and SMM, particularly in the acute care setting. New predictive equations would be beneficial.

  7. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  8. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  9. Circular Scan Streak Tube Development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1980-01-01

    A streak tube having circular scan was designed, built and tested. Continuous circular scan, easily derived from out of phase sine waves applied to the conventional deflection plates, permits the timing of pulses traveling long baselines. At the tube's output a circular array of 720 elements is scanned to provide 30 to 40 picosecond resolution. Initial difficulties with electron bombarded silicon arrays were circumvented by using microchannel plates within the streak tube to provide the needed electronic amplification and digital sensitivity and coupling the 720 element arrays to the electron beam by means of a phosphor on a fiber optics. Two ceramic body tubes with S-20 photocathodes were tested and delivered.

  10. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  11. Studies in Scanning Probe Microscopy.

    DTIC Science & Technology

    2007-11-02

    refereed journals, as well as two books titled Scanning Force Microscopy, With Applications to Electric, Magnetic, and Atomic Forces published by Oxford University Press in 1991 and a revised edition in 1994.

  12. Retinal locus for scanning text.

    PubMed

    Timberlake, George T; Sharma, Manoj K; Grose, Susan A; Maino, Joseph H

    2006-01-01

    A method of mapping the retinal location of text during reading is described in which text position is plotted cumulatively on scanning laser ophthalmoscope retinal images. Retinal locations that contain text most often are the brightest in the cumulative plot, and locations that contain text least often are the darkest. In this way, the retinal area that most often contains text is determined. Text maps were plotted for eight control subjects without vision loss and eight subjects with central scotomas from macular degeneration. Control subjects' text maps showed that the fovea contained text most often. Text maps of five of the subjects with scotomas showed that they used the same peripheral retinal area to scan text and fixate. Text maps of the other three subjects with scotomas showed that they used separate areas to scan text and fixate. Retinal text maps may help evaluate rehabilitative strategies for training individuals with central scotomas to use a particular retinal area to scan text.

  13. Liver echinococcus - CT scan (image)

    MedlinePlus

    This upper abdominal CT scan shows multiple cysts in the liver, caused by dog tapeworm (echinococcus). Note the large circular cyst (seen on the left side of the screen) and multiple smaller cysts throughout ...

  14. Effects of Yogasanas on osteoporosis in postmenopausal women

    PubMed Central

    Motorwala, Zainab S; Kolke, Sona; Panchal, Priyanka Y; Bedekar, Nilima S; Sancheti, Parag K; Shyam, Ashok

    2016-01-01

    Background: Osteoporosis is commonly encountered by postmenopausal women. There is an increased need for a low cost and efficient treatment alternative to address this population. Aims: To study the effects of integrated yoga on bone mineral density (BMD) in postmenopausal women with osteoporosis. Settings and Designs: Experimental pre-post study conducted in a community setting. Materials and Methods: 30 females in the age group of 45–62 years suffering from postmenopausal osteoporosis with a dual-energy X-ray absorptiometry (DEXA) score of ≤−2.5 underwent a 6 months fully supervised yoga session. All the participants completed the study. Pretraining and posttraining BMD was calculated. Outcome measure: DEXA score at the lumbar spine. Statistical Analysis: The study was statistically analyzed using paired t-test to see the significance of pretraining and posttraining effects of a yoga session. Results: Improvement in T-score of DEXA scan of −2.55 ± 0.25 at posttraining as compared to a pretraining score of −2.69 ± 0.17. Conclusions: Integrated yoga is a safe mode of physical activity which includes weight bearing as well as not weight bearing asanas, Pranayama, and suryanamaskar, all of which helps induce improvement in BMD in postmenopausal osteoporotic females. PMID:26865770

  15. Scanned Laser Illuminator/Receiver

    DTIC Science & Technology

    1976-11-01

    illustrate parallel development of the PIN diode /CCD sensor hybrid and the 100W laser . Al- though a detailed cost analysis for procurement of this large...pmww^^W .m^n.m .,** ■ —ssa^ AFAL-TR-76-184 \\ SCANNED LASER ILLUMINATOR/RECEIVER ^ R. A. Honzik and F. B. Warren ^•Martin Marietta...NUMBER 4. TITLE (and Sublille) SCANNED LASER ILLUMINATOR/RECEIVER 5, TYPE OF REPORT & PERIOD COVERED Final Technical Report Dec 75

  16. Low Voltage Scanning Electron Microscopy

    DTIC Science & Technology

    1988-10-01

    Microscopy List of Keywords ,Scanning electron microscopy SEM X -ray .Micoranalysis EDX/EDS -%Low voltage , High resolution -Ceramic surfaces Supported...energy component normal to the surface). (a) Applications to x -ray microanalysis The essential problem leading to the specification of a LVSEM is...illustrated (Fig.l), for a conventional microprobe operated with 20nA probe current, by the contrast of the alumunium (K) x -ray signal as the probe is scanned

  17. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  18. Stochastic predictors from the DXA scans of human lumbar vertebrae are correlated with the microarchitecture parameters of trabecular bone.

    PubMed

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Tvinnereim, Amy; Lowe, Timothy; Di Paolo, David; Shirvaikar, Mukul

    2015-09-18

    The purpose of this study was to provide a novel stochastic assessment of inhomogeneous distribution of bone mineral density (BMD) from the Dual-energy X-ray Absorptiometry (DXA) scans of human lumbar vertebrae and identify the stochastic predictors that were correlated with the microarchitecture parameters of trabecular bone. Eighteen human lumbar vertebrae with intact posterior elements from 5 cadaveric spines were scanned in the posterior-anterior projection using a Hologic densitometer. The BMD map of human vertebrae was obtained from the raw data of DXA scans by directly operating on the transmission measurements of low- and high-energy X-ray beams. Stochastic predictors were calculated by fitting theoretical models onto the experimental variogram of the BMD map, rather than grayscale images, from DXA scans. In addition, microarchitecture parameters of trabecular bone were measured from the 3D images of human vertebrae acquired using a Micro-CT scanner. Significant correlations were observed between stochastic predictors and microarchitecture parameters. The sill variance, representing the standard deviation of the BMD map to some extent, had significantly positive correlations with bone volume, trabecular thickness, trabecular number and connectivity density. The sill variance was also negatively associated with bone surface to volume ratio and trabecular separation. This study demonstrates that the stochastic assessment of the inhomogeneous distribution of BMD from DXA scans of human lumbar vertebrae can reveal microarchitecture information of trabecular bone. However, future studies are needed to examine the potential of stochastic predictors from routine clinical DXA scans in providing bone fragility information complementary to BMD.

  19. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases.

  20. Deconvolution of sinusoidal rapid EPR scans.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-02-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow-scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow-scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans.

  1. Immersion ultrasonography: simultaneous A-scan and B-scan.

    PubMed

    Coleman, D J; Dallow, R L; Smith, M E

    1979-01-01

    In eyes with opaque media, ophthalmic ultrasound provides a unique source of information that can dramatically affect the course of patient management. In addition, when an ocular abnormality can be visualized, ultrasonography provides information that supplements and complements other diagnostic testing. It provides documentation and differentiation of abnormal states, such as vitreous hemorrhage and intraocular tumor, as well as differentiation of orbital tumors from inflammatory causes of exophthalmos. Additional capabilities of ultrasound are biometric determinations for calculation of intraocular lens implant powers and drug-effectiveness studies. Maximal information is derived from ultrasonography when A-scan and B-scan techniques are employed simultaneously. Flexibility of electronics, variable-frequency transducers, and the use of several different manual scanning patterns aid in detection and interpretation of results. The immersion system of ultrasonography provides these features optimally.

  2. Body shape and size in 6-year old children: assessment by three-dimensional photonic scanning

    PubMed Central

    Santos, L P; Ong, K K; Day, F; Wells, J C K; Matijasevich, A; Santos, I S; Victora, C G; Barros, A J D

    2016-01-01

    Background: Body shape and size are typically described using measures such as body mass index (BMI) and waist circumference, which predict disease risks in adults. However, this approach may underestimate the true variability in childhood body shape and size. Objective: To use a comprehensive three-dimensional photonic scan approach to describe variation in childhood body shape and size. Subjects/Methods: At age 6 years, 3350 children from the population-based 2004 Pelotas birth cohort study were assessed by three-dimensional photonic scanner, traditional anthropometry and dual X-ray absorptiometry. Principal component analysis (PCA) was performed on height and 24 photonic scan variables (circumferences, lengths/widths, volumes and surface areas). Results: PCA identified four independent components of children's body shape and size, which we termed: Corpulence, Central:peripheral ratio, Height and arm lengths, and Shoulder diameter. Corpulence showed strong correlations with traditional anthropometric and body composition measures (r>0.90 with weight, BMI, waist circumference and fat mass; r>0.70 with height, lean mass and bone mass); in contrast, the other three components showed weak or moderate correlations with those measures (all r<0.45). There was no sex difference in Corpulence, but boys had higher Central:peripheral ratio, Height and arm lengths and Shoulder diameter values than girls. Furthermore, children with low birth weight had lower Corpulence and Height and arm lengths but higher Central:peripheral ratio and Shoulder diameter than other children. Children from high socio-economic position (SEP) families had higher Corpulence and Height and arm lengths than other children. Finally, white children had higher Corpulence and Central:peripheral ratio than mixed or black children. Conclusions: Comprehensive assessment by three-dimensional photonic scanning identified components of childhood body shape and size not captured by traditional anthropometry or

  3. Studies in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Sarid, Dror

    1995-06-01

    The following is a final report on our work in the field of Scanning Probe Microscopy (SPM), which has been funded by the AFOSR under Contract #F49620-92-J-0164. The AFOSR funding was instrumental in the establishment of a multi-lab facility at the Optical Sciences Center, which performs research in SPM using two ultrahigh vacuum (UHV) STM facilities, and several Atomic Force Microscopy (AFM) facilities. The fabrication and characterization work performed in the SPM Laboratory is supplemented by infrared (IR) spectroscopy, high resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM), available in other departments on campus. The report covers the following areas: (1) GaAs and CdSe Structures, (2) Optical Interactions on a nm and nsec Scales, (3) Fullerenes on Gold, (4) Fullerenes on MoS2, (5) Fullerenes on Si, (6) SiC, (7) Nanotubes, (8) Scanning Force Microscopy, and (9) Biology.

  4. Scanning laser polarimetry - a review.

    PubMed

    Da Pozzo, Stefano; Marchesan, Roberta; Ravalico, Giuseppe

    2009-01-01

    Glaucoma is a leading cause of irreversible blindness worldwide. Retinal ganglion cells and their axons represent the selective target of the disease. When visual function is still intact on standard automated perimetry and optic disc appearance is suspicious, an early diagnosis may be supported by the identification of a retinal nerve fibre layer (RNFL) defect in the peripapillary area. At present days, computer-based, real-time imaging of the peripapillary RNFL is available through instruments of easy use and with high levels of accuracy and reproducibility. Scanning laser polarimetry is performed by a confocal scanning laser ophthalmoscope with an integrated polarimeter (GDx-VCC). There is a considerable amount of scientific evidence about the role of this imaging technique for glaucoma diagnosis. The aim of this review is to describe the principles of operation, the examination procedure, the clinical role, the results of main diagnostic studies and the future development of the software for the scanning laser polarimetry.

  5. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  6. Research With Scanning Tip Microscopy

    DTIC Science & Technology

    1991-12-31

    08ro P noiwe bae?041Le Research With Scanning Tip Microscopy AFOSR-89-0498 V AUTHOS)i Professor Dror Sarid 7. PFOUImNG 00ANIZATION NAMEIS) AND...forces and (b) surfaces. UNCLASS UNCLASS UNCLASS UL FINAL REPORT TO THE AFOSR ൱-, to J4ti. r Aat io Research in Scanning Tip Microscopy Dror Sarid Dtst...microscopy have been used to investigate (a) forces and (b) surfaces. a. Forces 1. Dror Sarid , Douglas lams, Volker Weissenberger, and L. Stephen Bell

  7. Scanning color optical tomography (SCOT)

    PubMed Central

    Hosseini, Poorya; Sung, Yongjin; Choi, Youngwoon; Lue, Niyom; Yaqoob, Zahid; So, Peter

    2015-01-01

    We have developed an interferometric optical microscope that provides three-dimensional refractive index map of a specimen by scanning the color of three illumination beams. Our design of the interferometer allows for simultaneous measurement of the scattered fields (both amplitude and phase) of such a complex input beam. By obviating the need for mechanical scanning of the illumination beam or detection objective lens; the proposed method can increase the speed of the optical tomography by orders of magnitude. We demonstrate our method using polystyrene beads of known refractive index value and live cells. PMID:26367632

  8. Digital laser scanning fundus camera.

    PubMed

    Plesch, A; Klingbeil, U; Bille, J

    1987-04-15

    Imaging and documentation of the human retina for clinical diagnostics are conventionally achieved by classical optical methods. We designed a digital laser scanning fundus camera. The optoelectronical instrument is based on scanning laser illumination of the retina and a modified video imaging procedure. It is coupled to a digital image buffer and a microcomputer for image storage and processing. Aside from its high sensitivity the LSF incorporates new ophthalmic imaging methods like polarization differential contrast. We give design considerations as well as a description of the instrument and its performance.

  9. Conically scanned holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary (Inventor)

    1993-01-01

    An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

  10. High precision prism scanning system

    NASA Astrophysics Data System (ADS)

    García-Torales, G.; Flores, J. L.; Muñoz, Roberto X.

    2007-03-01

    Risley prisms are commonly used in continuous scanning manner. Each prism is capable of rotating separately about a common axis at different speeds. Scanning patterns are determined by the ratios of the wedge angles, the speed and direction of rotation of both prisms. The use of this system is conceptually simple. However, mechanical action in most applications becomes a challenge often solved by the design of complex control algorithms. We propose an electronic servomotor system that controls incremental and continuous rotations of the prisms wedges by means of an auto-tuning PID control using a Adaline Neural Network Algorithm, NNA.

  11. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGES

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  12. Phase multiplying electronic scanning array

    NASA Technical Reports Server (NTRS)

    Seaton, A. F.

    1969-01-01

    Scanning array was designed with properties of low RF loss and phase control. The array consists of a series of special waveguides, hybrids made up of two variable reactance branch arms for input signals, an edge slot for the difference port, and a sum arm for the unradiated signal.

  13. Environmental Scanning, Vancouver Community College.

    ERIC Educational Resources Information Center

    Yao, Min

    This 1994 environmental scanning report from Vancouver Community College (VCC) reviews the expected effects of the separation of VCC into a new Vancouver Community College and Langara College (LC). The report examines the projected service area student-intake capacity; student characteristics; population growth trends; other postsecondary…

  14. Scanning tunneling microscope nanoetching method

    DOEpatents

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  15. Line-scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Ustun, Teoman E.; Bigelow, Chad E.; Iftimia, Nicusor V.; Webb, Robert H.

    2006-07-01

    Scanning laser ophthalmoscopy (SLO) is a powerful imaging tool with specialized applications limited to research and ophthalmology clinics due in part to instrument size, cost, and complexity. Conversely, low-cost retinal imaging devices have limited capabilities in screening, detection, and diagnosis of diseases. To fill the niche between these two, a hand-held, nonmydriatic line-scanning laser ophthalmoscope (LSLO) is designed, constructed, and tested on normal human subjects. The LSLO has only one moving part and uses a novel optical approach to produce wide-field confocal fundus images. Imaging modes include multiwavelength illumination and live stereoscopic imaging with a split aperture. Image processing and display functions are controlled with two stacked prototype compact printed circuit boards. With near shot-noise limited performance, the digital LSLO camera requires low illumination power (<500 µW) at near-infrared wavelengths. The line-scanning principle of operation is examined in comparison to SLO and other imaging modes. The line-scanning approach produces high-contrast confocal images with nearly the same performance as a flying-spot SLO. The LSLO may significantly enhance SLO utility for routine use by ophthalmologists, optometrists, general practitioners, and also emergency medical personnel and technicians in the field for retinal disease detection and other diverse applications.

  16. Infrared Scanning For Electrical Maintenance

    NASA Astrophysics Data System (ADS)

    Eisenbath, Steven E.

    1983-03-01

    Given the technological age that we have now entered, the purpose of this paper is to relate how infrared scanning can be used for an electrical preventative maintenance program. An infrared scanner is able to produce an image because objects give off infrared radiation in relationship to their temperature. Most electrical problems will show up as an increase in temperature, thereby making the infrared scanner a useful preventative maintenance tool. Because of the sensitivity of most of the scanners, .1 to .2 of a degree, virtually all electrical problems can be pinpointed long before they become a costly failure. One of the early uses of infrared scanning was to check the power company's electrical distribution system. Most of this was performed via aircraft or truck mounted scanning devices which necessitated its semi-permanent mounting. With the advent of small hand held infrared imagers, along with more portability of the larger systems, infrared scanning has gained more popularity in checking electrical distribution systems. But the distribution systems are now a scaled down model, mainly the in-plant electrical systems. By in-plant, I mean any distribution of electricity; once it leaves the power company's grid. This can be in a hospital, retail outlet, warehouse or manufacturing facility.

  17. A CAT scan for cells

    SciTech Connect

    2009-01-01

    Recently, a team of scientists from Berkeley Lab, Stanford University, and the University of California, San Francisco used Berkeley Lab's National Center for X-ray Tomography to capture the changes that occur when Candida albicans is exposed to a new and promising antifungal therapy. http://newscenter.lbl.gov/feature-stories/2009/12/10/cat-scan-cells/

  18. Improvement of CAT scanned images

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1980-01-01

    Digital enhancement procedure improves definition of images. Tomogram is generated from large number of X-ray beams. Beams are collimated and small in diameter. Scanning device passes beams sequentially through human subject at many different angles. Battery of transducers opposite subject senses attenuated signals. Signals are transmitted to computer where they are used in construction of image on transverse plane through body.

  19. Differential Multiphoton Laser Scanning Microscopy

    SciTech Connect

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2012-01-01

    Multifocal multiphoton laser scanning microscopy (mfMPLSM) in the biological and medical sciences has the potential to become a ubiquitous tool for obtaining high-resolution images at video rates. While current implementations of mfMPLSM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for mfMPLSM in which whole-field detection with a single detector, rather than detection with a matrix of detectors, such as a charge-coupled device (CCD) camera, is implemented. This advance makes mfMPLSM fully compatible for use in imaging through scattering media. Further, we demonstrate that this method makes it possible to simultaneously obtain multiple images and view differences in excitation parameters in a single scan of the specimen.

  20. A spectrum scanning Stokes polarimeter

    NASA Astrophysics Data System (ADS)

    Baur, T. G.; House, L. L.; Hull, H. K.

    1980-02-01

    A photoelectric polarimeter for measuring line profiles in all four Stokes parameters has been built and operates on the SPO 40 cm coronagraph in a joint project with Sacramento Peak Observatory. A description of the optical and electronic systems and the calibration scheme is presented. Performance parameters determined from observations are also given. The polarimeter package consisting of a pair of KDP's, a quarter wave plate, and a polarizing beam splitter is located at the prime focus of the coronagraph. Modulation of the KDP's encodes polarization information into intensity signals that are electronically detected. The scanning of the spectrum, accomplished by rotating the grating, permits Stokes line profiles to be recorded on magnetic tape for processing. The instrument can be used to scan any line from 3900 to 7000 A with a spectral resolution of 0.01 A. Polarizations as small as 0.001% are detectable. The polarimeter and observing system are computer controlled.

  1. Vertically scanned laser sheet microscopy.

    PubMed

    Dong, Di; Arranz, Alicia; Zhu, Shouping; Yang, Yujie; Shi, Liangliang; Wang, Jun; Shen, Chen; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Laser sheet microscopy is a widely used imaging technique for imaging the three-dimensional distribution of a fluorescence signal in fixed tissue or small organisms. In laser sheet microscopy, the stripe artifacts caused by high absorption or high scattering structures are very common, greatly affecting image quality. To solve this problem, we report here a two-step procedure which consists of continuously acquiring laser sheet images while vertically displacing the sample, and then using the variational stationary noise remover (VSNR) method to further reduce the remaining stripes. Images from a cleared murine colon acquired with a vertical scan are compared with common stitching procedures demonstrating that vertically scanned light sheet microscopy greatly improves the performance of current light sheet microscopy approaches without the need for complex changes to the imaging setup and allows imaging of elongated samples, extending the field of view in the vertical direction.

  2. Scanning phononic lattices with ultrasound

    SciTech Connect

    Vines, R.E.; Wolfe, J.P.; Every, A.V.

    1999-11-01

    A method for probing the elastic properties of newly developed periodic structures using acoustic waves is introduced. Highly anisotropic transmission of surface acoustic waves is observed by continuously scanning the wave vector angle. Preliminary models of wave propagation through multilayers and two-dimensional lattices explain some of the experimental features, while other features can be attributed to the resonant excitation of interface waves. {copyright} {ital 1999} {ital The American Physical Society}

  3. Differential scanning calorimetry of coal

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  4. The Official Positions of the International Society for Clinical Densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures.

    PubMed

    Hangartner, Thomas N; Warner, Sarah; Braillon, Pierre; Jankowski, Larry; Shepherd, John

    2013-01-01

    In preparation for the International Society for Clinical Densitometry Position Development Conference of 2013 in Tampa, Florida, Task Force 2 was created as 1 of 3 task forces in the area of body composition assessment by dual-energy X-ray absorptiometry (DXA). The assignment was to review the literature, summarize the relevant findings, and formulate positions covering (1) accuracy and precision assessment, (2) acquisition of DXA body composition measures in patients, and (3) considerations regarding analysis and repeatability of measures. There were 6 primary questions proposed to the task force by the International Society for Clinical Densitometry board and expert panel. Based on a series of systematic reviews, 14 new positions were developed, which are intended to augment and define good clinical practice in quantitative assessment of body composition by DXA.

  5. Mechanically scanned deployable antenna study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.

  6. Dual-energy x-ray absorptiometry to measure the effects of a thirteen-week moderate to vigorous aquatic exercise and nutritional education intervention on percent body fat in adults with intellectual disabilities from group home settings.

    PubMed

    Casey, Amanda; Boyd, Colin; Mackenzie, Sasho; Rasmussen, Roy

    2012-05-01

    People with intellectual disability are more likely to be obese and extremely obese than people without intellectual disability with rates remaining elevated among adults, women and individuals living in community settings. Dual-energy X-ray absorptiometry measured the effects of a 13-week aquatic exercise and nutrition intervention on percent body fat in eight adults with intellectual disabilities (aged 41.0 ± 13.7 yrs) of varying fat levels (15%-39%) from two group homes. A moderate to vigorous aquatic exercise program lasted for the duration of 13 weeks with three, one-hour sessions held at a 25m pool each week. Nutritional assistants educated participants as to the importance of food choice and portion size. A two-tailed Wilcoxon matched-pairs signed-ranks test determined the impact of the combined intervention on body fat percentage and BMI at pre and post test. Median body fat percentage (0.8 %) and BMI (0.3 kg/m(2)) decreased following the exercise intervention, but neither were statistically significant, p = .11 and p = .55, respectively. The combined intervention was ineffective at reducing percent body fat in adults with intellectual disability according to dual-energy X-ray absorptiometry. These results are in agreement with findings from exercise alone interventions and suggest that more stringent nutritional guidelines are needed for this population and especially for individuals living in group home settings. The study did show that adults with intellectual disability may participate in moderate to vigorous physical activity when given the opportunity.

  7. Preoperative nuclear scans in patients with melanoma

    SciTech Connect

    Au, F.C.; Maier, W.P.; Malmud, L.S.; Goldman, L.I.; Clark, W.H. Jr.

    1984-05-15

    One hundred forty-one liver scans, 137 brain scans, and 112 bone scans were performed in 192 patients with clinical Stage 1 melanoma. One liver scan was interpreted as abnormal; liver biopsy of that patient showed no metastasis. There were 11 suggestive liver scans; three of the patients with suggestive liver scans had negative liver biopsies. The remaining eight patients were followed from 4 to 6 years and none of those patients developed clinical evidence of hepatic metastases. All of the brain scans were normal. Five patients had suggestive bone scans and none of those patients had manifested symptoms of osseous metastases with a follow-up of 2 to 4.5 years. This study demonstrates that the use of preoperative liver, brain and bone scan in the evaluation of patients with clinical Stage 1 melanoma is virtually unproductive.

  8. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  9. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  10. Scanning probe microscopy in catalysis.

    PubMed

    Yeung, King Lun; Yao, Nan

    2004-09-01

    This review discusses the recent progress in the application of scanning probe microscopy (SPM) in catalysis. SPM proves to be an invaluable technique for imaging catalytic surfaces and interfaces. Most SPM research is related to the structural and morphological transformation associated with catalyst preparation and use. Real-time SPM observation of surface dynamics including adsorption, diffusion and reaction, provides invaluable insights to the mechanism of catalysis. SPM is also used to shape and manipulate surfaces and surface processes. Fabrication of nanostructured catalysts, direct manipulation of adsorbed atoms and molecules and tip-mediated reactions are some examples of new SPM approach in catalyst research.

  11. Aperture scanning Fourier ptychographic microscopy

    PubMed Central

    Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705

  12. Schistosomiasis collection at NHM (SCAN)

    PubMed Central

    2012-01-01

    Background The Natural History Museum (NHM) is developing a repository for schistosomiasis-related material, the Schistosomiasis Collection at NHM (SCAN) as part of its existing Wolfson Wellcome Biomedical Laboratory (WWBL). This is timely because a major research and evaluation effort to understand control and move towards elimination of schistosomiasis in Africa has been initiated by the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), resulting in the collection of many important biological samples, including larval schistosomes and snails. SCAN will collaborate with a number of research groups and control teams and the repository will acquire samples relevant to both immediate and future research interest. The samples collected through ongoing research and field activities, WWBL’s existing collections, and other acquisitions will be maintained over the long term and made available to the global research community for approved research purposes. Goals include: · Consolidation of the existing NHM schistosome and snail collections and transfer of specimens into suitable long-term storage systems for DNA retrieval, · Long-term and stable storage of specimens collected as part of on going field programmes initially in Africa especially relating to the SCORE research programmes, · Provision of access to snail and schistosome collections for approved research activities. PMID:22943137

  13. Rapid-scan EPR of immobilized nitroxides.

    PubMed

    Yu, Zhelin; Quine, Richard W; Rinard, George A; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J; Boratyński, Przemysław J; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S; Eaton, Gareth R

    2014-10-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes.

  14. Rapid-Scan EPR of Immobilized Nitroxides

    PubMed Central

    Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10" magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  15. Three-dimensional scanning confocal laser microscope

    DOEpatents

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  16. Optical analysis of scanning microstereolithography systems

    NASA Astrophysics Data System (ADS)

    Deshmukh, Suhas P.; Dubey, Shashikant; Gandhi, P. S.

    2006-01-01

    Microstereolithography (MSL) is rapidly developing technique for micro-fabrication. Vector-by-vector scanning MSL has a potential to create true 3D micro-devices as compared to mostly planar (2D-2 1/2 D) devices fabricated by conventional MEMS techniques. Previous literature shows two different scanning methods:(1) Galvanomirror scanning, (2) Photoreactor tank scanning. Galvanomirror scanning technique has higher fabrication speed but poor resolution because of defocusing of laser spot on the resin surface. Photo-reactor tank scanning has higher resolution but produces a wavy structures and limited speed of fabrication. This paper proposes and develops an offaxis lens scanning technique for MSL and carries out optical analysis to compare its performance with the existing techniques mentioned above. The comparison clearly demonstrates improved performance with the proposed offaxis lens scanning technique.

  17. Suspension system for gimbal supported scanning payloads

    NASA Technical Reports Server (NTRS)

    Polites, Michael E. (Inventor)

    1995-01-01

    Gimballed scanning devices or instruments are the subject of this invention. Scanning is an important aspect of space science. To achieve a scan pattern some means must be provided which impart to the payload an oscillatory motion. Various forms of machines have been employed for controllably conferring on scanning instruments predetermined scan patterns. They include control moment gyroscopes, reaction wheels, torque motors, reaction control systems, and the like. But rotating unbalanced mass (RUM) devices are a new and efficient way to generate scans in gimballed payloads. RUM devices are superior to previous scanning apparatus, but they require power consuming and frequently complex auxiliary control systems to position and reposition the particular scan pattern relative to a target or a number of targets. Herein the control system is simplified. The most frequently employed method for achieving the various scan patterns is to gimbal the scanning device. Gimbals are suspended in such a way that they can be activated to generate the scan pattern. The suspension means described is for payloads supported in gimbals wherein the payload rotation is restricted by a flex pivot so that the payload oscillates, thereby moving in a scan pattern.

  18. South Carolina Course Alignment Project: Environmental Scan

    ERIC Educational Resources Information Center

    Educational Policy Improvement Center (NJ1), 2007

    2007-01-01

    An "environmental scan" is designed to identify key issues of policy and practice in an area of interest so that action can be taken. By definition, an environmental scan focuses upon areas of concern. However, the results of an environmental scan are not designed to be either an indictment or endorsement of the current way of doing…

  19. Loss of Muscle Mass is Poorly Reflected in Grip Strength Performance in Healthy Young Men

    DTIC Science & Technology

    1994-01-01

    ex- to position their shoulder over the elbow, keeping the tending at the knee and hip . He then racks the weight by elbow joint at approximately 90...ob- Testing procedures. Body composition (measured tained at the start of this study was the average measure- by dual energy x-ray absorptiometry, DEXA ...previously demonstrated in soldiers (20). 7-10 d of simulated combat patrols). The average daily Fat-free mass (FFM) was measured using DEXA energy

  20. UAVSAR Active Electronically Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.

    2011-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection

  1. Scanning ARM Cloud Radar Handbook

    SciTech Connect

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  2. Scanning Electrochemical Microscopy in Neuroscience

    NASA Astrophysics Data System (ADS)

    Schulte, Albert; Nebel, Michaela; Schuhmann, Wolfgang

    2010-07-01

    This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.

  3. Scanning laser polarimetry in glaucoma.

    PubMed

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-11-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  4. Monitoring of patients on long-term glucocorticoid therapy: a population-based cohort study.

    PubMed

    Fardet, Laurence; Petersen, Irene; Nazareth, Irwin

    2015-04-01

    About 1% of the general population receives long-term systemic glucocorticoids. The monitoring provided to these patients is unknown. We conducted a population-based cohort study using The Health Improvement Network database. A total of 100,944 adult patients prescribed systemic glucocorticoids for >3 months between January 2000 and December 2012 were studied. The monitoring done before prescribing glucocorticoid therapy and during exposure to the drug was examined. This included measurement of body weight, blood pressure, lipids, glucose and potassium levels, referrals for dual-energy X-ray absorptiometry (DEXA-scan) or to an ophthalmologist/optician, and vaccinations. We assessed factors associated with the odds of being monitored before and during exposure. Before glucocorticoid initiation, weight and blood pressure were monitored in < 20% and < 50% of patients, respectively. Glucose and lipid levels were monitored in less than one-third of the patients, while DEXA-scan and eye monitoring were offered to <15% of them. Vaccination against flu and pneumococcus was given to 57% and 46% of the patients, respectively. During exposure to the drug, <60% of patients who were prescribed the drug for more than a year had their weight, glucose, or lipid levels recorded at least once and <25% of patients were referred at least once for DEXA-scan or screening for eye diseases. Overall, the odds of being monitored were higher in older patients and in those with comorbidities. There were variations in the level of monitoring provided across the UK, but the monitoring has improved over the last 12 years. Although the extent of monitoring of people on long-term glucocorticoids has improved over time, the overall monitoring provided is not satisfactory, particularly in young patients and those without comorbidities.

  5. Fast scanning mode and its realization in a scanning acoustic microscope

    SciTech Connect

    Ju Bingfeng; Bai Xiaolong; Chen Jian

    2012-03-15

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  6. Fast scanning mode and its realization in a scanning acoustic microscope.

    PubMed

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  7. Scanning Tunneling Optical Resonance Microscopy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the

  8. Advanced oxidation scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  9. Advanced oxidation scanning probe lithography.

    PubMed

    Ryu, Yu K; Garcia, Ricardo

    2017-04-07

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  10. Breast Cancer and Early Onset Childhood Obesity: Cell Specific Gene Expression in Mammary Epithelia and Adipocytes

    DTIC Science & Technology

    2006-07-01

    our rat model, it more closely represents human obesity. Third, in this model obesity is determined by Dual Xray Absorbimetry ( DEXA ) scan and not by...weight can differ vastly in their adiposity, DEXA scan provides a substantial advantage compared to scale weight measurements. Finally, the model we...rats were weighed 2 times a week and their food intake was monitored until 54 days of age. Animals were then DEXA scanned (Dual Xray absorbimetry) to

  11. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2007-10-01

    measured by dual energy X-ray absorptiometry ( DEXA ) and values represent mean ± SD (n = 5; p < 0.05) J Pathol (2007) DOI: 10.1002/path Copyright  2007...humerus of OIP-1 mice, bone mineral density (BMD) and bone mineral content (BMC) were mea- sured by DEXA . The humeral region of 4-week-old OIP-1 mice...mice. Also, DEXA analysis showed a significant increase in BMD and BMC in the humeri from OIP-1 mice. Recently it has been reported that mice lacking

  12. A New First-Scan Method for Two-Scan Labeling Algorithms

    NASA Astrophysics Data System (ADS)

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    This paper proposes a new first-scan method for two-scan labeling algorithms. In the first scan, our proposed method first scans every fourth image line, and processes the scan line and its two neighbor lines. Then, it processes the remaining lines from top to bottom one by one. Our method decreases the average number of times that must be checked to process a foreground pixel will; thus, the efficiency of labeling can be improved.

  13. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  14. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  15. Correlation-steered scanning for scanning probe microscopes to overcome thermal drift for ultra-long time scanning.

    PubMed

    Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua

    2016-07-01

    The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area.

  16. Basis for optronic ScanSAR processing

    NASA Astrophysics Data System (ADS)

    Marchese, Linda; Bourqui, Pascal; Turgeon, Sandra; Harnish, Bernd; Suess, Martin; Châteauneuf, François; Bergeron, Alain

    2011-11-01

    ScanSAR is an important imaging mode of operation for SAR systems. It allows extended range coverage albeit at the expense of azimuth resolution. Compared to stripmap, ScanSAR is used more for large swath coverage for mapping and monitoring over a wide area. Applications are numerous and include boreal forest mapping, wetland mapping and soil moisture monitoring. The goal of the present work was thus to explore the possibility of processing ScanSAR data optronicaly. Tests were performed with artificially bursted ASAR stripmap data demonstrating that reconstruction of ScanSAR data using the optronic SAR processor is feasible. This paper describes specifically how the data control and handling of ScanSAR data is performed to make it compatible with the optronic processor that was otherwise specifically designed for stripmap processing. As well, the ScanSAR images generated optronicaly are presented.

  17. Image scanning microscopy with radially polarized light

    NASA Astrophysics Data System (ADS)

    Xiao, Yun; Zhang, Yunhai; Wei, Tongda; Huang, Wei; Shi, Yaqin

    2017-03-01

    In order to improve the resolution of image scanning microscopy, we present a method based on image scanning microscopy and radially polarized light. According to the theory of image scanning microscopy, we get the effective point spread function of image scanning microscopy with the longitudinal component of radially polarized light and a 1 AU detection area, and obtain imaging results of the analyzed samples using this method. Results show that the resolution can be enhanced by 7% compared with that in image scanning microscopy with circularly polarized light, and is 1.54-fold higher than that in confocal microscopy with a pinhole of 1 AU. Additionally, the peak intensity of ISM is 1.54-fold higher than that of a confocal microscopy with a pinhole of 1 AU. In conclusion, the combination of the image scanning microscopy and the radially polarized light could improve the resolution, and it could realize high-resolution and high SNR imaging at the same time.

  18. Scanning Tip Microscopy With Applications To Biology

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Thall, Edmond H.; Iams, Douglas A.; Ingle, Jeffery T.; Henson, Tammy D.; Lee, Y. C.; Bell, L. Stephen

    1989-06-01

    Scanning tunneling microscopy and atomic force microscopy, denoted here scanning tip microscopy, are two powerful novel techniques for imaging surfaces with atomic resolution. We describe the underlying principles of these two techniques with special emphasis on an instrument developed in our laboratory that uses a laser diode to detect minute deflections of a tip as it raster scans the surface of a sample. Applications of these techniques to research in biology are assessed and their relative merits discussed.

  19. Background removal procedure for rapid scan EPR.

    PubMed

    Tseitlin, Mark; Czechowski, Tomasz; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2009-01-01

    In rapid scan EPR the changing magnetic field creates a background signal with components at the scan frequency and its harmonics. The amplitude of the background signal increases with scan width and is more significant for weak EPR signals such as are obtained in the presence of magnetic field gradients. A procedure for distinguishing this background from the EPR signal is proposed, mathematically described, and tested for various experimental conditions.

  20. Radiogallium scan in P. carinii pneumonia

    SciTech Connect

    Parthasarathy, K.L.; Bakshi, S.P.; Bender, M.A.

    1982-02-01

    A gallium scan performed on a patient with fever of unknown origin (FUO) revealed an abnormal uptake of radiotracer in the lungs despite negative chest roentgenographic examination and other routine diagnostic studies. Subsequent lung biopsy results confirmed the presence of Pneumocystis (P.) carinii infection. A repeat gallium scan obtained following appropriate antibiotic therapy was essentially normal. The importance of radiogallium scanning in an immunosuppressed patient with FUO is emphasized.

  1. Scanning Tunneling Microscopy Studies of Quasicrystals

    NASA Astrophysics Data System (ADS)

    Becker, Russell S.; Kortan, A. Refik

    The following sections are included: * INTRODUCTION * EXPERIMENTAL * X-RAY DIFFRACTION * SCANNING TUNNELING MICROSCOPY * STRUCTURE MODELLING BASED ON STM * COMPARISON WITH MODELS BASED ON BULK STUDIES * CONCLUSION * REFERENCES

  2. Scanned probe microscope for biological applications

    NASA Astrophysics Data System (ADS)

    Baiburin, Vil B.; Konnov, Nikolai P.; Shcherbakov, Anatolyi A.; Malakhaeva, Alina N.; Zadnova, Svetlana P.; Volkov, Yuri P.

    1997-12-01

    In our biophysical laboratory has been developed a new scanned probe microscope (SPM) for biological application. The SPM allows to investigate a biological samples' surface by means of three different near field microscopes: scanning tunneling microscope (STM), atomic force microscope (AFM) and near field scanning optical microscope (NSOM). The SPM is very rigid and can be operated in ordinary laboratory without any vibration isolation. The scanning area of the microscope is about 10 by 10 micrometers. Some different biological objects were visualized by means of the SPM viz. bacteria (E. Coli, plague, cholera, staphylococcus), macromolecules (DNA, plague proteins) and phage (T2).

  3. Serial bone mineral density ratio measurement for fixator removal in tibia distraction osteogenesis and need of a supportive method using the pixel value ratio.

    PubMed

    Song, Sang-Heon; Agashe, Mandar; Kim, Tae-Young; Sinha, Shivam; Park, Young-Eun; Kim, Seung-Ju; Hong, Jin-Ho; Song, Sang-Youn; Song, Hae-Ryong

    2012-03-01

    Distraction osteogenesis is one of the common procedures for limb lengthening. However, attempts are being made constantly to establish objective guidelines for early and safe removal of a fixator using a sensitive and quantitative measurement technique. Dual-energy X-ray absorptiometry (DEXA) has been evaluated in the past for understanding callus stiffness, and the present study is a step further in this direction. The purpose of this study was to evaluate the correlation between bone mineral density ratio (BMDR) obtained by a DEXA scan and the pixel value ratio (PVR) on plain digital radiographs at each cortex and various callus pathways and callus shapes as described by Ru-Li's classification. A retrospective analysis of 40 tibial segments in 23 patients operated upon for various indications for limb lengthening was carried out. There were 11 male and 12 female patients with a mean age of 18 years. The Ilizarov method was applied after monofocal osteotomy, and distraction and consolidation were monitored using digital radiographs and DEXA scanning. BMDR was positively correlated with PVR, and the optimal BMDR for removal of the fixator was found to be 0.511. PVR of all cortices, except the anterior cortex, showed significant positive correlation with BMDR of the regenerate. There was good correlation between BMDR and PVR in the homogenous or heterogenous pathway according to callus shape and pathway. Thus, this study shows that BMD measurement can provide an objective and noninvasive method for assessing the rate of new bone formation during tibial distraction osteogenesis. It can thus function as an effective adjunct to measure callus stiffness, along with PVR, using digital radiographs, especially in cases in which callus maturation and stiffness is doubtful. Further studies especially dealing with callus progression through the lucent pathway as well as those dealing with regenerate fractures may be needed to conclusively prove the efficacy of this method

  4. Lung Perfusion Scanning in Hepatic Cirrhosis

    PubMed Central

    Stanley, N. N.; Ackrill, P.; Wood, J.

    1972-01-01

    Abnormal lung perfusion scans using radioactive particles were found in five out of six cases of hepatic cirrhosis with arterial hypoxaemia. None had clinical evidence of cardiopulmonary disease or signs of pulmonary embolism on arteriography. The scan defects are probably caused by a disorder of the pulmonary microvasculature, which may show regional variation in severity. ImagesFIG. 1FIG. 2 PMID:4645896

  5. Implementing SCANS. Highlight Zone: Research @ Work.

    ERIC Educational Resources Information Center

    Packer, Arnold C.; Brainard, Scott

    Foremost among efforts over the last decade to improve the work-related skills required of all young people to meet the demands of American's workplaces was the Secretary's Commission on Achieving Necessary Skills Commission (SCANS). Integral to SCANS were its three-part foundation (basic skills, thinking skills, and personal qualities) and these…

  6. A Student-Built Scanning Tunneling Microscope

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  7. Camera Systems Rapidly Scan Large Structures

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  8. The Scanning Process: Methods and Uses.

    ERIC Educational Resources Information Center

    Renfro, William L.; Morrison, James L.

    1983-01-01

    Developing a rational scanning process that reaches a balance between what is needed and what is possible within the limitations of an institution's resources is discussed. The different kinds of scanning, which kind to use at each stage of the process, and why are described. (MLW)

  9. Torque-while-turnaround scan mirror assembly

    NASA Technical Reports Server (NTRS)

    Starkus, C. J.

    1977-01-01

    A scan mirror assembly which is part of a thematic mapper system is described with emphasis on mechanical aspects of the design. Features of the oscillating scan mirror mechanism include: a low level of structural vibration for the impact energies involved in mirror oscillation and return of energy lost during impact to the mirror by applying torque during the instant of impact.

  10. Optical Scanning for Retrospective Conversion of Information.

    ERIC Educational Resources Information Center

    Hein, Morten

    1986-01-01

    This discussion of the use of optical scanning and computer formatting for retrospective conversion focuses on a series of applications known as Optical Scanning for Creation of Information Databases (OSCID). Prior research in this area and the usefulness of OSCID for creating low-priced machine-readable data representing older materials are…

  11. Live ultrasound volume reconstruction using scout scanning

    NASA Astrophysics Data System (ADS)

    Meyer, Amelie; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2015-03-01

    Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

  12. Getting a CAT Scan (For Kids)

    MedlinePlus Videos and Cool Tools

    ... dientes Video: Getting an X-ray Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  13. Bone scan in metabolic bone diseases. Review.

    PubMed

    Abdelrazek, Saeid; Szumowski, Piotr; Rogowski, Franciszek; Kociura-Sawicka, Agnieszka; Mojsak, Małgorzata; Szorc, Małgorzata

    2012-08-25

    Metabolic bone disease encompasses a number of disorders that tend to present a generalized involvement of the whole skeleton. The disorders are mostly related to increased bone turnover and increased uptake of radiolabelled diphosphonate. Skeletal uptake of 99mTc-labelled diphosphonate depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity. A bone scan image therefore presents a functional display of total skeletal metabolism and has valuable role to play in the assessment of patients with metabolic bone disorders. However, the bone scan appearances in metabolic bone disease are often non-specific, and their recognition depends on increased tracer uptake throughout the whole skeleton. It is the presence of local lesions, as in metastatic disease, that makes a bone scan appearance obviously abnormal. In the early stages, there will be difficulty in evaluating the bone scans from many patients with metabolic bone disease. However, in the more severe cases scan appearances can be quite striking and virtually diagnostic.

  14. Means for Positioning and Repositioning Scanning Instruments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E. (Inventor); Alhorn, Dean C. (Inventor)

    1996-01-01

    A method is presented for positioning a scanning instrument to point toward the center of the desired scan wherein the scan is achieved by rotating unbalanced masses (RUMs) rotating about fixed axes of rotation relative to and associated with the instrument, the RUMs being supported on drive shafts spaced from the center of the mass of the instrument and rotating 180 degrees out-of-phase with each other and in planes parallel to each other to achieve the scan. The elevation and cross-elevation angles of the instrument are sensed to determine any offset and offset time rate-of-change, and the magnitude and direction are converted to a RUM cycle angular velocity component to be superimposed on the nominal velocity of the RUMs. This RUM angular velocity component modulates the RUM angular velocity to cause the speed of the RUMs to increase and decrease during each revolution to drive the instrument toward the desired center of the scan.

  15. An Introduction to PunchScan

    NASA Astrophysics Data System (ADS)

    Popoveniuc, Stefan; Hosp, Ben

    PunchScan is a precinct-read optical-scan balloting system that allows voters to take their ballot with them after scanning. This does not violate the secret ballot principle because the ballots cannot be read without secret information held by the distributed authority in charge of the election. In fact, this election authority will publish the ballots for everyone to see, allowing voters whose ballots were incorrectly omitted to complain. PunchScan vote-counting is performed in private by the election authority - who uses their secret information to decode the ballots - but is verified in public by an auditor.In this paper we describe how and why PunchScan works. We have kept most of the description at an outline level so that it may be used as a straw model of a cryptographic voting system.

  16. AVIRIS scan drive design and performance

    NASA Technical Reports Server (NTRS)

    Miller, D. C.

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images the ground with an instantaneous field of view (IFOV) of 1 mrad. The IFOV is scanned 30 deg from left to right to provide the cross-track dimension of the image, while the aircraft's motion provides the along-track dimension. The scanning frequency is 12 Hz, with a scan efficiency of 70 percent. The scan mirror has an effective diameter of 5.7 in, and its positional accuracy is a small fraction of a milliradian of the nominal position-time profile. Described are the design and performance of the scan drive mechanism. Tradeoffs among various approaches are discussed, and the reasons given for the selection of the cam drive.

  17. Optical scanning holography for stereoscopic display

    NASA Astrophysics Data System (ADS)

    Liu, Jung-Ping; Wen, Hsuan-Hsuan

    2016-10-01

    Optical Scanning Holography (OSH) is a scanning-type digital holographic recording technique. One of OSH's most important properties is that the OSH can record an incoherent hologram, which is free of speckle and thus is suitable for the applications of holographic display. The recording time of a scanning hologram is proportional to the sampling resolution. Hence the viewing angle as well as the resolution of a scanning hologram is limited for avoid too long recording. As a result, the viewing angle is not large enough for optical display. To solve this problem, we recorded two scanning holograms at different viewing angles. The two holograms are synthesized to a single stereoscopic hologram with two main viewing angles. In displaying, two views at the two main viewing angles are reconstructed. Because both views contain full-depth-resolved 3D scenes, the problem of accommodation conflict in conventional stereogram is avoided.

  18. Scanning tunneling microscope assembly, reactor, and system

    SciTech Connect

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  19. Creation of an age-adjusted, dual-energy x-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in non-Hispanic US White women.

    PubMed

    Simonelli, Christine; Leib, Edward; Mossman, Ned; Winzenrieth, Renaud; Hans, Didier; McClung, Michael

    2014-01-01

    The trabecular bone score (TBS, Med-Imaps, Pessac, France) is an index of bone microarchitecture texture extracted from anteroposterior dual-energy X-ray absorptiometry images of the spine. Previous studies have documented the ability of TBS of the spine to differentiate between women with and without fractures among age- and areal bone mineral density (aBMD)-matched controls, as well as to predict future fractures. In this cross-sectional analysis of data collected from 3 geographically dispersed facilities in the United States, we investigated age-related changes in the microarchitecture of lumbar vertebrae as assessed by TBS in a cohort of non-Hispanic US white American women. All subjects were 30 yr of age and older and had an L1-L4aBMDZ-score within ±2 SD of the population mean. Individuals were excluded if they had fractures, were on any osteoporosis treatment, or had any illness that would be expected to impact bone metabolism. All data were extracted from Prodigy dual-energy X-ray absorptiometry devices (GE-Lunar, Madison, WI). Cross-calibrations between the 3 participating centers were performed for TBS and aBMD. aBMD and TBS were evaluated for spine L1-L4 but also for all other possible vertebral combinations. To validate the cohort, a comparison between the aBMD normative data of our cohort and US non-Hispanic white Lunar data provided by the manufacturer was performed. A database of 619 non-Hispanic US white women, ages 30-90 yr, was created. aBMD normative data obtained from this cohort were not statistically different from the non-Hispanic US white Lunar normative data provided by the manufacturer (p = 0.30). This outcome thereby indirectly validates our cohort. TBS values at L1-L4 were weakly inversely correlated with body mass index (r = -0.17) and weight (r = -0.16) and not correlated with height. TBS values for all lumbar vertebral combinations decreased significantly with age. There was a linear decrease of 16.0% (-2.47 T-score) in TBS at

  20. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Scanning receivers and frequency converters used with scanning receivers. 15.121 Section 15.121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.121 Scanning receivers and...

  1. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Scanning receivers and frequency converters used with scanning receivers. 15.121 Section 15.121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.121 Scanning receivers and...

  2. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scanning receivers and frequency converters used with scanning receivers. 15.121 Section 15.121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.121 Scanning receivers and...

  3. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Scanning receivers and frequency converters used with scanning receivers. 15.121 Section 15.121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.121 Scanning receivers and...

  4. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Scanning receivers and frequency converters used with scanning receivers. 15.121 Section 15.121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.121 Scanning receivers and...

  5. Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished?

    PubMed Central

    Hands, Beth; Pennell, Craig E.; Lye, Stephen J.; Mountain, Jennifer A.

    2016-01-01

    Background and Aims Assessment of adiposity using dual energy x-ray absorptiometry (DXA) has been considered more advantageous in comparison to anthropometry for predicting cardio-metabolic risk in the older population, by virtue of its ability to distinguish total and regional fat. Nonetheless, there is increasing uncertainty regarding the relative superiority of DXA and little comparative data exist in young adults. This study aimed to identify which measure of adiposity determined by either DXA or anthropometry is optimal within a range of cardio-metabolic risk factors in young adults. Methods and Results 1138 adults aged 20 years were assessed by DXA and standard anthropometry from the Western Australian Pregnancy Cohort (Raine) Study. Cross-sectional linear regression analyses were performed. Waist to height ratio was superior to any DXA measure with HDL-C. BMI was the superior model in relation to blood pressure than any DXA measure. Midriff fat mass (DXA) and waist circumference were comparable in relation to glucose. For all the other cardio-metabolic variables, anthropometric and DXA measures were comparable. DXA midriff fat mass compared with BMI or waist hip ratio was the superior measure for triglycerides, insulin and HOMA-IR. Conclusion Although midriff fat mass (measured by DXA) was the superior measure with insulin sensitivity and triglycerides, the anthropometric measures were better or equal with various DXA measures for majority of the cardio-metabolic risk factors. Our findings suggest, clinical anthropometry is generally as useful as DXA in the evaluation of the individual cardio-metabolic risk factors in young adults. PMID:27622523

  6. Adiposity assessed by anthropometric measures has a similar or greater predictive ability than dual-energy X-ray absorptiometry measures for abdominal aortic calcification in community-dwelling older adults.

    PubMed

    Shang, Xianwen; Scott, David; Hodge, Allison; Khan, Belal; Khan, Nayab; English, Dallas R; Giles, Graham G; Ebeling, Peter R; Sanders, Kerrie M

    2016-09-01

    To determine whether adiposity assessed by dual-energy X-ray absorptiometry (DXA) compared to simple anthropometric assessments, are more predictive of abdominal aortic calcification (AAC), a risk factor for atherosclerosis. A cross-sectional study of 312 participants (60.3 % female) aged 70.6 ± 5.6 years was conducted in 2010-2011. AAC was assessed by radiography. Adiposity was estimated for whole body, trunk, android, gynoid and visceral regions using DXA in addition to body mass index (BMI), waist circumference (WC) and waist to hip ratio (WHR). WHR [tertile 1 as reference, OR (95 % CI) for tertile 3: 3.62 (1.35-9.72)] and android to gynoid fat ratio [tertile 3: 2.87 (1.03-8.01)] were independent predictors of AAC severity among men. Positive associations with AAC severity were observed for WC [tertile 1 as reference, OR for tertile 3: 2.46 (1.12-5.41)], % trunk fat mass [tertile 2: 3.26 (1.52-7.03)], % android fat mass [tertile 2: 2.42 (1.13-5.18), tertile 3: 2.20 (1.02-4.73)] and visceral fat area [tertile 2: 2.28 (1.06-4.87), tertile 3: 2.32 (1.01-5.34)] among women. Indices of total body composition, BMI and % body fat mass were not associated with AAC severity in either men or women. Simple anthropometric measures, WHR and WC were the best predictors of AAC severity in men and women respectively, although higher android to gynoid fat ratio and central fat, assessed by DXA, were also predictive of higher risks of AAC severity in men and women respectively. Our findings add to existing evidence that relatively inexpensive and easily obtained anthropometric measures can be clinically useful indicators of atherosclerosis risk.

  7. Treatment of subclinical hypothyroidism does not affect bone mass as determined by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative bone ultrasound in Spanish women

    PubMed Central

    Roncero-Martin, Raul; Calderon-Garcia, Julian F.; Santos-Vivas, Mercedes; Vera, Vicente; Martínez-Alvárez, Mariana; Rey-Sanchez, Purificación

    2015-01-01

    Introduction The results of studies examining the influence of subclinical hypothyroidism (SCH) and levothyroxine (L-T4) replacement therapy on bone have generated considerable interest but also controversy. The present research aims to evaluate the effects of L-T4 treatment on different skeletal sites in women. Material and methods A group of 45 premenopausal (mean age: 43.62 ±6.65 years) and 180 postmenopausal (mean age: 59.51 ±7.90 years) women with SCH who were undergoing L-T4 replacement therapy for at least 6 months were compared to 58 pre- and 180 postmenopausal women with SCH (untreated) matched for age. The mean doses of L-T4 were 90.88 ±42.59 µg/day in the premenopausal women and 86.35 ±34.11 µg/day in the postmenopausal women. Bone measurements were obtained using quantitative bone ultrasound (QUS) for the phalanx, dual-energy X-ray absorptiometry (DXA) for the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT) for the non-dominant distal forearm. Results No differences were observed between patients and untreated controls in these bone measurements except in the bone mineral density (BMD) of the spine (p = 0.0214) in postmenopausal women, which was greater in treated women than in untreated controls. Conclusions Our results indicate that adequate metabolic control through replacement treatment with L-T4 in pre- and postmenopausal women does not affect bone mass. PMID:26528344

  8. Sex- and age-related differences in femoral neck cross-sectional structural changes in mainland Chinese men and women measured using dual-energy X-ray absorptiometry.

    PubMed

    Gong, Jian; Tang, Min; Guo, Bin; Shang, JingJie; Tang, Yongjin; Xu, Hao

    2016-02-01

    We investigated age-related changes in estimated bone strength and cross-sectional structure of the femoral neck (FN) in mainland Chinese men and women (according to age and sex) using dual-energy X-ray absorptiometry (DXA). A total of 3855 healthy adults (2713 women, 1142 men; ages 25-91years) were analyzed by FN bone mineral density (BMD) assessment and hip structural/strength analysis (HSA), including cross-sectional moment of inertia (CSMI), cross-sectional area (CSA), section modulus (Z), periosteal diameter (PD), endocortical diameter (ED), and cortical thickness (CT) using DXA. HSA differences between age and sex groups were adjusted for body weight, height and FN BMD. Trends according to age were estimated by linear regression analysis. There was no inverse correlation between HSA parameters and age in young adults. Some HSA parameters (CSMI, CSA, Z, CT) decreased significantly with age, whereas PD and ED increased significantly. Older adults had less estimated bone strength and CT and higher PD and ED (p<0.05) than young adults. Men had greater increases in PD and ED than women across all ages. FN strength decreases with age in both sexes, caused by FN cross-sectional structural deterioration. Indirect comparison of our data with those from other populations showed less age-related FN periosteal apposition in Chinese than Caucasian men, but similar amounts in women. This may partly explain different male/female hip fracture rates among ethnic groups. Chinese men have more structural disadvantages regarding FN geometry during aging than Caucasian men, possibly conferring added susceptibility to hip fracture.

  9. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents.

    PubMed

    Lazzer, Stefano; Bedogni, Giorgio; Agosti, Fiorenza; De Col, Alessandra; Mornati, Daniela; Sartorio, Alessandro

    2008-10-01

    The objectives of the present study were to compare body composition assessed by dual-energy X-ray absorptiometry (DXA), air displacement plethysmography (ADP) and bioelectrical impedance analysis (BIA) in severely obese Caucasian children and adolescents and to develop and validate new equations for predicting body composition from BIA using DXA as the reference method. Body composition was assessed in fifty-eight obese children and adolescents (BMI 34.4 (SD 4.9) kg/m(2)) aged 10-17 years by DXA, ADP and BIA. ADP body fat content was estimated from body density using equations devised by Siri (ADP(Siri)) and Lohman (ADP(Lohman)). In the whole sample, the Bland-Altman test showed that ADP(Siri) and ADP(Lohman) underestimated percentage fat mass (%FM) by 2.1 (SD 3.4) and by 3.8 (SD 3.3) percent units (P<0.001), respectively, compared to DXA. In addition, compared to DXA, BIA underestimated %FM by 5.8 (SD 4.6) percent units in the whole group (P<0.001). A new prediction equation (FFM (kg) = 0.87 x (stature(2)/body impedance) + 3.1) was developed on the pooled sample and cross-validated on an external group of sixty-one obese children and adolescents. The difference between predicted and measured FFM in the external group was -1.6 (SD 2.9) kg (P<0.001) and FFM was predicted accurately (error < 5%) in 75% of subjects. In conclusion, DXA, ADP and the BIA are not interchangeable for the assessment of %FM in severely obese children and adolescents. The new prediction equation offers an alternative approach to DXA for the estimation of body composition in severely obese children and adolescents.

  10. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  11. Prediction of New Clinical Vertebral Fractures in Elderly Men using Finite Element Analysis of CT Scans

    PubMed Central

    Wang, Xiang; Sanyal, Arnav; Cawthon, Peggy M.; Palermo, Lisa; Jekir, Michael; Christensen, John; Ensrud, Kristine E.; Cummings, Steven R.; Orwoll, Eric; Black, Dennis M.; Keaveny, Tony M.

    2012-01-01

    Vertebral strength, as estimated by finite element analysis of computed tomography (CT) scans, has not yet been compared against areal bone mineral density (BMD) by dual energy x-ray absorptiometry (DXA) for prospectively assessing the risk of new clinical vertebral fractures. To do so, we conducted a case-cohort analysis of 306 men aged 65 yrs and older, which included 63 men who developed new clinically-identified vertebral fractures and 243 men who did not, all observed over an average of 6.5 years. Non-linear finite element analysis was performed on the baseline CT scans, blinded to fracture status, to estimate L1 vertebral compressive strength and a load-to-strength ratio. Volumetric BMD by quantitative CT and areal BMD by DXA were also evaluated. We found that, for the risk of new clinical vertebral fracture, the age-adjusted hazard ratio per standard deviation change for areal BMD (3.2; 95% CI: 2.0–5.2) was significantly lower (p<0.005) than for strength (7.2; 3.6–14.1), numerically lower than for volumetric BMD (5.7; 3.1–10.3), and similar for the load-to-strength ratio (3.0; 2.1–4.3). After also adjusting for race, BMI, clinical center, and areal BMD, all these hazard ratios remained highly statistically significant, particularly those for strength (8.5; 3.6–20.1) and volumetric BMD (9.4; 4.1–21.6). The area-under-the-curve for areal BMD (AUC=0.76) was significantly lower than for strength (AUC=0.83, p=0.02), volumetric BMD (AUC=0.82, p=0.05), and the load-to-strength ratio (AUC=0.82, p=0.05). We conclude that, compared to areal BMD by DXA, vertebral compressive strength and volumetric BMD consistently improved vertebral fracture risk assessment in this cohort of elderly men. PMID:22190331

  12. Compact scanning lidar systems using holographic optics

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.; Guerra, David

    1998-08-01

    Two scanning lidar systems have been built using holographic optical elements (HOE) that function as a scanning telescope primary optic. One is a ground based lidar using a reflection HOE, and uses a frequency doubled Nd:YAG laser transmitter. The other system is an airborne/ground based system that uses a transmission HOE and operates at the 1064 nm fundamental of the Nd:YAG laser. Each HOE has a focal spot on the center- line, normal to the flat disk holding the hologram, and a field of view (FOV) that points approximately 45 degrees from the normal. Rotating the disk effects a conical scan of the FOV. In both systems, the same HOE is also used to collimate and steer the transmitted laser beam. The utility of using the HOEs to save weight and size in scanning lidars is evidenced by the atmospheric backscatter data collected with these systems. They also will lower the cost of commercial systems due to the low cost of replicating HOEs and the simplified mechanical scanning systems. Development of airborne scanning lidar altimeters and other lidars and passive instruments using holographic optics are underway, including the development of a one meter diameter, space qualified holographic scanning telescope for use in the ultraviolet.

  13. A dynamic scanning method based on signal-statistics for scanning electron microscopy.

    PubMed

    Timischl, F

    2014-01-01

    A novel dynamic scanning method for noise reduction in scanning electron microscopy and related applications is presented. The scanning method dynamically adjusts the scanning speed of the electron beam depending on the statistical behavior of the detector signal and gives SEM images with uniform and predefined standard deviation, independent of the signal value itself. In the case of partially saturated images, the proposed method decreases image acquisition time without sacrificing image quality. The effectiveness of the proposed method is shown and compared to the conventional scanning method and median filtering using numerical simulations.

  14. [Vein Scanning Projection Instrument Based on Two-Dimensional Scanning Mirror].

    PubMed

    Meng, Ya; Wu, Zhichao; Xu, Changping; Qian, Yinbo

    2015-09-01

    With the development of science and technology, new medical equipments is toward the direction of intelligent and portable. In order to assist medical personnel to patients with blood, developing from previous devices, a new kind of vein locating projection instrument based on two-dimensional scanning mirror is put forward. It can scan and project vein image using a scanning mirror. The related algorithm is also be improved, make vein scan projection more practical. The system finally set up can perform well in vein scan projection.

  15. Clinical applications of Genome Polymorphism Scans

    PubMed Central

    Weber, James L

    2006-01-01

    Applications of Genome Polymorphism Scans range from the relatively simple such as gender determination and confirmation of biological relationships, to the relatively complex such as determination of autozygosity and propagation of genetic information throughout pedigrees. Unlike nearly all other clinical DNA tests, the Scan is a universal test – it covers all people and all genes. In balance, I argue that the Genome Polymorphism Scan is the most powerful, affordable clinical DNA test available today. Reviewers: This article was reviewed by Scott Weiss (nominated by Neil Smalheiser), Roberta Pagon (nominated by Jerzy Jurka) and Val Sheffield (nominated by Neil Smalheiser). PMID:16756678

  16. Scanning-Pencil-Beam Radar Scatterometer

    NASA Technical Reports Server (NTRS)

    Long, David G.; Freilich, Michael H.; Leotta, Daniel F.; Noon, Don E.

    1992-01-01

    SCANSCAT conceptual scanning radar scatterometer placed in nearly polar orbit around Earth at altitude of 705 km aboard Spacecraft B of NASA's Earth Observing System. Measures radar backscattering from surface of ocean. Data processed on ground into normalized radar-backscattering cross sections, then processed into velocities of winds near surface of ocean by use of empirical mathematical model of relationship between normalized backscattering cross section, wind vector at scanned spot, and angle of incidence and azimuth angle of radar beam. Accuracy and coverage exceeds those of fan-beam scatterometer. Modified versions of scanning plan useful in laser inspection of surface finishes on machined parts.

  17. Scanning and georeferencing historical USGS quadrangles

    USGS Publications Warehouse

    Davis, Larry R.; Allord, G.J.

    2011-01-01

    The USGS Historical Quadrangle Scanning Project (HQSP) is scanning all scales and all editions of approximately 250,000 topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884. This scanning will provide a comprehensive digital repository of USGS topographic maps, available to the public at no cost. This project serves the dual purpose of creating a master catalog and digital archive copies of the irreplaceable collection of topographic maps in the USGS Reston Map Library as well as making the maps available for viewing and downloading from the USGS Store and The National Map Viewer.

  18. HEAO-A nominal scanning observation schedule

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Stone, R. L.

    1977-01-01

    The HEAO-A observatory, scheduled for launch in late June 1977, will spend most of its orbital lifetime in a scanning mode, spining from 0.03 to 0.1 rpm about an axis aligned with the sun. The dates of availability in the scan band are given for a list of 248 X-ray sources. Celestial maps of source locations and scan planes, and examples of the nighttime elevation of available sources are presented. This document is intended to aid ground-based observers in planning coordinated observations with HEAO-A.

  19. Gigahertz-band electronically scanned antennas

    NASA Astrophysics Data System (ADS)

    Bei, Nikolai A.

    2000-12-01

    Foundation and principles of radio lenses construction of centimeter and millimeter wave ranges with controlled refracting index, combining the quality of phased array antennas with optical devices are stated. Possibilities of the electronically scanning with wide-angle sector and high gain are maintained. Construction principles of scanning antennas with controlled lenses, combining the quality of phased array antennas with optical devices, are stated. Possibilities of electronically scanning with broad angle sector and high gain are maintained. Some examples of construction of antennas millimeter range of waves are listed here.

  20. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  1. Risedronate decreases bone resorption and improves low back pain in postmenopausal osteoporosis patients without vertebral fractures.

    PubMed

    Ohtori, Seiji; Akazawa, Tsutomu; Murata, Yasuaki; Kinoshita, Tomoaki; Yamashita, Masaomi; Nakagawa, Koichi; Inoue, Gen; Nakamura, Junichi; Orita, Sumihisa; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Eguchi, Yawara; Yamauchi, Kazuyo; Suzuki, Munetaka; Aoki, Yasuchika; Takahashi, Kazuhisa

    2010-02-01

    Elderly postmenopausal women who have osteoporosis sometimes experience low back pain, however, the relationship between low back pain and osteoporosis in the absence of vertebral fractures remains unclear. We examined the relationship between bone mineral density (BMD), bone resorption and low back pain in elderly female patients who did not have osteoporotic vertebral fractures. The average BMD was 0.675 g/cm(2) when assessed by dual-energy X-ray absorptiometry (DEXA). Patients were excluded from the study if they had vertebral fractures revealed by radiography, CT scans or MRI. Bisphosphonate (risedronate) was administered for 4 months. The visual analogue scale (VAS) pain score, Roland Morris Disability Questionnaire (RDQ), Short Form-36 (SF-36) questionnaire, BMD and N-terminal telopeptide of type I collagen (NTx; a marker for bone resorption) were examined before and after treatment. DEXA did not increase significantly, but serum and urinary NTx were decreased (-51.4% and -62.0%, respectively) after 4 months of risedronate treatment (p<0.01). The assessment was repeated using the VAS score, RDQ and SF-36, which revealed an improvement after risedronate treatment (p<0.01). A decrease in serum and urinary NTx was associated with improvement of low back pain, suggesting that despite the absence of vertebral fractures, bone resorption due to osteoporosis may cause low back pain.

  2. Comparison of full-scan and half-scan for cone beam breast CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Lai, Chao-jen; Altunbas, Mustafa C.; Wang, Tianpeng; Tu, Shu-ju; Liu, Xinming

    2006-03-01

    The half-scan cone beam technique, requiring a scan for 180° plus detector width only, can help achieve both shorter scan time as well as higher exposure in each individual projection image. This purpose of this paper is to investigate whether half-scan cone beam CT technique can provide acceptable images for clinical application. The half-scan cone beam reconstruction algorithm uses modified Parker's weighting function and reconstructs from slightly more than half of the projection views for full-scan, giving out promising results. A rotation phantom, stationary gantry bench top system was built to conduct experiments to evaluate half-scan cone beam breast CT technique. A post-mastectomy breast specimen, a stack of lunch meat slices embedded with various sizes of calcifications and a polycarbonate phantom inserted with glandular and adipose tissue equivalents are imaged and reconstructed for comparison study. A subset of full-scan projection images of a mastectomy specimen were extracted and used as the half-scan projection data for reconstruction. The results show half-scan reconstruction algorithm for cone beam breast CT images does not significantly degrade image quality when compared with the images of same or even half the radiation dose level. Our results are encouraging, emphasizing the potential advantages in the use of half-scan technique for cone beam breast imaging.

  3. Intelligent Classification and Visualization of Network Scans

    SciTech Connect

    Chen, L; Muelder, C; Ma, K; Bartoletti, A

    2007-03-01

    Network scans are a common first step in a network intrusion attempt. In order to gain information about a potential network intrusion, it is beneficial to analyze these network scans. Statistical methods such as wavelet scalogram analysis have been used along with visualization techniques in previous methods. However, applying these statistical methods to reduce the data causes a substantial amount of data loss. This paper presents a study of using associative memory learning techniques to directly compare network scans in order to create a classification which can be used by itself or in conjunction with existing visualization techniques to better characterize the sources of these scans. This produces an integrated system of visual and intelligent analysis which is applicable to real world data.

  4. Indium-111 leukocyte scanning and fracture healing

    SciTech Connect

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. )

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  5. Electron Beam Scanning in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  6. The design of laser scanning galvanometer system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  7. Nanoscale thermometry by scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-07-01

    Measuring temperature is a central challenge in nanoscience and technology. Addressing this challenge, we report the development of a high-vacuum scanning thermal microscope and a method for non-equilibrium scanning probe thermometry. The microscope is built inside an electromagnetically shielded, temperature-stabilized laboratory and features nanoscopic spatial resolution at sub-nanoWatt heat flux sensitivity. The method is a dual signal-sensing technique inferring temperature by probing a total steady-state heat flux simultaneously to a temporally modulated heat flux signal between a self-heated scanning probe sensor and a sample. Contact-related artifacts, which so far limit the reliability of nanoscopic temperature measurements by scanning thermal microscopy, are minimized. We characterize the microscope's performance and demonstrate the benefits of the new thermometry approach by studying hot spots near lithographically defined constrictions in a self-heated metal interconnect.

  8. Getting a CAT Scan (For Kids)

    MedlinePlus

    ... axial tomography." Translated, that means a scanner takes computer pictures of what's going on inside your body. The scan itself is ... Policy Privacy Policy & Terms of Use Visit the Nemours Web ...

  9. Breadboard linear array scan imager program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The performance was evaluated of large scale integration photodiode arrays in a linear array scan imaging system breadboard for application to multispectral remote sensing of the earth's resources. Objectives, approach, implementation, and test results of the program are presented.

  10. Infrared interferometer with a scanned aperture.

    PubMed

    Edwin, R P

    1975-08-01

    A Twyman-Green interferometer operating at a 3.39-microm wavelength has been built in which the collimator aperture was scanned by a laser beam. The scanning was produced by reflecting the laser beam from a mirror supported by four piezoelectric elements and oscillated about two orthogonal axes. The radiation transmitted by the interferometer was measured by a stationary detector of small area. The complete system offers a cheap and efficient alternative to conventional ir interferometers.

  11. Enhanced effects with scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Howells, S.; Chen, T.; Gallagher, M.; Yi, L.; Sarid, D.

    1991-05-01

    A general theory that describes the operation of scanning force microscopy in the contact force regime is presented. It is shown that force derivatives along the surface of a sample produce images that can be dramatically enhanced relative to those of surface topography. For scanning tunneling microscopy atomic force microscopy configurations, the spring constant of the cantilever and the force derivatives perpendicular to the surface of the sample determine the enhancement, respectively.

  12. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, Daniel L.; Tangyunyong, Paiboon

    1998-01-01

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  13. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, D.L.; Tangyunyong, P.

    1998-01-06

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  14. Phased-Antenna-Array Conical Scanning

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Antenna pointing faster than mechanical scanning. Three antenna phased array connected to receiving signal-processing system through two phase-shifting networks. Two networks simultaneously steer phased array in two slightly-different beam directions; one for scanning, one for tracking. Technique has many uses in military and civilian radar, principally in tracking aircraft, balloonborne weather instruments, and other moving signal sources or reflectors.

  15. CT Scans - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الأشعة المقطعية الحاسوبية - العربية Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) CT (Computerized Tomography) Scan CT ( ... 扫描 - 简体中文 (Chinese - Simplified) Bilingual PDF Health Information Translations Chinese - Traditional (繁體中文) CT (Computerized Tomography) Scan CT ( ...

  16. Study of the Electrical Impedance Scanning

    DTIC Science & Technology

    2007-11-02

    exhibit conductive changes that cause an impedance variation between cancerous ant health tissues. Since there are very few commercial devices...contribute somehow in the evaluation of the parameters involved. Keywords – Electrical Transimpedance Scanning, Breast cancer I. INTRODUCTION The...Electrical Transimpedance Scanning (ETS) is a new technique, non-invasive, non-irradiant, used in the diagnosis of breast cancer . Combined with other

  17. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  18. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women.

    PubMed

    Amstrup, Anne Kristine; Jakobsen, Niels Frederik Breum; Moser, Emil; Sikjaer, Tanja; Mosekilde, Leif; Rejnmark, Lars

    2016-11-01

    Quantitative computed tomography (QCT), high-resolution peripheral QCT (HR-pQCT) and dual X-ray absorptiometry (DXA) scans are commonly used when assessing bone mass and structure in patients with osteoporosis. Depending on the imaging technique and measuring site, different information on bone quality is obtained. How well these techniques correlate when assessing central as well as distal skeletal sites has not been carefully assessed to date. One hundred and twenty-five post-menopausal women aged 56-82 (mean 63) years were studied using DXA scans (spine, hip, whole body and forearm), including trabecular bone score (TBS), QCT scans (spine and hip) and HR-pQCT scans (distal radius and tibia). Central site measurements of areal bone mineral density (aBMD) by DXA and volumetric BMD (vBMD) by QCT correlated significantly at the hip (r = 0.74, p < 0.01). Distal site measurements of density at the radius as assessed by DXA and HR-pQCT were also associated (r = 0.74, p < 0.01). Correlations between distal and central site measurements of the hip and of the tibia and radius showed weak to moderate correlation between vBMD by HR-pQCT and QCT (r = -0.27 to 0.54). TBS correlated with QCT at the lumbar spine (r = 0.35) and to trabecular indices of HR-pQCT at the radius and tibia (r = -0.16 to 0.31, p < 0.01). There was moderate to strong agreement between measuring techniques when assessing the same skeletal site. However, when assessing correlations between central and distal sites, the associations were only weak to moderate. Our data suggest that the various techniques measure different characteristics of the bone, and may therefore be used in addition to rather than as a replacment for imaging in clinical practice.

  19. Feature Adaptive Sampling for Scanning Electron Microscopy

    PubMed Central

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  20. SCAN: A Scalable Model of Attentional Selection.

    PubMed

    Hudson, Patrick T.W.; van den Herik, H Jaap; Postma, Eric O.

    1997-08-01

    This paper describes the SCAN (Signal Channelling Attentional Network) model, a scalable neural network model for attentional scanning. The building block of SCAN is a gating lattice, a sparsely-connected neural network defined as a special case of the Ising lattice from statistical mechanics. The process of spatial selection through covert attention is interpreted as a biological solution to the problem of translation-invariant pattern processing. In SCAN, a sequence of pattern translations combines active selection with translation-invariant processing. Selected patterns are channelled through a gating network, formed by a hierarchical fractal structure of gating lattices, and mapped onto an output window. We show how the incorporation of an expectation-generating classifier network (e.g. Carpenter and Grossberg's ART network) into SCAN allows attentional selection to be driven by expectation. Simulation studies show the SCAN model to be capable of attending and identifying object patterns that are part of a realistically sized natural image. Copyright 1997 Elsevier Science Ltd.

  1. Position-sensitive scanning fluorescence correlation spectroscopy.

    PubMed

    Skinner, Joseph P; Chen, Yan; Müller, Joachim D

    2005-08-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.

  2. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    NASA Astrophysics Data System (ADS)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  3. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    PubMed Central

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-01-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials. PMID:28272404

  4. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  5. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  6. Scan path entropy and arrow plots: capturing scanning behavior of multiple observers

    PubMed Central

    Hooge, Ignace; Camps, Guido

    2013-01-01

    Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993

  7. Geodetic Laser Scanning: Refractive Optics Offer Wide Variety of Scan Patterns

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, C. K.; Shrestha, K. Y.; Cossio, T.

    2005-12-01

    Most commercial geodetic laser mapping instruments use reflective element scanners, often a single nutating or oscillating mirror, and sometimes dual axis units, to create a specific pattern of laser spots on the surface being mapped. The user may be able to set the scanning speed (scan lines per second) and field of coverage (range of scan angles), but the basic pattern of points sampled is fixed. Engineers developing scanners for a surprisingly diverse set of applications, ranging from bar code scanning, to compensating for image motion in astronomical telescopes, to scanning spectrometers, have increasingly turned to refractive scanners-most particularly to scanners that utilize "Risley prisms." Samuel Doty Risley (1845-1920), an ophthalmologist, invented an optometer that contained a pair of thin prisms that rotated in opposite directions about their optical axes to change the convergence of light rays from a single source. He used his optometer measure the visual acuity of patients eyes, as a function of distance. In this original application, both prisms were driven by a common gear assembly, which resulted in a nearly linear scan line. But if the prisms are driven independently in both direction and angular speed, a wide variety of scan patterns can be generated. The University of Florida is developing, a photon counting geodetic laser scanning instrument that will use a Risley prism scanner. The scanner, being built by Sigma Space Inc., will be capable of producing nearly linear scan lines (saw tooth pattern from moving platform), circular scans lines (helical pattern from a moving platform) and any number of rosette scan patterns that are particularly interesting for fixed ground based work. The flexibility provided by the scanner offers the possibility of using the same sensor for airborne and ground based geodetic laser scanning. Examples of the scanner patterns and the initial results from laboratory and early field tests will be presented.

  8. Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yutao; Feng, Hsi-Yung

    2016-06-01

    Inspecting objects with reflective surfaces using 3D laser scanning is a demanded but challenging part inspection task due to undesirable specular reflections, which produce extensive outliers in the scanned point cloud. These outliers need to be removed in order to alleviate subsequent data processing issues. Many existing automatic outlier removal methods do not detect outliers according to the outlier formation properties. As a result, these methods only offer limited capabilities in removing extensive and complex outliers from scanning objects with reflective surfaces. This paper reports an empirical study which experimentally investigates the outlier formation characteristics in relation to the scanning orientation of the laser probe. The objective is to characterize the scanning orientation effects on outlier formation in order to facilitate the development of an effective outlier detection and removal method. Such an experimental investigation was hardly done before. It has been found in this work that scanning orientation can directly affect outlier extensity and occurrence in 3D laser scanning. A general guidance on proper scan path planning can then be provided with an aim to reduce the occurrence of outliers. Further, the observed dependency of outlier formation on scanning orientation can be exploited to facilitate effective and automatic outlier detection and removal.

  9. Contact-Free Scanning and Imaging with the Scanning Ion Conductance Microscope

    PubMed Central

    2014-01-01

    Scanning ion conductance microscopy (SICM) offers the ability to obtain very high-resolution topographical images of living cells. One of the great advantages of SICM lies in its ability to perform contact-free scanning. However, it is not yet clear when the requirements for this scan mode are met. We have used finite element modeling (FEM) to examine the conditions for contact-free scanning. Our findings provide a framework for understanding the contact-free mode of SICM and also extend previous findings with regard to SICM resolution. Finally, we demonstrate the importance of our findings for accurate biological imaging. PMID:24521282

  10. Applying RANSAC Algorithm for Fitting Scanning Strips from Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Błaszczak-Bąk, Wioleta; Janicka, Joanna; Sobieraj-Żłobińska, Anna

    2016-12-01

    During the development of the data acquired by airborne laser scanning the important issue is the fitting and georeferencing of ALS point clouds by means of the tie surfaces and the reference planes. The process of scanning strips adjustment is based on mutual integration of point clouds (scanning strips) and their adaptation to the reference planes. In simultaneous adjustment all strips are combined into one geometrically coherent block, to which the coordinates are given. In the process of determining discrepancies between scanning strips it is important to determine the correct size of the shifts (offsets). Authors propose to do this by using RANSAC algorithm.

  11. The need for environmental horizon scanning.

    PubMed

    Sutherland, William J; Woodroof, Harry J

    2009-10-01

    Policymakers and practitioners in most fields, including conservation and the environment, often make decisions based on insufficient evidence. One reason for this is that issues appear unexpectedly, when with hindsight, many of them were foreseeable. A solution to the problem of being insufficiently prepared is routine horizon scanning, which we describe as the systematic search for potential threats and opportunities that are currently poorly recognized. Researchers can then decide which issues might be most worthwhile to study. Practitioners can also use horizon scanning to ensure timely policy development and research procurement. Here, we suggest that horizon scanning is an underused tool that should become a standard element of environmental and conservation practice. We make recommendations for its incorporation into research, policy and practice. We argue that, as an ecological and conservation community, we are failing to provide timely advice owing to a weakness in identifying forthcoming issues. We outline possible horizon-scanning methods, and also make recommendations as to how horizon scanning could have a more central role in environmental and conservation practice.

  12. Simple Cassegrain scanning system for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Apt, J.; Goody, R.; Mertz, L.

    1980-01-01

    To meet the need for a reliable, fast imaging system capable of being taken rapidly on and off the telescope, a simple, inexpensive, and compact Cassegrain reimaging system for scanning IR images was constructed. Using commercially available components without requiring close mechanical tolerances, the design solves the problem of beam stability pointed out by Koornneef and van Overbeeke (1976). For the moving-iron galvanometer scanner, it is noted that at the imaging frequency of 0.5 Hz, hysteresis in image plane motion was found to be less than 0.2 arc sec for a 64-arc sec scan, and the deviation from linearity with a triangular wave input was found to be less than 0.3 arc sec. This system and a scanning secondary were used to image Venus at 11.5 microns, and compared with the scanning secondary, the reimaging system did not appear to contribute any additional noise, considerably improved mechanical reliability, and eliminated cross-scan motion

  13. Negative appendectomy rate: influence of CT scans.

    PubMed

    McGory, Marcia L; Zingmond, David S; Nanayakkara, Darshani; Maggard, Melinda A; Ko, Clifford Y

    2005-10-01

    Negative appendectomy rate varies significantly depending on patient age and sex. However, the impact of computed tomography (CT) scans on the diagnosis of appendicitis is unknown. The goal of this study was to examine the negative appendectomy rate using a statewide database and analyze the association of receipt of CT scan. Using the California Inpatient File, all patients undergoing appendectomy in 1999-2000 were identified (n = 75,452). Demographic and clinical data were analyzed, including procedure approach (open vs laparoscopic) and appendicitis type (negative, simple, abscess, peritonitis). Patients with CT scans performed were identified to compare the negative appendectomy rate. For the entire cohort, appendicitis type was 59 per cent simple, 10 per cent with abscess, 18.7 per cent with peritonitis, and 9.3 per cent negative. Males had a lower rate of negative appendicitis than females (6.0% vs 13.4%, P < 0.0001). The use of CT scans was associated with an overall lower negative appendectomy rate for females, especially in the < 5 years and > 45 years age categories. Use of CT scans in males does not appear to be efficacious, as the negative appendectomy rates were similar across all age categories. In conclusion, use of CT was associated with lower rate of negative appendectomy, depending on patient age and sex.

  14. CT Scan of NASA Booster Nozzle

    SciTech Connect

    Schneberk, D; Perry, R; Thompson, R

    2004-07-27

    We scanned a Booster Nozzle for NASA with our 9 meV LINAC, AmSi panel scanner. Three scans were performed using different filtering schemes and different positions of the nozzle. The results of the scan presented here are taken from the scan which provided the best contrast and lowest noise of the three. Our inspection data shows a number of indications of voids in the outer coating of rubber/carbon. The voids are mostly on the side of the nozzle, but a few small voids are present at the ends of the nozzle. We saw no large voids in the adhesive layer between the Aluminum and the inner layer of carbon. This 3D inspection data did show some variation in the size of the adhesive layer, but none of the indications were larger than 3 pixels in extent (21 mils). We have developed a variety of contour estimation and extraction techniques for inspecting small spaces between layers. These tools might work directly on un-sectioned nozzles since the circular contours will fit with our tools a little better. Consequently, it would be useful to scan a full nozzle to ensure there are no untoward degradations in data quality, and to see if our tools would work to extract the adhesive layer.

  15. Scanning and focusing mechanisms of METEOSAT radiometer

    NASA Technical Reports Server (NTRS)

    Jouan, J.

    1977-01-01

    The scanning and focusing mechanisms settled onboard the METEOSAT Radiometer are described. A large camera which will take line by line pictures of the earth from a geostationary satellite in the same manner as a TV picture using both the spin of the spacecraft and the tilt of a telescope is included. The scanning mechanism provides the + or - 9 degrees tilt angle of the telescope through 2,500 elementary steps of 1.256 0.0001 radian. As the radiometer image quality is closely dependent on the characteristics of the scanning law, the mechanism is required to fulfill functional performances specifications particularly severe in terms of linearity of the scan curve, accuracy of each step as well as repeatability of the short-term scanning. The focusing mechanism allows + or - 12 millimeters shift of the telescope focus by step increments of 0.140 mm. The focus adjustment is achieved by moving a dihedral reflector according to a pure straight-line motion. The main requirements of each mechanism are summarized and their design and performances are described in detail.

  16. About infrared scanning of photovoltaic solar plant

    NASA Astrophysics Data System (ADS)

    Kauppinen, T.; Panouillot, P.-E.; Siikanen, S.; Athanasakou, E.; Baltas, P.; Nikopoulous, B.

    2015-05-01

    The paper is discussing about infrared scanning of PV solar plants. It is important that the performance of each solar panel and cell is verified. One new possibility compared to traditional ground-based scanning (handheld camera) is the utilization of UAV (Unmanned Aerial Vehicle). In this paper results from a PV solar Plant in Western Greece are introduced. The nominal power of the solar plants were 0, 9 MW and 2 MW and they were scanned both by a ground-controlled drone and by handheld equipment. It is essential to know all the factors effecting to results and also the time of scanning is important. The results done from the drone and from ground-based scanning are compared; also results from various altitudes and time of day are discussed. The UAV (Unmanned Aerial Vehicle/RPAS (Remote Piloted Aircraft Systems) will give an excellent opportunity to monitor various targets which are impossible or difficult to access from the ground. Compared to fixed-wing and helicopter-based platforms it will give advantages but also this technology has limitations. One limitation is the weight of the equipment and the short operational range and short flight time. Also valid procedures must be created for different solutions in the future. The most important thing, as in all infrared thermography applications, is the proper interpretation of results.

  17. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  18. Comparison of Some Secondary Body Composition Algorithms

    ERIC Educational Resources Information Center

    Sutton, Robert A.; Miller, Carolyn

    2006-01-01

    Body composition measurements vary greatly in degree of measurement difficulty and accuracy. Hydrostatic weighing, chemical dilution or their equivalents were the accepted "gold" standards for assessing fat mass. Dual Energy X-ray Absorptiometry (DEXA) is fast replacing these techniques as the preferred standard. However, these direct measurement…

  19. Body Fat and Muscle Mass as Functions of Body Water

    ERIC Educational Resources Information Center

    Sutton, R. A.; Miller, Carolyn

    2007-01-01

    Hydrostatic weighing and chemical dilution are well accepted methods for measuring body composition. Recently, Dual Energy X-ray Absorptiometry (DEXA) has become the preferred method. The two compartment algorithms used by these methods assume a fixed constant for lean body tissue. This constant has long been suspect of variations due to many…

  20. A radiographic scanning technique for cores

    USGS Publications Warehouse

    Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.

    1979-01-01

    A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.

  1. Rotary-scanning optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  2. Quantification of pilot workload via instrument scan

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Harris, R. L., Sr.; Ephrath, A.

    1982-01-01

    The use of visual scanning behavior as an indicator of pilot workload is described. The relationship between level of performance on a constant piloting task under simulated IFR conditions, the skill of the pilot the level of mental workload induced by an additional verbal task imposed on the basic control task, and visual scanning behavior is investigated. An increase in fixation dwell times, especially on the primary instrument with increased mental loading is indicated. Skilled subjects 'stared' less under increased loading than did novice pilots. Sequences of instrument fixations were also examined. The percentage occurrence of the subject's most used sequences decreased with increased task difficulty for novice subjects but not for highly skilled subjects. Entropy rate (bits/sec) of the sequence of fixations was also used to quantify the scan pattern. It consistently decreased for most subjects as the four loading levels used increased.

  3. Dynamic CT scanning of spinal column trauma

    SciTech Connect

    Brown, B.M.; Brant-Zawadzki, M.; Cann, C.E.

    1982-12-01

    Dynamic sequential computed tomographic scanning with automatic table incrementation uses low milliampere-second technique to eliminate tube cooling delays between scanning slices and, thus, markedly shortens examination times. A total of 25 patients with spinal column trauma involving 28 levels were studied with dynamic scans and retrospectively reviewed. Dynamic studies were considerably faster than conventional spine examinations and yielded reliable diagnosis. Bone disruption and subluxation was accurately evaluated, and the use of intrathecal metrizamide in low doses allowed direct visualization of spinal cord or radicular compromise. Multiplanar image reformation was aided by the dynamic incrementation technique, since motion between slices (and the resulting misregistration artifact on image reformation) was minimized. A phantom was devised to test spatial resolution of computed tomography for objects 1-3 mm in size and disclosed minimal differences for dynamic and conventional computed tomographic techniques in resolving medium-to-high-contrast objects.

  4. A Student-Built Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Ekkens, Tom

    2015-12-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself. I wanted to give my students a deeper appreciation for the physics by having them build a simple scanning tunneling microscope. Initially, 15 hours of an upper-division laboratory class were devoted to building and operating the STM. As the build process was refined, the time commitment for this project has shrunk to nine hours. Using the method described in this paper, the project is now simple enough that it can be built and operated by students in the introductory class.

  5. Effects of beam irregularity on uniform scanning

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun

    2016-09-01

    An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.

  6. Holographic optical elements as scanning lidar telescopes

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2006-09-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. Rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  7. Conductivity map from scanning tunneling potentiometry

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X.-G.

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

  8. Enter Words and Pictures the Easy Way--Scan Them.

    ERIC Educational Resources Information Center

    Olivas, Jerry

    1989-01-01

    Discusses image scanning and optical character recognition. Describes how computer scanners work. Summarizes scan quality, scanning speed requirements, and hardware requirements for scanners. Surveys the range of scanners currently available. (MVL)

  9. Surface Studies by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Seob

    The scanning probe microscopy reported here includes scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The scanning tunneling microscope is a novel tool which can reveal the atomic structure and electronic properties of surfaces using a probe with a sharp tip. An additional technique, atomic force microscopy has the potential to record geometric structures for both conducting and non -conducting materials. The first AFM designs utilized short range forces between a small stylus and a sample surface to produce high resolution images of defects and structural features of the surface. The current-voltage characteristics were also investigated during dynamic changes of the tunnel current and barrier height with an additional technology, tunneling spectroscopy. An advanced design for an AFM has been developed which utilizes a dielectric tunnel junction to retain the high sensitivity of tunnel current control over force ranges between 10^{-6} and 10 ^{-11}N. This AFM has been successfully applied to physical and biological samples. Scanning probe techniques have been developed and applied to a range of sample types including conductors, semi-conductors and non-conductors. Each technique utilizes the same electronics, computers, and imaging facilities. A fundamental problem of the atomic structure of graphite has existed since the inception of STM images. The experimental and theoretical hypotheses have been considered and a resolution of the problem has been developed as reported in this dissertation. Unprecedented resolving power, greater than 1A, has confirmed our hypothesis and has been correctly correlated with the structure of graphite surface. This dissertation also presents the results from studies of the surface structure of: MoS_2 , Cu, Au, Ag, Si, CdTe, HgTe, Fe_2 O_3, mica, gypsum, purple membranes with protein chains, and an organic photoconducting material, by scanning probe microscopes.

  10. Scanning and storage of electrophoretic records

    DOEpatents

    McKean, Ronald A.; Stiegman, Jeff

    1990-01-01

    An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

  11. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  12. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  13. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  14. The near-field scanning thermal microscope

    NASA Astrophysics Data System (ADS)

    Wischnath, Uli F.; Welker, Joachim; Munzel, Marco; Kittel, Achim

    2008-07-01

    We report on the design, characterization, and performance of a near-field scanning thermal microscope capable to detect thermal heat currents mediated by evanescent thermal electromagnetic fields close to the surface of a sample. The instrument operates in ultrahigh vacuum and retains its scanning tunneling microscope functionality, so that its miniature, micropipette-based thermocouple sensor can be positioned with high accuracy. Heat currents on the order of 10-7W are registered in z spectroscopy at distances from the sample ranging from 1 to about 30nm. In addition, the device provides detailed thermographic images of a sample's surface.

  15. The Scanning Optical Microscope: An Overview

    NASA Astrophysics Data System (ADS)

    Kino, G. S.; Corte, T. R.; Xiao, G. Q.

    1988-07-01

    In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in

  16. Design Rules For Holographic Optical Scanning Elements

    NASA Astrophysics Data System (ADS)

    Herzig, H. P.; Dandliker, R.

    1987-10-01

    An analytical method for the design of holographic optical elements (HOE) for focussing laser scanners with minimum aberrations and optimum scan line definition is reported. It can be shown analytically, using second order (paraxial) approximation, that a circular motion of the HOE cannot generate a straight line in space without astigmatism of the focal spot. Accepting a slightly curved scan line, the astigmatism can be compensated. Experimental results for HOE with a wavelength shift between recording and reconstruction are demonstrated. The required aspherical wavefronts for the recording are realized with the help of computer generated holograms (CGH).

  17. Frequency scanning microstrip antenna (S-band)

    NASA Astrophysics Data System (ADS)

    Jayachandran, M.; Gupta, S. C.

    1983-10-01

    A frequency-scanning microstrip antenna using microstrip radiating resonators is described. The resonators are cascade-coupled. The experimental results in the S-band are in good agreement with the theory, showing that it is possible to scan the main lobe at an angle of + or - 30 deg by variation of frequency of + or - 125 MHz, where 3-dB beam width is less than 30 deg. Directivity of 12.8 dB and gain of 8.5 dB were observed.

  18. Tip-modulation scanned gate microscopy.

    PubMed

    Wilson, Neil R; Cobden, David H

    2008-08-01

    We introduce a technique that improves the sensitivity and resolution and eliminates the nonlocal background of scanned gate microscopy (SGM). In conventional SGM, a voltage bias is applied to the atomic force microscope tip and the sample conductance is measured as the tip is scanned. In the new technique, which we call tip-modulation SGM (tmSGM), the biased tip is oscillated and the induced oscillation of the sample conductance is measured. Applied to single-walled carbon nanotube network devices, tmSGM gives sharp, low-noise and background-free images.

  19. Trajectories of Multi-lined Spatial Scans

    NASA Astrophysics Data System (ADS)

    McCullough, P.

    2017-03-01

    We compare multi-lined (a.k.a. boustrophedonic) spatial scans with numerical simulations of the trajectories using a simple physical model for HST's motions. For scan rates less than or equal to 0.5 arc sec s-1, the simulated trajectories match the observed ones within 0.5 arc sec, i.e. sufficiently well for planning purposes. We provide IDL procedures for the simulator in the Appendix. We identify an overall unexplained drift, primarily in the UVIS detector X direction, throughout the one HST orbit during visit 1 of program 14878.

  20. High resolution obtained by photoelectric scanning techniques.

    NASA Technical Reports Server (NTRS)

    Hall, J. S.

    1972-01-01

    Several applications of linear scanning of different types of objects are described; examples include double stars, satellites, the Red Spot of Jupiter and a landing site on the moon. This technique allows one to achieve a gain of about an order of magnitude in resolution over conventional photoelectric techniques; it is also effective in providing sufficient data for removing background effects and for the application of deconvolution procedures. Brief consideration is given to two-dimensional scanning, either at the telescope or of electronographic images in the laboratory. It is suggested that some of the techniques described should be given serious consideration for space applications.

  1. Dexter: Data Extractor for scanned graphs

    NASA Astrophysics Data System (ADS)

    Demleitner, Markus

    2011-12-01

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

  2. A pressure scanning Fabry-Perot magnetometer.

    NASA Technical Reports Server (NTRS)

    Fay, T. D.; Wyller, A. A.

    1971-01-01

    Description of an oscillating magnetic analyzer (KDP crystal plus Glan-Thompson prism) coupled to an echelle-interferometer spectrograph, and of single-slit magnetometer which by pressure variations can be made to scan the entire profiles of the circularly and linearly polarized Zeeman components. Freon gas is used as the scanner gas with wavelength displacements of 0.02 A per 0.1 in. Hg pressure change at the NaD lines. The available scan range is 15 A in the visual spectral region.

  3. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    PubMed

    Gill, Simeon; Parker, Christopher J

    2016-11-15

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC](2) body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  4. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  5. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues

    NASA Astrophysics Data System (ADS)

    Bazaei, A.; Yong, Yuen K.; Moheimani, S. O. Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  6. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  7. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  8. Skeletal Recovery Following Long-Duration Spaceflight Missions as Determined by Preflight and Postflight DXA Scans of 45 Crew Members

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2006-01-01

    Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.

  9. (Gene sequencing by scanning molecular exciton microscopy)

    SciTech Connect

    Not Available

    1991-01-01

    This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)

  10. Scanning and rotating micromirrors using thermal actuators

    NASA Astrophysics Data System (ADS)

    Butler, Jeffrey T.; Bright, Victor M.; Reid, J. Robert

    1997-07-01

    This paper reports on micromachined polysilicon scanning and rotating micromirrors and the development of a CMOS drive system. The micromirrors described in this research were developed at the Air Force Institute of Technology and fabricated using the DARPA-sponsored multi-user MEMS processes (MUMPs). The scanning micromirror is connected to the substrate using micro-hinges. This allows the mirror plate to rotate off the substrate surface and lock into a support mechanism. The angle between the scanning mirror and the substrate is modulated by driving the mirror with a thermal actuator array through a range of 20 degrees. For the rotating mirror, the mirror plate is attached to the substrate by three floating substrate hinges connected to a rotating base. Actuator arrays are also used to position the rotating mirror. A computer controlled electrical interface was developed which automates the positioning of both the scanning and rotating mirrors. The low operating voltages of the micromirror positioning mechanism makes the use of CMOS technology attractive; and the development of a digital interface allows for flexible operation of the devices. These designs are well suited for micro-optical applications such as optical scanners, corner cube reflectors, and optical couplers where electrical positioning of a mirror is desired.

  11. Scanning Gamma Ray Densitometer System for Detonations.

    DTIC Science & Technology

    in loaded detonators and delays. The 317 KEV gamma rays from an Ir192 source were collimated into a beam of 0.002 by 0.100 inch. A scanning system...minus 3%. With Ir192 , density measurements on NOL-130 were reproduced to plus or minus 5%, and on RDX to plus or minus 16%. Based on gamma ray

  12. Scanning electron microscopy study of Trichomonas gallinae.

    PubMed

    Tasca, Tiana; De Carli, Geraldo A

    2003-12-01

    A scanning electron microscopy (SEM) study of Trichomonas gallinae (Rivolta, 1878), provided more information about the morphology of this flagellated protozoan. SEM showed the morphological features of the trophozoites; the emergence of the anterior flagella, the structure of the undulating membrane, the position and shape of the pelta, axostyle and posterior flagellum. Of special interest were the pseudocyst forms.

  13. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  14. Chelsea Bank: SCANS and Workplace Knowledge.

    ERIC Educational Resources Information Center

    Mikulecky, Larry; And Others

    This study of student groups working with the Chelsea Bank computer simulation concentrates on the extent to which students are involved in activities related to the Secretary's Commission on Achieving Necessary Skills (SCANS) categories and to knowledge about work place practices. Studying students using the Chelsea Bank simulations offers the…

  15. Pulmonary nodule, solitary - CT scan (image)

    MedlinePlus

    ... a single lesion (pulmonary nodule) in the right lung. This nodule is seen as the light circle in the upper portion of the dark area on the left side of the picture. A normal lung would look completely black in a CT scan.

  16. 2006 Environmental Scan. ACAATO Archive Document

    ERIC Educational Resources Information Center

    Colleges Ontario, 2006

    2006-01-01

    The Association of Colleges of Applied Arts and Technology of Ontario (ACAATO) is pleased to present this report. The 2006 Environmental Scan provides an aggregate synopsis of the key trends which will impact on Ontario's Colleges of Applied Arts and Technology in the future and will assist colleges in their advocacy and strategic planning…

  17. 2005 Environmental Scan. ACAATO Archive Document

    ERIC Educational Resources Information Center

    Colleges Ontario, 2005

    2005-01-01

    The Association of Colleges of Applied Arts and Technology of Ontario (ACAATO) is pleased to present this report. The 2005 Environmental Scan provides an aggregate synopsis of the key trends which will impact on Ontario's Colleges of Applied Arts and Technology in the future and will assist colleges in their advocacy and strategic planning…

  18. Projections of scan patterns on human retina

    NASA Technical Reports Server (NTRS)

    Kelly, D. H.; Crane, H. D.

    1972-01-01

    Fundus camera tracks eye movements by using camera optics with the aid of an inverted system. Camera provides a flying-spot circular scanning light source in the normal film plane and a broadband photodetector in position normally occupied by light source.

  19. Radant - New method of electronic scanning

    NASA Astrophysics Data System (ADS)

    Chekroun, C.; Herrick, D.; Michel, Y. M.; Pauchard, R.; Vidal, P.

    1981-02-01

    The paper describes a novel electronic scanning process that differs from the conventional phased array process. Called Radant (from radome antennas), the process uses an electromagnetic lens such that the direction of the optical axis can be changed electronically. The principle of this process and a working model are described.

  20. Rapid 2-axis scanning lidar prototype

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    The rapid 2-axis scanning lidar prototype was developed to demonstrate high-precision single-pixel linear-mode lidar performance. The lidar system is a combined integration of components from various commercial products allowing for future customization and performance enhancements. The intent of the prototype scanner is to demonstrate current stateof- the-art high-speed linear scanning technologies. The system consists of two pieces: the sensor head and control unit. The senor head can be installed up to 4 m from the control box and houses the lidar scanning components and a small RGB camera. The control unit houses the power supplies and ranging electronics necessary for operating the electronics housed inside the sensor head. This paper will discuss the benefits of a 2-axis scanning linear-mode lidar system, such as range performance and a userselectable FOV. Other features include real-time processing of 3D image frames consisting of up to 200,000 points per frame.