Science.gov

Sample records for absorptiometry dxa bone

  1. A review of the use of dual-energy X-ray absorptiometry (DXA) in rheumatology

    PubMed Central

    Tanner, S Bobo; Moore, Charles F

    2012-01-01

    The principal use of dual-energy X-ray absorptiometry (DXA) is to diagnose and monitor osteoporosis and therefore reduce fracture risk, associated morbidity, and mortality. In the field of rheumatology, DXA is an essential component of patient care because of both rheumatologists’ prescription of glucocorticoid treatment as well as the effects of rheumatological diseases on bone health. This review will summarize the use of DXA in the field of rheumatology, including the concern for glucocorticoid-induced osteoporosis, as well as the association of osteoporosis with a sampling of such rheumatologic conditions as rheumatoid arthritis (RA), systemic lupus erythematosus, ankylosing spondylitis, juvenile idiopathic arthritis, and scleroderma or systemic sclerosis. Medicare guidelines recognize the need to perform DXA studies in patients treated with glucocorticoids, and the World Health Organization FRAX tool uses data from DXA as well as the independent risk factors of RA and glucocorticoid use to predict fracture risk. However, patient access to DXA measurement in the US is in jeopardy as a result of reimbursement restrictions. DXA technology can simultaneously be used to discover vertebral fractures with vertebral fracture assessment and provide patients with a rapid, convenient, and low-radiation opportunity to clarify future fracture and comorbidity risks. An emerging use of DXA technology is the analysis of body composition of RA patients and thus the recognition of “rheumatoid cachexia,” in which patients are noted to have a worse prognosis even when the RA appears well controlled. Therefore, the use of DXA in rheumatology is an important tool for detecting osteoporosis, reducing fracture risk and unfavorable outcomes in rheumatological conditions. The widespread use of glucocorticoids and the underlying inflammatory conditions create a need for assessment with DXA. There are complications of conditions found in rheumatology that could be prevented with

  2. A study on the effects of a calcium drug on the bone mineral density (BMD) by using dual-energy X-ray Absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hye; Kim, Ho-Sung; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    Measurements of osteoporosis might contain errors caused by the calcium drug used in the prevention and the treatment of osteoporosis. This study conducted a lumbar spine phantom experiment to examine whether a calcium drug can influence the measured values of the bone mineral density (BMD) because of the drug taken by a real patient remaining undigested in the stomach. Dual-energy X-ray Absorptiometry (DXA) was used to measure the BMD for a calcium-drug in an equipment-dedicated lumbar spine phantom and 10 patients selected for the BMD measurement. Three types of drugs that are prescribed in actual clinical practice calcium drugs were used for the phantom experiment, and the drugs were divided into a fixed dose, 1/2 of the fixed dose, 1/4 of the fixed dose and 1/8 of the fixed dose. Without the drugs included, the phantom was scanned 60 times continuously to calculate the baseline BMD. The BMD was measured as the calcium drug coated with paraffin was placed in the lumbar vertebra 2 and the soft tissue region of the phantom. To determine when the drug was invisible to the naked eye are measured, the BMD at different drug dilutions. The measurements were conducted three times to calculate the mean. In the patient experiment, patients were selected who visited hospital after taking the drug before measuring the BMD. After a certain time had passed, the BMD was measured again to examine the difference in images and the change in BMD values due to the calcium-drug intake. The BMD measurements of lumbar 1-4 in the phantom were higher, with statistical significant, than the least significant change (LSC) in the bone region for all three drugs (Ca carbonate, Ca citrate and Ca cholecalciferol), showing a significant increase. On the other hand, there was no significant change in the soft tissue. When Ca Cholecalciferol was used in a fixed dose, the BMD of L2 increased by 11.6%, showing the largest increase among the drugs examined, but only a 2.8% increase in the BMD of L1

  3. Comparison of bone density measurement techniques: DXA and Archimedes' principle.

    PubMed

    Keenan, M J; Hegsted, M; Jones, K L; Delany, J P; Kime, J C; Melancon, L E; Tulley, R T; Hong, K D

    1997-11-01

    The standard method for determination of density (g/cm3) of bones from small animals has been the application of Archimedes' principle. A recent development has been software for the determination of "density" (g/cm2) of small animal bones with dual-energy X-ray absorptiometry (DXA). We compared Archimedes' principle and DXA (Hologic QDR-2000) in the measurement of the densities of whole and hollowed femurs of 5- to 6-month-old retired female breeder rats. In an attempt to ensure detectable treatment differences, rats were used from a low-vitamin D Holtzman and a supplemental-vitamin D Sprague-Dawley colony. Whole femur densities were higher for supplemental-vitamin D colony rats than for low vitamin D rats using both techniques (Archimedes' principle, p < 0.002; DXA, p < 0.005), and the densities from the two techniques were highly correlated (r = 0.82, p < 0.0001). Actual density values were higher for Archimedes' principle than for DXA. Other variables such as femur ash weight and calcium content were also highly correlated to densities with both techniques. Hollowed femur density values were higher than whole femur values with Archimedes' principle but lower with DXA. Colony effects for hollowed femur densities were diminished with Archimedes' principle (p < 0.03) and eliminated with DXA (p < 0.53). Investigation of whole bones is more biologically relevant, and both techniques were effective in detecting differences between whole femurs from low-vitamin D and supplemental-vitamin D colony rats.

  4. Comparison of bone density measurement techniques: DXA and Archimedes' principle.

    PubMed

    Keenan, M J; Hegsted, M; Jones, K L; Delany, J P; Kime, J C; Melancon, L E; Tulley, R T; Hong, K D

    1997-11-01

    The standard method for determination of density (g/cm3) of bones from small animals has been the application of Archimedes' principle. A recent development has been software for the determination of "density" (g/cm2) of small animal bones with dual-energy X-ray absorptiometry (DXA). We compared Archimedes' principle and DXA (Hologic QDR-2000) in the measurement of the densities of whole and hollowed femurs of 5- to 6-month-old retired female breeder rats. In an attempt to ensure detectable treatment differences, rats were used from a low-vitamin D Holtzman and a supplemental-vitamin D Sprague-Dawley colony. Whole femur densities were higher for supplemental-vitamin D colony rats than for low vitamin D rats using both techniques (Archimedes' principle, p < 0.002; DXA, p < 0.005), and the densities from the two techniques were highly correlated (r = 0.82, p < 0.0001). Actual density values were higher for Archimedes' principle than for DXA. Other variables such as femur ash weight and calcium content were also highly correlated to densities with both techniques. Hollowed femur density values were higher than whole femur values with Archimedes' principle but lower with DXA. Colony effects for hollowed femur densities were diminished with Archimedes' principle (p < 0.03) and eliminated with DXA (p < 0.53). Investigation of whole bones is more biologically relevant, and both techniques were effective in detecting differences between whole femurs from low-vitamin D and supplemental-vitamin D colony rats. PMID:9383695

  5. Cortical thickness estimation of the proximal femur from multi-view dual-energy X-ray absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Tsaousis, N.; Gee, A. H.; Treece, G. M.; Poole, K. E. S.

    2013-02-01

    Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 +/- 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 +/- 0:79 mm.

  6. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Considerations.

    PubMed

    Hart, Nicolas H; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L; Newton, Robert U

    2015-09-01

    Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coefficients (ICC) were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures outlined in this

  7. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Considerations

    PubMed Central

    Hart, Nicolas H.; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L.; Newton, Robert U.

    2015-01-01

    Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coefficients (ICC) were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures outlined in this

  8. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  9. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases.

  10. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density

    PubMed Central

    Yu, Elaine W.; Bouxsein, Mary; Roy, Adam E.; Baldwin, Chantel; Cange, Abby; Neer, Robert M; Kaplan, Lee M.; Finkelstein, Joel S.

    2013-01-01

    Several studies, using dual-energy x-ray absorptiometry (DXA), have reported substantial bone loss after bariatric surgery. However, profound weight loss may cause artifactual changes in DXA areal bone mineral density (aBMD) results. Assessment of volumetric bone mineral density (vBMD) by quantitative computed tomography (QCT) may be less susceptible to such artifacts. We assessed changes in BMD of the lumbar spine and proximal femur prospectively for 1 year using DXA and QCT in 30 morbidly obese adults undergoing Roux-en-Y gastric bypass surgery and 20 obese non-surgical controls. At one year, subjects who underwent gastric bypass surgery lost 37 ± 2 kg compared with 3 ± 2 kg lost in the non-surgical controls (p<0.0001). Spine BMD declined more in the surgical group than in the non-surgical group whether assessed by DXA (−3.3 vs. −1.1%, p=0.034) or by QCT (−3.4 vs. 0.2%, p=0.010). Total hip and femoral neck aBMD declined significantly in the surgical group when assessed by DXA (−8.9 vs. −1.1%, p<0.0001 for the total hip and −6.1 vs. −2.0%, p=0.002 for the femoral neck), but no changes in hip vBMD were noted using QCT. Within the surgical group, serum P1NP and CTX levels increased by 82 ± 10% and by 220 ± 22%, respectively, by 6 months and remained elevated over 12 months (p<0.0001 for all). Serum calcium, vitamin D, and PTH levels remained stable in both groups. We conclude that moderate vertebral bone loss occurs in the first year after gastric bypass surgery. However, striking declines in DXA aBMD at the proximal femur were not confirmed with QCT vBMD measurements. These discordant results suggest that artifacts induced by large changes in body weight after bariatric surgery affect DXA and/or QCT measurements of bone, particularly at the hip. PMID:23929784

  11. The long-term performance of DXA bone densitometers.

    PubMed

    Wells, J; Ryan, P J

    2000-07-01

    Long-term performance of a bone mass measuring device is an important criterion when considering the purchase of such equipment and has been regarded as an important feature of dual X-ray absorptiometry (DXA). The performance of a 6-year-old bone densitometer, the Lunar DPX alpha, which has undertaken 1500 scans annually over this period, was assessed. The short-term coefficient of variation calculated from 15 measurements with repositioning on a single day, using the Lunar aluminium phantom, was 0.242%. Long-term precision, also calculated by the coefficient of variation, was 0.548%. The manufacturer's quality control (QC) procedure was performed daily and allowed the machine to be used except on 15 occasions when bone density measurements could be acquired after rebooting. However, a 2.2% shift in phantom values occurred in July 1996 owing to a photomultiplier tube failure, but this did not produce a failure in the Lunar QC. The optical disc drive was replaced in July 1997. The machine failed to back up on six occasions over the last 2 years owing to software corruption and the acquired femur data were not saved on seven occasions owing to overloading of the memory buffer. In conclusion, expected hardware failure and minor software problems have occurred. We were concerned that the manufacturer's QC failed to detect a 2% shift in the phantom bone mineral density values and recommend regular measurements of the Lunar aluminum phantom in addition to the daily QC measurement of the tissue-equivalent block. We were nevertheless impressed by the long-term stability and reproducibility of the Lunar DPX alpha.

  12. SINISTER CAUSE OF HIGH BONE MINERAL DENSITY ON DUAL ENERGY X-RAY ABSORPTIOMETRY.

    PubMed

    Razi, Mairah; Hassan, Aamna

    2016-01-01

    Dual energy X-ray absorptiometry (DXA) has an established, well standardized role in the measurement of bone mineral density (BMD). In routine clinical practice, the main focus of bone densitometry is to identify low bone mass for the diagnosis and monitoring of osteoporosis particularly in postmenopausal females and in high risk individuals. Less commonly, elevated BMD can also be seen on routine DXA scanning usually due to degenerative disease. However, a range of other skeletal disorders can also lead to high BMD. Careful recognition of various artefacts and pathologic processes that can falsely elevate the BMD is essential for accurate DXA scan analysis and reporting. We present a case of high BMD in a patient of prostate carcinoma with widespread sclerotic metastases. PMID:27323594

  13. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed Central

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-01-01

    Objective The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. Results The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from −0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Conclusions Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population. PMID:21586503

  14. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations.

    PubMed

    Soladoye, O P; López Campos, Ó; Aalhus, J L; Gariépy, C; Shand, P; Juárez, M

    2016-11-01

    The accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from pigs with diverse characteristics was examined in the present study. A total of 648 pigs from three different sire breeds, two sexes, two slaughter weights and three different diets were employed. DXA estimations were used to predict the dissected/chemical yield for lean and fat of carcass sides and primal cuts. The accuracy of the predictions was assessed based on coefficient of determination (R(2)) and residual standard deviation (RSD). The linear relationships for dissected fat and lean for all the primal cuts and carcass sides were high (R(2)>0.94, P<0.01), with low RSD (<1.9%). Relationships between DXA and chemical fat and lean of pork bellies were also high (R(2)>0.94, P<0.01), with RSD <2.9%. These linear relationships remained high over the full range of variation in the pig population, except for sire breed, where the coefficient of determination decreased when carcasses were classified based on this variable. PMID:27395824

  15. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  16. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women

    PubMed Central

    Chen, J.; Punyanitya, M.; Shapses, S.; Heshka, S.; Heymsfield, S. B.

    2007-01-01

    Introduction Recent studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Previous research using regional magnetic resonance spectroscopy methods to measure BMAT has reported inconsistent findings on the relationship between BMAT and dual-energy absorptiometry (DXA)-measured bone mineral density (BMD). Methods In the present study, total body and pelvic BMAT were evaluated in 56 healthy women (age 18–88 yrs, mean±SD, 47.4±17.6 yrs; BMI, 24.3±4.2 kg/m2) with T1-weighted whole-body magnetic resonance imaging (MRI). BMD was measured using the whole-body DXA mode (GE Lunar DPX, software version 4.7). Results A strong negative correlation was observed between pelvic BMAT and BMD (total-body BMD, R=− 0.743, P<0.001; pelvic BMD, R=− 0.646, P<0.001), and between total-body BMAT and BMD (total-body BMD, R=− 0.443, P<0.001; pelvic BMD, R=− 0.308, P < 0.001). The inverse association between pelvic BMAT and BMD remained strong after adjusting for age, weight, total body fat, and menopausal status (partial correlation: total-body BMD, R=− 0.553, P< 0.001; pelvic BMD, R=− 0.513, P<0.001). BMAT was also highly correlated with age (pelvic BMAT, R=0.715, P< 0.001; total-body BMAT, R=0.519, P<0.001). Conclusion MRI-measured BMAT is thus strongly inversely correlated with DXA-measured BMD independent of other predictor variables. These observations, in the context of DXA technical concerns, support the growing evidence linking BMAT with low bone density. PMID:17139464

  17. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  18. Influence of different DXA acquisition modes on monitoring the changes in bone mineral density after hip resurfacing arthroplasty.

    PubMed

    Hakulinen, Mikko A; Borg, Håkan; Häkkinen, Arja; Parviainen, Tapani; Kiviranta, Ilkka; Jurvelin, Jukka S

    2012-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technique enabling the measurement of bone mineral density (BMD) around prostheses after hip resurfacing arthroplasty (HRA). In this study, we evaluated the consistency of different DXA acquisition modes with 33 patients who had undergone HRA. Patients were scanned with DXA immediately after surgery and at 3-, 6-, and 12-mo time points. All the patients were scanned with dual femur and orthopedic hip acquisition modes and analyzed using 10-region ROI model. With both acquisition modes, a statistically significant decrease (p<0.05, Wilcoxon's test) in BMD at 3mo was revealed in 3 ROIs, located to upper and lateral upper femur. Both acquisition modes detected similarly (p<0.01) preservation of the femoral bone stock within 12mo in all but 1 ROI. The applied acquisition protocols involved the use of different footplates for hip fixation. Because the differences between acquisition modes ranged between +1.6% and -7.1% and the reproducibility of BMD values can vary by as much as 28% due to hip rotation, it is proposed that both dual femur and orthopedic hip acquisition modes can be used to monitor the changes in BMD after HRA. However, the same hip rotation is recommended for all DXA measurements.

  19. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method.

  20. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  1. The validity of commonly used adipose tissue body composition equations relative to dual energy X-ray absorptiometry (DXA) in gaelic games players.

    PubMed

    Doran, D A; Mc Geever, S; Collins, K D; Quinn, C; McElhone, R; Scott, M

    2014-02-01

    Dual-energy X-ray absorptiometry (DXA) and adipose tissue percentage estimates (AT%) derived from regression based skinfold equations were compared. 35 Gaelic games players [20.9 ± 1.7 years; 78.1 ± 8.6 kg; 179.5 ± 5.7 cm] underwent whole body fan beam DXA scans following a standardised protocol and assessment of skinfold thickness at 8 sites. Adipose tissue% from the sum of skinfolds and/or via body density were calculated for general and athlete specific equations (SKf-AT %). The relationship, i. e., proportional bias, fixed bias and random error (SEE) between DXA-AT % and AT % derived from the 6 skinfold equations were determined using least squares regression analysis. Skinfold AT% estimates were underestimated relative to DXA-AT % across all skinfold equations except that of Durnin and Wormersley [9] (D&W-∑(4AT %)) (16.7 ± 3.4 vs. 16.6 ± 4.0 %). All equations demonstrated 95 % prediction intervals ranges exceeding ~10 %. Each equation failed to predict AT% relative to DXA within an accepted ± 3.5 % anthropometric error rate. It is recommended that the conversion of absolute skinfold thickness to an AT % is avoided and that the skinfold equations assessed herein are not utilised in Gaelic games players. Alternate 'sum of skinfold' approaches should be considered.

  2. Characterization of low bone mass in young patients with thalassemia by DXA, pQCT and markers of bone turnover.

    PubMed

    Fung, Ellen B; Vichinsky, Elliott P; Kwiatkowski, Janet L; Huang, James; Bachrach, Laura K; Sawyer, Aenor J; Zemel, Babette S

    2011-06-01

    Previous reports using dual x-ray absorptiometry (DXA) suggest that up to 70% of adults with thalassemia major (Thal) have low bone mass. However, few studies have controlled for body size and pubertal delay, variables known to affect bone mass in this population. In this study, bone mineral content and areal density (BMC, aBMD) of the spine and whole body were assessed by DXA, and volumetric BMD and cortical geometries of the distal tibia by peripheral quantitative computed tomography (pQCT) in subjects with Thal (n = 25, 11 male, 10 to 30 years) and local controls (n=34, 15 male, 7 to 30 years). Z-scores for bone outcomes were calculated from reference data from a large sample of healthy children and young adults. Fasting blood and urine were collected, pubertal status determined by self-assessment and dietary intake and physical activity assessed by written questionnaires. Subjects with Thal were similar in age, but had lower height, weight and lean mass index Z-scores (all p < 0.001) compared to controls. DXA aBMD was significantly lower in Thal compared to controls at all sites. Adult Thal subjects (> 18 years, n = 11) had lower tibial trabecular vBMD (p = 0.03), cortical area, cortical BMC, cortical thickness, periosteal circumference and section modulus Z-scores (all p < 0.01) compared to controls. Cortical area, cortical BMC, cortical thickness, and periosteal circumference Z-scores (p = 0.02) were significantly lower in young Thal (≤ 18 years, n = 14) compared to controls. In separate multivariate models, tibial cortical area, BMC, and thickness and spine aBMD and whole body BMC Z-scores remained lower in Thal compared to controls after adjustment for gender, lean mass and/or growth deficits (all p < 0.01). Tanner stage was not predictive in these models. Osteocalcin, a marker of bone formation, was significantly reduced in Thal compared to controls after adjusting for age, puberty and whole body BMC (p=0.029). In summary, we have found evidence of

  3. Dual-photon Gd-153 absorptiometry of bone

    SciTech Connect

    Wahner, H.W.; Dunn, W.L.; Mazess, R.B.; Towsley, M.; Lindsay, R.; Markhard, L.; Dempster, D.

    1985-07-01

    Dual-photon absorptiometry with gadolinium 153 was used to measure the mineral content of lumbar vertebrae in cadavers, excised vertebrae with marrow, and dry, marrow-free vertebrae. The error introduced by the surrounding soft tissue of cadavers was 3%, and the error in determining mineral mass or density in excised vertebrae was about 5%. The correlation coefficient between the results of Gd-153 and corrected iodine 125 (single-photon) absorptiometry on 24 femoral necks was 0.99, and the predictive error was 3.7%. Dual-photon absorptiometry accurately indicates bone mass and bone density and is only slightly affected by either surrounding tissue or fat changes in bone marrow.

  4. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses. PMID:26206525

  5. Characteristics of long bone DXA reference data in Hong Kong Chinese.

    PubMed

    Leung, Kwok Sui; Lee, Kwong Man; Cheung, Wing Hoi; Ng, Edmond Siu Woon; Qin, Ling

    2004-01-01

    With the increasing number of geriatric long bone fractures, the establishment of long bone reference BMD data is desirable for the accurate diagnosis of osteoporosis, study of fracture mechanics, implant design, and indications for augmentation of fracture fixation with biomaterials. We report the normal reference bone mineral density (BMD) and bone mineral content (BMC) at three femoral sites (proximal, diaphyseal, and distal) in 106 male and 93 female Hong Kong Chinese aged 12 to 80, measured with dual-energy X-ray absorptiometry (DXA). The length and width of the femur were also measured. The results suggest that males reached peak bone mass earlier than females and the value was also higher in all measured sites. After reaching the peak bone mass, bones lost BMD faster in females. The age-related annual bone loss (in BMD) calculated with a regression model in female subjects were, on average, 3.3, 4.0, and 3.0 times higher than those in males at the diaphyseal, proximal, and distal regions, respectively. The decrease in BMD and BMC occurred slightly earlier in the proximal and distal regions than the diaphysis in both sexes. The male femur was significantly longer than that of the female in all age groups after 20 yr of age and remained unchanged with advancing age. The femoral width in females showed an increasing trend from adolescence. Our study provides reference data for the changes in diaphyseal BMC and BMD associated with aging. The age-related changes in the femoral diameter in females might attenuate the negative impact on fracture risk as a result of decreasing BMD with age.

  6. DXA: Technical aspects and application.

    PubMed

    Bazzocchi, Alberto; Ponti, Federico; Albisinni, Ugo; Battista, Giuseppe; Guglielmi, Giuseppe

    2016-08-01

    The key role of dual-energy X-ray absorptiometry (DXA) in the management of metabolic bone diseases is well known. The role of DXA in the study of body composition and in the clinical evaluation of disorders which directly or indirectly involve the whole metabolism as they may induce changes in body mass and fat percentage is less known or less understood. DXA has a range of clinical applications in this field, from assessing associations between adipose or lean mass and the risk of disease to understanding and measuring the effects of pathophysiological processes or therapeutic interventions, in both adult and paediatric human populations as well as in pre-clinical settings. DXA analyses body composition at the molecular level that is basically translated into a clinical model made up of fat mass, non-bone lean mass, and bone mineral content. DXA allows total and regional assessment of the three above-mentioned compartments, usually by a whole-body scan. Since body composition is a hot topic today, manufacturers have steered the development of DXA technology and methodology towards this. New DXA machines have been designed to accommodate heavier and larger patients and to scan wider areas. New strategies, such as half-body assessment, permit accurate body scan and analysis of individuals exceeding scan field limits. Although DXA is a projective imaging technique, new solutions have recently allowed the differential estimate of subcutaneous and intra-abdominal visceral fat. The transition to narrow fan-beam densitometers has led to faster scan times and better resolution; however, inter- or intra-device variation exists depending on several factors. The purposes of this review are: (1) to appreciate the role of DXA in the study of body composition; (2) to understand potential limitations and pitfalls of DXA in the analysis of body composition; (3) to learn about technical elements and methods, and to become familiar with biomarkers in DXA. PMID:27157852

  7. REVIEW: Photon absorptiometry, bone densitometry and the challenge of osteoporosis

    NASA Astrophysics Data System (ADS)

    Webber, Colin E.

    2006-07-01

    During the lifetime of Physics in Medicine and Biology, osteoporosis has been recognized as the cause of a major health burden for societies, particularly within developed countries. The health detriment is associated with the consequences of bone fractures and the subsequent increases in morbidity and mortality. Much of the credit for the current availability of means for identifying groups of subjects at risk of fracture and the provision of means for the effective treatment of excessive bone loss can be attributed to the technique of dual photon absorptiometry. In this review, the history of the development of techniques based on the interactions of x- and γ-rays with bone is considered and the ultimate dominance of x-ray based absorptiometry is described. The advantages and disadvantages of current absorptiometric techniques are presented and the likely future path for bone measurement is outlined.

  8. Bone mineral density test

    MedlinePlus

    ... test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low-dose x- ...

  9. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis.

    PubMed

    Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2007-10-01

    The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density. PMID:21224926

  10. Bone mineral density assessment: comparison of dual-energy X-ray absorptiometry measurements at the calcaneus, spine, and hip.

    PubMed

    Sweeney, Ann T; Malabanan, Alan O; Blake, Michael A; Weinberg, Janice; Turner, Adrian; Ray, Patricia; Holick, Michael F

    2002-01-01

    It is widely accepted that bone mineral density (BMD) measurements obtained by dual-energy X-ray absorptiometry (DXA) at the spine, hip, and calcaneus predict fracture risk. Few published studies to date have examined the relationship between pDXA measurements at the calcaneus to those at the hip and spine. It has been demonstrated that T-score-based criteria cannot be universally applied to all skeletal sites and measurement technologies. Our goal was to define the calcaneal T-score threshold equivalent to low bone mass at the hip or spine. A total of 119 female patients between the ages of 33 and 76 yr of age were recruited at Boston University Medical Center for bone densitometry screening. Bone density measurements were obtained at the calcaneus using the portable Norland Apollo Densitometer (Norland Medical Systems, Fort Atkinson, WI) and at the hip and spine using the Norland Eclipse densitometer. By defining a pDXA T-score < or =-1 as a positive test and DXA scores < or =-1 as the presence of low bone mass, we obtained a specificity of 100% and a sensitivity of 73% (positive predictive value 100% and negative predictive value 80%) in detecting low bone mass at the femoral neck in women over age 65 yr. In women between 40 and 65 yr of age, we obtained a sensitivity of 50% and a specificity of 93% (positive predictive value 93% and negative predictive value 50%) in detecting low bone mass at the femoral neck. In women less than 40 yr of age, we obtained a sensitivity of 13% and a specificity of 100% (positive predictive value 100% and negative predictive value 75%) in detecting low bone mass at the femoral neck. From receiver operating characteristic curves, a calcaneal T-score < or =0.0 detects those with a T-score < or =-1 at the femoral neck and lumbar spine with 100% and 85% sensitivity, respectively. Peripheral DXA of the calcaneus is a sensitive and specific test to diagnose low bone mass in women over 65 yr of age. In women under 65 yr of age, this

  11. Osteoporosis pharmacotherapy following bone densitometry: importance of patient beliefs and understanding of DXA results

    PubMed Central

    Cadarette, S. M.; Eskildsen, P.; Abrahamsen, B.

    2016-01-01

    Summary Persistence with osteoporosis therapy remains low and identification of factors associated with better persistence is essential in preventing osteoporosis and fractures. In this study, patient understanding of dual energy X-ray absorptiometry (DXA) results and beliefs in effects of treatment were associated with treatment initiation and persistence. Introduction The purpose of this study is to examine patient understanding of their DXA results and evaluate factors associated with initiation of and persistence with prescribed medication in first-time users of anti-osteoporotic agents. Self-reported DXA results reflect patient understanding of diagnosis and may influence acceptance of osteoporosis therapy. To improve patient understanding of DXA results, we provided written information to patients and their referring general practitioner (GP), and evaluated factors associated with osteoporosis treatment initiation and 1-year persistence. Methods Information on diagnosis was mailed to 1,000 consecutive patients and their GPs after DXA testing. One year after, a questionnaire was mailed to all patients to evaluate self-report of DXA results, drug initiation and 1-year persistence. Quadratic weighted kappa was used to estimate agreement between self-report and actual DXA results. Multivariable logistic regression was used to evaluate predictors of understanding of diagnosis, and correlates of treatment initiation and persistence. Results A total of 717 patients responded (72%). Overall, only 4% were unaware of DXA results. Agreement between self-reported and actual DXA results was very good (κ=0.83); younger age and glucocorticoid use were associated with better understanding. Correctly reported DXA results was associated with treatment initiation (OR 4.3, 95% CI 1.2–15.1, p=0.02), and greater beliefs in drug treatment benefits were associated with treatment initiation (OR 1.4, 95%CI 1.1–1.9, p=0.006) and persistence with therapy (OR 1.8, 95% CI 1.2–2

  12. Comparison of nuclear magnetic resonance spectroscopy with dual-photon absorptiometry and dual-energy X-ray absorptiometry in the measurement of thoracic vertebral bone mineral density: compressive force versus bone mineral.

    PubMed

    Myers, T J; Battocletti, J H; Mahesh, M; Gulati, M; Wilson, C R; Pintar, F; Reinartz, J

    1994-05-01

    31P nuclear magnetic resonance spectroscopy (NMRS) measurements were made on human T2 and T3 vertebral bodies. The bone mineral content (BMC) of isolated vertebral bodies minus the posterior elements and disks was measured using (1) NMRS on a 3.5 T, 85 mm bore GE Medical Systems NT-150 superconducting spectrometer, (2) a Lunar Corporation DPX-L dual-energy X-ray absorptiometry (DXA) scanner in an anterior-posterior (AP) orientation, (3) a Norland Corporation XR26 DXA scanner, also in an AP direction, and (4) a Norland Corporation model 2600 dual-photon absorptiometry (DPA) densitometer in both the AP and superior-inferior (SI) directions. Vertebral body volumes were measured using a water displacement technique to determine volume bone mineral densities (VBMD). They were then compressed to failure using an electrohydraulic testing device, followed by ashing in a muffle furnace at 700 degrees C for 18 h. Correlations of BMC between NMRS and DPA, DXA and ashing were excellent (0.96 < or = r < or = 0.99); in a one-way analysis of variance (ANOVA) test, means were not statistically different at a p level of 0.757. The correlations of VBMD between NMRS and the other methods were not as good (0.83 < or = r < or = 0.95); in a one-way ANOVA test, means were not statistically different at a p level of 0.089. BMC was a better predictor of ultimate compressive failure than VBMD for all six methods. For NMRS, the regression coefficient for BMC was r2 = 0.806, compared with r2 = 0.505 for VBMD. NMRS may prove an alternative to present methods of determining bone mineral. PMID:8069051

  13. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are

  14. DXA surrogates for visceral fat are inversely associated with bone density measures in adolescent athletes with menstrual dysfunction

    PubMed Central

    Ackerman, Kathryn E.; Davis, Brittany; Jacoby, Leah; Misra, Madhusmita

    2013-01-01

    Objective Lean mass is associated with bone mineral density (BMD) in athletes, attributable to the anabolic pull of muscle on bone. Fat mass is also important, and subcutaneous fat positively and visceral fat negatively correlates with BMD in obese adolescents. The contribution of regional body composition to low BMD in amenorrheic athletes (AA) has not been elucidated. We hypothesized that in adolescent athletes (runners), BMD is associated positively with total fat (surrogate for subcutaneous fat) and lean mass, and inversely with percent trunk fat and trunk-to-extremity fat ratio (surrogates for visceral fat). Design Cross-sectional study. Subjects and methods We examined BMD and body composition using dual energy X-ray absorptiometry (DXA) in 21 AA and 19 eumenorrheic athletes (EA) (12–18 years) (runners). We report total hip and height-adjusted BMD [lumbar bone mineral apparent density (LBMAD) and whole body bone mineral content/height (WBBMC/Ht)]. Results AA had lower BMD than EA. Lean mass was less strongly associated with hip BMD in AA than EA; fat mass was positively associated with LBMAD in EA. Percent trunk fat and trunk-to-extremity fat ratio were inversely associated with lumbar and WB measures in AA. In a regression model, lean and fat mass were positively, and percent trunk fat and trunk-to-extremity fat ratio negatively associated with LBMAD and WBBMC/Ht for all athletes, even after controlling for serum estradiol. Conclusions DXA surrogates for visceral fat are inversely associated with bone density in athletes. PMID:21932588

  15. Dual X-ray absorptiometry detects disease- and treatment-related alterations of bone density in prostate cancer patients.

    PubMed

    Smith, G L; Doherty, A P; Banks, L M; Dutton, J; Hanham, L W; Christmas, T J; Epstein, R J

    2000-01-01

    Metastatic bone disease is an important clinical problem which has proven difficult to study because of a lack of noninvasive investigative modalities. Here we show that dual-energy X-ray absorptiometry (DXA) scanning provides clinically useful information about the status of metastatic bone lesions in cancer patients undergoing palliative treatment. In the study group of 21 patients, a significant increase in metastatic bone mineral density (BMD) was confirmed in prostate (n = 14) relative to breast (n = 7) cancer patients. With respect to the prostate cancer cohort, further increases in lesional BMD were evident in all evaluable patients in whom biochemical progression occurred; conversely, lesional BMD declined in patients who had a partial response to therapy. BMD of uninvolved bone decreased with all types of androgen-deprivation therapy regardless of whether patients responded or relapsed. We conclude that BMD changes in both lesional and uninvolved bone are readily detectable in metastatic prostate cancer, and propose that DXA scanning represents a promising new approach to monitoring the natural history and therapeutic course of this disease.

  16. 3D bone mineral density distribution and shape reconstruction of the proximal femur from a single simulated DXA image: an in vitro study

    NASA Astrophysics Data System (ADS)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; del Río Barquero, Luis M.; Fritscher, Karl; Schubert, Rainer; Eckstein, Felix; Link, Thomas; Frangi, Alejandro F.

    2010-03-01

    Area Bone Mineral Density (aBMD) measured by Dual-energy X-ray Absorptiometry (DXA) is an established criterion in the evaluation of hip fracture risk. The evaluation from these planar images, however, is limited to 2D while it has been shown that proper 3D assessment of both the shape and the Bone Mineral Density (BMD) distribution improves the fracture risk estimation. In this work we present a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image. A statistical model of shape and a separate statistical model of the BMD distribution were automatically constructed from a set of Quantitative Computed Tomography (QCT) scans. The reconstruction method incorporates a fully automatic intensity based 3D-2D registration process, maximizing the similarity between the DXA and a digitally reconstructed radiograph of the combined model. For the construction of the models, an in vitro dataset of QCT scans of 60 anatomical specimens was used. To evaluate the reconstruction accuracy, experiments were performed on simulated DXA images from the QCT scans of 30 anatomical specimens. Comparisons between the reconstructions and the same subject QCT scans showed a mean shape accuracy of 1.2mm, and a mean density error of 81mg/cm3. The results show that this method is capable of accurately reconstructing both the 3D shape and 3D BMD distribution of the proximal femur from DXA images used in clinical routine, potentially improving the diagnosis of osteoporosis and fracture risk assessments at a low radiation dose and low cost.

  17. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  18. Correlation between the values of bone measurements using DXA, QCT and USD methods and the bone strength in calcanei in vitro.

    PubMed

    Imamoto, K; Hamanaka, Y; Yamamoto, I; Niiho, C

    1998-10-01

    In this study we used the calcanei from 32 female and 29 male cadavers, ages 58 to 100. The bone mineral density (BMD) and average bone density (ABD) were measured using dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) respectively, while speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness index (SI) were measured using ultrasound densitometry (USD). Thereafter, the bone strength was measured using a compressor to cause bone fracture, and evaluated in comparison with the values of the three measurement methods. The scatter diagrams of the values of the three different methods versus age displayed a negative linear regression in both sexes. Values for BMD and ABD were generally about 20% higher in males than in females, while SOS, BUA and SI were a few percents higher in males than in females. A significantly high correlation existed between BMD and ABD (r = 0.95), and a moderate correlation between BMD and either SOS, BUA or SI (r = 0.65; r = 0.39; r = 0.57, respectively). Thus, among the values measured using USD, SOS most closely corresponded to BMD of the calcanei. The bone strength of the calcanei indicated a moderate correlation with BMD, ABD and SOS (r = 0.38, P < 0.01; r = 0.43, P < 0.001; r = 0.45, P < 0.001, respectively). However, 42 calcanei fractured under pressures of less than 40 kgf, although the other 19 calcanei endured pressure of 40 kgf or more. Two calcanei with high BMD over 0.7 g/cm2 by DXA were very fragile, whereas a few with low BMD less than 0.4 g/cm2 were not very fragile. Similarly, high SOS, BUA and SI values by USD did not always correspond to high bone strength. Thus, some discrepancies among the bone strength and measurement values remained to be solved in the future.

  19. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-01-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.

  20. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures

    PubMed Central

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Lowe, Timothy; Cussen, Patricia; Ballard, Joyce E.; Paolo, David Di; Shirvaikar, Mukul

    2015-01-01

    Bone mineral density (BMD) measurements from Dual-energy X-ray Absorptiometry (DXA) alone cannot account for all factors associated with the risk of hip fractures. For example, the inhomogeneity of bone mineral density in the hip region also contributes to bone strength. In the stochastic assessment of bone inhomogeneity, the BMD map in the hip region is considered as a random field and stochastic predictors can be calculated by fitting a theoretical model onto the experimental variogram of the BMD map. The objective of this study was to compare the ability of bone mineral density and stochastic assessment of inhomogeneous distribution of bone mineral density in predicting hip fractures for postmenopausal women. DXA scans in the hip region were obtained from postmenopausal women with hip fractures (N=47, Age: 71.3±11.4 years) and without hip fractures (N=45, Age: 66.7±11.4 years). Comparison of BMD measurements and stochastic predictors in assessing bone fragility was based on the area under the receiver operating characteristic curves (AUC) from logistic regression analyses. Although stochastic predictors offered higher accuracy (AUC=0.675) in predicting the risk of hip fractures than BMD measurements (AUC=0.625), such difference was not statistically significant (p=0.548). Nevertheless, the combination of stochastic predictors and BMD measurements had significantly (p=0.039) higher prediction accuracy (AUC=0.748) than BMD measurements alone. This study demonstrates that stochastic assessment of bone mineral distribution from DXA scans can serve as a valuable tool in enhancing the prediction of hip fractures for postmenopausal women in addition to BMD measurements. PMID:25683520

  1. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness.

    PubMed

    Bolotin, H H

    2001-05-01

    New, anatomically realistic simulation studies based on a cadaveric lumbar vertebra and a broad range of soft tissue anthropometric representations have quantitatively delineated inaccuracies inherent in dual-energy X-ray absorptiometry (DXA) in vivo bone mineral density (BMD) methodology. It is found that systematic inaccuracies in DXA BMD measurements may readily exceed +/-20% at typical in vivo lumbar vertebral sites, especially for osteopenic/osteoporotic, postmenopausal, and elderly patients. These findings are quantitatively compared with extensive clinical evidence of strong, positive correlations between soft tissue anthropometrics and DXA in vivo BMD upon which prior significant bone biology interpretations and implications have been based. The agreement is found to be both qualitatively and quantitatively excellent. Moreover, recent extensive multicenter clinical studies have also exposed new facets of strong linkages between body mass/percent body fat/body mass index (BMI) and DXA-measured BMD that are particularly relevant to osteopenia/osteoporosis and remedial effectiveness of antiresorptive drug therapy. These seemingly disparate and unrelated diagnostic and prognostic aspects of clinically observed associations between soft tissue anthropometrics and measured vertebral BMD are, in this study, self-consistently shown to share the common origin of being manifestations of systematic inherent inaccuracies in DXA in vivo BMD methodology, without the need to invoke any underlying biologically causal mechanism(s). These inaccuracies arise principally from absorptiometric disparities between the intra- and extraosseous soft tissues within the DXA scan region of interest. The present evaluative comparisons are based exclusively on an incisive and diverse body of clinical data that appears difficult to dismiss or discount. Previous invocations of biologically causal mechanisms responsible for this broad range of observations linking body mass, percent body

  2. Prevalence and predictors of low bone mineral density and fragility fractures among HIV-infected patients at one Italian center after universal DXA screening: sensitivity and specificity of current guidelines on bone mineral density management.

    PubMed

    Mazzotta, Elena; Ursini, Tamara; Agostinone, Adriana; Di Nicola, Angelo Domenico; Polilli, Ennio; Sozio, Federica; Vadini, Francesco; Pieri, Alessandro; Trave, Francesca; De Francesco, Valerio; Capasso, Lorenzo; Borderi, Marco; Manzoli, Lamberto; Viale, Pierluigi; Parruti, Giustino

    2015-04-01

    Low bone mineral density (BMD) is frequent in HIV infection regardless of the use of antiretroviral therapy (ART). Uncertainties remain, however, as to when in HIV infection BMD screening should be performed. We designed a prospective study to estimate the efficacy of universal BMD screening by dual-energy X-ray absorptiometry (DXA). Since April 2009 through March 2011, HIV patients attending our Center were offered femoral/lumbar DXA to screen BMD. Low BMD for chronological age, that is significant osteopenia, was defined as a Z-score ≤ -2.0 at femur and lumbar spine. Nontraumatic bone fractures (NTBFs) were evaluated. The final sample included 163 patients. A Z-score ≤ -2.0 at any site was observed in 19.6% of cases: among these, 18.8% had no indication to DXA using current Italian HIV guidelines for BMD screening. A lower femoral Z-score was independently associated with lower BMI, AIDS diagnosis, HCV co-infection, antiretroviral treatment, and NTBFs; a lower lumbar Z-score with age, BMI, Nadir CD4 T-cell counts, and NTBFs. Prevalence of NTBFs was 27.0%, predictors being male gender, HCV co-infection, and lower femoral Z-scores. Our results suggest that measuring BMD by DXA in all HIV patients regardless of any further specification may help retrieving one-fifth of patients with early BMD disorders not identified using current criteria for selective screening of BMD.

  3. Validation and application of dual-energy X-ray absorptiometry to measure bone mineral density in rabbit vertebrae.

    PubMed

    Norris, S A; Pettifor, J M; Gray, D A; Biscardi, A; Buffenstein, R

    2000-01-01

    The rabbit could be a superior animal model to use in bone physiology studies, for the rabbit does attain true skeletal maturity. However, there are neither normative bone mineral density (BMD) data on the rabbit nor are there any validation studies on the use of dual-energy X-ray absorptiometry (DXA) to measure spinal BMD in the rabbit. Therefore, our aim was twofold: first, to investigate whether DXA could be used precisely and accurately to determine the bone mineral content (BMC). bone area (BA). and BMD of the rabbit lumbar spine: Second. to evaluate the new generation fan-beam DXA (Hologic QDR-4500) with small animal software by comparing two DXA methodologies QDR-1000 and QDR-4500 with each other, as well as against volumetric bone density (VBMD) derived from Archimedes principle. As expected. there was a magnification error in the QDR-4500 (BMC, BA. and BMD increased by 52%. 38%. and 10%, respectively, when the vertebrae were positioned flat against the scanning table). With the magnification error kept constant (vertebrae positioned 10 cm above the scanning table to match the height in vivo). there were no differences among the mean BMC. BA. and BMD of the rabbit vertebrae (Ll-L7) in vivo and in vitro using the QDR-4500 (p > 0.05). BMC, BA, and BMD differed between QDR-1000 and QDR-4500 in vitro because of a magnification error when the vertebrae were flat on the table (p <0.0001). and, consequently. the machines did not correlate with one another (p > 0.05). However, the BMC, BA, and BMD of the two DXAs did significantly correlate with each other in vivo and in vitro when the magnification error was compensated for (r = 0.44 and 0.52. i2 = 0.45 and 0.63. and 12 = 0.41 and 0.60. respectively. p < 0.05-0.008). The BMC and BMD (in vivo and in vitro) of the rabbit vertebrae measured by QDR-4500 was significantly correlated with VMBD, ash weight, and mineral content (,2 = 0.67-0.90,j <0.01-0.0001). Therefore, the QDR-4500 can be used to yield precise and

  4. Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume.

    PubMed

    Sran, Meena M; Khan, Karim M; Keiver, Kathy; Chew, Jason B; McKay, Heather A; Oxland, Thomas R

    2005-12-01

    Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard-ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5-T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice. PMID:15616862

  5. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults.

    PubMed

    Hind, Karen; Oldroyd, Brian; Truscott, John G

    2010-01-01

    Knowledge of precision is integral to the monitoring of bone mineral density (BMD) changes using dual-energy X-ray absorptiometry (DXA). We evaluated the precision for bone measurements acquired using a GE Lunar iDXA (GE Healthcare, Waukesha, WI) in self-selected men and women, with mean age of 34.8 yr (standard deviation [SD]: 8.4; range: 20.1-50.5), heterogeneous in terms of body mass index (mean: 25.8 kg/m(2); SD: 5.1; range: 16.7-42.7 kg/m(2)). Two consecutive iDXA scans (with repositioning) of the total body, lumbar spine, and femur were conducted within 1h, for each subject. The coefficient of variation (CV), the root-mean-square (RMS) averages of SDs of repeated measurements, and the corresponding 95% least significant change were calculated. Linear regression analyses were also undertaken. We found a high level of precision for BMD measurements, particularly for scans of the total body, lumbar spine, and total hip (RMS: 0.007, 0.004, and 0.007 g/cm(2); CV: 0.63%, 0.41%, and 0.53%, respectively). Precision error for the femoral neck was higher but still represented good reproducibility (RMS: 0.014 g/cm(2); CV: 1.36%). There were associations between body size and total-body BMD and total-hip BMD SD precisions (r=0.534-0.806, p<0.05) in male subjects. Regression parameters showed good association between consecutive measurements for all body sites (r(2)=0.98-0.99). The Lunar iDXA provided excellent precision for BMD measurements of the total body, lumbar spine, femoral neck, and total hip.

  6. Prenatal pesticide exposure and PON1 genotype associated with adolescent body fat distribution evaluated by dual X-ray absorptiometry (DXA).

    PubMed

    Tinggaard, J; Wohlfahrt-Veje, C; Husby, S; Christiansen, L; Skakkebaek, N E; Jensen, T K; Grandjean, P; Main, K M; Andersen, H R

    2016-07-01

    Many modern pesticides have endocrine disrupting abilities and early-life exposure may affect growth and disease risk later in life. Previously, we reported associations between prenatal pesticide exposure and higher childhood body fat content measured by anthropometry. The associations were affected by child PON1 Q192R genotype. We aimed to study whether prenatal pesticide exposure was still associated with body fat content and distribution in the children at puberty and the potential impact of both maternal and child PON1 Q192R genotype. In this prospective cohort study of 247 children born by occupationally exposed or unexposed women (greenhouse workers and controls) two follow-up examinations (age 10-15 and 11-16 years) including simple anthropometry, skinfold measurements, pubertal staging and blood sampling were performed. Total and regional fat% was determined by dual X-ray absorptiometry (DXA) at age 10-15. Prenatal pesticide exposure was associated with increased total, android, and gynoid fat percentage (DXA) at age 10-15 years after adjustment for sex, socioeconomic status, and puberty (all β = 0.5 standard deviation score (SDS) p < 0.05). Stratified by sex, the associations were significant in girls (total fat: β = 0.7 SDS, android-gynoid ratio: β = 0.1, both p < 0.05), but not in boys. Carrying the R-allele (child or mother, separately, or both) augmented the differences between exposed and unexposed children (total fat: β = 1.0 SDS, β = 0.8 SDS, p < 0.05, respectively, and β = 1.2 SDS, p < 0.01). No exposure-related differences were found if either the child or mother had the QQ wild-type. At age 11-16, exposed children tended to have a higher total fat% estimated by skinfolds than unexposed children (p = 0.06). No significant associations between prenatal exposure and body mass index or waist circumference were found. Prenatal pesticide exposure was associated with higher adolescent body fat content, including android

  7. Relationship among MRTA, DXA, and QUS.

    PubMed

    Djokoto, Christina; Tomlinson, George; Waldman, Stephen; Grynpas, Marc; Cheung, Angela M

    2004-01-01

    Dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) are the accepted modalities for the evaluation of fracture risk in the clinical setting. However, neither method provides a direct measurement of bone mechanics. In this study, we investigated a prototype device, known as a mechanical response tissue analyzer (MRTA), which provides direct mechanical measurements of mechanical properties of bone. A total of 56 healthy volunteers (20 men and 36 women) between the ages of 18 and 83 were recruited. The MRTA was used to measure the cross-sectional bending stiffness (EI) of the ulna bone. Axial speed of sound (SOS) at the ulna bone was determined by QUS; bone mineral content (BMC) and bone mineral density (BMD) were determined by DXA. Correlations, regression analysis, and analyses of variance (ANOVAs) were used to compare the three modalities. These analyses revealed that although there are strong linear relationships among the data collected by the various technologies, the bone properties reflected by MRTA are not fully explained by DXA and QUS. We conclude that the total information conveyed by MRTA measurements is unique. Further research is needed to delineate the different qualities of bone strength that are captured by MRTA, but not by DXA or QUS. PMID:15618607

  8. Relationship among MRTA, DXA, and QUS.

    PubMed

    Djokoto, Christina; Tomlinson, George; Waldman, Stephen; Grynpas, Marc; Cheung, Angela M

    2004-01-01

    Dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) are the accepted modalities for the evaluation of fracture risk in the clinical setting. However, neither method provides a direct measurement of bone mechanics. In this study, we investigated a prototype device, known as a mechanical response tissue analyzer (MRTA), which provides direct mechanical measurements of mechanical properties of bone. A total of 56 healthy volunteers (20 men and 36 women) between the ages of 18 and 83 were recruited. The MRTA was used to measure the cross-sectional bending stiffness (EI) of the ulna bone. Axial speed of sound (SOS) at the ulna bone was determined by QUS; bone mineral content (BMC) and bone mineral density (BMD) were determined by DXA. Correlations, regression analysis, and analyses of variance (ANOVAs) were used to compare the three modalities. These analyses revealed that although there are strong linear relationships among the data collected by the various technologies, the bone properties reflected by MRTA are not fully explained by DXA and QUS. We conclude that the total information conveyed by MRTA measurements is unique. Further research is needed to delineate the different qualities of bone strength that are captured by MRTA, but not by DXA or QUS.

  9. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity. PMID:23562363

  10. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity.

  11. Photon absorptiometry for non-invasive measurement of bone mineral content

    SciTech Connect

    Gupta, S.; Luna, E.; Belsky, J.; Gelfman, N.; Miller, K.; Davies, T.

    1984-08-01

    Bone mineral content of the distal radius was determined in 106 patients by single photon absorptiometry using iodine-125 monochromatic source. The technique provided a reliable means to assess the degree of mineral loss in conditions such as osteoporosis, renal osteodystrophy in patients on chronic maintenance dialysis, subjects on long-term steroid therapy, and those with diabetes mellitus. It is more sensitive than conventional radiography and completely noninvasive compared to bone biopsy. It is suggested that photon absorptiometry is a simple, sensitive, and reliable technique for assessment and follow-up of the bone mineral content in a host of disorders associated with bone demineralization.

  12. Determination of radial bone mineral content in low birth weight infants by photon absorptiometry

    SciTech Connect

    Greer, F.R.

    1988-07-01

    Studies at the University of Wisconsin have demonstrated that photon absorptiometry is a precise, accurate, and reproducible technique for measuring bone mineral content in premature infants and can be used to establish an intrauterine curve of bone mineralization in the fetus. Photon absorptiometry can also be used to measure bone width, thereby documenting appositional bone growth. The bone mineral content/bone width ratio may be helpful in identifying disorders of bone mineral metabolism in premature infants. The technique has been used to demonstrate that relatively poor bone mineralization (compared with the intrauterine curve) occurs in very low birth weight infants after birth, regardless of the type of feeding or the presence or absence of bronchopulmonary dysplasia. 31 references.

  13. Usefulness of calcaneal quantitative ultrasound stiffness for the evaluation of bone health in HIV-1-infected subjects: comparison with dual X-ray absorptiometry

    PubMed Central

    Fantauzzi, Alessandra; Floridia, Marco; Ceci, Fabrizio; Cacciatore, Francesco; Vullo, Vincenzo; Mezzaroma, Ivano

    2016-01-01

    Objectives With the development of effective treatments and the resulting increase in life expectancy, bone mineral density (BMD) alteration has emerged as an important comorbidity in human immunodeficiency virus type-1 (HIV-1)-infected individuals. The potential contributors to the pathogenesis of osteopenia/osteoporosis include a higher prevalence of risk factors, combined antiretroviral therapy (cART)-exposure, HIV-1 itself and chronic immune activation/inflammation. Dual-energy X-ray absorptiometry (DXA) is the “gold standard” technique for assessing bone status in HIV-1 population. Methods We conducted a cross-sectional study to investigate bone mineral status in a group of 158 HIV-1-infected subjects. The primary endpoint was the feasibility of calcaneal quantitative ultrasound (QUS) as a screening tool for BMD. All subjects were receiving stable cART and were virologically suppressed (HIV-RNA <37 copies/mL) from at least 12 months. Calcaneal QUS parameters were analyzed to obtain information on bone mass and microarchitecture. The results were compared with those obtained by DXA. Results No correlations were found between DXA/QUS parameters and demographic or HIV-1-specific characteristics, also including cART strategies. In the univariate analyses BMD, QUS indexes, and Fracture Risk Assessment Tool scores conversely showed significant associations with one or more demographic or HIV-1-related variables. Moreover, a significant relationship between calcaneal quantitative ultrasound index/stiffness and femoral/lumbar BMD values from DXA was described. The multivariate analysis showed an independent association between calcaneal quantitative ultrasound index/stiffness and body mass index, higher CD4+ T-cell numbers and low 25-OH D2/D3 vitamin D levels <10 ng/mL (P-values: 0.004, 0.016, and 0.015, respectively). Conclusion As an alternative and/or integrative examination to DXA, calcaneal QUS could be proposed as a useful screening in HIV-1-infected

  14. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  15. Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in postmenopausal women from the general population: a cost-effectiveness analysis.

    PubMed

    Marín, F; López-Bastida, J; Díez-Pérez, A; Sacristán, J A

    2004-03-01

    The aim of our study was to assess, from the perspective of the National Health Services in Spain, the cost-effectiveness of quantitative ultrasound (QUS) as a prescreen referral method for bone mineral density (BMD) assessment by dual-energy X-ray absorptiometry (DXA) in postmenopausal women of the general population. Using femoral neck DXA and heel QUS. We evaluated 267 consecutive postmenopausal women 65 years and older and attending primary care physician offices for any medical reason. Subjects were classified as osteoporotic or nonosteoporotic (normal or osteopenic) using the WHO definition for DXA. Effectiveness was assessed in terms of the sensitivity and specificity of the referral decisions based on the QUS measurement. Local costs were estimated from health services and actual resource used. Cost-effectiveness was evaluated in terms of the expected cost per true positive osteoporotic case detected. Baseline prevalence of osteoporosis evaluated by DXA was 55.8%. The sensitivity and specificity for the diagnosis of osteoporosis by QUS using the optimal cutoff thresholds for the estimated heel BMD T-score were 97% and 94%, respectively. The average cost per osteoporotic case detected based on DXA measurement alone was 23.85 euros. The average cost per osteoporotic case detected using QUS as a prescreen was 22.00 euros. The incremental cost-effectiveness of DXA versus QUS was 114.00 euros per true positive case detected. Our results suggest that screening for osteoporosis with QUS while applying strict cufoff values in postmenopausal women of the general population is not substantially more cost-effective than DXA alone for the diagnosis of osteoporosis. However, the screening strategy with QUS may be an option in those circumstances where the diagnosis of osteoporosis is deficient because of the difficulty in accessing DXA equipment.

  16. Disproportionate, age-related bone loss in long bone ends: a structural analysis based on dual-energy X-ray absorptiometry.

    PubMed

    Sievänen, H; Uusi-Rasi, K; Heinonen, A; Oja, P; Vuori, I

    1999-01-01

    The width of long bone diaphyses apparently increase with age, a phenomenon that is suggested to have some positive impact on bone strength. On the other hand, these changes in size that are site-specific may cause a deterioration in the local mechanical integrity of the whole bone. Physical activity and calcium intake are known to be able to modify bone mass and size. It is, however, not known whether these lifestyle habits can modify the postulated disproportionate changes in bone size. To address this question, bone mineral content (BMC)-derived estimates of cross-sectional areas (CSA) of femur and radius in 158 premenopausal (mean age 43, standard deviation 2 years) and 134 postmenopausal (63 (2) years), clinically healthy women with contrasting long-term histories in physical activity and calcium intake were determined from dual-energy X-ray absorptiometry (DXA) data. The DXA-obtained BMC correlated strongly with the actual CSA (r = 0.94) determined with peripheral quantitative computed tomography. The ratios between functionally interrelated CSA data (i.e., (radial shaft CSA/distal radius CSA), (trochanter CSA/femoral neck CSA), (femoral shaft CSA/trochanter CSA) and (femoral shaft CSA/femoral neck CSA)) were considered primary outcome variables. Neither physical activity nor calcium intake separately or interactively were associated with any CSA ratio. Age showed no interaction with physical activity or calcium intake but was independently associated with all CSA ratios, except the ratio of femoral shaft CSA to trochanteric CSA. This study indicated clearly that a preferential reduction in the cross-sectional area occupied by bone mineral occurs disproportionately at the long bone ends as compared with diaphyseal sites, and this apparently inherent, age-associated relative loss seems not to be prevented by physical activity or calcium intake. In particular, given the utmost clinical relevance of the proximal femur region, an observed loss in femoral neck CSA

  17. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  18. Comparison of single- and dual-photon absorptiometry in postmenopausal bone mineral loss

    SciTech Connect

    Nilas, L.; Borg, J.; Gotfredsen, A.; Christiansen, C.

    1985-11-01

    The authors describe a single photon absorptiometric (SPA) technique, which enables differential estimation of the rates of loss from trabecular and cortical bone. Ten scans are obtained in the forearm: six in an area with about 7% trabecular bone and four scans in the adjacent distal area with a trabecular bone content of 25%. By comparing bone masses of these two sites in 19 postmenopausal and 53 premenopausal women, the postmenopausal trabecular bone loss was estimated to be approximately seven times greater than cortical loss within the first years of cessation of regular vaginal bleeding. On a group basis the bone loss at the distal forearm scan site (by SPA) corresponded closely to the spinal bone loss (by dual-photon absorptiometry). The reproducibility of the two scan sites in the forearm was 1-1.5% (CV%), which makes the method suitable for longitudinal studies. Corrections for variations in fatty tissue covering can be made without deterioration of the reproducibility.

  19. Bone quality and bone mass as assessed by quantitative ultrasound and dual energy x ray absorptiometry in women with rheumatoid arthritis: relationship with quadriceps strength

    PubMed Central

    Madsen, O; Sorensen, O; Egsmose, C

    2002-01-01

    Objective: To examine relationships of bone quality as assessed by quantitative ultrasound (QUS) and bone mineral density (BMD, g/cm2) with quadriceps strength (QS) in women with rheumatoid arthritis (RA). Methods: Sixty seven women with RA according to the 1987 American College of Rheumatology (ACR) criteria were examined. Mean (SD) age was 62 (13) years, mean disease duration 15 years. Most were or had been receiving glucocorticoid treatment. Calcaneal bone quality expressed as speed of sound (SOS, m/s), broadband ultrasound attenuation (BUA, dB/MHz), and stiffness was measured by QUS. BMD of the femoral neck, spine, and distal forearm was measured by dual energy x ray absorptiometry (DXA). Maximal voluntary isokinetic quadriceps strength (Nm) was assessed by isokinetic dynamometry. Pain was recorded on a visual analogue scale (VAS), disability was scored by the Stanford Health Assessment Questionnaire (HAQ), and the degree of physical impairment was expressed by the Steinbrocker index (SI). Results: In multiple regression analyses, QS predicted SOS, BUA, and stiffness (rpartial ranging from 0.36 to 0.45, p<0.005) and femoral neck BMD (rpartial=0.30, p<0.05) independently of age, height, weight, disease duration, HAQ, VAS, SI, and cumulative steroid dose. BMD of the spine and distal forearm was not associated with QS. After adjustment for covariates, women with subnormal BMD of the femoral neck (T score <-1), had a 20% lower QS than those with normal BMD (p<0.0001). Conclusions: Calcaneal bone quality and femoral neck BMD were associated with QS in women with RA. This finding indicates that physical activity including muscle strengthening exercises may play a part in the prevention of bone loss in these patients. PMID:11874835

  20. On new opportunities for absorptiometry.

    PubMed

    Ferretti, J L; Schiessl, H; Frost, H M

    1998-01-01

    Mechanical loads cause bone strains; and muscle forces, not body weight, cause the largest strains. The strains help to control the effects of bone modeling and remodeling on bone strength and "mass." When strains exceed a threshold range, modeling increases bone strength and "mass." When strains stay below a smaller threshold range, remodeling begins removing bone next to marrow. As a result, increasing muscle strength increases bone strength and "mass," and decreasing muscle strength decreases bone strength and "mass." Estrogen apparently lowers the remodeling threshold, which reduces bone losses. Loss of estrogen raises that threshold to cause losses of bone next to marrow. Such facts help to explain: 1. Bone loss in aging adults. 2. An increase in bone "mass" in girls at menarche. 3. The loss of bone during menopause. 4. The greater bone "mass" in obese than in slender subjects, and in weightlifters than in marathon runners. 5. And the pathogenesis of physiologic osteopenias and true osteoporoses. Thus new standards are needed for the relationships between bone and muscle strengths, and as functions of sex, age, race, disease, endocrine status, nutrition, vitamin and mineral intakes, medications, puberty, and menopause. Obtaining those standards and studying such relationships provide many new opportunities for studies that involve dual energy X-ray absorptiometry (DXA) and peripheral quantitative computer tomography (pQCT) and, perhaps some day, ultrasound and magnetic resonance imaging (MRI) techniques. PMID:15304912

  1. Distal radius strength: a comparison of DXA-derived vs pQCT-measured parameters in adolescent females.

    PubMed

    Dowthwaite, Jodi N; Hickman, Rebecca M; Kanaley, Jill A; Ploutz-Snyder, Robert J; Spadaro, Joseph A; Scerpella, Tamara A

    2009-01-01

    Although quantitative computed tomography (QCT) is considered the gold standard for in vivo densitometry, dual-energy X-ray absorptiometry (DXA) scans assess larger bone regions and are more appropriate for pediatric longitudinal studies. Unfortunately, DXA does not yield specific bone architectural output. To address this issue in healthy, postmenarcheal girls, Sievänen's distal radius formulae [1996] were applied to derive indices of bone geometry, volumetric bone mineral density (vBMD), and strength from DXA data; results were compared to peripheral quantitative computed tomography (pQCT) output. Contemporaneous scans were performed on the left, distal radii of 35 gymnasts, ex-gymnasts, and nongymnasts (aged 13.3-20.4 yr, mean 16.6 yr). For 4% and 33% regions, pQCT measured cross-sectional areas (CSAs) and vBMD; comparable DXA indices were generated at ultradistal and 1/3 regions. Index of structural strength in axial compression was calculated from 4% pQCT and DXA output for comparison; 33% pQCT strength-strain index was compared to 1/3 DXA section modulus. Sievänen DXA indices were significantly, positively correlated with pQCT output (R=+0.61 to +0.98; p<0.0001). At the distal radius, in healthy postmenarcheal girls, Sievänen's method yielded potentially useful DXA indices of diaphyseal cortical CSA and bone strength at both the diaphysis (section modulus) and the metaphysis (index of structural strength in axial compression).

  2. Suspension criteria for dual energy X ray absorptiometry.

    PubMed

    McLean, I D

    2013-02-01

    The use of dual-energy X-ray absorptiometry (DXA) units primarily for the assessment of fracture risk and in the diagnosis of osteoporosis is ubiquitous in Europe and ever-expanding in its implementation worldwide. DXA is known for its reported low radiation dose and precision in the determination of bone mineral density. However, the use of simple suspension criteria, as proposed in the new EC report RP-162, will identify units that are unfit for useful and safe diagnosis. Such suspension levels, however, are not a substitute for regular maintenance, quality control testing and optimisation of clinical outcomes.

  3. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  4. New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry.

    PubMed

    den Boer, F C; Patka, P; Bakker, F C; Wippermann, B W; van Lingen, A; Vink, G Q; Boshuizen, K; Haarman, H J

    1999-09-01

    An appropriate animal model is required for the study of treatments that enhance bone healing. A new segmental long bone defect model was developed for this purpose, and dual energy x-ray absorptiometry was used to quantify healing of this bone defect. In 15 sheep, a 3-cm segmental defect was created in the left tibia and fixed with an interlocking intramedullary nail. In seven animals, the defect was left empty for the assessment of the spontaneous healing response. In eight animals serving as a positive control, autologous bone grafting was performed. After 12 weeks, healing was evaluated with radiographs, a torsional test to failure, and dual energy x-ray absorptiometry. The mechanical test results were used for the assessment of unions and nonunions. Radiographic determination of nonunion was not reliably accomplished in this model. By means of dual energy x-ray absorptiometry, bone mineral density and content were measured in the middle of the defect. Bone mineral density was 91+/-7% (mean +/- SEM) and 72+/-6% that of the contralateral intact tibia in, respectively, the autologous bone-grafting and empty defect groups (p = 0.04). For bone mineral content, the values were, respectively, 117+/-18 and 82+/-9% (p = 0.07). Torsional strength and stiffness were also higher, although not significantly, in the group with autologous bone grafting than in that with the empty defect. Bone mineral density and content were closely related to the torsional properties (r2 ranged from 0.76 to 0.85, p < or = 0.0001). Because interlocking intramedullary nailing is a very common fixation method in patients, the newly developed segmental defect model has clinical relevance. The interlocking intramedullary nail provided adequate stability without implant failure. This model may be useful for the study of treatments that affect bone healing, and dual energy x-ray absorptiometry may be somewhat helpful in the analysis of healing of this bone defect.

  5. Total-body calcium estimated by delayed gamma neutron activation analysis and dual-energy X-ray absorptiometry.

    PubMed

    Aloia, J F; Ma, R; Vaswani, A; Feuerman, M

    1999-01-01

    Total body calcium (TBCa) in 270 black and white women age 21-79 years was measured concurrently by delayed gamma neutron activation analysis (DGNA) and dual-energy X-ray absorptiometry (DXA). The mean value for TBCa calculated from DXA was 933 g compared with 730 g for DGNA. By regression, TBCa(DXA(g)) = 1.35 x TBCa(DGNA(g)) -54 (r = 0. 90, r(2) = 81.4%, SEE = 66.9 g). This remarkable difference of 203 g suggests that one or both these methods is not accurate. Adjustment of the regression of DXA versus DGNA for body mass index or trunk thickness explained 8.5-10% of the variability between methods. The unadjusted slope for the DXA values regressed against the DGNA values was 1.35, indicating significant discordance between the methods. There is greater agreement between the two DGNA facilities (Brookhaven National Laboratory and Baylor College of Medicine) and between the various DXA instruments. Either DGNA underestimates TBCa or DXA overestimates total-body bone mineral content. Resolution of these disparate results may possibly be achieved by concurrent measurement of whole human cadavers of different sizes with chemical determination of the calcium content of the ash. In the interim, cross-calibration equations between DGNA and standardized values for DXA for total-body bone mineral content may be used, which will permit reporting of consistent values for TBCa from the two technologies. PMID:10663353

  6. Treatment of subclinical hypothyroidism does not affect bone mass as determined by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative bone ultrasound in Spanish women

    PubMed Central

    Roncero-Martin, Raul; Calderon-Garcia, Julian F.; Santos-Vivas, Mercedes; Vera, Vicente; Martínez-Alvárez, Mariana; Rey-Sanchez, Purificación

    2015-01-01

    Introduction The results of studies examining the influence of subclinical hypothyroidism (SCH) and levothyroxine (L-T4) replacement therapy on bone have generated considerable interest but also controversy. The present research aims to evaluate the effects of L-T4 treatment on different skeletal sites in women. Material and methods A group of 45 premenopausal (mean age: 43.62 ±6.65 years) and 180 postmenopausal (mean age: 59.51 ±7.90 years) women with SCH who were undergoing L-T4 replacement therapy for at least 6 months were compared to 58 pre- and 180 postmenopausal women with SCH (untreated) matched for age. The mean doses of L-T4 were 90.88 ±42.59 µg/day in the premenopausal women and 86.35 ±34.11 µg/day in the postmenopausal women. Bone measurements were obtained using quantitative bone ultrasound (QUS) for the phalanx, dual-energy X-ray absorptiometry (DXA) for the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT) for the non-dominant distal forearm. Results No differences were observed between patients and untreated controls in these bone measurements except in the bone mineral density (BMD) of the spine (p = 0.0214) in postmenopausal women, which was greater in treated women than in untreated controls. Conclusions Our results indicate that adequate metabolic control through replacement treatment with L-T4 in pre- and postmenopausal women does not affect bone mass. PMID:26528344

  7. Accuracy of lumbar spine bone mineral content by dual photon absorptiometry

    SciTech Connect

    Gotfredsen, A.; Podenphant, J.; Norgaard, H.; Nilas, L.; Nielsen, V.A.; Christiansen, C.

    1988-02-01

    The accuracy of measurement of the bone mineral content (BMC, g) and bone mineral density (BMD, g/cm/sup 2/) of the lumbar spine by dual photon absorptiometry (DPA) was estimated by means of two different spine scanners (a Nuclear Data 2100 and a Lunar Radiation DP3). The lumbar spines of 13 cadavers were used. BMC and BMD were measured in situ and on the excised vertebrae in a solution of water/ethanol; and covered with ox muscle/porcine muscle/lard. The actual mineral weight and areal density were determined after chemical maceration, fat extraction, drying to a constant weight, ashing for 24 hr at 600 degrees C, and correction for the transverse processes. The true are was measured by parallax free X rays and planimetry. All measurements of BMC or BMD were highly interrelated (r = 0.94-0.99). The standard error of estimate (s.e.e.) of BMC in situ versus BMC in water/ethanol was 5.2%. The agreement between the BMD values of the two scanners was very good (s.e.e. = 2.9%). BMC in situ predicted the actual vertebral mineral mass with an s.e.e. of 8.1%. BMD in situ and BMD in water/ethanol predicted the actual area density with s.e.e.s of 10.3% and 5.0%, respectively. This study discloses the correlation and accuracy error of spinal DPA measurements in situ in whole cadavers versus the actual BMC and BMD. The error, which is underestimated in in vitro studies, amounts to 10%.

  8. Unexplained high BMD in DXA-scanned patients is generalized throughout the skeleton and characterized by thicker cortical and trabecular bone.

    PubMed

    Lomholt, S; Amstrup, A K; Moser, E; Jakobsen, N F B; Mosekilde, L; Vestergaard, P; Rejnmark, L

    2015-04-01

    Unexplained high bone mineral density (BMD) is a rare condition and the mechanisms responsible are yet to be described in detail. The aim of the study was to identify patients with unexplained high BMD from a local DXA database and compare their radiological phenotype with an age- and a gender-matched group of population-based controls. We defined high BMD as a DXA Z-score ≥ + 2.5 at the total hip and lumbar spine. We characterized the findings as "unexplained" if no osteodegenerative changes, bone metabolic disease, or arthritis at the hip or lumbar spine was observed. All participants were investigated with high-resolution peripheral quantitative computed tomography (HR-pQCT), QCT, DXA, fasting blood samples, a 24-h urine sample, and questionnaires. The DXA database contained data on 25,118 patients. Initially, 138 (0.55%) potential participants with high BMD were identified, and during the study ten additional cases were identified from new DXA scans. Sixty-seven patients accepted to participate in the study, and among these we identified 15 women and one man with unexplained high BMD. These 15 women had higher BMD throughout the skeleton relative to controls, similar area/volume at the hip and the distal extremities, a higher number of trabeculae, which was thicker than in the controls, and a higher finite element estimated bone strength. The 15 women were heavier and had a higher fat mass then controls. We conclude that patients with unexplained high BMD have a generalized high BMD phenotype throughout their skeleton, which is characterized with a denser microarchitecture.

  9. Effect of weight loss on bone mineral density determined by ultrasound of phalanges in obese women after Roux-en-y gastric bypass: conflicting results with dual-energy X-ray absorptiometry.

    PubMed

    Lima, Tatiana Pereira; Nicoletti, Carolina Ferreira; Marchini, Julio Sergio; Junior, Wilson Salgado; Nonino, Carla Barbosa

    2014-01-01

    The rapid weight loss that occurs in obese patients submitted to Roux-en-y gastric bypass (RYGB) as well as the changes in dietary pattern and the intestinal malabsorption result in changes in bone mineral density (BMD). The objective of the present study was to assess the changes in BMD after the weight loss induced by RYGB using ultrasound of the phalanges and compare the results with those obtained by dual-energy X-ray absorptiometry (DXA). We conducted a 1-yr prospective longitudinal study on women with grade III obesity submitted to RYGB. Anthropometric (weight, height, body mass index, and abdominal circumference) and body composition measurements by electrical bioimpedance, assessment of food consumption by 24-h recall, biochemical evaluation, and assessment of BMD by ultrasonography of the phalanges and DXA (BMD values are from the 33% radius site) were performed during the preoperative period and 3, 6, and 12 mo after surgery. The mixed-effects linear regression model was used to analyze the effect of postoperative time on the variable of interest, and the kappa coefficient (p < 0.05) was used to compare the concordance of the methods used for BMD evaluation. Twenty-nine patients were included in the study. During the 1-yr follow-up, a reduction of 39 ± 8 kg (71 ± 15% of excess weight) and 29 ± 7 kg of fat mass was observed. Calcium and zinc concentrations were reduced after 12 mo. No difference in caffeine, calcium, or sodium consumption was observed between the preoperative and postoperative periods. Analysis of BMD by ultrasonography of the phalanges 1 yr after surgery showed increased values of amplitude-dependent speed of sound (2064.6 ± 59.4 vs 2154.7 ± 63 m/s; p < 0.001) and ultrasound bone profile index (0.73 ± 0.13 vs 0.76 ± 0.14; p < 0.001). Analysis of BMD by DXA showed a reduction of BMD values (0.6 ± 0.04 vs 0.57 ± 0.05 g/cm³; p < 0.001) in the sixth month and maintenance of the values from the sixth to the 12th month. At the end of

  10. Comparison of Speed of Sound Measures Assessed by Multisite Quantitative Ultrasound to Bone Mineral Density Measures Assessed by Dual-Energy X-Ray Absorptiometry in a Large Canadian Cohort: the Canadian Multicentre Osteoporosis Study (CaMos).

    PubMed

    Olszynski, Wojciech P; Adachi, Jonathon D; Hanley, David A; Davison, Kenneth S; Brown, Jacques P

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is an important tool for the estimate of fracture risk through the measurement of bone mineral density (BMD). Similarly, multisite quantitate ultrasound can prospectively predict future fracture through the measurement of speed of sound (SOS). This investigation compared BMD (at the femoral neck, total hip, and lumbar spine) and SOS measures (at the distal radius, tibia, and phalanx sites) in a large sample of randomly-selected and community-based individuals from the Canadian Multicentre Osteoporosis Study. Furthermore, mass, height, and age were also compared with both measures. There were 4123 patients included with an age range of 30-96.8 yr. Pearson product moment correlations between BMD and SOS measures were low (0.21-0.29; all p<0.001), irrespective of site. Mass was moderately correlated with BMD measures (0.40-0.58; p<0.001), but lowly correlated with SOS measures (0.03-0.13; p<0.05). BMD and SOS were negatively correlated to age (-0.17 to -0.44; p<0.001). When regression analyses were performed to predict SOS measures at the 3 sites, the models predicted 20%-23% of the variance, leaving 77%-80% unaccounted for. The SOS measures in this study were found to be largely independent from BMD measures. In areas with no or limited access to DXA, the multisite quantitative ultrasound may act as a valuable tool to assess fracture risk. In locales with liberal access to DXA, the addition of SOS to BMD and other clinical risk factors may improve the identification of those patients at high risk for future fracture.

  11. Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer.

    PubMed

    Kalder, Matthias; Hans, Didier; Kyvernitakis, Ioannis; Lamy, Olivier; Bauer, Martina; Hadji, Peyman

    2014-01-01

    We performed an analysis of a substudy of the randomized Tamoxifen Exemestane Adjuvant Multinational trial to determine the effects of exemestane (EXE) and tamoxifen (TAM) adjuvant treatment on bone mineral density (BMD) measured by dual-energy X-ray absorptiometry compared with the trabecular bone score, a novel grey-level texture measurement that correlates with 3-dimensional parameters of bone texture in postmenopausal women with hormone receptor-positive breast cancer for the first time. In total, 36 women were randomized to receive TAM (n = 17) or EXE (n = 19). Patients receiving TAM showed a mean increase of BMD in lumbar spine from baseline of 1.0%, 1.5%, and 1.9% and in trabecular bone score of 2.2%, 3.5%, and 3.3% at 6-, 12-, and 24-mo treatment, respectively. Conversely, patients receiving EXE showed a mean decrease from baseline in lumbar spine BMD of -2.3%, -3.6%, and -5.3% and in trabecular bone score of -0.9%, -1.7%, and -2.3% at 6-, 12-, and 24-mo treatment, respectively. Changes in trabecular bone score from baseline at spine were also significantly different between EXE and TAM: p = 0.05, 0.007, and 0.006 at 6, 12, and 24 mo, respectively. TAM induced an increase in BMD and bone texture analysis, whereas EXE resulted in decreases. The results were independent from each other.

  12. Evolution of bisphosphonate-related atypical fracture retrospectively observed with DXA scanning.

    PubMed

    Ahlman, Mark A; Rissing, Michael S; Gordon, Leonie

    2012-02-01

    We present a case of a 61-year-old female with history of long-term bisphosphonate therapy for osteoporosis initially diagnosed by screening dual-energy X-ray absorptiometry (DXA). After 4 years of treatment with bisphosphonates, the patient presented to primary care with left hip pain. Diagnostic hip radiographs were interpreted as normal, and she continued to take bisphosphonates. Two months later, she experienced a complete transverse subtrochanteric left femur fracture after minimal trauma. The patient underwent open reduction and internal fixation. Review of the patient's postoperative films revealed lateral subtrochanteric cortical beaking at the fracture. This type of "atypical" fracture has been reported to be a result of chronic bisphosphonate-associated fractures with high specificity. In addition, the right femur also showed cortical beaking with a horizontal linear lucency in an identical location, suggesting an impending fracture. Longitudinal review of the both diagnostic radiographs as well as DXA images shows a stepwise development of these subtrochanteric abnormalities in both femurs. A current hypothesis regarding the pathophysiology of bisphosphonate-associated fracture is that the medication inhibits bone turnover and repair of microscopic trauma. A cycle of defective repair and continual microtrauma compounded over time gradually weakens the bone and creates an architectural conduit for transverse or "atypical" fracture. Standard practice is not to use DXA as a diagnostic "image." We present this case to show that a common location and classic appearance of subtrochanteric bisphosphonate-associated fractures may be clearly visualized on absorptiometry images long before fracture. This observation is important because the majority of patients taking bisphosphonate therapy also receive regular DXA imaging. Because of the chronicity of standard bone-density monitoring for these patients throughout their treatment regimen, DXA may find a role for

  13. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro.

    PubMed

    Kuiper, J W; van Kuijk, C; Grashuis, J L; Ederveen, A G; Schütte, H E

    1996-01-01

    Bone mineral measurements with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) were compared with chemical analysis (ChA) to determine (1) the accuracy and (2) the influence of bone marrow fat. Total bone mass of 19 human femoral necks in vitro was determined with QCT and DXA before and after defatting. ChA consisted of defatting and decalcification of the femoral neck samples for determination of bone mineral mass (BmM) and amount of fat. The mean BmM was 4.49 g. Mean fat percentage was 37.2% (23.3%-48.5%). QCT, DXA and ChA before and after defatting were all highly correlated (r > 0.96, p < 0.0001). Before defatting the QCT values were on average 0.35 g less than BmM and the DXA values were on average 0.65 g less than BmM. After defatting, all bone mass values increased; QCT values were on average 0.30 g more than BmM and DXA values were 0.29 g less than BmM. It is concluded that bone mineral measurements of the femoral neck with QCT and DXA are highly correlated with the chemically determined bone mineral mass and that both techniques are influenced by the femoral fat content.

  14. The impact of recent technological advances on the trueness and precision of DXA to assess body composition.

    PubMed

    Toombs, Rebecca J; Ducher, Gaele; Shepherd, John A; De Souza, Mary Jane

    2012-01-01

    The introduction of dual-energy X-ray absorptiometry (DXA) in the 1980s for the assessment of areal bone mineral density (BMD) greatly benefited the field of bone imaging and the ability to diagnose and monitor osteoporosis. The additional capability of DXA to differentiate between bone mineral, fat tissue, and lean tissue has contributed to its emergence as a popular tool to assess body composition. Throughout the past 2 decades, technological advancements such as the transition from the original pencil-beam densitometers to the most recent narrow fan-beam densitometers have allowed for faster scan times and better resolution. The majority of reports that have compared DXA-derived body composition measurements to the gold standard method of body composition appraisal, the four-compartment model, have observed significant differences with this criterion method; however, the extent to which the technological advancements of the DXA have impacted its ability to accurately assess body composition remains unclear. Thus, this paper reviews the evidence regarding the trueness and precision of DXA body composition measurements from the pencil-beam to the narrow fan-beam densitometers.

  15. Dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and micro-computed tomography techniques are discordant for bone density and geometry measurements in the guinea pig.

    PubMed

    Mak, Ivy L; DeGuire, Jason R; Lavery, Paula; Agellon, Sherry; Weiler, Hope A

    2016-05-01

    This study aims to examine agreement among bone mineral content (BMC) and density (BMD) estimates obtained using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro-computed tomography (μCT) against high-resolution μCT and bone ash of the guinea pig femur. Middle-aged (n = 40, 86 weeks) male guinea pigs underwent in vivo followed by ex vivo DXA (Hologic QDR 4500A) scanning for intact and excised femur BMC and areal density. To assess bone architecture and strength, excised femurs were scanned on pQCT (Stratec XCT 2000L) as well as on two μCT scanners (LaTheta LCT-200; Skyscan 1174), followed by three-point bending test. Reproducibility was determined using triplicate scans; and agreement assessed using Bland-Altman plots with reference methods being high-resolution μCT (Skyscan) for BMD and bone ashing for BMC. All techniques showed satisfactory ex vivo precision (CV 0.05-4.3 %). However, bias compared to the reference method was highest (207.5 %) in trabecular bone volume fraction (BV/TV) measured by LaTheta, and unacceptable in most total femur and cortical bone measurements. Volumetric BMD (vBMD) and BV/TV derived by LaTheta and pQCT at the distal metaphysis were biased from the Skyscan by an average of 49.3 and 207.5 %, respectively. Variability of vBMD, BV/TV and cross-sectional area at the diaphysis ranged from -5.5 to 30.8 %. LaTheta best quantified total femur BMC with an upper bias of 3.3 %. The observed differences among imaging techniques can be attributable to inherent dissimilarity in construction design, calibration, segmentation and scanning resolution used. These bone imaging tools are precise but are not comparable, at least when assessing guinea pig bones.

  16. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance.

    PubMed

    Lewiecki, E Michael; Binkley, Neil; Morgan, Sarah L; Shuhart, Christopher R; Camargos, Bruno Muzzi; Carey, John J; Gordon, Catherine M; Jankowski, Lawrence G; Lee, Joon-Kiong; Leslie, William D

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring.

  17. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance.

    PubMed

    Lewiecki, E Michael; Binkley, Neil; Morgan, Sarah L; Shuhart, Christopher R; Camargos, Bruno Muzzi; Carey, John J; Gordon, Catherine M; Jankowski, Lawrence G; Lee, Joon-Kiong; Leslie, William D

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring. PMID:27020004

  18. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    PubMed Central

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). Subjects/Methods Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole body magnetic resonance imaging. BMD was measured using whole body dual-energy x-ray absorptiometry. Results An inverse correlation was observed between pelvic BMAT and pelvic, total, and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs. older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434 to 0.928). Conclusion Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes. PMID:22491495

  19. The use of dual-energy x-ray absorptiometry in animals.

    PubMed

    Grier, S J; Turner, A S; Alvis, M R

    1996-01-01

    The use of dual-energy absorptiometry (DXA) to measure bone mineral content (BMC) and bone mineral density (BMD) is widespread in humans and has been adapted to animals because of the need to examine bone and body composition in longitudinal studies. In this review, the indications and techniques for DXA in small-sized animals (rodents, cats, and rabbits) and large-sized animals (dogs, swine, nonhuman primates, sheep, and horses) are discussed. Now that software has been developed for measuring BMD in small laboratory animals, the most frequent use of DXA in animals is in rats. An ultrahigh-resolution mode of acquisition is used for their small bones but also is necessary for other small-sized animals such as rabbits and cats. In larger-sized animals such as dogs, pigs, and sheep, software used in humans has been adapted successfully to measure BMC/BMD and body composition. The human spine and left and right hip protocols are adapted easily to animals of this size, and the software for body composition has been adapted to dogs. Measurement of bone mass around metallic implants is possible in animals and most studies have involved dogs. To ensure precision of DXA in the noninvasive measurement of BMD in animals, attention to positioning and ability of the operator to define the same region of interest using clearly defined anatomical landmarks on the scan image cannot be overemphasized. This is one of the essential requirements for successful densitometry in animals. PMID:8850365

  20. Peripheral dual-energy X-ray absorptiometry in the management of osteoporosis: the 2007 ISCD Official Positions.

    PubMed

    Hans, Didier B; Shepherd, John A; Schwartz, Elliott N; Reid, David M; Blake, Glen M; Fordham, John N; Fuerst, Thomas; Hadji, Peyman; Itabashi, Akira; Krieg, Marc-Antoine; Lewiecki, E Michael

    2008-01-01

    Peripheral assessment of bone density using photon absorptiometry techniques has been available for over 40 yr. The initial use of radio-isotopes as the photon source has been replaced by the use of X-ray technology. A wide variety of models of single- or dual-energy X-ray measurement tools have been made available for purchase, although not all are still commercially available. The Official Positions of the International Society for Clinical Densitometry (ISCD) have been developed following a systematic review of the literature by an ISCD task force and a subsequent Position Development Conference. These cover the technological diversity among peripheral dual-energy X-ray absorptiometry (pDXA) devices; define whether pDXA can be used for fracture risk assessment and/or to diagnose osteoporosis; examine whether pDXA can be used to initiate treatment and/or monitor treatment; provide recommendations for pDXA reporting; and review quality assurance and quality control necessary for effective use of pDXA.

  1. Quantitative computed tomographic evaluation of femoral bone mineral content in renal osteodystrophy compared with radial photon absorptiometry

    SciTech Connect

    Sakurai, K.; Marumo, F.; Iwanami, S.; Uchida, H.; Matsubayashi, T.

    1989-05-01

    The computed tomography (CT) numbers of cortical bone at the level of 20 cm (CT20) and of spongiosa in the lateral condyle at the level of 2 cm (CT02) from the distal end of the femur were obtained by a quantitative CT method and compared with the bone mineral density of mostly cortical bone within the radius (BMD) by photon absorptiometry. The study included 47 patients with chronic renal failure not dialyzed or induced to regular hemodialysis within 4 weeks of the study (group 1), 28 patients on regular hemodialysis for more than one month (group 2), and ten healthy volunteers (group 3). The measures of bone mineral content (BMC), namely CT20, CT02, and BMD, were compared in terms of their abilities to distinguish members in the various groups. For group 1 and group 3, the greatest variation in BMC was in the difference in CT02, which was primarily a measurement of the BMC of spongiosa. For groups 1 and 2, the greatest variation was in the difference in BMD, which was primarily a measurement of the BMC of cortex. The reproducibility of CT02 was estimated as almost equal to the difference in CT02 values at intervals of 10 months' duration of hemodialysis. The results indicated that CT02 was a useful measurement for evaluating the progress in the early stage of the renal osteodystrophy, and it is recommended that the bone mineral measurement with this QCT method should be performed once or twice a year.

  2. Technical note: Prediction of chemical rib section composition by dual energy X-ray absorptiometry in Zebu beef cattle.

    PubMed

    Prados, L F; Zanetti, D; Amaral, P M; Mariz, L D S; Sathler, D F T; Filho, S C Valadares; Silva, F F; Silva, B C; Pacheco, M C; Alhadas, H M; Chizzotti, M L

    2016-06-01

    It is expensive and laborious to evaluate carcass composition in beef cattle. The objective of this study was to evaluate a method to predict the 9th to 11th rib section (rib) composition through empirical equations using dual energy X-ray absorptiometry (DXA). Dual energy X-ray absorptiometry is a validated method used to describe tissue composition in humans and other animals, but few studies have evaluated this technique in beef cattle, and especially in the Zebu genotype. A total of 116 rib were used to evaluate published prediction equations for rib composition and to develop new regression models using a cross-validation procedure. For the proposed models, 93 ribs were randomly selected to calculate the new regression equations, and 23 different ribs were randomly selected to validate the regressions. The rib from left carcasses were taken from Nellore and Nellore × Angus bulls from 3 different studies and scanned using DXA equipment (GE Healthcare, Madison, WI) in the Health Division at Universidade Federal de Viçosa (Viçosa, Brazil). The outputs of the DXA report were DXA lean (g), DXA fat free mass (g), DXA fat mass (g), and DXA bone mineral content (BMC; g). After being scanned, the rib were dissected, ground, and chemically analyzed for total ether extract (EE), CP, water, and ash content. The predictions of rib fat and protein from previous published equations were different ( < 0.01) from the observed composition. New equations were established through leave-one-out cross-validation using the REG procedure in SAS. The equations were as follows: lean (g) = 37.082 + 0.907× DXA lean ( = 0.95); fat free mass (g) = 103.224 + 0.869 × DXA fat free mass ( = 0.93); EE mass (g) = 122.404 + 1.119 × DXA fat mass ( = 0.86); and ash mass (g) = 18.722 + 1.016 × DXA BMC ( = 0.39). The equations were validated using Mayer's test, the concordance correlation coefficient, and the mean square error of prediction for decomposition. For both equations, Mayer's test

  3. Bone Indices in Thyroidectomized Patients on Long-Term Substitution Therapy with Levothyroxine Assessed by DXA and HR-pQCT

    PubMed Central

    Moser, Emil; Sikjaer, Tanja; Mosekilde, Leif; Rejnmark, Lars

    2015-01-01

    Background. Studies on bone effects of long-term substitution therapy with levothyroxine (LT4) have shown discrepant results. Previous studies have, however, not evaluated volumetric bone mineral densities (vBMD), bone structure, and strength using high resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA). Using a cross-sectional design, we aimed to determine whether BMD, structure, and strength are affected in hypothyroid patients on LT4 substitution therapy. Methods. We compared 49 patients with well-substituted hypothyroidism with 49 age- and gender-matched population based controls. Areal BMD was assessed by DXA, vBMD and bone geometry by HR-pQCT, and bone strength by FEA. Results. Patients had been thyroidectomized due to thyroid cancer (10%) and nontoxic (33%) or toxic goiter (57%). 82% were women. TSH levels did not differ between groups, but patients had significantly higher levels of T4 (p < 0.001) and lower levels of T3 (p < 0.01). Compared to controls, patients had higher levels of magnesium (p < 0.05), whereas ionized calcium and PTH were lower (p < 0.05). Bone scans did not reveal any differences in BMD, bone geometry, or strength. Conclusion. If patients with hypothyroidism are well-substituted with LT4, the disease does not affect bone indices to any major degree. PMID:26246934

  4. Relationship between body mass index and bone mineral density in HIV-infected patients referred for DXA

    PubMed Central

    Pinnetti, Carmela; Federico, Lupi; Lorenzini, Patrizia; Domenico, Chiappetta; Rita, Bellagamba; Laura, Loiacono; Zaccarelli, Mauro; Cicalini, Stefania; Libertone, Raffaella; Giannetti, Alberto; Mosti, Silvia; Busi Rizzi, Elisa; Antinori, Andrea; Ammassari, Adriana

    2014-01-01

    Introduction Reduced bone mass density (BMD) is a frequent observation in HIV-infected persons. Relationship between body mass index (BMI), weight, height and BMD was reported for many populations. In particular, BMI has been found to be inversely related to the risk of osteoporosis. Methods This is a cross-sectional, monocentric study where all HIV-infected patients referred to first DXA scan in clinical routine during 2010–2013 were included. Osteopenia and osteoporosis were defined by T- score <−1 and <−2.5, respectively. Patients were categorized according to WHO BMI classification: underweight <18.5 kg/m2; normal weight 18.5–24.9 kg/m2; over weight 25–29.9 kg/m2; obese >30 kg/m2. Statistical analysis was carried using logistic regression. Results A total of 918 patients were included: median age 49 years (IQR, 44–55); 59.4% male; 93% Caucasian. Median anthrometric characteristics were: 68 kg (IQR, 59–78); 1.7 m (IQR, 1.6–1.75); 23.5 kg/m2 (IQR, 21.4–26.2). Underweight was found in 5%, normal weight in 61%, overweight in 26% and obesity in 8% of patients. According to T-scores, 110 (11.2%) patients were osteoporotic and 502 (54.7%) had osteopenia. In the femoral neck area, the prevalence of osteoporosis was slightly lower (5.7%) than lumbar spine site (9.2%). Agreements between sites of T-scores for the diagnosis of osteoporosis were 26 and 172 and 346 for osteopenia and normal BMD values, respectively. T-scores at femoral neck or lumbar spine positively correlated with BMI (p<0.001) (Figure 1). Among predictors of osteopenia/osteoporosis, univariable analysis showed: older age (p<0.0001); lower weight (p<0.0001); increasing height (p<0.002). Patients underweight had a higher risk of osteopenia (p=0.02) as well as of osteoporosis (p=0.003). Patients with BMI above normal had a reduced risk of low BMD (osteopenia p<0.0001; osteoporosis p<0.03). Controlling for calendar year, gender, ethnicity, and age, BMI was confirmed as risk factor if below

  5. Quick benefits of interval training versus continuous training on bone: a dual-energy X-ray absorptiometry comparative study.

    PubMed

    Boudenot, Arnaud; Maurel, Delphine B; Pallu, Stéphane; Ingrand, Isabelle; Boisseau, Nathalie; Jaffré, Christelle; Portier, Hugues

    2015-12-01

    To delay age-related bone loss, physical activity is recommended during growth. However, it is unknown whether interval training is more efficient than continuous training to increase bone mass both quickly and to a greater extent. The aim of this study was to compare the effects of a 10-week interval training regime with a 14-week continuous training regime on bone mineral density (BMD). Forty-four male Wistar rats (8 weeks old) were separated into four groups: control for 10 weeks (C10), control for 14 weeks (C14), moderate interval training for 10 weeks (IT) and moderate continuous training for 14 weeks (CT). Rats were exercised 1 h/day, 5 day/week. Body composition and BMD of the whole body and femur respectively were assessed by dual-energy X-ray absorptiometry at baseline and after training to determine raw gain and weight-normalized BMD gain. Both trained groups had lower weight and fat mass gain when compared to controls. Both trained groups gained more BMD compared to controls when normalized to body weight. Using a 30% shorter training period, the IT group showed more than 20% higher whole body and femur BMD gains compared to the CT. Our data suggest that moderate IT was able to produce faster bone adaptations than moderate CT.

  6. TIBIAL PLATEAU PROXIMAL AND DISTAL BONE BEHAVE SIMILARLY: BOTH ARE ASSOCIATED WITH FEATURES OF KNEE OSTEOARTHRITIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing imperative to understand how changes in peri-articular bone relate to pathological progression of knee osteoarthritis (KOA). Peri-articular bone density can be measured using dual x-ray absorptiometry (DXA). The medial:lateral tibial BMD ratio (M:L BMD) is associated with MRI and...

  7. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    PubMed

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults. PMID:27048946

  8. Radiographic morphometry and densitometry predict strength of cadaveric proximal humeri more reliably than age and DXA scan density.

    PubMed

    Skedros, John G; Knight, Alex N; Pitts, Todd C; O'Rourke, Peter J; Burkhead, Wayne Z

    2016-02-01

    Methods are needed for identifying poorer quality cadaver proximal humeri to ensure that they are not disproportionately segregated into experimental groups for fracture studies. We hypothesized that measurements made from radiographs of cadaveric proximal humeri are stronger predictors of fracture strength than chronological age or bone density values derived from dual-energy x-ray absorptiometry (DXA) scans. Thirty-three proximal humeri (range: 39-78 years) were analyzed for: (1) bone mineral density (BMD, g/cm(2)) using DXA, (2) bulk density (g/cm(3)) using DXA and volume displacement, (3) regional bone density in millimeters of aluminum (mmAl) using radiographs, and (4) regional mean (medial+lateral) cortical thickness and cortical index (CI) using radiographs. The bones were then fractured simulating a fall. Strongest correlations with ultimate fracture load (UFL) were: mean cortical thickness at two diaphyseal locations (r = 0.71; p < 0.001), and mean mmAl in the humeral head (r = 0.70; p < 0.001). Weaker correlations were found between UFL and DXA-BMD (r = 0.60), bulk density (r = 0.43), CI (r = 0.61), and age (r = -0.65) (p values <0.01). Analyses between UFL and the product of any two characteristics showed six combinations with r-values >0.80, but none included DXA-derived density, CI, or age. Radiographic morphometric and densitometric measurements from radiographs are therefore stronger predictors of UFL than age, CI, or DXA-derived density measurements. PMID:26218571

  9. Validation of fan beam dual energy x ray absorptiometry for body composition assessment in adults aged 18–45 years

    PubMed Central

    Norcross, J; Van Loan, M D

    2004-01-01

    Background: Pencil beam dual energy x ray absorptiometry (DXA) has been shown to provide valid estimates of body fat (%BF), but DXA fan beam technology has not been adequately tested to determine its validity. Objective: To compare %BF estimated from fan beam DXA with %BF determined using two and three compartment (2C, 3C) models. Methods: Men (n = 25) and women (n = 31), aged 18–41 years, participated in the study. Body density, from hydrostatic weighing, was used in the 2C estimate of %BF; DXA was used to determine bone mineral content (BMC) for the 3C estimate of %BF calculated using body density and BMC (3CBMC). DXA was also used to determine %BF. Analysis of variance was used to test for significant differences in %BF between sexes and among methods. Results: Women were significantly shorter, weighed less, had less fat free mass, and a higher %BF than men. No significant differences were found among methods (2C, 3CBMC, DXA) for determination of %BF in either sex. Although not significant, Bland-Altman plots showed that DXA gave higher values for %BF than the 2C and 3CBMC methods. Conclusion: DXA determination of %BF was not different from that of the 2C and 3CBMC models in this group of young adults. However, to validate fan beam DXA fully as a method for body composition assessment in a wide range of individuals and populations, comparisons are needed that use a 4C model with a measure of total body water and BMC. PMID:15273189

  10. Bone mineral measurements: a comparison of delayed gamma neutron activation, dual-energy X-ray absorptiometry and direct chemical analysis.

    PubMed

    Economos, C D; Nelson, M E; Fiatarone Singh, M A; Kehayias, J J; Dallal, G E; Heymsfield, S B; Wang, J; Yasumura, S; Ma, R; Pierson, R N

    1999-01-01

    A system in vitro consisting of a femur from a cadaver and soft-tissue equivalent material was used to test the agreement between several techniques for measuring bone mineral. Calcium values measured by delayed gamma neutron activation (DGNA) and bone mineral content (BMC) by Lunar, Hologic and Norland dual-energy X-ray absorptiometers (DXA) were compared with calcium and ash content determined by direct chemical analysis. To assess the effect of soft-tissue thickness on measurements of bone mineral, we had three phantom configurations ranging from 15.0 to 26.0 cm in thickness, achieved by using soft-tissue equivalent overlays. Chemical analysis of the femur gave calcium and ash content values of 61.83 g +/- 0.51 g and 154.120 +/- 0.004 g, respectively. Calcium measured by DGNA did not differ from the ashed amount of calcium at any of the phantom configurations. The BMC measured by DXA was significantly higher, by 3-5%, than the amount determined by chemical analysis for the Lunar densitometer and significantly lower, by 3-6%, for the Norland densitometer (p<0.001-0.024), but only 1% lower (not significant) for the Hologic densitometer. DXA instruments showed a decreasing trend in BMC as the thickness increased from 20.5 to 26.0 cm (p<0.05). However, within the entire thickness range (15.0-26.0 cm), the overall influence of thickness on BMC by DXA was very small. These findings offer insight into the differences in these currently available methods for bone mineral measurement and challenge the comparability of different methods. PMID:10525711

  11. Experimental validation of DXA-based finite element models for prediction of femoral strength.

    PubMed

    Dall'Ara, E; Eastell, R; Viceconti, M; Pahr, D; Yang, L

    2016-10-01

    Osteoporotic fractures are a major clinical problem and current diagnostic tools have an accuracy of only 50%. The aim of this study was to validate dual energy X-rays absorptiometry (DXA)-based finite element (FE) models to predict femoral strength in two loading configurations. Thirty-six pairs of fresh frozen human proximal femora were scanned with DXA and quantitative computed tomography (QCT). For each pair one femur was tested until failure in a one-legged standing configuration (STANCE) and one by replicating the position of the femur in a fall onto the greater trochanter (SIDE). Subject-specific 2D DXA-based linear FE models and 3D QCT-based nonlinear FE models were generated for each specimen and used to predict the measured femoral strength. The outcomes of the models were compared to standard DXA-based areal bone mineral density (aBMD) measurements. For the STANCE configuration the DXA-based FE models (R(2)=0.74, SEE=1473N) outperformed the best densitometric predictor (Neck_aBMD, R(2)=0.66, SEE=1687N) but not the QCT-based FE models (R(2)=0.80, SEE=1314N). For the SIDE configuration both QCT-based FE models (R(2)=0.85, SEE=455N) and DXA neck aBMD (R(2)=0.80, SEE=502N) outperformed DXA-based FE models (R(2)=0.77, SEE=529N). In both configurations the DXA-based FE model provided a good 1:1 agreement with the experimental data (CC=0.87 for SIDE and CC=0.86 for STANCE), with proper optimization of the failure criteria. In conclusion we found that the DXA-based FE models are a good predictor of femoral strength as compared with experimental data ex vivo. However, it remains to be investigated whether this novel approach can provide good predictions of the risk of fracture in vivo. PMID:27341287

  12. Dual-photon absorptiometry: Comparison of bone mineral and soft tissue mass measurements in vivo with established methods

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Heshka, S.; Kehayias, J.J.; Pierson, R.N.

    1989-06-01

    This study extended initial observations that indicated the potential of dual-photon absorptiometry (DPA) to measure total-body bone mineral (TBBM) and fat in vivo. DPA-derived TBBM and fat were compared with established methods in 13 subjects (aged 24-94 y) who underwent measurement of body density (Db), total-body water (TBW), potassium (TBK), calcium (TBCa, delayed-gamma neutron activation), and nitrogen (prompt-gamma neutron activation). TBBM was highly correlated with TBCa (r = 0.95, p less than 0.001) and the slope of TBCa vs TBBM (0.34) was similar to Ca content of ashed skeleton (0.34-0.38). DPA-measured fat (means +/- SD, 16.7 +/- 4.9 kg) correlated significantly (r = 0.79-0.94; p less than 0.01-0.001) with fat established by Db (16.3 +/- 5.4 kg), TBW (16.0 +/- 4.3 kg), TBK (17.7 +/- 4.6 kg), combined TBW-neutron activation (17.6 +/- 5.9 kg), and means of all four methods (16.9 +/- 4.8 kg). DPA thus offers a new opportunity to study human skeleton in vivo and to quantify fat by a method independent from the classical assumption that bone represents a fixed fraction of fat-free body mass.

  13. Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems

    PubMed Central

    Santori, Francesco S; Pavan, Laura; Learmonth, Ian D; Passariello, Roberto

    2009-01-01

    Background and purpose Dual-energy X-ray absorptiometry (DXA) analysis of the 7 periprosthetic Gruen zones is the most commonly used protocol to evaluate bone remodeling after the implantation of conventional femoral stems. We assessed the value of DXA after cementless primary total hip arthroplasty (THA) by comparing the effect of progressive shortening of the stem of two femoral implants on periprosthetic bone remodeling using a specifically developed protocol of analysis with 5 periprosthetic regions of interest (ROIs). Patients and methods Bone mineral density (BMD) was evaluated in 37 patients in the plateau stage, 3 years after THA. Two femoral implants featuring conceptually new designs and surgical technique were tested: types 1 and 2, characterized by extremely short stem and virtual absence of distal stem, respectively. Results We found that progressive shortening of the femoral stem produces more proximal loading, which effectively preserves metaphyseal bone stock and increases periprosthetic BMD in the medial ROIs over time. In the type 2 group, higher absolute BMD values were observed in medial ROIs 4 and 5. No differences were found in ROIs 1, 2, and 3. Interpretation This study shows the flexibility of DXA in adapting the protocol of periprosthetic analysis to the specific requirements of new implant designs, and it shows its high sensitivity in evaluation of the biological response of bone to changes in implant shape. PMID:19562565

  14. Body composition in taller individuals using DXA: A validation study for athletic and non-athletic populations.

    PubMed

    Santos, Diana A; Gobbo, Luís A; Matias, Catarina N; Petroski, Edio L; Gonçalves, Ezequiel M; Cyrino, Edilson S; Minderico, Claudia S; Sardinha, Luís B; Silva, Analiza M

    2013-01-01

    Dual energy X-ray absorptiometry (DXA) cannot be used to evaluate participants taller than the scan area. We aimed to analyse the accuracy of bone mineral content, fat mass, and lean mass assessed with DXA whole-body scan and from the sum of two scans (head and trunk plus limbs). Participants were 31 athletes (13 males and 18 females) and 65 non-athletes (34 males and 31 females), that fit within the DXA scan area. Three scans were performed using a Hologic Explorer-W fan-beam densitometer: a whole-body scan used as the reference; a head scan; and a trunk and limbs scan. The sum of the head scan and the trunk and limbs scan was used as the alternative procedure. Multiple regression and agreement analysis were performed. Non-significant differences between methods were observed for fat mass (0.06 kg) and lean mass (-0.07 kg) while bone mineral content from the alternative procedure differed from the reference scan (0.009 kg). The alternative procedure explained > 99% of the variance in the reference scan and low limits of agreement were observed. Precision analysis indicated low pure errors and the higher coefficients of variation were found for fat mass (whole-body: 3.70%; subtotal: 4.05%). The method proposed is a valid and simple solution to be used in individuals taller than the DXA scan area, including athletes engaged in sports recognised for including very tall competitors. PMID:23092580

  15. [Bone and Calcium Research Update 2015. Recent advances in clinical assessment of trabecular bone architecture: trabecular bone score (TBS)].

    PubMed

    Sone, Teruki

    2015-01-01

    Although dual-energy X-ray absorptiometry (DXA) is regarded as the gold-standard technique for diagnosing osteoporosis, bone mineral density (BMD) alone by DXA is not sufficient for bone strength assessment. Trabecular bone score (TBS) is a texture analysis parameter that evaluates pixel gray-level variations in DXA images of the lumbar spine and allows to assess bone microarchitectural status that is one of the determinants of bone strength. Recent clinical evidences show that TBS is associated with fracture risk in primary and secondary osteoporosis, has a complementary role to lumbar spine BMD and responds to osteoporosis medications somewhat differently than BMD. Thus TBS has the potential to become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.

  16. A DXA study of muscle-bone relationships in the whole body and limbs of 2512 normal men and pre- and post-menopausal women.

    PubMed

    Capozza, R F; Cointry, G R; Cure-Ramírez, P; Ferretti, J L; Cure-Cure, C

    2004-07-01

    A whole-body DXA study of 1450 healthy Caucasian individuals [Bone 22 (1998) 683] found that mineral mass, either crude (BMC) or statistically adjusted to fat mass (FM-adjusted BMC), correlated linearly with lean mass (LM, proportional to muscle mass). The results showed similar slopes but decreasing intercepts (ordinate values) in the order: pre-MP women > men > post-MP women > children. This supports the hypothesis that sex hormones influence the control of bone status by muscle strength in all species. Now we further study those relationships in 2512 healthy Hispanic adults (307 men, 753 pre-MP women, 1452 post-MP women), including separate determinations in their upper and lower limbs. The slopes of the BMC or FM-adjusted BMC vs. LM relationships were parallel in all the studied regions. However, region-related differences were found between the ordinates of the curves. In the whole body, the crude-BMC/LM relationships showed the same ordinate differences as previously observed. In the lower limbs, those differences were smaller in magnitude but highly significant, showing the order: pre-MP women > men = post-MP women. In the upper limbs, the decreasing ordinate order was: men > pre-MP women > post-MP women. After fat adjustment of the BMC, order in both limbs was: men > pre-MP women > post-MP women. Parallelism of the curves was maintained in all cases. LM had a larger independent influence on these results than FM, body weight, or age. The parallelism of the curves supports the idea that a common biomechanical control of bones by muscles occurs in humans. Results suggest that sex-hormone-associated differences in DXA-assessed muscle-bone proportionality in humans could vary according to the region studied. This could be related to the different weight-bearing nature of the musculoskeletal structures studied. Besides the obvious anthropometric associations, FM would exert a mechanical effect as a component of body weight, evident in the lower limbs, while

  17. Bone and Celiac Disease.

    PubMed

    Zanchetta, María Belén; Longobardi, Vanesa; Bai, Julio César

    2016-04-01

    More than 50% of untreated patients with celiac disease (CD) have bone loss detected by bone densitometry (dual-energy X-ray absorptiometry:DXA). Moreover, patients with CD are more likely to have osteoporosis and fragility fractures, especially of the distal radius. Although still controversial, we recommend DXA screening in all celiac disease patients, particularly in those with symptomatic CD at diagnosis and in those who present risk factors for fracture such as older age, menopausal status, previous fracture history, and familial hip fracture history. Bone microarchitecture, especially the trabecular network, may be deteriorated, explaining the higher fracture risk in these patients. Adequate calcium and vitamin D supplementation are also recommended to optimize bone recovery, especially during the first years of gluten free diet (GFD). If higher fracture risk persists after 1 or 2 years of GFD, specific osteoactive treatment may be necessary to improve bone health.

  18. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  19. Increasing body fat mass reverses bone loss in osteopenia as detected by dual-energy X-ray absorptiometry scans

    PubMed Central

    Hedges, William P.; Bukhari, Marwan

    2016-01-01

    Objective Low body mass index (BMI) is a known risk factor for osteoporosis and is part of the FRAX™ 10-year fracture risk stratification tool for predicting fragility fractures. Little is known regarding the effects of changing body composition on bone mineral density (BMD). However, increasing fat mass (FM) improves BMD in young women with anorexia nervosa. This study aimed to assess whether changes in FM over time affected BMD in the general population. Material and Methods Data was collected from patients who underwent dual-energy X-ray absorptiometry (DEXA) assessment between 2004 and 2011. Patients were included if they had multiple scans, including FM measurements. Our scanners limited these to scans of the lumbar spine. Linear regression analysis was performed to identify the relationship between changes in FM and BMD. Backwards stepwise linear regression analysis was performed to identify confounding factors, including sex, risk factors, previous fractures, and baseline BMI. Results In this study, 23,239 patients were included, of which 702 met the inclusion criteria. There were 609 (86%) females and 93 (13%) males with a mean age of 64.5 (SD 11.2) years at first scan. We identified a strong positive correlation between increasing FM and BMD between scans (coefficient 28.4; p<0.01; 95% CI, 26.6–30.1). Previous pelvic and femur fractures and a history of inflammatory diseases were also associated with increasing FM (p<0.05). This relationship was true regardless of patients BMI at their first scan. Conclusion These findings suggest that patients at high risk of fragility fractures should be encouraged to increase their FM as long as they are at a low risk for disease states related to high FM. PMID:27708960

  20. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    SciTech Connect

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-11-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process.

  1. Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method

    PubMed Central

    2010-01-01

    Background Dual-energy x-ray absorptiometry (DXA) provides an affordable and practical assessment of multiple whole body and regional body composition. However, little information is available on the assessment of changes in body composition in top-level athletes using DXA. The present study aimed to assess the accuracy of DXA in tracking body composition changes (relative fat mass [%FM], absolute fat mass [FM], and fat-free mass [FFM]) of elite male judo athletes from a period of weight stability to prior to a competition, compared to a four compartment model (4C model), as the criterion method. Methods A total of 27 elite male judo athletes (age, 22.2 ± 2.8 yrs) athletes were evaluated. Measures of body volume by air displacement plethysmography, bone mineral content assessed by DXA, and total-body water assessed by deuterium dilution were used in a 4C model. Statistical analyses included examination of the coefficient of determinant (r2), standard error of estimation (SEE), slope, intercept, and agreement between models. Results At a group level analysis, changes in %FM, FM, and FFM estimates by DXA were not significantly different from those by the 4C model. Though the regression between DXA and the 4C model did not differ from the line of identity DXA %FM, FM, and FFM changes only explained 29%, 36%, and 38% of the 4C reference values, respectively. Individual results showed that the 95% limits of agreement were -3.7 to 5.3 for %FM, -2.6 to 3.7 for FM, and -3.7 to 2.7 for FFM. The relation between the difference and the mean of the methods indicated a significant trend for %FM and FM changes with DXA overestimating at the lower ends and underestimating at the upper ends of FM changes. Conclusions Our data indicate that both at group and individual levels DXA did not present an expected accuracy in tracking changes in adiposity in elite male judo athletes. PMID:20307312

  2. In vivo precision of dual-energy X-ray absorptiometry-derived hip structural analysis in adults.

    PubMed

    Hind, Karen; Oldroyd, Brian; Prajapati, Anup; Rhodes, Laura

    2012-01-01

    Precision is integral to the monitoring of bone mineral density (BMD) change using dual-energy X-ray absorptiometry (DXA). Hip structural analysis (HSA) is a relatively recent method of assessing cross-sectional geometrical strength from the 2-dimensional images produced by DXA scans. By performing serial scans, we evaluated the in vivo precision of DXA-derived HSA in adults using a GE Lunar iDXA absorptiometer (GE Medical Systems, Madison, WI) in males and females (n=42), mean age of 34.5 (standard deviation [SD]: 8.5; range: 19.3-52.6)yr with a heterogeneous sample. Two consecutive intelligent DXA (iDXA) scans with repositioning of both femurs were conducted for each participant. The coefficient of variation, root-mean-square (RMS) averages of SD, and hence the least significant change (95%) were calculated. We found a high level of precision for BMD measurements of both the total hip and femoral neck, with RMS-SD=0.006 and 0.010 g/cm(2) and percent coefficient of variation (%CV)=0.52% and 0.94%, respectively. We also found good precision for HSA-derived geometrical properties, including sectional modulus, cross-sectional moment of inertia, and cross-sectional area, with %CV (average of the left and right sides) at 4.48%, 3.78%, and 3.13%, respectively. Precision was poorer for buckling ratio and femoral strength index with %CV 28.5% and 9.25%, respectively. The iDXA provides high precision for BMD measurements and with varying levels of precision for HSA geometrical properties.

  3. Comparison of dual-photon absorptiometry systems for total-body bone and soft tissue measurements: Dual-energy X-rays versus gadolinium 153

    SciTech Connect

    Russell-Aulet, M.; Wang, J.; Thornton, J.; Pierson, R.N. Jr. )

    1991-04-01

    A total of 81 subjects (41 males and 40 females) were scanned by dual-photon absorptiometry by 153Gd source (DPA; Lunar DP4) and by dual-energy x-ray absorptiometry (DEXA; Lunar-DPX) within a 24 h period. Total-body bone mineral density (TBMD), calcium content (Ca), and soft tissue mass (ST) were determined with a precision of about 1-1.5% using DPA and 0.5-1.0% using DEXA. Measurements of TBMD, Ca, ST, bone area (area), percentage fat, and regional bone mineral densities (BMD) were compared. Paired t-tests showed small but significant differences between all measurements. Correlations (r) for TBMD, Ca, area, ST, percentage fat, arm BMD, leg BMD, and trunk BMD were 0.99, 0.99, 0.97, 0.99, 0.97, 0.99, 0.99, and 0.98. There were small systematic differences for TBMD (less than 1%), calcium (3%), bone area (3%), soft tissue mass (7%), and percentage fat (9%) between the two approaches. Regression equations are given relating these measurements.

  4. Precision Error in Dual-Energy X-Ray Absorptiometry Body Composition Measurements in Elite Male Rugby League Players.

    PubMed

    Barlow, Matthew J; Oldroyd, Brian; Smith, Debbie; Lees, Matthew J; Brightmore, Amy; Till, Kevin; Jones, Benjamin; Hind, Karen

    2015-01-01

    Body composition analysis using dual-energy X-ray absorptiometry (DXA) is becoming increasingly popular in both clinical and sports science settings. Obesity, characterized by high fat mass (FM), is associated with larger precision errors; however, precision error for athletic groups with high levels of lean mass (LM) are unclear. Total (TB) and regional (limbs and trunk) body composition were determined from 2 consecutive total body scans (GE Lunar iDXA) with re-positioning in 45 elite male rugby league players (age: 21.8 ± 5.4 yr; body mass index: 27.8 ± 2.5 kg m(-1)). The root mean squared standard deviation (percentage co-efficient of variation) were TB bone mineral content: 24g (1.7%), TB LM: 321 g (1.6%), and TB FM: 280 g (2.3%). Regional precision values were superior for measurements of bone mineral content: 4.7-16.3 g (1.7-2.1%) and LM: 137-402 g (2.0-2.4%), than for FM: 63-299 g (3.1-4.1%). Precision error of DXA body composition measurements in elite male rugby players is higher than those reported elsewhere for normal adult populations and similar to those reported in those who are obese. It is advised that caution is applied when interpreting longitudinal DXA-derived body composition measurements in male rugby players and population-specific least significant change should be adopted. PMID:26072358

  5. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows

    PubMed Central

    MAETANI, Ayami; ITOH, Megumi; NISHIHARA, Kahori; AOKI, Takahiro; OHTANI, Masayuki; SHIBANO, Kenichi; KAYANO, Mitsunori; YAMADA, Kazutaka

    2016-01-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  6. DXA femoral neck strength analysis in Chinese overweight and normal weight adolescents.

    PubMed

    Gong, Jian; Xu, Yi; Guo, Bin; Xu, Hao

    2012-01-01

    The aim of this study was to compare femoral neck (FN) strength in Chinese overweight adolescents with gender-matched normal weight controls and investigate the relationship of total body soft tissue composition (lean and fat masses) to indices of FN strength. Dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur and total body were made in 65 Chinese overweight adolescents and 89 gender-matched normal weight controls using Lunar Prodigy DXA bone densitometer (GE Healthcare, Madison, WI). FN bone mineral density (BMD), total body lean mass, fat mass, and bone mineral content (BMC) were measured. Using FN BMD values derived from DXA measurements, hip structural analysis (HSA) was performed using Lunar enCORE (GE Healthcare), version 10.5 software. Structural parameters derived by HSA were bone cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), and the section modulus (Z). Data were analyzed by Student's t-test, Pearson correlation coefficients (r), and one-way analysis of covariance (ANCOVA). Overweight boys and girls had higher body weight, lean mass, fat mass, and body mass index (p<0.001) than normal controls. CSA, CSMI, and Z were higher in overweight groups compared with controls (p<0.05). Lean mass correlated well with all HSA parameters (range of r: 0.501--0.714) for both genders. ANCOVA test showed no significant differences between overweight and normal weight groups regarding HSA variables in both genders after adjustment for lean mass. However, the differences remain significant after adjustment for fat mass in boys but not in girls. This study supports the conclusion that overweight individuals have greater hip neck strength in comparison with normal weight controls in Chinese adolescents. Lean mass is a major determinant for FN strength.

  7. First all-solid pediatric phantom for dual X-ray absorptiometry measurements in infants.

    PubMed

    Picaud, Jean-Charles; Duboeuf, François; Vey-Marty, Vey; Delams, Pierre; Claris, Oliver; Salle, Bernard-Louis; Rigo, Jacques

    2003-01-01

    Manufacturer-supplied lumbar spine phantoms are normally used for quality control of dual X-ray absorptiometry (DXA) instruments. Presently, there is no pediatric phantom for whole-body mineralization and softtissue composition DXA measurements. We designed blocks of acrylic (for fat mass), polyvinyl chloride (for lean mass), and aluminum (for bone mass) whose combination provides five whole-body phantoms ("Inphants") that mimic body weight and composition during the first year of life and help solve problems that require repeated scans in stable conditions. Inphants were scanned using an Hologic QDR 2000. Comparisons were made between values obtained with and without the table pad, using infant software. Then we compared data obtained using infant and adult softwares successively in the same phantoms. The table pad significantly influenced DXA measurements. We observed significant differences in fat mass (p = 0.04) and lean mass (p = 0.03) with the smaller Inphant (3 kg) and in bone mineral content (BMC) (p = 0.02) with the larger Inphant (13 kg). BMC was three to five times lower with adult than with infant software. Adult software yielded systematically significantly lower fat masses but higher lean masses than infant software. Because there was no overlap with larger Inphants, we calculated conversion formulae between values of infant and adult software. The results suggest guidelines for scan acquisition and analysis in young subjects. PMID:12665698

  8. Comparison of Anthropometry to Dual Energy X-Ray Absorptiometry: A New Prediction Equation for Women

    ERIC Educational Resources Information Center

    Ball, Stephen; Swan, Pamela D.; DeSimone, Rosemarie

    2004-01-01

    The purpose of this study was to assess the accuracy of three recommended anthropometric equations for women and then develop an updated prediction equation using dual energy x-ray absorptiometry (DXA). The percentage of body fat (%BF) by anthropometry was significantly correlated (r = .896-. 929; p [is less than] .01) with DXA, but each equation…

  9. bone mineral densities and mechanical properties of retrieved femoral bone samples in relation to bone mineral densities measured in the respective patients.

    PubMed

    Haba, Yvonne; Skripitz, Ralf; Lindner, Tobias; Köckerling, Martin; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The bone mineral density (BMD) of retrieved cancellous bone samples is compared to the BMD measured in vivo in the respective osteoarthritic patients. Furthermore, mechanical properties, in terms of structural modulus (E(s)) and ultimate compression strength (σ(max)) of the bone samples, are correlated to BMD data. Human femoral heads were retrieved from 13 osteoarthritic patients undergoing total hip replacement. Subsequently, the BMD of each bone sample was analysed using dual energy X-ray absorptiometry (DXA) as well as ashing. Furthermore, BMDs of the proximal femur were analysed preoperatively in the respective patients by DXA. BMDs of the femoral neck and head showed a wide variation, from 1016 ± 166 mg/cm(2) to 1376 ± 404 mg/cm(2). BMDs of the bone samples measured by DXA and ashing yielded values of 315 ± 199 mg/cm(2) and 347 ± 113 mg/cm(3), respectively. E(s) and σ(max) amounted to 232 ± 151 N/mm(2) and 6.4 ± 3.7 N/mm(2). Significant correlation was found between the DXA and ashing data on the bone samples and the DXA data from the patients at the femoral head (r = 0.85 and 0.79, resp.). E(s) correlated significantly with BMD in the patients and bone samples as well as the ashing data (r = 0.79, r = 0.82, and r = 0.8, resp.).

  10. Standards and measurements for assessing bone health-workshop report co-sponsored by the International Society for Clinical Densitometry (ISCD) and the National Institute of Standards and Technology (NIST).

    PubMed

    Bennett, Herbert S; Dienstfrey, Andrew; Hudson, Lawrence T; Oreskovic, Tammy; Fuerst, Thomas; Shepherd, John

    2006-01-01

    This article reports and discusses the results of the recent ISCD-NIST Workshop on Standards and Measurements for Assessing Bone Health. The purpose of the workshop was to assess the status of efforts to standardize and compare results from dual-energy X-ray absorptiometry (DXA) scans, and then to identify and prioritize ongoing measurement and standards needs.

  11. Evaluation of the effects of hypergravity exposure and caging restraint on bone mineralization in the Beagle by in vivo photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Fisher, G. L.; Berding, K. L.; Goldman, M.

    1975-01-01

    Photon absorptiometry was used to evaluate bone mineral kinetics associated with normal development and the possible perturbations to bone development resulting from hypergravity exposure over a period of six months in developing Beagles. A series of seven measurements were performed at specific times with the first measurement prior to treatment and subsequent measurements at 2, 5, 9, 14, 20 and 26 weeks from the onset of the experiment. Four groups of six male Beagle pups, ranging in age from 85 to 92 days were studied. Two groups were chronically exposed to hypergravity treatments by centrifugation of 2.0 G (18.0 RPM, 11.7 ft radius) and 2.6 G (18.0 RPM, 19.8 ft radius) for the 26 week period. A third group of six dogs served as a caged control to evaluate possible changes due to confinement in small plexiglass cages similar to those of the centrifuge. Thus this control group was subjected to limited exercise due to caging restraint. The fourth group of animals was housed in open runs to allow exercise without the spatial confinement of the smaller plexiglass cages. Results show highly significant differences in body weight, bone length, increase in bone density of control group relative to other groups, and a decrease in bone mineral content in the two gravity treated groups.

  12. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults.

    PubMed

    Hind, K; Oldroyd, B; Truscott, J G

    2011-01-01

    In vivo precision for body composition measurements using dual energy X-ray absorptiometry (DXA; GE Lunar iDXA, GE Healthcare, Bucks, UK) was evaluated in 52 men and women, aged 34.8 (s.d. 8.4; range 20.1-50.5) years, body mass index (25.8 kg/m(2); range 16.7-42.7 kg/m(2)). Two consecutive total body scans (with re-positioning) were conducted. Precision was excellent for all measurements, particularly for total body bone mineral content and lean tissue mass (root mean square 0.015 and 0.244 kg; coefficients of variation (CV) 0.6 and 0.5%, respectively). Precision error was CV 0.82% for total fat mass and 0.86% for percentage fat. Precision was better for gynoid (root mean square 0.397 kg; CV 0.96%) than for android fat distribution (root mean square 0.780 kg, CV 2.32%). There was good agreement between consecutive measurements for all measurements (slope (s.e.) 0.993-1.002; all R(2) = 0.99). The Lunar iDXA provided excellent precision for total body composition measurements. Research into the effect of body size on the precision of DXA body fat distribution measurements is required.

  13. The Ability of Lumbar Spine DXA and Phalanx QUS to Detect Previous Fractures in Young Thalassemic Patients With Hypogonadism, Hypothyroidism, Diabetes, and Hepatitis-B: A 2-Year Subgroup Analysis From the Taranto Area of Apulia Region

    PubMed Central

    Neglia, Cosimo; Peluso, Angelo; di Rosa, Salvatore; Ferrarese, Antonio; Di Tanna, Gianluca; Caiaffa, Vincenzo; Benvenuto, Marco; Cozma, Alexandru; Chitano, Giovanna; Agnello, Nadia; Paladini, Daniele; Baldi, Nicola; Distante, Alessandro; Piscitelli, Prisco

    2013-01-01

    Background: Osteoporosis is a leading cause of morbidity in patients affected by β-thalassemia major or intermediate; we aimed to assess the association between demineralization observed in young thalassemic patients. Methods: A total of 88 patients with β-thalassemia were recruited at Microcitemia Center of Taranto Hospital under the Prevention Osteoporosis and Fractures research project from 2008 to 2010. All the patients were screened with both dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS). T score and Z score values were obtained for each subject. Results: The overall prevalence of demineralization was 84% with DXA and 70% with QUS, whereas normality was found in 16% of patients screened with DXA and in 30% of cases with QUS. Hypogonadism, hypothyroidism, diabetes mellitus, hepatitis-B, and the presence of previous fragility fractures were significantly associated with the demineralization status (lower T scores values) both with DXA and QUS. Conclusion: Our data confirm that DXA and QUS examinations are both useful for detecting bone demineralization in thalassemic patients. PMID:23652868

  14. Skeletal Recovery Following Long-Duration Spaceflight Missions as Determined by Preflight and Postflight DXA Scans of 45 Crew Members

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2006-01-01

    Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.

  15. Executive Summary of the 2015 ISCD Position Development Conference on Advanced Measures From DXA and QCT: Fracture Prediction Beyond BMD.

    PubMed

    Shepherd, John A; Schousboe, John T; Broy, Susan B; Engelke, Klaus; Leslie, William D

    2015-01-01

    There have been many scientific advances in fracture risk prediction beyond bone density. The International Society for Clinical Densitometry (ISCD) convened a Position Development Conference (PDC) on the use of dual-energy X-ray absorptiometry beyond measurement of bone mineral density for fracture risk assessment, including trabecular bone score and hip geometry measures. Previously, no guidelines for nonbone mineral density DXA measures existed. Furthermore, there have been advances in the analysis of quantitative computed tomography (QCT) including finite element analysis, QCT of the hip, DXA-equivalent hip measurements, and opportunistic screening that were not included in the previous ISCD positions. The topics and questions for consideration were developed by the ISCD Board of Directors and the Scientific Advisory Committee and were designed to address the needs of clinical practitioners. Three task forces were created and asked to conduct comprehensive literature reviews to address specific questions. The task forces included participants from many countries and a variety of interests including academic institutions and private health care delivery organizations. Representatives from industry participated as consultants to the task forces. Task force reports with proposed position statements were then presented to an international panel of experts with backgrounds in bone densitometry. The PDC was held in Chicago, Illinois, USA, contemporaneously with the Annual Meeting of the ISCD, February 26 through February 28, 2015. This Executive Summary describes the methodology of the 2015 PDC on advanced measures from DXA and QCT and summarizes the approved official positions. Six separate articles in this issue will detail the rationale, discussion, and additional research topics for each question the task forces addressed.

  16. Bone Density in Peripubertal Boys with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Neumeyer, Ann M.; Gates, Amy; Ferrone, Christine; Lee, Hang; Misra, Madhusmita

    2013-01-01

    We determined whether bone mineral density (BMD) is lower in boys with autism spectrum disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 controls 8-14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and…

  17. Body Fat Mass Assessment: A Comparison between an Ultrasound-Based Device and a Discovery A Model of DXA

    PubMed Central

    Pineau, Jean-Claude; Lalys, Loïc; Pellegrini, Massimo; Battistini, Nino Carlo

    2013-01-01

    Objective. To examine measurement of body composition by ultrasound compared with a reference technique:dual energy X-ray absorptiometry (DXA). We evaluated the accuracy of a portable ultrasound-based device in estimating total body fat mass with those assessed by DXA in adult. Methods. Body fat mass has been estimated using a portable ultrasound-based device in comparison with a contemporary reference DXA apparatus: the Hologic Discovery A. Anthropometric data has been assessed in order to maximize the output of the software associated with the ultrasound-based device. A cross-validation between ultrasound technique (US) and DXA was developed in this study. Total body fat mass estimated by ultrasound was compared with this DXA model in a sample of 83 women and 41 men. Results. Ultrasound technique (US) of body fat (BF) was better correlated with DXA in both women (r2 = 0.97, P < 0.01) and men (r2 = 0.92, P < 0.01) with standard errors of estimates (SEE) being 2.1 kg and 2.2 kg, respectively. Conclusion. The use of a portable device based on a US produced a very accurate BF estimate in relation to DXA reference technique. As DXA absorptiometry techniques are not interchangeable, the use of our ultrasound-based device needs to be recalibrated on a more contemporary DXA. PMID:24575315

  18. Measurement of bone mineral density by dual-energy x-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem.

    PubMed

    Kiratli, B J; Checovich, M M; McBeath, A A; Wilson, M A; Heiner, J P

    1996-02-01

    Although qualitative evidence of femoral bone remodeling, secondary to total hip arthroplasty (THA), is apparent on radiographs, quantification of change in bone mass from radiographs is limited. Dual-energy x-ray absorptiometry overcomes many of the limitations and yields accurate and precise bone mineral density (BMD) data. In this study, regional changes in femoral BMD were examined in 89 THA patients with a 2-year follow-up period. Thirty-two patients were evaluated initially before surgery and followed through the first 2 postoperative years. A second group was comprised of 57 patients whose surgery had been performed 1 to 6 years prior to entry into the study; they were also followed for 2 years hence. Thus, both immediate and later bone responses were evaluated prospectively. Maximal bone remodeling was seen in the first 6 months after THA and with a near plateau by the end of the first year. A slow yearly decline in BMD appeared to occur as long as 8 years after THA, thus demonstrating the long-term effects of the introduction of a femoral stem. Variance in preoperative BMD was explained by disease only; no other factors (age, weight, sex) showed significant associations, and body weight was the only variable that affected rate of remodeling after THA (not age, weight, sex, prosthesis size, nor disease). All patients were healthy, relatively young individuals who were good candidates for uncemented implantation, and none showed evidence of clinical complications or surgical failure. It is therefore suggested that the patterns and results reported here be viewed as normative data, that is, the typical skeletal adaptation to THA. In future application, observation of disparate BMD results as compared with these "normal" data may be predictive of abnormal response to surgery and potential for later problems.

  19. Clinical comparison of a novel breast DXA technique to mammographic density

    SciTech Connect

    Shepherd, John A.; Herve, Lionel; Landau, Jessie; Fan Bo; Kerlikowske, Karla; Cummings, Steve R.

    2006-05-15

    We compare mammography breast density (BD{sub MD}) to the measure of breast composition using a clinical dual energy absorptiometry (DXA) system (BD{sub DXA}) calibrated to measure breast density. A DXA scanning protocol was developed to scan breasts isolated in the DXA scan field in either a prone pendulous or decubitus mediolateral position. A total of 17 participants were recruited among women undergoing clinical mammography examinations. Each participant had duplicate DXA scans and duplicate craniocaudal-view mammograms of their right breast with repositioning between each scan and one DXA and one craniocaudal-view mammogram of their left breast. The in vivo repeatability (RMS SD) of BD{sub DXA} and BD{sub MD} on duplicate scans was found to be 1.2% for BD{sub DXA} and 1.4% for BD{sub MD} when repeat BD{sub MD} measures were made on the same day. When repeat BD{sub MD} measures of the same breast were made more than 50 days apart, the repeatability decreased to 5.5%. Left and right breast measurements were highly correlated with both techniques at r{sup 2}=0.98 for BD{sub DXA} and r{sup 2}=0.86 for BD{sub MD}. Moderate correlation (r{sup 2}=0.52) was found between BD{sub DXA} and BD{sub MD} measurements. However, after recalibrating the DXA system to mammography reference materials, negative percent fibroglandular values were measured for the most fatty breasts. Thus, our results are reproducible and accurate to common mammography tissue standards, but did not accurately reflect true percent fibroglandular levels and further development of phantom standards are necessary. We conclude that breast composition can be precisely evaluated and assessed with clinical DXA densitometers at a lower dose than with mammographic breast density methods.

  20. Regional variation in the denial of reimbursement for bone mineral density testing among US Medicare beneficiaries.

    PubMed

    Curtis, Jeffrey R; Laster, Andrew J; Becker, David J; Carbone, Laura; Gary, Lisa C; Kilgore, Meredith L; Matthews, Robert; Morrisey, Michael A; Saag, Kenneth G; Tanner, S Bobo; Delzell, Elizabeth

    2008-01-01

    Although the Bone Mass Measurement Act outlines the indications for central dual-energy X-ray absorptiometry (DXA) testing for US Medicare beneficiaries, the specifics regarding the appropriate ICD-9 codes to use for covered indications have not been specified by Medicare and are sometimes ambiguous. We describe the extent to which DXA reimbursement was denied by gender and age of beneficiary, ICD-9 code submitted, time since previous DXA, whether the scan was performed in the physician's office and local Medicare carrier. Using Medicare administrative claims data from 1999 to 2005, we studied a 5% national sample of beneficiaries age > or =65 yr with part A+B coverage who were not health maintenance organization enrollees. We identified central DXA claims and evaluated the relationship between the factors listed above and reimbursement for central DXA (CPT code 76075). Multivariable logistic regression was used to evaluate the independent relationship between DXA reimbursement, ICD-9 diagnosis code, and Medicare carrier. For persons who had no DXA in 1999 or 2000 and who had 1 in 2001 or 2002, the proportion of DXA claims denied was 5.3% for women and 9.1% for men. For repeat DXAs performed within 23 mo, the proportion denied was approximately 19% and did not differ by sex. Reimbursement varied by more than 6-fold according to the ICD-9 diagnosis code submitted. For repeat DXAs performed at <23 mo, the proportion of claims denied ranged from 2% to 43%, depending on Medicare carrier. Denial of Medicare reimbursement for DXA varies significantly by sex, time since previous DXA, ICD-9 diagnosis code submitted, place of service (office vs facility), and local Medicare carrier. Greater guidance and transparency in coding policies are needed to ensure that DXA as a covered service is reimbursed for Medicare beneficiaries with the appropriate indications.

  1. Dual-energy X-ray absorptiometry in sheep: experiences with in vivo and ex vivo studies.

    PubMed

    Turner, A S; Mallinckrodt, C H; Alvis, M R; Bryant, H U

    1995-10-01

    As different large animal models of osteopenia and osteoporosis are explored, the use of DXA to rapidly, non-invasively and accurately estimate BMD will become widespread. We used DXA in live sheep and cadaveric material and the areas of trabecular bone that are most accessible on a simple, repeatable basis in the sheep were the lumbar vertebrae (L4-L6/L5-L7), the CAL and the DR. We performed dual-energy X-ray absorptiometry (DXA) using an Hologic QDR 1000-W bone densitometer to measure bone mineral density (BMD) at various regions of interest in anesthetized sheep and cadaveric specimens of sheep. In vivo measurements of L4-L6/L5-L7, the calcaneus (CAL) and distal radius (DR) in 48 intact 3 to 5-year-old ewes (same breed) were performed. Correlations between the different bones were investigated. In an in vivo precision study, BMD of L3-L6/L7, CAL and DR was determined with one animal repositioned between 10 scans of each bone. In another study, ex-vivo BMD measurements of the proximal and distal femur, proximal tibia, and proximal humerus were performed on isolated bones of 45 ewes of similar age. Excised vertebrae were scanned on the Hologic QDR 1000-W and on a Lunar DPX (at another site) and the data were compared. Correlations of BMD between individual vertebrae in anesthetized sheep were excellent (r = 0.944- 0.843; P < 0.0001). Correlation between BMD of individual vertebrae and CAL was good (r = 0.677-0.630), while correlation between BMD of individual vertebrae and DR was also good (r = 0.551-0.507; P < .0001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8579941

  2. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  3. Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...

  4. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry.

    PubMed

    Keil, Mhairi; Totosy de Zepetnek, Julia O; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2016-01-01

    The purpose of this study was to assess the reproducibility of body composition measurements by dual-energy X-ray absorptiometry (DXA) in 12 elite male wheelchair basketball players (age 31 ± 7 years, BMI 21 ± 2 kg/m(2) and onset of disability 25 ± 9 years). Two whole body scans were performed on each participant in the supine position on the same day, using Lunar Prodigy Advance DXA (GE Lunar, Madison, WI, USA). Participants dismounted from the scanning table and were repositioned in-between the first and second scan. Whole body coefficient of variation (CV) values for bone mineral content (BMC), fat mass (FM) and soft tissue lean mass (LTM) were all <2.0%. With the exclusion of arm FM (CV = 7.8%), CV values ranged from 0.1 to 3.7% for all total body and segmental measurements of BMC, FM and LTM. The least significant change that can be attributed to the effect of treatment intervention in an individual is 1.0 kg, 1.1 kg, 0.12 kg for FM, LTM, and BMC, respectively. This information can be used to determine meaningful changes in body composition when assessed using the same methods longitudinally. Whilst there may be challenges in the correct positioning of an individual with disability that can introduce greater measurement error, DXA is a highly reproducible technique in the estimation of total and regional body composition of elite wheelchair basketball athletes.

  5. Experimental studies on the bone metabolism of male rats chronically exposed to cadmium intoxication using dual-energy X-ray absorptiometry.

    PubMed

    Yokota, H; Tonami, H

    2008-04-01

    Cadmium (Cd) has been identified as the etiologic agent of itai-itai disease. The purpose of this study was to investigate whether chronic Cd exposure affects bone metabolism in a male rat model and to estimate the bone mineral density (BMD) differences in lumbar and femoral bone because of Cd exposure. Six-week-old male Hos Donryu rats were used in this experiment. Cadmium was administered at a dose of 200 ppm to rats in the diet to produce experimental chronic Cd poisoning. Bone mineral density was measured using dual-energy X-ray absorptiometry (DEXA) with a high-resolution scan collimator (0.25 mm diameter) (Hologic QDR-2000). The Cd content in renal tissue reached a critical concentration of 128.42 +/- 14.38 microg/g 10 months after the administration of the element (Table 3). The average blood urea nitrogen (BUN) value was increased throughout the period of the experiment, and the serum creatinine value of the experimental group showed an increase after 2 months of Cd administration (0.46 +/- 0.09 mg/dL). The concentration of urinary calcium changed in the experimental group after exposure to Cd for 12 months (15.4 +/- 0.13 mg/dL). DEXA showed a greater reduction in the bone mineral density of the 5th vertebral body (L5) in rats that had ingested Cd for 4 months (0.359 +/- 0.013 g/cm2) than in control rats (0.372 +/- 0.012 g/cm2, P < 0.01). On the contrary, the difference in bone mineral content between rats ingesting Cd for 6-8 months and control rats was not significant. However, significant reductions in bone mineral content were again noted in rats that had ingested Cd for 12 months (0.339 +/- 0.023 g/cm2) compared with the control group (0.385 +/- 0.012 g/cm2, P < 0.01). The bone mineral density of the right femoral bone in control rats was 0.328 +/- 0.018 g/cm2 and that in experimental rats was 0.306 +/- 0.012 g/cm2, and a meaningful difference was recognized (P < 0.05). Histological examination of the rats exposed to Cd for 12 months showed that the 5

  6. A novel approach to fracture-risk-assessment in osteoporosis by ROI-oriented application of the Minkowski-functionals to dual x-ray absorptiometry scans of the hip

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Panteleon, Alexandra; Vogel, Tobias; Burklein, Dominik; Reiser, Maximilian

    2008-03-01

    Fractures of the proximal femur represent the worst complication in osteoporosis with a mortality rate of up to 50% during the first post-traumatic year. Bone mineral density (BMD) as obtained from dual energy x-ray absorptiometry (DXA) is a good predictor of fracture risk. However, there is a considerable overlap in the BMD-results between individuals who have fractured and those who have not. As DXA uses highly standardized radiographic projection images to obtain the densitometric information, it can be postulated that these images contain much more information than just mineral density. Lately, geometric dimensions, e.g. hip axis length (HAL) or femoral neck axis length (FNAL), are considered in conjunction with BMD, which may allow to enhance the predictive potential of bone mass measurements. In recent studies we sucessfully introduced a novel methodology for topological analysis of multi-dimensional graylevel datasets, that, for instance, allows to predict the ultimate mechanical strength of femoral bone specimens. The new topolocial parameters are based on the so called Minkowski Functionals (MF), which represent a set of topographical descriptors that can be used universally. Since the DXA-images are multi-graylevel datasets in 2D obtained in a standardized way, they are ideally suited to be processed by the new method. In this study we introduce a novel algorithm to evaluate DXA-scans of the proximal femur using quantitative image analysis procedures based on the MF in 2D. The analysis is conducted in four defined regions of interest in analogy to the standard densitometric evaluation. The objective is to provide a tool to identifiy individuals with critically reduced mechanical competence of the hip. The result of the new method is compared with the evaluation bone mineral density obtained by DXA, which - at present - is the clinical standard of reference.

  7. Preoperative bone quality as a factor in dual-energy X-ray absorptiometry analysis comparing bone remodelling between two implant types

    PubMed Central

    Rahmy, Ali; Grimm, Bernd; Heyligers, Ide; Tonino, Alphons

    2006-01-01

    Recently it was shown that the design changes from the ABG-I to ABG-II hip stem resulted in a better, although not significant, proximal bone preservation. Our hypothesis was that by matching patients for preoperative bone quality, statistical power would increase and that the trend of better proximal bone preservation in ABG-II might become significant. Twenty-four ABG-II patients were compared to two different ABG-I groups: (1) 25 patients from our earlier prospective study and (2) a group of 24 patients selected to perfectly match the ABG-II group regarding gender, age and preoperative bone quality. Postoperative changes in periprosthetic bone mineral density (BMD) were quantified at 2 years postoperatively using DEXA scanning. Bone preservation (less BMD loss) was better for the ABG-II than the ABG-I (all two groups) in the proximal zones 1 and 7. In Gruen zone 7, a statistically significant difference was found for group B (p = 0.03). By matching patients for preoperative bone quality and gender, a statistical significant difference was found in proximal bone preservation in favour of ABG-II. In future comparative bone remodelling studies using DEXA, patients should be matched for preoperative bone quality and gender. PMID:17086429

  8. A systematic quality assurance study in bone densitometry devices

    NASA Astrophysics Data System (ADS)

    Tuncman, Duygu; Kovan, Hatice; Kovan, Bilal; Demir, Bayram; Turkmen, Cuneyt

    2015-07-01

    Osteoporosis is the most common metabolic bone disease and can result in devastating physical, psychosocial, and economic consequences. It occurs in women after menopause and affects most elderly. Dual-energy x-ray absorptiometry (DXA) is currently the most widely used method for the measurement of areal Bone Mineral Density (BMD) (g/cm2) .DXA is based on the variable absorption of X-ray by the different body components and uses high and low energy X-ray photons. There are two important values in the assessment of the DXA. These values are T-score and Z-score. The T-score is calculated by taking the difference between a patient's measured BMD with the mean BMD of the young normal population, matched for gender and ethnicity, and then by dividing the difference with the standard deviation (SD) of the BMD of the young normal population. T-score and also Z-score are directly depends on the Bone Mineral Density (BMD). BMD measurements should be made periodically in a patient life. But mostly, it is not possible with the same device. Therefore, in this study, for the quality assurance of bone densitometry devices, we evaluated the BMD results measured in the different Bone Densitometry (DXA) devices using a spine phantom.

  9. Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants.

    PubMed

    Brunton, J A; Weiler, H A; Atkinson, S A

    1997-04-01

    Previously, we conducted dual energy x-ray absorptiometry (DXA) (Hologic QDR-1000/W) scans and carcass analysis of piglets to evaluate the Pediatric Whole Body software (PedWB) (V5.35) for use in infants. A software upgrade designed for infant whole body (InfWB) (V5.56) led to a reassessment of DXA by: 1) reanalysis of the original scans using InfWB software and 2) comparison of InfWB-estimates of bone mineral content (BMC) and lean and fat mass with chemical analysis. Other assessments included 1) methods of regional analysis and 2) artifacts and the Infant Table Pad in the scan field. The mean coefficients of variation for InfWB whole body measures in small piglets (n = 10, weight 1575 +/- 73 g) and large piglets (n = 10, weight 5894 +/- 208 g) were less than 2.6% except for fat mass which was higher (8.0% versus 6.3% and 6.6% versus 3.5%, respectively) compared with PedWB. In large piglets InfWB produced good estimates of BMC, lean and fat masses. In small piglets, fat mass by InfWB was correlated with chemical analysis, but not by PedWB. There was improvement in the estimation of BMC with InfWB, from 27 +/- 2.2 g to 32 +/- 2.3 g (carcass ash = 38 +/- 3.3 g). Femur BMC analysis by InfWB was precise and was accurate when compared with chemical analysis. Artifacts in the DXA scan field (diapers and blankets) resulted in an increase of the DXA-estimated fat and lean masses. The Infant Table Pad increased the estimate of fat mass in a small piglet by 50%, thus further study is required before it is used routinely. Improvements of the DXA technology have resulted in a more accurate tool, if scanning procedures are carefully implemented. PMID:9098865

  10. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study.

    PubMed

    Hans, Didier; Goertzen, Andrew L; Krieg, Marc-Antoine; Leslie, William D

    2011-11-01

    The measurement of BMD by dual-energy X-ray absorptiometry (DXA) is the "gold standard" for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel gray-level texture measurement that can be extracted from DXA images, correlates with 3D parameters of bone microarchitecture. Our aim was to evaluate the ability of lumbar spine TBS to predict future clinical osteoporotic fractures. A total of 29,407 women 50 years of age or older at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Health service records were assessed for the incidence of nontraumatic osteoporotic fracture codes subsequent to BMD testing (mean follow-up 4.7 years). Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Osteoporotic fractures were identified in 1668 (5.7%) women, including 439 (1.5%) spine and 293 (1.0%) hip fractures. Significantly lower spine TBS and BMD were identified in women with major osteoporotic, spine, and hip fractures (all p < 0.0001). Spine TBS and BMD predicted fractures equally well, and the combination was superior to either measurement alone (p < 0.001). Spine TBS predicts osteoporotic fractures and provides information that is independent of spine and hip BMD. Combining the TBS trabecular texture index with BMD incrementally improves fracture prediction in postmenopausal women.

  11. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  12. Cross-calibration of pencil-beam (DPX-NT) and fan-beam (QDR-4500C) dual-energy X-ray absorptiometry for sarcopenia.

    PubMed

    Ito, Kenyu; Tsushita, Kazuyo; Muramoto, Akiko; Kanzaki, Hiroki; Nohara, Takashi; Shimizu, Hitomi; Nakazawa, Tomoko; Harada, Atsushi

    2015-11-01

    Sarcopenia, defined as the loss of muscle mass accompanied by weakness, is an important factor leading to frailty and is a growing concern in the aging Japanese society. Muscle mass can be calculated by dual-energy X-ray absorptiometry (DXA), but results differ between devices produced by different manufactures. Thus, cross-calibration is needed to compare body composition results in multicenter trials or when scanners are replaced. The purpose of this study was to perform an in vivo calibration of total body scans between pencil-beam (DPX-NT, GE Healthcare) and fan-beam (QDR-4500C, Hologic Inc.) DXA units. A total 30 subjects (15 women, 15 men, mean age = 35 years, range 22-49 years) were recruited. The lumbar bone mineral density (BMD), femoral neck BMD, appendicular fat and lean body mass, and the appendicular skeletal muscle mass index (ASMI) were highly correlated (r = 0.979-0.993, r(2) = 0.889-0.977). The conversion formulas were as follows: lumbar BMD, Y = -0.08 + 1.16X (X = QDR-4500C, Y = DPX-NT), femoral neck BMD, Y = -0.015 + 1.11X, and ASMI Y = 0.92 + 0.90X. There is excellent comparability between the DPX-NT and the QDR-4500C DXA units. However, cross-calibration equations are required to assess muscle volume, fat, and ASMI in multicenter studies investigating sarcopenia.

  13. [Modification of bone quality by extreme physical stress. Bone density measurements in high-performance athletes using dual-energy x-ray absorptiometry].

    PubMed

    Sabo, D; Reiter, A; Pfeil, J; Güssbacher, A; Niethard, F U

    1996-01-01

    The treatment of osteoporosis is still controversial. Rehabilitation programs which stress strengthening exercises as well as impact loading activities increase the bone mass. On the other side activity level early in life has not been proven to correlate with increased bone mineral content later in life. Little is known on the influence of high performance sports on the bone density especially in athletes with high demands on weight bearing of the spine. In (n = 40) internationally top ranked high performance athletes of different disciplines (n = 28 weight-lifters, n = 6 sports-boxers and n = 6 bicycle-racers) bone density measurements of the lumbar spine and the left hip were performed. The measurements were carried out by dual-photonabsorptiometry (DEXA; QDR 2000, Siemens) and evaluated by an interactive software-programme (Hologic Inc.). The results were compared to the measurements of 21 age-matched male control individuals. In the high performance weight lifters there was an increase of bone density compared to the control individuals of 23% in the Ward's triangle (p < 0.01). The sports-boxers had an increase up to 17% (lumbar spine), 9% (hip) and 7% (Wards' triangle). In the third athletes group (Tour de France-bikers) BMD was decreased 10% in the lumbar spine, 14% in the hip and 17% in the Wards' triangle. Our results show that training programs stressing axial loads of the skeletal system may lead to an increase of BMD in the spine and the hip of young individuals. Other authors findings, that the BMD of endurance athletes may decrease, is confirmed. Nevertheless the bikers BMD-loss of 10 to 17% was surprisingly high.

  14. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits.

    PubMed

    Beck, T J; Ruff, C B; Mourtada, F A; Shaffer, R A; Maxwell-Williams, K; Kao, G L; Sartoris, D J; Brodine, S

    1996-05-01

    A total of 626 U.S. male Marine Corps recruits underwent anthropometric measurements and dual-energy X-ray absorptiometry (DXA) scans of the femoral midshaft and the distal third of the tibia prior to a 12 week physical training program. Conventionally obtained frontal plane DXA scan data were used to measure the bone mineral density (BMD) as well as to derive the cross-sectional area, moment of inertia, section modulus, and bone width in the femur, tibia, and fibula. During training, 23 recruits (3.7%) presented with a total of 27 radiologically confirmed stress fractures in various locations in the lower extremity. After excluding 16 cases of shin splints, periostitis, and other stress reactions that did not meet fracture definition criteria, we compared anthropometric and bone structural geometry measurements between fracture cases and the remaining 587 normals. There was no significant difference in age (p = 0.8), femur length (p = 0.2), pelvic width (p = 0.08), and knee width at the femoral condyles (p = 0.06), but fracture cases were shorter (p = 0.01), lighter (p = 0.0006), and smaller in most anthropometric girth dimensions (p < 0.04). Fracture case bone cross-sectional areas (p < 0.001), moments of inertia (p < 0.001), section moduli (p < 0.001), and widths (p < 0.001) as well as BMD (p < 0.03) were significantly smaller in the tibia and femur. After correcting for body weight differences, the tibia cross-sectional area (p = 0.03), section modulus (p = 0.05), and width (p = 0.03) remained significantly smaller in fracture subjects. We conclude that both small body weight and small diaphyseal dimensions relative to body weight are factors predisposing to the development of stress fractures in this population. These results suggest that bone structural geometry measurements derived from DXA data may provide a simple noninvasive methodology for assessing the risk of stress fracture.

  15. Optimizing Bone Health in Duchenne Muscular Dystrophy

    PubMed Central

    Buckner, Jason L.; Bowden, Sasigarn A.; Mahan, John D.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA. PMID:26124831

  16. Heel ultrasound can assess maintenance of bone mass in women with breast cancer.

    PubMed

    Langmann, Gabrielle A; Vujevich, Karen T; Medich, Donna; Miller, Megan E; Perera, Subashan; Greenspan, Susan L

    2012-01-01

    Postmenopausal women with early stage breast cancer are at increased risk for bone loss and fractures. Bisphosphonates can prevent bone loss, but little data are available on changes in bone mass assessed by heel quantitative ultrasound (QUS). Our objectives were to determine if (1) heel QUS would provide a reliable and accessible method for evaluation of changes in bone mass in women with breast cancer when compared with the current standard of bone mass measurement, dual-energy X-ray absorptiometry (DXA) and (2) oral risedronate could affect these changes. Eighty-six newly postmenopausal (up to 8 yr) women with nonmetastatic breast cancer were randomized to risedronate, 35 mg once weekly or placebo. Outcomes were changes in heel QUS bone mass measurements and conventional DXA-derived bone mineral density (BMD). Over 2 yr, bone mass assessed by heel QUS remained stable in women on risedronate, whereas women on placebo had a 5.2% decrease (p ≤ 0.05) in heel QUS bone mass. Both total hip BMD and femoral neck BMD assessed by DXA decreased by 1.6% (p ≤ 0.05) in the placebo group and remained stable with risedronate. Spine BMD remained stable in both groups. Heel QUS was moderately associated with BMD measured by DXA at the total hip (r=0.50), femoral neck (r=0.40), and spine (r=0.46) at baseline (all p ≤ 0.001). In conclusion, risedronate helps to maintain skeletal integrity as assessed by heel QUS for women with early stage breast cancer. Heel QUS is associated with DXA-derived BMD at other major axial sites and may be used to follow skeletal health and bone mass changes in these women.

  17. Bone densitometry in infants and young children: the 2013 ISCD Pediatric Official Positions.

    PubMed

    Kalkwarf, Heidi J; Abrams, Steven A; DiMeglio, Linda A; Koo, Winston W K; Specker, Bonny L; Weiler, Hope

    2014-01-01

    Infants and children <5 yr were not included in the 2007 International Society for Clinical Densitometry Official Positions regarding Skeletal Health Assessment of Children and Adolescents. To advance clinical care of very young children, the International Society for Clinical Densitometry 2013 Position Development Conference reviewed the literature addressing appropriate methods and skeletal sites for clinical dual-energy X-ray absorptiometry (DXA) measurements in infants and young children and how results should be reported. DXA whole-body bone mineral content and bone mineral density for children ≥3 yr and DXA lumbar spine measurements for infants and young children 0-5 yr were identified as feasible and reproducible. There was insufficient information regarding methodology, reproducibility, and reference data to recommended forearm and femur measurements at this time. Appropriate methods to account for growth delay when interpreting DXA results for children <5 yr are currently unknown. Reference data for children 0-5 yr at multiple skeletal sites are insufficient and are needed to enable interpretation of DXA measurements. Given the current scarcity of evidence in many areas, it is likely that these positions will change over time as new data become available.

  18. Treatment with growth hormone and IGF-I in growing rats increases bone mineral content but not bone mineral density.

    PubMed

    Rosen, H N; Chen, V; Cittadini, A; Greenspan, S L; Douglas, P S; Moses, A C; Beamer, W G

    1995-09-01

    Human growth hormone (hGH) and insulin-like growth factor I (IGF-I) both stimulate bone formation and have been proposed as therapeutic agents for osteoporosis. We examined the effect of hGH and IGF-I alone and in combination on bone size, bone mineral content (BMC), and bone mineral density (BMD) in 10- to 12-week old growing female Sprague-Dawley rats. Sixty rats were assigned to treatment with either placebo, hGH, IGF-I, or both for 4 weeks. After 4 weeks, the right femurs and tibias were excised, and ex vivo BMC and the area of the tibia and femur were measured by dual-energy X-ray absorptiometry (DXA); volume of these bones was measured by Archimedes' principle. In addition, proximal tibial bone density was measured directly by peripheral quantitative computerized tomography (pQCT). Bone length, area, and volume in all treated groups was greater than controls. Areal bone density by DXA (BMC/area) was higher in IGF-treated rats and lower in GH-treated rats than in controls. Volumetric bone density (BMC/volume) was lower in treated groups than in controls. Measurements by pQCT confirmed that true bone density was lower in all treated groups than in controls. We conclude that treatment with hGH or IGF-I increased bone size and mineral content but decreased bone density in growing rats. Because areal correction of BMC did not adequately correct for the increased bone volume in IGF-treated rats, results of areal bone density by DXA should be interpreted with caution when treatment causes a disparity in bone size between groups. PMID:7502707

  19. The frequency of low muscle mass and its overlap with low bone mineral density and lipodystrophy in individuals with HIV--a pilot study using DXA total body composition analysis.

    PubMed

    Buehring, Bjoern; Kirchner, Elizabeth; Sun, Zhiyuan; Calabrese, Leonard

    2012-01-01

    As a result of the advances in antiretroviral therapy, the life span of human immunodeficiency virus (HIV)-infected patients has increased dramatically. Attendant to these effects are signs of premature aging with notable changes in the musculoskeletal system. Although changes in bone and fat distribution have been studied extensively, far less is known about changes in muscle. This study examined the extent of low muscle mass (LMM) and its relationship with low bone mineral density (BMD) and lipodystrophy (LD) in HIV-positive males. As such, HIV-positive males on therapy or treatment naive underwent dual-energy X-ray absorptiometry total body composition measurements. Appendicular lean mass/(height)2 and lowest 20% of residuals from regression analysis were used to define LMM. BMD criteria defined osteopenia/osteoporosis, and the percent central fat/percent lower extremity ratio defined LD. Several potential risk factors were assessed through chart review. Sixty-six males (57 with treatment and 9 treatment naive) volunteered. Treated individuals were older than naive (44 vs 34 yr) and had HIV longer (108 vs 14 mo). When definitions for sarcopenia (SP) in elderly individuals were applied, the prevalence of LMM was 21.9% and 18.8% depending on the definition used. Low BMD was present in 68.2% of participants. LD with a cutoff of 1.5 and 1.961 was present in 54.7% and 42.2% of participants, respectively. LMM and LD were negatively associated. In conclusion, this study shows that LMM is common in males with HIV and that SP affecting muscle function could be present in a substantial number of individuals. Future research needs to examine what impact decreased muscle mass and function has on morbidity, physical function, and quality of life in individuals with HIV. PMID:22169198

  20. Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy.

    PubMed

    Jaworski, Maciej; Pludowski, Pawel

    2013-01-01

    Dual-energy X-ray absorptiometry (DXA) method is widely used in pediatrics in the study of bone density and body composition. However, there is a limit to how precise DXA can estimate bone and body composition measures in children. The study was aimed to (1) evaluate precision errors for bone mineral density, bone mass and bone area, body composition, and mechanostat parameters, (2) assess the relationships between precision errors and anthropometric parameters, and (3) calculate a "least significant change" and "monitoring time interval" values for DXA measures in children of wide age range (5-18yr) using GE Lunar Prodigy densitometer. It is observed that absolute precision error values were different for thin and standard technical modes of DXA measures and depended on age, body weight, and height. In contrast, relative precision error values expressed in percentages were similar for thin and standard modes (except total body bone mineral density [TBBMD]) and were not related to anthropometric variables (except TBBMD). Concluding, due to stability of percentage coefficient of variation values in wide range of age, the use of precision error expressed in percentages, instead of absolute error, appeared as convenient in pediatric population.

  1. Usefulness of bone density measurement in fallers.

    PubMed

    Blain, Hubert; Rolland, Yves; Beauchet, Olivier; Annweiler, Cedric; Benhamou, Claude-Laurent; Benetos, Athanase; Berrut, Gilles; Audran, Maurice; Bendavid, Sauveur; Bousson, Valérie; Briot, Karine; Brazier, Michel; Breuil, Véronique; Chapuis, Laure; Chapurlat, Roland; Cohen-Solal, Martine; Cortet, Bernard; Dargent, Patricia; Fardellone, Patrice; Feron, Jean-Marc; Gauvain, Jean-Bernard; Guggenbuhl, Pascal; Hanon, Olivier; Laroche, Michel; Kolta, Sami; Lespessailles, Eric; Letombe, Brigitte; Mallet, Eric; Marcelli, Christian; Orcel, Philippe; Puisieux, François; Seret, Patrick; Souberbielle, Jean-Claude; Sutter, Bruno; Trémollières, Florence; Weryha, Georges; Roux, Christian; Thomas, Thierry

    2014-10-01

    The objective of this systematic literature review is to discuss the latest French recommendation issued in 2012 that a fall within the past year should lead to bone mineral density (BMD) measurement using dual-energy X-ray absorptiometry (DXA). This recommendation rests on four facts. First, osteoporosis and fall risk are the two leading risk factors for nonvertebral fractures in postmenopausal women. Second, BMD measurement using DXA supplies significant information on the fracture risk independently from the fall risk. Thus, when a fall occurs, the fracture risk increases as BMD decreases. Third, osteoporosis drugs have been proven effective in preventing fractures only in populations with osteoporosis defined based on BMD criteria. Finally, the prevalence of osteoporosis is high in patients who fall and increases in the presence of markers for frailty (e.g., recurrent falls, sarcopenia [low muscle mass and strength], limited mobility, and weight loss), which are risk factors for both osteoporosis and falls. Nevertheless, life expectancy should be taken into account when assessing the appropriateness of DXA in fallers, as osteoporosis treatments require at least 12months to decrease the fracture risk. Another relevant factor is the availability of DXA, which may be limited due to geographic factors, patient dependency, or severe cognitive impairments, for instance. Studies are needed to better determine how the fall risk and frailty should be incorporated into the fracture risk evaluation based on BMD and the FRAX® tool. PMID:24703626

  2. Association between Bone Mass and Dental Hypomineralization.

    PubMed

    van der Tas, J T; Elfrink, M E C; Vucic, S; Heppe, D H M; Veerkamp, J S J; Jaddoe, V W V; Rivadeneira, F; Hofman, A; Moll, H A; Wolvius, E B

    2016-04-01

    The aim of this study was to examine the association between the bone mass (bone mineral content [BMC]) and hypomineralized second primary molars (HSPMs)/molar incisor hypomineralization (MIH) in 6-y-old children. This cross-sectional study was embedded in the Generation R Study, a population-based prospective cohort study, starting from fetal life until adulthood in Rotterdam, Netherlands. The European Academy of Pediatric Dentistry criteria were used to score the intraoral photographs on the presence or absence of HSPMs and MIH. Bone mass was measured with a dual-energy x-ray absorptiometry (DXA) scan. Intraoral photographs and DXA scans were available in 6,510 6-y-old children. Binary logistic regression models were used to study the association between the bone mass and HSPMs/MIH. In total, 5,586 children had their second primary molars assessed and a DXA scan made; 507 children were diagnosed with HSPM. Of 2,370 children with data on their permanent first molars, 203 were diagnosed with MIH. In the fully adjusted model, children with lower BMC (corrected for bone area) were more likely to have HSPMs (odds ratio, 1.13; 95% confidence interval, 1.02 to 1.26 per 1-standard deviation decrease). A lower BMC (corrected for bone area) was not associated with MIH (odds ratio, 1.02; 95% confidence interval, 0.87 to 1.20 per 1-standard deviation decrease). We observed a negative association between BMC (corrected for bone area) and HSPMs. No association was found between BMC (corrected for bone area) and MIH. Future research should focus on investigating the mechanism underlying the negative association between the bone mass and HSPMs. Our study, in a large population of 6-y-old children, adds the finding that BMC (corrected for bone size) is associated with HSPMs but not with MIH in childhood. PMID:26747420

  3. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens.

  4. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens. PMID:18212376

  5. Improving Rural Bone Health and Minimizing Fracture Risk in West Virginia: Validation of the World Health Organization FRAX Assessment Tool as a Phone Survey for Osteoporosis Detection.

    PubMed

    Shuler, Franklin D; Scott, Kelly; Wilson-Byrne, Timothy; Morgan, Linda; Olajide, Omolola B

    2016-01-01

    West Virginia ranks second nationally in population ≥ 65 years old placing our state at greater risk for osteoporosis and fracture. The gold standard for detecting osteoporosis is dual X-ray absorptiometry (DXA), yet over half of West Virginia's counties do not have this machine. Due to access barriers, a validated phone-administered fracture prediction tool would be beneficial for osteoporosis screening. The World Health Organization's FRAX fracture prediction tool was administered as a phone survey to 45 patients; these results were compared to DXA bone mineral density determination. Results confirmed that the FRAX phone survey is as reliable as DXA in detecting osteoporosis or clinically significant osteopenia: 92% positive predictive value, 100% negative predictive value, 100% sensitivity and 91% specificity when compared to the gold standard. These promising results allow for the development of telephone-based protocols to improve osteoporosis detection, referral and treatment especially in areas with health care access barriers. PMID:27301160

  6. Hip Fractures Risk in Older Men and Women Associated With DXA-Derived Measures of Thigh Subcutaneous Fat Thickness, Cross-Sectional Muscle Area, and Muscle Density.

    PubMed

    Malkov, Serghei; Cawthon, Peggy M; Peters, Kathy Wilt; Cauley, Jane A; Murphy, Rachel A; Visser, Marjolein; Wilson, Joseph P; Harris, Tamara; Satterfield, Suzanne; Cummings, Steve; Shepherd, John A

    2015-08-01

    Mid-thigh cross-sectional muscle area (CSA), muscle attenuation, and greater trochanter soft tissue thickness have been shown to be independent risk factors of hip fracture. Our aim was to determine whether muscle and adipose tissue measures derived from dual-energy X-ray absorptiometry (DXA) scans would have a similar risk association as those measured using other imaging methods. Using a case-cohort study design, we identified 169 incident hip fracture cases over an average of 13.5 years among participants from the Health ABC Study, a prospective study of 3075 individuals initially aged 70 to 79 years. We modeled the thigh 3D geometry and compared DXA and computed tomography (CT) measures. DXA-derived thigh CSA, muscle attenuation, and subcutaneous fat thickness were found to be highly correlated to their CT counterparts (Pearson's r = 0.82, 0.45, and 0.91, respectively; p < 0.05). The fracture risk of men and women were calculated separately. We found that decreased subcutaneous fat, CT thigh muscle attenuation, and appendicular lean mass by height squared (ALM/Ht(2)) were associated with fracture risk in men; hazard ratios (HR) = 1.44 (1.02, 2.02), 1.40 (1.05, 1.85), and 0.58 (0.36, 0.91), respectively, after adjusting for age, race, clinical site, body mass index (BMI), chronic disease, hip bone mineral density (BMD), self-reported health, alcohol use, smoking status, education, physical activity, and cognitive function. In a similar model for women, only decreases in subcutaneous fat and DXA CSA were associated with hip fracture risk; HR = 1.39 (1.07, 1.82) and 0.78 (0.62, 0.97), respectively. Men with a high ALM/Ht(2) and low subcutaneous fat thickness had greater than 8 times higher risk for hip fracture compared with those with low ALM/Ht(2) and high subcutaneous fat. In women, ALM/Ht(2) did not improve the model when subcutaneous fat was included. We conclude that the DXA-derived subcutaneous fat thickness is a strong marker for hip fracture

  7. Associations between pQCT-based fat and muscle area and density and DXA-based total and leg soft tissue mass in healthy women and men

    PubMed Central

    Sherk, Vanessa D; Thiebaud, Robert S; Chen, Zhaojing; Karabulut, Murat; Kim, So Jung; Bemben, Debra A

    2015-01-01

    Peripheral Quantitative Computed Tomography (pQCT) can be used for muscle and fat area and density assessments. These may independently influence muscle and fat mass measurements from Dual Energy X-ray Absorptiometry (DXA). Objective To determine associations between pQCT-derived soft tissue density and area measures and DXA-derived soft tissue mass. Methods Linear regression models were developed based on BMI and calf fat and muscle cross-sectional area (FCSA and MCSA) and density measured by pQCT in healthy women (n=76) and men (n=82) aged 20–59 years. Independent variables for these models were leg and total bone-free lean mass (BFLM) and fat mass (FM) measured by DXA. Results Sex differences (p<0.01) were found in both muscle (Mean±SE: Women: 78.6±0.4; Men: 79.9 ± 0.2 mg/cm3) and fat (Women: 0.8±0.4 Men: 9.1±0.6 mg/cm3) density. BMI, fat density, and age (R2=0.86, p<0.01) best accounted for the variability in total FM. FCSA, BMI, and fat density explained the variance in leg FM (R2=0.87, p<0.01). MCSA and muscle density explained the variance in total (R2=0.65, p<0.01) and leg BFLM (R2=0.70, p<0.01). Conclusion Calf muscle and fat area and density independently predict lean and fat tissue mass. PMID:25524966

  8. Using Magnetic Resonance for Predicting Femoral Strength: Added Value with respect to Bone Densitometry

    PubMed Central

    Louis, Olivia; Fierens, Yves; Strantza, Maria; Luypaert, Robert; de Mey, Johan; Cattrysse, Erik

    2015-01-01

    Background and Purpose. To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. Material and Methods. Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable. Results. Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r2 range of 0.41–0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r2 = 0.68). Conclusions. The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction. PMID:26413544

  9. Black hole artifacts-a new potential pitfall for DXA accuracy?

    PubMed

    Morgan, Sarah L; Lopez-Ben, Robert; Nunnally, Nancy; Burroughs, Leandria; Fineberg, Naomi; Tubbs, R Shane; Yester, Michael V

    2008-01-01

    Certain types of metallic objects apparently have high attenuation (a white image) on dual-energy X-ray absorptiometry (DXA) scan images, but instead show up as black (black hole artifacts). When small, these artifacts may easily be missed on visual inspection. We hypothesized that such "black hole" artifacts could have a significant effect on bone mineral density (BMD) results. Human use approval (Institutional Review Board [IRB]) was obtained to publish patient scans and an IRB waiver was obtained for nonhuman research. We placed individual surgical clips and cassettes of clips of tantalum, stainless steel and titanium, and a bullet over the third lumbar vertebra (L3) of a Hologic spine phantom. In addition, 4 or 8 individual tantalum or stainless steel clips and tantalum squares were placed over L3 of cadaveric spines (high-density spine L1-L4 BMD=1.049 g/cm2) and low-density spine BMD (L1-L4 BMD=0.669 g/cm2) with attached soft tissues. Stainless steel and titanium clips scanned as white objects with DXA. A bullet and tantalum clips scanned black (black holes). All clip types were visible on single-energy scans as white objects. Eight tantalum clips significantly lowered L3 BMD compared to 4 or 0 clips in the high-density spine. There were no significant differences in BMD L1-L4 between 0, 4, and 8 tantalum clips in the high-density spine. In the low-density spine, 8 tantalum clips over L3 had significantly lower BMD compared to 4 tantalum clips overlying L3 and 4 clips lateral to L3 and 4 clips over L3. All of these scenarios had lower L3 BMD than no tantalum clips overlying L3. The BMD of L1-L4 was lowest with 8 clips at L3, but was not significantly different than no clips overlying L3. Eight tantalum clips lateral to L3 was significantly higher than no clips over L3. Black hole artifacts can occur in DXA scans containing certain metals like tantalum surgical clips. Although these surgical clips could decrease BMD at a localized area, they do not

  10. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach. PMID:25743562

  11. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  12. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R2=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R2=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  13. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography.

    PubMed

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R(2)=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R(2)=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  14. Whole body bone tissue and cardiovascular risk in rheumatoid arthritis.

    PubMed

    Popescu, Claudiu; Bojincă, Violeta; Opriş, Daniela; Ionescu, Ruxandra

    2014-01-01

    Introduction. Atherosclerosis and osteoporosis share an age-independent bidirectional correlation. Rheumatoid arthritis (RA) represents a risk factor for both conditions. Objectives. The study aims to evaluate the connection between the estimated cardiovascular risk (CVR) and the loss of bone tissue in RA patients. Methods. The study has a prospective cross-sectional design and it includes female in-patients with RA or without autoimmune diseases; bone tissue was measured using whole body dual X-ray absorptiometry (wbDXA); CVR was estimated using SCORE charts and PROCAM applications. Results. There were 75 RA women and 66 normal women of similar age. The wbDXA bone indices correlate significantly, negatively, and age-independently with the estimated CVR. The whole body bone percent (wbBP) was a significant predictor of estimated CVR, explaining 26% of SCORE variation along with low density lipoprotein (P < 0.001) and 49.7% of PROCAM variation along with glycemia and menopause duration (P < 0.001). Although obese patients had less bone relative to body composition (wbBP), in terms of quantity their bone content was significantly higher than that of nonobese patients. Conclusions. Female patients with RA and female patients with cardiovascular morbidity have a lower whole body bone percent. Obese female individuals have higher whole body bone mass than nonobese patients.

  15. Comparative study of quantitative ultrasonography and dual-energy X-ray absorptiometry for evaluating renal osteodystrophy in children with chronic kidney disease.

    PubMed

    Christoforidis, Athanasios; Printza, Nikoleta; Gkogka, Chrysa; Siomou, Ekaterini; Challa, Anna; Kazantzidou, Eirini; Kollios, Konstantinos; Papachristou, Fotis

    2011-05-01

    Our aim was to assess bone parameters in children with chronic kidney disease (CKD) with both dual-energy X-ray absorptiometry (DXA) and quantitative ultrasonography (QUS) and additionally with biochemical markers of bone turnover. Twenty children (12 boys and 8 girls) with CKD and a mean decimal age of 9.47 ± 4.44 years were included in the study where anthropometric parameters (height and weight), pubertal status, bone mineral density (BMD) at lumbar spine, speed of sound (SOS) measured by QUS at radius and at tibia, and biochemical markers of bone metabolism were measured. Six patients (30%) had tibial SOS Z score <-1, and 52.7% had radial SOS Z score <-1, whereas only 16.67% had BMD Z score <-1. Patients had significantly increased levels of serum intact parathormone (p < 0.001), serum bone alkaline phosphatase (BAP) (p < 0.001) and serum N-terminal-mid fragment (aminoacids 1-43) of osteocalcin (p < 0.001) compared to controls, whereas serum osteoprotegerin was significantly decreased in patients compared to controls (p = 0.001). SOS was significantly correlated to BAP (r = -0.586, p = 0.013 and r = -0.709, p = 0.001, respectively, for radius and tibia). In conclusion no association between DXA and QUS measurements was documented in our study, whereas QUS was better correlated to biochemical indices of ROD.

  16. Determination of thigh volume in youth with anthropometry and DXA: agreement between estimates.

    PubMed

    Coelho-E-Silva, Manuel J; Malina, Robert M; Simões, Filipe; Valente-Dos-Santos, João; Martins, Raul A; Vaz Ronque, Enio R; Petroski, Edio L; Minderico, Claudia; Silva, Analiza M; Baptista, Fátima; Sardinha, Luís B

    2013-01-01

    This study examined the agreement between estimates of thigh volume (TV) with anthropometry and dual-energy x-ray absorptiometry (DXA) in healthy school children. Participants (n=168, 83 boys and 85 girls) were school children 10.0-13.9 years of age. In addition to body mass, height and sitting height, anthropometric dimensions included those needed to estimate TV using the equation of Jones & Pearson. Total TV was also estimated with DXA. Agreement between protocols was examined using linear least products regression (Deming regressions). Stepwise regression of log-transformed variables identified variables that best predicted TV estimated by DXA. The regression models were then internally validated using the predicted residual sum of squares method. Correlation between estimates of TV was 0.846 (95%CI: 0.796-0.884, Sy·x=0.152 L). It was possible to obtain an anthropometry-based model to improve the prediction of TVs in youth. The total volume by DXA was best predicted by adding body mass and sum of skinfolds to volume estimated with the equation of Jones & Pearson (R=0.972; 95%CI: 0.962-0.979; R (2)=0.945).

  17. Recommendations for evaluation and management of bone disease in HIV.

    PubMed

    Brown, Todd T; Hoy, Jennifer; Borderi, Marco; Guaraldi, Giovanni; Renjifo, Boris; Vescini, Fabio; Yin, Michael T; Powderly, William G

    2015-04-15

    Thirty-four human immunodeficiency virus (HIV) specialists from 16 countries contributed to this project, whose primary aim was to provide guidance on the screening, diagnosis, and monitoring of bone disease in HIV-infected patients. Four clinically important questions in bone disease management were identified, and recommendations, based on literature review and expert opinion, were agreed upon. Risk of fragility fracture should be assessed primarily using the Fracture Risk Assessment Tool (FRAX), without dual-energy X-ray absorptiometry (DXA), in all HIV-infected men aged 40-49 years and HIV-infected premenopausal women aged ≥40 years. DXA should be performed in men aged ≥50 years, postmenopausal women, patients with a history of fragility fracture, patients receiving chronic glucocorticoid treatment, and patients at high risk of falls. In resource-limited settings, FRAX without bone mineral density can be substituted for DXA. Guidelines for antiretroviral therapy should be followed; adjustment should avoid tenofovir disoproxil fumarate or boosted protease inhibitors in at-risk patients. Dietary and lifestyle management strategies for high-risk patients should be employed and antiosteoporosis treatment initiated.

  18. Comparison of body composition techniques before and after a 161-km ultramarathon using DXA, BIS and BIA.

    PubMed

    Hew-Butler, T; Holexa, B T; Fogard, K; Stuempfle, K J; Hoffman, M D

    2015-02-01

    The low cost, ease of application and portability of bioelectrical impedance analysis (BIA) and spectroscopy (BIS) devices make them attractive tools for measuring acute changes in body composition before and after exercise, despite potential limitations from active compartmental fluid shifts. The primary study aim was to evaluate use of dual energy x-ray absorptiometry (DXA) against BIA and BIS in measurements of percent body fat (%BF) and percent total body water (%TBW) before and after prolonged endurance exercise. 10 runners were measured pre-race and at race finish. Significant linear relationships were noted pre-race between DXA vs. BIS for %BF (r(2)=0.76; p<0.01) and %TBW (r(2)=0.74; p<0.01). Significant correlations were noted at race finish between DXA vs. BIS for %BF (r(2)=0.64; p<0.01) and %TBW (r(2)=0.66; p<0.05), but only when one outlier was removed. Limits of agreement (LOA) between DXA vs. BIS were wide for both %BF (mean difference of -3.6, LOA between 5.4 and -12.6) and %TBW (mean difference 2.4, LOA between 0.4 and -4.6). LOA was closer between the DXA vs. BIA with DXA measuring slightly higher than BIA for %BF (mean difference of 0.5, LOA between 2.1 and -3.1) and slightly lower than BIA for %TBW (mean difference 0.3, LOA between 3.3 and -2.7). Linear correlations between DXA vs. BIA were not statistically significant for %BF or %TBW before or after the race. DXA measurement of acute changes in %BF and %TBW are not congruent with BIA or BIS measurements. These 3 techniques should not be utilized interchangeably after prolonged endurance running. PMID:25285467

  19. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy.

    PubMed

    Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore

    2010-03-01

    Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than -5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than -1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04-1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility.

  20. Assessment of trabecular bone quality in human cadaver calcaneus using scanning confocal ultrasound and dual x-ray absorptiometry (DEXA) measurements

    NASA Astrophysics Data System (ADS)

    Qin, Yixian; Xia, Yi; Lin, Wei; Rubin, Clinton; Gruber, Barry

    2004-10-01

    Microgravity and aging induced bone loss is a critical skeleton complication, occurring particularly in the weight-supporting skeleton, which leads to osteoporosis and fracture. Advents in quantitative ultrasound (QUS) provide a unique method for evaluating bone strength and density. Using a newly developed scanning confocal acoustic diagnostic (SCAD) system, QUS assessment for bone quality in the real body region was evaluated. A total of 19 human cadaver calcanei, age 66 to 97 years old, were tested by both SCAD and nonscan mode. The scanning region covered an approximate 40×40 mm2 with 0.5 mm resolution. Broadband ultrasound attenuation (BUA, dB/MHz), energy attenuation (ATT, dB), and ultrasound velocity (UV, m/s) were measured. The QUS properties were then correlated to the bone mineral density (BMD) measured by DEXA. Correlations between BMD and QUS parameters were significantly improved by using SCAD as compared to nonscan mode, yielding correlations between BMD and SCAD QUS parameters as R=0.82 (BUA), and R=0.86 (est. BMD). It is suggested that SCAD is feasible for in vivo bone quality mapping. It can be potentially used for monitoring instant changes of bone strength and density. [Work supported by the National Space Biomedical Research Institute (TD00207), and New York Center for Biotechnology.

  1. Associations Between Sedentary Time, Physical Activity, and Dual-Energy X-ray Absorptiometry Measures of Total Body, Android, and Gynoid Fat Mass in Children.

    PubMed

    McCormack, Lacey; Meendering, Jessica; Specker, Bonny; Binkley, Teresa

    2016-01-01

    Negative health outcomes are associated with excess body fat, low levels of physical activity (PA), and high sedentary time (ST). Relationships between PA, ST, and body fat distribution, including android and gynoid fat, assessed using dual-energy X-ray absorptiometry (DXA) have not been measured in children. The purpose of this study was to test associations between levels of activity and body composition in children and to evaluate if levels of activity predict body composition by DXA and by body mass index percentile in a similar manner. PA, ST, and body composition from 87 children (8.8-11.8 yr, grades 3-5, 44 boys) were used to test the association among study variables. Accelerometers measured PA and ST. Body composition measured by DXA included bone mineral content (BMC) and fat and lean mass of the total body (TB, less head), android, and gynoid regions. ST (range: 409-685 min/wk) was positively associated with TB percent fat (0.03, 95% confidence interval [CI]: 0.00-0.05) and android fat mass (1.5 g, 95% CI: 0.4-3.0), and inversely associated with the lean mass of the TB (-10.7 g, 95% CI: -20.8 to -0.63) and gynoid regions (-2.2 g, 95% CI: -4.3 to -0.2), and with BMC (-0.43 g, 95% CI: 0.77-0.09). Moderate-to-vigorous PA was associated with lower TB (-53 g, 95% CI: -87 to -18), android (-5 g, 95% CI: -8 to -2]), and gynoid fat (-6 g, 95% CI: -11 to -0.5). Vigorous activity results were similar. Light PA was associated with increased TB (17.1 g, 95% CI: 3.0-31.3) and gynoid lean mass (3.9 g, 95% CI: 1.0-6.8) and BMC (0.59 g, 95% CI: 0.10-1.07). In boys, there were significant associations between activity and DXA percent body fat measures that were not found with the body mass index percentile. Objective measures of PA were inversely associated with TB, android, and gynoid fat, whereas ST was directly associated with TB percent fat and, in particular, android fat. Activity levels predict body composition measures by DXA and, in

  2. Recent progress in bone imaging for osteoporosis research.

    PubMed

    Ito, Masako

    2011-03-01

    Advances in bone imaging techniques have provided tools for analyzing bone structure at the macro-, micro- and nano-level. Quantitative assessment of macrostructure can be achieved using dual X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), particularly volumetric quantitative CT (vQCT). In vivo quantitative techniques for assessing the microstructure of trabecular bone non-invasively and non-destructively include high-resolution CT (HR-CT) and high-resolution magnetic resonance (HR-MR). Compared with MR imaging, CT-based techniques have the advantage of directly visualizing the bone in the axial skeleton, with high spatial resolution, but the disadvantage of delivering a considerable radiation dose. Micro-CT (μCT), which provides a higher resolution of the microstructure and is principally applicable in vitro, has undergone technological advances such that it is now able to elucidate the physiological skeletal change mechanisms associated with aging and determine the effects of therapeutic intervention on the bone microstructure. In particular, synchrotron μCT (SR-CT) provides a more detailed view of trabecular structure at the nano-level. For the assessment of hip geometry, DXA-based hip structure analysis (HSA) and CT-based HSA have been developed. DXA-based HSA is a convenient tool for analyzing biomechanical properties and for assuming cross-sectional hip geometry based on two-dimensional (2D) data, whereas CT-based HSA provides these parameters three-dimensionally in robust relationship with biomechanical properties, at the cost of greater radiation exposure and the lengthy time required for the analytical procedure. Further progress in bone imaging technology is promising to bring new aspects of bone structure in relation to bone strength to light, and to establish a means for analyzing bone structural properties in the everyday clinical setting.

  3. Bone imaging and fracture risk assessment in kidney disease.

    PubMed

    Jamal, Sophie A; Nickolas, Thomas L

    2015-06-01

    Fractures are more common and are associated with greater morbidity and morality in patients with kidney disease than in members of the general population. Thus, it is troubling that in chronic kidney disease (CKD) patients there has been a paradoxical increase in fracture rates over the past 20 years compared to the general population. Increased fracture incidence in CKD patients may be driven in part by the lack of screening for fracture risk. In the general population, dual energy X-ray absorptiometry (DXA) is the clinical standard to stratify fracture risk, and its use has contributed to decreases in fracture incidence. In contrast, in CKD, fracture risk screening with DXA has been uncommon due to its unclear efficacy in predicting fracture and its inability to predict type of renal osteodystrophy. Recently, several prospective studies conducted in patients across the spectrum of kidney disease have demonstrated that bone mineral density measured by DXA predicts future fracture risk and that clinically relevant information regarding fracture risk is provided by application of the World Health Organization cutoffs for osteopenia and osteoporosis to DXA measures. Furthermore, novel high-resolution imaging tools, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have been used to elucidate the effects of kidney disease on cortical and trabecular microarchitecture and bone strength and to identify potential targets for strategies that protect against fractures. This review will discuss the updated epidemiology of fractures in CKD, fracture risk screening by DXA, and the utility of state-of-the art imaging methods to uncover the effects of kidney disease on the skeleton. PMID:25744703

  4. Spine bone texture assessed by trabecular bone score (TBS) to evaluate bone health in thalassemia major.

    PubMed

    Baldini, M; Ulivieri, F M; Forti, S; Serafino, S; Seghezzi, S; Marcon, A; Giarda, F; Messina, C; Cassinerio, E; Aubry-Rozier, B; Hans, D; Cappellini, M D

    2014-12-01

    Due to the increasing survival of thalassemic patients, osteopathy is a mounting clinical problem. Low bone mass alone cannot account for the high fracture risk described; impaired bone quality has been speculated but so far it cannot be demonstrated noninvasively. We studied bone quality in thalassemia major using trabecular bone score (TBS), a novel texture measurement extracted from spine dual-energy X-ray absorptiometry (DXA), proposed in postmenopausal and secondary osteoporosis as an indirect index of microarchitecture. TBS was evaluated in 124 adult thalassemics (age range 19-56 years), followed-up with optimal transfusional and therapeutical regimens, and in 65 non-thalassemic patients (22-52 years) undergoing DXA for different bone diseases. TBS was lower in thalassemic patients (1.04 ± 0.12 [range 0.80-1.30]) versus controls (1.34 ± 0.11 [1.06-1.52]) (p < 0.001), and correlated with BMD. TBS and BMD values correlated with age, indicating that thalassemia negatively affects both bone quality and quantity, especially as the patient gets older. TBS was 1.02 ± 0.11 [0.80-1.28] in the osteoporotic thalassemic patients, 1.08 ± 0.12 [0.82-1.30] in the osteopenic ones and 1.15 ± 0.10 [0.96-1.26] in those with normal BMD. No gender differences were found (males: 1.02 ± 0.13 [0.80-1.30], females 1.05 ± 0.11 [0.80-1.30]), nor between patients with and without endocrine-metabolic disorders affecting bone metabolism. Our findings from a large population with thalassemia major show that TBS is a valuable tool to assess noninvasively bone quality, and it may be related to fragility fracture risk in thalassemic osteopathy.

  5. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  6. Utility of the trabecular bone score (TBS) in secondary osteoporosis.

    PubMed

    Ulivieri, Fabio M; Silva, Barbara C; Sardanelli, Francesco; Hans, Didier; Bilezikian, John P; Caudarella, Renata

    2014-11-01

    Altered bone micro-architecture is an important factor in accounting for fragility fractures. Until recently, it has not been possible to gain information about skeletal microstructure in a way that is clinically feasible. Bone biopsy is essentially a research tool. High-resolution peripheral Quantitative Computed Tomography, while non-invasive, is available only sparsely throughout the world. The trabecular bone score (TBS) is an imaging technology adapted directly from the Dual Energy X-Ray Absorptiometry (DXA) image of the lumbar spine. Thus, it is potentially readily and widely available. In recent years, a large number of studies have demonstrated that TBS is significantly associated with direct measurements of bone micro-architecture, predicts current and future fragility fractures in primary osteoporosis, and may be a useful adjunct to BMD for fracture detection and prediction. In this review, we summarize its potential utility in secondary causes of osteoporosis. In some situations, like glucocorticoid-induced osteoporosis and in diabetes mellitus, the TBS appears to out-perform DXA. It also has apparent value in numerous other disorders associated with diminished bone health, including primary hyperparathyroidism, androgen-deficiency, hormone-receptor positive breast cancer treatment, chronic kidney disease, hemochromatosis, and autoimmune disorders like rheumatoid arthritis. Further research is both needed and warranted to more clearly establish the role of TBS in these and other disorders that adversely affect bone.

  7. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    PubMed

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  8. Fundamental Movement Skill Proficiency and Body Composition Measured by Dual Energy X-Ray Absorptiometry in Eight-Year-Old Children

    ERIC Educational Resources Information Center

    Slotte, Sari; Sääkslahti, Arja; Metsämuuronen, Jari; Rintala, Pauli

    2015-01-01

    Objective: The main aim was to examine the association between fundamental movement skills (FMS) and objectively measured body composition using dual energy X-ray absorptiometry (DXA). Methods: A study of 304 eight-year-old children in Finland. FMS were assessed with the "Test of gross motor development," 2nd ed. Total body fat…

  9. Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA Scans in the study of osteoporotic fractures.

    PubMed

    Yang, Lang; Palermo, Lisa; Black, Dennis M; Eastell, Richard

    2014-12-01

    A bone fractures only when loaded beyond its strength. The purpose of this study was to determine the association of femoral strength, as estimated by finite element (FE) analysis of dual-energy X-ray absorptiometry (DXA) scans, with incident hip fracture in comparison to hip bone mineral density (BMD), Fracture Risk Assessment Tool (FRAX), and hip structure analysis (HSA) variables. This prospective case-cohort study included a random sample of 1941 women and 668 incident hip fracture cases (295 in the random sample) during a mean ± SD follow-up of 12.8 ± 5.7 years from the Study of Osteoporotic Fractures (n = 7860 community-dwelling women ≥67 years of age). We analyzed the baseline DXA scans (Hologic 1000) of the hip using a validated plane-stress, linear-elastic finite element (FE) model of the proximal femur and estimated the femoral strength during a simulated sideways fall. Cox regression accounting for the case-cohort design assessed the association of estimated femoral strength with hip fracture. The age-body mass index (BMI)-adjusted hazard ratio (HR) per SD decrease for estimated strength (2.21; 95% CI, 1.95-2.50) was greater than that for total hip (TH) BMD (1.86; 95% CI, 1.67-2.08; p < 0.05), FN BMD (2.04; 95% CI, 1.79-2.32; p > 0.05), FRAX scores (range, 1.32-1.68; p < 0.0005), and many HSA variables (range, 1.13-2.43; p < 0.005), and the association was still significant (p < 0.05) after further adjustment for hip BMD or FRAX scores. The association of estimated strength with incident hip fracture was strong (Harrell's C index 0.770), significantly better than TH BMD (0.759; p < 0.05) and FRAX scores (0.711-0.743; p < 0.0001), but not FN BMD (0.762; p > 0.05). Similar findings were obtained for intracapsular and extracapsular fractures. In conclusion, the estimated femoral strength from FE analysis of DXA scans is an independent predictor and performs at least as well as FN BMD in predicting incident

  10. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  11. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics.

    PubMed

    Bonkowski, Michael S; Pamenter, Richard W; Rocha, Juliana S; Masternak, Michal M; Panici, Jacob A; Bartke, Andrzej

    2006-06-01

    There is conflicting information on the physiological role of growth hormone (GH) in the control of aging. This study reports dual-energy x-ray absorptiometry (DXA) measurements of body composition and bone characteristics in young, adult, and aged long-lived GH receptor knockout (GHR-KO) and normal mice to determine the effects of GH resistance during aging. Compared to controls, GHR-KO mice showed an increased percentage of body fat. GHR-KO mice have reduced total-body bone mineral density (BMD), bone mineral content, and bone area, but these parameters increased with age. In addition, GHR-KO mice have decreased femur length, femur BMD, and lower lumbar BMD compared to controls in all age groups. These parameters also continued to increase with age. Our results indicate that GH resistance alters body composition, bone growth, and bone maintenance during aging in GHR-KO mice.

  12. Periprosthetic bone loss: diagnostic and therapeutic approaches

    PubMed Central

    Cavalli, Loredana; Brandi, Maria Luisa

    2014-01-01

    Total joint replacement surgery is being performed on an increasingly large part of the population. Clinical longevity of implants depends on their osseointegration, which is influenced by the load, the characteristics of the implant and the bone-implant interface, as well as by the quality and quantity of the surrounding bone. Aseptic loosening due to periprosthetic osteolysis is the most frequent known cause of implant failure. Wear of prosthetic materials results in the formation of numerous particles of debris that cause a complex biological response. Dual-energy X-ray Absorptiometry (DXA) is regarded as an accurate method to evaluate Bone Mineral Density (BMD) around hip or knee prostheses. Further data may be provided by a new device, the Bone Microarchitecture Analysis (BMA), which combines bone microarchitecture quantification and ultra high resolution osteo-articular imaging. Pharmacological strategies have been developed to prevent bone mass loss and to extend implant survival. Numerous trials with bisphosphonates show a protective effect on periprosthetic bone mass, up to 72 months after arthroplasty. Strontium ranelate has been demonstrated to increase the osseointegration of titanium implants in treated animals with improvement of bone microarchitecture and bone biomaterial properties. PMID:25642325

  13. Chemical versus dual energy x-ray absorptiometry for detecting age-associated body compositional changes in male rats☆

    PubMed Central

    Feely, Rebecca. S.; Larkin, Lisa M.; Halter, Jeffrey B.; Dengel, Donald R.

    2009-01-01

    Aging is associated with increases in body mass and fat mass (FM), whereas fat-free mass (FFM) either decreases or remains unchanged. The purpose of this study was to determine whether dual-energy X-ray absorptiometry (DXA) accurately detects age-associated changes in male Fischer 344 × Brown–Norway rats ages 8, 18, and 28 months. Eviscerated animal carcasses were first examined via the Lunar DPX-IQ DXA (small animal software version 1.0; HiRes (0.6 × 1.2 mm) medium mode). Eviscerated carcasses were then weighed, autoclaved, homogenized, and fat isolated from aliquots of homogenate via methanol/chloroform extraction. In both chemical (CHEM) and DXA analysis, carcass mass (CM), FM, and % fat were significantly higher (P < 0.0001) in the 18 and 28 versus 8-month-old rats. CHEM showed greater FFM in the 18 versus 8 months-old rats but not the 28 months-old animals. DXA was unable to detect the age-associated changes in FFM. Regression analysis showed a strong correlation between CHEM and DXA methods for CM (r = 0.98, P < 0.0001) and FM (r = 0.97, P < 0.0001), but less strong for FFM (r = 0.59, P = 0.0002). In conclusion, compared to CHEM, DXA consistently overestimated CM and FM across the age groups by 9% and 77%, respectively, and underestimated FFM by 5%. PMID:10832061

  14. Body composition analysis of inter-county Gaelic athletic association players measured by dual energy X-ray absorptiometry.

    PubMed

    Davies, Robert W; Toomey, Clodagh; McCormack, William; Hughes, Katie; Cremona, Alexandra; Jakeman, Philip

    2016-01-01

    Gaelic Football and Hurling are two sporting codes within the Gaelic Athletic Association. The purpose of this study was to report the body composition phenotype of inter-county Gaelic athletic association players, comparing groups by code and field position. 190 senior, male, outfield inter-county players (144 hurlers and 46 Gaelic footballers) were recruited. Stature and body mass was measured, estimates of three components of body composition, i.e., lean mass, fat mass and bone mineral content was obtained by dual energy X-ray absorptiometry (DXA), and normative data for Gaelic athletic association athletes by code and position was compared. Other than in the midfield, there was limited difference in body composition between codes or playing position. Stature-corrected indices nullified any existing group differences between midfielders for both codes. Further comparisons with a non-athletic control group (n = 431) showed no difference for body mass index (BMI); however, the athletic group has a lower fat mass index, with a greater lean mass in accounting for the matched BMI between groups. In addition to providing previously unknown normative data for the Gaelic athletic association athlete, a proportional and independent tissue evaluation of body composition is given.

  15. Ethnic Bias in Anthropometric Estimates of DXA Abdominal Fat: the TIGER Study

    PubMed Central

    O’Connor, Daniel P.; Bray, Molly S.; McFarlin, Brian K.; Ellis, Kenneth J.; Sailors, Mary H.; Jackson, Andrew S.

    2011-01-01

    Background/Introduction The purpose of this study was to examine race/ethnicity bias of using waist circumference (WC) to estimate abdominal fat. Methods A total of 771 females and 484 males (17–35 y) were tested one to three times during a prescribed 30-week aerobic exercise program. The race/ethnicity distribution for women was: non-Hispanic white (NHW), 29%; Hispanic, 25%; African-American (AA), 35%; Asian-Indian, 3%; and Asian, 8%. The distribution for men was: NHW, 37%; Hispanic, 26%; AA 22%; Asian-Indian, 5%; and Asian, 10%. Abdominal fat (L1 to L5) was estimated from whole body scanning using dual energy x-ray absorptiometry (DXA Abd-Fat). Results DXA Abd-Fat varied by race/ethnicity after accounting for WC and height in both women and men. The increase in DXA Abd-Fat per increase in WC was lower in the Asian and Asian-Indian women than in the other women. The increase in DXA Abd-Fat per increase in WC was higher in the AA men and lower in the Asian-Indian men than in the other men. These differential race/ethnicity effects were most notable when WC exceeded 90 cm in the women and 100 cm in the men, values which are consistent with current definitions of abdominal obesity in the United States. Conclusions Prediction equations for abdominal fat using WC that do not account for race/ethnicity group provide biased estimates. These results may affect assessment of disease risk from abdominal obesity among racial/ethnic groups. PMID:21364481

  16. Comparison of the Bod Pod and dual energy x-ray absorptiometry in men.

    PubMed

    Ball, Stephen D; Altena, Thomas S

    2004-06-01

    The majority of studies investigating the accuracy of the Bod Pod have compared it to hydrostatic weighing (HW), the long held, and perhaps outdated 'gold standard' method of body composition analysis. Much less research has compared the Bod Pod to dual energy x-ray absorptiometry (DXA), a technique that is becoming popular as an alternative reference method. The purpose of this study was to compare per cent fat estimates by the Bod Pod to those of DXA in a large number of men. Participants were 160 men (32 +/- 11 years). Per cent body fat was estimated to be 19.4 +/- 6.8 and 21.6 +/- 8.4 for DXA and the Bod Pod, respectively. Although the two methods were highly correlated (0.94), the mean difference of 2.2% was significant (p < 0.01). The amount of difference increased as body fatness increased (p < 0.0001). The results of this study indicate that a difference between methods existed for our sample of men. It is uncertain exactly where the difference lies. Practitioners should be aware that even with the use of technologically sophisticated methods (i.e., Bod Pod, DXA), differences between methods exist and the determination of body composition is at best, an estimation.

  17. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  18. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    PubMed Central

    Gallo, Sina; Vanstone, Catherine A.; Weiler, Hope A.

    2012-01-01

    For over 2 decades, dual-energy X-ray absorptiometry (DXA) has been the gold standard for estimating bone mineral density (BMD) and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation), weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada). Whole body (WB) as well as regional sites of the lumbar spine (LS 1–4) and femur was measured using DXA (QDR 4500A, Hologic Inc.) providing bone mineral content (BMC) for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0 ± 14.2 versus 227.0 ± 29.7 g), spine BMC by 130% (2.35 ± 0.42 versus 5.37 ± 1.02 g), and femur BMC by 190% (2.94 ± 0.54 versus 8.50 ± 1.84 g). Spine BMD increased by 14% (0.266 ± 0.044 versus 0.304 ± 0.044 g/cm2) during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals. PMID:23091773

  19. [OsteoLaus: prediction of osteoporotic fractures by clinical risk factors and DXA, IVA and TBS].

    PubMed

    Lamy, O; Metzger, M; Krieg, M-A; Aubry-Rozier, B; Stoll, D; Hans, D

    2011-11-01

    OsteoLaus is a cohort of 1400 women 50 to 80 years living in Lausanne, Switzerland. Clinical risk factors for osteoporosis, bone ultrasound of the heel, lumbar spine and hip bone mineral density (BMD), assessment of vertebral fracture by DXA, and microarchitecture evaluation by TBS (Trabecular Bone Score) will be recorded. TBS is a new parameter obtained after a re-analysis of a DXA exam. TBS is correlated with parameters of microarchitecture. His reproducibility is good. TBS give an added diagnostic value to BMD, and predict osteoporotic fracture (partially) independently to BMD. The position of TBS in clinical routine in complement to BMD and clinical risk factors will be evaluated in the OsteoLaus cohort.

  20. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    PubMed Central

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  1. Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished?

    PubMed Central

    Hands, Beth; Pennell, Craig E.; Lye, Stephen J.; Mountain, Jennifer A.

    2016-01-01

    Background and Aims Assessment of adiposity using dual energy x-ray absorptiometry (DXA) has been considered more advantageous in comparison to anthropometry for predicting cardio-metabolic risk in the older population, by virtue of its ability to distinguish total and regional fat. Nonetheless, there is increasing uncertainty regarding the relative superiority of DXA and little comparative data exist in young adults. This study aimed to identify which measure of adiposity determined by either DXA or anthropometry is optimal within a range of cardio-metabolic risk factors in young adults. Methods and Results 1138 adults aged 20 years were assessed by DXA and standard anthropometry from the Western Australian Pregnancy Cohort (Raine) Study. Cross-sectional linear regression analyses were performed. Waist to height ratio was superior to any DXA measure with HDL-C. BMI was the superior model in relation to blood pressure than any DXA measure. Midriff fat mass (DXA) and waist circumference were comparable in relation to glucose. For all the other cardio-metabolic variables, anthropometric and DXA measures were comparable. DXA midriff fat mass compared with BMI or waist hip ratio was the superior measure for triglycerides, insulin and HOMA-IR. Conclusion Although midriff fat mass (measured by DXA) was the superior measure with insulin sensitivity and triglycerides, the anthropometric measures were better or equal with various DXA measures for majority of the cardio-metabolic risk factors. Our findings suggest, clinical anthropometry is generally as useful as DXA in the evaluation of the individual cardio-metabolic risk factors in young adults. PMID:27622523

  2. Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing.

    PubMed

    Ducher, Gaële; Prouteau, Stéphanie; Courteix, Daniel; Benhamou, Claude-Laurent

    2004-01-01

    Bone responds to impact-loading activity by increasing its size and/or density. The aim of this study was to compare the magnitude and modality of the bone response between cortical and trabecular bone in the forearms of tennis players. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the ulna and radius were measured by dual-energy X-ray absorptiometry (DXA) in 57 players (24.5 +/- 5.7 yr old), at three sites: the ultradistal region (50% trabecular bone), the mid-distal regions, and third-distal (mainly cortical bone). At the ultradistal radius, the side-to-side difference in BMD was larger than in bone area (8.4 +/- 5.2% and 4.9 +/- 4.0%, respectively, p < 0.01). In the cortical sites, the asymmetry was lower (p < 0.01) in BMD than in bone area (mid-distal radius: 4.0 +/- 4.3% vs 11.7 +/- 6.8%; third-distal radius: 5.0 +/- 4.8% vs 8.4 +/- 6.2%). The asymmetry in bone area explained 33% of the variance of the asymmetry in BMC at the ultradistal radius, 66% at the mid-distal radius, and 53% at the third-distal radius. The ulna displayed similar results. Cortical and trabecular bone seem to respond differently to mechanical loading. The first one mainly increases its size, whereas the second one preferentially increases its density.

  3. Impact of Growth Hormone on Adult Bone Quality in Turner Syndrome: A HR-pQCT Study.

    PubMed

    Nour, Munier A; Burt, Lauren A; Perry, Rebecca J; Stephure, David K; Hanley, David A; Boyd, Steven K

    2016-01-01

    Women with Turner syndrome (TS) are known to be at risk of osteoporosis. While childhood growth hormone (GH) treatment is common in TS, the impact of this therapy on bone health has been poorly understood. The objective of this study was to determine the influence of childhood GH treatment on adult bone quality in women with TS. 28 women aged 17-45 with confirmed TS (12 GH-treated) agreed to participate in this cross-sectional study. Dual X-ray absorptiometry (DXA) of lumbar spine, hip, and radius and high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the radius and tibia were used to determine standard morphological and micro-architectural parameters of bone health. Finite element (FE) analysis and polar moment of inertia (pMOI) were used to estimate bone strength. GH-treated subjects were +7.4 cm taller (95% CI 2.5-12.3 cm, p = 0.005). DXA-determined areal BMD of hip, spine, and radius was similar between treatment groups. Both tibial and radial total bone areas were greater among GH-treated subjects (+20.4 and +21.2% respectively, p < 0.05), while other micro-architectural results were not different between groups. pMOI was significantly greater among GH-treated subjects (radius +35.0%, tibia +34.0%, p < 0.05). Childhood GH treatment compared to no treatment in TS was associated with an increased height, larger bones, and greater pMOI, while no significant difference in DXA-derived BMD, HR-pQCT micro-architectural parameters, or FE-estimated bone strength was detected. The higher pMOI and greater bone size may confer benefit for fracture reduction in these GH-treated patients.

  4. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  5. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    PubMed

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions.

  6. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    PubMed

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. PMID:23553962

  7. Sex- and age-related differences in femoral neck cross-sectional structural changes in mainland Chinese men and women measured using dual-energy X-ray absorptiometry.

    PubMed

    Gong, Jian; Tang, Min; Guo, Bin; Shang, JingJie; Tang, Yongjin; Xu, Hao

    2016-02-01

    We investigated age-related changes in estimated bone strength and cross-sectional structure of the femoral neck (FN) in mainland Chinese men and women (according to age and sex) using dual-energy X-ray absorptiometry (DXA). A total of 3855 healthy adults (2713 women, 1142 men; ages 25-91years) were analyzed by FN bone mineral density (BMD) assessment and hip structural/strength analysis (HSA), including cross-sectional moment of inertia (CSMI), cross-sectional area (CSA), section modulus (Z), periosteal diameter (PD), endocortical diameter (ED), and cortical thickness (CT) using DXA. HSA differences between age and sex groups were adjusted for body weight, height and FN BMD. Trends according to age were estimated by linear regression analysis. There was no inverse correlation between HSA parameters and age in young adults. Some HSA parameters (CSMI, CSA, Z, CT) decreased significantly with age, whereas PD and ED increased significantly. Older adults had less estimated bone strength and CT and higher PD and ED (p<0.05) than young adults. Men had greater increases in PD and ED than women across all ages. FN strength decreases with age in both sexes, caused by FN cross-sectional structural deterioration. Indirect comparison of our data with those from other populations showed less age-related FN periosteal apposition in Chinese than Caucasian men, but similar amounts in women. This may partly explain different male/female hip fracture rates among ethnic groups. Chinese men have more structural disadvantages regarding FN geometry during aging than Caucasian men, possibly conferring added susceptibility to hip fracture.

  8. Body composition in young female eating-disorder patients with severe weight loss and controls: evidence from the four-component model and evaluation of DXA

    PubMed Central

    Wells, J C K; Haroun, D; Williams, J E; Nicholls, D; Darch, T; Eaton, S; Fewtrell, M S

    2015-01-01

    Background/Objectives: Whether fat-free mass (FFM) and its components are depleted in eating-disorder (ED) patients is uncertain. Dual energy X-ray absorptiometry (DXA) is widely used to assess body composition in pediatric ED patients; however, its accuracy in underweight populations remains unknown. We aimed (1) to assess body composition of young females with ED involving substantial weight loss, relative to healthy controls using the four-component (4C) model, and (2) to explore the validity of DXA body composition assessment in ED patients. Subjects/Methods: Body composition of 13 females with ED and 117 controls, aged 10–18 years, was investigated using the 4C model. Accuracy of DXA for estimation of FFM and fat mass (FM) was tested using the approach of Bland and Altman. Results: Adjusting for age, height and pubertal stage, ED patients had significantly lower whole-body FM, FFM, protein mass (PM) and mineral mass (MM) compared with controls. Trunk and limb FM and limb lean soft tissue were significantly lower in ED patients. However, no significant difference in the hydration of FFM was detected. Compared with the 4C model, DXA overestimated FM by 5±36% and underestimated FFM by 1±9% in ED patients. Conclusion: Our study confirms that ED patients are depleted not only in FM but also in FFM, PM and MM. DXA has limitations for estimating body composition in individual young female ED patients. PMID:26173868

  9. BMI and an Anthropometry-Based Estimate of Fat Mass Percentage Are Both Valid Discriminators of Cardiometabolic Risk: A Comparison with DXA and Bioimpedance

    PubMed Central

    Völgyi, Eszter; Savonen, Kai; Tylavsky, Frances A.; Alén, Markku; Cheng, Sulin

    2013-01-01

    Objective. To determine whether categories of obesity based on BMI and an anthropometry-based estimate of fat mass percentage (FM% equation) have similar discriminative ability for markers of cardiometabolic risk as measurements of FM% by dual-energy X-ray absorptiometry (DXA) or bioimpedance analysis (BIA). Design and Methods. A study of 40–79-year-old male (n = 205) and female (n = 388) Finns. Weight, height, blood pressure, triacylglycerols, HDL cholesterol, and fasting blood glucose were measured. Body composition was assessed by DXA and BIA and a FM%-equation. Results. For grade 1 hypertension, dyslipidaemia, and impaired fasting glucose >6.1 mmol/L, the categories of obesity as defined by BMI and the FM% equation had 1.9% to 3.7% (P < 0.01) higher discriminative power compared to DXA. For grade 2 hypertension the FM% equation discriminated 1.2% (P = 0.05) lower than DXA and 2.8% (P < 0.01) lower than BIA. Receiver operation characteristics confirmed BIA as best predictor of grade 2 hypertension and the FM% equation as best predictor of grade 1 hypertension. All other differences in area under curve were small (≤0.04) and 95% confidence intervals included 0. Conclusions. Both BMI and FM% equations may predict cardiometabolic risk with similar discriminative ability as FM% measured by DXA or BIA. PMID:24455216

  10. Negative effect of serotonin-norepinephrine reuptake inhibitor therapy on rat bone tissue after orchidectomy.

    PubMed

    Fekete, Sona; Simko, Julius; Mzik, Martin; Karesova, Iva; Zivna, Helena; Zivny, Pavel; Pavliková, Ladislava; Palicka, Vladimir

    2015-08-15

    Our goal was to determine if venlafaxine has a negative effect on bone metabolism. Rats were divided into three groups. The sham-operated control group (SHAM), the control group after orchidectomy (ORX), and the experimental group after orchidectomy received venlafaxine (VEN ORX) in standard laboratory diet (SLD) for 12 weeks. Bone mineral content (BMC) was measured by dual energy X-ray absorptiometry (DXA). Bone marker concentrations of carboxy-terminal cross-linking telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), amino-terminal propeptide of procollagen type I (P1NP), bone alkaline phosphatase (BALP), sclerostin and bone morphogenetic protein 2 (BMP-2) were examined in bone homogenate. The femurs were used for biomechanical testing. Compared to the ORX group we found lower BMD in the diaphysis area of the femur in the VEN ORX group, suggesting a preferential effect on cortical bone. Of the bone metabolism markers, there was significant decrease (ORX control group versus VEN ORX experimental group) in BALP levels and increase in sclerostin and CTX-I levels, suggesting a decrease in osteoid synthesis and increased bone resorption. The results suggest that the prolonged use of venlafaxine may have a negative effect on bone metabolism. Further studies are warranted to establish whether venlafaxine may have a clinically significant adverse effect on bone. PMID:25934570

  11. New reference data on bone mineral density and the prevalence of osteoporosis in Korean adults aged 50 years or older: the Korea National Health and Nutrition Examination Survey 2008-2010.

    PubMed

    Lee, Kyung-Shik; Bae, Su-Hyun; Lee, Seung Hwa; Lee, Jungun; Lee, Dong Ryul

    2014-11-01

    This cross-sectional study was performed to investigate the reference values for bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) and the prevalence of osteoporosis in the Korean population by applying domestic reference data. In total, 25,043 Korean adults ≥20 yr of age (11,792 men and 13,251 women) participated in the study. The BMDs of the total hip, femoral neck, and lumbar spine were measured by DXA (Discovery-W, Hologic Inc.), and subjects with a BMD - 2.5 standard deviations or lower than the mean BMD for young adults (20-29 yr old) were considered to have osteoporosis. When applying the new reference values determined in this study from Korean subjects, the overall prevalence of osteoporosis increased in men aged ≥50 yr compared with that provided by the DXA manufacturer from Japanese subjects (12.2% vs. 7.8%, P<0.001) and decreased in postmenopausal women aged ≥50 yr (32.9% vs. 38.7%, P<0.001). According to the findings of this study, use of the reference values provided by the DXA manufacturer has resulted in the underdiagnosis of osteoporosis in Korean men and the overdiagnosis of osteoporosis in Korean women. Our data will serve as valuable reference standards for the diagnosis and management for osteoporosis in the Korean population.

  12. Trends in Bone Mineral Density in Young Adults with Cystic Fibrosis over a 15 Year Period

    PubMed Central

    Putman, Melissa S.; Baker, Joshua F.; Uluer, Ahmet; Herlyn, Karen; Lapey, Allen; Sicilian, Leonard; Tillotson, Angela Pizzo; Gordon, Catherine M.; Merkel, Peter A.; Finkelstein, Joel S.

    2015-01-01

    Background Improvements in clinical care have led to increased life expectancy in patients with cystic fibrosis (CF) over the past several decades. Whether these improvements have had significant effects on bone health in patients with CF is unclear. Methods This is a cross-sectional study comparing clinical characteristics and bone mineral density (BMD) measured by dual energy X-ray absorptiometry (DXA) in adults with CF evaluated in 1995–1999 to age-, race-, and gender matched patients with CF evaluated in 2011–2013 at the same center on calibrated DXA machines. Results The cohorts were similar in terms of age, BMI, pancreatic insufficiency, presence of F508del mutation, and reproductive history. In the most recent cohort, pulmonary function was superior, and fewer patients had vitamin D deficiency or secondary hyperparathyroidism. Areal BMD measures of the PA spine, lateral spine, and distal radius were similarly low in the two cohorts. Conclusions Although pulmonary function and vitamin D status were better in patients in the present-day cohort, areal BMD of the spine was reduced in a significant number of patients and was no different in patients with CF today than in the late 1990s. Further attention to optimizing bone health may be necessary to prevent CF-related bone disease. PMID:25698451

  13. Dietary long-chain inulin reduces abdominal fat but has no effect on bone density in growing female rats.

    PubMed

    Jamieson, Jennifer A; Ryz, Natasha R; Taylor, Carla G; Weiler, Hope A

    2008-08-01

    New strategies to improve Ca absorption and bone health are needed to address the current state of osteoporosis prevention and management. Inulin-type fructans have shown great promise as a dietary intervention strategy, but have not yet been tested in a young female model. Our objective was to investigate the effect of long chain (LC) inulin on bone mineralization and density in growing, female rats, as well as the quality of growth. Weanling Sprague-Dawley rats were assigned to inulin or cellulose treatments for either 4 or 8 weeks. Growth was measured weekly and quality of growth assessed using fat pad weights and dual-energy X-ray absorptiometry (DXA). Whole body (WB) and selected regions were analysed for bone mineral density (BMD) and body composition by DXA. Serum markers of bone turnover were assessed by enzyme-linked immunosorbent assays. Ca and P concentrations were determined in excised femurs by inductively coupled plasma spectrometry. Feeding inulin resulted in 4 % higher femoral weight (adjusted for body weight) and 6 % less feed intake. Inulin did not affect WB or regional BMD, but was associated with a 28 % lower parametrial fat pad mass, 21 % less WB fat mass and 5 % less WB mass. In summary, LC-inulin lowered body fat mass, without consequence to bone density in growing female rats.

  14. Bone mineral density, adiposity, and cognitive functions.

    PubMed

    Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  15. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  16. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors.

    PubMed

    Beck, T J; Ruff, C B; Shaffer, R A; Betsinger, K; Trone, D W; Brodine, S K

    2000-09-01

    A total of 693 female U.S. Marine Corps recruits were studied with anthropometry and dual-energy X-ray absorptiometry (DXA) scans of the midthigh and distal third of the lower leg prior to a 12 week physical training program. In this group, 37 incident stress fracture cases were radiologically confirmed. Female data were compared with male data from an earlier study of 626 Marine recruits extended with additional cases for a total of 38 stress fracture cases. Using DXA data, bone structural geometry and cortical dimensions were derived at scan locations and muscle cross-sectional area was computed at the midthigh. Measurements were compared within gender between pooled fracture cases and controls after excluding subjects diagnosed with shin splints. In both genders, fracture cases were less physically fit, and had smaller thigh muscles compared with controls. After correction for height and weight, section moduli (Z) and bone strength indices (Z/bone length) of the femur and tibia were significantly smaller in fracture cases of both genders, but patterns differed. Female cases had thinner cortices and lower areal bone mineral density (BMD), whereas male cases had externally narrower bones but similar cortical thicknesses and areal BMDs compared with controls. In both genders, differences in fitness, muscle, and bone parameters suggest poor skeletal adaptation in fracture cases due to inadequate physical conditioning prior to training. To determine whether bone and muscle strength parameters differed between genders, all data were pooled and adjusted for height and weight. In both the tibia and femur, men had significantly larger section moduli and bone strength indices than women, although women had higher tibia but lower femur areal BMDs. Female bones, on average, were narrower and had thinner cortices (not significant in the femur, p = 0.07). Unlike the bone geometry differences, thigh muscle cross-sectional areas were virtually identical to those of the men

  17. Concurrent validity of the BOD POD and dual energy x-ray absorptiometry techniques for assessing body composition in young women.

    PubMed

    Maddalozzo, Gianni F; Cardinal, Bradley J; Snow, Christine A

    2002-11-01

    The purpose of this study was to determine the concurrent validity of the BOD POD (BP) (Life Measurement Instruments) and Dual Energy X-Ray Absorptiometry (DXA) Elite 4500A (Hologic, Inc.) techniques for assessing the body fat percentage of young women. The participants were forty-three white college-aged women (19.4 +/- 1.4 years) with a BMI of 23.4 +/- 2.3. Both body composition analyses were completed on the same day and were taken within 10 minutes of each other. Body fat percentage was estimated to be 24.3 (SE = 1.1) and 23.8 (SE = 0.8) using the BP and DXA techniques, respectively. Exact matches, in terms of body fat percentage, were obtained for 10 of the 43 participants (23.3%). In conclusion, our data supports the concurrent validity of the BP and DXA techniques for assessing body fat in young women.

  18. Pregnancy-associated changes in bone density and bone turnover in the physiological state: prospective data on sixteen women.

    PubMed

    Fiore, C E; Pennisi, P; DiStefano, A; Riccobene, S; Caschetto, S

    2003-05-01

    Areal bone mineral density (BMD, g/cm 2) was measured for the total body, lumbar spine and hip with dual-energy x-ray absorptiometry (DXA) before pregnancy and after delivery in sixteen women aged 21 - 35 years. Additional measurements included quantitative ultrasound indices (broadband ultrasound attenuation, BUA, at the calcaneus at baseline and at 16, 26, and 36 weeks of pregnancy, and postpartum) as well as biochemical markers of bone formation and resorption (measured before pregnancy and during pregnancy at 16, 22, 26, 30, 34, and 36 weeks of pregnancy and postpartum). The results of measurements were as follows: 1. Postpartum BMD showed a significant reduction in the total body (- 13.4 %), in the spine (- 9.2 %) and in the hip (-7.8 % at the femoral neck and - 9.2 % at the Ward's triangle) compared to pre-pregnancy values. 2. Biochemical markers of bone resorption increased by 26 weeks. 3. Bone ultrasound measurements that provide information on bone density before delivery did not change throughout pregnancy. A significant reduction of BUA (- 14.5 % compared to baseline) was observed postpartum only. These data would suggest that pregnancy-induced bone loss develops rapidly after the 36 week of pregnancy, possibly via enhanced bone resorption. PMID:12916002

  19. Body composition of Native-American women estimated by dual-energy X-ray absorptiometry and hydrodensitometry.

    PubMed

    Hicks, V L; Heyward, V H; Baumgartner, R N; Flores, A J; Stolarczyk, L M; Wotruba, E A

    1993-01-01

    In the present sample, the Native-American women varied in age (18-60 y) and fatness (23.0-57.4% BF). The cross-validation analysis for %BF estimated by DXA for this sample yielded a high validity coefficient (r = 0.89), and the average %BFDXA (37.3%) and %BFHW (37.6%) did not differ significantly. The prediction error (3.28% BF) was less than the theoretical expected value, given the wide range in age and fatness in this sample. Thus, it appears that DXA may be a viable alternative method for estimating the %BF of a diverse group of Native-American women. The DXA method is more practical than hydrostatic weighing, especially for subjects who are uncomfortable in the water. Also, DXA estimates of bone mineral may lead to improved estimates of FFB density for different ethnic populations. PMID:8110173

  20. Does Visceral Fat Estimated by Dual-Energy X-ray Absorptiometry Independently Predict Cardiometabolic Risks in Adults?

    PubMed Central

    Sasai, Hiroyuki; Brychta, Robert J.; Wood, Rachel P.; Rothney, Megan P.; Zhao, Xiongce; Skarulis, Monica C.; Chen, Kong Y.

    2015-01-01

    Background: Abdominal visceral fat, typically measured by computer tomography (CT) or magnetic resonance imaging (MRI), has been shown to correlate with cardiometabolic risks. The purpose of this study was to examine whether a newly developed and validated visceral fat measurement from dual-energy X-ray absorptiometry (DXA) provides added predictive value to the cross-sectional differences of cardiometabolic parameters beyond the traditional anthropometric and DXA adiposity parameters. Method: A heterogeneous cohort of 194 adults (81 males and 113 females) with a BMI of 19 to 54 kg/m2 participated in this cross-sectional study. Body composition was measured with a DXA densitometer. Visceral fat was then computed with a proprietary algorithm. Insulin sensitivity index (SI, measured by intravenous glucose tolerance test), blood pressures, and lipid profiles, and peak oxygen uptake were also measured as cardiometabolic risk parameters. Results: DXA-estimated visceral fat mass was associated with HDL cholesterol (regression coefficient [β] = −5.15, P < .01, adjusted R2 = .21), triglyceride (β = 26.01, P < .01, adjusted R2 = .14), and peak oxygen uptake (β = −3.15, P < .01, adjusted R2 = .57) after adjusting for age, gender, and ethnicity. A subanalysis stratifying gender-specific BMI tertiles showed visceral fat, together with ethnicity, was independently associated with SI in overweight men and moderately obese women (second tertile). Conclusions: Without requiring additional CT or MRI-based measurements, visceral fat detected by DXA might offer certain advantages over the traditional DXA adiposity parameters as means of assessing cardiometabolic risks. PMID:25802470

  1. Vitamin D status is associated with bone mineral density and bone mineral content in preschool-aged children.

    PubMed

    Hazell, Tom J; Pham, Thu Trang; Jean-Philippe, Sonia; Finch, Sarah L; El Hayek, Jessy; Vanstone, Catherine A; Agellon, Sherry; Rodd, Celia J; Weiler, Hope A

    2015-01-01

    This study examined the associations between vitamin D status, bone mineral content (BMC), areal bone mineral density (aBMD), and markers of calcium homeostasis in preschool-aged children. Children (n=488; age range: 1.8-6.0 y) were randomly recruited from Montreal. The distal forearm was scanned using a peripheral dual-energy X-ray absorptiometry scanner (Lunar PIXI; GE Healthcare, Fairfield, CT). A subset (n=81) had clinical dual-energy X-ray absorptiometry (cDXA) scans (Hologic 4500A Discovery Series) of lumbar spine (LS) 1-4, whole body, and ultradistal forearm. All were assessed for plasma 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone concentrations (Liaison; Diasorin), ionized calcium (ABL80 FLEX; Radiometer Medical A/S), and dietary vitamin D and calcium intakes by survey. Age (p<0.001) and weight-for-age Z-score (p<0.001) were positively associated with BMC and aBMD in all regression models, whereas male sex contributed positively to forearm BMC and aBMD. Having a 25(OH)D concentration of >75 nmol/L positively associated with forearm and whole body BMC and aBMD (p<0.036). Sun index related to (p<0.029) cDXA forearm and LS 1-4 BMC and whole-body aBMD. Nutrient intakes did not relate to BMC or aBMD. In conclusion, higher vitamin D status is linked to higher BMC and aBMD of forearm and whole body in preschool-aged children.

  2. Precision error in dual-photon absorptiometry related to source age

    SciTech Connect

    Ross, P.D.; Wasnich, R.D.; Vogel, J.M.

    1988-02-01

    An average, variable precision error of up to 6% related to source age was observed for dual-photon absorptiometry of the spine in a longitudinal study of bone mineral content involving 393 women. Application of a software correction for source decay compensated for only a portion of this error. The authors conclude that measurement of bone-loss rates using serial dual-photon bone mineral measurements must be interpreted with caution.

  3. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  4. Hip bone strength indices in overweight and control adolescent boys.

    PubMed

    El Hage, Zaher; Theunynck, Denis; Jacob, Christophe; Moussa, Elie; Baddoura, Rafic; Kamlé, Pierre; El Hage, Rawad

    2011-11-01

    The influence of being overweight on bone strength in adolescents remains controversial. The aim of this study was to compare hip bone strength indices in overweight and control adolescent boys using hip structure analysis (HSA). This study included 25 overweight adolescent boys [body mass index (BMI) >25 kg/m(2)] and 31 maturation-matched controls (BMI <25 kg/m(2)). Body composition and bone mineral density were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate hip bone strength, DXA scans were analyzed at femoral neck, intertrochanteric, and femoral shaft by the HSA program. Cross-sectional area (CSA), an index of axial compression strength, section modulus (Z), an index of bending strength, cross-sectional moment of inertia (CSMI), cortical thickness (CT), and buckling ratio (BR) were measured from bone mass profiles. Body weight, lean mass, fat mass, and BMI were higher in overweight boys compared to controls (P < 0.001). CSA, CSMI, and Z of the three sites (femoral neck, intertrochanteric, and femoral shaft) were higher in overweight boys compared to controls (P < 0.01). BR was not significantly different between the two groups at the three sites. After adjustment for either body weight, BMI, or fat mass, using a one-way analysis of covariance, there were no differences between the two groups regarding the HSA variables (CSA, Z, CSMI, CT, and BR). After adjusting for lean mass, overweight boys displayed higher values of femoral shaft CSA, CSMI, and Z in comparison to controls (P < 0.05). In conclusion, this study suggests that overweight adolescent boys have greater indices of bone axial and bending strength in comparison to controls at the femoral neck, the intertrochanteric, and the femoral shaft.

  5. Reference data and percentile curves of body composition measured with dual energy X-ray absorptiometry in healthy Chinese children and adolescents.

    PubMed

    Guo, Bin; Xu, Yi; Gong, Jian; Tang, Yongjin; Shang, Jingjie; Xu, Hao

    2015-09-01

    Measurements of body composition by dual-energy X-ray absorptiometry (DXA) have evident value in evaluating skeletal and muscular status in growing children and adolescents. This study aimed to generate age-related trends for body composition in Chinese children and adolescents, and to establish gender-specific reference percentile curves for the assessment of muscle-bone status. A total of 1541 Chinese children and adolescents aged from 5 to 19 years were recruited from southern China. Bone mineral content (BMC), lean mass (LM) and fat mass (FM) were measured for total body and total body less head (TBLH). After 14 years, total body LM was significantly higher in boys than girls (p < 0.001). However, total body FM was significantly higher in girls than boys in age groups 13-19 years (p < 0.01). Both LM and FM were consistent independent predictors of total body and subcranial bone mass in both sexes, even after adjustment for the well-known predictors of BMC. The results of multiple linear regression identified LM as the stronger predictor of total body and subcranial skeleton BMC while the fat mass contributed less. For all the subjects, significant positive correlations were observed between total body LM, height, total body BMC and subcranial BMC (p < 0.01). Subcranial BMC had a better correlation with LM than total body BMC. We have also presented gender-specific percentile curves for LM-for-height and BMC-for-LM which could be used to evaluate and follow various pediatric disorders with skeletal manifestations in this population. PMID:25319556

  6. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  7. Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype.

    PubMed

    Haine, Elsa; Salles, Jean-Pierre; Khau Van Kien, Philippe; Conte-Auriol, Françoise; Gennero, Isabelle; Plancke, Aurélie; Julia, Sophie; Dulac, Yves; Tauber, Maithé; Edouard, Thomas

    2015-08-01

    Marfan syndrome (MFS) is a rare connective tissue disorder caused by mutation in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1), leading to transforming growth factor-beta (TGF-β) signaling dysregulation. Although decreased axial and peripheral bone mineral density (BMD) has been reported in adults with MFS, data about the evolution of bone mass during childhood and adolescence are limited. The aim of the present study was to evaluate bone and muscle characteristics in children, adolescents, and young adults with MFS. The study population included 48 children and young adults (22 girls) with MFS with a median age of 11.9 years (range 5.3 to 25.2 years). The axial skeleton was analyzed at the lumbar spine using dual-energy X-ray absorptiometry (DXA), whereas the appendicular skeleton (hand) was evaluated using the BoneXpert system (with the calculation of the Bone Health Index). Muscle mass was measured by DXA. Compared with healthy age-matched controls, bone mass at the axial and appendicular levels and muscle mass were decreased in children with MFS and worsened from childhood to adulthood. Vitamin D deficiency (<50 nmol/L) was found in about a quarter of patients. Serum vitamin D levels were negatively correlated with age and positively correlated with lumbar spine areal and volumetric BMD. Lean body mass (LBM) Z-scores were positively associated with total body bone mineral content (TB-BMC) Z-scores, and LBM was an independent predictor of TB-BMC values, suggesting that muscle hypoplasia could explain at least in part the bone loss in MFS. Patients with a FBN1 premature termination codon mutation had a more severe musculoskeletal phenotype than patients with an inframe mutation, suggesting the involvement of TGF-β signaling dysregulation in the pathophysiologic mechanisms. In light of these results, we recommend that measurement of bone mineral status should be part of the longitudinal clinical investigation of MFS children. PMID

  8. Comparison of bone histomorphometry and μCT for evaluating bone quality in tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; Luan, Hui-Qin; Fan, Yu-Bo

    2014-10-01

    Astronauts often suffer from microgravity-induced osteoporosis due to their time in space. Bone histomorphometry, the 'gold standard' technique for detecting bone quality, is widely used in the evaluation of osteoporosis. This study investigates whether μCT has the same application value as histomorphometry in the evaluation of weightlessness-induced bone loss. A total of 24 SD rats were distributed into three groups (n = 8, each): tail-suspension (TS), TS plus active exercise (TSA), and control (CON). After 21 days, bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA) and μCT, and microstructure was measured by μCT and histomorphometry. BMD was found to have decreased significantly in TS and TSA compared with the CON group. The results of the μCT measurements showed that a change in BMD mainly occurred in the trabecular bone, and the trabecular BMD increased significantly in the TSA compared with the TS group. The comparison of μCT and histomorphometry showed that TS led to a significant decrease in bone volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N), and it led to an increase in trabecular separation (Tb.Sp). However, active exercise can prevent these changes. Significant differences in most parameters between TSA and CON were found by μCT but not by histomorphometry. Additionally, the parameters of these two methods are highly correlated. Therefore, the application value of μCT is as good as histomorphometry and DXA in the diagnosis of weightlessness-induced osteoporosis and is even better in evaluating the efficacy of exercise.

  9. Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent girls.

    PubMed

    El Hage, Rawad; El Hage, Zaher; Moussa, Elie; Jacob, Christophe; Zunquin, Gautier; Theunynck, Denis

    2013-01-01

    The aim of this study was to compare hip bone strength indices in obese, overweight, and normal-weight adolescent girls using hip structure analysis (HSA). This study included 64 postmenarcheal adolescent girls (14 obese, 21 overweight, and 29 normal weight). The 3 groups (obese, overweight, and normal weight) were matched for maturity (years since menarche). Body composition and bone mineral density (BMD) of whole body, lumbar spine, and proximal femur were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate hip bone strength, DXA scans were analyzed at the femoral neck (FN) at its narrow neck (NN) region, the intertrochanteric (IT), and the femoral shaft (FS) by the HSA program. Cross-sectional area and section modulus were measured from hip BMD profiles. Total hip BMD and FN BMD were significantly higher in obese and overweight girls in comparison with normal-weight girls (p < 0.05). However, after adjusting for weight, using a one-way analysis of covariance, there were no significant differences among the 3 groups regarding HSA variables. This study suggests that in obese and overweight adolescent girls, axial strength and bending strength indices of the NN, IT, and FS are adapted to the increased body weight.

  10. The Lichfield bone study: the skeletal response to exercise in healthy young men

    PubMed Central

    Eleftheriou, Kyriacos I.; Kehoe, Anthony; James, Laurence E.; Payne, John R.; Skipworth, James R.; Puthucheary, Zudin A.; Drenos, Fotios; Pennell, Dudley J.; Loosemore, Mike; World, Michael; Humphries, Steve E.; Haddad, Fares S.; Montgomery, Hugh E.

    2012-01-01

    The skeletal response to short-term exercise training remains poorly described. We thus studied the lower limb skeletal response of 723 Caucasian male army recruits to a 12-wk training regime. Femoral bone volume was assessed using magnetic resonance imaging, bone ultrastructure by quantitative ultrasound (QUS), and bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA) of the hip. Left hip BMD increased with training (mean ± SD: 0.85 ± 3.24, 2.93 ± 4.85, and 1.89 ± 2.85% for femoral neck, Ward's area, and total hip, respectively; all P < 0.001). Left calcaneal broadband ultrasound attenuation rose 3.57 ± 0.5% (P < 0.001), and left and right femoral cortical volume by 1.09 ± 4.05 and 0.71 ± 4.05%, respectively (P = 0.0001 and 0.003), largely through the rise in periosteal volume (0.78 ± 3.14 and 0.59 ± 2.58% for right and left, respectively, P < 0.001) with endosteal volumes unchanged. Before training, DXA and QUS measures were independent of limb dominance. However, the dominant femur had higher periosteal (25,991.49 vs. 2,5572 mm3, P < 0.001), endosteal (6,063.33 vs. 5,983.12 mm3, P = 0.001), and cortical volumes (19,928 vs. 19,589.56 mm3, P = 0.001). Changes in DXA, QUS, and magnetic resonance imaging measures were independent of limb dominance. We show, for the first time, that short-term exercise training in young men is associated not only with a rise in human femoral BMD, but also in femoral bone volume, the latter largely through a periosteal response. PMID:22114178

  11. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures. PMID:23612523

  12. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures.

  13. Short-Term Effects of Kefir-Fermented Milk Consumption on Bone Mineral Density and Bone Metabolism in a Randomized Clinical Trial of Osteoporotic Patients

    PubMed Central

    Tung, Yu-Tang; Kao, Chao-Chih; Hu, Fu-Chang; Chen, Chuan-Mu

    2015-01-01

    Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg) supplemented with calcium bicarbonate (CaCO3, 1,500 mg) and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD) values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA) at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX) in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC) turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH) increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients. Trial Registration: ClinicalTrials.gov NCT02361372 PMID:26655888

  14. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss

    PubMed Central

    2012-01-01

    Background Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO), bioimpedance analysis (BIA) and ultrasonography (US) in cats, proposing equations to estimate fat (FM) and lean (LM) body mass, as compared to dual energy x-ray absorptiometry (DXA) as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females) in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals), after 10% of weight loss (T1) and after 20% of weight loss (T2). Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM) determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results The independent variables determined by BIO, BIA and US that best correlated (p < 0.005) with the dependent variables (FM and LM) were BW (body weight), TC (thoracic circumference), PC (pelvic circumference), R (resistance) and SFLT (subcutaneous fat layer thickness). Using Mallows’Cp statistics, p value and r2, 19 equations were selected (12 for FM, 7 for LM); however, only 7 equations accurately predicted FM and one LM of cats. Conclusions The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed. PMID:22781317

  15. Assessment of adiposity in psoriatic patients by dual energy X-ray absorptiometry compared to conventional methods*

    PubMed Central

    Diniz, Michelle dos Santos; Bavoso, Nádia Couto; Kakehasi, Adriana Maria; Lauria, Márcio Weissheimer; Soares, Maria Marta Sarquis; Machado-Pinto, Jackson

    2016-01-01

    BACKGROUND Obesity is considered a chronic low-grade inflammatory disease that shares mediators of inflammation with psoriasis, such as TNF-α and IL-6. The relationship between these two conditions involves factors such as predisposition and response to therapy, in addition to an association with cardiovascular disease. OBJECTIVES The aim of the present study was to investigate the prevalence of adiposity as determined by body mass index (BMI), waist circumference (WC), and dual energy X-ray absorptiometry (DXA) evaluation in patients with psoriasis. METHODS BMI, WC and body composition by DXA were measured in 42 psoriatic patients without joint complaints and in 41 control patients using standard procedures. In the comparison between cases and controls, we used Pearson’s Χ2 test or Fisher’s exact test, and the nonparametric Mann-Whitney test. The difference between the diverse classification methods for obesity was evaluated using McNemar’s test. To test the level of agreement between those variables, we used the weighted kappa coefficient. RESULTS There was no difference in the prevalence of obesity among cases and controls. Both BMI and WC had low agreement with measures of body fat evaluated by DXA. With the use of DXA scanning, prevalence of overweight and obesity in patients with psoriasis was 83.3%, which constitutes a strong evidence of the need for intervention on this metabolic parameter. CONCLUSION Dual energy X-ray absorptiometry was more capable of identifying obesity compared with BMI and WC both in psoriatic and control patients. PMID:27192512

  16. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: a mediation analysis.

    PubMed

    Torres-Costoso, Ana; Gracia-Marco, Luis; Sánchez-López, Mairena; García-Prieto, Jorge Cañete; García-Hermoso, Antonio; Díez-Fernández, Ana; Martínez-Vizcaíno, Vicente

    2015-01-01

    This report aims to analyse the independent association of lean mass and muscle fitness with bone mineral content (BMC) and bone mineral density (BMD), and to examine whether the relationship between muscle fitness and bone health is mediated by lean mass. Body composition (by dual energy X-ray absorptiometry (DXA)), muscle fitness, physical activity, age and height were measured in 132 schoolchildren (62 boys, aged 8-11 years). Analysis of covariance tested differences in bone-related variables by lean mass and muscle fitness, controlling for different sets of confounders. Linear regression models fitted for mediation analyses examined whether the association between muscle fitness and bone mass was mediated by lean mass. Children with good performance in handgrip and standing long jump had better and worse bone health, respectively. These differences disappeared after controlling for lean mass. Children with high lean mass had higher values in all bone-related variables. In addition, the relationship between muscle fitness and bone mass was fully mediated by lean mass. In conclusion, the relationship between upper-limbs muscle fitness and bone health seems to be dependent on lean mass but not on muscle fitness. Schoolchildren with high lean mass have more BMC and BMD in all regions. Lean mass mediates the association between muscle fitness and bone mass.

  17. Lower Trabecular Volumetric BMD at Metaphyseal Regions of Weight-Bearing Bones is Associated With Prior Fracture in Young Girls

    PubMed Central

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-01-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research. PMID:20721933

  18. Validation of Dual Energy X-Ray Absorptiometry Measures of Abdominal Fat by Comparison with Magnetic Resonance Imaging in an Indian Population

    PubMed Central

    Taylor, Amy E.; Kuper, Hannah; Varma, Ravi D.; Wells, Jonathan C.; Bell, Jimmy D.; V.Radhakrishna, K.; Kulkarni, Bharati; Kinra, Sanjay; Timpson, Nicholas J.; Ebrahim, Shah; Smith, George Davey; Ben-Shlomo, Yoav

    2012-01-01

    Objective Abdominal adiposity is an important risk factor for diabetes and cardiovascular disease in Indians. Dual energy X-ray absorptiometry (DXA) can be used to determine abdominal fat depots, being more accessible and less costly than gold standard measures such as magnetic resonance imaging (MRI). DXA has not been fully validated for use in South Asians. Here, we determined the accuracy of DXA for measurement of abdominal fat in an Indian population by comparison with MRI. Design 146 males and females (age range 18–74, BMI range 15–46 kg/m2) from Hyderabad, India underwent whole body DXA scans on a Hologic Discovery A scanner, from which fat mass in two abdominal regions was calculated, from the L1 to L4 vertebrae (L1L4) and from the L2 to L4 vertebrae (L2L4). Abdominal MRI scans (axial T1-weighted spin echo images) were taken, from which adipose tissue volumes were calculated for the same regions. Results Intra-class correlation coefficients between DXA and MRI measures of abdominal fat were high (0.98 for both regions). Although at the level of the individual, differences between DXA and MRI could be large (95% of DXA measures were between 0.8 and 1.4 times MRI measures), at the sample level, DXA only slightly overestimated MRI measures of abdominal fat mass (mean difference in L1L4 region: 2% (95% CI:0%, 5%), mean difference in L2L4 region:4% (95% CI: 1%, 7%)). There was evidence of a proportional bias in the association between DXA and MRI (correlation between difference and mean −0.3), with overestimation by DXA greater in individuals with less abdominal fat (mean bias in leaner half of sample was 6% for L1L4 (95%CI: 2, 11%) and 7% for L2L4 (95% CI:3,12%). Conclusions DXA measures of abdominal fat are suitable for use in Indian populations and provide a good indication of abdominal adiposity at the population level. PMID:23272086

  19. L-arginine prevents bone loss and bone collagen breakdown in cyclosporin A-treated rats.

    PubMed

    Fiore, C E; Pennisi, P; Cutuli, V M; Prato, A; Messina, R; Clementi, G

    2000-11-24

    Cyclosporin A is implicated in the pathogenesis of post-transplantation bone disease. Because of recent evidence that cyclosporin A may cause renal and cardiovascular toxicity by inhibiting nitric oxide (NO) activity, and that NO slows bone remodeling and bone loss in animal and human studies, we investigated a possible link between NO production and beneficial effects on bone health in cyclosporin A-treated rats. Thirty-six 10-week-old male rats were assigned to six groups of six animals each, and treated for 4 weeks with: vehicle; cyclosporin A; L-arginine; N(G)-nitro-L-arginine methylester (L-NAME, a general inhibitor of NO synthase activity); a combination of cyclosporin A+L-arginine; and a combination of cyclosporin A+L-NAME. Whole body and regional (spine and pelvis) bone mineral content of rats were measured under basal conditions and at the end of the treatment period by dual-energy X-ray absorptiometry (DXA) scanning. Femur weights and serum concentrations of pyridinoline, a reliable marker of bone resorption, were measured at the end of the study period. Cyclosporin A-, L-NAME-, and cyclosporin A+L-NAME-treated rats had significantly lower bone mineral content and femur weights, and significantly higher pyridinoline levels than did control animals. The administration of L-arginine appeared to prevent bone loss caused by cyclosporin A, suggesting that this amino acid, which can be converted to produce NO, might prove useful in preventing disturbed bone modeling and inhibition of bone growth associated with cyclosporin A therapy. PMID:11090650

  20. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids. PMID:25736591

  1. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.

    PubMed

    Mellibovsky, Leonardo; Prieto-Alhambra, Daniel; Mellibovsky, Fernando; Güerri-Fernández, Roberto; Nogués, Xavier; Randall, Connor; Hansma, Paul K; Díez-Perez, Adolfo

    2015-09-01

    Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids.

  2. Evaluation of Lunar small animal software for measuring bone mineral content in excised rat bones.

    PubMed

    Kiebzak, G M; Meyer, M H; Meyer, R A

    1999-01-01

    The purpose of this study was to evaluate software from Lunar Corporation (Madison, WI) designed for the measurement of bone mineral content ([BMC],g) in excised rat femurs using dual-energy X-ray absorptiometry (DXA). Femurs were harvested from intact 2- to 12-mo-old female Sprague-Dawley rats, stripped of soft tissues, wrapped in saline-soaked gauze, and frozen at -20 degrees F. Thawed bones were scanned in air on a 1.7-cm-thick Lucite plate that was laid on the manufacturer's supplied Delrin platform. Bones were in an anteroposterior position and scanned in a proximal-to-distal manner. Small animal software version 1.0d was used with a Lunar DPX-L densitometer. Regions of interest (ROIs) were the middle one-third of the diaphysis, a small central area of the distal metaphysis, and the total bone. Precision (n = 6 femurs) was calculated for each region of interest. After DXA scanning, one group of bones (n = 10 femurs) was dried and incinerated in a muffle furnace to obtain bone ash. The ash was then digested in acid and aliquots assayed for calcium using atomic absorption spectrophotometry. This group of bones was used to correlate BMC with ash weight and areal bone mineral density (BMD) with calcium concentration. A second group of bones (n = 14 femurs) was used to correlate BMC with maximal load to failure (N), a biomechanical variable that provides information about bone strength. Precision of repetitive measurements for the three ROIs was 1.2, 3.0, and 0.65%, respectively. Total femur BMC and total femur ash weights were significantly correlated (r = 0.974, p <0.0001). Total femur area BMD (g/cm2) was significantly correlated with calcium concentration (microM) of the bone hydrolysate (r = 0.686, p = 0.029). Total femur BMC and maximum load to midshaft fracture were also significantly correlated (r = 0.914, p<0.0001). The greatest problem with the software was with edge detection: operator intervention was necessary to place edges manually during scan

  3. Bones of Contention: Bone Mineral Density Recovery in Celiac Disease—A Systematic Review

    PubMed Central

    Grace-Farfaglia, Patricia

    2015-01-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  4. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    PubMed

    Grace-Farfaglia, Patricia

    2015-05-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied.

  5. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Wang, ZiMian; Pierson, Richard N., Jr.

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  6. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: the Dallas Heart Study

    PubMed Central

    Neeland, I J; Grundy, S M; Li, X; Adams-Huet, B; Vega, G L

    2016-01-01

    Background/Objectives: Visceral adipose tissue (VAT) mass, a risk factor for cardiometabolic complications of obesity, is usually measured by magnetic resonance imaging (MRI) but this method is not practical in a clinical setting. In contrast, measurement of VAT by dual-x-ray absorptiometry (DXA) appears to circumvent the limitations of MRI. In this study, we compared measurements of VAT mass by MRI and DXA in the large, multiethnic cohort of the Dallas Heart Study (DHS). Subjects/Methods: About 2689 DHS participants underwent paired measurement of VAT by MRI and DXA. Sex-stratified analyses were performed to evaluate the correlation and agreement between DXA and MRI. Model validation was performed using bootstrapping and inter-reader variability was assessed. Results: Mean age of the cohort was 44 years, with 55% female, 48% Black and 75% overweight/obese participants. Regression analysis showed a linear relationship between DXA and MRI with R2=0.82 (95% confidence interval (CI) 0.81–0.84) for females and R2=0.86 (95% CI 0.85–0.88) for males. Mean difference between methods was 0.01 kg for females and 0.09 kg for males. Bland–Altman analysis showed that DXA tended to modestly underestimate VAT compared with MRI at lower VAT levels and overestimate it compared with MRI at higher VAT levels. Results were consistent in analyses stratified by race, body mass index status, waist girth and body fat. Inter-individual reader correlation among 50 randomly selected scans was excellent (inter-class correlation coefficient=0.997). Conclusions: VAT mass quantification by DXA was both accurate and valid among a large, multiethnic cohort within a wide range of body fatness. Further studies including repeat assessments over time will help determine its long-term applicability. PMID:27428873

  7. Relationship between dual-energy X-ray absorptiometry volumetric assessment and X-ray computed tomography-derived single-slice measurement of visceral fat.

    PubMed

    Xia, Yi; Ergun, David L; Wacker, Wynn K; Wang, Xin; Davis, Cynthia E; Kaul, Sanjiv

    2014-01-01

    To reduce radiation exposure and cost, visceral adipose tissue (VAT) measurement on X-ray computed tomography (CT) has been limited to a single slice. Recently, the US Food and Drug Administration has approved a dual-energy X-ray absorptiometry (DXA) application validated against CT to measure VAT volume. The purpose of this study was to develop an algorithm to compute single-slice area values on DXA at 2 common landmarks, L2/3 and L4/5, from an automated volumetrically derived measurement of VAT. Volumetric CT and total body DXA were measured in 55 males (age: 21-77 yr; body mass index [BMI]: 21.1-37.9) and 60 females (age: 21-85 yr; BMI: 20.0-39.7). Equations were developed by applying the relationship of CT single-slice area and volume measurements of VAT to the DXA VAT volume measure as well as validating these against the CT single-slice measurements. Correlation coefficients between DXA estimate of single-slice area and CT were 0.94 for L2/3 and 0.96 for L4/5. The mean difference between DXA estimate of single-slice area and CT was 5 cm(2) at L2/3 and 3.8 cm(2) at L4/5. Bland-Altman analysis showed a fairly constant difference across the single-slice range in this study, and the 95% limits of agreement for the 2 methods were -44.6 to +54.6 cm(2) for L2/3 and -47.3 to +54.9 cm(2) for L4/5. In conclusion, a volumetric measurement of VAT by DXA can be used to estimate single-slice measurements at the L2/3 and the L4/5 landmarks.

  8. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates.

  9. Air Displacement Plethysmography versus Dual-Energy X-Ray Absorptiometry in Underweight, Normal-Weight, and Overweight/Obese Individuals

    PubMed Central

    Lowry, David W.; Tomiyama, A. Janet

    2015-01-01

    Background Accurately estimating fat percentage is important for assessing health and determining treatment course. Methods of estimating body composition such as hydrostatic weighing or dual-energy x-ray absorptiometry (DXA), however, can be expensive, require extensive operator training, and, in the case of hydrostatic weighing, be highly burdensome for patients. Our objective was to evaluate air displacement plethysmography via the Bod Pod, a less burdensome method of estimating body fat percentage. In particular, we filled a gap in the literature by testing the Bod Pod at the lower extreme of the Body Mass Index (BMI) distribution. Findings Three BMI groups were recruited and underwent both air displacement plethysmography and dual-energy x-ray absorptiometry. We recruited 30 healthy adults at the lower BMI distribution from the Calorie Restriction (CR) Society and followers of the CR Way. We also recruited 15 normal weight and 19 overweight/obese healthy adults from the general population. Both Siri and Brozek equations derived body fat percentage from the Bod Pod, and Bland-Altman analyses assessed agreement between the Bod Pod and DXA. Compared to DXA, the Bod Pod overestimated body fat percentage in thinner participants and underestimated body fat percentage in heavier participants, and the magnitude of difference was larger for underweight BMI participants, reaching 13% in some. The Bod Pod and DXA had smaller discrepancies in normal weight and overweight/obese participants. Conclusions While less burdensome, clinicians should be aware that Bod Pod estimates may deviate from DXA estimates particularly at the lower end of the BMI distribution. PMID:25607661

  10. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  11. Effects of Life-long Fluoride Intake on Bone Measures of Adolescents

    PubMed Central

    Levy, S.M.; Warren, J.J.; Phipps, K.; Letuchy, E.; Broffitt, B.; Eichenberger-Gilmore, J.; Burns, T.L.; Kavand, G.; Janz, K.F.; Torner, J.C.; Pauley, C.A.

    2014-01-01

    Controversy persists concerning the impact of community water fluoridation on bone health in adults, and few studies have assessed relationships with bone at younger ages. Ecological studies of fluoride’s effects showed some increase in bone mineral density of adolescents and young adults in areas with fluoridated water compared with non-fluoridated areas. However, none had individual fluoride exposure measures. To avoid ecological fallacy and reduce bias, we assessed associations of average daily fluoride intake from birth to age 15 yr for Iowa Bone Development Study cohort members with age 15 yr dual-energy x-ray absorptiometry (DXA) bone outcomes (whole body, lumbar spine, and hip), controlling for known determinants (including daily calcium intake, average daily time spent in moderate-to-vigorous intensity physical activity, and physical maturity). Mean (SD) daily fluoride intake was 0.66 mg (0.24) for females and 0.78 mg (0.30) for males. We found no significant relationships between daily fluoride intake and adolescents’ bone measures in adjusted models (for 183 females, all p values ≥ .10 and all partial R2 ≤ 0.02; for 175 males, all p values ≥ .34 and all partial R2 ≤ 0.01). The findings suggest that fluoride exposures at the typical levels for most US adolescents in fluoridated areas do not have significant effects on bone mineral measures. PMID:24470542

  12. Modifiable determinants of bone status in young women.

    PubMed

    Lloyd, T; Beck, T J; Lin, H-M; Tulchinsky, M; Eggli, D F; Oreskovic, T L; Cavanagh, P R; Seeman, E

    2002-02-01

    The purpose of this study was to evaluate the contributions of exercise, fitness, body composition, and calcium intake during adolescence to peak bone mineral density and bone structural measurements in young women. University Hospital and 75 healthy, white females in the longitudinal Penn State Young Women's Health Study were included. Body composition, total body, and hip bone mineral density (BMD) were measured by dual-energy X-ray absorptiometry (DXA), exercise scores by sports-exercise questionnaire during ages 12-18 years, and estimated aerobic capacity by bike ergometry. Section modulus values (a measurement of bending strength) cross-sectional area (CSA), subperiosteal width, and cortical thickness were calculated from DXA scan data for the femoral neck and femoral shaft. Calcium intakes were calculated from 39 days of prospective food records collected at 13 timepoints between ages 12 and 20 years; supplemental calcium intakes were included. Section moduli at the femoral neck and shaft were correlated significantly with lean body mass, sports-exercise scores (R(2) = 0.07-0.19, p < 0.05), and aerobic capacity (R(2) = 0.06-0.57, p < 0.05). Sports-exercise scores correlated with BMD at the femoral neck and shaft. Average total daily calcium intake at age 12-20 years ranged from 486 to 1958 mg/day and was not significantly associated with total or regional peak BMD or bone structure measures at 20 years of age. It was shown that achievable levels of exercise and fitness have a favorable effect on BMD and section modulus of the femoral neck and femoral shaft in young adult women, whereas daily calcium intake of >500 mg in female adolescents appears to have little, if any effect.

  13. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and

  14. Factors that influence bone mass of healthy children and adolescents measured by quantitative ultrasound at the hand phalanges: a systematic review☆

    PubMed Central

    Krahenbühl, Tathyane; Gonçalves, Ezequiel Moreira; Costa, Eduardo Tavares; Barros, Antonio de Azevedo

    2014-01-01

    Objective: To analyze the main factors that influence bone mass in children and teenagers assessed by quantitative ultrasound (QUS) of the phalanges. Data source: A systematic literature review was performed according to the PRISMA method with searches in databases Pubmed/Medline, SciELO and Bireme for the period 2001-2012, in English and Portuguese languages, using the keywords: children, teenagers, adolescent, ultrasound finger phalanges, quantitative ultrasound of phalanges, phalangeal quantitative ultrasound. Data synthesis: 21 articles were included. Girls had, in QUS, Amplitude Dependent Speed of Sound (AD-SoS) values higher than boys during pubertal development. The values of the parameters of QUS of the phalanges and dual-energy X-ray Absorptiometry (DXA) increased with the increase of the maturational stage. Anthropometric variables such as age, weight, height, body mass index (BMI), lean mass showed positive correlations with the values of QUS of the phalanges. Physical activity has also been shown to be positively associated with increased bone mass. Factors such as ethnicity, genetics, caloric intake and socioeconomic profile have not yet shown a conclusive relationship and need a larger number of studies. Conclusions: QUS of the phalanges is a method used to evaluate the progressive acquisition of bone mass during growth and maturation of individuals in school phase, by monitoring changes that occur with increasing age and pubertal stage. There were mainly positive influences variables of sex, maturity, height, weight and BMI, with similar data when compared to the gold standard method, the DXA. PMID:25479860

  15. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA.

    PubMed

    Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian

    2014-01-27

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.

  16. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA

    PubMed Central

    Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian

    2014-01-01

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487

  17. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    PubMed

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs.

  18. The effects of Acanthopanax senticosus extract on bone turnover and bone mineral density in Korean postmenopausal women.

    PubMed

    Hwang, You-Cheol; Jeong, In-Kyung; Ahn, Kyu Jeung; Chung, Ho Yeon

    2009-01-01

    The purpose of this prospective randomized study was to investigate the effects of the extract of Acanthopanax senticosus (AS extract), a widely used oriental herb, on bone remodeling and bone mineral density in Korean postmenopausal women. A total of 81 postmenopausal women with osteopenia or osteoporosis, an age of less than 65 years, were enrolled in the study. Subjects were randomly assigned to two groups: (1) the control group (n = 40), calcium intake (500 mg per day), and (2) the treatment group (n = 41), calcium (500 mg per day) plus AS extract (3 g per day). After treatment with AS extract for 6 months, the AS extract group showed a significant increase in serum osteocalcin levels compared with the control group (P = 0.041). However, no significant changes in bone mineral density were observed by dual-energy X-ray absorptiometry (DXA). AS extract was generally well tolerated, and no differences were observed between the two groups in terms of adverse events. This study suggests that AS extract supplementation may have beneficial effects on bone remodeling in Korean postmenopausal women and that it has no significant adverse events.

  19. Body Composition in Premature Adrenarche by Structural MRI, 1H MRS and DXA

    PubMed Central

    Leibel, Natasha; Shen, Wei; Mao, Xiangling; Punyanitya, Mark; Gallagher, Dympna; Horlick, Mary; Shungu, Dikoma C.; Oberfield, Sharon E.

    2010-01-01

    Background Premature adrenarche (PA) is recognized to be a possible precursor of polycystic ovarian syndrome, type 2 diabetes mellitus and cardiovascular disease. Visceral adiposity and increased intramyocellular lipid (IMCL) are associated with insulin resistance and increased risk of cardiovascular disease. Aim To determine whether prepubertal girls with PA have altered visceral adiposity and/or increased muscle lipid content compared to prepubertal girls without PA using proton magnetic resonance imaging (MRI) and spectroscopy (1H MRS). Patients and Methods We performed total body dual energy X-ray absorptiometry (DXA) scans, MRI of the trunk, and MRS of the tibialis anterior muscle in the right calf on six girls with PA and eight prepubertal controls. Results Amount of visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (SAT), and VAT to SAT ratio did not differ significantly between the PA and control girls. Those with PA, however, had significantly greater IMCL than controls (p = 0.004). Conclusions This study adds further evidence that PA is not a benign condition, and future studies investigating early intervention with dietary and exercise counseling may help diminish potential risk for diabetes mellitus and/or cardiovascular disease. PMID:19554803

  20. Bone Disorders in Chronic Kidney Disease: An Update in Diagnosis and Management.

    PubMed

    Babayev, Revekka; Nickolas, Thomas L

    2015-01-01

    Renal osteodystrophy (ROD) is a bone disorder that occurs in chronic kidney disease (CKD) patients and is associated with 2- to 14-fold increased fracture risk compared to the general population. Risk of fractures is also increased in kidney transplant recipients especially within the first 5 years after transplantation. Fractures in CKD patients are associated with increased morbidity and mortality; thus, proper screening and management of CKD bone complications is critical to improving clinical outcomes. Tetracycline double-labeled transiliac crest bone biopsy with histomorphometry is the gold standard for the diagnosis and classification of ROD. However, bone biopsy is not practical to obtain in all patients. Thus, there is great interest in noninvasive approaches that can be used in the clinic to assess ROD. Here, we discuss the role of surrogate measures of bone health in CKD patients, such as dual energy X-ray absorptiometry (DXA) and novel high-resolution imaging, in conjunction with biochemical biomarkers of bone turnover. Recommended guidelines for diagnosis and management of CKD-MBD are discussed.

  1. Bone Disorders in Chronic Kidney Disease: An Update in Diagnosis and Management.

    PubMed

    Babayev, Revekka; Nickolas, Thomas L

    2015-01-01

    Renal osteodystrophy (ROD) is a bone disorder that occurs in chronic kidney disease (CKD) patients and is associated with 2- to 14-fold increased fracture risk compared to the general population. Risk of fractures is also increased in kidney transplant recipients especially within the first 5 years after transplantation. Fractures in CKD patients are associated with increased morbidity and mortality; thus, proper screening and management of CKD bone complications is critical to improving clinical outcomes. Tetracycline double-labeled transiliac crest bone biopsy with histomorphometry is the gold standard for the diagnosis and classification of ROD. However, bone biopsy is not practical to obtain in all patients. Thus, there is great interest in noninvasive approaches that can be used in the clinic to assess ROD. Here, we discuss the role of surrogate measures of bone health in CKD patients, such as dual energy X-ray absorptiometry (DXA) and novel high-resolution imaging, in conjunction with biochemical biomarkers of bone turnover. Recommended guidelines for diagnosis and management of CKD-MBD are discussed. PMID:26332760

  2. Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading

    PubMed Central

    Lorbergs, Amanda L.

    2012-01-01

    ABSTRACT Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Method: Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. Main Results: While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Conclusions: Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties. PMID:23449969

  3. Fracture Risk Prediction by Non-BMD DXA Measures: the 2015 ISCD Official Positions Part 1: Hip Geometry.

    PubMed

    Broy, Susan B; Cauley, Jane A; Lewiecki, Michael E; Schousboe, John T; Shepherd, John A; Leslie, William D

    2015-01-01

    Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry is the current imaging procedure of choice to assess fracture risk. However, BMD is only one of the factors that explain bone strength or resistance to fracture. Other factors include bone microarchitecture and macroarchitecture. We now have the ability to assess some of these non-BMD parameters from a dual-energy X-ray absorptiometry image. Available measurements include various measurements of hip geometry including hip structural analysis, hip axis length, and neck-shaft angle. At the 2015 Position Development Conference, the International Society of Clinical Densitometry established official positions for the clinical utility of measurements of hip geometry. We present the official positions approved by an expert panel after careful review of the recommendations and evidence prepared by an independent task force. Each question addressed by the task force is presented followed by the official position with the associated medical evidence and rationale. PMID:26277848

  4. Protection of trabecular bone in ovariectomized rats by turmeric (Curcuma longa L.) is dependent on extract composition.

    PubMed

    Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L

    2010-09-01

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.

  5. Protection of Trabecular Bone in Ovariectomized Rats by Turmeric (Curcuma longa L.) is Dependent on Extract Composition

    PubMed Central

    Wright, Laura E.; Frye, Jennifer B.; Timmermann, Barbara N.; Funk, Janet L.

    2010-01-01

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy x-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by micro-computerized tomography (μCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor. PMID:20695490

  6. Air displacement plethysmography, dual-energy X-ray absorptiometry, and total body water to evaluate body composition in preschool-age children.

    PubMed

    Crook, Tina A; Armbya, Narain; Cleves, Mario A; Badger, Thomas M; Andres, Aline

    2012-12-01

    Anthropometrics and body mass index are only proxies in the evaluation of adiposity in the pediatric population. Air displacement plethysmography technology was not available for children aged 6 months to 9 years until recently. Our study was designed to test the precision of air displacement plethysmography (ADP) in measuring body fat mass in children at ages 3 to 5 years compared with a criterion method, deuterium oxide dilution (D(2)O), which estimates total body water and a commonly used methodology, dual-energy x-ray absorptiometry (DXA). A prospective, cross-sectional cohort of 66 healthy children (35 girls) was recruited in the central Arkansas region between 2007 and 2009. Weight and height were obtained using standardized procedures. Fat mass (%) was measured using ADP, DXA, and D(2)O. Concordance correlation coefficient and Bland-Altman plots were used to investigate the precision of the ADP techniques against D(2)O and DXA in children at ages 3 to 5 years. ADP concordance correlation coefficient for fat mass was weak (0.179) when compared with D(2)O. Bland-Altman plots revealed a low accuracy and large scatter of ADP fat mass (%) results (mean=-2.5, 95% CI -20.3 to 15.4) compared with D(2)O. DXA fat mass (%) results were more consistent although DXA systematically overestimated fat mass by 4% to 5% compared with D(2)O. Compared with D(2)O, ADP does not accurately assess percent fat mass in children aged 3 to 5 years. Thus, D(2)O, DXA, or quantitative nuclear magnetic resonance may be considered better options for assessing fat mass in young children.

  7. Effects of an 8-Month Ashtanga-Based Yoga Intervention on Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Study

    PubMed Central

    Kim, SoJung; Bemben, Michael G.; Knehans, Allen W.; Bemben, Debra A.

    2015-01-01

    Although Yoga has the potential to be an alternative physical activity to enhance bone health, there is a lack of high quality evidence for this type of intervention. The purpose of this randomized controlled trial was to examine the effects of a progressive 8-month Ashtanga-based Yoga program on bone turnover markers (BTM), areal bone mineral density (aBMD) and volumetric bone characteristics in premenopausal women. Thirty-four premenopausal women (35-50 years) were randomly assigned either to a Yoga group (YE, n = 16) or a control group (CON, n = 18). Participants in YE group performed 60 minutes of an Ashtanga-based Yoga series 2 times/week with one day between sessions for 8 months, and the session intensity was progressively increased by adding the number of sun salutations (SS). Participants in CON were encouraged to maintain their normal daily lifestyles monitored by the bone specific physical activity questionnaire (BPAQ) at 2 month intervals for 8 months. Body composition was measured by dual energy x-ray absorptiometry (DXA). Bone formation (bone alkaline phosphatase, Bone ALP) and bone resorption (Tartrate-Resistant Acid Phosphatase-5b, TRAP5b) markers were assessed at baseline and after 8 months. aBMD of total body, lumbar spine and dual proximal femur and tibia bone characteristics were measured using DXA and peripheral Quantitative Computed Tomography (pQCT), respectively. We found that the serum Bone ALP concentrations were maintained in YE, but significantly (p = 0.005) decreased in CON after the 8 month intervention, and there were significant (p = 0.002) group differences in Bone ALP percent changes (YE 9.1 ± 4.0% vs. CON -7.1 ± 2.3%). No changes in TRAP5b were found in either group. The 8-month Yoga program did not increase aBMD or tibia bone strength variables. Body composition results showed no changes in weight, fat mass, or % fat, but small significant increases in bone free lean body mass occurred in both groups. The findings of this study

  8. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.

  9. Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis

    PubMed Central

    El Badri, Dalal; Rostom, Samira; Bouaddi, Ilham; Hassani, Asmae; Chkirate, Bouchra; Amine, Bouchra; Hajjaj-Hassouni, Najia

    2014-01-01

    Introduction The link between bone mass and body composition is widely recognized, but only few works were selectively performed on subjects with juvenile idiopathic arthritis. The aim of our study was to investigate the effect of body composition on bone mineral density (BMD) in Moroccan patients with juvenile idiopathic arthritis. Methods Thirty three children with juvenile idiopathic arthritis (JIA) were included in a cross-sectional study. The diagnosis of JIA was made according to the criteria of the International League of Association of Rheumatology (ILAR). Body mass index (BMI) was calculated from the ratio of weight/height2(kg/m2). Pubertal status was determined according to the Tanner criteria. Bone status, body composition and bone mineral content (BMC) were analyzed by using dual-energy X-ray absorptiometry (DXA). BMD was assessed at the lumbar spine (L1-L4) and at total body in (g/cm2). Total body fat tissue mass (FTM) and lean tissue mass (LTM) were also analyzed by DXA and expressed in kilograms. In children, low BMD was defined as a Z-score less than -2 and osteoporosis was defined as a Z-score less than -2 with a fracture history. Results A cross-sectional study was conducted in 33 Moroccan patients with JIA aged between 4 and 16 years, Fat mass was not related to bone density; in contrast, BMD was positively associated to LTM in total body(r = =0.41, p= 0.04) but not in lumbar spine (r = 0.29, p= 0.17). There exist significant correlation between BMC and BMD in total body (r = 0.51, p = 0.01). Conclusion This study suggests that the LTM is a determining factor of the BMD during adolescence. Other studies with a broader sample would be useful to confirm this relation. PMID:25120859

  10. Comparison of air-displacement plethysmography, hydrodensitometry, and dual X-ray absorptiometry for assessing body composition of children 10 to 18 years of age.

    PubMed

    Lockner, D W; Heyward, V H; Baumgartner, R N; Jenkins, K A

    2000-05-01

    Body density (Db) of 54 boys and girls 10-18 years of age (13.9 +/- 2.4 years) was measured in an air-displacement plethysmograph, the BOD POD, and compared to Db determined by hydrodensitometry (HW). Both Db values were converted to percent body fat (%BF) using a two-component model conversion formula and compared to %BF determined by dual energy X-ray absorptiometry (DXA). Body density estimated from the BOD POD (1.04657 +/- 0.01825 g/cc) was significantly higher than that estimated from HW (1.04032 +/- 0.01872 g/cc). The relative body fat calculated from the BOD POD (23.12 +/- 8.39 %BF) was highly correlated but, on average, 2.9% BF lower than %BF DXA. Average %BF estimates from HW and DXA were not significantly different. Despite consistently underestimating the %BF of children, the strong relationship between DXA and the BOD POD suggests that further investigation may improve the accuracy of the BOD POD for assessing body composition in children.

  11. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  12. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  13. Interruption or deferral of antiretroviral therapy reduces markers of bone turnover compared with continuous therapy: The SMART body composition substudy.

    PubMed

    Hoy, Jennifer; Grund, Birgit; Roediger, Mollie; Ensrud, Kristine E; Brar, Indira; Colebunders, Robert; Castro, Nathalie De; Johnson, Margaret; Sharma, Anjali; Carr, Andrew

    2013-06-01

    Bone mineral density (BMD) declines significantly in HIV patients on antiretroviral therapy (ART). We compared the effects of intermittent versus continuous ART on markers of bone turnover in the Body Composition substudy of the Strategies for Management of AntiRetroviral Therapy (SMART) trial and determined whether early changes in markers predicted subsequent change in BMD. For 202 participants (median age 44 years, 17% female, 74% on ART) randomized to continuous or intermittent ART, plasma markers of inflammation and bone turnover were evaluated at baseline and months 4 and 12; BMD at the spine (dual-energy X-ray absorptiometry [DXA] and computed tomography) and hip (DXA) was evaluated annually. Compared with the continuous ART group, mean bone-specific alkaline phosphatase (bALP), osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), N-terminal cross-linking telopeptide of type 1 collagen (NTX), and C-terminal cross-linking telopeptide of type 1 collagen (βCTX) decreased significantly in the intermittent ART group, whereas RANKL and the RANKL:osteoprotegerin (OPG) ratio increased (all p ≤ 0.002 at month 4 and month 12). Increases in bALP, osteocalcin, P1NP, NTX, and βCTX at month 4 predicted decrease in hip BMD at month 12, whereas increases in RANKL and the RANKL:OPG ratio at month 4 predicted increase in hip and spine BMD at month 12. This study has shown that compared with continuous ART, interruption of ART results in a reduction in markers of bone turnover and increase in BMD at hip and spine, and that early changes in markers of bone turnover predict BMD changes at 12 months.

  14. The Effects of Hypergravity and Adrenalectomy on Bone Mineral Content, Urine Calcium and Body Mass in Rats

    NASA Technical Reports Server (NTRS)

    Lau, A.; Ramirez, J.; Melson, E.; Moran, M.; Baer, L.; Arnaud, S.; Wade, C.; Girten, B.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The effects of 14 days of increased gravitational load, and the absence of adrenal stress hormones on total body bone mineral content (BMC) were examined in male Sprague-Dawley rats. Centrifugation at 2 Gs (2G) was used to increase the gravitational load, and bilateral adrenalectomy (ADX) was used to eliminate the production of adrenal stress hormones. Stationary groups at 1 G (1G) and sham operated (SHAM) animals served as controls. Thirty rats (n=6 or 8) made up the four experimental groups (1G SHAM, 1G ADX, 2G SHAM and 2G ADX). BMC was assessed by dual energy x-ray absorptiometry (DXA) which was performed to determine the total body bone mineral content, and also through bone ashing of the left femur and the left humerus. Activity was determined through biotelemetry, also body mass and food intake were measured. Multi-factorial analysis of variance (MANCOVA) and Newman Keuls post hoc tests were used to analyze significant effects (p is less than 0.05) for the primary variables. Results from both DXA and the ashed femur indicated that BMC decreased significantly with increased G for both the SHAM and ADX groups. The BMC determined by DXA for the 1G ADX group was also significantly lower than the 1G SHAM group, however the 2G SHAM and 2G ADX groups were not significantly different. However, the bone ashing results showed the femur differed significantly only between the rates of centrifugation and not between the ADX and SHAM. The humerus showed no significant difference between any of the groups. There was a significant decrease in body mass with increased G and there was no ADX effect on body mass. When DXA BMC was normalized for body mass changes, there were no significant group differences. However, with bone ashing, the femur BMC/BW still showed significant difference between rates of centrifugation, with the 2G group being lower. Activity level decreased with body mass, and food intake data showed there was significant hypophagia during the first few days of

  15. Body mass is the primary determinant of midfemoral bone acquisition during adolescent growth.

    PubMed

    Moro, M; van der Meulen, M C; Kiratli, B J; Marcus, R; Bachrach, L K; Carter, D R

    1996-11-01

    To study the determinants of bone mass and structure during adolescence, we analyzed the femoral mid-diaphysis of 375 healthy adolescents and young adults, ages 9-26 years, from four ethnic cohorts (African-American, Asian-American, Caucasian, and Hispanic). Whole-body dual-energy X-ray absorptiometry (DXA) scans were used to determine diaphyseal length and mid-diaphyseal diameter of the left femur, as well as linear bone mineral content (BMCL) of a region at the mid-diaphysis. Cross-sectional geometric properties were estimated and used to calculate two structural strength indicators: the section modulus and the whole bone strength index. When the relationships between the bone measurements and age, pubertal group, height, or body mass were evaluated, all cross-sectional femoral measures correlated most strongly with body mass. Multiple regressions accounting for gender and ethnicity provided little additional predictive value over the simple regressions with body mass alone. Furthermore, accounting for all developmental parameters (age, pubertal group, body mass, lean body mass, calcium intake, physical activity level) as well as ethnicity and gender in a single saturated model also did not generally significantly improve the predictive results achieved using only body mass. Our results indicate that increases in midfemoral bone mass and cross-sectional properties during adolescence are primarily related to increases in mechanical loading as reflected by body mass.

  16. Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture

    PubMed Central

    Yang, Lang; Peel, Nicola; Clowes, Jackie A; McCloskey, Eugene V; Eastell, Richard

    2011-01-01

    Several DXA-based structural engineering models (SEMs) of the proximal femur have been developed to estimate stress caused by sideway falls. Their usefulness in discriminating hip fracture has not yet been established and we therefore evaluated these models. The hip DXA scans of 51 postmenopausal women with hip fracture (30 femoral neck, 17 trochanteric, and 4 unspecified) and 153 age-, height-, and weight-matched controls were reanalyzed using a special version of Hologic’s software that produced a pixel-by-pixel BMD map. For each map, a curved-beam, a curved composite-beam, and a finite element model were generated to calculate stress within the bone when falling sideways. An index of fracture risk (IFR) was defined over the femoral neck, trochanter, and total hip as the stress divided by the yield stress at each pixel and averaged over the regions of interest. Hip structure analysis (HSA) was also performed using Hologic APEX analysis software. Hip BMD and almost all parameters derived from HSA and SEM were discriminators of hip fracture on their own because their ORs were significantly >1. Because of the high correlation of total hip BMD to HSA and SEM-derived parameters, only the bone width discriminated hip fracture independently from total hip BMD. Judged by the area under the receiver operating characteristics curve, the trochanteric IFR derived from the finite element model was significant better than total hip BMD alone and similar to the total hip BMD plus bone width in discriminating all hip fracture and femoral neck fracture. No index was better than total hip BMD for discriminating trochanteric fractures. In conclusion, the finite element model has the potential to replace hip BMD in discriminating hip fractures. PMID:18767924

  17. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture.

    PubMed

    Yang, Lang; Peel, Nicola; Clowes, Jackie A; McCloskey, Eugene V; Eastell, Richard

    2009-01-01

    Several DXA-based structural engineering models (SEMs) of the proximal femur have been developed to estimate stress caused by sideway falls. Their usefulness in discriminating hip fracture has not yet been established and we therefore evaluated these models. The hip DXA scans of 51 postmenopausal women with hip fracture (30 femoral neck, 17 trochanteric, and 4 unspecified) and 153 age-, height-, and weight-matched controls were reanalyzed using a special version of Hologic's software that produced a pixel-by-pixel BMD map. For each map, a curved-beam, a curved composite-beam, and a finite element model were generated to calculate stress within the bone when falling sideways. An index of fracture risk (IFR) was defined over the femoral neck, trochanter, and total hip as the stress divided by the yield stress at each pixel and averaged over the regions of interest. Hip structure analysis (HSA) was also performed using Hologic APEX analysis software. Hip BMD and almost all parameters derived from HSA and SEM were discriminators of hip fracture on their own because their ORs were significantly >1. Because of the high correlation of total hip BMD to HSA and SEM-derived parameters, only the bone width discriminated hip fracture independently from total hip BMD. Judged by the area under the receiver operating characteristics curve, the trochanteric IFR derived from the finite element model was significant better than total hip BMD alone and similar to the total hip BMD plus bone width in discriminating all hip fracture and femoral neck fracture. No index was better than total hip BMD for discriminating trochanteric fractures. In conclusion, the finite element model has the potential to replace hip BMD in discriminating hip fractures.

  18. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  19. Vitamin D Deficiency and Low Bone Mineral Density in Pediatric and Young Adult Intestinal Failure

    PubMed Central

    Ubesie, Agozie C; Heubi, James E; Kocoshis, Samuel A; Henderson, Carol J; Mezoff, Adam G; Rao, Marepalli B; Cole, Conrad R

    2013-01-01

    Objectives To determine the prevalence and predisposing factors for vitamin D deficiency and low bone mineral density (BMD) in patients with intestinal failure (IF). Methods A retrospective review of patients with IF managed at the Cincinnati Children’s Hospital Medical Center. IF was defined as history of parenteral nutrition (PN) >30 days. Vitamin D deficiency was defined as serum 25-OH vitamin D [25(OH) D] < 20ng/dL. Reduced bone mineral density (BMD) was defined using dual x-ray absorptiometry (DXA) Z-score ≤− 2. A binary logistic regression model was used to test for association of significant risk factors and the outcome variables after univariate analyses. Results One hundred and twenty three patients with median age of 4 years (range 3–22 years) were evaluated. Forty-nine (39.8%) patients had at least a documented serum 25 (OH) D deficiency during the study interval while 10 out of 80 patients (12.5%) with DXA scans done had a low BMD Z-score. Age at study entry was associated with both 25 (OH) D deficiency (P= 0. 01) and low BMD Z-score (P = 0. 03). Exclusive PN at study entry was associated with reduced bone mass (P=0.03). There was no significant association between vitamin D deficiency and low BMD Z-score (P=0.31). Conclusion The risk of 25 (OH) D deficiency and low BMD Z-score increases with age among patients with IF. Strategies for monitoring and preventing abnormal bone health in older children receiving exclusive PN need to be developed and evaluated. PMID:23698025

  20. Evaluation of bone mineral density using three-dimensional solid state phosphorus-31 NMR projection imaging.

    PubMed

    Wu, Y; Ackerman, J L; Chesler, D A; Li, J; Neer, R M; Wang, J; Glimcher, M J

    1998-06-01

    A solid state magnetic resonance imaging technique is used to measure true three-dimensional mineral density of synthetic hydroxyapatite phantoms and specimens of bone ex vivo. The phosphorus-31 free induction decay at 2.0 T magnetic field strength is sampled following application of a short, hard radiofrequency excitation pulse in the presence of a fixed amplitude magnetic field gradient. Multiple gradient directions covering the unit sphere are used in an efficient spherical polar to Cartesian interpolation and Fourier transform projection reconstruction scheme to image the three-dimensional distribution of phosphorus within the specimen. Using 3-6 Gauss/cm magnetic field gradients, a spatial resolution of 0.2 cm over a field of view of 10 cm is achieved in an imaging time of 20-35 minutes. Comparison of solid state magnetic resonance imaging with dual energy X-ray absorptiometry (DXA), gravimetric analysis, and chemical analysis of calcium and phosphorus demonstrates good quantitative accuracy. Direct measurement of bone mineral by solid state magnetic resonance opens up the possibility of imaging variations in mineral composition as well as density. Advantages of the solid state magnetic resonance technique include avoidance of ionizing radiation; direct measurement of a constituent of the mineral without reliance on assumptions about, or models of, tissue composition; the absence of shielding, beam hardening, or multiple scattering artifacts; and its three-dimensional character. Disadvantages include longer measurement times and lower spatial resolution than DXA and computed tomography, and the inability to scan large areas of the body in a single measurement, although spatial resolution is sufficient to resolve cortical from trabecular bone for the purpose of measuring bone mineral density. PMID:9576979

  1. An evaluation of the United Kingdom National Osteoporosis Society position statement on the use of peripheral dual-energy X-ray absorptiometry.

    PubMed

    Patel, Rajesh; Blake, Glen M; Fogelman, Ignac

    2004-06-01

    A recent position statement issued by the UK National Osteoporosis Society recommends a triage approach to the use of peripheral dual-energy X-ray absorptiometry (pDXA) devices. Patients with a forearm T-score greater than -1 or less than -2.5 are regarded as normal or osteoporotic, respectively, while those with a T-score between -1 and -2.5 are sent for further assessment with spine and hip DXA. We have evaluated the NOS pDXA algorithm by comparing it with the alternative strategies of relying on forearm BMD alone, or performing spine and hip DXA in every patient. The evaluation was carried out using a mathematical model, and the predictions were compared with in vivo data obtained in patients referred for investigation by their general practitioner. In the model the population distribution of spine, hip, and forearm BMD was described by a trivariant Gaussian function. Relative risks of fracture were taken from a meta-analysis. The three strategies were compared using receiver operating characteristic (ROC) curves in which the percentage of future fracture cases identified was plotted against the percentage of the whole population found to have osteoporosis. ROC curves plotted for the discrimination of hip, vertebral, and Colles fracture risk and the risk of a fracture at any skeletal site were similar for all three strategies, with the curves for the NOS pDXA algorithm nearly identical to those for spine and hip DXA. For the case of hip fracture, vertebral fracture, or a fracture at any site, forearm BMD was slightly inferior to the NOS algorithm, but the reverse was true for Colles fracture. The small difference between the ROC curves suggests that forearm BMD used alone can reproduce clinical decision-making with the NOS pDXA algorithm provided that a T-score threshold of T=-2.1 is used for the diagnosis of osteoporosis, instead of the conventional figure of T=-2.5. Results from the in vivo study were in good agreement with the predictions of the model

  2. The GH secretagogues ipamorelin and GH-releasing peptide-6 increase bone mineral content in adult female rats.

    PubMed

    Svensson, J; Lall, S; Dickson, S L; Bengtsson, B A; Rømer, J; Ahnfelt-Rønne, I; Ohlsson, C; Jansson, J O

    2000-06-01

    Growth hormone (GH) is of importance for normal bone remodelling. A recent clinical study demonstrated that MK-677, a member of a class of GH secretagogues (GHSs), increases serum concentrations of biochemical markers of bone formation and bone resorption. The aim of the present study was to investigate whether the GHSs, ipamorelin (IPA) and GH-releasing peptide-6 (GHRP-6), increase bone mineral content (BMC) in young adult female rats. Thirteen-week-old female Sprague-Dawley rats were given IPA (0.5 mg/kg per day; n=7), GHRP-6 (0.5 mg/kg per day; n=8), GH (3.5 mg/kg per day; n=7), or vehicle administered continuously s.c. via osmotic minipumps for 12 weeks. The animals were followed in vivo by dual X-ray absorptiometry (DXA) measurements every 4th week. After the animals were killed, femurs were analysed in vitro by mid-diaphyseal peripheral quantitative computed tomography (pQCT) scans. After this, excised femurs and vertebrae L6 were analysed by the use of Archimedes' principle and by determinations of ash weights. All treatments increased body weight and total tibial and vertebral BMC measured by DXA in vivo compared with vehicle-treated controls. However, total BMC corrected for the increase in body weight (total BMC:body weight ratio) was unaffected. Tibial area bone mineral density (BMD, BMC/area) was increased, but total and vertebral area BMDs were unchanged. The pQCT measurements in vitro revealed that the increase in the cortical BMC was due to an increased cross-sectional bone area, whereas the cortical volumetric BMD was unchanged. Femur and vertebra L6 volumes were increased but no effect was seen on the volumetric BMDs as measured by Archimedes' principle. Ash weight was increased by all treatments, but the mineral concentration was unchanged. We conclude that treatment of adult female rats with the GHSs ipamorelin and GHRP-6 increases BMC as measured by DXA in vivo. The results of in vitro measurements using pQCT and Archimedes' principle, in

  3. Effect of leg rotation on hip bone mineral density measurements.

    PubMed

    Lekamwasam, Sarath; Lenora, Robolge Sumith Janaka

    2003-01-01

    Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is widely used in the management of patients with osteoporosis. Factors, which are specific to machine or to operator, can influence the accuracy and precision of BMD estimations. We studied the effect of leg rotation by 10 degrees either internally or externally from the standard position in a group of 50 women (average age 54.9, SD = 11.1 yr) who were free of bone active diseases or medications. External rotation of leg by 10 degrees from the customary position increased the average BMD by 0.005, 0.003, and 0.036 g/cm2 in the femoral neck, trochanter, and Ward's area (p = 0.119, 0.309, and <0.001), respectively. Internal rotation of leg by 10 degrees from the customary position decreased the average BMD by 0.009, 0.005, and 0.006 g/cm2 in the femoral neck, trochanter, and Ward's area (p = <0.001, 0.008, and <0.001), respectively. The number of subjects qualified for the diagnosis of osteoporosis based on the T-scores (equal to or below -2.5) of the femoral neck and trochanter did not change significantly in three different positions (18% in the customary position and after the external rotation and 14% after the internal rotation). A significant change in the femoral neck BMD (defined as 2.77 x precision error) was seen in 12% of subjects after the internal rotation and 8% after the external rotation. Our data emphasize the need for proper positioning of the hip during DXA scanning. Malrotation of the hip can be an important confounding factor when interpreting serial BMD values.

  4. Correlates of Use of Antifracture Therapy in Older Women with Low Bone Mineral Density

    PubMed Central

    Ryder, Kathryn M; Shorr, Ronald I; Tylavsky, Frances A; Bush, Andrew J; Bauer, Douglas C; Simonsick, Eleanor M; Strotmeyer, Elsa S; Harris, Tamara B

    2006-01-01

    BACKGROUND Guidelines exist for treatment of low bone mineral density (BMD). Little is known about patient characteristics associated with use of treatment. OBJECTIVES To determine patient-related correlates of medication use following screening dual x-ray absorptiometry (DXA) of older adults. DESIGN Secondary analysis of a prospective cohort study. SETTING Pittsburgh, PA and Memphis, TN. PARTICIPANTS Community-dwelling women between the ages 70 and 79 years enrolled in the Health, Aging, and Body Composition (Health ABC) Study. MEASUREMENTS Risk factors for fracture and BMD of the hip were assessed at baseline. Patients and their community physicians were supplied the results of the DXA scan. Prescription and over-the-counter medication use was collected at annual exams for 2 years. RESULTS Of 1,584 women enrolled in Health ABC, 378 had an indication for antifracture therapy and were not receiving such treatment at baseline. By the second annual follow-up examination, prescription antiresorptive medication was reported in 49 (13.0%), whereas 65 (17.2%) received calcium and/or vitamin D supplementation. In adjusted models, the strongest predictor for use of any antifracture medicine was presence of osteoporosis [vs osteopenia, odds ratio (OR), 2.9 (1.7 to 4.7)], white race [OR, 2.6 (1.5 to 4.8)], and receipt of the flu shot [OR, 2.2 (1.3 to 3.8)]. Neither a history of falls nor prior fracture was associated with use of antifracture medications. CONCLUSION Even when physicians of study participants were provided with DXA scan results, 70% of older high-functioning women with an indication for therapy did not start or remain on an antifracture therapy. Substantial room for improvement exists in fracture prevention following a diagnosis of low BMD—especially among women with a history of falls, prior fractures, and among black women. PMID:16808749

  5. Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data.

    PubMed

    Beck, T J; Looker, A C; Ruff, C B; Sievanen, H; Wahner, H W

    2000-12-01

    Hip scans of U.S. adults aged 20-99 years acquired in the Third National Health and Nutrition Examination Survey (NHANES III) using dual-energy X-ray absorptiometry (DXA) were analyzed with a structural analysis program. The program analyzes narrow (3 mm wide) regions at specific locations across the proximal femur to measure bone mineral density (BMD) as well as cross-sectional areas (CSAs), cross-sectional moments of inertia (CSMI), section moduli, subperiosteal widths, and estimated mean cortical thickness. Measurements are reported here on a non-Hispanic white subgroup of 2,719 men and 2,904 women for a cortical region across the proximal shaft 2 cm distal to the lesser trochanter and a mixed cortical/trabecular region across the narrowest point of the femoral neck. Apparent age trends in BMD and section modulus were studied for both regions by sex after correction for body weight. The BMD decline with age in the narrow neck was similar to that seen in the Hologic neck region; BMD in the shaft also declined, although at a slower rate. A different pattern was seen for section modulus; furthermore, this pattern depended on sex. Specifically, the section modulus at both the narrow neck and the shaft regions remains nearly constant until the fifth decade in females and then declined at a slower rate than BMD. In males, the narrow neck section modulus declined modestly until the fifth decade and then remained nearly constant whereas the shaft section modulus was static until the fifth decade and then increased steadily. The apparent mechanism for the discord between BMD and section modulus is a linear expansion in subperiosteal diameter in both sexes and in both regions, which tends to mechanically offset net loss of medullary bone mass. These results suggest that aging loss of bone mass in the hip does not necessarily mean reduced mechanical strength. Femoral neck section moduli in the elderly are on the average within 14% of young values in females and within 6

  6. Motor Competence in Early Childhood Is Positively Associated With Bone Strength in Late Adolescence

    PubMed Central

    Sayers, Adrian; Deere, Kevin C; Emond, Alan; Tobias, Jon H

    2016-01-01

    ABSTRACT The onset of walking in early childhood results in exposure of the lower limb to substantial forces from weight bearing activity that ultimately contribute to adult bone strength. Relationships between gross motor score (GMS), at 18 months and bone outcomes measured at age 17 years were examined in 2327 participants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Higher GMS indicated greater motor competence in weight‐bearing activities. Total hip bone mineral density (BMD) and hip cross‐sectional moment of inertia (CSMI) were assessed from dual‐energy X‐ray absorptiometry (DXA). Bone measures including cortical bone mineral content (BMC), periosteal circumference (PC), cortical thickness (CT), cortical bone area (CBA), cortical BMD (BMDC) and cross‐sectional moment of inertia (CSMI) were assessed by peripheral quantitative computed tomography (pQCT) at 50% distal‐proximal length. Before adjustment, GMS was associated with hip BMD, CSMI, and tibia BMC, PC, CT, CBA and CSMI (all p < 0.001) but not BMDC (p > 0.25). Strongest associations (standardized regression coefficients with 95% CI) were between GMS and hip BMD (0.086; 95% CI, 0.067 to 0.105) and tibia BMC (0.105; 95% CI, 0.089 to 0.121). With the exception of hip BMD, larger regression coefficients were observed in males (gender interactions all p < 0.05). Adjustment for lean mass resulted in substantial attenuation of regression coefficients, suggesting associations between impaired motor competence and subsequent bone development are partly mediated by alterations in body composition. In conclusion, impaired motor competence in childhood is associated with lower adolescent bone strength, and may represent a risk factor for subsequent osteoporosis. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:26713753

  7. Greater access to fast food outlets is associated with poorer bone health in young children

    PubMed Central

    Vogel, Christina; Parsons, Camille; Godfrey, Keith; Robinson, Sian; Harvey, Nicholas C; Inskip, Hazel; Cooper, Cyrus; Baird, Janis

    2016-01-01

    Purpose Identifying factors that contribute to optimal childhood bone development could help pinpoint strategies to improve long term bone health. A healthy diet positively influences bone health from before birth and during childhood. This study addressed a gap in the literature by examining the relationship between residential neighbourhood food environment and bone mass in infants and children. Methods 1107 children participating in the Southampton Women’s Survey, United Kingdom, underwent measurement of bone mineral density (BMD) and bone mineral content (BMC) at birth and four and/or six years by Dual-energy X-ray Absorptiometry (DXA). Cross-sectional observational data describing food outlets within the boundary of each participant’s neighbourhood were used to derive three measures of the food environment: the counts of fast food outlets, healthy speciality stores and supermarkets. Results Neighbourhood exposure to fast food outlets was associated with lower BMD in infancy (β=−0.23(z-score): 95% CI −0.38, −0.08), and lower BMC after adjustment for bone area and confounding variables (β=−0.17(z-score): 95% CI −0.32, −0.02). Increasing neighbourhood exposure to healthy speciality stores was associated with higher BMD at four and six years (β=0.16(z-score): 95% CI 0.00, 0.32 and β=0.13(z-score): 95% CI −0.01, 0.26 respectively). The relationship with BMC after adjustment for bone area and confounding variables was statistically significant at four years but not at six years. Conclusions The neighbourhood food environment pregnant mothers and young children are exposed to may effect bone development during early childhood. If confirmed in future studies, action to reduce access to fast food outlets could have benefits for childhood development and long term bone health. PMID:26458387

  8. Obstacles in the optimization of bone health outcomes in the female athlete triad.

    PubMed

    Ducher, Gaele; Turner, Anne I; Kukuljan, Sonja; Pantano, Kathleen J; Carlson, Jennifer L; Williams, Nancy I; De Souza, Mary Jane

    2011-07-01

    Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the 'female athlete triad'. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture. This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging. Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.

  9. Obstacles in the optimization of bone health outcomes in the female athlete triad.

    PubMed

    Ducher, Gaele; Turner, Anne I; Kukuljan, Sonja; Pantano, Kathleen J; Carlson, Jennifer L; Williams, Nancy I; De Souza, Mary Jane

    2011-07-01

    Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the 'female athlete triad'. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture. This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging. Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad. PMID:21688870

  10. Bone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis players.

    PubMed

    Ducher, G; Courteix, D; Même, S; Magni, C; Viala, J F; Benhamou, C L

    2005-10-01

    The benefit of impact-loading activity for bone strength depends on whether the additional bone mineral content (BMC) accrued at loaded sites is due to an increased bone size, volumetric bone mineral density (vBMD) or both. Using magnetic resonance imaging (MRI) and dual energy X-ray absorptiometry (DXA), the aim of this study was to characterize the geometric changes of the dominant radius in response to long-term tennis playing and to assess the influence of muscle forces on bone tissue by investigating the muscle-bone relationship. Twenty tennis players (10 men and 10 women, mean age: 23.1+/-4.7 years, with 14.3+/-3.4 years of playing) were recruited. The total bone volume, cortical volume, sub-cortical volume and muscle volume were measured at both distal radii by MRI. BMC was assessed by DXA and was divided by the total bone volume to derive vBMD. Grip strength was evaluated with a dynamometer. Significant side-to-side differences (P<0.0001) were found in muscle volume (+9.7%), grip strength (+13.3%), BMC (+13.5%), total bone volume (+10.3%) and sub-cortical volume (+20.6%), but not in cortical volume (+2.6%, ns). The asymmetry in total bone volume explained 75% of the variance in BMC asymmetry (P<0.0001). vBMD was slightly higher on the dominant side (+3.3%, P<0.05). Grip strength and muscle volume correlated with all bone variables (except vBMD) on both sides (r=0.48-0.86, P<0.05-0.0001) but the asymmetries in muscle parameters did not correlate with those in bone parameters. After adjustment for muscle volume or grip strength, BMC was still greater on the dominant side. This study showed that the greater BMC induced by long-term tennis playing at the dominant radius was associated to a marked increase in bone size and a slight improvement in volumetric BMD, thereby improving bone strength. In addition to the muscle contractions, other mechanical stimuli seemed to exert a direct effect on bone tissue, contributing to the specific bone response to tennis

  11. Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats.

    PubMed

    Huang, Tsang-Hai; Chang, Feng-Ling; Lin, Shang-Chih; Liu, Shing-Hwa; Hsieh, Sandy S; Yang, Rong-Sen

    2008-01-01

    This study investigated the effects of endurance running training on the bones of growing rats. Thirty-two male Wistar rats (7 weeks old) were assigned to a sedentary control group (CON, n = 10), a continuous endurance running group (CEN, n = 10), or an intermittent endurance running group (IEN, n = 12). After an 8-week training period, both exercise groups had significantly less body weight (BW) gain but higher aerobic capacity, shown by increased muscle citrate synthase (CS) activity. Bone area (BA), areal bone mineral density (aBMD), and bone mineral content (BMC) were measured by dual-energy Xray absorptiometry (DXA) in the total femur and sections of femora. Except for showing a significantly higher aBMD in total femora, the CON group was only slightly and nonsignificantly higher in other DXA measurements. In tissue weight measurements, the CON group showed a nonsignificantly higher tissue dry weight (P = 0.146), but a significantly lower tissue water content ratio (WCR, %) as compared to the exercise group. Despite having nonsignificantly lower long bone cross-sectional parameters, both exercise groups showed significantly better biomaterial properties, as measured by a three-point bending test. In extrinsic analysis, femora of the two exercise groups showed no difference in bending load and stiffness, but were significantly higher in post-yield bending energy and total ultimate bending energy (P < 0.05). Similar phenomena were revealed in tissue-level measurements; the CEN and IEN groups were significantly higher in ultimate toughness and post-yield toughness (P < 0.05). Higher post-yield energy shown by two exercise groups implied a change in bone matrix organization. In conclusion, this study demonstrated that two endurance treadmill training modes benefit bone, with subjects showing better tissue biomaterial properties without significantly increasing aBMD, BMC, or bone dimension. Further study would be valuable to investigate the effects of endurance

  12. Sport and training influence bone and body composition in women collegiate athletes.

    PubMed

    Carbuhn, Aaron F; Fernandez, Tara E; Bragg, Amy F; Green, John S; Crouse, Stephen F

    2010-07-01

    This is a novel descriptive study to characterize off-season, preseason, and postseason bone and body composition measures in women collegiate athletes. From 2006 through 2008, 67 women collegiate athletes from 5 sports, softball (n = 17), basketball (n = 10), volleyball (n = 7), swimming (n = 16), and track jumpers and sprinters (n = 17) were scanned using dual energy X-ray absorptiometry (DXA) at 3 seasonal periods: (a) off-season = before preseason training, (b) preseason = after preseason training, and (c) postseason = after competitive season. Dual energy X-ray absorptiometry scans were analyzed for total body mass, lean mass (LM), fat mass (FM), percent body fat (%BF), bone mineral content, bone mineral density (BMD), arm BMD, leg BMD, pelvis BMD, and spine BMD. Data were analyzed between sports using analysis of variance (ANOVA) with Tukey post hoc follow-ups, and within each sport using repeated-measures ANOVA and LSD; alpha < 0.05. Significant off-season to preseason or postseason changes in %BF, LM, and BMD within each sport were as follows, respectively: softball, -7, +4, +1%; basketball, -11, +4, +1%; volleyball, unchanged, unchanged, +2%; swimming, unchanged, +2.5%, unchanged; track jumpers and sprinters, -7, +3.5, +1%. Comparisons among athletes in each sport showed bone measurements of swimmers averaged 4-19% lower than that of athletes in any other sport, whereas for track jumpers and sprinters, %BF and FM averaged 36 and 43% lower compared with other sports at all seasonal periods. Values for athletes playing basketball and volleyball were most similar, whereas softball athletes' values fell between all other athletes. These data serve as sport-specific reference values for comparisons at in-season and off-season training periods among women collegiate athletes in various sports.

  13. Bone Mineral Density in Adolescent Females Using Injectable or Oral Contraceptives: A 24 Month Prospective Study

    PubMed Central

    Cromer, Barbara A.; Bonny, Andrea E.; Stager, Margaret; Lazebnik, Rina; Rome, Ellen; Ziegler, Julie; Camlin-Shingler, Kelly; Secic, Michelle

    2008-01-01

    Study Objective To determine whether bone mineral density (BMD) is lower in hormonal contraceptive users than that in an untreated, comparison group. Design Observational, prospective cohort; duration: 24 months. Setting Adolescent clinics in a midwestern, metropolitan setting. Patients 433 postmenarcheal girls, aged 12–18 years, on depot medroxyprogesterone acetate (DMPA) [n=58], oral contraceptives (OC) [n=187], or untreated (n=188). Intervention DMPA and OC containing 100 mcg levonorgestrel and 20 mcg ethinyl estradiol. Main Outcome Measure BMD measurements at spine and femoral neck were obtained with dual x-ray absorptiometry (DXA) at baseline and 6-month intervals. Results Over 24 months, mean percent change in spine BMD was: DMPA −1.5%, OC +4.2%, and untreated +6.3%. Mean percent change in femoral neck BMD was: DMPA −5.2%, OC +3.0%, untreated +3.8%. Statistical significance was found between the DMPA group and other two groups (p<.001). In the DMPA group, mean percent change in spine BMD over the first 12 months was −1.4%; the rate of change slowed to −0.1% over the second 12 months. No bone density loss reached the level of osteopenia. Conclusions Adolescent girls receiving DMPA had significant loss in BMD compared with bone gain in the OC and untreated group. However, its clinical significance is mitigated by slowed loss after the first year of DMPA use and general maintenance of bone density values within the normal range. PMID:18222431

  14. Breastfeeding and Bone Mass at the Ages of 18 and 30: Prospective Analysis of Live Births from the Pelotas (Brazil) 1982 and 1993 Cohorts

    PubMed Central

    Muniz, Ludmila Correa; Menezes, Ana Maria Baptista; Assunção, Maria Cecília Formoso; Wehrmeister, Fernando Cesar; Martínez-Mesa, Jeovany; Gonçalves, Helen; Domingues, Marlos Rodrigues; Gigante, Denise Petrucci; Horta, Bernardo Lessa; Barros, Fernando C.

    2015-01-01

    Objective To evaluate the effect of total breastfeeding, breastfeeding duration and type of breastfeeding at 3 months of age on bone mass at 18 and 30 years. Study Design A prospective, longitudinal study was conducted with two birth cohorts (1982 and 1993) in Pelotas, Southern Brazil. Measurements of bone mineral content (BMC) and bone mineral density (BMD) at 18 and 30 years of age were obtained by dual-energy X-ray absorptiometry (DXA). Information on breastfeeding was collected during the first 4 years of life. Analyses were performed by linear regression and stratified by sex. Results A total of 1109 and 3226 participants provided complete information on breastfeeding in early life and bone mass at 18 and 30 years, respectively. No association between breastfeeding and bone mass was observed in women at both ages nor among men at age 30. Among men at the age of 18, BMC and BMD were higher among those breastfed regardless of duration (p=0.032 and p=0.043, respectively). Conclusions Despite a very weak positive effect of breastfeeding (yes/no) on BMC and BMD at age 18 in men, most findings pointed to a lack of association between breastfeeding and bone mass until young adulthood. PMID:25880483

  15. Dual-Energy X-Ray Absorptiometry Prediction of Adipose Tissue Depots in Children and Adolescents

    PubMed Central

    Bauer, Jacqueline; Thornton, John; Heymsfield, Steven; Kelly, Kim; Ramirez, Alexander; Gidwani, Sonia; Gallagher, Dympna

    2013-01-01

    Background The measurement of adipose tissue depots in-vivo requires expensive imaging methods not accessible to most clinicians and researchers. The study aim was to derive mathematical models to predict total adipose tissue (TAT) and sub-depots from total body fat derived from a dual energy x-ray absorptiometry (DXA) scan. Methods Models were developed to predict magnetic resonance imaging derived TAT and sub-depots subcutaneous (SAT), visceral (VAT), and intermuscular (IMAT) from DXA total body fat using cross-sectional data (T0) and validated results using 1 (T1) and 2 (T2) year follow-up data. Subjects were 176 multi-ethnic healthy children ages 5 to 17 years at T0. 22 were measured at T1 and T2. TAT was compared to fat. Results At T0, TAT was greater than fat (12.5 ± 8.4 vs.12.0 ± 9.4 kg; p< 0.0001), with a quadratic relationship between TAT and fat which varied by sex. Predicted mean TAT’s were not different from measured TAT’s: T1: (9.84±4.45 kg vs. 9.50±4.37 kg; p=0.11) T2: (12.94±6.75 kg vs. 12.89±7.09 kg; p=0.76). The quadratic relationship was not influenced by race or age. Conclusions In general, the prediction equations for TAT and sub-depots were consistent with the measured values using T1 and T2 data. PMID:22821057

  16. Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).

    PubMed

    Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2014-11-01

    The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is

  17. Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).

    PubMed

    Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2014-11-01

    The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is

  18. Correlation between serum leptin and bone mineral density in hemodialysis patients

    PubMed Central

    Ghorban-Sabbagh, Mahin; Nazemian, Fatemeh; Naghibi, Massih; Shakeri, Mohammad-Taghi; Ahmadi-Simab, Saeedeh; Javidi-Dasht-Bayaz, Reza

    2016-01-01

    Introduction: For diagnosing of specific types of bone lesions in hemodialysis (HD) patients, it is necessary to conduct a bone biopsy as the gold standard method. However, it is an invasive procedure. While different markers have been suggested as alternative methods, none of them has been selected. The frequency of hip fractures is 80 fold in HD patients who have two-fold mortality as compared with general population. Objectives: Recently, serum leptin has been suggested as a bone density marker. This study tries to confirm this proposal. Patients and Methods: In this study about 104 HD patients (53.8% male and 46.2% female) were enrolled. The average age was 38.28±7.89 years. Serum leptin, bone alkaline phosphatase, intact parathyroid hormone (iPTH), 25(OH)D, calcium, phosphorus and bone mineral density (BMD) (at the femoral neck and lumbar spine, as measured by dual-energy x-ray absorptiometry [DXA]) were assessed. Results: Analysis by polynomial regression revealed no correlation between BMD Z-score at two points and serum leptin level. According to the thresholds of 25 ng/mL and 18-24 ng/mL in some studies, we detected 25 ng/mL as the threshold in our patients. Under this threshold, the leptin effect on bone mass was negative, and above the threshold of 25 ng/mL, we found leptin had positive effect on bone mass. Conclusion: In this investigation, we found, leptin has a bimodal effect on bone mass. Cortical bones assessment may be a better option for assessment. PMID:27689105

  19. Navel jewelry artifacts and intravertebral variation in spine bone densitometry in adolescents and young women.

    PubMed

    Ott, Susan M; Ichikawa, Laura E; LaCroix, Andrea Z; Scholes, Delia

    2009-01-01

    Non-removable navel jewelry can increase the measured bone density of the underlying vertebra. We measured lumbar spine bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) in an observational study of 727 adolescents and young women aged 14-30 yr. We evaluated several methods of correcting BMD: manually erasing a small area, eliminating 1 or 2 vertebrae, estimating the BMD from 1 or 2 vertebrae using data from remaining vertebrae, and estimating the BMD using T-scores of the remaining vertebrae. Ten percent (n=71) of the subjects were wearing navel jewelry. The areal BMD by DXA of L1 and L2 was similar in those with jewels as in controls without jewels, but L3-L4 showed higher bone density in those with jewelry, and the spine BMD of L1-L4 was significantly higher in the bejeweled women (1.043+/-0.011 vs 1.006+/-0.004 g/cm2, p=0.01). The estimated errors in accuracy (g/cm2) were 0.034 due to the jewels; 0.005 from erasing a small area; 0.019 from eliminating L4; 0.044 from eliminating both L3 and L4; 0.016 from predicting BMD using L1-L3; and 0.028 using L1-L2. The T-scores using the Hologic database were progressively lower in the caudal vertebrae, even in 96 local women aged 30-35 yr, whose average T-score was 0.35 at L1 but -0.26 at L4. Thus, we found significant errors due to intravertebral variability. We suggest the optimal method of correcting for small artifacts is to erase the area under the artifact.

  20. Bone Strength and Arterial Stiffness Impact on Cardiovascular Mortality in a General Population

    PubMed Central

    Avramovska, Maja; Sikole, Aleksandar

    2016-01-01

    Osteoporosis and increased arterial stiffness independently have been found to be associated with higher cardiovascular events rates in the general population (GP). We examined 558 patients from GP by dual-energy X-ray absorptiometry (DXA) and pulse wave velocity (PWV) measurements at baseline, with 36-month follow-up period. DXA assessed bone mineral density of femoral neck (BMD FN) and lumbar spine (BMD LS). Carotid-femoral PWV was assessed by pulsed-Doppler. The aim of our study is to find correlation between bone strength and arterial stiffness and their impact on cardiovascular mortality in GP. The mean ± SD of BMD FN, BMD LS, and PWV was 0.852 ± 0.1432 g/cm2, 0.934 ± 0.1546 g/cm2, and 9.209 ± 1.9815 m/s. In multiple regression analysis we found BMD FN (βst = −6.0094, p < 0.0001), hypertension (βst = 1.7340, p < 0.0091), and diabetes (βst = 0.4595, p < 0.0046). With Cox-regression analysis, after 17 cardiovascular events, the significant covariates retained by the backward model were BMD FN (b = −2.4129, p = 0.015) and PWV (b = 0.2606, p = 0.0318). The cut-off values were PWV = 9.4 m/s, BMD FN = 0.783 g/cm2, and BMD LS = 0.992 g/cm2. The results for BMD FN and PWV hazard ratio risk were 1.116 and 1.297, respectively. BMD FN as a measure of bone strength and PWV as a measure of arterial stiffness are strong independent predictors of cardiovascular mortality in GP. PMID:27047700

  1. Measurement of the subcutaneous fat in the distal forearm by single photon absorptiometry

    SciTech Connect

    Hassager, C.; Borg, J.; Christiansen, C.

    1989-02-01

    The influence of subcutaneous fat on single photon (/sup 125/I) absorptiometry (SPA) measurement of bone mineral content of the distal forearm was investigated. A fat correction model was tested by measurements on eight lean subjects with different amounts of porcine fat around their forearm, and further validated from measurements on 128 females. In addition, it is shown that the fat content in the distal forearm can be measured by SPA with a short-term precision at 1.9% in an obese subject and that it correlates well with total body fat (r2 = .7) measured by dual photon absorptiometry, skinfold thickness (r2 = .5), and body mass index (r2 = .6). By using this method in a double-blind placebo-controlled trial, hormonal substitutional therapy significantly decreased the forearm fat content without affecting the body weight in postmenopausal osteoporotic women.

  2. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    PubMed

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (P<0.009) tibial bone mineral density (BMD) and bone mineral content (BMC) and lower (P=0.05) lipid peroxidation compared to the CO-fed rats. Reduced lipid peroxidation was associated with increased tibial BMD (r2=0.08, P=0.02) and BMC (r2=0.71, P=0.01). On the other hand, rats fed FO or MO, rich in alpha-linolenic acid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage.

  3. Dual-energy X-ray absorptiometry measured regional body composition least significant change: effect of region of interest and gender in athletes.

    PubMed

    Buehring, Bjoern; Krueger, Diane; Libber, Jessie; Heiderscheit, Bryan; Sanfilippo, Jennifer; Johnson, Brian; Haller, Irina; Binkley, Neil

    2014-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used to evaluate body composition in athletes. Knowledge of measurement precision is essential for monitoring body composition changes over time. This study begins characterizing DXA body composition precision in 60 (30 males and 30 females) Division 1 athletes focusing on gender, regional, and tissue type differences. Two total body scans with repositioning between were performed on the same day. Least significant change (LSC) for the root-mean-square deviation (LSCRMSD) and the percent coefficient of variation (LSC%CV) for total, lean, and fat mass was calculated for 6 regions of interest. The effect of gender, region, tissue type, and mass on the standard deviation (SD) and percent coefficient of variation (%CV) between the 2 scans was evaluated using repeated measures regression analysis. Statistically significant effects of gender, region, tissue type, and mass on SD and %CV were noted. To generalize, a nonlinear positive relationship between LSCRMSD and mass and a nonlinear negative relationship between LSC%CV and mass were observed. In conclusion, DXA body composition LSC varies among genders, regions, tissues, and mass. As such, when evaluating serial body composition in athletes, especially if assessing regional change, knowledge of precision in individuals of similar body size and gender to the population of interest is needed.

  4. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton) and the initial measurement was not performed by a dual energy x-ray absorptiometry system (axial...

  5. The negative impact of single prolonged stress (SPS) on bone development in mice.

    PubMed

    Yu, Hongrun; Watt, Heather; Kesavan, Chandrasekhar; Mohan, Subburaman

    2013-09-01

    Posttraumatic stress disorder (PTSD) disrupts hypothalamic-pituitary-adrenal (HPA) axis function. Given the established role of HPA axis hormones in regulating bone metabolism, we tested the hypothesis that traumatic stress has a negative impact on bone development. We employed a variant single prolonged stress (SPS) model in which several stressors were applied to three week old C57BL/6J mice. Compared to the controls, the stressed mice showed increased freezing behavior reminiscent of PTSD symptoms. At two weeks, bone mineral content (BMC), bone area (B area) and bone mineral density (BMD) in total body based on dual-energy X-ray absorptiometry (DXA) analysis were reduced by 10.2%, 7.0% and 3.6%, respectively. Micro-CT analysis of the metaphyseal region of the excised tibia revealed that SPS caused a deterioration of trabecular architecture with trabecular number (Tb.N), BV/TV, connectivity density (Conn-Den) decreasing 12.0%, 18.9%, 23.3% and trabecular spacing (Tb.Sp), structure model index (SMI) increasing 13.9%, 21.8%, respectively. Mechanical loading increased the cross-sectional area in the mid-shaft region of the loaded right versus unloaded left tibia by 7.6% in the controls, and 10.0% in the stressed mice. Therefore, SPS applied to pre-pubertal young mice produced strong negative impact on both bone mass acquisition and trabecular architecture. Mechanical loading can be employed to increase bone size, a parameter related to bone strength, in normal as well as stressed conditions.

  6. [High resolution peripheral quantitative computed tomography for the assessment of morphological and mechanical bone parameters].

    PubMed

    Fuller, Henrique; Fuller, Ricardo; Pereira, Rosa Maria R

    2015-01-01

    High resolution peripheral quantitative computed tomography (HR-pQCT) is a new technology commercially available for less than 10 years that allows performing in vivo assessment of bone parameters. HR-pQCT assesses the trabecular thickness, trabecular separation, trabecular number and connectivity density and, in addition, cortical bone density and thickness and total bone volume and density in high-definition mode, which additionally allows obtaining digital constructs of bone microarchitecture. The application of mathematics to captured data, a method called finite element analysis (FEA), allows the estimation of the physical properties of the tissue, simulating supported loads in a non-invasive way. Thus, HR-pQCT simultaneously acquires data previously provided separately by dual energy x-ray absorptiometry (DXA), magnetic resonance imaging and histomorphometry, aggregating biomechanical estimates previously only possible in extracted tissues. This method has a satisfactory reproducibility, with coefficients of variation rarely exceeding 3%. Regarding accuracy, the method shows a fair to good agreement (r(2) = 0.37-0.97). The main clinical application of this method is in the quantification and monitoring of metabolic bone disorders, more fully evaluating bone strength and fracture risk. In rheumatoid arthritis patients, this allows gauging the number and size of erosions and cysts, in addition to joint space. In osteoarthritis, it is possible to characterize the bone marrow edema-like areas that show a correlation with cartilage breakdown. Given its high cost, HR-pQCT is still a research tool, but the high resolution and efficiency of this method reveal advantages over the methods currently used for bone assessment, with a potential to become an important tool in clinical practice.

  7. Preliminary study report: topological texture features extracted from standard radiographs of the heel bone are correlated with femoral bone mineral density

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Lutz, J.; Koerner, M.; Notohamiprodjo, M.; Reiser, M.

    2009-02-01

    With the growing number of eldery patients in industrialized nations the incidence of geriatric, i.e. osteoporotic fractures is steadily on the rise. It is of great importance to understand the characteristics of hip fractures and to provide diagnostic tests for the assessment of an individual's fracture-risk that allow to take preventive action and give therapeutic advice. At present, bone-mineral-density (BMD) obtained from DXA (dual-energy x-ray-absorptiometry) is the clinical standard of reference for diagnosis and follow-up of osteoporosis. Since availability of DXA - other than that of clinical X-ray imaging - is usually restricted to specialized medical centers it is worth trying to implement alternative methods to estimate an individual's BMD. Radiographs of the peripheral skeleton, e.g. the ankle, range among the most ordered diagnostic procedures in surgery for exclusion or confirmation of fracture. It would be highly beneficial if - as a by-product of conventional imaging - one could obtain a quantitative parameter that is closely correlated with femoral BMD in addition to the original diagnostic information, e.g. fracture status at the peripheral site. Previous studies could demonstrate a correlation between calcaneal BMD and osteoporosis. The objective of our study was to test the hypothesis that topological analysis of calcaneal bone texture depicted by a lateral x-ray projection of the ankle allows to estimate femoral BMD. Our analysis on 34 post-menopausal patients indicate that texture properties based on graylevel topology in calcaneal x-ray-films are closely correlated with BMD at the hip and may qualify as a substitute indicator of femoral fracture risk.

  8. Yerba Mate (Ilex paraguariensis) consumption is associated with higher bone mineral density in postmenopausal women.

    PubMed

    Conforti, Andrea S; Gallo, María E; Saraví, Fernando D

    2012-01-01

    Yerba Mate (Ilex paraguariensis) tea consumption is higher in Argentina and other South American countries than those of coffee or tea (Camellia sinensis). The effects of Yerba Mate on bone health have not previously been explored. From a program for osteoporosis prevention and treatment, postmenopausal women who drank at least 1 L of Yerba Mate tea daily during 4 or more years (n=146) were identified, and matched by age and time since menopause with an equal number of women who did not drink Yerba Mate tea. Their bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femoral neck. Yerba Mate drinkers had a 9.7% higher lumbar spine BMD (0.952 g/cm(2) versus 0.858 g/cm(2): p<0.0001) and a 6.2% higher femoral neck BMD (0.817 g/cm(2) versus 0.776 g/cm(2); p=0.0002). In multiple regression analysis, Yerba Mate drinking was the only factor, other than body mass index, which showed a positive correlation with BMD at both the lumbar spine (p<0.0001) and the femoral neck (p=0.0028). Results suggest a protective effect of chronic Yerba Mate consumption on bone.

  9. What Happens to bone health during and after spaceflight?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.

    2006-01-01

    Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.

  10. Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-Duration Missions as Fitted with an Exponential Function

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2007-01-01

    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) before and after flight on astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts ( by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members -- a small number of whom flew on more than one mission -- were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: i) BMD change on landing day (day 0) and ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2-9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.

  11. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function.

    PubMed

    Sibonga, J D; Evans, H J; Sung, H G; Spector, E R; Lang, T F; Oganov, V S; Bakulin, A V; Shackelford, L C; LeBlanc, A D

    2007-12-01

    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD), with dual-energy X-ray absorptiometry (DXA) before and after flight, of astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts (by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members - a small number of whom flew on more than one mission - were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: (i) BMD change on landing day (day 0) and (ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2% and 9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.

  12. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years.

    PubMed

    Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus

    2016-02-01

    Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor.

  13. Bone Related Health Status in Adolescent Cyclists

    PubMed Central

    Olmedillas, Hugo; González-Agüero, Alejandro; Moreno, Luís A.; Casajús, José A.; Vicente-Rodríguez, Germán

    2011-01-01

    Purpose To describe bone status and analyse bone mass in adolescent cyclists. Methods Male road cyclists (n = 22) who had been training for a minimum of 2 years and a maximum of 7 years with a volume of 10 h/w, were compared to age-matched controls (n = 22) involved in recreational sports activities. Subjects were divided in 2 groups based on age: adolescents under 17 yrs (cyclists, n = 11; controls, n = 13) and over 17 yrs (cyclists, n = 11; controls, n = 9). Peak oxygen uptake (VO2max) was measured on a cycloergometer. Whole body, lumbar spine, and hip bone mineral content (BMC), density (BMD) and bone area were assessed using dual x-ray absorptiometry (DXA). Volumetric BMD (vBMD) and bone mineral apparent density (BMAD) were also estimated. Results The BMC of cyclists was lower for the whole body, pelvis, femoral neck and legs; BMD for the pelvis, hip, legs and whole body and legs bone area was lower but higher in the hip area (all, P≤0.05) after adjusting by lean mass and height. The BMC of young cyclists was 10% lower in the leg and 8% higher in the hip area than young controls (P≤0.05). The BMC of cyclists over 17 yrs was 26.5%, 15.8% and 14.4% lower BMC at the pelvis, femoral neck and legs respectively while the BMD was 8.9% to 24.5% lower for the whole body, pelvis, total hip, trochanter, intertrochanter, femoral neck and legs and 17.1% lower the vBMD at the femoral neck (all P≤0.05). Grouped by age interaction was found in both pelvis and hip BMC and BMD and in femoral neck vBMD (all P≤0.05). Conclusion Cycling performed throughout adolescence may negatively affect bone health, then compromising the acquisition of peak bone mass. PMID:21980360

  14. Reproducibility of dual-photon absorptiometry using a clinical phantom

    SciTech Connect

    DaCosta, M.; DeLaney, M.; Goldsmith, S.J.

    1985-05-01

    The use of dual-photon absorptiometry (DPA) bone mineral density (BMD) to monitor bone for diagnosis and monitoring therapy of osteoporosis has been established. The objective of this study is to determine the reproducibility of DPA measurements. A phantom was constructed using a section of human boney pelvis and lumbo-sacral spine. Provisions were made to mimic changes in patient girth. To evaluate the DPA reproducibility within a single day, 12 consecutive studies were performed on the phantom using standard acquisition and processing procedures. The mean BMD +-1 SD in gms/cm/sup 2/ (BMD-bar)of lumbar vertebrae 2-4 was 0.771 +- 0.007 with a 0.97% coefficient of variation (1SD) (CV). This evaluation was repeated 7 times over the next 4 months with the performance of 3 to 6 studies each time, the maximum CV found was 1.93. In order to evaluate the DPA reproducibility with time, phantom studies were performed over a 7 month period which included a 153-Gd source change. The BMD-bar was 0.770 +- 0.017 with a 2.15CV. DPA reproducibility with patient girth changes was evaluated by performing the phantom studies at water depths of 12.5, 17.0 and 20.0cm. Five studies of each were performed using standard acquisition and processing procedures. The BMD-bar was 0.779 +- 0.012 with a 1.151CV. based on these results, BMD measurements by DPA are reproducible within 2%. This reliability is maintained for studies performed over extended period of time and are independent of changes in patient girth.

  15. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players.

    PubMed

    Haapasalo, H; Kontulainen, S; Sievänen, H; Kannus, P; Järvinen, M; Vuori, I

    2000-09-01

    due to a change in volumetric bone density. These upper arm results may not be generalized to the entire skeleton, but the finding may give new insight into conventional dual-energy X-ray absorptiometry (DXA)-based bone density measurements when interpreting the effects of exercise on bone.

  16. Assessing Body Fat of Children by Skinfold Thickness, Bioelectrical Impedance Analysis, and Dual-Energy X-Ray Absorptiometry: A Validation Study Among Malay Children Aged 7 to 11 Years.

    PubMed

    Noradilah, Mohd Jonit; Ang, Yeow Nyin; Kamaruddin, Nor Azmi; Deurenberg, Paul; Ismail, Mohd Noor; Poh, Bee Koon

    2016-07-01

    This study aims to validate skinfold (SKF) and bioelectrical impedance analysis (BIA) against dual-energy X-ray absorptiometry (DXA) in determining body fat percentage (BF%) of Malay children aged 7 to 11 years. A total of 160 children had their BF% assessed using SKF and BIA, with DXA as the criterion method. Four SKF equations (SKFBray, SKFJohnston, SKFSlaughter, and SKFGoran) and 4 BIA equations (BIAManufacturer, BIAHoutkooper, BIARush, and BIAKushner) were used to estimate BF%. Mean age, weight, and height were 9.4 ± 1.1years, 30.5 ± 9.9 kg, and 131.3 ± 8.4 cm. All equations significantly underestimated BF% (P < .05). BIA equations had reasonable agreement with DXA and were independent of BF% with BIAManufacturer being the best equation. Although BIA underestimates BF% as compared with DXA, BIA was more suitable to measure BF% in a population that is similar to this study sample than SKF, suggesting a need to develop new SKF equations that are population specific. PMID:27073201

  17. Assessing Body Fat of Children by Skinfold Thickness, Bioelectrical Impedance Analysis, and Dual-Energy X-Ray Absorptiometry: A Validation Study Among Malay Children Aged 7 to 11 Years.

    PubMed

    Noradilah, Mohd Jonit; Ang, Yeow Nyin; Kamaruddin, Nor Azmi; Deurenberg, Paul; Ismail, Mohd Noor; Poh, Bee Koon

    2016-07-01

    This study aims to validate skinfold (SKF) and bioelectrical impedance analysis (BIA) against dual-energy X-ray absorptiometry (DXA) in determining body fat percentage (BF%) of Malay children aged 7 to 11 years. A total of 160 children had their BF% assessed using SKF and BIA, with DXA as the criterion method. Four SKF equations (SKFBray, SKFJohnston, SKFSlaughter, and SKFGoran) and 4 BIA equations (BIAManufacturer, BIAHoutkooper, BIARush, and BIAKushner) were used to estimate BF%. Mean age, weight, and height were 9.4 ± 1.1years, 30.5 ± 9.9 kg, and 131.3 ± 8.4 cm. All equations significantly underestimated BF% (P < .05). BIA equations had reasonable agreement with DXA and were independent of BF% with BIAManufacturer being the best equation. Although BIA underestimates BF% as compared with DXA, BIA was more suitable to measure BF% in a population that is similar to this study sample than SKF, suggesting a need to develop new SKF equations that are population specific.

  18. Bone minerals changes in obese women during a moderate weight loss with and without calcium supplementation.

    PubMed

    Jensen, L B; Kollerup, G; Quaade, F; Sørensen, O H

    2001-01-01

    A significant relationship between body weight (BW) and bone mass (BM) has been established previously. A diet-induced weight loss is accompanied by a significant decrease in bone mineral density (BMD) and total body bone mineral (TBBM), but the underlying mechanisms are not clarified. Sixty-two obese women were included in the study. Dual-energy X-ray absorptiometry (DXA) and measurements of a series of calcium-regulating hormones and biochemical markers of bone turnover were performed at baseline and after 1 month and 3 months on a low calorie diet. Thirty of the women were randomized to a daily supplement of 1 g of calcium. After an additional 3 months without dietary prescriptions or calcium supplements, a subgroup of 48 subjects (24 from each group) were scanned again using DXA. There was a significant decrease in TBBM after 1 month and 3 months. A similar pattern was observed in the bone mineral content (BMC) of the lumbar spine in the patients who did not receive a calcium supplement, whereas no changes occurred in the supplemented group. The initial calcium supplementation seemed to protect against bone loss in the lumbar spine but not in the TBBM. In the nonsupplemented group, a statistically significant inverse correlation was found between the calcium/creatinine ratio in the morning urine and the changes in BMC of the lumbar spine. Such a relationship was not seen in the calcium-supplemented group. In the nonsupplemented group, no significant biochemical changes were observed, whereas a significant decrease in serum parathyroid hormone (PTH) was seen in the calcium-supplemented group. This might explain some of the protective effects of calcium supplementation on trabecular bone mass. We conclude that a diet-induced weight loss is accompanied by a generalized bone loss, which probably is explained mainly by a reduced mechanical strain on the skeleton. This loss can be partly inhibited by a high calcium intake. Therefore, a calcium supplementation should

  19. Use of MR-based trabecular bone microstructure analysis at the distal radius for osteoporosis diagnostics: a study in post-menopausal women with breast cancer and treated with aromatase inhibitor

    PubMed Central

    Baum, Thomas; Karampinos, Dimitrios C.; Seifert-Klauss, Vanadin; Pencheva, Tsvetelina D.; Jungmann, Pia M.; Rummeny, Ernst J.; Müller, Dirk; Bauer, Jan S.

    2016-01-01

    Summary Purpose Treatment with aromatase inhibitor (AI) is recommended for post-menopausal women with hormone-receptor positive breast cancer. However, AI therapy is known to induce bone loss leading to osteoporosis with an increased risk for fragility fractures. The purpose of this study was to investigate whether changes of magnetic resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarker can already be detected in subjects with AI intake but still without evidence for osteoporosis according to dual energy X-ray absorptiometry (DXA)-based bone mineral density (BMD) measurements as current clinical gold standard. Methods Twenty-one postmenopausal women (62±6 years of age) with hormone-receptor positive breast cancer, ongoing treatment with aromatase inhibitor for 23±15 months, and no evidence for osteoporosis (current DXA T-score greater than −2.5) were recruited for this study. Eight young, healthy women (24±2 years of age) were included as controls. All subjects underwent 3 Tesla magnetic resonance imaging (MRI) of the distal radius to assess the trabecular bone microstructure. Results Trabecular bone microstructure parameters were not significantly (p>0.05) different between subjects with AI intake and controls, including apparent bone fraction (0.42±0.03 vs. 0.42±0.05), trabecular number (1.95±0.10 mm−1 vs 1.89±0.15 mm−1), trabecular separation (0.30±0.03 mm vs 0.31±0.06 mm), trabecular thickness (0.21±0.01 mm vs 0.22±0.02 mm), and fractal dimension (1.70±0.02 vs. 1.70±0.03). Conclusion These findings suggest that the initial deterioration of trabecular bone microstructure as measured by MRI and BMD loss as measured by DXA occur not sequentially but rather simultaneously. Thus, the use of MR-based trabecular bone microstructure assessment is limited as early diagnostic biomarker in this clinical setting. PMID:27252740

  20. Effects of Cushing Disease on Bone Mineral Density in a Pediatric Population

    PubMed Central

    Lodish, Maya B.; Hsiao, Hui-Pin; Sermbis, Anastasios; Sinaii, Ninet; Rothenbuhler, Anya; Keil, Margaret F; Boikos, Sosipatros A.; Reynolds, James C.; Stratakis, Constantine A

    2009-01-01

    Objective To evaluate bone mineral density (BMD) in children with Cushing disease before and after transphenoidal surgery (TSS). Study design Hologic dual-energy x-ray absorptiometry (DXA) scans of 35 children with Cushing disease were analyzed retrospectively. Sixteen of the 35 patients had follow up DXA scans 13–18 months after TSS. BMD and bone mineral apparent density (BMAD) for lumbar spine (LS) L1–L4 and femoral neck (FN) were calculated. Results Preoperatively, 38% and 23% of patients had osteopenia of the LS and FN, respectively. Both BMD and BMAD Z-scores of the LS were worse than those for the FN (−1.60 ± 1.37 vs. −1.04 ± 1.19, p=0.003), and (−1.90 ± 1.49 vs. −0.06 ± 1.90, p<.001); postoperative improvement in BMD and BMAD were more pronounced in LS as compared with the FN (0.84 ± 0.88 vs. 0.15 ± 0.62, p<.001) and (0.73 ± 1.13 vs −0.26 ± 1.21, p=0.015). Pubertal stage, cortisol levels, and length of disease had no effects on BMD. Conclusions In children with Cushing disease, vertebral BMD was more severely affected than femoral BMD and was independent of degree or duration of hypercortisolism. BMD for the LS improved significantly after TSS; osteopenia in this group may be reversible. PMID:20223476

  1. Tibolone increases bone mineral density but also relapse in breast cancer survivors: LIBERATE trial bone substudy

    PubMed Central

    2012-01-01

    Introduction The Livial Intervention Following Breast Cancer: Efficacy, Recurrence and Tolerability Endpoints (LIBERATE: Clinical http://Trials.gov number NCT00408863), a randomized, placebo-controlled, double-blind trial that demonstrated that tibolone (Livial), a tissue-selective hormone-replacement therapy (HRT), increased breast cancer (BC) recurrence HR 1.40 (95% CI, 1.14 to 1.70; P = 0.001). A subgroup of women was entered into a study of bone mineral density (BMD). Methods Women with surgically excised primary BC (T1-3, N0-2, M-0) within the last 5 years, complaining of vasomotor symptoms, were assigned to tibolone, 2.5 mg daily, or placebo treatment for a maximum of 5 years. The BMD substudy enrolled 763 patients, using dual-energy X-ray absorptiometry (DXA) scanning at baseline and at 2 years. Results In the bone substudy, 699 of 763 women were eligible (345 allocated to tibolone, and 354, to placebo). After undergoing DXA scans, 300 (43%) women had normal BMD; 317 (45%), osteopenia; and 82 (11.7%), osteoporosis. Low body-mass index (P < 0.001), Asian race (P < 0.001), and late age at menarche (P < 0.04) predicted low bone mass at baseline. Tibolone increased BMD by 3.2% at the lumbar spine and 2.9% at the hip compared with placebo (both P < 0.001). The majority of fractures (55%) occurred in osteopenic patients. Women with normal BMD had increased recurrence with tibolone, 22 (15.6%) of 141 compared with placebo, 11 (6.9%) of 159 (P = 0.016), whereas no increased BC recurrence was seen in women with low BMD; 15 (7.4%) of 204 taking tibolone versus 13 (6.7%) of 195 taking placebo. Conclusions Tibolone is contraindicated after BC treatment, as it increases BMD and BC recurrence. Risk of BC recurrence was elevated in BC women with normal BMD (compared with low) who took tibolone. PMID:22251615

  2. Trabecular bone score in healthy ageing

    PubMed Central

    Bazzocchi, A; Ponti, F; Diano, D; Amadori, M; Albisinni, U; Battista, G

    2015-01-01

    Objective: The main aim of this work was to report on trabecular bone score (TBS) by dual-energy X-ray absorptiometry (DXA) of healthy Italian subjects to be used as a reference standard for future study in clinical and research settings. The secondary aim was to investigate the link between TBS and conventional parameters of bone and body composition by DXA. Methods: 250 individuals of 5 age bands (spanning from 18 to 70 years of age, equally distributed for both age and sex) were prospectively recruited. A lumbar spine (LS) DXA scan (Lunar iDXA™; GE Healthcare, Madison, WI) was acquired for each subject and then analysed with the latest version of TBS iNsight v. 2.1 (Med-Imaps, Pessac, France) software. LS bone mineral density (LS BMD), Z-score, T-score and TBS values were collected. Pearson's test was used to investigate the correlations between TBS and LS BMD and the influence of age, body mass index (BMI) and body composition on these parameters. Results: A significant decrease of TBS and LS BMD was observed with ageing in both males (TBS mean values from 1.486 to 1.374; LS BMD mean values from 1.219 to 1.187) and females (TBS mean values from 1.464 to 1.306; LS BMD mean values from 1.154 to 1.116). No statistically significant difference was achieved among males and females of the same age group for both TBS and LS BMD, with the exception of the fifth age group. A significant correlation was found between LS BMD and TBS values in both sexes (r  = 0.555–0.655, p < 0.0001). BMI influenced LS BMD but not TBS. TBS values were inversely correlated with some fat mass parameters, in particular with visceral adipose tissue (in males: r = −0.332, p < 0.001; in females: r = −0.348, p < 0.0001). No significant correlation was found between TBS and total lean mass, opposite to LS BMD (in males: r = 0.418; p < 0.0001; in females: r = −0.235; p < 0.001). Conclusion: This report is an attempt to start building a database for

  3. Comparing non contrast computerized tomography criteria versus dual X-ray absorptiometry as predictors of radio-opaque upper urinary tract stone fragmentation after electromagnetic shockwave lithotripsy.

    PubMed

    Hameed, Diaa A; Elgammal, Mohammed A; ElGanainy, Ehab O; Hageb, Adel; Mohammed, Khaled; El-Taher, Ahmed Mohamed; Mostafa, Mostafa Mohamed; Ahmed, Abdelfatah Ibrahim

    2013-11-01

    The objective of this study was to assess the value of dual X-ray absorptiometry (DXA) in comparison to non contrast computed tomography (NCCT) density as possible predictors of upper urinary tract stone disintegration by shock wave lithotripsy (SWL). This study included 100 consecutive patients, with solitary renal stone 0.5-2 cm or upper ureteral stone up to 1 cm. DXA to calculate stone mineral density (SMD) and stone mineral content (SMC) was done. NCCT was performed to measure Hounsfield units (HU). SWL was performed with an electromagnetic lithotripsy, plain X-ray documented disintegration after SWL. Successful treatment was defined as stone free or complete fragmentation after 1 or 2 sessions of SWL. The impact of patients age, sex, body mass index, stone laterality, location, volume, length, mean SMC and SMD, HU and Hounsfield density (HD), skin to stone distance (SSD) and number of shock waves were evaluated by univariate and multivariate analysis. Only 76 patients were available for follow-up. Success of disintegration was observed in 50 out of 76 patients (65.8 %). On multivariate analysis, SMC and number of shock wave were the significant independent factors affecting SWL outcome (p = 0.04 and p = 0.000, respectively). SMC as detected by DXA is a significant predictor of success of stone disintegration by SWL. SMC measured by DXA is more accurate than HU measured by CT. Patients with high stone mineral content (SMC greater than 0.65 g) should be directly offered another treatment option.

  4. Modifiable risk factors associated with bone deficits in childhood cancer survivors

    PubMed Central

    2012-01-01

    Background To determine the prevalence and severity of bone deficits in a cohort of childhood cancer survivors (CCS) compared to a healthy sibling control group, and the modifiable factors associated with bone deficits in CCS. Methods Cross-sectional study of bone health in 319 CCS and 208 healthy sibling controls. Bone mineral density (BMD) was measured by dual-energy x-ray absorptiometry (DXA). Generalized estimating equations were used to compare measures between CCS and controls. Among CCS, multivariable logistic regression was used to evaluate odds ratios for BMD Z-score ≤ -1. Results All subjects were younger than 18 years of age. Average time since treatment was 10.1 years (range 4.3 - 17.8 years). CCS were 3.3 times more likely to have whole body BMD Z-score ≤ -1 than controls (95% CI: 1.4-7.8; p = 0.007) and 1.7 times more likely to have lumbar spine BMD Z-score ≤ -1 than controls (95% CI: 1.0-2.7; p = 0.03). Among CCS, hypogonadism, lower lean body mass, higher daily television/computer screen time, lower physical activity, and higher inflammatory marker IL-6, increased the odds of having a BMD Z-score ≤ -1. Conclusions CCS, less than 18 years of age, have bone deficits compared to a healthy control group. Sedentary lifestyle and inflammation may play a role in bone deficits in CCS. Counseling CCS and their caretakers on decreasing television/computer screen time and increasing activity may improve bone health. PMID:22455440

  5. Inverse association between bone microarchitecture assessed by HR-pQCT and coronary artery calcification in patients with end-stage renal disease.

    PubMed

    Cejka, Daniel; Weber, Michael; Diarra, Danielle; Reiter, Thomas; Kainberger, Franz; Haas, Martin

    2014-07-01

    It is a matter of debate whether vascular calcification and bone loss are simultaneously occurring but largely independent processes or whether poor bone health predisposes to vascular calcification, especially in patients with kidney disease. Here we investigated the association between the changes of microarchitecture in weight bearing bone and the extent of coronary artery calcification in patients with chronic renal failure. The bone microarchitecture of the tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT), bone mineral density using dual X-ray absorptiometry (DXA) of the lumbar spine, femoral neck and distal radius as well as coronary artery calcification using multi-slice CT and reported as Agatston score were measured in 66 patients with end-stage renal disease on chronic hemodialysis. Markers of bone turnover, vitamin D status and intact parathyroid hormone (iPTH) were assessed. CAC score was found to be <100 in 39% and ≥100 in 61% of patients. The median [95% CI] total CAC score was 282 [315-2587]. By univariate analysis, significant correlations between CAC and age (R=0.52, p<0.001), weight (R=0.3, p<0.01) and serum cross laps (CTX, R=-0.39, p<0.01) were found, and parameters of bone microarchitecture were numerically but not significantly lower in patients with CAC scores ≥100. In multivariate analysis stratifying for gender and correcting for age, tibial density (Dtot) and bone volume/total volume (BV/TV) were significantly lower in patients with CAC scores ≥100 (p<0.05 for both). Low trabecular bone volume and decreased cortical bone density are associated with coronary artery calcification in dialysis patients. PMID:24709688

  6. Bone Health and Osteoporosis.

    PubMed

    Lupsa, Beatrice C; Insogna, Karl

    2015-09-01

    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.

  7. DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men

    PubMed Central

    Stults-Kolehmainen, M A; Stanforth, P R; Bartholomew, J B; Lu, T; Abolt, C J; Sinha, R

    2013-01-01

    Objective: The aim of this study was to determine whether the quantity of fat is different across the central (that is, android, trunk) and peripheral (that is, arm, leg and gynoid) regions among young African-American (AA), Asian (AS), Hispanic (HI) and non-Hispanic White (NHW) men. Subjects and Methods: A cohort of 852 men (18–30 years; mean total body fat percent (TBF%)=18.8±7.9, range=3.7–45.4) were assessed for body composition in five body regions via dual-emission X-ray absorptiometry (DXA). Results: HI men (21.8±8.3) had higher TBF% than AA (17.0±10.0), NHW (17.9±7.2) and AS (18.9±8.0) groups (P-values <0.0001). AS had a lower BMI (23.9±3.4) than all other groups, and NHW (24.7±3.2) had a lower BMI than HI (25.7±3.9) and AA (26.5±4.7; P-values<0.0001). A linear mixed model (LMM) revealed a significant ethnicity by region fat% interaction (P<0.0001). HI men had a greater fat% than NHW for every region (adjusted means (%); android: 29.6 vs 23.3; arm: 13.3 vs 10.6; gynoid: 27.2 vs 23.8; leg: 21.2 vs 18.3; trunk: 25.5 vs 20.6) and a greater fat% than AA for every region except the arm. In addition, in the android and trunk regions, HI had a greater fat% than AS, and AS had a higher fat% than AA. Finally, the android fat% for AS was higher than that of NHW. When comparing the region fat% within ethnicities, the android region was greater than the gynoid region for AS and HI, but did not differ for AA and NHW, and the arm region had the least fat% in all ethnicities. Conclusions: Fat deposition and body fat patterning varies by ethnicity. PMID:23507968

  8. Effect of Low-Magnitude Mechanical Stimuli on Bone Density and Structure in Pediatric Crohn's Disease: A Randomized Placebo-Controlled Trial.

    PubMed

    Leonard, Mary B; Shults, Justine; Long, Jin; Baldassano, Robert N; Brown, J Keenan; Hommel, Kevin; Zemel, Babette S; Mahboubi, Soroosh; Howard Whitehead, Krista; Herskovitz, Rita; Lee, Dale; Rausch, Joseph; Rubin, Clinton T

    2016-06-01

    Pediatric Crohn's Disease (CD) is associated with low trabecular bone mineral density (BMD), cortical area, and muscle mass. Low-magnitude mechanical stimulation (LMMS) may be anabolic. We conducted a 12-month randomized double-blind placebo-controlled trial of 10 minutes daily exposure to LMMS (30 Hz frequency, 0.3 g peak-to-peak acceleration). The primary outcomes were tibia trabecular BMD and cortical area by peripheral quantitative CT (pQCT) and vertebral trabecular BMD by QCT; additional outcomes included dual-energy X-ray absorptiometry (DXA) whole body, hip and spine BMD, and leg lean mass. Results were expressed as sex-specific Z-scores relative to age. CD participants, ages 8 to 21 years with tibia trabecular BMD <25th percentile for age, were eligible and received daily cholecalciferol (800 IU) and calcium (1000 mg). In total, 138 enrolled (48% male), and 121 (61 active, 60 placebo) completed the 12-month trial. Median adherence measured with an electronic monitor was 79% and did not differ between arms. By intention-to-treat analysis, LMMS had no significant effect on pQCT or DXA outcomes. The mean change in spine QCT trabecular BMD Z-score was +0.22 in the active arm and -0.02 in the placebo arm (difference in change 0.24 [95% CI 0.04, 0.44]; p = 0.02). Among those with >50% adherence, the effect was 0.38 (95% CI 0.17, 0.58, p < 0.0005). Within the active arm, each 10% greater adherence was associated with a 0.06 (95% CI 0.01, 1.17, p = 0.03) greater increase in spine QCT BMD Z-score. Treatment response did not vary according to baseline body mass index (BMI) Z-score, pubertal status, CD severity, or concurrent glucocorticoid or biologic medications. In all participants combined, height, pQCT trabecular BMD, and cortical area and DXA outcomes improved significantly. In conclusion, LMMS was associated with increases in vertebral trabecular BMD by QCT; however, no effects were observed at DXA or pQCT sites. © 2016 American Society for Bone

  9. The Benefit of Bone Health by Drinking Coffee among Korean Postmenopausal Women: A Cross-Sectional Analysis of the Fourth & Fifth Korea National Health and Nutrition Examination Surveys

    PubMed Central

    Park, Sang Min; Shin, Doosup; Joh, Hee-Kyung; Cho, Eunyoung

    2016-01-01

    Purpose Although the concern about coffee-associated health problems is increasing, the effect of coffee on osteoporosis is still conflicting. This study aimed to determine the relationship between coffee consumption and bone health in Korean postmenopausal women. Methods A population-based, cross-sectional study was performed using a nationally representative sample of the Korean general population. All 4,066 postmenopausal women (mean age 62.6 years) from the fourth and fifth Korean National Health and Nutrition Examination Survey (2008–2011), who completed the questionnaire about coffee consumption and had data of dual-energy X-ray absorptiometry (DXA) examination. Bone mineral density (BMD) was measured using DXA at the femoral neck and lumbar spine and osteoporosis was defined by World Health Organization T-score criteria in addition to self-report of current anti-osteoporotic medication use. Results After adjusting for various demographic and lifestyle confounders (including hormonal factors), subjects in the highest quartile of coffee intake had 36% lower odds for osteoporosis compared to those in the lowest quartile (Adjusted odds ratio [aOR] = 0.64; 95% confidence interval [CI], 0.43–0.95; P for trend = 0.015). This trend was consistent in osteoporosis of lumbar spine and femoral neck (aOR = 0.65 and 0.55; P for trend = 0.026 and 0.003, respectively). In addition, age- and body mass index (BMI)-adjusted BMD of the femoral neck and lumbar spine increased with higher coffee intake (P for trend = 0.019 and 0.051, respectively). Conclusions Coffee consumption may have protective benefits on bone health in Korean postmenopausal women in moderate amount. Further, prospective studies are required to confirm this association. PMID:26816211

  10. Postmenopausal women with colles' fracture have lower values of bone mineral density than controls as measured by quantitative ultrasound and densitometry.

    PubMed

    Sosa, Manuel; Saavedra, P; del Pino-Montes, J; Alegre, J; Pérez-Cano, R; Guerra, G Martínez Díaz; Díaz-Curiel, M; Valero, C; Muñoz-Torres, M; Torrijos, A; Mosquera, J; Gómez-Alonso, C

    2005-01-01

    Measurement of ultrasonographic parameters provides information concerning not only bone density but also bone architecture. We investigated the usefulness of ultrasonographic parameters and bone mineral density (BMD) to evaluate the probability of Colles' fracture. Two-hundred eighty-nine postmenopausal women (62.3 +/- 8.7 yr) with (n = 76) and without (n = 213) Colles' fracture were studied. BMD of lumbar spine and proximal femur was evaluated in all women by dual-energy X-ray absorptiometry (DXA) and speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness in the calcaneus were measured by a Sahara ultrasonometer (Hologic). Patients suffering from Colles' fracture had lower values of BMD adjusted by height at the lumbar spine, L2-L4 (0.797 g/cm2 vs 0.860 g/cm2), femoral neck (0.685 g/cm2 vs 0.712 g/cm2 ), SOS (1518 m/sg vs 1525 m/sg), and stiffness (74.6 vs 77.7) (p < 0.05). Nevertheless, BUA values were similar in both groups. After stepwise logistic regression analysis, the area found under receiver operating characteristic (ROC) curves was 0.60 for L2L4 and 0.63 for a formula combining L2L4 and height. Our data suggest that patients suffering from Colles' fracture have lower values of BMD by DXA, SOS, and stiffness. However, the ability of these techniques to discriminate is low because the values for the area under ROC curve are 0.60 for L2-L4 and 0.63 for a formula derived of the combination of L2-L4 and height.

  11. Effect of block-periodized exercise training on bone and coronary heart disease risk factors in early post-menopausal women: a randomized controlled study.

    PubMed

    Kemmler, W; Bebenek, M; von Stengel, S; Engelke, K; Kalender, W A

    2013-02-01

    The purpose of this 12 month randomized exercise intervention was to determine the effect of a block-periodized multipurpose exercise program on bone mineral density (BMD) and parameters of the metabolic syndrome (MetS) in early post-menopausal women. Eighty-five subjects (52.3 ± 2.4 years) living in the area of Erlangen (Germany) were randomly assigned into an exercise (EG, n=43) or a wellness-control group (CG: n=42). The EG performed a periodized multipurpose exercise program with 4-6-week blocks of high-intensity bone-specific exercise intermitted by 10-12 weeks of exercise dedicated to increase endurance and reduce cardiac and metabolic risk factors. The CG performed a low-volume/low-intensity "wellness" program to increase well-being. After 12 months, significant exercise effects were observed for the lumbar spine (LS) BMD as assessed by quantitative computed tomography [total BMD (EG: -0.3 ± 2.1% vs CG: -2.1 ± 2.2%, P=0.015); trabecular BMD (EG: -0.7 ± 3.4% vs CG: -4.7 ± 4.9%, P=0.001) and dual-energy x-ray absorptiometry (DXA) (EG: -0.1 ± 2.2% vs CG: -2.0 ± 2.0%, P=0.002)]. However, no significant effects were observed for total hip BMD as assessed by DXA (P=0.152). Although all MetS parameters were favorably affected among the EG, only the effect for waist circumference was significant. In summary, short periods of bone-specific intervention embedded in longer periods of exercises dedicated to improve cardiovascular and metabolic risk factors positively affected BMD at the LS.

  12. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice.

    PubMed

    Harvey, N C; Glüer, C C; Binkley, N; McCloskey, E V; Brandi, M-L; Cooper, C; Kendler, D; Lamy, O; Laslop, A; Camargos, B M; Reginster, J-Y; Rizzoli, R; Kanis, J A

    2015-09-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.

  13. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  14. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice

    PubMed Central

    Harvey, N.C.; Glüer, C.C.; Binkley, N.; McCloskey, E.V.; Brandi, M-L.; Cooper, C.; Kendler, D.; Lamy, O.; Laslop, A.; Camargos, B.M.; Reginster, J-Y.; Rizzoli, R.; Kanis, J.A.

    2015-01-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g. diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX. PMID:25988660

  15. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice.

    PubMed

    Harvey, N C; Glüer, C C; Binkley, N; McCloskey, E V; Brandi, M-L; Cooper, C; Kendler, D; Lamy, O; Laslop, A; Camargos, B M; Reginster, J-Y; Rizzoli, R; Kanis, J A

    2015-09-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX. PMID:25988660

  16. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  17. Associations of Polyunsaturated Fatty Acid Intake with Bone Mineral Density in Postmenopausal Women

    PubMed Central

    Harris, Margaret; Farrell, Vanessa; Houtkooper, Linda; Going, Scott; Lohman, Timothy

    2015-01-01

    A secondary analysis of cross-sectional data was analyzed from 6 cohorts (Fall 1995–Fall 1997) of postmenopausal women (n = 266; 56.6 ± 4.7 years) participating in the Bone Estrogen Strength Training (BEST) study (a 12-month, block-randomized, clinical trial). Bone mineral density (BMD) was measured at femur neck and trochanter, lumbar spine (L2–L4), and total body BMD using dual-energy X-ray absorptiometry (DXA). Mean dietary polyunsaturated fatty acids (PUFAs) intakes were assessed using 8 days of diet records. Multiple linear regression was used to examine associations between dietary PUFAs and BMD. Covariates included in the models were total energy intake, body weight at year 1, years after menopause, exercise, use of hormone therapy (HT), total calcium, and total iron intakes. In the total sample, lumbar spine and total body BMD had significant negative associations with dietary PUFA intake at P < 0.05. In the non-HT group, no significant associations between dietary PUFA intake and BMD were seen. In the HT group, significant inverse associations with dietary PUFA intake were seen in the spine, total body, and Ward's triangle BMD, suggesting that HT may influence PUFA associations with BMD. This study is registered with clinicaltrials.gov, identifier: NCT00000399. PMID:25785226

  18. Associations of genetic lactase non-persistence and sex with bone loss in young adulthood.

    PubMed

    Laaksonen, Marika M L; Impivaara, Olli; Sievänen, Harri; Viikari, Jorma S A; Lehtimäki, Terho J; Lamberg-Allardt, Christel J E; Kärkkäinen, Merja U M; Välimäki, Matti; Heikkinen, Jorma; Kröger, Liisa M; Kröger, Heikki P J; Jurvelin, Jukka S; Kähönen, Mika A P; Raitakari, Olli T

    2009-05-01

    Some studies have reported that after attainment of peak bone mass (PBM), slow bone loss may occur in both men and women; however, findings are inconsistent. Genetic factors play a significant role in bone loss, but the available evidence is conflicting. Genetic lactase non-persistence (lactase C/C(-13910) genotype) is suggested to increase risk for inadequate calcium intake predisposing to poorer bone health. We investigated whether this genotype is associated with PBM and bone loss in young Finnish adults. Subjects belong to the Cardiovascular Risk in Young Finns Study that is an ongoing multi-centre follow-up of atherosclerosis risk factors. From the original cohort, randomly selected subjects aged 20-29 participated in baseline bone mineral density (BMD) measurements (n=358), and in follow-up measurements 12 years later (n=157). Bone mineral content (BMC) and BMD at lumbar spine (LS) and femoral neck (FN) were measured at baseline and follow-up with dual energy X-ray absorptiometry (DXA). Lactase C/T(-13910) polymorphism was determined by PCR and allele-specific fluorogenic probes. Information on lifestyle was elicited with questionnaires. During the follow-up, bone loss at both bone sites was greater in males (LS BMD: -1.1%, FN BMD: -5.2%) than in females (LS BMD: +2.1%, FN BMD: -0.7%) (both bone sites p=0.001). Younger age predicted greater loss of FN BMC and BMD in females (p=0.013 and p=0.001, respectively). Increased calcium intake predicted FN BMD gain in both sexes (in females B=0.007 g/cm(2)/mg, p=0.002; in males B=0.006, p=0.045), and increased physical activity LS BMD gain in females (B=0.091 g/cm(2)/physical activity point, p=0.023). PBM did not differ between the lactase genotypes, but males with the CC(-13910) genotype seemed to be prone to greater bone loss during the follow-up (LS BMD: C/C vs. T/T p=0.081). In conclusion, bone loss in young adulthood was more common in males than in females and seemed to occur mainly at the femoral neck. Young

  19. Difference in Bone Mineral Density Change at the Lateral Femoral Cortices according to Administration of Different Bisphosphonate Agents

    PubMed Central

    Kim, Sungjun; Bang, Hyun Hee; Yoo, Hanna; Lim, Hyunsun; Jung, Woo Seok

    2016-01-01

    Background To retrospectively assess whether the response of subtrochanteric lateral cortex (STLC) is different according to the bisphosphonate agents in terms of bone mineral density (BMD) change. Methods A total of 149 subjects, who had 2- to 4-year interval follow-up of BMD using dual energy X-ray absorptiometry (DXA), were included in this retrospective study divided into following 3 groups: control group (no consumption of any anti-osteoporotic drugs, n=38), alendronate group (naïve alendronate users, n=48), risedronate group (naïve risedronate users, n=63). BMD was measured at the STLC and subtrochanteric medial cortex (STMC) in each patient by drawing rectangular ROIs at the bone cortices. The percent change of BMD at the STLC were compared between the aforementioned 3 groups by using analysis of covariance model to control five independent variables of age, body mass index, percent change of STMC, hip axis length, time interval between DXA examinations. Results The least square mean values±standard deviation of the percent change of BMD in the control, alendronate, and risedronate groups were 1.46±1.50, 2.23±1.26, and 6.96±1.11, respectively. The risedronate group showed significantly higher change of BMD percentage compared with the control (adjusted P=0.012) or alendronate (adjusted P=0.016) groups. Conclusions The percent change of BMD at the STLC in the risedronate user group was greater than the alendronate and control groups. The implication of these changes needs to be further verified. PMID:27294080

  20. Bone mineral density reduction in adolescents with systemic erythematosus lupus: association with lack of vitamin D supplementation.

    PubMed

    Caetano, M; Terreri, M T; Ortiz, T; Pinheiro, M; Souza, F; Sarni, R

    2015-12-01

    The aim of this study is to evaluate body composition and the bone mineral density in female adolescents with juvenile systemic lupus erythematosus. Body composition (BC) and bone mineral density (BMD) were evaluated in an observational cohort study with 35 postmenarcheal adolescent females. The variables studied were as follows: current and cumulative corticosteroid dose, intake of supplements containing calcium and vitamin D, 24-h proteinuria, body mass index (BMI), and height for age (Z-score). BC was assessed using dual-energy X-ray absorptiometry (DXA) at two time points (median interval of 1.2 years). The fat mass index (FMI = fat mass in kilograms divided by the height in meters squared) and lean mass index (LMI = lean mass in kilograms divided by the height in meters squared) were calculated based on the DXA results. BMD was classified according to the International Society of Clinical Densitometry (low BMD for chronological age < -2.0 standard deviations). .The mean age of the subjects was 15.4 ± 1.8 years. Of patients, 54.3 % were normal weight, 22.8 % were overweight, 22.8 % were obese, and 8.6 % had short stature. Low BMD for chronological age was observed in 42.8 % of patients, and 60 % were not taking vitamin D. There was no significant difference between the two time points with respect to FMI, LMI, or body mass index Z-score (ZBMI); however, BMD has decreased significantly (p = 0.011). There was an association between not taking a vitamin D supplement and decreased BMD (p = 0.027). Almost half of the patients had altered nutritional status. The BMD decrease in adolescents with juvenile systemic lupus erythematosus (JSLE) was associated with the lack of vitamin D supplementation, highlighting the importance of well-defined vitamin D supplementation protocols.

  1. Data Mining Activity for Bone Discipline: Calculating a Factor of Risk for Hip Fracture in Long-Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Ellman, R.; Sibonga, J. D.; Bouxsein, M. L.

    2010-01-01

    The factor-of-risk (Phi), defined as the ratio of applied load to bone strength, is a biomechanical approach to hip fracture risk assessment that may be used to identify subjects who are at increased risk for fracture. The purpose of this project was to calculate the factor of risk in long duration astronauts after return from a mission on the International Space Station (ISS), which is typically 6 months in duration. The load applied to the hip was calculated for a sideways fall from standing height based on the individual height and weight of the astronauts. The soft tissue thickness overlying the greater trochanter was measured from the DXA whole body scans and used to estimate attenuation of the impact force provided by soft tissues overlying the hip. Femoral strength was estimated from femoral areal bone mineral density (aBMD) measurements by dual-energy x-ray absorptiometry (DXA), which were performed between 5-32 days of landing. All long-duration NASA astronauts from Expedition 1 to 18 were included in this study, where repeat flyers were treated as separate subjects. Male astronauts (n=20) had a significantly higher factor of risk for hip fracture Phi than females (n=5), with preflight values of 0.83+/-0.11 and 0.36+/-0.07, respectively, but there was no significant difference between preflight and postflight Phi (Figure 1). Femoral aBMD measurements were not found to be significantly different between men and women. Three men and no women exceeded the theoretical fracture threshold of Phi=1 immediately postflight, indicating that they would likely suffer a hip fracture if they were to experience a sideways fall with impact to the greater trochanter. These data suggest that male astronauts may be at greater risk for hip fracture than women following spaceflight, primarily due to relatively less soft tissue thickness and subsequently greater impact force.

  2. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels.

    PubMed

    Pennisi, P; Signorelli, S S; Riccobene, S; Celotta, G; Di Pino, L; La Malfa, T; Fiore, C E

    2004-05-01

    Patients with vascular calcifications often have low bone mineral density (BMD), but it is still uncertain if osteoporosis and peripheral vascular disease (VD) are interrelated and linked by a common pathomechanism. Moreover, data on bone turnover in patients with advanced atherosclerosis are lacking. We measured BMD by dual-energy X-ray absorptiometry (DXA) and quantitative bone ultrasound (QUS), as well as the serum levels of osteocalcin (OC), bone-specific alkaline phosphatase (BAP), osteoprotegerin (OPG) and its ligand RANKL, and the urinary concentration of the C-terminal telopeptides of type I collagen (CrossLaps), in 36 patient (20 male and 16 female) with serious atherosclerotic involvement of the carotid and/or femoral artery to investigate the underlying mechanism of vascular and osseous disorders. Thirty age-matched and gender matched healthy individuals served as controls. After adjustment for age, BMD was significantly reduced at the lumbar spine in 23/36 (63%) patients (mean T score -1.71+/-1.42) and at the proximal femur in 34/36 (93%) patients (neck mean T score -2.5+/-0.88). Ten patients (27%) had abnormal QUS parameters. Gender and diabetes had no effect on the relationship between vascular calcification and bone density at any site measured. VD subjects had OC and BAP serum levels lower than controls (13.3+/-3.1 vs 27.7+/-3.3 ng/ml, P<0.01, and 8.4+/-2.3 vs 12.5+/-1.4 microg/l, P<0.01, respectively). Urinary CrossLaps excretion was not significantly different in patients with VD and in controls (257.9+/-138.9 vs 272.2+/-79.4 micro g/mmol Cr, respectively). Serum OPG and RANKL levels were similar in patients and in controls (3.5+/-1.07 vs 3.4+/-1.05 pmol/l, and 0.37+/-0.07 vs 0.36+/-0.06 pmol/l, respectively). We proved high occurrence of osteoporosis in VD, with evidence of age and gender independence. Negative bone remodelling balance would be a consequence of reduced bone formation, with no apparent increased activation of the OPG-RANKL system

  3. OST risk index and calcaneus bone densitometry in osteoporosis diagnosis.

    PubMed

    Pérez-Castrillón, José L; Sagredo, Manuel G; Conde, Rosa; del Pino-Montes, Javier; de Luis, Daniel

    2007-01-01

    The gold-standard method for osteoporosis diagnosis is by dual-energy X-ray absorptiometry (DXA) of the lumbar spine and/or hip. DXA is expensive and alternative approaches are being analyzed. The objective of this study was to evaluate whether the Osteoporosis Self-Assessment Tool (OST) combined with calcaneal DXA improves the sensitivity and specificity of the DXA. One hundred and sixty-one (67 males and 94 females) outpatients referred due to suspected osteoporosis or lumbar pain were included. Hip, spinal, or calcaneal DXA was performed in all patients and the OST index was administered. The cutoff point for patients of high- or low-risk osteoporosis was 2 for women and 3 for men. The mean OST index value was 3.62+/-4.3. Twenty-seven percent of the patients were osteoporotic. Sixty-two percent presented a low risk and 38% a high risk. In men, the OST had a sensitivity of 39% and a specificity of 86%, whereas in women the sensitivity was 94% with a specificity of 59%. The combination of the calcaneal DXA with the OST index did not modify the validity of DXA in men. In women, the sensitivity of the different cutoff points was improved at the expense of a decrease in the specificity without modifying the area under the curve. The combination of the calcaneal DXA with the OST index did not improve the value of each of the separate techniques. The OST index is useful in women to facilitate the densitometry indication for hip and/or spine.

  4. Bone mineral density in MPS IV A (Morquio syndrome type A).

    PubMed

    Kecskemethy, Heidi H; Kubaski, Francyne; Harcke, H T; Tomatsu, Shunji

    2016-02-01

    Mucopolysaccharidosis IV A (MPS IV A), Morquio A, is caused by deficiency in lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which is responsible for the catabolism of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S). Accumulation of GAGs results in disrupted cartilage formation and skeletal dysplasia. In this prospective cross-sectional study, bone mineral density (BMD) of the whole body (WB), lumbar spine (LS), and lateral distal femur (LDF) was acquired by dual-energy X-ray absorptiometry (DXA) on patients with MPS IV A. Functional abilities, medical history, Tanner score, and laboratory results were reviewed. Age and sex-matched norms were used to calculate Z-scores. Participants included 18 patients (13 females; 16 were unrelated) with a mean age of 21.4years (3.3 to 40.8years). While every patient was able to bear weight, 9 were full-time ambulators. Whole-body DXA could be obtained on only 6 patients (5 full-time ambulators) because of respiratory compromise caused by the position, presence of hardware, or positioning difficulties. Mean WB Z-score was -2.0 (range-0.3 to -4.1). Technical issues invalidating LS DXA in 8 patients included kyphosis at the thoracolumbar junction resulting in overlap of vertebrae in the posterior-anterior view. Mean LS BMD Z-score in full-time ambulators was -3.4 (range-1.6 to -5.0) and in the non-/partial ambulator was -4.0 (-3.7 to -4.2). Lateral distal femur BMD was acquired on every patient, and average Z-scores were -2 or less at all sites; full-time ambulators exhibited higher BMD. In conclusion, the LDF proved to be the most feasible site to measure in patients with MPS IV A. The higher LDF values in ambulators suggest this should be a consideration in promoting bone health for this group. PMID:26670863

  5. Chronic low back pain is associated with reduced vertebral bone mineral measures in community-dwelling adults

    PubMed Central

    2012-01-01

    Background Chronic low back pain (CLBP) experienced in middle-age may have important implications for vertebral bone health, although this issue has not been investigated as a primary aim previously. This study investigated the associations between CLBP and dual energy X-ray absorptiometry (DXA)-derived vertebral bone mineral measures acquired from postero-anterior and lateral-projections, among community-dwelling, middle-aged adults. Methods Twenty-nine adults with CLBP (11 male, 18 female) and 42 adults with no history of LBP in the preceding year (17 male, 25 female) were evaluated. Self-reported demographic and clinical data were collected via questionnaires. Areal bone mineral density (aBMD) was measured in the lumbar spine by DXA. Apparent volumetric (ap.v) BMD in the lumbar spine was also calculated. Multiple linear regression models were used to examine associations between study group (CLBP and control) and vertebral DXA variables by gender, adjusting for height, mass and age. Results There was no difference between groups by gender in anthropometrics or clinical characteristics. In the CLBP group, the mean (SD) duration of CLBP was 13.3 (10.4) years in males and 11.6 (9.9) years in females, with Oswestry Disability Index scores of 16.2 (8.7)% and 15.4 (9.1)%, respectively. Males with CLBP had significantly lower adjusted lateral-projection aBMD and lateral-projection ap.vBMD than controls at L3 with mean differences (standard error) of 0.09 (0.04) g/cm2 (p = 0.03) and 0.02 (0.01) g/cm3 (p = 0.04). These multivariate models accounted for 55% and 53% of the variance in lateral-projection L3 aBMD and lateral-projection L3 ap.vBMD. Conclusions CLBP in males is associated with some lumbar vertebral BMD measures, raising important questions about the mechanism and potential clinical impact of this association. PMID:22458361

  6. Bone health in immigrant Hispanic women living in Texas.

    PubMed

    Ballard, Joyce E; Cooper, Cheryl M; Bone, Mary A; Saade, Guillermo; Holiday, David B

    2010-10-01

    Osteoporosis is a serious national public health problem, and is expected to increase significantly over the next few decades, especially in women. A limitation of bone health research exists since few studies have involved Hispanic women, and even fewer, Hispanic immigrant women. For this study we examined the effects of anthropometric, behavioral, and health history variables on bone mineral density (BMD) in 84 immigrant Hispanic women, age 40 and above. BMD was assessed at the spine, femur, and forearm using dual energy x-ray absorptiometry (DXA). Demographic information, health histories, and behavioral risk factors were obtained from a questionnaire. In the younger group (mean age = 44.1 years) 61% had spinal osteopenia, and in the postmenopausal group (mean age = 53.0 years) 59% had osteopenia and 13% had osteoporosis. Femur sites were free of osteoporosis. Mean body mass index (BMI) was 31.8 ± 6.1 and mean waist girth was 95.6 ± 12.5 cm, indicating overall and abdominal obesity. Partial correlations indicated a significant positive relationship between body fat variables and total femur BMD values. ANOVAs revealed no differences in BMD values at any bone site across tertile levels for calcium intake or for physical activity. However, supplemental and dietary calcium intakes were very low and few participants engaged in regular physical activity outside of work and activities of daily living (ADL). In light of the expected increase in osteoporosis in this population and the prevalence of spinal osteopenia in the younger participants, education about the health risks of osteoporosis should be made available to this group. PMID:20012477

  7. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  8. Early loss of bone mineral density is correlated with a gain of fat mass in patients starting a protease inhibitor containing regimen: the prospective Lipotrip study

    PubMed Central

    2013-01-01

    Background HIV-infected patients starting antiretroviral treatment (ART) experience deep and early disorders in fat and bone metabolism, leading to concomitant changes in fat mass and bone mineral density. Methods We conducted a prospective study in treatment-naive HIV-infected patients randomized to receive two nucleoside reverse transcriptase inhibitors in combination with either a protease inhibitor (PI) or a non-nucleosidic reverse transcriptase inhibitor (NNRTI), to evaluate early changes in body composition, bone mineral density and metabolic markers as differentially induced by antiretroviral therapies. We measured changes in markers of carbohydrate, of fat and bone metabolism, and, using dual-emission X-ray absorptiometry (DXA), body composition and bone mineral density (BMD). Complete data on changes between baseline and after 21 months treatment were available for 35 patients (16 in the PI group and 19 in the NNRTI group). Results A significant gain in BMI and in total and lower limb fat mass was recorded only in patients receiving PI. A loss of lumbar BMD was observed in both groups, being higher with PI. Plasma markers of bone metabolism (alkaline phosphatase, osteocalcin, collagen crosslaps) and levels of parathormone and of 1,25diOH-vitamin D3 significantly increased in both groups, concomitant with a decline in 25OH-vitamin D3. Lipids and glucose levels increased in both groups but rise in triglyceride was more pronounced with PI. A correlation between loss of BMD and gain of fat mass is observed in patients starting PI. Conclusions We evidenced an early effect of ART on lipid and bone metabolisms. PI lead to a significant gain in fat mass correlated with a sharp drop in BMD but active bone remodelling is evident with all antiretroviral treatments, associated with low vitamin D levels and hyperparathyroidism. In parallel, signs of metabolic restoration are evident. However, early increases in lean and fat mass, triglycerides, waist circumference and

  9. Development of an Automated Bone Mineral Density Software Application: Facilitation Radiologic Reporting and Improvement of Accuracy.

    PubMed

    Tsai, I-Ta; Tsai, Meng-Yuan; Wu, Ming-Ting; Chen, Clement Kuen-Huang

    2016-06-01

    The conventional method of bone mineral density (BMD) report production by dictation and transcription is time consuming and prone to error. We developed an automated BMD reporting system based on the raw data from a dual energy X-ray absorptiometry (DXA) scanner for facilitating the report generation. The automated BMD reporting system, a web application, digests the DXA's raw data and automatically generates preliminary reports. In Jan. 2014, 500 examinations were randomized into an automatic group (AG) and a manual group (MG), and the speed of report generation was compared. For evaluation of the accuracy and analysis of errors, 5120 examinations during Jan. 2013 and Dec. 2013 were enrolled retrospectively, and the context of automatically generated reports (AR) was compared with the formal manual reports (MR). The average time spent for report generation in AG and in MG was 264 and 1452 s, respectively (p < 0.001). The accuracy of calculation of T and Z scores in AR is 100 %. The overall accuracy of AR and MR is 98.8 and 93.7 %, respectively (p < 0.001). The mis-categorization rate in AR and MR is 0.039 and 0.273 %, respectively (p = 0.0013). Errors occurred in AR and can be grouped into key-in errors by technicians and need for additional judgements. We constructed an efficient and reliable automated BMD reporting system. It facilitates current clinical service and potentially prevents human errors from technicians, transcriptionists, and radiologists.

  10. Orchidectomy-induced alterations in volumetric bone density, cortical porosity and strength of femur are attenuated by dietary conjugated linoleic acid in aged guinea pigs.

    PubMed

    DeGuire, Jason R; Mak, Ivy L; Lavery, Paula; Agellon, Sherry; Wykes, Linda J; Weiler, Hope A

    2015-04-01

    Age-related osteoporosis and sarcopenia are ascribed in part to reductions in anabolic hormones. Dietary conjugated linoleic acid (CLA) improves lean and bone mass, but its impact during androgen deficiency is not known. This study tested if CLA would attenuate the effects of orchidectomy (ORX)-induced losses of bone and lean tissue. Male guinea pigs (n=40; 70-72 weeks), were randomized into four groups: (1) SHAM+Control diet, (2) SHAM+CLA diet, (3) ORX+Control diet, (4) ORX+CLA diet. Baseline blood sampling and dual-energy X-ray absorptiometry (DXA) scans were conducted, followed by surgery 4 days later with the test diets started 7 days after baseline sampling. Serial blood sampling and DXA scans were repeated 2, 4, 8 and 16 weeks on the test diets. Body composition and areal BMD (aBMD) of whole body, lumbar spine, femur and tibia were measured using DXA. At week 16, muscle protein fractional synthesis rate (FSR), volumetric BMD (vBMD), microarchitecture and bone strength were assessed. Body weight declined after SHAM and ORX surgery, with slower recovery in the ORX group. Dietary CLA did not affect weight or lean mass, but attenuated gains in fat mass. Lean mass was stable in SHAM and reduced in ORX by 2 weeks with whole body and femur bone mineral content (BMC) reduced by 4 weeks; CLA did not alter BMC. By week 16 ORX groups had lower free testosterone and myofibrillar FSR, yet higher cortisol, osteocalcin and ionized calcium with no alterations due to CLA. ORX+Control had higher prostaglandin E2 (PGE2) and total alkaline phosphatase compared to SHAM+Control whereas ORX+CLA were not different from SHAM groups. Femur metaphyseal vBMD was reduced in ORX+CTRL with the reduction attenuated by CLA. Femur cortical thickness (Ct.Th.) and biomechanical strength were reduced and cortical porosity (Ct.Po.) elevated by ORX and attenuated by CLA. This androgen deficient model with a sarcopenic-osteoporotic phenotype similar to aging men responded to dietary CLA with

  11. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    SciTech Connect

    Riis, B.J.; Christiansen, C.

    1988-04-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement.

  12. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone.

    PubMed

    Govindarajan, Parameswari; Khassawna, Thaqif; Kampschulte, Marian; Böcker, Wolfgang; Huerter, Britta; Dürselen, Lutz; Faulenbach, Miriam; Heiss, Christian

    2013-12-01

    Osteoporosis is one of the deleterious side effects of long-term glucocorticoid therapy. Since the condition is particularly aggressive in postmenopausal women who are on steroid therapy, in this study we have attempted to analyse the combined effect of glucocorticoid (dexamethasone) treatment and cessation of oestrogen on rat bone. The dual aim was to generate osteoporotic bone status in a short time scale and to characterise the combination of glucocorticoid-postmenopausal osteoporotic conditions. Sprague Dawley rats (N = 42) were grouped randomly into three groups: untreated control, sham-operated and ovariectomized-steroid (OVX-Steroid) rats. Control animals were euthanized with no treatment [Month 0 (M0)], while sham and OVX-Steroid rats were monitored up to 1 month (M1) and 3 months (M3) post laparotomy/post OVX-Steroid treatment. Histology, dual-energy X-ray absorptiometry (DXA), micro-computed tomography (micro-CT), and biomechanical and mRNA expression analysis of collagenous, non-collagenous matrix proteins and osteoclast markers were examined. The study indicated enhanced osteoclastogenesis and significantly lower bone mineral density (BMD) in the OVX-Steroid rats with Z-scores below -2.5, reduced torsional strength, reduced bone volume (BV/TV%), significantly enhanced trabecular separation (Tb.S), and less trabecular number (Tb.N) compared with sham rats. Osteoclast markers, cathepsin K and MMP 9 were upregulated along with Col1α1 and biglycan with no significant expression variation in fibronectin, MMP 14, LRP-5, Car II and TNC. These results show higher bone turnover with enhanced bone resorption accompanied with reduced torsional strength in OVX-Steroid rats; and these changes were attained within a short timeframe. This could be a useful model which mimics human postmenopausal osteoporosis that is associated with steroid therapy and could prove of value both in disease diagnosis and for testing generating and testing biological agents which could

  13. Circulating PTH, Vitamin D and IGF-I levels in relation to bone mineral density in elderly women.

    PubMed

    Lumachi, Franco; Camozzi, Valentina; Doretto, Paolo; Tozzoli, Renato; Basso, Stefano M M

    2013-01-01

    Age and reduced bone mineral density (BMD) represent major risk factors for vertebral fracture risk, especially in pos-tmenopausal women, and measurement of BMD is currently considered of value in estimating bone mineralization. BMD correlates with demographics and anthropometric parameters, as well as with several markers of bone metabolism and calcium-regulating hormones, such as leptin, osteoprotegerin, parathyroid hormone (PTH), vitamin D, insulin-like growth factor-I (IGF-I) and sex steroid hormones. The aim of this study was to evaluate the relationship between PTH, 25(OH) vitamin D [25(OH)D], IGF-I and BMD in a selected group of elderly women. Thirty-one post-menopausal women over the age of 65, who were not estrogen, vitamin D or bisphosphonate users and did not have a history of fracture, bone disease or malignancy, were prospectively enrolled in the study. All the patients underwent lumbar spine dual-energy x-ray absorptiometry (DXA) and serum calcium, creatinine, PTH, 25(OH)D and IGF-I measurements. As expected, a weakly-inverse correlation between age and 25(OH)D (R=-0.50, p=0.020), and between BMD and PTH (R=-0.48, p=0.027) was found. There was a strong relationship between IGF-I and BMD (R=0.64, p=0.0016), and between age and IGF-I (R=-0.70, p<0.001), while IGF-I did not correlate with 25(OH)D (R=-0.16, p=0.48) or BMI (R=-0.089, p=0.70). In conclusion, in this selected group of elderly women, we found a strong relationship of increased bone resorption, expressed as BMD, to calcium-regulating hormones PTH and IGF-I, while 25(OH)D and BMI seem to be independent of bone mineralization status. PMID:23606700

  14. Diminished Bone Strength Is Observed in Adult Women and Men Who Sustained a Mild Trauma Distal Forearm Fracture During Childhood

    PubMed Central

    Farr, Joshua N; Khosla, Sundeep; Achenbach, Sara J; Atkinson, Elizabeth J; Kirmani, Salman; McCready, Louise K; Melton, L Joseph; Amin, Shreyasee

    2015-01-01

    Children and adolescents who sustain a distal forearm fracture (DFF) owing to mild, but not moderate, trauma have reduced bone strength and cortical thinning at the distal radius and tibia. Whether these skeletal deficits track into adulthood is unknown. Therefore, we studied 75 women and 75 men (age range, 20 to 40 years) with a childhood (age <18 years) DFF and 150 sex-matched controls with no history of fracture using high-resolution peripheral quantitative computed tomography (HRpQCT) to examine bone strength (ie, failure load) by micro–finite element (µFE) analysis, as well as cortical and trabecular bone parameters at the distal radius and tibia. Level of trauma (mild versus moderate) was assigned using a validated classification scheme, blind to imaging results. When compared to sex-matched, nonfracture controls, women and men with a mild trauma childhood DFF (eg, fall from standing height) had significant reductions in failure load (p < 0.05) of the distal radius, whereas women and men with a moderate trauma childhood DFF (eg, fall while riding a bicycle) had values similar to controls. Consistent findings were observed at the distal tibia. Furthermore, women and men with a mild trauma childhood DFF had significant deficits in distal radius cortical area (p < 0.05), and significantly lower dual-energy X-ray absorptiometry (DXA)-derived bone density at the radius, hip, and total body regions compared to controls (all p < 0.05). By contrast, women and men with a moderate trauma childhood DFF had bone density, structure, and strength that did not differ significantly from controls. These findings in young adults are consistent with our observations in children/adolescents with DFF, and they suggest that a mild trauma childhood DFF may presage suboptimal peak bone density, structure, and strength in young adulthood. Children and adolescents who suffer mild trauma DFFs may need to be targeted for lifestyle interventions to help achieve improved skeletal

  15. Physical activity estimated by the bone-specific physical activity questionnaire is also associated with cardiovascular risk.

    PubMed

    Weeks, Benjamin K; Purvis, Meredith; Beck, Belinda R

    2016-11-01

    The nature of physical activity that benefits bone is traditionally thought to differ from that benefiting cardiovascular health. Accordingly, exercise recommendations for improving bone health and cardiovascular health are largely incongruent. Our aim was to determine the associations between high-impact physical activity participation and both cardiovascular disease risk factors and bone mass. We recruited 94 men and women (age 34.0 ± 13.3 years) to undergo measures of cardiovascular disease risk (BMI, total cholesterol, fasting blood glucose, waist-to-hip ratio, and mean arterial pressure) and dual-energy X-ray absorptiometry (DXA XR-800, Norland) measures of bone mass (femoral neck, lumbar spine, and whole body BMD) and body composition (whole body lean mass and fat mass). Physical activity participation was estimated using the bone-specific physical activity questionnaire (BPAQ). Those in the upper tertile for current BPAQ score exhibited lower total cholesterol, waist-to-hip ratio, and mean arterial pressure than those in the lower tertiles (P < 0.05) with the relationship being mild-to-moderate (r = -0.49 to 0.29, P < 0.01). Those in the upper tertile for BPAQ score also had greater lumbar spine BMD than those in the lower tertile (P = 0.008), with BPAQ score predicting 6% of the variance in BMD (P = 0.02). We conclude that high-impact physical activity as captured by the BPAQ may be beneficial for both bone health and for attenuating cardiovascular disease risk. PMID:26937743

  16. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    PubMed Central

    Lambert, Laura J.; Challa, Anil K.; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S.; Nagy, Tim R.; Eberhardt, Alan W.; Estep, Patrick N.; Kesterson, Robert A.

    2016-01-01

    ABSTRACT Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. PMID:27483347

  17. The Initial Slope of the Variogram, Foundation of the Trabecular Bone Score, Is Not or Is Poorly Associated With Vertebral Strength.

    PubMed

    Maquer, Ghislain; Lu, Yongtao; Dall'Ara, Enrico; Chevalier, Yan; Krause, Matthias; Yang, Lang; Eastell, Richard; Lippuner, Kurt; Zysset, Philippe K

    2016-02-01

    Trabecular bone score (TBS) rests on the textural analysis of dual-energy X-ray absorptiometry (DXA) to reflect the decay in trabecular structure characterizing osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible because prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly owing to an unrealistic setup and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings were used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation ("full vertebra"); 2) via the classical endplate embedding ("vertebral body"); or 3) via a ball joint to induce anterior wedge failure ("vertebral section"). High-resolution peripheral quantitative computed tomography (HR-pQCT) scans acquired from prior testing were used to simulate anterior-posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (F(exp)) and apparent failure stress (σexp) was assessed, and their relative contribution to a multilinear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with F(exp) and σexp , except for the "vertebral body" case (r(2) = 0.396, p = 0.028). Aside from the "vertebra section" setup where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing setup, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk. PMID:26234619

  18. The Initial Slope of the Variogram, Foundation of the Trabecular Bone Score, Is Not or Is Poorly Associated With Vertebral Strength.

    PubMed

    Maquer, Ghislain; Lu, Yongtao; Dall'Ara, Enrico; Chevalier, Yan; Krause, Matthias; Yang, Lang; Eastell, Richard; Lippuner, Kurt; Zysset, Philippe K

    2016-02-01

    Trabecular bone score (TBS) rests on the textural analysis of dual-energy X-ray absorptiometry (DXA) to reflect the decay in trabecular structure characterizing osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible because prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly owing to an unrealistic setup and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings were used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation ("full vertebra"); 2) via the classical endplate embedding ("vertebral body"); or 3) via a ball joint to induce anterior wedge failure ("vertebral section"). High-resolution peripheral quantitative computed tomography (HR-pQCT) scans acquired from prior testing were used to simulate anterior-posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (F(exp)) and apparent failure stress (σexp) was assessed, and their relative contribution to a multilinear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with F(exp) and σexp , except for the "vertebral body" case (r(2) = 0.396, p = 0.028). Aside from the "vertebra section" setup where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing setup, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk.

  19. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry.

    PubMed

    Ido, Ayumi; Nakayama, Yuki; Ishii, Kojiro; Iemitsu, Motoyuki; Sato, Koji; Fujimoto, Masahiro; Kurihara, Toshiyuki; Hamaoka, Takafumi; Satoh-Asahara, Noriko; Sanada, Kiyoshi

    2015-01-01

    Sarcopenia has never been diagnosed based on site-specific muscle loss, and little is known about the relationship between site-specific muscle loss and metabolic syndrome (MetS) risk factors. To this end, this cross-sectional study aimed to investigate the relationship between site-specific muscle size and MetS risk factors. Subjects were 38 obese men and women aged 40-82 years. Total body fat and lean body mass were assessed by whole-body dual-energy X-ray absorptiometry (DXA) scan. Muscle thickness (MTH) was measured using B-mode ultrasound scanning in six body regions. Subjects were classified into general obesity (GO) and sarcopenic obesity (SO) groups using the threshold values of one standard deviation below the sex-specific means of either MTH or skeletal muscle index (SMI) measured by DXA. MetS risk score was acquired by standardizing and summing the following continuously distributed variables: visceral fat area, mean blood pressure, HbA1c, and serum triglyceride / high density lipoprotein cholesterol, to obtain the Z-score. Multiple regression analysis revealed that the MetS risk score was independently associated with abdominal MTH in all subjects, but not with MTH in other muscle regions, including the thigh. Although HbA1c and the number of MetS risk factors in the SO group were significantly higher than those in the GO group, there were no significant differences between GO and SO groups as defined by SMI. Ultrasound-derived abdominal MTH would allow a better assessment of sarcopenia in obese patients and can be used as an alternative to the conventionally-used SMI measured by DXA. PMID:26700167

  20. Dual-Energy X-Ray Absorptiometry, Skinfold Thickness, and Waist Circumference for Assessing Body Composition in Ambulant and Non-Ambulant Wheelchair Games Players.

    PubMed

    Willems, Annika; Paulson, Thomas A W; Keil, Mhairi; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2015-01-01

    Field-based assessments provide a cost-effective and accessible alternative to dual-energy X-ray absorptiometry (DXA) for practitioners determining body composition in athletic populations. It remains unclear how the range of physical impairments classifiable in wheelchair sports may affect the utility of field-based body composition techniques. The present study assessed body composition using DXA in 14 wheelchair games players who were either wheelchair dependent (non-walkers; n = 7) or relied on a wheelchair for sports participation only (walkers; n = 7). Anthropometric measurements were used to predict body fat percentage with existing regression equations established for able-bodied persons by Sloan and Weir, Durnin and Womersley, Lean et al, Gallagher et al, and Pongchaiyakul et al. In addition, linear regression analysis was performed to calculate the association between body fat percentage and BMI, waist circumference, sum of 6 skinfold thickness and sum of 8 skinfold thickness. Results showed that non-walkers had significantly lower total lean tissue mass (46.2 ± 6.6 kg vs. 59.4 ± 8.2 kg, P = 0.006) and total body mass (65.8 ± 4.2 kg vs. 79.4 ± 14.9 kg; P = 0.05) than walkers. Body fat percentage calculated from most existing regression equations was significantly lower than that from DXA, by 2 to 9% in walkers and 8 to 14% in non-walkers. Of the anthropometric measurements, the sum of 8 skinfold thickness had the lowest standard error of estimation in predicting body fat content. In conclusion, existing anthropometric equations developed in able-bodied populations substantially underestimated body fat content in wheelchair athletes, particularly non-walkers. Impairment specific equations may be needed in wheelchair athletes.

  1. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study.

    PubMed

    Iki, Masayuki; Tamaki, Junko; Kadowaki, Eiko; Sato, Yuho; Dongmei, Namiraa; Winzenrieth, Renaud; Kagamimori, Sadanobu; Kagawa, Yoshiko; Yoneshima, Hideo

    2014-02-01

    Bone strength is predominantly determined by bone density, but bone microarchitecture also plays an important role. We examined whether trabecular bone score (TBS) predicts the risk of vertebral fractures in a Japanese female cohort. Of 1950 randomly selected women aged 15 to 79 years, we analyzed data from 665 women aged 50 years and older, who completed the baseline study and at least one follow-up survey over 10 years, and who had no conditions affecting bone metabolism. Each survey included spinal imaging by dual-energy X-ray absorptiometry (DXA) for vertebral fracture assessment and spine areal bone mineral density (aBMD) measurement. TBS was obtained from spine DXA scans archived in the baseline study. Incident vertebral fracture was determined when vertebral height was reduced by 20% or more and satisfied McCloskey-Kanis criteria or Genant's grade 2 fracture at follow-up. Among eligible women (mean age 64.1 ± 8.1 years), 92 suffered incident vertebral fractures (16.7/10(3) person-years). These women were older with lower aBMD and TBS values relative to those without fractures. The unadjusted odds ratio of vertebral fractures for one standard deviation decrease in TBS was 1.98 (95% confidence interval [CI] 1.56, 2.51) and remained significant (1.64, 95% CI 1.25, 2.15) after adjusting for aBMD. The area under the receiver operating characteristic curve of TBS and aBMD combined was 0.700 for vertebral fracture prediction and was not significantly greater than that of aBMD alone (0.673). However, reclassification improvement measures indicated that TBS and aBMD combined significantly improved risk prediction accuracy compared with aBMD alone. Further inclusion of age and prevalent vertebral deformity in the model improved vertebral fracture prediction, and TBS remained significant in the model. Thus, lower TBS was associated with higher risk of vertebral fracture over 10 years independently of aBMD and clinical risk factors including prevalent vertebral

  2. Supplementation of L-arginine prevents glucocorticoid-induced reduction of bone growth and bone turnover abnormalities in a growing rat model.

    PubMed

    Pennisi, Pietra; D'Alcamo, Maria Antonia; Leonetti, Concetta; Clementi, Anna; Cutuli, Vincenza Maria; Riccobene, Stefania; Parisi, Natalia; Fiore, Carmelo Erio

    2005-01-01

    The present study was designed to evaluate the effects of glucocorticoid (GC) treatment on bone turnover and bone mineral density in the growing rat. Because of the recent evidence that nitric oxide (NO) can counteract prednisolone-induced bone loss in mature rats, we examined the effect on bone of the NO donor L: -arginine in young male rats, in which bone mass is increased by the same biological mechanism as in children and adolescents. Thirty-six 10-week-old Sprague-Dawley male rats were assigned to six groups of six animals each, and treated for 4 weeks with either vehicle (once a week subcutaneous injection of 100 microl of sesame oil); prednisolone sodium succinate, 5 mg/kg, 5 days per week by intramuscular injection (i.m.); L-arginine, 10 mg/kg intraperitoneally (i.p.) once a day; N(G)-nitro-L-arginine methylester (L-NAME), 50 mg/kg subcutaneously once a day; prednisolone sodium succinate 5 mg/kg, 5 days per week i.m. +L-arginine 10 mg/kg i.p. once a day; or prednisolone sodium succinate, 5 mg/kg, 5 days per week i.m. +L-NAME 50 mg/kg subcutaneously once a day. Serum calcium, alkaline phosphatase (ALP), osteocalcin, and the C-terminal telopeptides of type I collagen (RatLaps) were measured at baseline conditions and after 2 and 4 weeks. Prior to treatment, and after 2 and 4 weeks, the whole body, vertebral, pelvic, and femoral bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) scanning. Prednisolone and prednisolone+L-NAME treated rats had significantly lower ALP and osteocalcin levels than controls at 2 and 4 weeks, and significantly higher levels of Rat-Laps than controls at 4 weeks. Prednisolone, L-NAME, and prednisolone+L-NAME produced a significant inhibition of bone accumulation and bone growth at all sites measured. Supplementation with L-arginine appeared to prevent the inhibition of bone growth and increase in bone resorption induced by prednisolone. These data would suggest, for the first time, that supplementation

  3. Seven years of follow up of trabecular bone score, bone mineral density, body composition and quality of life in adults with growth hormone deficiency treated with rhGH replacement in a single center

    PubMed Central

    Allo Miguel, Gonzalo; Serraclara Plá, Alicia; Partida Muñoz, Myriam Lorena; Martínez Díaz-Guerra, Guillermo; Hawkins, Federico

    2016-01-01

    Background: Adult growth hormone deficiency (AGHD) is characterized by impaired physical activity, diminished quality of life (QoL), weight and fat mass gain, decreased muscle mass and decreased bone mineral density (BMD). The aim of this study was to evaluate the effects of long-term treatment (7 years) with recombinant human growth hormone (rhGH) on metabolic parameters, body composition (BC), BMD, bone microarchitecture and QoL. Patients and Methods: In this prospective study, BMD and BC were assessed by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture was assessed with the trabecular bone score (TBS). The QoL-AGHDA test was used to assess QoL. Results: A total of 18 AGHD patients (mean age, 37.39 ± 12.42) were included. Body weight and body mass index (BMI) showed a significant increase after 7 years (p = 0.03 and p = 0.001, respectively). There was a significant tendency of body fat mass (BFM) (p = 0.028) and lean body mass (LBM) (p = 0.005) to increase during the 7 years of rhGH treatment. There was a significant increase in lumbar spine (LS) BMD (p = 0.01). TBS showed a nonsignificant decrease after 7 years of treatment, with a change of -0.86% ± 1.95. QoL showed a large and significant improvement (p = 0.02). Conclusion: Long-term rhGH treatment in AGHD patients induces a large and sustained improvement in QoL. Metabolic effects are variable with an increase in LBM as well as in BMI and BFM. There is a positive effect on BMD based on the increase in LS BMD, which stabilizes during long-term therapy and is not associated with a similar increase in bone microarchitecture. PMID:27293538

  4. Like Mother, Like Daughter? Dietary and Non-Dietary Bone Fracture Risk Factors in Mothers and Their Daughters

    PubMed Central

    SOBAS, Kamila; WADOLOWSKA, Lidia; SLOWINSKA, Malgorzata Anna; CZLAPKA-MATYASIK, Magdalena; WUENSTEL, Justyna; NIEDZWIEDZKA, Ewa

    2015-01-01

    Background: The aim of this study was to demonstrate similarities and differences between mothers and daughters regarding dietary and non-dietary risk factors for bone fractures and osteoporosis. Methods: The study was carried out in 2007–2010 on 712 mothers (29–59 years) and daughters (12–21 years) family pairs. In the sub-sample (170 family pairs) bone mineral density (BMD) was measured for the forearm by dual-energy x-ray absorptiometry (DXA). The consumption of dairy products was determined with a semi-quantitative food frequency questionnaire (ADOS-Ca) and calcium intake from the daily diet was calculated. Results: The presence of risk factors for bone fractures in mothers and daughters was significantly correlated. The Spearman rank coefficient for dietary factors of fracture risk was 0.87 (P<0.05) in whole sub-sample, 0.94 (P<0.05) in bottom tercile of BMD, 0.82 (P<0.05) in middle tercile of BMD, 0.54 (P>0.05) in upper tercile of BMD and for non-dietary factors of fracture risk was 0.83 (P<0.05) in whole sub-sample, 0.86 (P<0.05) in bottom tercile of BMD, 0.93 (P<0.05) in middle tercile of BMD, 0.65 (P<0.05) in upper tercile of BMD. Conclusions: Our results confirm the role of the family environment for bone health and document the stronger effect of negative factors of the family environment as compared to other positive factors on bone fracture risk. PMID:26576372

  5. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice

    PubMed Central

    Sawin, Emily A.; Stroup, Bridget M.; Murali, Sangita G.; O’Neill, Lucas M.; Ntambi, James M.

    2016-01-01

    Background Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. Objective To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. Methods Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. Results Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat

  6. Predicting visceral adipose tissue by MRI using DXA and anthropometry in adolescents and young adults

    PubMed Central

    Laddu, Deepika R.; Lee, Vinson R.; Blew, Robert M.; Sato, Tetsuya; Lohman, Timothy G.; Going, Scott B.

    2015-01-01

    Objective Accumulation of intra-abdominal (visceral) adipose tissue, independent of total adiposity, is associated with development of metabolic abnormalities such as insulin resistance and type-2 diabetes in children and adults. The objective of this study was to develop prediction equations for estimating visceral adiposity (VAT) measured by magnetic resonance imaging (MRI) using anthropometric variables and measures of abdominal fat mass from DXA in adolescents and young adults. Methods Cross-sectional data was collected from a multiethnic population of seventy males and females, aged 12–25 years, with BMI ranging from 14.5–38.1 kg/m2. Android (AFM; android region as defined by manufacturers instruction) and lumbar L1-L4 regional fat masses were assessed using DXA (GE Lunar Prodigy; GE Lunar Corp, Madison, WI, USA). Criterion measures of intra-abdominal visceral fat were obtained using single-slice MRI (General Electric Signa Model 5x 1.5T) and VAT area was analyzed at the level OF L4–L5. Image analysis was carried out using ZedView 3.1. Results DXA measures of AFM (r=0.76) and L1-L4 (r=0.71) were significantly (P<0.0001) correlated with MRI-measured VAT. DXA AFM, together with gender and weight, explained 62% of the variance in VAT (SEE=10.06 cm2). DXA L1-L4 fat mass with gender explained 54% of the variance in VAT (SEE=11.08 cm2). Addition of the significant interaction, gender × DXA fat mass, improved prediction of VAT from AFM (Radj2=0.61, SEE=10.10cm2) and L1-L4 (Radj2=0.59, SEE=10.39cm2). Conclusion These results demonstrate that VAT is accurately estimated from regional fat masses measured by DXA in adolescents and young adults. PMID:26097436

  7. Prediction of low bone mineral density in patients with inflammatory bowel diseases

    PubMed Central

    Schüle, Solvey; Rossel, Jean-Benoît; Frey, Diana; Biedermann, Luc; Scharl, Michael; Zeitz, Jonas; Freitas-Queiroz, Natália; Pittet, Valérie; Vavricka, Stephan R; Rogler, Gerhard

    2016-01-01

    Background Low bone mineral density (BMD) remains a frequent problem in patients with inflammatory bowel diseases (IBD). There is no general agreement regarding osteoporosis screening in IBD patients. Methods Cases of low BMD and disease characteristics were retrieved from 3172 patients of the Swiss IBD cohort study. Multivariate logistic regression analysis was conducted for predictive modeling. In a subgroup of 877 patients, 253 dual-energy X-ray absorptiometry (DXA) scans were available for validation. Results Low BMD was prevalent in 19% of patients. We identified seven predictive factors: type of IBD, age, recent steroid usage, low body mass index, perianal disease, recent high disease activity and malabsorption syndrome. Low BMD could be predicted with a sensitivity of 79% and a specificity of 64%, a positive predictive value (PPV) of 35% and a negative predictive value (NPV) of 93%. The area under the curve of the receiver operating characteristics was 0.78. In the validation cohort we calculated a PPV of 26% and an NPV of 88%. Conclusion We provide a comprehensive analysis of risk factors for low BMD and propose a predictive model with seven clinical variables. The high NPV of models such as ours might help in excluding low BMD to prevent futile investigations.

  8. Antioxidant intake and bone status in a cross-sectional study of Brazilian women with osteoporosis.

    PubMed

    De França, Natasha A G; Camargo, Marilia B R; Lazaretti-Castro, Marise; Martini, Lígia Araújo

    2013-04-01

    This study aimed to investigate the association between antioxidant intake and bone mineral density (BMD) in postmenopausal women with osteoporosis. We conducted a cross-sectional study with 150 women, mean age 68.7 (SD 9.1) years. BMD and body composition were obtained using dual-energy X-ray absorptiometry (DXA). We assessed anthropometric measures and dietary intake and applied an adapted Dietary Antioxidant Quality Score (a-DAQS) to evaluate the antioxidant consumption. 65.3% of women had higher scores on the a-DAQS. We found no relationship between the a-DAQS and BMD; however, we observed an inverse correlation between vitamin A and lumbar spine (LS) BMD in g/cm(2) (r = - 0.201; p = 0.013). An analysis of variance (ANOVA) test also showed that vitamin A was negatively associated with the LS BMD (F = 6.143; p = 0.013, but without significance when a multivariate analysis was applied. The a-DAQS did not have an association with BMD; however, Vitamin A showed a negative correlation with BMD, but such an association disappeared when the other antioxidants were taken together. Our findings encourage an antioxidant-based dietary approach to osteoporosis prevention and treatment, since the negative effect of vitamin A was neutralized by the intake of such nutrients.

  9. Increased bone mineral density in Aboriginal and Torres Strait Islander Australians: impact of body composition differences.

    PubMed

    Maple-Brown, L J; Hughes, J; Piers, L S; Ward, L C; Meerkin, J; Eisman, J A; Center, J R; Pocock, N A; Jerums, G; O'Dea, K

    2012-07-01

    Bone mineral density (BMD) has been reported to be both higher and lower in Indigenous women from different populations. Body composition data have been reported for Indigenous Australians, but there are few published BMD data in this population. We assessed BMD in 161 Indigenous Australians, identified as Aboriginal (n=70), Torres Strait Islander (n=68) or both (n=23). BMD measurements were made on Norland-XR46 (n=107) and Hologic (n=90) dual-energy X-ray absorptiometry (DXA) machines. Norland BMD and body composition measurements in these individuals, and also in 36 Caucasian Australians, were converted to equivalent Hologic BMD (BMD(H)) and body composition measurements for comparison. Femoral neck (FN) and lumbar spine Z-scores were high in Indigenous participants (mean FN Z-score: Indigenous men +0.98, p<0.0001 vs. mean zero; Indigenous women +0.82, p<0.0001 vs. mean zero). FN BMD(H) was higher in Aboriginal and/or Torres Strait Islander than Caucasian participants, after adjusting for age, gender, diabetes and height and remained higher in men after addition of lean mass to the model. We conclude that FN BMD is higher in Aboriginal and/or Torres Strait Islander Australians than Caucasian Australian reference ranges and these differences still remained significant in men after adjustment for lean mass. It remains to be seen whether these BMD differences translate to differences in fracture rates.

  10. Atypical Femoral Fracture: 2015 Position Statement of the Korean Society for Bone and Mineral Research.

    PubMed

    Yang, Kyu Hyun; Min, Byung Woo; Ha, Yong-Chan

    2015-08-01

    Bisphosphonate (BP) is a useful anti-resorptive agent which decreases the risk of osteoporotic fracture by about 50%. However, recent evidences have shown its strong correlation with the occurrence of atypical femoral fracture (AFF). The longer the patient takes BP, the higher the risk of AFF. Also, the higher the drug adherence, the higher the risk of AFF. It is necessary to ask the patients who are taking BP for more than 3 years about the prodromal symptoms such as dull thigh pain. Simple radiography, bone scan, and magnetic resonance imaging (MRI) are good tools for the diagnosis of AFF. The pre-fracture lesion depicted on the hip dual energy X-ray absorptiometry (DXA) images should not be missed. BP should be stopped immediately after AFF is diagnosed and calcium and vitamin D (1,000 to 2,000 IU) should be administered. The patient should be advised not to put full weight on the injured limb. Daily subcutaneous injection of recombinant human parathyroid hormone (PTH; 1-34) is recommended if the patient can afford it. Prophylactic femoral nailing is indicated when the dreaded black line is visible in the lateral femoral cortex, especially in the subtrochanteric area. PMID:26389082

  11. Short-term changes in bone and mineral metabolism following gastrectomy in gastric cancer patients.

    PubMed

    Baek, Ki Hyun; Jeon, Hae Myung; Lee, Seong Su; Lim, Dong Jun; Oh, Ki Won; Lee, Won Young; Rhee, Eun Jung; Han, Je Ho; Cha, Bong Yun; Lee, Kwang Woo; Son, Ho Young; Kang, Sung Koo; Kang, Moo Il

    2008-01-01

    Changes in bone and mineral metabolism that occur after gastrectomy have long been recognized. Gastrectomy has been identified as a risk factor for decreased bone mass and the increased fracture incidence. Previous investigations concerning postgastrectomy bone disease have been observational studies. No prospective studies have been reported that quantify the amount of bone loss after gastrectomy within the same patients. This study investigated 46 patients undergoing gastrectomy for gastric adenocarcinoma and analyzed 36 patients (58.1+/-10.8 years, 24 men and 12 women) who had dual energy X-ray absorptiometry (DXA) performed before and 1 year after gastrectomy. Systemic adjuvant chemotherapy was administered to 14 patients. Blood was sampled from all patients to determine serum calcium, phosphorous, and bone turnover marker levels before gastrectomy and at 1, 3, 6 and 12 months after surgery and for serum parathyroid hormone (PTH) and 25-hydroxyvitamin D levels before and 12 months after surgery. The mean bone loss in the lumbar spine, total hip, femoral neck, and trochanter, which was calculated as the percentage change from the baseline to the level measured at 12 months, was 5.7% (P<0.01), 5.4% (P<0.01), 6.6% (P<0.01) and 8.7% (P<0.01), respectively. Bone loss was generally greater in the group receiving chemotherapy. The serum calcium and phosphorous levels were not changed significantly and remained within the normal range throughout the observation period. After gastrectomy, the level of ICTP increased and reached a peak at 1 and 3 months, and progressively declined to baseline by 12 months. The osteocalcin levels were not coupled to an increase before 6 months. The level of 25-hydroxyvitamin D at 12 months postgastrectomy was not significantly changed compared to the baseline, however, the PTH levels increased by a mean of 63.6% at 12 months compared to the baseline (P<0.01). Significant correlations were found between the percent change in the BMD at the

  12. Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis

    PubMed Central

    Moreno, Rodrigo; Brismar, Torkel B.; Pahr, Dieter H.; Smedby, Örjan

    2016-01-01

    Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young’s modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research. PMID:27513664

  13. Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis.

    PubMed

    Klintström, Eva; Klintström, Benjamin; Moreno, Rodrigo; Brismar, Torkel B; Pahr, Dieter H; Smedby, Örjan

    2016-01-01

    Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young's modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research. PMID:27513664

  14. Appropriate use of bone densitometry

    SciTech Connect

    Genant, H.K.; Block, J.E.; Steiger, P.; Glueer, C.C.; Ettinger, B.; Harris, S.T.

    1989-03-01

    The authors discuss current capabilities of three common bone densitometry techniques--single photon absorptiometry, dual photon absorptiometry, and quantitative computed tomography--and potential capabilities of new innovations of each of these techniques. They believe that use of bone densitometry is valid in the following four clinical applications and recommend its usage to (a) assess patients with metabolic diseases known to affect the skeleton, (b) assess perimenopausal women for initiation of estrogen replacement therapy, (c) establish a diagnosis of osteoporosis or assess its severity in the context of general clinical care, and (d) monitor the efficacy of treatment interventions or the natural course of disease.

  15. Age classes and sex differences in the skull of the Mediterranean monk seal, Monachus monachus (Hermann, 1779). A study based on bone shape and density.

    PubMed

    Mo, Giulia; Zotti, Alessandro; Agnesi, Sabrina; Finoia, Maria Grazia; Bernardini, Daniele; Cozzi, Bruno

    2009-04-01

    This study analyzes morphometrically 17 skulls of the Mediterranean monk seal Monachus monachus housed in different Italian Museums and collections. We considered several morphometric variables (31 linear, 1 volumetric and 1 surface area measurements). In addition, we identified, measured and compared two nonmorphometric variables, namely, the bone densities of selected areas obtained using a dual-energy X-ray absorptiometry (DXA) device. The high correlation coefficient of all variables indicated continuous growth with the onset of age. The ranking of the hierarchical cluster analysis identified the presence of three main groups containing individuals of similar sizes: lactating pups and yearlings; subadult individuals and adult females; and adult males. Smaller groups were identified within these clusters, and their respective allocations into two subgroups were argued on the basis of skull development and other factors. The discriminant analysis of the three main groups indicated a discriminant diagnostic key, based on condilobasilar length (CBlr-L); maximum mandibular branch height (MB-H); and surface area of the bulla tympanica. The proposed diagnostic key is useful to classify monk seal skulls of unidentified age and sex. The data reported here suggest that in this species certain adult skull growth features (enhanced tympanic bullae surface area extension, occipital bone density) are sexually dimorphic and possibly related to specific anatomical functions. These functions may include an enhanced auditory capacity; an increased development of the cranial musculature capable of supporting a large skull and guaranteeing the mandibular strength necessary for mastication; and male to male social interactions. PMID:19301280

  16. Double-energy X-ray absorptiometry in the diagnosis of osteopenia in ancient skeletal remains.

    PubMed

    González-Reimers, E; Velasco-Vázquez, J; Arnay-de-la-Rosa, M; Santolaria-Fernández, F; Gómez-Rodríguez, M A; Machado-Calvo, M

    2002-06-01

    Bone mineral density (BMD) assessed by double-energy X-ray absorptiometry (DEXA) accurately estimates the bone mass in living individuals, and is thus the method usually employed in the diagnosis and follow-up of osteopenia. It is preferred, in clinical settings, to the more invasive and destructive histomorphometrical assessment of trabecular bone mass in undecalcified bone samples. This study was performed in order to examine the value of DEXA-assessed BMD at the proximal end of the right tibia, either alone or in combination with the cortico-medullary index at the midshaft point of the right tibia (CMI), in the diagnosis of osteopenia in a prehistoric sample composed of 95 pre-Hispanic individuals from Gran Canaria. Age at death could be estimated in 34 cases. Diagnosis of osteopenia was performed by histomorphometrical assessment of trabecular bone mass (TBM) in an undecalcified bone section of a small portion of the proximal epiphysis of the right tibia. A high prevalence of osteopenia was found among the population of Gran Canaria. Both TBM and BMD were significantly lower in the older individuals than in younger ones, and BMD was also significantly lower in female individuals. BMD was moderately correlated with TBM (r = +0.51); the correlation was higher if CMI was included (multiple r = +0.615). BMD values lower than 0.7 g/cm2 showed a high specificity (>93%) at excluding normal TBM values. These methods were prospectively applied in a further sample of 21 right tibiae from Gran Canaria, Tenerife, and El Hierro. The results were similar to those obtained in the larger sample. Thus, DEXA-assessed BMD combined with CMI (noninvasive procedures) may be useful in detecting osteopenia in ancient populations.

  17. Contributions of fat mass and fat distribution to hip bone strength in healthy postmenopausal Chinese women.

    PubMed

    Shao, Hong Da; Li, Guan Wu; Liu, Yong; Qiu, Yu You; Yao, Jian Hua; Tang, Guang Yu

    2015-09-01

    The fat and bone connection is complicated, and the effect of adipose tissue on hip bone strength remains unclear. The aim of this study was to clarify the relative contribution of body fat accumulation and fat distribution to the determination of proximal femur strength in healthy postmenopausal Chinese women. This cross-sectional study enrolled 528 healthy postmenopausal women without medication history or known diseases. Total lean mass (LM), appendicular LM (ALM), percentage of lean mass (PLM), total fat mass (FM), appendicular FM (AFM), percentage of body fat (PBF), android and gynoid fat amount, android-to-gynoid fat ratio (AOI), bone mineral density (BMD), and proximal femur geometry were measured by dual energy X-ray absorptiometry. Hip structure analysis was used to compute some variables as geometric strength-related parameters by analyzing the images of the hip generated from DXA scans. Correlation analyses among anthropometrics, variables of body composition and bone mass, and geometric indices of hip bone strength were performed with stepwise linear regression analyses as well as Pearson's correlation analysis. In univariate analysis, there were significantly inverse correlations between age, years since menopause (YSM), hip BMD, and hip geometric parameters. Bone data were positively related to height, body weight, LM, ALM, FM, AFM, and PBF but negatively related to AOI and amount of android fat (all P < 0.05). AFM and AOI were significantly related to most anthropometric parameters. AFM was positively associated with height, body weight, and BMI. AFM was negatively associated with age and YSM. AOI was negatively associated with height, body weight, and BMI. AOI positively associated with age and YSM. LM, ALM, and FM had a positive relationship with anthropometric parameters (P < 0.05 for all). PLM had a negative relationship with those parameters. The correlation between LM, ALM, FM, PLM, ALM, age, and YSM was not significant. In multivariate

  18. Body Segment Inertial Parameters of elite swimmers Using DXA and indirect Methods

    PubMed Central

    Rossi, Marcel; LYTTLE, Andrew; EL-SALLAM, Amar; BENJANUVATRA, Nat; BLANKSBY, Brian

    2013-01-01

    As accurate body segment inertial parameters (BSIPs) are difficult to obtain in motion analysis, this study computed individual BSIPs from DXA scan images. Therefore, by co-registering areal density data with DXA grayscale image, the relationship between pixel color gradient and the mass within the pixel area could be established. Thus, one can calculate BSIPs, including segment mass, center of mass (COM) and moment of inertia about the sagittal axis (Ixx). This technique calculated whole body mass very accurately (%RMSE of < 1.5%) relatively to results of the generic DXA scanner software. The BSIPs of elite male and female swimmers, and young adult Caucasian males (n = 28), were computed using this DXA method and 5 other common indirect estimation methods. A 3D surface scan of each subject enabled mapping of key anthropometric variables required for the 5 indirect estimation methods. Mass, COM and Ixx were calculated for seven body segments (head, trunk, head + trunk, upper arm, forearm, thigh and shank). Between-group comparisons of BSIPs revealed that elite female swimmers had the lowest segment masses of the three groups (p < 0.05). Elite male swimmers recorded the greatest inertial parameters of the trunk and upper arms (p < 0.05). Using the DXA method as the criterion, the five indirect methods produced errors greater than 10% for at least one BSIP in all three populations. Therefore, caution is required when computing BSIPs for elite swimmers via these indirect methods, DXA accurately estimated BSIPs in the frontal plane. Key Points Elite swimmers have significantly different body segment inertial parameters than young adult Caucasian males. The errors computed from indirect BSIP estimation methods are large regardless whether applied to elite swimmers or young adult Caucasian males. No indirect estimation method consistently performed best. PMID:24421737

  19. Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population.

    PubMed

    Chen, Xiao; Wang, Keyue; Wang, Zhongqiu; Gan, Caohui; He, Ping; Liang, Yihuai; Jin, Taiyi; Zhu, Guoying

    2014-06-01

    It has been indicated that both cadmium (Cd) and lead (Pb) may have adverse effects on the bone. However, most studies have only focused on a single factor. The primary and main and interactive effects of Cd and Pb on bone mineral density (BMD) in a Chinese population were observed in this study. A total of 321 individuals (202 women and 119 men), aged 27 years and older, living in control and polluted areas, were recruited to participate in this study. The BMD was measured through dual energy X-ray absorptiometry (DXA) at the proximal radius and ulna. The samples of urine and blood were collected to determine the levels of Cd and Pb in the urine (UCd and UPb) and blood (BCd and BPb). The Cd and Pb levels of people living in the polluted area were significantly higher than those living in the control area (p<0.05). The BMD of women living in polluted area was significantly lower than that of women living in the control area (p<0.05). Furthermore, the BMD decreased with increasing of BCd (p<0.05), BPb and UPb in women. The likelihood of low BMD was associated with higher BCd in women (OR=2.5, 95% CI: 1.11-5.43) and BPb in men (OR=4.49, 95% CI: 1.37-14.6). The relative extra risk index of low BMD for female and male subjects with both high levels of BCd and BPb was 0.45 and 1.16, respectively. This study strengthens previous evidence that cadmium and lead may influence the bone and also demonstrates that cadmium and lead may have interactive effects on BMD.

  20. Meconium Tenofovir Concentrations and Growth and Bone Outcomes in Prenatally Tenofovir Exposed HIV-Uninfected Children

    PubMed Central

    Himes, Sarah K.; Wu, Julia W.; Jacobson, Denise L.; Tassiopoulos, Katherine; Hazra, Rohan; Kacanek, Deborah; Van Dyke, Russell B.; Rich, Kenneth C.; Siberry, George K.; Huestis, Marilyn A.

    2015-01-01

    Background Maternal tenofovir disoproxil fumarate (TDF) treatment among HIV-infected pregnant women results in fetal tenofovir (TFV) exposure. Fetal TFV toxicity was demonstrated in animals, but most clinical investigations have not observed toxicity in humans. Methods We evaluated HIV-exposed, uninfected infants in the SMARTT cohort of the Pediatric HIV/AIDS Cohort Study whose mothers were prescribed TDF for ≥8 third trimester weeks. Infant dual-energy X-ray absorptiometry (DXA) scans were obtained at 0–4 weeks to measure whole body bone mineral content (BMC). Meconium TFV concentrations were quantified by liquid chromatography-tandem mass spectrometry. Results Fifty-eight TFV-exposed infants had meconium TFV quantified. Detectable concentrations were 11–48,100 ng/g; 3 infants had undetectable concentrations. Maternal TDF prescription duration ranged from 8–41 gestational weeks; infant gestational ages were 36–41 weeks. Meconium TFV concentrations were not correlated with TFV exposure duration or timing and did not vary by concomitant prescription of protease inhibitors. Increased meconium TFV concentrations were associated with greater gestational ages (ρ=0.29, P=0.03) and lower maternal plasma HIV RNA before delivery (ρ=−0.29, P=0.04). Meconium TFV concentrations were not associated with infant weight, length (n=58), or BMC (n=49). Conclusions For the first time, we explored associations between meconium TFV concentrations and infant growth and bone measurements; we did not observe a meconium concentration-dependent relationship for these infant outcomes. These findings support other clinical research failing to show dose-response relationships for growth and bone outcomes among intrauterine TFV-exposed infants. High meconium TFV concentrations correlated with low maternal viral load, suggesting maternal TDF adherence significantly contributes to meconium TFV concentrations. PMID:25961889

  1. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    SciTech Connect

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver; Odet, Christophe; Yot, Sophie; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Kotzki, Pierre-Olivier; Peyrin, Francoise

    2006-09-15

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further used for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.

  2. Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture.

    PubMed

    Leslie, William D; Orwoll, Eric S; Nielson, Carrie M; Morin, Suzanne N; Majumdar, Sumit R; Johansson, Helena; Odén, Anders; McCloskey, Eugene V; Kanis, John A

    2014-11-01

    Although increasing body weight has been regarded as protective against osteoporosis and fractures, there is accumulating evidence that fat mass adversely affects skeletal health compared with lean mass. We examined skeletal health as a function of estimated total body lean and fat mass in 40,050 women and 3600 men age ≥50 years at the time of baseline dual-energy X-ray absorptiometry (DXA) testing from a clinical registry from Manitoba, Canada. Femoral neck bone mineral density (BMD), strength index (SI), cross-sectional area (CSA), and cross-sectional moment of inertia (CSMI) were derived from DXA. Multivariable models showed that increasing lean mass was associated with near-linear increases in femoral BMD, CSA, and CSMI in both women and men, whereas increasing fat mass showed a small initial increase in these measurements followed by a plateau. In contrast, femoral SI was relatively unaffected by increasing lean mass but was associated with a continuous linear decline with increasing fat mass, which should predict higher fracture risk. During mean 5-year follow-up, incident major osteoporosis fractures and hip fractures were observed in 2505 women and 180 men (626 and 45 hip fractures, respectively). After adjustment for fracture risk assessment tool (FRAX) scores (with or without BMD), we found no evidence that lean mass, fat mass, or femoral SI affected prediction of major osteoporosis fractures or hip fractures. Findings were similar in men and women, without significant interactions with sex or obesity. In conclusion, skeletal adaptation to increasing lean mass was positively associated with BMD but had no effect on femoral SI, whereas increasing fat mass had no effect on BMD but adversely affected femoral SI. Greater fat mass was not independently associated with a greater risk of fractures over 5-year follow-up. FRAX robustly predicts fractures and was not affected by variations in body composition. PMID:24825359

  3. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    PubMed

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P < 0.001) and was followed by weight regain in a subgroup of 24 subjects (+6.3 ± 2.9 kg; P < 0.001). With weight loss, bone marrow and extra-osseous adipose tissue decreased whereas BMD increased at the total body, lumbar spine, and the legs (women only) but decreased at the pelvis (men only, all P < 0.05). The decrease in BMD(pelvis) correlated with the loss in visceral adipose tissue (VAT) (P < 0.05). Increases in BMD(legs) were reversed after weight regain and inversely correlated with BMD(legs) decreases. No other associations between changes in BMD and intra- or extra-osseous soft tissue composition were found. In conclusion, changes in extra-osseous soft tissue composition had a minor contribution to changes in BMD with weight loss and decreases in bone marrow adipose tissue (BMAT) were not related to changes in BMD.

  4. Effects of eight-month treatment with ONO-5334, a cathepsin K inhibitor, on bone metabolism, strength and microstructure in ovariectomized cynomolgus monkeys.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Nakanishi, Yasutomo; Nishikawa, Satoshi; Kayasuga, Ryoji; Kawada, Naoki; Kunishige, Akiko; Hashimoto, Yasuaki; Tanaka, Makoto; Sugitani, Masafumi; Kawabata, Kazuhito

    2014-08-01

    This study examined the effect of ONO-5334, a cathepsin K inhibitor, on bone turnover, mineral density (BMD), mechanical strength and microstructure in ovariectomized (OVX) cynomolgus monkeys. Vehicle, ONO-5334 (3, 10 or 30 mg/kg) or alendronate (0.5 mg/kg) was orally administered for eight months to sham- and OVX-operated monkeys. ONO-5334 dose-dependently suppressed OVX-induced increase in bone turnover markers (urinary C-terminal cross-linking telopeptide of type I collagen (CTX) and serum osteocalcin). At the dose of 30 mg/kg, ONO-5334 maintained urinary CTX at nearly zero level and kept serum osteocalcin around the level of the sham animals. Marker levels in the alendronate-treated animals were similar to those in the sham animals throughout the study. ONO-5334 dose-dependently reversed the effect of OVX on vertebral BMD as measured by dual-energy X-ray absorptiometry (DXA) with improvement of bone mechanical strength. Both ONO-5334 and alendronate suppressed OVX-induced changes in vertebral microstructure and turnover state. In the femoral neck, peripheral quantitative computed tomography (pQCT) analysis showed that ONO-5334 increased total and cortical BMD. In particular, ONO-5334 significantly increased cortical BMD with improvement of bone mechanical strength. In microstructural analysis, alendronate suppressed OVX-induced increase in femoral mid-shaft osteonal bone formation rate (BFR) to a level below that recorded in the sham group, whereas ONO-5334 at 30 mg/kg did not suppress periosteal, osteonal and endocortical BFR. This finding supports the significant effect of ONO-5334 on cortical BMD and mechanical strength in the femoral neck. The results of this study suggest that ONO-5334 has good therapeutic potential for the treatment of osteoporosis.

  5. The effect of menarche age, parity and lactation on bone mineral density in premenopausal ambulatory multiple sclerosis patients.

    PubMed

    Sioka, Chrissa; Fotopoulos, Andreas; Papakonstantinou, Stilianos; Georgiou, Athanasia; Pelidou, Sygliti-Henrietta; Kyritsis, Athanasios P; Kalef-Ezra, John A

    2015-07-01

    Although pregnancy and breast-feeding do not have any deleterious effect on disease activity in female multiple sclerosis (MS) patients, their role on bone mineral density (BMD) and osteoporosis risk is unknown. We investigated the role of age at menarche, parity and lactation on BMD expressed as percentage of the mean BMD (%BMD) in 46 pre-menopausal ambulatory female MS patients using dual-energy X-ray absorptiometry (DXA) scans in lumbar spine (LS) and hip. MS female patients with age at menarche ≥13 years old had reduced %BMD compared to those with menarche age <13 years (95.2±10.7 vs 102.1±13.3, p=0.05 in LS; 90.5±12.6 vs 99.8±12.6, p=0.02 in hip). Parity did not result in any statistically significant changes in either LS or hip. Patients that breastfed their offspring compared to those that did not had significantly lower BMD in both LS (93.9±9.3 vs 110.7±15.6, p=0.004) and hip (91.6±10.7 vs 105.6±15.3, p=0.02). MS female patients with menarche at age≥13 years and those who breastfed their offspring may have reduced BMD. Larger studies are needed to verify these findings and establish a definite role of menarche age and breast feeding with BMD.

  6. Bone fragility and imaging techniques

    PubMed Central

    D’Elia, Giovanni; Caracchini, Giuseppe; Cavalli, Loredana; Innocenti, Paolo

    2009-01-01

    Bone fragility is a silent condition that increases bone fracture risk, enhanced by low bone mass and microarchitecture deterioration of bone tissue that lead to osteoporosis. Fragility fractures are the major clinical manifestation of osteoporosis. A large body of epidemiological data indicates that the current standard for predicting fragility fracture risk is an areal BMD (aBMD) measurement by DXA. Although mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Thus, bone strength is explained not only by BMD but also by macrostructural and microstructural characteristics of bone tissue. Imaging diagnostics, through the use of X-rays, DXA, Ultrasonography, CT and MR, provides methods for diagnosis and characterization of fractures, and semi- and quantitative methods for assessment of bone consistency and strength, that become precious for bone fragility clinical management if they are integrated by clinical risk factors. The last employment of sophisticated non-invasively imaging techniques in clinical research as high-resolution CT (hrCT), microCT (μ-CT), high-resolution MR (hrMR) and, microRM (μRM), combined with finite element analysis methods, open to new challenges in a better bone strength assessment to enhance the comprehension of biomechanical parameters and the prediction of fragility fractures. PMID:22461252

  7. Bone densitometry in infants

    SciTech Connect

    Barden, H.S.; Mazess, R.B.

    1988-07-01

    Bone mineral mass and density can be measured noninvasively by various absorptiometric procedures. Two methods, dual-photon absorptiometry (DPA) and quantitative computed tomography, have widespread application in adults but only limited use in children. One method, single-photon absorptiometry (SPA), has been used extensively in adults and children and has been modified for use in infants. The radius shaft has been used for most research on infants. However, the difficulty of using older SPA methods on this small bone (4 to 7 mm width) has led a few investigators to measure the shaft of the humerus. The typical precision of measurement in a newborn is about 5% with the use of computerized rectilinear scanners for the radius; older linear scanners have a precision error of 5% to 10% on the humerus. Linear scanners cannot measure precisely the radius in individual neonates. The SPA scans typically take about 5 minutes. The DPA technique using /sup 153/Gd has been modified for use on smaller animals (5 to 10 kg monkeys and dogs), but it has not been used on infants because DPA scans take 20 minutes. New methods using x-ray absorptiometry allow rapid (1 minute), precise (1%) measurements in the perinate. The need for a soft tissue bolus is eliminated, and both the axial and peripheral skeletons can be measured with dual-energy x-ray absorptiometry. Ultrasonic measurements do not yet offer adequate precision in the neonate, given the limited biologic range of values. 83 references.

  8. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.

    PubMed

    Fuchs, R K; Bauer, J J; Snow, C M

    2001-01-01

    Physical activity during childhood is advocated as one strategy for enhancing peak bone mass (bone mineral content [BMC]) as a means to reduce osteoporosis-related fractures. Thus, we investigated the effects of high-intensity jumping on hip and lumbar spine bone mass in children. Eighty-nine prepubescent children between the ages of 5.9 and 9.8 years were randomized into a jumping (n = 25 boys and n = 20 girls) or control group (n = 26 boys and n = 18 girls). Both groups participated in the 7-month exercise intervention during the school day three times per week. The jumping group performed 100, two-footed jumps off 61-cm boxes each session, while the control group performed nonimpact stretching exercises. BMC (g), bone area (BA; cm2), and bone mineral density (BMD; g/cm2) of the left proximal femoral neck and lumbar spine (L1-L4) were assessed by dual-energy X-ray absorptiometry (DXA; Hologic QDR/4500-A). Peak ground reaction forces were calculated across 100, two-footed jumps from a 61-cm box. In addition, anthropometric characteristics (height, weight, and body fat), physical activity, and dietary calcium intake were assessed. At baseline there were no differences between groups for anthropometric characteristics, dietary calcium intake, or bone variables. After 7 months, jumpers and controls had similar increases in height, weight, and body fat. Using repeated measures analysis of covariance (ANCOVA; covariates, initial age and bone values, and changes in height and weight) for BMC, the primary outcome variable, jumpers had significantly greater 7-month changes at the femoral neck and lumbar spine than controls (4.5% and 3.1%, respectively). In repeated measures ANCOVA of secondary outcomes (BMD and BA), BMD at the lumbar spine was significantly greater in jumpers than in controls (2.0%) and approached statistical significance at the femoral neck (1.4%; p = 0.085). For BA, jumpers had significantly greater increases at the femoral neck area than controls (2

  9. A two-year program of aerobics and weight training enhances bone mineral density of young women.

    PubMed

    Friedlander, A L; Genant, H K; Sadowsky, S; Byl, N N; Glüer, C C

    1995-04-01

    Previous research suggests that physical activity may have a beneficial effect on bone mineral density (BMD) in women. This relationship was explored in a 2-year, randomized, intervention trial investigating the efficacy of exercise and calcium supplementation on increasing peak bone mass in young women. One hundred and twenty-seven subjects (ages of 20-35 years) were randomly assigned either to an exercise program that contained both aerobics and weight training components or to a stretching program. Calcium supplementation (up to 1500 mg/day including dietary intake) or placebo was given in a double-blinded design to all subjects. Spinal trabecular BMD was determined using quantitative computed tomography (QCT). Spinal integral, femoral neck, and trochanteric BMD were measured by dual X-ray absorptiometry (DXA) and calcaneal BMD by single photon absorptiometry (SPA). Fitness variables included maximal aerobic capacity (VO2max), and isokinetic muscle performance of the trunk and thigh. Measurements were made at baseline, 1 year, and 2 years. Sixty-three subjects (32 exercise, 31 stretching) completed the study, and all the measured bone parameters indicated a positive influence of the exercise intervention. There were significant positive differences in BMD between the exercise and stretching groups for spinal trabecular (2.5%), femoral neck (2.4%), femoral trochanteric (2.3%), and calcaneal (6.4%) measurements. The exercise group demonstrated a significant gain in BMD for spinal integral (1.3 +/- 2.8%, p < 0.02), femoral trochanteric (2.6 +/- 6.1%, p < 0.05), and calcaneal (5.6 +/- 5.1, p < 0.01) measurements. In contrast to exercise, the calcium intervention had no positive effect on any of the bone parameters. In regard to fitness parameters, the exercise group completed the study with significant gains in VO2max and isokinetic (peak torque) values for the knee flexion and extension and trunk extension. This study indicates that over a 2-year period, a combined

  10. A two-year program of aerobics and weight training enhances bone mineral density of young women

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Genant, H. K.; Sadowsky, S.; Byl, N. N.; Gluer, C. C.

    1995-01-01

    Previous research suggests that physical activity may have a beneficial effect on bone mineral density (BMD) in women. This relationship was explored in a 2-year, randomized, intervention trial investigating the efficacy of exercise and calcium supplementation on increasing peak bone mass in young women. One hundred and twenty-seven subjects (ages of 20-35 years) were randomly assigned either to an exercise program that contained both aerobics and weight training components or to a stretching program. Calcium supplementation (up to 1500 mg/day including dietary intake) or placebo was given in a double-blinded design to all subjects. Spinal trabecular BMD was determined using quantitative computed tomography (QCT). Spinal integral, femoral neck, and trochanteric BMD were measured by dual X-ray absorptiometry (DXA) and calcaneal BMD by single photon absorptiometry (SPA). Fitness variables included maximal aerobic capacity (VO2max), and isokinetic muscle performance of the trunk and thigh. Measurements were made at baseline, 1 year, and 2 years. Sixty-three subjects (32 exercise, 31 stretching) completed the study, and all the measured bone parameters indicated a positive influence of the exercise intervention. There were significant positive differences in BMD between the exercise and stretching groups for spinal trabecular (2.5%), femoral neck (2.4%), femoral trochanteric (2.3%), and calcaneal (6.4%) measurements. The exercise group demonstrated a significant gain in BMD for spinal integral (1.3 +/- 2.8%, p < 0.02), femoral trochanteric (2.6 +/- 6.1%, p < 0.05), and calcaneal (5.6 +/- 5.1, p < 0.01) measurements. In contrast to exercise, the calcium intervention had no positive effect on any of the bone parameters. In regard to fitness parameters, the exercise group completed the study with significant gains in VO2max and isokinetic (peak torque) values for the knee flexion and extension and trunk extension. This study indicates that over a 2-year period, a combined

  11. Relationship among dietary estimates of net endogenous acid production, bone mineral density and biochemical markers of bone turnover in an Iranian general population.

    PubMed

    Rahbar, Alireza; Larijani, Bagher; Nabipour, Iraj; Mohamadi, Mohamad Mehdi; Mirzaee, Kamran; Amiri, Zahra

    2009-11-01

    Chronic, low-grade metabolic acidosis due to Western diets may be a risk factor for osteoporosis. The severity can be determined in part by net endogenous acid production (NEAP). In a population-based study, a total of 1028 healthy men and women aged 20-72 years were evaluated for dietary intakes and NEAP estimates with a validated food frequency questionnaire. Dual-energy X-ray absorptiometry (DXA) was used to determine BMD of the lumbar spine (L2-L4), distal third of radius, and proximal femur. Serum CrossLaps, degradation products of the C-terminal telopeptides of type I collagen, and osteocalcin were measured by highly specific ELISA methods. Lower estimates of energy-adjusted rates of NEAP were associated with greater femoral neck BMD (p=0.01) in premenopausal women and with greater BMDs at the distal radius (p=0.001) and lumbar spine (p=0.04) in postmenopausal women. Compared with women in the highest quartile of the estimates of the energy-adjusted rates of NEAP, pre- and postmenopausal women in the lowest quartile had significantly greater means of osteocalcin [9.12 (SD+/-1.62) vs. 5.24 (SD+/-1.41) ng/ml, p=0.02 and 11.74 (SD+/-1.69) vs. 7.79 (SD+/-2.63) ng/ml, p=0.002, respectively]. Analysis by quartiles of the estimates of energy-adjusted rates of NEAP did not reveal a relationship between BMD and bone turnover markers in men. In conclusion, we found that a high energy-adjusted rate of NEAP was associated with a significantly lower BMD in women but not in men and the energy-adjusted rate of NEAP had a negative relationship with bone formation.

  12. The relation of the XbaI and PvuII polymorphisms of the estrogen receptor gene and the CAG repeat polymorphism of the androgen receptor gene to peak bone mass and bone turnover rate among young healthy men.

    PubMed

    Välimäki, Ville-Valtteri; Piippo, Kirsi; Välimäki, Stiina; Löyttyniemi, Eliisa; Kontula, Kimmo; Välimäki, Matti J

    2005-12-01

    The genes coding for estrogen receptor-alpha (ER-alpha) and androgen receptors (AR) are potential candidates for the regulation of bone mass and turnover, which may contribute to both the achievement of peak bone mass and bone loss after completion of growth. The present study was aimed at elucidating the role of two restriction fragment lengths (XbaI and PvuII) polymorphisms of the ER gene and the CAG repeat polymorphism of the AR gene as determinants of peak bone mass in men; special attention was paid to the interaction between serum free estradiol (E2) levels and the XbaI and PvuII genotypes. A cross-sectional study, with data on lifestyle factors collected retrospectively, was performed in 234 young men, aged 18.3 to 20.6 years. Of the men, 184 were recruits of the Finnish Army and 50 were men of similar age who had postponed their military service for reasons not related to health. Bone mineral content (BMC), density (BMD) and scan area were measured in the lumbar spine and upper femur by dual-energy X-ray absorptiometry (DXA). The bone turnover rate was assessed by measuring serum type I procollagen aminoterminal propeptide (PINP) and tartrate-resistant acid phosphatase 5b (TRACP5b) as well as urinary excretion of type I collagen aminoterminal telopeptide (NTX). After adjusting for age, height, weight, exercise, smoking, calcium and alcohol intake, BMC, scan area and BMD at all measurement sites were similar for the different XbaI and PvuII genotypes of the ER and independent of the number of the CAG repeats of the AR gene. No association was found between free E2 levels and bone parameters among any genotype group of the XbaI and PvuII polymorphisms. Except for urinary NTX, which showed a tendency to higher values for the xx (P=0.08) and pp (P=0.10) genotypes of the ER, bone turnover markers were not related to the genotypes studied. Our study does not support the view that the XbaI and PvuII polymorphisms of the ER gene and the CAG polymorphism of the AR

  13. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry.

    PubMed

    Smith, Scott M; Heer, Martina A; Shackelford, Linda C; Sibonga, Jean D; Ploutz-Snyder, Lori; Zwart, Sara R

    2012-09-01

    Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the "interim resistive exercise device" (iRED), which allowed loads of up to 297 lb(f) (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lb(f) (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions.

  14. The effect of thyroid stimulating hormone suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma.

    PubMed

    Moon, Jae Hoon; Jung, Kyong Yeun; Kim, Kyoung Min; Choi, Sung Hee; Lim, Soo; Park, Young Joo; Park, Do Joon; Jang, Hak Chul

    2016-02-01

    Subclinical hyperthyroidism has been reported to increase the fracture risk. However, the effect of thyroid stimulating hormone (TSH) suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma (DTC) is still unclear. The aim of this study was to investigate the effect of TSH suppression on bone geometry in the hip area of pre- and postmenopausal women with DTC. We conducted a retrospective cohort study including 99 women with DTC (25 pre- and 74 postmenopausal) who had received TSH suppressive therapy for at least 3years and 297 control subjects (75 and 222, respectively) matched for sex and age. Bone mineral density (BMD) in the spine and hip area and bone geometry at the femoral neck measured by dual energy X-ray absorptiometry (DXA) were compared between patients and controls. The association between thyroid hormone and bone parameters was investigated. All analyses of bone parameters were adjusted for age, body mass index, and serum calcium levels. In premenopausal subjects, TSH suppressive therapy was not associated with poor bone parameters. In postmenopausal subjects, patients with DTC undergoing TSH suppression showed lower cross-sectional moment of inertia (CSMI), cross-sectional area, and section modulus and thinner cortical thickness at the femoral neck than those of control subjects, whereas their femoral neck BMD was comparable with controls. Total hip BMD was lower in postmenopausal patients than in controls. CSMI and section modulus at the femoral neck were independently associated with serum free T4 levels in postmenopausal patients. The difference in femoral neck bone geometry between patients and controls was only apparent in postmenopausal DTC patients with free T4 >1.79ng/dL (23.04pmol/l), and not in those with free T4 levels ≤1.79ng/dL (23.04pmol/l). TSH suppression in postmenopausal DTC patients was associated with decreased bone strength by altering bone geometry rather than BMD in the hip area

  15. The effect of thyroid stimulating hormone suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma.

    PubMed

    Moon, Jae Hoon; Jung, Kyong Yeun; Kim, Kyoung Min; Choi, Sung Hee; Lim, Soo; Park, Young Joo; Park, Do Joon; Jang, Hak Chul

    2016-02-01

    Subclinical hyperthyroidism has been reported to increase the fracture risk. However, the effect of thyroid stimulating hormone (TSH) suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma (DTC) is still unclear. The aim of this study was to investigate the effect of TSH suppression on bone geometry in the hip area of pre- and postmenopausal women with DTC. We conducted a retrospective cohort study including 99 women with DTC (25 pre- and 74 postmenopausal) who had received TSH suppressive therapy for at least 3years and 297 control subjects (75 and 222, respectively) matched for sex and age. Bone mineral density (BMD) in the spine and hip area and bone geometry at the femoral neck measured by dual energy X-ray absorptiometry (DXA) were compared between patients and controls. The association between thyroid hormone and bone parameters was investigated. All analyses of bone parameters were adjusted for age, body mass index, and serum calcium levels. In premenopausal subjects, TSH suppressive therapy was not associated with poor bone parameters. In postmenopausal subjects, patients with DTC undergoing TSH suppression showed lower cross-sectional moment of inertia (CSMI), cross-sectional area, and section modulus and thinner cortical thickness at the femoral neck than those of control subjects, whereas their femoral neck BMD was comparable with controls. Total hip BMD was lower in postmenopausal patients than in controls. CSMI and section modulus at the femoral neck were independently associated with serum free T4 levels in postmenopausal patients. The difference in femoral neck bone geometry between patients and controls was only apparent in postmenopausal DTC patients with free T4 >1.79ng/dL (23.04pmol/l), and not in those with free T4 levels ≤1.79ng/dL (23.04pmol/l). TSH suppression in postmenopausal DTC patients was associated with decreased bone strength by altering bone geometry rather than BMD in the hip area

  16. Effects of repetitive loading on the growth-induced changes in bone mass and cortical bone geometry: a 12-month study in pre/peri- and postmenarcheal tennis players.

    PubMed

    Ducher, Gaele; Bass, Shona L; Saxon, Leanne; Daly, Robin M

    2011-06-01

    Pre- and early puberty may be the most opportune time to strengthen the female skeleton, but there are few longitudinal data to support this claim. Competitive female premenarcheal (pre/peri, n = 13) and postmenarcheal (post, n = 32) tennis players aged 10 to 17 years were followed over 12 months. The osteogenic response to loading was studied by comparing the playing and nonplaying humeri for dual-energy X-ray absorptiometry (DXA) bone mineral content (BMC) and magnetic resonance imaging (MRI) total bone area (ToA), medullary area (MedA), cortical area (CoA), and muscle area (MCSA) at the humerus. Over 12 months, growth-induced gains (nonplaying arm) in BMC, ToA, and CoA were greater in pre/peri (10% to 19%, p < .001) than in post (3% to 5%, p < .05 to .001) players. At baseline, BMC, ToA, CoA, and MCSA were 8% to 18% greater in the playing versus nonplaying arms in pre/peri and post players (all p < .001); MedA was smaller in the playing versus nonplaying arms in post only players (p < .05). When comparing the annual gains in the playing arm relative to changes in the nonplaying arm, the increases in ToA and CoA were greater in pre/peri than post players (all p < .05). The smaller the side-to-side differences in BMC and CoA at baseline, the larger the exercise benefits at 12 months (r = -0.39 to -0.48, p < .01). The exercise-induced change in MCSA was predictive of the exercise benefits in BMC in pre/peri players only (p < .05). In conclusion, both pre/peri- and postmenarcheal tennis players showed significant exercise-induced skeletal benefits within a year, with greater benefits in cortical bone geometry in pre/perimenarcheal girls.

  17. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

    PubMed Central

    Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka

    2016-01-01

    Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617

  18. Longitudinal assessment of bone quality in pediatric patients with chronic kidney disease in relation to treatment modality.

    PubMed

    Gkogka, Chrysa; Christoforidis, Athanasios; Printza, Nikoleta; Kollios, Konstantinos; Kazantzidou, Eirini; Papachristou, Fotios

    2015-05-01

    Children with chronic kidney disease (CKD) are at high risk of developing impaired bone quality. Our aim was to investigate changes of bone quality in children with CKD in relation to their treatmant using two imaging techniques-dual energy X-ray absorptiometry and quantitative ultraSonography (QUS). Thirty-three patients with CKD (18 boys and 15 girls, mean age 10.37 ± 3.37 years) were evaluated with bone mineral density (BMD) measured by DXA at the lumbar spine and hip and with speed of sound (SOS) measured by QUS at the radius and tibia at the beginning and at the end of the study. The patient cohort consisted of 14 patients with CKD stage 3-4 not treated with dialysis (CKD group), 5 patients on peritoneal dialysis treatment (PD group) and 14 patients after kidney transplantation (RTx group). BMD measurements did not show any significant changes in CKD and PD patients during the study. There was a reduction in BMD measured at the lumbar spine, femoral neck and total hip in RTx patients that was approaching significance. During the 2-year follow-up, SOS measurements at the radius decreased significantly in PD patients, whereas SOS measurements at the tibia significantly improved in RTx patients. No significant changes in QUS parameters were recorded for patients in the CKD group. In conclusion, our study shows that QUS parameters seem to better reflect the state of hyperparathyroidism of renal osteodystrophy as they deteriorate significantly in patients on dialysis and improve after renal transplantation. PMID:24859053

  19. Bone Density in Patients with Cervical Cancer or Endometrial Cancer in comparison with Healthy Control; According to the stages

    PubMed Central

    Lee, Yubin; Kim, Ari; Kim, Heung Yeol; Eo, Wan Kyu; Lee, Eun Sil; Chun, Sungwook

    2015-01-01

    Objective: To evaluate the bone mineral density (BMD) in the lumbar spine and femur in postmenopausal women with cervical cancer and endometrial cancer without bone metastasis in comparison with that in healthy control postmenopausal women, and to assess the loss of BMD according to the cancer stage. Materials and methods: We analyzed the BMD of the lumbar spine and femur using dual-energy X-ray absorptiometry (DXA) in 218 patients with cervical cancer, 85 patients with endometrial cancer, and 259 healthy controls. The serum levels of calcium (Ca), phosphorus (P), osteocalcin (OSC), and total alkaline phosphatase (ALP), and urine deoxypyridinoline(DPL) were measured in all participants. Results: Age, body mass index, parity, and time since menopause were not significantly different between the three groups. Serum Ca level was higher in the cervical cancer group (p = 0.000), however, urine DPL was lower in endometrial cancer group (p = 0.000). The T-scores of basal BMD at the second and fourth lumbar vertebra (L2, L4) were significantly lower in patients with cervical cancer (p = 0.038, 0.000, respectively) compared to those in the healthy control groups. Additionally, the incidence of osteoporosis and osteopenia basal status of bone mass was significantly higher in patients with cervical cancer compared to that in controls (p = 0.016). No differences in basal BMD of the lumbar spine and femur were observed between patients with cervical cancer according to their stages. Conclusion: Our results suggest that postmenopausal women with cervical cancer have a lower BMD and are at increased risk of osteoporosis in the lumbar spine before receiving anticancer treatment compared with postmenopausal women with endometrial cancer. PMID:26185529

  20. Body Composition, Soluble Markers of Inflammation, and Bone Mineral Density in Antiretroviral Therapy-Naïve HIV-1 Infected Individuals

    PubMed Central

    Brown, Todd T.; Chen, Yun; Currier, Judith S.; Ribaudo, Heather J.; Rothenberg, Jennifer; Dubé, Michael P.; Murphy, Robert; Stein, James H.; McComsey, Grace A.

    2013-01-01

    Objective To determine the association between bone mineral density (BMD), inflammatory markers, and alterations in fat and lean mass in untreated HIV-infected individuals. Design Cross-sectional analysis of antiretroviral therapy (ART)-naïve persons enrolled into a randomized clinical trial Methods Dual energy x-ray absorptiometry (DXA) for BMD, lean and fat mass, and a laboratory assessment were performed. Soluble biomarkers included adipocytokines (leptin, adiponectin), inflammatory markers (hsCRP, IL-6), and markers related to bone metabolism (osteoprotegerin (OPG)), receptor activator of NFκB Ligand (RANKL)). BMD at the lumbar spine, total hip, and femoral neck was expressed as a Z-score (number of standard deviations away from an age-, race-, sex-matched reference population). Results 331 subjects had a median (Q1, Q3) age of 36 (28,45) years, were 89% male, and 44% white. The prevalence of low BMD (Z-score ≤ −2 at any of the 3 sites) was 10%. No associations were detected between Z-scores and hsCRP, IL-6, or RANKL (P≥0.1). In a linear model adjusting for age, gender, race, and total fat mass, lower lumbar spine Z-scores were associated with lower total lean mass, higher serum adiponectin, and lower OPG. Results at the total hip or femoral neck were similar. Conclusions Among ART-naïve HIV-infected individuals, lower BMD was associated with lower lean mass, higher adiponectin, and lower OPG, but not HIV disease variables or any of the inflammatory markers. These findings may have implications for bone metabolism in untreated HIV, in which hypoadiponectinemia and higher OPG may mitigate bone loss. PMID:23591634

  1. Lean mass and fat mass have differing associations with bone microarchitecture assessed by high resolution peripheral quantitative computed tomography in men and women from the Hertfordshire Cohort Study.

    PubMed

    Edwards, Mark H; Ward, Kate A; Ntani, Georgia; Parsons, Camille; Thompson, Jennifer; Sayer, Avan A; Dennison, Elaine M; Cooper, Cyrus

    2015-12-01

    Understanding the effects of muscle and fat on bone is increasingly important in the optimisation of bone health. We explored relationships between bone microarchitecture and body composition in older men and women from the Hertfordshire Cohort Study. 175 men and 167 women aged 72-81 years were studied. High resolution peripheral quantitative computed tomography (HRpQCT) images (voxel size 82 μm) were acquired from the non-dominant distal radius and tibia with a Scanco XtremeCT scanner. Standard morphological analysis was performed for assessment of macrostructure, densitometry, cortical porosity and trabecular microarchitecture. Body composition was assessed using dual energy X-ray absorptiometry (DXA) (Lunar Prodigy Advanced). Lean mass index (LMI) was calculated as lean mass divided by height squared and fat mass index (FMI) as fat mass divided by height squared. The mean (standard deviation) age in men and women was 76 (3) years. In univariate analyses, tibial cortical area (p<0.01), cortical thickness (p<0.05) and trabecular number (p<0.01) were positively associated with LMI and FMI in both men and women. After mutual adjustment, relationships between cortical area and thickness were only maintained with LMI [tibial cortical area, β (95% confidence interval (CI)): men 6.99 (3.97,10.01), women 3.59 (1.81,5.38)] whereas trabecular number and density were associated with FMI. Interactions by sex were found, including for the relationships of LMI with cortical area and FMI with trabecular area in both the radius and tibia (p<0.05). In conclusion, LMI and FMI appeared to show independent relationships with bone microarchitecture. Further studies are required to confirm the direction of causality and explore the mechanisms underlying these tissue-specific associations. PMID:26187195

  2. Is Bone Loss Linked to Chronic Inflammation in Antiretroviral-Naïve HIV-Infected Adults? A 48 Week Matched Cohort Study

    PubMed Central

    HILEMAN, Corrilynn O; LABBATO, Danielle E; STORER, Norma J; TANGPRICHA, Vin; MCCOMSEY, Grace A

    2015-01-01

    Objective Antiretroviral therapy (ART) has been implicated in bone loss in HIV. The role of inflammation and vitamin D is unclear and better investigated in ART-naïve individuals. Design and Methods This is a 48-week, prospective, cohort study to compare baseline and change in hip and spine bone mineral density (BMD) measured by dual energy Xray absorptiometry (DXA) in HIV-infected, ART-naïve adults and healthy controls matched by age, sex, and race. We also studied associations between bone loss and inflammation markers and plasma 25-hydroxyvitamin D (25(OH)D) using logistic regression. Results 47 HIV-infected adults and 41 controls were included. Baseline 25(OH)D, BMD at total hip, trochanter, and spine, and prevalence of osteopenia and osteoporosis were similar between groups. In the HIV-infected group, total hip and trochanter, but not spine, BMD decreased over 48 weeks (hip −0.005 (−0.026-0.008)g/cm2, p=0.02 within-group; trochanter −0.013 (−0.03-0.003), p<0.01). BMD did not change at any site within controls. The HIV-infected group was more likely to have bone loss at the trochanter (p=0.03). This risk persisted after adjustment for age, sex, race, BMI, smoking, and hepatitis C (OR 4 (95% CI 1.2-15.8)). In the HIV-infected group, higher IL-6 concentrations (p=0.04) and Caucasian race (p<0.01) were independently associated with progression to osteopenia or osteoporosis, but not 25(OH)D levels. Conclusion BMD at the total hip and trochanter sites decreased in the HIV-infected, ART-naïve adults, but not controls, over this 48-week study. Higher serum IL-6 concentrations were associated with progression to osteopenia or osteoporosis status in the HIV-infected group. PMID:24871454

  3. Bone Disease in HIV: Recommendations for Screening and Management in the Older Patient.

    PubMed

    Hoy, Jennifer

    2015-07-01

    Availability of potent antiretroviral therapy (ART) has resulted in markedly improved survival for people with human immunodeficiency virus (HIV) infection, as well as an aging HIV population. Increasing morbidity from age-related conditions has resulted in the need to understand the complex roles HIV and its treatment play in the pathogenesis of these conditions. Bone disease and fragility fractures are conditions that occur more frequently in HIV. It is therefore recommended that risk assessment for fragility fracture using the Fracture Risk Assessment Tool (FRAX(®)) algorithm, and low bone mass by dual energy X-ray absorptiometry (DXA) scan, be performed in all patients with HIV infection over the age of 50 years and in those with a history of fragility fracture, and should be repeated every 2-3 years. Because many HIV experts believe that HIV infection and its treatment is a secondary cause of osteoporosis, it should be included as such in the FRAX(®) assessment tool. Management of osteoporosis in HIV infection should follow the same guidelines as that in the general population. Attention to lifestyle factors, including vitamin D replacement, should be emphasized. Whether cessation of tenofovir- or protease inhibitor-based ART regimens should be considered prior to bisphosphonate treatment is currently unknown and should only occur in patients with active alternative ART regimens. The use of bisphosphonates has been shown to be safe and effective in HIV patients, and while there is limited data on second-line osteoporosis regimens, there is no reason to suggest they would not be effective in people with HIV.

  4. Cross-calibration of Lunar DPX-IQ and DPX dual-energy x-ray densitometers for bone mineral measurements in women: effect of body anthropometry.

    PubMed

    Saarelainen, J; Honkanen, R; Vanninen, E; Kröger, H; Tuppurainen, M; Niskanen, L; Jurvelin, J S

    2005-01-01

    When dual-energy X-ray absorptiometry (DXA) instruments are replaced, it is essential to determine if systematic differences in measurements occur. As a part of the Kuopio Osteoporosis Risk Factor and Prevention study (N=14,220), a group of women, aged 36 to 69 yr underwent anteroposterior lumbar spine L2 to L4 (n=89) and proximal femur scans (n=88) by the Lunar DPX and DPX-IQ, respectively, during the same visit. A high linear association (r from 0.944 to 0.989, p<0.001) between the two scanners was established for lumbar spine and proximal femur bone mineral density (BMD). The average DPX values for BMD were 1.1% and 2.0% higher than those of DPX-IQ for the lumbar spine (p<0.001) and Ward's triangle (p=0.001), respectively. Femoral neck BMD values by the DPX were 1.4% lower (p<0.001) compared to DPX-IQ. The difference between trochanter BMD results (0.1%) was not significant (p=0.809). In the femoral neck and trochanter, but not in the lumbar spine or Ward's triangle, the differences in BMD values of the two machines were found to depend on body mass index. After linear formulas based on simple and multivariate linear regression analyses were calculated, the differences were negligible, enabling objective comparison of longitudinal measurements.

  5. Which Contributes More to Childhood Adiposity? High Levels of Sedentarism Versus Low Levels of Moderate-through-Vigorous Physical Activity: The Iowa Bone Development Study

    PubMed Central

    Kwon, Soyang; Burns, Trudy L.; Levy, Steven M.; Janz, Kathleen F.

    2013-01-01

    Objective To examine the relative importance of sedentarism and modeate-to-vigorous physical activity for adiposity development in children and adolescents. Study design 277 boys and 277 girls (95% white; two-thirds of parents with college graduation or higher education) from the Iowa Bone Development Cohort Study completed body fat and accelerometry measurement at examinations of ages 8, 11, 13 and/or 15 years (during 2000 to 2009). The main exposure was accelerometry-measured sedentary time, frequency of breaks in sedentary time, and moderate-to vigorous-intensity physical activity time. The outcome was dual energy x-ray absorptiometry (DXA)-measured body fat mass Results Adjusted for age, height, physical maturity, and sedentary time, growth models showed that high moderate-to-vigorous physical activity time was associated with low body fat mass in both boys (coefficient β = −0.10 ± 0.02) and girls (β = −0.05 ± 0.01; Ps < 0.01). However, sedentary time and frequency of breaks in sedentary time were not associated with body fat mass. Conclusions This study does not support an independent effect of sedentarism on adiposity. The preventive effect of moderate-to vigorous-intensity physical activity on adiposity in children and adolescents remained strong after adjusting for the effect of sedentarism. PMID:23305957

  6. Cross-mode bioelectrical impedance analysis in a standing position for estimating fat-free mass validated against dual-energy x-ray absorptiometry.

    PubMed

    Huang, Ai-Chun; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Lu, Hsueh-Kuan; Lin, Hung-Chi; Chen, Kuen-Tsann; Hsiao, An-Chi; Hsieh, Kuen-Chang

    2015-11-01

    Bioelectrical impedance analysis (BIA) is commonly used to assess body composition. Cross-mode (left hand to right foot, Z(CR)) BIA presumably uses the longest current path in the human body, which may generate better results when estimating fat-free mass (FFM). We compared the cross-mode with the hand-to-foot mode (right hand to right foot, Z(HF)) using dual-energy x-ray absorptiometry (DXA) as the reference. We hypothesized that when comparing anthropometric parameters using stepwise regression analysis, the impedance value from the cross-mode analysis would have better prediction accuracy than that from the hand-to-foot mode analysis. We studied 264 men and 232 women (mean ages, 32.19 ± 14.95 and 34.51 ± 14.96 years, respectively; mean body mass indexes, 24.54 ± 3.74 and 23.44 ± 4.61 kg/m2, respectively). The DXA-measured FFMs in men and women were 58.85 ± 8.15 and 40.48 ± 5.64 kg, respectively. Multiple stepwise linear regression analyses were performed to construct sex-specific FFM equations. The correlations of FFM measured by DXA vs. FFM from hand-to-foot mode and estimated FFM by cross-mode were 0.85 and 0.86 in women, with standard errors of estimate of 2.96 and 2.92 kg, respectively. In men, they were 0.91 and 0.91, with standard errors of the estimates of 3.34 and 3.48 kg, respectively. Bland-Altman plots showed limits of agreement of -6.78 to 6.78 kg for FFM from hand-to-foot mode and -7.06 to 7.06 kg for estimated FFM by cross-mode for men, and -5.91 to 5.91 and -5.84 to 5.84 kg, respectively, for women. Paired t tests showed no significant differences between the 2 modes (P > .05). Hence, cross-mode BIA appears to represent a reasonable and practical application for assessing FFM in Chinese populations.

  7. Vitamin D deficiency in guinea pigs: exacerbation of bone phenotype during pregnancy and disturbed fetal mineralization, with recovery by 1,25(OH)2D3 infusion or dietary calcium-phosphate supplementation.

    PubMed

    Rummens, K; van Bree, R; Van Herck, E; Zaman, Z; Bouillon, R; Van Assche, F A; Verhaeghe, J

    2002-10-01

    Vitamin D (D) deficiency during human pregnancy appears to disturb fetal growth and mineralization, but fetal development is normal in D-deficient rats and vitamin D receptor gene-ablated mice. We used the guinea pig model to investigate maternal and fetal effects of D deficiency. Pregnant (Pr) and nonpregnant (NPr) animals were fed a D-replete (+D) or D-deficient diet (-D) for 8 weeks. We further studied whether the effects of a -D diet are reversed by continuous 1,25(OH)2D3 infusion (-D+1,25) and/or by a lactose-, Ca- and P-enriched D-deficient diet (-D+Ca/P). Bone analyses included histomorphometry of the proximal tibiae, dual-energy X-ray absorptiometry (DXA), and quantitative computed tomography (QCT) of the femora. Depletion of 25(OH)D3 and 1,25(OH)2D3 levels and the D-deficiency syndrome were more severe in pregnant animals. Indeed, Pr/-D but not NPr/-D guinea pigs were hypophosphatemic, and showed robust increases in growth plate width and osteoid surface and thickness; in addition, bone mineral density on DXA was lower in Pr/-D animals only, which was exclusively in cortical bone on QCT. Bone phenotype was partly normalized in Pr/-D+1,25 and Pr/-D+Ca/P animals. Compared with +D fetuses, -D fetuses had very low or undetectable 25(OH)D3 and 1,25(OH)2D3, were hypercalcemic and hypophosphatemic, and had lower osteocalcin levels. In addition, body weight and total body bone mineral content were 10-15% lower; histomorphometry showed hypertrophic chondrocyte zone expansion and hyperosteoidosis. 1,25(OH)2D3 levels were restored in -D+1,25 fetuses, and the phenotype was partially corrected. Similarly, the fetal +D phenotype was rescued in large part in -D+Ca/P fetuses, despite undetectable circulating 25(OH)D3 and 1,25(OH)2D3. We conclude that pregnancy markedly exacerbates D deficiency, and that augmenting Ca and P intake overrides the deleterious effects of D deficiency on fetal development.

  8. Linking chronic tryptophan deficiency with impaired bone metabolism and reduced bone accrual in growing rats.

    PubMed

    Sibilia, Valeria; Pagani, Francesca; Lattuada, Norma; Greco, Antonella; Guidobono, Francesca

    2009-08-01

    There is increasing evidence that serotonin may regulate bone metabolism. However, its role remains to be clarified. Serotonin seems to be either beneficial or detrimental for bone tissues depending on the pharmacological manipulation used. In this study we evaluated the impact of a reduction of serotonergic stores induced by chronic tryptophan (TRP) depletion on various bone parameters in growing rats. For this purpose rats received a TRP-free diet for 60 days. Bone mass, mineral content and density were measured by DXA and by pQCT in the appendicular skeleton. Bone metabolic markers included urinary deoxypyridinoline and serum osteocalcin measurements. IGF-I levels were also evaluated. In TRP-free diet rats, we found a decrease in body weight, a delayed femoral bone growth and bone mineral content as measured by DXA. pQCT analysis showed that these effects were related to a reduction of both cortical and trabecular bone and are associated with a reduction of bone strength. These effects are due to a negative shift in the balance between bone formation and resorption with a significant decrease in bone formation as evidenced by a reduction both in osteocalcin and IGF-I levels. The present data extend our overall knowledge on the participation of serotonin in the regulation of growing bone and could be of interest in studying the impairment of bone growth in depressed subjects under particular condition of rapid bone accrual such as childhood and adolescence.

  9. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCTstudy

    PubMed Central

    Määttä, M.; Macdonald, H. M.; Mulpuri, K.

    2016-01-01

    Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a

  10. Single- and dual-photon absorptiometry in osteoporosis and osteomalacia

    SciTech Connect

    Wahner, H.W.

    1987-10-01

    Single- and dual-photon absorptiometric methods have been used in the past to identify populations at risk for bone loss, to define the osteoporotic syndrome in terms of bone mass, and to evaluate treatment regimens to prevent bone loss. Technical improvements have made these procedures available for the nontraumatic measurement of bone mineral in the management of the individual patient suspected of having osteoporosis or other bone loss. This requires a different approach to data interpretation because decisions have to be made on the basis of a single measurement. Osteoporosis and osteomalacia cannot be distinguished by bone mineral measurements because both are characterized by a decrease in content of bone mineral. Bone mineral measurements can be used to assess the risk of fracture and, with it, the severity of bone loss. This allows treatment decisions to be made. Repeated measurements made under well-defined conditions allow estimation of long-term rate of bone loss and monitoring of treatment effect. 38 references.

  11. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components.

    PubMed

    Malkov, Serghei; Shepherd, John

    2014-02-17

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  12. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  13. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  14. Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty

    PubMed Central

    Salemyr, Mats; Muren, Olle; Ahl, Torbjörn; Bodén, Henrik; Eisler, Thomas; Stark, André; Sköldenberg, Olof

    2015-01-01

    Background and purpose — We hypothesized that an ultra-short stem would load the proximal femur in a more physiological way and could therefore reduce the adaptive periprosthetic bone loss known as stress shielding. Patients and methods — 51 patients with primary hip osteoarthritis were randomized to total hip arthroplasty (THA) with either an ultra-short stem or a conventional tapered stem. The primary endpoint was change in periprosthetic bone mineral density (BMD), measured with dual-energy x-ray absorptiometry (DXA), in Gruen zones 1 and 7, two years after surgery. Secondary endpoints were change in periprosthetic BMD in the entire periprosthetic region, i.e. Gruen zones 1 through 7, stem migration measured with radiostereometric analysis (RSA), and function measured with self-administered functional scores. Results — The periprosthetic decrease in BMD was statistically significantly lower with the ultra-short stem. In Gruen zone 1, the mean difference was 18% (95% CI: −27% to −10%). In zone 7, the difference was 5% (CI: −12% to −3%) and for Gruen zones 1–7 the difference was also 5% (CI: −9% to −2%). During the first 6 weeks postoperatively, the ultra-short stems migrated 0.77 mm more on average than the conventional stems. 3 months after surgery, no further migration was seen. The functional scores improved during the study and were similar in the 2 groups. Interpretation — Up to 2 years after total hip arthroplasty, compared to the conventional tapered stem the ultra-short uncemented anatomical stem induced lower periprosthetic bone loss and had equally excellent stem fixation and clinical outcome. PMID:26134386

  15. Eating attitudes and habitual calcium intake in peripubertal girls are associated with initial bone mineral content and its change over 2 years.

    PubMed

    Barr, S I; Petit, M A; Vigna, Y M; Prior, J C

    2001-05-01

    This 2-year prospective study examined associations among bone mineral acquisition and physical, maturational, and lifestyle variables during the pubertal transition in healthy girls. Forty-five girls, initially 10.5+/-0.6 years, participated. Body composition and bone mineral content (BMC) at the spine and total body (TB) were assessed at baseline and annually thereafter using dual-energy X-ray absorptiometry (DXA). Nutrient intakes were assessed using 3-day diet records and a calcium food frequency questionnaire (FFQ), physical activity by questionnaire, sexual maturation using Tanner's stages of breast and pubic hair maturation, growth by height and weight, and eating attitudes using the children's Eating Attitudes Test (Children's EAT). Mean children's EAT subscale scores (dieting, oral control [OC], and bulimia) were stable over time. Median split of OC subscale scores was used to form high and low OC groups. Groups had similar body composition, dietary intake, activity, and Tanner stage at baseline and 2 years. Using height, weight, and Tanner breast stage as covariates, girls with low OC scores had greater TB BMC at baseline (1452+/-221 g vs. 1387+/-197 g; p = 0.030) and 2 years (2003+/-323 g vs. 1909+/-299 g; p = 0.049) and greater lumbar spine (LS) BMC at 2 years (45.2+/-8.8 g vs. 41.2+/-9.6 g; p = 0.042). In multiple regression analysis, OC score predicted baseline, 2 years, and 2-year change in TB and spinal BMC, contributing 0.9-7.6% to explained variance. Calcium intake predicted baseline, 2 years, and 2-year change in TB BMC, explaining 1.6-5.3% of variance. We conclude that both OC and habitual calcium intake may influence bone mineral acquisition.

  16. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study

    PubMed Central

    2010-01-01

    Background Drinking coffee has been linked to reduced calcium conservation, but it is less clear whether it leads to sustained bone mineral loss and if individual predisposition for caffeine metabolism might be important in this context. Therefore, the relation between consumption of coffee and bone mineral density (BMD) at the proximal femur in men and women was studied, taking into account, for the first time, genotypes for cytochrome P450 1A2 (CYP1A2) associated with metabolism of caffeine. Methods Dietary intakes of 359 men and 358 women (aged 72 years), participants of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS), were assessed by a 7-day food diary. Two years later, BMD for total proximal femur, femoral neck and trochanteric regions of the proximal femur were measured by Dual-energy X-ray absorptiometry (DXA). Genotypes of CYP1A2 were determined. Adjusted means of BMD for each category of coffee consumption were calculated. Results Men consuming 4 cups of coffee or more per day had 4% lower BMD at the proximal femur (p = 0.04) compared with low or non-consumers of coffee. This difference was not observed in women. In high consumers of coffee, those with rapid metabolism of caffeine (C/C genotype) had lower BMD at the femoral neck (p = 0.01) and at the trochanter (p = 0.03) than slow metabolizers (T/T and C/T genotypes). Calcium intake did not modify the relation between coffee and BMD. Conclusion High consumption of coffee seems to contribute to a reduction in BMD of the proximal femur in elderly men, but not in women. BMD was lower in high consumers of coffee with rapid metabolism of caffeine, suggesting that rapid metabolizers of caffeine may constitute a risk group for bone loss induced by coffee. PMID:20175915

  17. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence.

    PubMed

    van der Meulen, M C; Marcus, R; Bachrach, L K; Carter, D R

    1997-05-01

    We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.

  18. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence

    NASA Technical Reports Server (NTRS)

    van der Meulen, M. C.; Marcus, R.; Bachrach, L. K.; Carter, D. R.

    1997-01-01

    We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.

  19. Longitudinal Evaluation of Mouse Hind Limb Bone Loss After Spinal Cord Injury using Novel, in vivo, Methodology

    PubMed Central

    McManus, Madonna M.; Grill, Raymond J.

    2011-01-01

    of density in the proximal femur was not detectable until 40 days post injury (7% decrease, p<0.05). SCI-dependent loss of mouse femur density was confirmed post-mortem through the use of Dual-energy X-ray Absorptiometry (DXA), the current "gold standard" for bone density measurements. We detect a 12% loss of BMC in the femurs of mice at 40 days post-SCI using the IVIS Lumina XR. This compares favorably with a previously reported BMC loss of 13.5% by Picard and colleagues who used DXA analysis on mouse femurs post-mortem 30 days post-SCI 9. Our results suggest that the IVIS Lumina XR provides a novel, high-resolution/high-magnification method for performing long-term, longitudinal measurements of hind limb bone density in the mouse following SCI. PMID:22158515

  20. Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling.

    PubMed

    Nasiri, Masoud; Luo, Yunhua

    2016-09-01

    There is controversy about whether or not body parameters affect hip fracture in men and women in the same way. In addition, although bone mineral density (BMD) is currently the most important single discriminator of hip fracture, it is unclear if BMD alone is equally effective for men and women. The objective of this study was to quantify and compare the associations of hip fracture risk with BMD and body parameters in men and women using our recently developed two-level biomechanical model that combines a whole-body dynamics model with a proximal-femur finite element model. Sideways fall induced impact force of 130 Chinese clinical cases, including 50 males and 80 females, were determined by subject-specific dynamics modeling. Then, a DXA-based finite element model was used to simulate the femur bone under the fall-induced loading conditions and calculate the hip fracture risk. Body weight, body height, body mass index, trochanteric soft tissue thickness, and hip bone mineral density were determined for each subject and their associations with impact force and hip fracture risk were quantified. Results showed that the association between impact force and hip fracture risk was not strong enough in both men (r=-0.31,p<0.05) and women (r=0.42,p<0.001) to consider the force as a sole indicator of hip fracture risk. The correlation between hip BMD and hip fracture risk in men (r=-0.83,p<0.001) was notably stronger than that in women (r=-0.68,p<0.001). Increased body mass index was not a protective factor against hip fracture in men (r=-0.13,p>0.05), but it can be considered as a protective factor among women (r=-0.28,p<0.05). In contrast to men, trochanteric soft tissue thickness can be considered as a protective factor against hip fracture in women (r=-0.50,p<0.001). This study suggested that the biomechanical risk/protective factors for hip fracture are sex-specific. Therefore, the effect of body parameters should be considered differently for men and women in hip

  1. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population

    PubMed Central

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  2. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population.

    PubMed

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  3. Changes in bone mineral density 10 years after marked reduction of cadmium exposure in a Chinese population

    SciTech Connect

    Chen, Xiao; Zhu, Guoying; Jin, Taiyi; Akesson, Agneta; Bergdahl, Ingvar A.; Lei, Lijian; Weng, Shifang; Liang, Yihuai

    2009-10-15

    The main focus of this study was to evaluate the long-term effects of Cd on forearm bone mineral density after the cessation of the ingestion of Cd-polluted rice. A total of 458 persons (294 women, 164 men) from three Cd exposure areas (low, moderately, and heavy) participated in this study. Those living in the moderate and heavy exposure areas ceased ingesting Cd-polluted rice (0.51 and 3.7 mg/kg, respectively) in 1996 (10 years prior to present analysis). The participants completed a questionnaire and bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA) at the proximal radius and ulna. The changes and change percentage in forearm bone density and the prevalence of osteoporosis between 1998 and 2006 were used as markers of bone recovery. The Cd concentrations in urine (UCd) and blood (BCd) in 1998 were used as Cd exposure markers. The values of the BMD change and change percentage of groups in which UCd was above 5 {mu}g/g creatinine ({mu}g/g crea) and BCd was above 10 {mu}g/L were significantly higher than those of the low-exposure groups (in women, p<0.001; in men, p>0.05). The BMD change and change percentage correlated positively with the UCd and BCd (in women, p<0.01; in men, p>0.05). Analysis of the Z-score revealed that the prevalence of osteoporosis in 2006 was higher than that in 1998 and increased along with the level of UCd and BCd in both women and men, especially for those subjects with the higher BCd [BCd>5 {mu}g/L, OR=3.45 (0.95-13.6); BCd>10 {mu}g/L, OR=4.51(1.57-13.54)] and UCd [UCd>10 {mu}g/g crea, OR=4.74 (1.82-12.81)] in women. It is concluded that decreasing dietary cadmium exposure at the population level is not associated with bone recovery at the individual level, and the adverse bone effects of Cd exposure persisted after the main source of Cd exposure had been blocked, especially in women.

  4. Magnetic resonance imaging and dual energy X-ray absorptiometry of the lumbar spine in professional wrestlers and untrained men.

    PubMed

    Hu, M; Sheng, J; Kang, Z; Zou, L; Guo, J; Sun, P

    2014-08-01

    The aim of this study was to examine the relation between bone marrow adipose tissue (BMAT) and bone mineral density (BMD) of lumbar spine in male professional wrestlers and healthy untrained men. A total of 14 wrestlers (22.9±3.4 years) and 11 controls (24.4±1.6 years) were studied cross-sectionally. Body composition and BMD were measured by dual-energy X-ray absorptiometry. Magnetic resonance imaging of the lumbar spine was examined in a sagittal T1-weighted (T1-w) spin-echo (SE) sequence. The averaged bone marrow signal intensity (SI) of L2-L4 was related to the signal of an adjacent nondegenerative disk. Mean SI of T1-w SE in wrestlers was lower than controls (P=0.001), indicating L2-L4 BMAT in wrestlers was lower compared to controls. L2-L4 BMD in wrestlers was higher than controls (P<0.001). In the total subject population, L2-L4 BMD was inversely correlated with mean SI of T1-w SE (r=-0.62, P=0.001). This association remained strong after adjusting for body mass and whole lean mass, but became weaker after adjusting for whole body or trunk fat percentage. The inverse relationship between BMAT and BMD was confirmed in this relatively small subject sample with narrow age range, which implies that exercise training is an important determinant of this association.

  5. A Piece of the Puzzle: The Bone Health Index of the BoneXpert Software Reflects Cortical Bone Mineral Density in Pediatric and Adolescent Patients

    PubMed Central

    Schündeln, Michael M.; Marschke, Laura; Bauer, Jens J.; Hauffa, Pia K.; Schweiger, Bernd; Führer-Sakel, Dagmar; Lahner, Harald; Poeppel, Thorsten D.; Kiewert, Cordula; Hauffa, Berthold P.; Grasemann, Corinna

    2016-01-01

    Introduction Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths. Study Design The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius. Results The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 –L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 –L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation. Conclusions The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands. PMID:27014874

  6. Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index.

    PubMed

    MacKelvie, K J; McKay, H A; Petit, M A; Moran, O; Khan, K M

    2002-05-01

    We examined the effects of a 7-month jumping intervention (10 minutes, 3 times per week) on bone mineral gain in prepubertal Asian and white boys (10.3+/-0.6 years, 36.0+/-9.2 kg) at 14 schools randomized to control (n = 60) and intervention (n = 61) groups. Intervention and control groups had similar mean baseline and change in height, weight, lean mass and fat mass, baseline areal bone mineral density (aBMD; g/cm2), bone mineral content (BMC; g; dual-energy X-ray absorptiometry [DXA], QDR 4500W), and similar average physical activity and calcium intakes. Over 7 months, the intervention group gained more total body (TB) BMC (1.6%,p < 0.01) and proximal femur (PF) aBMD (1%, p < 0.05) than the control group after adjusting for age, baseline weight, change in height, and loaded physical activity. We also investigated the 41 Asian and 50 white boys (10.2+/-0.6 years and 31.9+/-4.4 kg) who were below the 75th percentile (19.4 kg/m2) of the cohort mean for baseline body mass index (BMI). Boys in the intervention group gained significantly more TB and lumbar spine (LS) BMC, PF aBMD, and trochanteric (TR) aBMD (+ approximately2%) than boys in the control group (adjusted for baseline weight, final Tanner stage, change in height, and loaded physical activity). Bone changes were similar between Asians and whites. Finally, we compared the boys in the control group (n = 16) and the boys in the intervention group (n = 14) whose baseline BMI fell in the highest quartile (10.5+/-0.6 years and 49.1+/-8.2 kg). Seven-month bone changes (adjusted as aforementioned) were similar in the control and intervention groups. In summary, jumping exercise augmented bone mineral accrual at several regions equally in prepubertal Asian and white boys of average or low BMI, and intervention effects on bone mineral were undetectable in high BMI prepubertal boys. PMID:12009014

  7. Enhanced bone mass and physical fitness in young female handball players.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Perez-Gomez, J; Gonzalez-Henriquez, J J; Calbet, J A L

    2004-11-01

    This study evaluates the effect of physical activity on the bone content (BMC) and density (BMD) in 51 girls (14.2+/-0.4 yr). Twenty-four were placed in the handball group as they have been playing handball for at least 1 year (3.9+/-0.4). The other 27 who did not perform in any kind of regular physical activity other than that programmed during the compulsory physical education courses comprised the control group. Bone mass and areal density were measured by dual-energy X-ray absorptiometry (DXA). The maximal leg extension isometric force in the squat position with knees bent at 90 degrees and the peak force, mean power, and height jumped during vertical squat jump were assessed with a force plate. Additionally, 30-m run (running speed) and 300-m run (as an estimate of anaerobic capacity) tests were also performed. Maximal aerobic capacity was estimated using the 20-m shuttle-run tests. Compared to the controls, handballers attained better results in the physical fitness tests and had a 6% and 11% higher total body and right upper extremity lean mass (all P<0.05). The handballers showed enhanced BMC and BMD in the lumbar spine, pelvic region, and lower extremity (all P<0.05). They also showed greater BMC in the whole body and enhanced BMD in the right upper extremity and femoral neck than the control subjects (all P<0.05). As expected, total lean mass strongly correlated with total and regional BMC and BMD (r=0.79-0.91 P<0.001). Interestingly, 300-m running speed correlated with BMC and BMD variables (r=0.59-0.67 and r=0.60-0.70, respectively; all P<0.001). Multiple regression analysis showed that the 30-m running speed test, combined with the height and body mass, has also predictive value for whole-body BMC and BMD (R=0.93 and R=0.90, P<0.001). In conclusion, handball participation is associated with improved physical fitness, increased lean and bone masses, and enhanced axial and appendicular BMD in young girls. The combination of anthropometric and fitness

  8. Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX.

    PubMed

    Kälvesten, Johan; Lui, Li-Yung; Brismar, Torkel; Cummings, Steven

    2016-05-01

    Osteoporosis is often underdiagnosed and undertreated. Screening of post-menopausal women for clinical risk factors and/or low bone mineral density (BMD) has been proposed to overcome this. Digital X-ray radiogrammetry (DXR) estimates hand BMD from standard hand X-ray images and have shown to predict fractures and osteoporosis. Recently, digital radiology and the internet have opened up the possibility of conducting automated opportunistic screening with DXR in post-fracture care or in combination with mammography. This study compared the performance of DXR with FRAX® and DXA in discriminating major osteoporotic fracture (MOF) (hip, clinical spine, forearm or shoulder), hip fracture and femoral neck osteoporosis. This prospective cohort study was conducted on 5278 women 65years and older in the Study of Osteoporotic Fractures (SOF) cohort. Baseline hand X-ray images were analyzed and fractures were ascertained during 10years of follow up. Age-adjusted area under receiver operating characteristic curve (AUC) for MOF and hip fracture and for femoral neck osteoporosis (DXA FN BMD T-score ≤-2.5) was used to compare the methods. Sensitivity to femoral neck osteoporosis at equal selection rates was tabulated for FRAX and DXR. DXR-BMD, FRAX (no BMD) and lumbar spine DXA BMD were all similar in fracture discriminative performance with an AUC around 0.65 for MOF and 0.70 for hip fractures for all three methods. As expected femoral neck DXA provided fracture discrimination superior both to other BMD measurements and to FRAX. AUC for selection of patients with femoral neck osteoporosis was higher with DXR-BMD, 0.76 (0.74-0.77), than with FRAX, 0.69 (0.67-0.71), (p<0.0001). In conclusion, DXR-BMD discriminates incident fractures to a similar degree as FRAX and predicts femoral neck osteoporosis to a larger degree than FRAX. DXR shows promise as a method to automatically flag individuals who might benefit from an osteoporosis assessment. PMID:26921822

  9. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system.

    PubMed

    Leslie, William D; Lix, Lisa M

    2011-03-01

    The World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) computes 10-year probability of major osteoporotic fracture from multiple risk factors, including femoral neck (FN) T-scores. Lumbar spine (LS) measurements are not currently part of the FRAX formulation but are used widely in clinical practice, and this creates confusion when there is spine-hip discordance. Our objective was to develop a hybrid 10-year absolute fracture risk assessment system in which nonvertebral (NV) fracture risk was assessed from the FN and clinical vertebral (V) fracture risk was assessed from the LS. We identified 37,032 women age 45 years and older undergoing baseline FN and LS dual-energy X-ray absorptiometry (DXA; 1990-2005) from a population database that contains all clinical DXA results for the Province of Manitoba, Canada. Results were linked to longitudinal health service records for physician billings and hospitalizations to identify nontrauma vertebral and nonvertebral fracture codes after bone mineral density (BMD) testing. The population was randomly divided into equal-sized derivation and validation cohorts. Using the derivation cohort, three fracture risk prediction systems were created from Cox proportional hazards models (adjusted for age and multiple FRAX risk factors): FN to predict combined all fractures, FN to predict nonvertebral fractures, and LS to predict vertebral (without nonvertebral) fractures. The hybrid system was the sum of nonvertebral risk from the FN model and vertebral risk from the LS model. The FN and hybrid systems were both strongly predictive of overall fracture risk (p < .001). In the validation cohort, ROC analysis showed marginally better performance of the hybrid system versus the FN system for overall fracture prediction (p = .24) and significantly better performance for vertebral fracture prediction (p < .001). In a discordance subgroup with FN and LS T-score differences greater than 1 SD, there was a significant

  10. A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX.

    PubMed

    McCloskey, Eugene V; Odén, Anders; Harvey, Nicholas C; Leslie, William D; Hans, Didier; Johansson, Helena; Barkmann, Reinhard; Boutroy, Stephanie; Brown, Jacques; Chapurlat, Roland; Elders, Petra Jm; Fujita, Yuki; Glüer, Claus-C; Goltzman, David; Iki, Masayuki; Karlsson, Magnus; Kindmark, Andreas; Kotowicz, Mark; Kurumatani, Norio; Kwok, Timothy; Lamy, Oliver; Leung, Jason; Lippuner, Kurt; Ljunggren, Östen; Lorentzon, Mattias; Mellström, Dan; Merlijn, Thomas; Oei, Ling; Ohlsson, Claes; Pasco, Julie A; Rivadeneira, Fernando; Rosengren, Björn; Sornay-Rendu, Elisabeth; Szulc, Pawel; Tamaki, Junko; Kanis, John A

    2016-05-01

    Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical

  11. A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women.

    PubMed

    Villalon, Karen L; Gozansky, Wendolyn S; Van Pelt, Rachael E; Wolfe, Pam; Jankowski, Catherine M; Schwartz, Robert S; Kohrt, Wendy M

    2011-12-01

    Previously, we reported significant bone mineral density (BMD) loss in postmenopausal women after modest weight loss. It remains unclear whether the magnitude of BMD change in response to weight loss is appropriate (i.e., proportional to weight loss) and whether BMD is recovered with weight regain. We now report changes in BMD after a 1-year follow-up. Subjects (n = 23) in this secondary analysis were postmenopausal women randomized to placebo as part of a larger trial. They completed a 6-month exercise-based weight loss program and returned for follow-up at 18 months. Dual-energy X-ray absorptiometry (DXA) was performed at baseline, 6, and 18 months. At baseline, subjects were aged 56.8 ± 5.4 years (mean ± s.d.), 10.0 ± 9.2 years postmenopausal, and BMI was 29.6 ± 4.0 kg/m(2). They lost 3.9 ± 3.5 kg during the weight loss intervention. During follow-up, they regained 2.9 ± 3.9 kg. Six months of weight loss resulted in a significant decrease in lumbar spine (LS) (-1.7 ± 3.5%; P = 0.002) and hip (-0.04 ± 3.5%; P = 0.03) BMD that was accompanied by an increase in a biomarker of bone resorption (serum C-terminal telopeptide of type I collagen, CTX: 34 ± 54%; P = 0.08). However, weight regain was not associated with LS (0.05 ± 3.8%; P = 0.15) or hip (-0.6 ± 3.0%; P = 0.81) bone regain or decreased bone resorption (CTX: -3 ± 37%; P = 0.73). The findings suggest that BMD lost during weight reduction may not be fully recovered with weight regain in hormone-deficient, postmenopausal women. Future studies are needed to identify effective strategies to prevent bone loss during periods of weight loss.

  12. Association between Abdominal Fat (DXA) and Its Subcomponents (CT Scan) before and after Weight Loss in Obese Postmenopausal Women: A MONET Study.

    PubMed

    Doyon, Caroline Y; Brochu, Martin; Messier, Virginie; Lavoie, Marie-Ève; Faraj, May; Doucet, Eric; Rabasa-Lhoret, Rémi; Dionne, Isabelle J

    2011-01-01

    Introduction. Subcutaneous fat (ScF) and visceral fat (VF) measurements using CT scan are expensive and may imply significant radiation doses. Cross-sectional studies using CT scan showed that ScF and VF are significantly correlated with abdominal fat measured by DXA (AF-DXA). The association has not been studied after a weight loss. Objective. To determine (1) the associations between AF-DXA and ScF and VF before and after weight loss and (2) the associations between their changes. Methods. 137 overweight/obese postmenopausal women were divided in two groups (1-caloric restriction or 2-caloric restriction + resistance training). AF was assessed using DXA and CT scan. Results. Correlations between AF-DXA and ScF (before: r = 0.87, after; r = 0.87; P < .01) and, AF-DXA and VF (before: r = 0.61, after; r = 0.69; P < .01) are not different before and after the weight loss. Correlations between delta AF-DXA and delta ScF (r = 0.72; P < .01) or delta VF (r = 0.51; P < .01) were found. Conclusion. The use of AF-DXA as a surrogate for VF after weight loss is questionable, but may be interesting for ScF.

  13. Does Diet-Induced Weight Loss Lead to Bone Loss in Overweight or Obese Adults? A Systematic Review and Meta-Analysis of Clinical Trials.

    PubMed

    Zibellini, Jessica; Seimon, Radhika V; Lee, Crystal M Y; Gibson, Alice A; Hsu, Michelle S H; Shapses, Sue A; Nguyen, Tuan V; Sainsbury, Amanda

    2015-12-01

    Diet-induced weight loss has been suggested to be harmful to bone health. We conducted a systematic review and meta-analysis (using a random-effects model) to quantify the effect of diet-induced weight loss on bone. We included 41 publications involving overweight or obese but otherwise healthy adults who followed a dietary weight-loss intervention. The primary outcomes examined were changes from baseline in total hip, lumbar spine, and total body bone mineral density (BMD), as assessed by dual-energy X-ray absorptiometry (DXA). Secondary outcomes were markers of bone turnover. Diet-induced weight loss was associated with significant decreases of 0.010 to 0.015 g/cm(2) in total hip BMD for interventions of 6, 12, or 24 (but not 3) months' duration (95% confidence intervals [CIs], -0.014 to -0.005, -0.021 to -0.008, and -0.024 to -0.000 g/cm(2), at 6, 12, and 24 months, respectively). There was, however, no statistically significant effect of diet-induced weight loss on lumbar spine or whole-body BMD for interventions of 3 to 24 months' duration, except for a significant decrease in total body BMD (-0.011 g/cm(2); 95% CI, -0.018 to -0.003 g/cm(2)) after 6 months. Although no statistically significant changes occurred in serum concentrations of N-terminal propeptide of type I procollagen (P1NP), interventions of 2 or 3 months in duration (but not of 6, 12, or 24 months' duration) induced significant increases in serum concentrations of osteocalcin (0.26 nmol/L; 95% CI, 0.13 to 0.39 nmol/L), C-terminal telopeptide of type I collagen (CTX) (4.72 nmol/L; 95% CI, 2.12 to 7.30 nmol/L) or N-terminal telopeptide of type I collagen (NTX) (3.70 nmol/L; 95% CI, 0.90 to 6.50 nmol/L bone collagen equivalents [BCEs]), indicating an early effect of diet-induced weight loss to promote bone breakdown. These data show that in overweight and obese individuals, a single diet-induced weight-loss intervention induces a small decrease in total hip BMD, but not lumbar spine

  14. Does previous participation in high-impact training result in residual bone gain in growing girls? One year follow-up of a 9-month jumping intervention.

    PubMed

    Kontulainen, S A; Kannus, P A; Pasanen, M E; Sievänen, H T; Heinonen, A O; Oja, P; Vuori, I

    2002-11-01

    The skeletal response to exercise and training on bone is exceptionally good during the growing years. However, it is not known whether the benefit of training on bone is maintained after the training. This 20-month follow-up study assessed the effect of a 9-month jumping intervention on bone gain and physical performance in 99 girls (mean age 12.5 +/- 1.5 years at the beginning of the study) one year after the end of the intervention. Both bone mineral content (BMC), by dual energy X-ray absorptiometry (DXA) at the lumbar spine and proximal femur, and physical performance parameters (standing long jump, leg extension strength, and shuttle run tests) were measured at baseline and at 20 months. A multivariate regression analysis was first used to determine the best predictors of the BMC accrual by time. Analysis showed that age at baseline and square of age, changes in height and weight, and pubertal development into Tanner stages 4 and 5 during the follow-up explained the majority of the BMC gain. Then, the effect of participation in the 9-month exercise intervention on BMC accrual and physical performance was analysed adding this variable (participation: yes/no) into the model. The regression analysis showed that the trainees (N = 50) had 4.9 % (95 % CI, 0.9 % to 8.8 %, p = 0.017) greater BMC increase in the lumbar spine than the controls (N = 49). The mean 20-month BMC increase in the lumbar spine was 28 % (SD 19) in the trainees compared to 22 % (12) increase in the controls. In the proximal femur, the trend was similar but the obtained 2 to 3 % higher BMC accrual in the trainees (compared to that in controls) were statistically insignificant. Among the performance variables, using the same model that best predicted the BMC accrual, the only statistically significant between-groups difference, in favour of the trainees, was the improvement in the standing long jump test (6.4 %, 95 % CI, 2.3 % to 10.4 %, p = 0.002). Improvements in the leg extension strength and

  15. Long-term changes in bone mineral density after switching to a protease inhibitor monotherapy in HIV-infected subject.

    PubMed

    Negredo, Eugènia; Bonjoch, Anna; Puig, Jordi; Echeverría, Patricia; Estany, Carla; Santos, José R; Moltó, José; Pérez-Álvarez, Nuria; Ornelas, Arelly; Clotet, Bonaventura

    2015-04-01

    Although some clinical trials have studied the impact of treatments on bone mineral density (BMD), scarce data are available about the impact of protease inhibitor (PI) monotherapies on BMD. The aim of this study was to evaluate changes in BMD in patients after one, two, or three years of a PI monotherapy. This study included 46 HIV-infected patients who switched from a conventional triple antiretroviral strategy to a monotherapy with lopinavir/ritonavir (LPV/r) or darunavir/ritonavir (DRV/r) for one (one-year group, n=16), two (two-year group, n=20), and three (three-year group, n=10) years. BMD was assessed by dual-energy X-ray absorptiometry (DXA). The median percentage of change in total femur BMD was 0.20% after one, 0.79% after two, and -0.31% after three years. The change in lumbar spine was -0.08%, -0.14%, and 0.50% % after the same years. No significant differences were found when patients were classified regarding the type of PI and whether or not had previously received PI or tenofovir. However, patients who interrupted tenofovir or those who started with DRV/r had a higher BMD increment. Patients who had taken non-nucleoside reverse transcriptase inhibitors previously decreased BMD when started PIs. Monotherapy treatment with ritonavir-boosted protease inhibitors (both LPV/r and DRV/r) during one, two, or three years leads to the stabilization of BMD in HIV-infected patients with long-term virological suppression. Larger studies are necessary to compare the effect of starting or withdrawing PIs on BMD. PMID:25938744

  16. The effect of menarche age, parity and lactation on bone mineral density in premenopausal ambulatory multiple sclerosis patients.

    PubMed

    Sioka, Chrissa; Fotopoulos, Andreas; Papakonstantinou, Stilianos; Georgiou, Athanasia; Pelidou, Sygliti-Henrietta; Kyritsis, Athanasios P; Kalef-Ezra, John A

    2015-07-01

    Although pregnancy and breast-feeding do not have any deleterious effect on disease activity in female multiple sclerosis (MS) patients, their role on bone mineral density (BMD) and osteoporosis risk is unknown. We investigated the role of age at menarche, parity and lactation on BMD expressed as percentage of the mean BMD (%BMD) in 46 pre-menopausal ambulatory female MS patients using dual-energy X-ray absorptiometry (DXA) scans in lumbar spine (LS) and hip. MS female patients with age at menarche ≥13 years old had reduced %BMD compared to those with menarche age <13 years (95.2±10.7 vs 102.1±13.3, p=0.05 in LS; 90.5±12.6 vs 99.8±12.6, p=0.02 in hip). Parity did not result in any statistically significant changes in either LS or hip. Patients that breastfed their offspring compared to those that did not had significantly lower BMD in both LS (93.9±9.3 vs 110.7±15.6, p=0.004) and hip (91.6±10.7 vs 105.6±15.3, p=0.02). MS female patients with menarche at age≥13 years and those who breastfed their offspring may have reduced BMD. Larger studies are needed to verify these findings and establish a definite role of menarche age and breast feeding with BMD. PMID:26195044

  17. Reduced vertebral bone density in hypercalciuric nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pietschmann, F.; Breslau, N. A.; Pak, C. Y.

    1992-01-01

    Dual-energy x-ray absorptiometry and single-photon absorptiometry were used to determine bone density at the lumbar spine and radial shaft in 62 patients with absorptive hypercalciuria, 27 patients with fasting hypercalciuria, and 31 nonhypercalciuric stone formers. Lumbar bone density was significantly lower in patients with absorptive (-10%) as well as in those with fasting hypercalciuria (-12%), with 74 and 92% of patients displaying values below the normal mean, whereas only 48% of the nonhypercalciuric stone formers had bone density values below the normal mean. In contrast, radial bone density was similar in all three groups of renal stone formers investigated. The comparison of urinary chemistry in patients with absorptive hypercalciuria and low normal bone density compared to those with high normal bone density showed a significantly increased 24 h urinary calcium excretion on random diet and a trend toward a higher 24 h urinary uric acid excretion and a higher body mass index in patients with low normal bone density. Moreover, among the patients with absorptive hypercalciuria we found a statistically significant correlation between the spinal bone density and the 24 h sodium and sulfate excretion and the urinary pH. These results gave evidence for an additional role of environmental factors (sodium and animal proteins) in the pathogenesis of bone loss in absorptive hypercalciuria. In conclusion, our data suggest an osteopenia of trabecular-rich bone tissues in patients with fasting and absorptive hypercalciurias.

  18. Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study.

    PubMed

    Szulc, Pawel; Blaizot, Stéphanie; Boutroy, Stephanie; Vilayphiou, Nicolas; Boonen, Steven; Chapurlat, Roland

    2013-01-01

    The aim was to study the association between bone microarchitecture and muscle mass and strength in older men. Volumetric bone mineral density (vBMD) and bone microarchitecture were assessed in 810 men aged ≥60 years at the distal radius by high-resolution peripheral computed tomography (HR-pQCT). Areal bone mineral density (aBMD) and appendicular muscle mass (ASM) were assessed by dual-energy X-ray absorptiometry (DXA). Relative ASM of the upper limbs (RASM-u.l.) was calculated as ASM of the upper limbs/(height)(2). Grip strength was measured by dynanometry. In multivariable models, men in the lowest RASM-u.l. quartile had lower cross-sectional area (CSA), cortical area (Ct.Ar), cortical thickness (Ct.Th), and trabecular area (Tb.Ar) at distal radius compared with men in the highest quartile. The trends remained significant after adjustment for grip strength. Men in the lowest quartile of the normalized grip strength (grip strength/[height](2)) had lower aBMD, total vBMD, Ct.Ar, Ct.Th, Tb.vBMD, and Tb.N, and higher Tb.Sp and Tb.Sp.SD. The associations for Ct.Ar, total vBMD, Ct.Th, Tb.vBMD, and Tb.Sp remained significant after adjustment for RASM-u.l. In the models including RASM-u.l. and normalized grip strength, CSA and Tb.Ar were associated with RASM-u.l. but not with the strength. Lower Ct.Th, Tb.vBMD, and Tb.N were associated with lower grip strength but not with RASM-u.l. Lower Ct.Ar was associated with lower grip strength and with lower RASM-u.l. In conclusion, in older men, low RASM-u.l. and low grip strength are associated with poor cortical and trabecular microarchitecture partly independently of each other, after adjustment for confounders. PMID:22865787

  19. Dual photon absorptiometry: Validation of mineral and fat measurements

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Sulet, M.; Lichtman, S.; Pierson, R.N. Jr. ); Kehayias, J. . USDA Human Nutrition Research Center on Aging at Tufts Univ.); Kamen, Y.; Dilmanian, F.A. ); Lindsay, R. . Coll. of Physicians and Surgeons)

    1989-01-01

    Photons passing through human tissue undergo attenuation in relation to the specific chemical substances with which they interact. By selecting two appropriate photon energies and recording their attenuation, the investigator can solve simultaneous equations that subdivide body mass into two components: soft tissue and bone mineral ash. The aim of this paper is to describe and to validate the estimates of body composition derived by dual photon systems. The initial studies largely involved dual photon absorptiometers, although the discussion will also include the more recently developed dual energy x-ray absorptiometers. 13 refs., 7 figs., 4 tabs.

  20. Bone Mineral Density Changes among HIV-Uninfected Young Adults in a Randomised Trial of Pre-Exposure Prophylaxis with Tenofovir-Emtricitabine or Placebo in Botswana

    PubMed Central

    Kasonde, Michael; Niska, Richard W.; Rose, Charles; Henderson, Faith L.; Segolodi, Tebogo M.; Turner, Kyle; Smith, Dawn K.; Thigpen, Michael C.; Paxton, Lynn A.

    2014-01-01

    Background Tenofovir-emtricitabine (TDF-FTC) pre-exposure prophylaxis (PrEP) has been found to be effective for prevention of HIV infection in several clinical trials. Two studies of TDF PrEP among men who have sex with men showed slight bone mineral density (BMD) loss. We investigated the effect of TDF and the interaction of TDF and hormonal contraception on BMD among HIV-uninfected African men and women. Method We evaluated the effects on BMD of using daily oral TDF-FTC compared to placebo among heterosexual men and women aged 18–29 years enrolled in the Botswana TDF2 PrEP study. Participants had BMD measurements at baseline and thereafter at 6-month intervals with dual-energy X-ray absorptiometry (DXA) scans at the hip, spine, and forearm. Results A total of 220 participants (108 TDF-FTC, 112 placebo) had baseline DXA BMD measurements at three anatomic sites. Fifteen (6.8%) participants had low baseline BMD (z-score of <−2.0 at any anatomic site), including 3/114 women (2.6%) and 12/106 men (11.3%) (p = 0.02). Low baseline BMD was associated with being underweight (p = 0.02), having high blood urea nitrogen (p = 0.02) or high alkaline phosphatase (p = 0.03), and low creatinine clearance (p = 0.04). BMD losses of >3.0% at any anatomic site at any time after baseline were significantly greater for the TDF-FTC treatment group [34/68 (50.0%) TDF-FTC vs. 26/79 (32.9%) placebo; p = 0.04]. There was a small but significant difference in the mean percent change in BMD from baseline for TDF-FTC versus placebo at all three sites at month 30 [forearm −0.84% (p = 0.01), spine −1.62% (p = 0.0002), hip −1.51% (p = 0.003)]. Conclusion Use of TDF-FTC was associated with a small but statistically significant decrease in BMD at the forearm, hip and lumbar spine. A high percentage (6.8%) of healthy Batswana young adults had abnormal baseline BMD Further evaluation is needed of the longer-term use of TDF in HIV-uninfected persons. Trial

  1. Calcium supplementation and weight bearing physical activity--do they have a combined effect on the bone density of pre-pubertal children?

    PubMed

    Ward, K A; Roberts, S A; Adams, J E; Lanham-New, S; Mughal, M Z

    2007-10-01

    The adaptation of bone to exercise has been shown to be modified by dietary calcium intake. The aim of this randomised controlled trial was to investigate whether there was a differential response to calcium supplementation in elite gymnasts and school children controls. The primary hypothesis was that gymnasts who took calcium supplements would have greater increases in cortical and trabecular volumetric bone mineral density (vBMD) at the radius and tibia. Secondary outcomes studied were changes in bone geometry at the radius and tibia and lumbar spine and whole body measurements. Children were randomised to 12 months daily supplementation of 500 mg elemental calcium (1250 mg (in the form of calcium carbonate salt)) or placebo. Outcome measures were assessed using peripheral quantitative computed tomography (pQCT) (distal and diaphyseal radius and tibia) and dual energy X-ray absorptiometry (DXA) (lumbar spine and whole body). Eighty-six subjects participated in the trial (44 gymnasts, 42 controls) and 75 subjects completed the trial (39 gymnasts, 36 controls). Data were analysed by analysis of covariance adjusting for baseline value of bone parameters, age, height, gender and puberty, and delay between baseline measurement and start of intervention. The primary analysis was for a calcium-exercise interaction; a pooled calcium effect with no interaction was also tested. Results are presented as ratios (95% confidence intervals). At the distal tibia, trabecular vBMD showed a significant interaction (p=0.04), with controls (1.00: 0.99, 1.09) responding more than gymnasts (0.98: 0.94, 1.02) to supplementation. At the distal radius, change in trabecular vBMD was not significant (p=0.05). There were no differences in change in cortical vBMD at either site between the gymnasts and controls (tibia: p=0.82, radius: p=0.88). For all other secondary outcomes at radius, tibia, spine and whole body no significant interactions were found. In conclusion, there was no beneficial

  2. Update on Bone Health in Pediatric Chronic Disease.

    PubMed

    Williams, Kristen M

    2016-06-01

    Children and adolescents with chronic disease are predisposed to impaired bone health. Pediatric illness, including type 1 diabetes mellitus, celiac disease, and cystic fibrosis, have significant risk of low bone mineralization and fracture due to underlying inflammation, malabsorption, lack of physical activity, and delayed puberty. Dual-energy x-ray absorptiometry is the primary imaging method to assess bone health in this population. The purpose of this review is to update readers about the assessment and management of bone health in children with common pediatric chr