Science.gov

Sample records for absorptiometry dxa bone

  1. Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Cleek, Tammy

    1993-01-01

    Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.

  2. Calcaneal quantitative ultrasound (QUS) and dual X-ray absorptiometry (DXA) bone analysis in adult HIV-positive patients.

    PubMed

    Clò, Alberto; Gibellini, Davide; Damiano, Davide; Vescini, Fabio; Ponti, Cristina; Morini, Silvia; Miserocchi, Anna; Musumeci, Giuseppina; Calza, Leonardo; Colangeli, Vincenzo; Viale, Pierluigi; Re, Maria Carla; Borderi, Marco

    2015-07-01

    Human immunodeficiency virus (HIV)-infected patients have an increased risk of developing osteopenia or osteoporosis compared with healthy individuals. Our aim was to compare dual X-ray absorptiometry (DXA), the gold standard for measuring bone mineral density (BMD), with bone quantitative ultrasound (QUS), an alternative technique for predicting fractures and screening low BMD, at least in postmenopausal populations. We analyzed DXA and QUS parameters to investigate their accuracy in the diagnosis and prediction of bone alterations in a cohort of 224 HIV-1-positive patients. The speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness index (SI) parameters showed a moderate correlation with DXA, especially with total-body BMD (r coefficient of 0.38, 0.4 and 0.42 respectively), particularly in the female subgroup. In addition, multivariate analysis of HIV-positive patients assessed for vertebral fractures indicated that QUS was more effective than DXA at predicting the risk of fracture. QUS can be used as an additional tool for analyzing bone density in HIV-positive patients and its case of use and low cost make it especially suitable for resource-limited settings where DXA is not employed. PMID:26147144

  3. Volumetric measurements of bone mineral density of the lumbar spine: comparison of three geometrical approximations using dual-energy X-ray absorptiometry (DXA)

    PubMed

    Schreuder, M F; van Driel, A P; van Lingen, A; Roos, J C; de Ridder, C M; Manoliu, R A; David, E F; Netelenbos, J C

    1998-08-01

    Measurements of bone mineral density using dual-energy X-ray absorptiometry (DXA) gives area values (g cm-2) rather than true volumetric values (g cm-3). To calculate the vertebral volume using planar postero-anterior and lateral DXA values, several different geometrical approximations were used: cubic, cylindrical with a circular cross-section and cylindrical with an elliptical cross-section. The aim of this study was to compare these geometrical approximations with each other and with a reference standard, defined as the volume found on a computed tomographic (CT) scan. L2 and L3 were evaluated in a phantom study. Volume approximations by the cube or cylinder with circular cross-section geometry showed more than a 50% overestimation (range 54-74%). However, the elliptical cylinder approach showed very good agreement: 2.1% and 1.2% for L2 and L3, respectively, when compared to the CT volumes. In addition, we performed four patient studies with both CT and DXA to evaluate the elliptical cylinder estimate in a clinical setting. For L2 and L3, the mean relative difference was less than 2%. We conclude that the elliptical cylinder approach results in the most accurate bone volume estimates in both the phantom and patients. PMID:9751926

  4. Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device.

    PubMed

    Kolta, S; Le Bras, A; Mitton, D; Bousson, V; de Guise, J A; Fechtenbaum, J; Laredo, J D; Roux, C; Skalli, W

    2005-08-01

    Three-dimensional accurate evaluation of the geometry of the proximal femur may be helpful for hip fracture risk evaluation. The purpose of this study was to apply and validate a stereo-radiographic 3D reconstruction method of the proximal femur, using contours identification from biplanar DXA images. Twenty-five excised human proximal femurs were investigated using a standard DXA unit. Three-dimensional personalized models were reconstructed using a dedicated non-stereo corresponding contours (NSCC) algorithm. Three-dimensional CT-scan reconstructions obtained on a clinical CT-scan unit were defined as geometric references for the comparison protocol, in order to assess accuracy and reproducibility of the 3D stereo-radiographic reconstructions. The precision of a set of 3D geometric parameters (femoral-neck axis length, mid-neck cross-section area, neck-shaft angle), obtained from stereo-radiographic models was also evaluated. This study shows that the NSCC method may be applied to obtain 3D reconstruction from biplanar DXA acquisitions. Applied to the proximal femur, this method showed good accuracy as compared with high-resolution personalized CT-scan models (mean error = 0.8 mm). Moreover, precision study for the set of 3D parameters yielded coefficients of variation lower than 5%. This is the first study providing 3D geometric parameters from standard 2D DXA images using the NSCC method. It has good accuracy and reproducibility in the present study on cadaveric femurs. In vivo prospective studies are needed to evaluate its discriminating potential on hip fracture risk prediction. PMID:15599494

  5. Dual energy X-ray absorptiometry (DXA): can it detect acute scaphoid fractures?

    PubMed

    Stephen, A B; Pye, D; Lyons, A R; Oni, J A; Davis, T R C

    2005-02-01

    This prospective study investigated whether dual energy X-ray absorptiometry (DXA) could detect acute scaphoid fractures. We blindly compared 10 normal and 10 fractured scaphoid images produced with a new technique of DXA scan analysis. This measured and plotted the density of the scaphoid throughout its length, producing a linear graph of the scaphoids' density instead of a single area (g/cm2) measurement of bone density. These new plots only detected six of the 10 fractures and suggested that four of the normal controls were fractured. Thus, this technique of DXA scan analysis is neither sensitive nor specific for the detection of acute scaphoid fractures. PMID:15620498

  6. A study on the effects of a calcium drug on the bone mineral density (BMD) by using dual-energy X-ray Absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hye; Kim, Ho-Sung; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    Measurements of osteoporosis might contain errors caused by the calcium drug used in the prevention and the treatment of osteoporosis. This study conducted a lumbar spine phantom experiment to examine whether a calcium drug can influence the measured values of the bone mineral density (BMD) because of the drug taken by a real patient remaining undigested in the stomach. Dual-energy X-ray Absorptiometry (DXA) was used to measure the BMD for a calcium-drug in an equipment-dedicated lumbar spine phantom and 10 patients selected for the BMD measurement. Three types of drugs that are prescribed in actual clinical practice calcium drugs were used for the phantom experiment, and the drugs were divided into a fixed dose, 1/2 of the fixed dose, 1/4 of the fixed dose and 1/8 of the fixed dose. Without the drugs included, the phantom was scanned 60 times continuously to calculate the baseline BMD. The BMD was measured as the calcium drug coated with paraffin was placed in the lumbar vertebra 2 and the soft tissue region of the phantom. To determine when the drug was invisible to the naked eye are measured, the BMD at different drug dilutions. The measurements were conducted three times to calculate the mean. In the patient experiment, patients were selected who visited hospital after taking the drug before measuring the BMD. After a certain time had passed, the BMD was measured again to examine the difference in images and the change in BMD values due to the calcium-drug intake. The BMD measurements of lumbar 1-4 in the phantom were higher, with statistical significant, than the least significant change (LSC) in the bone region for all three drugs (Ca carbonate, Ca citrate and Ca cholecalciferol), showing a significant increase. On the other hand, there was no significant change in the soft tissue. When Ca Cholecalciferol was used in a fixed dose, the BMD of L2 increased by 11.6%, showing the largest increase among the drugs examined, but only a 2.8% increase in the BMD of L1

  7. DXA parameters: beyond bone mineral density.

    PubMed

    Briot, Karine

    2013-05-01

    Dual-energy X-ray absorptiometry (DXA) is the reference standard for measuring bone mineral density (BMD) to diagnose osteoporosis. However, BMD measurement alone does not reliably predict the fracture risk. DXA can be used to assess other parameters (e.g. presence of vertebral fractures, bone microarchitecture, bone geometry, and body composition) simultaneously with BMD measurements, to help identify individuals at high fracture risk. Among these parameters, some are suitable for use in clinical practice, whereas others are reserved for research. Vertebral fracture assessment (VFA) is a very low radiation-dose method for detecting thoracic and lumbar vertebral fractures. Compared to standard radiography, VFA can be used in a broader population to detect asymptomatic vertebral fractures. The very good negative predictive value of VFA leads, in one-third of cases, to changes in patient management (drug treatment and prescription of radiographs). The trabecular bone score (TBS) is a noninvasively measured texture parameter that correlates with 3D bone microarchitecture parameters independently from BMD and that can be determined from lumbar-spine DXA images. Several cross-sectional studies and a prospective study established that the TBS was effective in identifying individuals with fractures. Additional studies will have to be performed to determine whether TBS determination can be recommended for everyday practice when treatment decisions are difficult. PMID:23622733

  8. Laser-Supported Dual Energy X-Ray Absorptiometry (DXL) Compared to Conventional Absorptiometry (DXA) and to FRAX as Tools for Fracture Risk Assessments

    PubMed Central

    Sääf, Maria; Strender, Lars-Erik; Nyren, Sven; Johansson, Sven-Erik

    2015-01-01

    Dual X-ray and Laser (DXL) adds a measure of the external thickness of the heel, measured by laser, to a conventional measurement of bone mineral density (BMD) of the calcaneus, using Dual energy X-ray Absorptiometry (DXA). The addition of heel thickness aims at a better separation of fatty tissue from bone than the standard method of DXA, which may mistake fatty tissue for bone and vice versa. The primary aim of this study was to evaluate whether DXL of the calcaneus can be used to assess the 10-year risk of fractures. Secondary aims were to compare the predictive ability of DXL with the two most established methods, Dual energy X-ray Absorptiometry (DXA) of the hip and spine and the WHO fracture risk assessment tool, FRAX. In 1999 a cohort of 388 elderly Swedish women (mean age 73.2 years) was examined with all three methods. Prospective fracture data was collected in 2010 from health care registers. One SD decrease in BMD of the heel resulted in an age-adjusted Hazard Ratio (HR) of 1.47 for a hip fracture (95% CI 1.09–1.98). Harrell’s C is the Cox regression counterpart of the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) as a measure of predictive accuracy. Harrell’s C for BMD of the calcaneus was 0.65 for prediction of hip fractures. These results were not significantly different from those for BMD of the femoral neck or for FRAX. The HR for a hip fracture, for one SD decrease in BMD at the femoral neck, was 1.72 (95% CI 1.21–2.44. Harrell’s C was 0.67 for BMD at the femoral neck and 0.59 for FRAX. We conclude that DXL of the calcaneus could be a useful tool for fracture risk assessments. PMID:26413715

  9. Should Dual-Energy X-ray Absorptiometry Technologists Estimate Dietary Calcium Intake at the Time of DXA?

    PubMed

    McKenna, Malachi J; McKenna, Mary Clare S; van der Kamp, Susan

    2016-01-01

    Adequate calcium intake is essential for bone health. Calcium is obtained from dietary sources and supplementation. Knowing the daily dietary calcium intake is helpful in deciding on the need for supplementation. Dietary calcium intake can be estimated quickly and accurately using an approach recommended by the National Osteoporosis Foundation. We sought to evaluate the usefulness of estimating dietary calcium intake by a technologist at the time of attendance for dual-energy X-ray absorptiometry (DXA) scanning. We conducted a retrospective survey of results on estimated dietary calcium intake in adults attending our DXA unit over 2 years (n=5569). We assessed intake with reference to the specifications of the Institute of Medicine according to sex and age. The average intake was 736 mg daily: Young adults had higher intakes than older adults (p<0.001), and men had higher intakes than women (p=0.017). According to Institute of Medicine's specification, we estimate that nearly 45% of Irish women need supplemental intake of 500 mg daily but <4% need supplemental intake of 1000 mg daily. Younger adults are apt to have intakes within, or higher than, the requirement. Having DXA technologists estimate dietary calcium intake at the time of DXA scanning may provide helpful information to the referring clinicians about the need for supplementation. PMID:25934029

  10. Efficiency of energy and protein deposition in swine measured by dual energy X-ray absorptiometry (DXA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of studies were conducted using dual energy X-ray absorptiometry (DXA) to measure energy and protein deposition in pigs. In an initial validation study DXA was compared directly with slaughter analysis as a method for measuring body composition and energy deposition in pigs. Mean values fo...

  11. Cortical thickness estimation of the proximal femur from multi-view dual-energy X-ray absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Tsaousis, N.; Gee, A. H.; Treece, G. M.; Poole, K. E. S.

    2013-02-01

    Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 +/- 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 +/- 0:79 mm.

  12. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases. PMID:26059565

  13. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  14. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination

    PubMed Central

    2016-01-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  15. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination.

    PubMed

    Choi, Yong Jun

    2016-03-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  16. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Considerations

    PubMed Central

    Hart, Nicolas H.; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L.; Newton, Robert U.

    2015-01-01

    Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coefficients (ICC) were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures outlined in this

  17. Bone mineral density of skeletal remains: Discordant results between chemical analysis and DXA method.

    PubMed

    Sutlovic, Davorka; Boric, Igor; Sliskovic, Livia; Popovic, Marijana; Knezovic, Zlatka; Nikolic, Ivana; Vucinovic, Ana; Vucinovic, Zoran

    2016-05-01

    Dual-energy X-ray absorptiometry (DXA) scanning is a gold standard for bone mineral density measurement and diagnosis of primary and secondary osteoporosis in living persons. DXA is becoming widespread when analysing archaeological material, and is considered to provide an accurate diagnosis of osteoporosis in skeletal samples. The aim of this study was to explain the differences in results between bone mineral density (obtained with DXA) and chemical determination of calcium and phosphorus concentrations in skeletal remains. We examined bone mineral density (BMD) and mineral content of femoral bone samples exhumed from mass graves of the Second World War. BMD was determined by Hologic QDR 4500 C (S/N 48034) Bone Densitometer. Concentrations of calcium and phosphorus were determined with AAS (Atomic absorption spectroscopy) and UV/VIS (Ultraviolet-visible) spectroscopy. The results obtained in this study do not support the hypothesis according to which BMD measured by DXA scan has positive correlation with chemically determined concentrations of calcium and phosphorus in bones, especially in acidic soils where there was significant impact of diagenesis observed. PMID:27161916

  18. The long-term performance of DXA bone densitometers.

    PubMed

    Wells, J; Ryan, P J

    2000-07-01

    Long-term performance of a bone mass measuring device is an important criterion when considering the purchase of such equipment and has been regarded as an important feature of dual X-ray absorptiometry (DXA). The performance of a 6-year-old bone densitometer, the Lunar DPX alpha, which has undertaken 1500 scans annually over this period, was assessed. The short-term coefficient of variation calculated from 15 measurements with repositioning on a single day, using the Lunar aluminium phantom, was 0.242%. Long-term precision, also calculated by the coefficient of variation, was 0.548%. The manufacturer's quality control (QC) procedure was performed daily and allowed the machine to be used except on 15 occasions when bone density measurements could be acquired after rebooting. However, a 2.2% shift in phantom values occurred in July 1996 owing to a photomultiplier tube failure, but this did not produce a failure in the Lunar QC. The optical disc drive was replaced in July 1997. The machine failed to back up on six occasions over the last 2 years owing to software corruption and the acquired femur data were not saved on seven occasions owing to overloading of the memory buffer. In conclusion, expected hardware failure and minor software problems have occurred. We were concerned that the manufacturer's QC failed to detect a 2% shift in the phantom bone mineral density values and recommend regular measurements of the Lunar aluminum phantom in addition to the daily QC measurement of the tissue-equivalent block. We were nevertheless impressed by the long-term stability and reproducibility of the Lunar DPX alpha. PMID:11089465

  19. Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography

    PubMed Central

    Fountoulis, George; Kerenidi, Theodora; Kokkinis, Constantinos; Georgoulias, Panagiotis; Thriskos, Paschal; Gourgoulianis, Konstantinos; Fezoulidis, Ioannis; Vassiou, Katerina

    2016-01-01

    The purpose of this study is to identify the prevalence of osteoporosis in male patients with chronic obstructive pulmonary disease (COPD) by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) and to compare the diagnostic abilities of the above methods. Thirty-seven male patients with established COPD were examined with DXA and standard QCT in lumbar spine, including L1, L2, and L3 vertebrae. T-scores and bone mineral density values were calculated by DXA and QCT method, respectively. Comparative assessment of the findings was performed and statistical analysis was applied. QCT measurements found more COPD patients with impaired bone mineral density compared to DXA, namely, 13 (35.1%) versus 12 (32.4%) patients with osteopenia and 16 (43.2%) versus 9 (16.2%) patients with osteoporosis (p = 0.04). More vertebrae were found with osteoporosis by QCT compared to DXA (p = 0.03). The prevalence of osteoporosis among male patients with COPD is increased and DXA may underestimate this risk. QCT measurements have an improved discriminating ability to identify low BMD compared to DXA measurements because QCT is able to overcome diagnostic pitfalls including aortic calcifications and degenerative spinal osteophytes. PMID:27087809

  20. Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography.

    PubMed

    Fountoulis, George; Kerenidi, Theodora; Kokkinis, Constantinos; Georgoulias, Panagiotis; Thriskos, Paschal; Gourgoulianis, Konstantinos; Fezoulidis, Ioannis; Vassiou, Katerina; Vlychou, Marianna

    2016-01-01

    The purpose of this study is to identify the prevalence of osteoporosis in male patients with chronic obstructive pulmonary disease (COPD) by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) and to compare the diagnostic abilities of the above methods. Thirty-seven male patients with established COPD were examined with DXA and standard QCT in lumbar spine, including L1, L2, and L3 vertebrae. T-scores and bone mineral density values were calculated by DXA and QCT method, respectively. Comparative assessment of the findings was performed and statistical analysis was applied. QCT measurements found more COPD patients with impaired bone mineral density compared to DXA, namely, 13 (35.1%) versus 12 (32.4%) patients with osteopenia and 16 (43.2%) versus 9 (16.2%) patients with osteoporosis (p = 0.04). More vertebrae were found with osteoporosis by QCT compared to DXA (p = 0.03). The prevalence of osteoporosis among male patients with COPD is increased and DXA may underestimate this risk. QCT measurements have an improved discriminating ability to identify low BMD compared to DXA measurements because QCT is able to overcome diagnostic pitfalls including aortic calcifications and degenerative spinal osteophytes. PMID:27087809

  1. Pediatric DXA: technique and interpretation

    PubMed Central

    Henwood, Maria J.

    2006-01-01

    This article reviews dual X-ray absorptiometry (DXA) technique and interpretation with emphasis on the considerations unique to pediatrics. Specifically, the use of DXA in children requires the radiologist to be a “clinical pathologist” monitoring the technical aspects of the DXA acquisition, a “statistician” knowledgeable in the concepts of Z-scores and least significant changes, and a “bone specialist” providing the referring clinician a meaningful context for the numeric result generated by DXA. The patient factors that most significantly influence bone mineral density are discussed and are reviewed with respect to available normative databases. The effects the growing skeleton has on the DXA result are also presented. Most important, the need for the radiologist to be actively involved in the technical and interpretive aspects of DXA is stressed. Finally, the diagnosis of osteoporosis should not be made on DXA results alone but should take into account other patient factors. PMID:16715219

  2. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed Central

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-01-01

    Objective The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. Results The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from −0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Conclusions Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population. PMID:21586503

  3. Comparison of DXA and MRI methods for interpreting femoral neck bone mineral density.

    PubMed

    Arokoski, Merja H; Arokoski, Jari P A; Vainio, Pauli; Niemitukia, Lea H; Kröger, Heikki; Jurvelin, Jukka S

    2002-01-01

    The aim of the study was to improve the practical implementation of the dual X-ray absorptiometry (DXA) by converting the areal bone mineral density BMD (BMD(areal)) to volumetric BMD using magnetic resonance (MR) imaging (MRI) because a failure to control for the femoral neck size can lead to erroneous interpretation of BMD values. We also evaluated the feasibility of MR T2* relaxation time in assessing bone mineral status of the femoral neck. Twenty-eight randomly selected 47- to 64-yr-old healthy men were studied. The men had neither unilateral nor bilateral hip osteoarthritis according to radiographs. Bone width, mineral content (BMC), BMD(areal), and apparent volumetric BMD (BMD(vol)) of the right femoral neck were measured with DXA. The BMD(vol) was calculated by approximating the femoral neck to be cylindrical with a circular cross-section (Vol(dxa)). Volumetric measurements from MR (Vol(mri)) images of the femoral neck were also used to create a BMD measure that was corrected for the femoral neck volume (BMD(mri)). T2* measurements were performed with a 1.5-T scanner (Siemens Magnetom 63SP, Erlangen, Germany). A single 10-mm-thick coronal slice was generated on the femur with a repetition time of 60 ms, and nine echo times (4-20 ms) were used to derive T2* values. Vol(mri) correlated positively (r = 0.828, p < 0.001) with Vol(dxa). However, the Vol(mri) of the femoral neck was 18% lower than the Vol(dxa). Similarly, the BMD(mri) was related to the BMD(vol) (r = 0.737, p < 0.001). Because of the difference in the volumetric measures, the BMD(mri) of the femoral neck was 21% higher than the BMD(vol) (p < 0.001). T2* relaxation time showed a significant negative correlation with BMC, BMD(areal), BMD(vol), and BMD(mri) (r = -0.423 to -0.757, p < 0.05-0.001). In conclusion, these results are evidence that DXA-derived volume approximations by the cylinder with circular cross-section geometry may lead to lower DXA-derived BMD(vol) values, as compared to true MRI

  4. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations.

    PubMed

    Soladoye, O P; López Campos, Ó; Aalhus, J L; Gariépy, C; Shand, P; Juárez, M

    2016-11-01

    The accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from pigs with diverse characteristics was examined in the present study. A total of 648 pigs from three different sire breeds, two sexes, two slaughter weights and three different diets were employed. DXA estimations were used to predict the dissected/chemical yield for lean and fat of carcass sides and primal cuts. The accuracy of the predictions was assessed based on coefficient of determination (R(2)) and residual standard deviation (RSD). The linear relationships for dissected fat and lean for all the primal cuts and carcass sides were high (R(2)>0.94, P<0.01), with low RSD (<1.9%). Relationships between DXA and chemical fat and lean of pork bellies were also high (R(2)>0.94, P<0.01), with RSD <2.9%. These linear relationships remained high over the full range of variation in the pig population, except for sire breed, where the coefficient of determination decreased when carcasses were classified based on this variable. PMID:27395824

  5. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  6. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  7. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses. PMID:26206525

  8. DXA: Technical aspects and application.

    PubMed

    Bazzocchi, Alberto; Ponti, Federico; Albisinni, Ugo; Battista, Giuseppe; Guglielmi, Giuseppe

    2016-08-01

    The key role of dual-energy X-ray absorptiometry (DXA) in the management of metabolic bone diseases is well known. The role of DXA in the study of body composition and in the clinical evaluation of disorders which directly or indirectly involve the whole metabolism as they may induce changes in body mass and fat percentage is less known or less understood. DXA has a range of clinical applications in this field, from assessing associations between adipose or lean mass and the risk of disease to understanding and measuring the effects of pathophysiological processes or therapeutic interventions, in both adult and paediatric human populations as well as in pre-clinical settings. DXA analyses body composition at the molecular level that is basically translated into a clinical model made up of fat mass, non-bone lean mass, and bone mineral content. DXA allows total and regional assessment of the three above-mentioned compartments, usually by a whole-body scan. Since body composition is a hot topic today, manufacturers have steered the development of DXA technology and methodology towards this. New DXA machines have been designed to accommodate heavier and larger patients and to scan wider areas. New strategies, such as half-body assessment, permit accurate body scan and analysis of individuals exceeding scan field limits. Although DXA is a projective imaging technique, new solutions have recently allowed the differential estimate of subcutaneous and intra-abdominal visceral fat. The transition to narrow fan-beam densitometers has led to faster scan times and better resolution; however, inter- or intra-device variation exists depending on several factors. The purposes of this review are: (1) to appreciate the role of DXA in the study of body composition; (2) to understand potential limitations and pitfalls of DXA in the analysis of body composition; (3) to learn about technical elements and methods, and to become familiar with biomarkers in DXA. PMID:27157852

  9. Cross-Calibration of GE Healthcare Lunar Prodigy and iDXA Dual-Energy X-Ray Densitometers for Bone Mineral Measurements.

    PubMed

    Saarelainen, J; Hakulinen, M; Rikkonen, T; Kröger, H; Tuppurainen, M; Koivumaa-Honkanen, H; Honkanen, R; Hujo, M; Jurvelin, J S

    2016-01-01

    In long-term prospective studies, dual-energy X-ray absorptiometry (DXA) devices need to be inevitably changed. It is essential to assess whether systematic differences will exist between measurements with the new and old device. A group of female volunteers (21-72 years) underwent anteroposterior lumbar spine L2-L4 (n = 72), proximal femur (n = 72), and total body (n = 62) measurements with the Prodigy and the iDXA scanners at the same visit. The bone mineral density (BMD) measurements with these two scanners showed a high linear association at all tested sites (r = 0.962-0.995; p < 0.0001). The average iDXA BMD values were 1.5%, 0.5%, and 0.9% higher than those of Prodigy for lumbar spine (L2-L4) (p < 0.0001), femoral neck (p = 0.048), and total hip (p < 0.0001), respectively. Total body BMD values measured with the iDXA were -1.3% lower (p < 0.0001) than those measured with the Prodigy. For total body, lumbar spine, and femoral neck, the BMD differences as measured with these two devices were independent of subject height and weight. Linear correction equations were developed to ensure comparability of BMD measurements obtained with both DXA scanners. Importantly, use of equations from previous studies would have increased the discrepancy between these particular DXA scanners, especially at hip and at spine. PMID:27239366

  10. Cross-Calibration of GE Healthcare Lunar Prodigy and iDXA Dual-Energy X-Ray Densitometers for Bone Mineral Measurements

    PubMed Central

    Saarelainen, J.; Hakulinen, M.; Rikkonen, T.; Kröger, H.; Tuppurainen, M.; Koivumaa-Honkanen, H.; Honkanen, R.; Hujo, M.; Jurvelin, J. S.

    2016-01-01

    In long-term prospective studies, dual-energy X-ray absorptiometry (DXA) devices need to be inevitably changed. It is essential to assess whether systematic differences will exist between measurements with the new and old device. A group of female volunteers (21–72 years) underwent anteroposterior lumbar spine L2–L4 (n = 72), proximal femur (n = 72), and total body (n = 62) measurements with the Prodigy and the iDXA scanners at the same visit. The bone mineral density (BMD) measurements with these two scanners showed a high linear association at all tested sites (r = 0.962–0.995; p < 0.0001). The average iDXA BMD values were 1.5%, 0.5%, and 0.9% higher than those of Prodigy for lumbar spine (L2–L4) (p < 0.0001), femoral neck (p = 0.048), and total hip (p < 0.0001), respectively. Total body BMD values measured with the iDXA were −1.3% lower (p < 0.0001) than those measured with the Prodigy. For total body, lumbar spine, and femoral neck, the BMD differences as measured with these two devices were independent of subject height and weight. Linear correction equations were developed to ensure comparability of BMD measurements obtained with both DXA scanners. Importantly, use of equations from previous studies would have increased the discrepancy between these particular DXA scanners, especially at hip and at spine. PMID:27239366

  11. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis.

    PubMed

    Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2007-10-01

    The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density. PMID:21224926

  12. Dual-energy x-ray absorptiometry using 2D digital radiography detector: application to bone densitometry

    NASA Astrophysics Data System (ADS)

    Dinten, Jean-Marc; Robert-Coutant, Christine; Darboux, Michel

    2001-06-01

    Dual Energy X-Rays Absorptiometry (DXA) is commonly used to separate soft tissues and bone contributions in radiographs. This decomposition leads to bone mineral density (BMD) measurement. Most clinical systems use pencil or fan collimated X-Rays beam with mono detectors or linear arrays. On these systems BMD is computed from bi-dimensional (2D) images obtained by scanning. Our objective is to take advantage of the newly available flat panels detectors and to propose a DXA approach without scanning, based on the use of cone beam X-Rays associated with a 2D detector. This approach yields bone densitometry systems with an equal X and Y resolution, a fast acquisition and a reduced risk of patient motion.Scatter in this case becomes an important issue. While scattering is insignificant on collimated systems, its level and geometrical structure may severely alter BMD measurement on cone beam systems. In our presentation an original DXA method taking into account scattering is proposed. This new approach leads to accurate BMD values.In order to evaluate the accuracy of our new approach, a phantom representative of the spine regions tissue composition (bone, fat , muscle) has been designed. The comparison between the expected theoretical and the reconstructed BMD values validates the accuracy of our method. Results on anthropomorphic spine and hip regions are also presented.

  13. Radial quantitative ultrasound and dual energy x-ray absorptiometry: intermethod agreement for bone status assessment in children.

    PubMed

    Chong, Kar Hau; Poh, Bee Koon; Jamil, Nor Aini; Kamaruddin, Nor Azmi; Deurenberg, Paul

    2015-01-01

    Aim. To validate a radial quantitative ultrasound (QUS) system with dual energy X-ray absorptiometry (DXA), a criterion technique in bone status assessment among children. Methods. Bone health was evaluated using a radial QUS system (Sunlight Omnisense 8000P) to measure the speed of sound (SOS) at one-third distal radius of the nondominant hand and DXA (Hologic QDR) was used to assess whole body bone mineral density (BMD). Results. Some 29.9% of the children were grossly misclassified according to quartiles of BMD and radial SOS. Poor agreement was observed between Z-scores of radial SOS and whole-body BMD (mean difference = 0.6 ± 0.9; 95% limits of agreement = -1.4 to 2.6). With a cut-off value of -1.0, radial SOS yielded satisfactory sensitivity (80%) and specificity (93%) for the detection of children with low BMD. Conclusion. The observed poor agreement in the present study suggests that radial QUS and DXA are not comparable and hence are not interchangeable in evaluating bone status of the children. PMID:25922831

  14. Radial Quantitative Ultrasound and Dual Energy X-Ray Absorptiometry: Intermethod Agreement for Bone Status Assessment in Children

    PubMed Central

    Chong, Kar Hau; Poh, Bee Koon; Jamil, Nor Aini; Kamaruddin, Nor Azmi; Deurenberg, Paul

    2015-01-01

    Aim. To validate a radial quantitative ultrasound (QUS) system with dual energy X-ray absorptiometry (DXA), a criterion technique in bone status assessment among children. Methods. Bone health was evaluated using a radial QUS system (Sunlight Omnisense 8000P) to measure the speed of sound (SOS) at one-third distal radius of the nondominant hand and DXA (Hologic QDR) was used to assess whole body bone mineral density (BMD). Results. Some 29.9% of the children were grossly misclassified according to quartiles of BMD and radial SOS. Poor agreement was observed between Z-scores of radial SOS and whole-body BMD (mean difference = 0.6 ± 0.9; 95% limits of agreement = −1.4 to 2.6). With a cut-off value of −1.0, radial SOS yielded satisfactory sensitivity (80%) and specificity (93%) for the detection of children with low BMD. Conclusion. The observed poor agreement in the present study suggests that radial QUS and DXA are not comparable and hence are not interchangeable in evaluating bone status of the children. PMID:25922831

  15. Comparison of nuclear magnetic resonance spectroscopy with dual-photon absorptiometry and dual-energy X-ray absorptiometry in the measurement of thoracic vertebral bone mineral density: compressive force versus bone mineral.

    PubMed

    Myers, T J; Battocletti, J H; Mahesh, M; Gulati, M; Wilson, C R; Pintar, F; Reinartz, J

    1994-05-01

    31P nuclear magnetic resonance spectroscopy (NMRS) measurements were made on human T2 and T3 vertebral bodies. The bone mineral content (BMC) of isolated vertebral bodies minus the posterior elements and disks was measured using (1) NMRS on a 3.5 T, 85 mm bore GE Medical Systems NT-150 superconducting spectrometer, (2) a Lunar Corporation DPX-L dual-energy X-ray absorptiometry (DXA) scanner in an anterior-posterior (AP) orientation, (3) a Norland Corporation XR26 DXA scanner, also in an AP direction, and (4) a Norland Corporation model 2600 dual-photon absorptiometry (DPA) densitometer in both the AP and superior-inferior (SI) directions. Vertebral body volumes were measured using a water displacement technique to determine volume bone mineral densities (VBMD). They were then compressed to failure using an electrohydraulic testing device, followed by ashing in a muffle furnace at 700 degrees C for 18 h. Correlations of BMC between NMRS and DPA, DXA and ashing were excellent (0.96 < or = r < or = 0.99); in a one-way analysis of variance (ANOVA) test, means were not statistically different at a p level of 0.757. The correlations of VBMD between NMRS and the other methods were not as good (0.83 < or = r < or = 0.95); in a one-way ANOVA test, means were not statistically different at a p level of 0.089. BMC was a better predictor of ultimate compressive failure than VBMD for all six methods. For NMRS, the regression coefficient for BMC was r2 = 0.806, compared with r2 = 0.505 for VBMD. NMRS may prove an alternative to present methods of determining bone mineral. PMID:8069051

  16. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are

  17. DXA: Can it be used as a criterion reference for body fat measurements in children?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual-energy X-ray absorptiometry (DXA) is often cited as a criterion method for body composition measurements. We have previously shown that a new DXA software version (Hologic Discovery V12.1) will affect whole-body bone mineral results for subjects weighing less than 40 kg. We wished to re-analy...

  18. 3D bone mineral density distribution and shape reconstruction of the proximal femur from a single simulated DXA image: an in vitro study

    NASA Astrophysics Data System (ADS)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; del Río Barquero, Luis M.; Fritscher, Karl; Schubert, Rainer; Eckstein, Felix; Link, Thomas; Frangi, Alejandro F.

    2010-03-01

    Area Bone Mineral Density (aBMD) measured by Dual-energy X-ray Absorptiometry (DXA) is an established criterion in the evaluation of hip fracture risk. The evaluation from these planar images, however, is limited to 2D while it has been shown that proper 3D assessment of both the shape and the Bone Mineral Density (BMD) distribution improves the fracture risk estimation. In this work we present a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image. A statistical model of shape and a separate statistical model of the BMD distribution were automatically constructed from a set of Quantitative Computed Tomography (QCT) scans. The reconstruction method incorporates a fully automatic intensity based 3D-2D registration process, maximizing the similarity between the DXA and a digitally reconstructed radiograph of the combined model. For the construction of the models, an in vitro dataset of QCT scans of 60 anatomical specimens was used. To evaluate the reconstruction accuracy, experiments were performed on simulated DXA images from the QCT scans of 30 anatomical specimens. Comparisons between the reconstructions and the same subject QCT scans showed a mean shape accuracy of 1.2mm, and a mean density error of 81mg/cm3. The results show that this method is capable of accurately reconstructing both the 3D shape and 3D BMD distribution of the proximal femur from DXA images used in clinical routine, potentially improving the diagnosis of osteoporosis and fracture risk assessments at a low radiation dose and low cost.

  19. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy. PMID:23473956

  20. Bone mineral density test

    MedlinePlus

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  1. Correlation between the values of bone measurements using DXA, QCT and USD methods and the bone strength in calcanei in vitro.

    PubMed

    Imamoto, K; Hamanaka, Y; Yamamoto, I; Niiho, C

    1998-10-01

    In this study we used the calcanei from 32 female and 29 male cadavers, ages 58 to 100. The bone mineral density (BMD) and average bone density (ABD) were measured using dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) respectively, while speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness index (SI) were measured using ultrasound densitometry (USD). Thereafter, the bone strength was measured using a compressor to cause bone fracture, and evaluated in comparison with the values of the three measurement methods. The scatter diagrams of the values of the three different methods versus age displayed a negative linear regression in both sexes. Values for BMD and ABD were generally about 20% higher in males than in females, while SOS, BUA and SI were a few percents higher in males than in females. A significantly high correlation existed between BMD and ABD (r = 0.95), and a moderate correlation between BMD and either SOS, BUA or SI (r = 0.65; r = 0.39; r = 0.57, respectively). Thus, among the values measured using USD, SOS most closely corresponded to BMD of the calcanei. The bone strength of the calcanei indicated a moderate correlation with BMD, ABD and SOS (r = 0.38, P < 0.01; r = 0.43, P < 0.001; r = 0.45, P < 0.001, respectively). However, 42 calcanei fractured under pressures of less than 40 kgf, although the other 19 calcanei endured pressure of 40 kgf or more. Two calcanei with high BMD over 0.7 g/cm2 by DXA were very fragile, whereas a few with low BMD less than 0.4 g/cm2 were not very fragile. Similarly, high SOS, BUA and SI values by USD did not always correspond to high bone strength. Thus, some discrepancies among the bone strength and measurement values remained to be solved in the future. PMID:9844342

  2. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-06-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA. PMID:26451461

  3. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures

    PubMed Central

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Lowe, Timothy; Cussen, Patricia; Ballard, Joyce E.; Paolo, David Di; Shirvaikar, Mukul

    2015-01-01

    Bone mineral density (BMD) measurements from Dual-energy X-ray Absorptiometry (DXA) alone cannot account for all factors associated with the risk of hip fractures. For example, the inhomogeneity of bone mineral density in the hip region also contributes to bone strength. In the stochastic assessment of bone inhomogeneity, the BMD map in the hip region is considered as a random field and stochastic predictors can be calculated by fitting a theoretical model onto the experimental variogram of the BMD map. The objective of this study was to compare the ability of bone mineral density and stochastic assessment of inhomogeneous distribution of bone mineral density in predicting hip fractures for postmenopausal women. DXA scans in the hip region were obtained from postmenopausal women with hip fractures (N=47, Age: 71.3±11.4 years) and without hip fractures (N=45, Age: 66.7±11.4 years). Comparison of BMD measurements and stochastic predictors in assessing bone fragility was based on the area under the receiver operating characteristic curves (AUC) from logistic regression analyses. Although stochastic predictors offered higher accuracy (AUC=0.675) in predicting the risk of hip fractures than BMD measurements (AUC=0.625), such difference was not statistically significant (p=0.548). Nevertheless, the combination of stochastic predictors and BMD measurements had significantly (p=0.039) higher prediction accuracy (AUC=0.748) than BMD measurements alone. This study demonstrates that stochastic assessment of bone mineral distribution from DXA scans can serve as a valuable tool in enhancing the prediction of hip fractures for postmenopausal women in addition to BMD measurements. PMID:25683520

  4. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures.

    PubMed

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Lowe, Timothy; Cussen, Patricia; Ballard, Joyce E; Di Paolo, David; Shirvaikar, Mukul

    2015-04-13

    Bone mineral density (BMD) measurements from Dual-energy X-ray Absorptiometry (DXA) alone cannot account for all factors associated with the risk of hip fractures. For example, the inhomogeneity of bone mineral density in the hip region also contributes to bone strength. In the stochastic assessment of bone inhomogeneity, the BMD map in the hip region is considered as a random field and stochastic predictors can be calculated by fitting a theoretical model onto the experimental variogram of the BMD map. The objective of this study was to compare the ability of bone mineral density and stochastic assessment of inhomogeneous distribution of bone mineral density in predicting hip fractures for postmenopausal women. DXA scans in the hip region were obtained from postmenopausal women with hip fractures (N=47, Age: 71.3±11.4 years) and without hip fractures (N=45, Age: 66.7±11.4 years). Comparison of BMD measurements and stochastic predictors in assessing bone fragility was based on the area under the receiver operating characteristic curves (AUC) from logistic regression analyses. Although stochastic predictors offered higher accuracy (AUC=0.675) in predicting the risk of hip fractures than BMD measurements (AUC=0.625), this difference was not statistically significant (p=0.548). Nevertheless, the combination of stochastic predictors and BMD measurements had significantly (p=0.039) higher prediction accuracy (AUC=0.748) than BMD measurements alone. This study demonstrates that stochastic assessment of bone mineral distribution from DXA scans can serve as a valuable tool in enhancing the prediction of hip fractures for postmenopausal women in addition to BMD measurements. PMID:25683520

  5. Measurement of bone mineral content in vivo using photon absorptiometry

    PubMed Central

    Boyd, R. M.; Cameron, E. C.; McIntosh, H. W.; Walker, V. R.

    1974-01-01

    Progress in evaluating treatment of systemic bone disease has been hampered in the past by lack of precise in vivo quantitative techniques. Recently a method has been developed for measurement of bone mineral content (BMC), based on bone absorption of low-energy monochromatic radiation. This paper discusses a technique of photon absorptiometry using 125l as a collimated point source. The technique is simple, with accuracy and precision within 2%. BMC and bone width (W) were measured in the distal radius of 359 normal subjects ranging in age from 5 to 82 years. A “normal” curve of BMC/W with age as the independent variable was then obtained from this population and was constructed for each sex. A positive correlation of BMC/W with height and body weight was found in a group of normal males. A series of patients with osteoporosis or malabsorption, or undergoing hemodialysis or steroid treatment, was then assessed in order to demonstrate changes in BMC/W that may occur secondary to disease or disturbances in calcium metabolism. Many of these patients were found to have a BMC/W below the normal mean value for their age and sex. PMID:4434288

  6. Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume.

    PubMed

    Sran, Meena M; Khan, Karim M; Keiver, Kathy; Chew, Jason B; McKay, Heather A; Oxland, Thomas R

    2005-12-01

    Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard-ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5-T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice. PMID:15616862

  7. Dual-energy X-ray absorptiometry for measuring total bone mineral content in the rat: study of accuracy and precision.

    PubMed

    Casez, J P; Muehlbauer, R C; Lippuner, K; Kelly, T; Fleisch, H; Jaeger, P

    1994-07-01

    Sequential studies of osteopenic bone disease in small animals require the availability of non-invasive, accurate and precise methods to assess bone mineral content (BMC) and bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA), which is currently used in humans for this purpose, can also be applied to small animals by means of adapted software. Precision and accuracy of DXA was evaluated in 10 rats weighing 50-265 g. The rats were anesthetized with a mixture of ketamine-xylazine administrated intraperitoneally. Each rat was scanned six times consecutively in the antero-posterior incidence after repositioning using the rat whole-body software for determination of whole-body BMC and BMD (Hologic QDR 1000, software version 5.52). Scan duration was 10-20 min depending on rat size. After the last measurement, rats were sacrificed and soft tissues were removed by dermestid beetles. Skeletons were then scanned in vitro (ultra high resolution software, version 4.47). Bones were subsequently ashed and dissolved in hydrochloric acid and total body calcium directly assayed by atomic absorption spectrophotometry (TBCa[chem]). Total body calcium was also calculated from the DXA whole-body in vivo measurement (TBCa[DXA]) and from the ultra high resolution measurement (TBCa[UH]) under the assumption that calcium accounts for 40.5% of the BMC expressed as hydroxyapatite. Precision error for whole-body BMC and BMD (mean +/- S.D.) was 1.3% and 1.5%, respectively. Simple regression analysis between TBCa[DXA] or TBCa[UH] and TBCa[chem] revealed tight correlations (n = 0.991 and 0.996, respectively), with slopes and intercepts which were significantly different from 1 and 0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7950505

  8. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity. PMID:23562363

  9. Prenatal pesticide exposure and PON1 genotype associated with adolescent body fat distribution evaluated by dual X-ray absorptiometry (DXA).

    PubMed

    Tinggaard, J; Wohlfahrt-Veje, C; Husby, S; Christiansen, L; Skakkebaek, N E; Jensen, T K; Grandjean, P; Main, K M; Andersen, H R

    2016-07-01

    Many modern pesticides have endocrine disrupting abilities and early-life exposure may affect growth and disease risk later in life. Previously, we reported associations between prenatal pesticide exposure and higher childhood body fat content measured by anthropometry. The associations were affected by child PON1 Q192R genotype. We aimed to study whether prenatal pesticide exposure was still associated with body fat content and distribution in the children at puberty and the potential impact of both maternal and child PON1 Q192R genotype. In this prospective cohort study of 247 children born by occupationally exposed or unexposed women (greenhouse workers and controls) two follow-up examinations (age 10-15 and 11-16 years) including simple anthropometry, skinfold measurements, pubertal staging and blood sampling were performed. Total and regional fat% was determined by dual X-ray absorptiometry (DXA) at age 10-15. Prenatal pesticide exposure was associated with increased total, android, and gynoid fat percentage (DXA) at age 10-15 years after adjustment for sex, socioeconomic status, and puberty (all β = 0.5 standard deviation score (SDS) p < 0.05). Stratified by sex, the associations were significant in girls (total fat: β = 0.7 SDS, android-gynoid ratio: β = 0.1, both p < 0.05), but not in boys. Carrying the R-allele (child or mother, separately, or both) augmented the differences between exposed and unexposed children (total fat: β = 1.0 SDS, β = 0.8 SDS, p < 0.05, respectively, and β = 1.2 SDS, p < 0.01). No exposure-related differences were found if either the child or mother had the QQ wild-type. At age 11-16, exposed children tended to have a higher total fat% estimated by skinfolds than unexposed children (p = 0.06). No significant associations between prenatal exposure and body mass index or waist circumference were found. Prenatal pesticide exposure was associated with higher adolescent body fat content, including android

  10. Photon absorptiometry for non-invasive measurement of bone mineral content

    SciTech Connect

    Gupta, S.; Luna, E.; Belsky, J.; Gelfman, N.; Miller, K.; Davies, T.

    1984-08-01

    Bone mineral content of the distal radius was determined in 106 patients by single photon absorptiometry using iodine-125 monochromatic source. The technique provided a reliable means to assess the degree of mineral loss in conditions such as osteoporosis, renal osteodystrophy in patients on chronic maintenance dialysis, subjects on long-term steroid therapy, and those with diabetes mellitus. It is more sensitive than conventional radiography and completely noninvasive compared to bone biopsy. It is suggested that photon absorptiometry is a simple, sensitive, and reliable technique for assessment and follow-up of the bone mineral content in a host of disorders associated with bone demineralization.

  11. Relationships among dual-energy X-ray absorptiometry (DXA), bioelectrical impedance (BIA), and ultrasound measurements of body composition of swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In three separate studies (156 pigs total), DXA, BIA, and ultrasound were compared as methods for measuring live body composition of pigs at 60 and 100-110 kg BWt. DXA measured total body fat and lean content, BIA measurements of resistance (Rs) and reactance (Xc) were used to calculate total body l...

  12. Usefulness of calcaneal quantitative ultrasound stiffness for the evaluation of bone health in HIV-1-infected subjects: comparison with dual X-ray absorptiometry

    PubMed Central

    Fantauzzi, Alessandra; Floridia, Marco; Ceci, Fabrizio; Cacciatore, Francesco; Vullo, Vincenzo; Mezzaroma, Ivano

    2016-01-01

    Objectives With the development of effective treatments and the resulting increase in life expectancy, bone mineral density (BMD) alteration has emerged as an important comorbidity in human immunodeficiency virus type-1 (HIV-1)-infected individuals. The potential contributors to the pathogenesis of osteopenia/osteoporosis include a higher prevalence of risk factors, combined antiretroviral therapy (cART)-exposure, HIV-1 itself and chronic immune activation/inflammation. Dual-energy X-ray absorptiometry (DXA) is the “gold standard” technique for assessing bone status in HIV-1 population. Methods We conducted a cross-sectional study to investigate bone mineral status in a group of 158 HIV-1-infected subjects. The primary endpoint was the feasibility of calcaneal quantitative ultrasound (QUS) as a screening tool for BMD. All subjects were receiving stable cART and were virologically suppressed (HIV-RNA <37 copies/mL) from at least 12 months. Calcaneal QUS parameters were analyzed to obtain information on bone mass and microarchitecture. The results were compared with those obtained by DXA. Results No correlations were found between DXA/QUS parameters and demographic or HIV-1-specific characteristics, also including cART strategies. In the univariate analyses BMD, QUS indexes, and Fracture Risk Assessment Tool scores conversely showed significant associations with one or more demographic or HIV-1-related variables. Moreover, a significant relationship between calcaneal quantitative ultrasound index/stiffness and femoral/lumbar BMD values from DXA was described. The multivariate analysis showed an independent association between calcaneal quantitative ultrasound index/stiffness and body mass index, higher CD4+ T-cell numbers and low 25-OH D2/D3 vitamin D levels <10 ng/mL (P-values: 0.004, 0.016, and 0.015, respectively). Conclusion As an alternative and/or integrative examination to DXA, calcaneal QUS could be proposed as a useful screening in HIV-1-infected

  13. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  14. Population-based geographic variations in DXA bone density in Europe: the EVOS Study. European Vertebral Osteoporosis.

    PubMed

    Lunt, M; Felsenberg, D; Adams, J; Benevolenskaya, L; Cannata, J; Dequeker, J; Dodenhof, C; Falch, J A; Johnell, O; Khaw, K T; Masaryk, P; Pols, H; Poor, G; Reid, D; Scheidt-Nave, C; Weber, K; Silman, A J; Reeve, J

    1997-01-01

    The purpose of this study was to investigate variations in bone density between 16 European populations, 13 of which were participants in the European Vertebral Osteoporosis Study (EVOS). Men and women aged 50-80 years were recruited randomly from local population registers, stratified in 5-year age bands. The other three centres recruited similarly. Random samples of 20-100% of EVOS subjects were invited for dual-energy X-ray absorptiometry (DXA) densitometry of the lumbar spine and/or proximal femur using Hologic, Lunar or Norland pencil beam machines or, in one centre, a Sopha fan-beam machine. Cross-calibration of the different machines was undertaken using the European Spine Phantom prototype (ESPp). Highly significant differences in mean bone density were demonstrated between centres, giving rise to between centre SDs in bone density that were about a quarter of a population SD. These differences persisted when centres using Hologic machines and centres using Lunar machines were considered separately. The centres were ranked differently according to whether male or female subjects were being considered and according to site of measurement (L2-4, femoral neck or femoral trochanter). As expected, bone mineral density (BMD) had a curvilinear relationship with age, and apparent rates of decrease slowed as age advanced past 50 years in both sexes. In the spine, not only did male BMD usually appear to increase with age, but there was a highly significant difference between centres in the age effect in both sexes, suggesting a variability in the impact of osteoarthritis between centres. Weight was consistently positively associated with BMD, but the effects of height and armspan were less consistent. Logarithmic transformation was needed to normalize the regressions of BMD on the independent variates, and after transformation, all sites except the femoral neck in females showed significant increases in SD with age. Interestingly, the effect of increasing weight was

  15. Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine

    SciTech Connect

    Wahner, H.W.; Dunn, W.L.; Brown, M.L.; Morin, R.L.; Riggs, B.L.

    1988-11-01

    A new x-ray-based (dual-energy x-ray absorptiometry (DEXA)) instrument for measurement of bone mineral in the spine and hips was compared with a commercial dual photon absorptiometry (DPA) instrument that uses a 153Gd source (DP3, Lunar Radiation Corporation). Measurements were made on phantoms and lumbar spines of patients to study accuracy, precision, limitations, and compatibility of results between instruments. Both instruments measure bone mineral of integral bone in terms of area bone density with an entrance exposure of less than 5 mR. For spinal bone mineral measurements, the DEXA instrument had a shorter scanning time and higher resolution images than the DPA system. The DEXA instrument also showed better precision in a spine phantom and reduced influence of thickness for patient measurement. For bone mineral content, accuracy was about equal for both instruments; for measurements of the area of the region of interest, accuracy was better with the DEXA instrument. With both instruments, fat had little effect on bone mineral density in bone phantom studies. Measurements on both instruments were influenced by the location of a bone phantom within the photon beam. Results in patients showed good correlation (r = 0.988) for bone mineral density. Measurements of bone mineral density in patients were consistently lower with the DEXA instrument because of better accuracy in area measurements. The new x-ray-based instrument is a major advance in bone mineral absorptiometry and provides improved, yet less expensive, measurements in research and clinical applications.

  16. Dual-energy X-ray absorptiometry and body composition.

    PubMed

    Laskey, M A

    1996-01-01

    This review describes the advantages and limitations of dual-energy absorptiometry (DXA), a technique that is widely used clinically to assess a patient's risk of osteoporosis and to monitor the effects of therapy. DXA is also increasingly used to measure body composition in terms of fat and fat-free mass. There are three commercial manufacturers of DXA instruments: Lunar, Hologic, and Norland. All systems generate X-rays at two different energies and make use of the differential attenuation of the X-ray beam at these two energies to calculate the bone mineral content and soft tissue composition in the scanned region. Most DXA instruments measure bone mineral in the clinically important sites of the spine, hip, and forearm. More specialized systems also perform whole-body scans and can be used to determine the bone and soft tissue composition of the whole body and subregions such as arms, legs, and trunk. The effective dose incurred during DXA scanning is very small, and, consequently, DXA is a simple and safe technique that can be used for children and the old and frail. Precision of all DXA measurements is excellent but varies with the region under investigation. Precision is best for young healthy subjects (coefficient of variation is about 1% for the spine and whole body bone measurements) but is less good for osteoporotic and obese subjects. The accuracy of DXA measurements, however, can be problematic. Marked systematic differences in bone and soft tissue values are found between the three commercial systems due to differences in calibration, bone edge detection, and other factors. In addition, differences in reference data provided by each manufacturer can lead to an individual appearing normal on one machine but at risk of osteoporosis on another. At present, DXA cannot be regarded as a "gold standard" for body composition. However, the continuing development of DXA and the introduction of new software is greatly improving the performance of this

  17. Measurement of the body composition of small piglets by quantitative magnetic resonance (QMR) and dual-energy X-ray absorptiometry (DXA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During studies of the growth of neonatal piglets it is important to be able to accurately assess changes in body composition. The purpose of this study was to compare the in vivo measurements of body composition of small piglets using QMR and DXA and to validate those results by chemical analysis. A...

  18. Comparison of single- and dual-photon absorptiometry in postmenopausal bone mineral loss

    SciTech Connect

    Nilas, L.; Borg, J.; Gotfredsen, A.; Christiansen, C.

    1985-11-01

    The authors describe a single photon absorptiometric (SPA) technique, which enables differential estimation of the rates of loss from trabecular and cortical bone. Ten scans are obtained in the forearm: six in an area with about 7% trabecular bone and four scans in the adjacent distal area with a trabecular bone content of 25%. By comparing bone masses of these two sites in 19 postmenopausal and 53 premenopausal women, the postmenopausal trabecular bone loss was estimated to be approximately seven times greater than cortical loss within the first years of cessation of regular vaginal bleeding. On a group basis the bone loss at the distal forearm scan site (by SPA) corresponded closely to the spinal bone loss (by dual-photon absorptiometry). The reproducibility of the two scan sites in the forearm was 1-1.5% (CV%), which makes the method suitable for longitudinal studies. Corrections for variations in fatty tissue covering can be made without deterioration of the reproducibility.

  19. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  20. The accuracy and precision of DXA for assessing body composition in team sport athletes.

    PubMed

    Bilsborough, Johann Christopher; Greenway, Kate; Opar, David; Livingstone, Steuart; Cordy, Justin; Coutts, Aaron James

    2014-01-01

    This study determined the precision of pencil and fan beam dual-energy X-ray absorptiometry (DXA) devices for assessing body composition in professional Australian Football players. Thirty-six professional Australian Football players, in two groups (fan DXA, N = 22; pencil DXA, N = 25), underwent two consecutive DXA scans. A whole body phantom with known values for fat mass, bone mineral content and fat-free soft tissue mass was also used to validate each DXA device. Additionally, the criterion phantom was scanned 20 times by each DXA to assess reliability. Test-retest reliability of DXA anthropometric measures were derived from repeated fan and pencil DXA scans. Fat-free soft tissue mass and bone mineral content from both DXA units showed strong correlations with, and trivial differences to, the criterion phantom values. Fat mass from both DXA showed moderate correlations with criterion measures (pencil: r = 0.64; fan: r = 0.67) and moderate differences with the criterion value. The limits of agreement were similar for both fan beam DXA and pencil beam DXA (fan: fat-free soft tissue mass = -1650 ± 179 g, fat mass = -357 ± 316 g, bone mineral content = 289 ± 122 g; pencil: fat-free soft tissue mass = -1701 ± 257 g, fat mass = -359 ± 326 g, bone mineral content = 177 ± 117 g). DXA also showed excellent precision for bone mineral content (coefficient of variation (%CV) fan = 0.6%; pencil = 1.5%) and fat-free soft tissue mass (%CV fan = 0.3%; pencil = 0.5%) and acceptable reliability for fat measures (%CV fan: fat mass = 2.5%, percent body fat = 2.5%; pencil: fat mass = 5.9%, percent body fat = 5.7%). Both DXA provide precise measures of fat-free soft tissue mass and bone mineral content in lean Australian Football players. DXA-derived fat-free soft tissue mass and bone mineral content are suitable for assessing body composition in lean team sport athletes. PMID:24914773

  1. On new opportunities for absorptiometry.

    PubMed

    Ferretti, J L; Schiessl, H; Frost, H M

    1998-01-01

    Mechanical loads cause bone strains; and muscle forces, not body weight, cause the largest strains. The strains help to control the effects of bone modeling and remodeling on bone strength and "mass." When strains exceed a threshold range, modeling increases bone strength and "mass." When strains stay below a smaller threshold range, remodeling begins removing bone next to marrow. As a result, increasing muscle strength increases bone strength and "mass," and decreasing muscle strength decreases bone strength and "mass." Estrogen apparently lowers the remodeling threshold, which reduces bone losses. Loss of estrogen raises that threshold to cause losses of bone next to marrow. Such facts help to explain: 1. Bone loss in aging adults. 2. An increase in bone "mass" in girls at menarche. 3. The loss of bone during menopause. 4. The greater bone "mass" in obese than in slender subjects, and in weightlifters than in marathon runners. 5. And the pathogenesis of physiologic osteopenias and true osteoporoses. Thus new standards are needed for the relationships between bone and muscle strengths, and as functions of sex, age, race, disease, endocrine status, nutrition, vitamin and mineral intakes, medications, puberty, and menopause. Obtaining those standards and studying such relationships provide many new opportunities for studies that involve dual energy X-ray absorptiometry (DXA) and peripheral quantitative computer tomography (pQCT) and, perhaps some day, ultrasound and magnetic resonance imaging (MRI) techniques. PMID:15304912

  2. Bone mineralisation of weaned piglets fed a diet free of inorganic phosphorus and supplemented with phytase, as assessed by dual-energy X-ray absorptiometry.

    PubMed

    Skiba, Grzegorz; Weremko, Dagmara; Sobol, Monika; Raj, Stanisława

    2015-01-01

    Sixteen female piglets (58 d of age, 16.8 ± 0.8 kg body weight [BW]) were assigned to two groups (n = 8) and received until day 100 of age (50.3 ± 1.2 kg BW) ad libitum either a diet with a standard (diet C) or low (diet L) total phosphorus (P) content (5.38 and 4.23 g/kg, respectively). Diet C was supplemented with mineral P (1.15 g/kg) and did not contain microbial phytase. Diet L did not contain any inorganic P but 750 FTU/kg of microbial phytase. Despite these treatments, both diets were composed with the same ingredients. Body mineralisation of each gilt was assessed by determining the bone mineral content (BMC), area bone mineral density (BMD) by the dual-energy X-ray absorptiometry (DXA) at days 58, 72, 86 and 100 of age. Feeding diet L caused a higher P digestibility (p = 0.008) measured from days 72 to 86 of age and at 100 days of age a higher BMC and BMD (p ≤ 0.01). Furthermore, the gilts of group L deposited more minerals in the body than control pigs (by 2.4 g/d, p = 0.008). It was found that BMD and BMC were positively correlated with body lean mass and digestible P intake. The results indicated that, even for very young pigs, the addition of microbial phytase instead of inorganic P increases the amount of digestible P covering the requirements of piglets for proper bone mineralisation. Furthermore, it was proved that the DXA method can be successfully applied to measure body fat and lean mass contents as well as bone mineralisation of growing pigs using the same animals. PMID:26062598

  3. Evaluation of mandibular bone mineral density using the dual-energy X-ray absorptiometry technique in edentulous subjects living in an endemic fluorosis region

    PubMed Central

    Buyukkaplan, US; Guldag, MU

    2012-01-01

    Objectives Fluoride is one of the biological trace elements with a strong affinity for osseous, cartilaginous and dental tissue. The dental and skeletal effects of high fluoride intake have already been studied in the literature, but little is known about the effects of high fluoride intake on edentulous mandibles. The purpose of this study was to evaluate the effects of high fluoride intake on mandibular bone mineral density (BMD) measured by the dual-energy X-ray absorptiometry (DXA) technique in edentulous individuals with systemic fluorosis. Methods 32 people who were living in an endemic fluorosis area since birth and 31 people who were living in a non-endemic fluorosis area since birth (control group) participated in this study. Systemic fluorosis was diagnosed in the patients using the sialic acid (NANA)/glycosaminoglycan (GAG) ratio. The BMDs of the mandibles were determined by the DXA technique. Results The serum NANA/GAG ratios in the fluorosis group were significantly lower than those in the control group (p < 0.001). There was also a statistically significant difference in mandibular BMD measurements (p < 0.05) between the systemic fluorosis and control groups, as measured by the DXA technique. Mandibular body BMD measurements were higher in the fluorosis group (1.25 ± 0.24 g cm−2) than in the control group (1.01 ± 0.31 g cm−2). Conclusions The results of the study showed that fluoride intake higher than the optimum level causes increased mandibular BMD in edentulous individuals. Further dose-related studies are needed to determine the effects of high fluoride intake on bony structures of the stomatognathic system. PMID:22241885

  4. Bone mineral density test

    MedlinePlus

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... Bone density testing can be done several ways. The most common and accurate way uses a dual-energy x- ...

  5. Relationship between alveolar bone measured by /sup 125/I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique

    SciTech Connect

    Ortman, L.F.; McHenry, K.; Hausmann, E.

    1982-05-01

    The Bjorn technique is widely used in periodontal studies as a standardized measure of alveolar bone. Recent studies have demonstrated the feasibility of using /sup 125/I absorptiometry to measure bone mass. The purpose of this study was to compare /sup 125/I absorptiometry with the Bjorn technique in detecting small sequential losses of alveolary bone. Four periodontal-like defects of incrementally increasing size were produced in alveolar bone in the posterior segment of the maxilla of a human skull. An attempt was made to sequentially reduce the amount of bone in 10% increments until no bone remained, a through and through defect. The bone remaining at each step was measured using /sup 125/I absorptiometry. At each site the /sup 125/I absorptiometry measurements were made at the same location by fixing the photon source to a prefabricated precision-made occlusal splint. This site was just beneath the crest and midway between the borders of two adjacent teeth. Bone loss was also determined by the Bjorn technique. Standardized intraoral films were taken using a custom-fitted acrylic clutch, and bone measurements were made from the root apex to coronal height of the lamina dura. A comparison of the data indicates that: (1) in early bone loss, less than 30%, the Bjorn technique underestimates the amount of loss, and (2) in advanced bone loss, more than 60% the Bjorn technique overestimates it.

  6. PRECISION OF SINGLE VERSUS BILATERAL HIP BONE MINERAL DENSITY SCANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual-energy X-ray absorptiometry (DXA) scans of the hip and lumbar spine are currently the "gold standard" for measurement of bone mineral density (BMD). DXA allows swift, noninvasive measurements with minimal radiation for both clinical practice and research. Traditional testing has used results ...

  7. Point-of-Care Phalangeal Bone Mineral Density Measurement Can Reduce the Need of Dual-Energy X-Ray Absorptiometry Scanning in Danish Women at Risk of Fracture.

    PubMed

    Holmberg, Teresa; Bech, Mickael; Gram, Jeppe; Hermann, Anne Pernille; Rubin, Katrine Hass; Brixen, Kim

    2016-03-01

    Identifying persons with a high risk of osteoporotic fractures remains a challenge. DXA uptake in women with elevated risk of osteoporosis seems to be depending on distance to scanning facilities. This study aimed to investigate the ability of a small portable scanner in identifying women with reduced bone mineral density (BMD), and to define triage thresholds for pre-selection. Total hip and lumbar spine BMD was measured by dual-energy X-ray absorptiometry and phalangeal BMD by radiographic absorptiometry in 121 Danish women with intermediate or high 10-year fracture probability (aged 61-81 years). Correlation between the two methods was estimated using correlation coefficient (r) and Bland-Altman plots. A moderate correlation between phalangeal BMD versus total hip (r = 0.47) and lumbar spine (r = 0.51), and an AUC on 0.80 was found. The mean difference between phalangeal T score and total hip T score/lumbar spine T score was low, and ranged from -0.26 SD to -0.31 SD depending on site and reference database used for calculation of T scores, but, large variation was seen at an individual level. When applying a triage approach approx. one-third of all DXA scan could be avoided and only 6 % of women in the low-risk group would be false negatives. PMID:26590810

  8. Can the material properties of regenerate bone be predicted with non-invasive methods of assessment? Exploring the correlation between dual X-ray absorptiometry and compression testing to failure in an animal model of distraction osteogenesis.

    PubMed

    Monsell, Fergal; Hughes, Andrew William; Turner, James; Bellemore, Michael C; Bilston, Lynne

    2014-04-01

    Evaluation of the material properties of regenerate bone is of fundamental importance to a successful outcome following distraction osteogenesis using an external fixator. Plain radiographs are in widespread use for assessment of alignment and the distraction gap but are unable to detect bone formation in the early stages of distraction osteogenesis and do not quantify accurately the structural properties of the regenerate. Dual X-ray absorptiometry (DXA) is a widely available non-invasive imaging modality that, unlike X-ray, can be used to measure bone mineral content (BMC) and density quantitatively. In order to be useful as a clinical investigation; however, the structural two-dimensional geometry and density distributions assessed by DXA should reflect material properties such as modulus and also predict the structural mechanical properties of the regenerate bone formed. We explored the hypothesis that there is a relationship between DXA assessment of regenerate bone and structural mechanical properties in an animal model of distraction osteogenesis. Distraction osteogenesis was carried out on the tibial diaphysis of 41 male, 12 week old, New Zealand white rabbits as part of a larger study. Distraction started after a latent period of 24 h at a rate of 0.375 mm every 12 h and continued for 10-days, achieving average lengthening of 7.1 mm. Following an 18-day period of consolidation, the regenerate bone was subject to bone density measurements using a total body dual-energy X-ray densitometer. This produced measurement of BMC, bone mineral density (BMD) and volumetric bone mineral density (vBMD). The tibiae were then disarticulated and cleaned of soft tissue before loading in compression to failure using an Instron mechanical testing machine (Instron Corporation, Massachusetts USA). Using Spearman rank correlation and linear regression, there was a significant correlation between vBMD and the Modulus of Elasticity, Yield Stress and Failure Stress of the

  9. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  10. Total-body calcium estimated by delayed gamma neutron activation analysis and dual-energy X-ray absorptiometry.

    PubMed

    Aloia, J F; Ma, R; Vaswani, A; Feuerman, M

    1999-01-01

    Total body calcium (TBCa) in 270 black and white women age 21-79 years was measured concurrently by delayed gamma neutron activation analysis (DGNA) and dual-energy X-ray absorptiometry (DXA). The mean value for TBCa calculated from DXA was 933 g compared with 730 g for DGNA. By regression, TBCa(DXA(g)) = 1.35 x TBCa(DGNA(g)) -54 (r = 0. 90, r(2) = 81.4%, SEE = 66.9 g). This remarkable difference of 203 g suggests that one or both these methods is not accurate. Adjustment of the regression of DXA versus DGNA for body mass index or trunk thickness explained 8.5-10% of the variability between methods. The unadjusted slope for the DXA values regressed against the DGNA values was 1.35, indicating significant discordance between the methods. There is greater agreement between the two DGNA facilities (Brookhaven National Laboratory and Baylor College of Medicine) and between the various DXA instruments. Either DGNA underestimates TBCa or DXA overestimates total-body bone mineral content. Resolution of these disparate results may possibly be achieved by concurrent measurement of whole human cadavers of different sizes with chemical determination of the calcium content of the ash. In the interim, cross-calibration equations between DGNA and standardized values for DXA for total-body bone mineral content may be used, which will permit reporting of consistent values for TBCa from the two technologies. PMID:10663353

  11. Treatment of subclinical hypothyroidism does not affect bone mass as determined by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative bone ultrasound in Spanish women

    PubMed Central

    Roncero-Martin, Raul; Calderon-Garcia, Julian F.; Santos-Vivas, Mercedes; Vera, Vicente; Martínez-Alvárez, Mariana; Rey-Sanchez, Purificación

    2015-01-01

    Introduction The results of studies examining the influence of subclinical hypothyroidism (SCH) and levothyroxine (L-T4) replacement therapy on bone have generated considerable interest but also controversy. The present research aims to evaluate the effects of L-T4 treatment on different skeletal sites in women. Material and methods A group of 45 premenopausal (mean age: 43.62 ±6.65 years) and 180 postmenopausal (mean age: 59.51 ±7.90 years) women with SCH who were undergoing L-T4 replacement therapy for at least 6 months were compared to 58 pre- and 180 postmenopausal women with SCH (untreated) matched for age. The mean doses of L-T4 were 90.88 ±42.59 µg/day in the premenopausal women and 86.35 ±34.11 µg/day in the postmenopausal women. Bone measurements were obtained using quantitative bone ultrasound (QUS) for the phalanx, dual-energy X-ray absorptiometry (DXA) for the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT) for the non-dominant distal forearm. Results No differences were observed between patients and untreated controls in these bone measurements except in the bone mineral density (BMD) of the spine (p = 0.0214) in postmenopausal women, which was greater in treated women than in untreated controls. Conclusions Our results indicate that adequate metabolic control through replacement treatment with L-T4 in pre- and postmenopausal women does not affect bone mass. PMID:26528344

  12. Urinary Deoxypyridinoline Level Reveals Bone Resorption, Predicts Fracture Risk, And Enhances the Results of Dual Energy X-ray Absorptiometry.

    PubMed

    Kells, John; Dollbaum, Charles M

    2009-01-01

    Bone loss leads to an increased incidence of fracture and is associated with the development of osteoporosis, which can strike people of any age and afflicts 10 million individuals in the U.S. today. Research indicates that osteoporosis causes more than 1.5 million fractures annually, including approximately 300,000 fractures at other sites. Early detection of bone loss (resorption), like that revealed by a combination of dual energy X-ray absorptiometry and monitoring the level of deoxypyridinoline in urine, provides the most complete picture of long-term and short-term bone health. In this reports, we examine the effects of increased bone resorption and various methods of testing for bone loss, present findings from the literature on the effects of and monitorying for bone resorption, and profile individuals most likely to benefit from testing for a decrease in bone mass. PMID:23965324

  13. Pediatric DXA: clinical applications

    PubMed Central

    Sparke, Paul; Henwood, Maria J.

    2007-01-01

    Normal bone mineral accrual requires adequate dietary intake of calcium, vitamin D and other nutrients; hepatic and renal activation of vitamin D; normal hormone levels (thyroid, parathyroid, reproductive and growth hormones); and neuromuscular functioning with sufficient stress upon the skeleton to induce bone deposition. The presence of genetic or acquired diseases and the therapies that are used to treat them can also impact bone health. Since the introduction of clinical DXA in pediatrics in the early 1990s, there has been considerable investigation into the causes of low bone mineral density (BMD) in children. Pediatricians have also become aware of the role adequate bone mass accrual in childhood has in preventing osteoporotic fractures in late adulthood. Additionally, the availability of medications to improve BMD has increased with the development of bisphosphonates. These factors have led to the increased utilization of DXA in pediatrics. This review summarizes much of the previous research regarding BMD in children and is meant to assist radiologists and clinicians with DXA utilization and interpretation. PMID:17431606

  14. Errors in longitudinal measurements of bone mineral: effect of source strength in single and dual photon absorptiometry

    SciTech Connect

    Dunn, W.L.; Kan, S.H.; Wahner, H.W.

    1987-11-01

    The effect of changing strength during the useful life of a radiation source was evaluated in studies performed on four dual photon (DPA) and two single photon (SPA) bone absorptiometry instruments. Two DPA units and one SPA unit did not show any systematic dependence of measured bone mineral content or bone mineral areal density (BMD) on source activity when evaluated over an entire source life. One DPA and one SPA instrument, however, showed significant time trends associated with source activity. The fourth DPA instrument had a significant linear decrease in BMD over a source life in the automatic mode but performed better in the manual mode.

  15. Accuracy of lumbar spine bone mineral content by dual photon absorptiometry

    SciTech Connect

    Gotfredsen, A.; Podenphant, J.; Norgaard, H.; Nilas, L.; Nielsen, V.A.; Christiansen, C.

    1988-02-01

    The accuracy of measurement of the bone mineral content (BMC, g) and bone mineral density (BMD, g/cm/sup 2/) of the lumbar spine by dual photon absorptiometry (DPA) was estimated by means of two different spine scanners (a Nuclear Data 2100 and a Lunar Radiation DP3). The lumbar spines of 13 cadavers were used. BMC and BMD were measured in situ and on the excised vertebrae in a solution of water/ethanol; and covered with ox muscle/porcine muscle/lard. The actual mineral weight and areal density were determined after chemical maceration, fat extraction, drying to a constant weight, ashing for 24 hr at 600 degrees C, and correction for the transverse processes. The true are was measured by parallax free X rays and planimetry. All measurements of BMC or BMD were highly interrelated (r = 0.94-0.99). The standard error of estimate (s.e.e.) of BMC in situ versus BMC in water/ethanol was 5.2%. The agreement between the BMD values of the two scanners was very good (s.e.e. = 2.9%). BMC in situ predicted the actual vertebral mineral mass with an s.e.e. of 8.1%. BMD in situ and BMD in water/ethanol predicted the actual area density with s.e.e.s of 10.3% and 5.0%, respectively. This study discloses the correlation and accuracy error of spinal DPA measurements in situ in whole cadavers versus the actual BMC and BMD. The error, which is underestimated in in vitro studies, amounts to 10%.

  16. Comparison of Speed of Sound Measures Assessed by Multisite Quantitative Ultrasound to Bone Mineral Density Measures Assessed by Dual-Energy X-Ray Absorptiometry in a Large Canadian Cohort: the Canadian Multicentre Osteoporosis Study (CaMos).

    PubMed

    Olszynski, Wojciech P; Adachi, Jonathon D; Hanley, David A; Davison, Kenneth S; Brown, Jacques P

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is an important tool for the estimate of fracture risk through the measurement of bone mineral density (BMD). Similarly, multisite quantitate ultrasound can prospectively predict future fracture through the measurement of speed of sound (SOS). This investigation compared BMD (at the femoral neck, total hip, and lumbar spine) and SOS measures (at the distal radius, tibia, and phalanx sites) in a large sample of randomly-selected and community-based individuals from the Canadian Multicentre Osteoporosis Study. Furthermore, mass, height, and age were also compared with both measures. There were 4123 patients included with an age range of 30-96.8 yr. Pearson product moment correlations between BMD and SOS measures were low (0.21-0.29; all p<0.001), irrespective of site. Mass was moderately correlated with BMD measures (0.40-0.58; p<0.001), but lowly correlated with SOS measures (0.03-0.13; p<0.05). BMD and SOS were negatively correlated to age (-0.17 to -0.44; p<0.001). When regression analyses were performed to predict SOS measures at the 3 sites, the models predicted 20%-23% of the variance, leaving 77%-80% unaccounted for. The SOS measures in this study were found to be largely independent from BMD measures. In areas with no or limited access to DXA, the multisite quantitative ultrasound may act as a valuable tool to assess fracture risk. In locales with liberal access to DXA, the addition of SOS to BMD and other clinical risk factors may improve the identification of those patients at high risk for future fracture. PMID:26050876

  17. Maintenance of proximal bone mass with an uncemented femoral stem analysis with dual-energy x-ray absorptiometry.

    PubMed

    Wixson, R L; Stulberg, S D; Van Flandern, G J; Puri, L

    1997-06-01

    Bone ingrowth into uncemented femoral implants with proximal porous coatings has been designed to avoid proximal stress shielding and preserve femoral strength. Dual-energy x-ray absorptiometry allows repeated quantitative analysis of anteroposterior scans of the proximal femur. By use of dual-energy x-ray absorptiometry and qualitative radiographic changes, 31 total hip arthroplasties with an individually designed, proximally porous-coated prosthesis were evaluated after surgery and at intervals up to 2 years. All implants appeared to achieve successful bone ingrowth and subsequent remodeling. At the most proximal level around the neck osteotomy, the postoperative loss of bone density at 6 months was -14.5%, which persisted at 24 months with -11.6%. At the level of the distal portion of the porous coating in the lower metaphysis, the density change was -8.7%, but bone had remodeled at 24 months with a change in density of only -1.0% compared with the immediate postoperative scan. With a design that results in reliable proximal ingrowth, this study predicts that after an initial decline in bone density, a positive bone remodeling response occurs that could lead to long-term stable fixation of the femoral implant. PMID:9195311

  18. RELIABILITY OF LATERAL DISTAL FEMUR DUAL ENERGY X-RAY ABSORPTIOMETRY MEASURES

    PubMed Central

    Mueske, Nicole M.; Chan, Linda S.; Wren, Tishya A. L.

    2013-01-01

    Dual-energy x-ray absorptiometry (DXA) of the lateral distal femur (LDF) has been suggested for patients with metal implants or joint contractures preventing DXA scanning at conventional anatomical sites. This study assessed variability in LDF DXA measures due to repeat scanning using data from 5 healthy young adults who had 3 unilateral scans with repositioning between scans. Variability due to image analysis was evaluated in 10 children who underwent bilateral LDF scans with each scan being analyzed 3 times by 2 raters. Regions of interest (ROIs) were defined in the anterior distal metaphysis (R1), metadiaphysis (R2), and diaphysis (R3) as described previously. An additional region (R4) was defined in the metaphysis similar to R1 but centered in the medullary canal. Variability was consistently lower for bone mineral density (BMD) than for bone mineral content (BMC) and bone area; R4 was more repeatable than R1; and variability due to repeat scanning was negligible. These results suggest that DXA measures of the lateral distal femur are reliable and may be useful when standard DXA measures cannot be obtained, but it is recommended that a central, rather than anterior, ROI be used in the metaphysis. PMID:23541123

  19. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.

    PubMed

    Väänänen, Sami P; Grassi, Lorenzo; Flivik, Gunnar; Jurvelin, Jukka S; Isaksson, Hanna

    2015-08-01

    Areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), predicts hip fracture risk only moderately. Simulation of bone mechanics based on DXA imaging of the proximal femur, may help to improve the prediction accuracy. Therefore, we collected three (1-3) image sets, including CT images and DXA images of 34 proximal cadaver femurs (set 1, including 30 males, 4 females), 35 clinical patient CT images of the hip (set 2, including 27 males, 8 females) and both CT and DXA images of clinical patients (set 3, including 12 female patients). All CT images were segmented manually and landmarks were placed on both femurs and pelvises. Two separate statistical appearance models (SAMs) were built using the CT images of the femurs and pelvises in sets 1 and 2, respectively. The 3D shape of the femur was reconstructed from the DXA image by matching the SAMs with the DXA images. The orientation and modes of variation of the SAMs were adjusted to minimize the sum of the absolute differences between the projection of the SAMs and a DXA image. The mesh quality and the location of the SAMs with respect to the manually placed control points on the DXA image were used as additional constraints. Then, finite element (FE) models were built from the reconstructed shapes. Mean point-to-surface distance between the reconstructed shape and CT image was 1.0 mm for cadaver femurs in set 1 (leave-one-out test) and 1.4 mm for clinical subjects in set 3. The reconstructed volumetric BMD showed a mean absolute difference of 140 and 185 mg/cm(3) for set 1 and set 3 respectively. The generation of the SAM and the limitation of using only one 2D image were found to be the most significant sources of errors in the shape reconstruction. The noise in the DXA images had only small effect on the accuracy of the shape reconstruction. DXA-based FE simulation was able to explain 85% of the CT-predicted strength of the femur in stance loading. The present method can be used to

  20. Dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and micro-computed tomography techniques are discordant for bone density and geometry measurements in the guinea pig.

    PubMed

    Mak, Ivy L; DeGuire, Jason R; Lavery, Paula; Agellon, Sherry; Weiler, Hope A

    2016-05-01

    This study aims to examine agreement among bone mineral content (BMC) and density (BMD) estimates obtained using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro-computed tomography (μCT) against high-resolution μCT and bone ash of the guinea pig femur. Middle-aged (n = 40, 86 weeks) male guinea pigs underwent in vivo followed by ex vivo DXA (Hologic QDR 4500A) scanning for intact and excised femur BMC and areal density. To assess bone architecture and strength, excised femurs were scanned on pQCT (Stratec XCT 2000L) as well as on two μCT scanners (LaTheta LCT-200; Skyscan 1174), followed by three-point bending test. Reproducibility was determined using triplicate scans; and agreement assessed using Bland-Altman plots with reference methods being high-resolution μCT (Skyscan) for BMD and bone ashing for BMC. All techniques showed satisfactory ex vivo precision (CV 0.05-4.3 %). However, bias compared to the reference method was highest (207.5 %) in trabecular bone volume fraction (BV/TV) measured by LaTheta, and unacceptable in most total femur and cortical bone measurements. Volumetric BMD (vBMD) and BV/TV derived by LaTheta and pQCT at the distal metaphysis were biased from the Skyscan by an average of 49.3 and 207.5 %, respectively. Variability of vBMD, BV/TV and cross-sectional area at the diaphysis ranged from -5.5 to 30.8 %. LaTheta best quantified total femur BMC with an upper bias of 3.3 %. The observed differences among imaging techniques can be attributable to inherent dissimilarity in construction design, calibration, segmentation and scanning resolution used. These bone imaging tools are precise but are not comparable, at least when assessing guinea pig bones. PMID:26058491

  1. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance.

    PubMed

    Lewiecki, E Michael; Binkley, Neil; Morgan, Sarah L; Shuhart, Christopher R; Camargos, Bruno Muzzi; Carey, John J; Gordon, Catherine M; Jankowski, Lawrence G; Lee, Joon-Kiong; Leslie, William D

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring. PMID:27020004

  2. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition.

    PubMed

    Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N

    2010-05-01

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated R(ST) value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the R(ST) concept depends on the mass of each major element in the human body. The DXA R(ST) values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA R(ST) value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body (40)K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the R(ST) values. The DXA R(ST) values were strongly associated with the R(ST) values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted R(ST) to systematically exceed the DXA-measured R(ST) (mean +/- SD, 1.389 +/- 0.024 versus 1.341 +/- 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 +/- 12.0% versus 24.9 +/- 11.1%, r = 0.983, P < 0.001). DXA R(ST) is evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat. PMID:20393230

  3. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition

    NASA Astrophysics Data System (ADS)

    Wang, ZiMian; Heymsfield, Steven B.; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N.

    2010-05-01

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated RST value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the RST concept depends on the mass of each major element in the human body. The DXA RST values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA RST value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body 40K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the RST values. The DXA RST values were strongly associated with the RST values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted RST to systematically exceed the DXA-measured RST (mean ± SD, 1.389 ± 0.024 versus 1.341 ± 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 ± 12.0% versus 24.9 ± 11.1%, r = 0.983, P < 0.001). DXA RST is evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat.

  4. Estimation of percentage body fat by dual-energy x-ray absorptiometry: evaluation by in vivo human elemental composition

    PubMed Central

    Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N

    2010-01-01

    Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated RST value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the RST concept depends on the mass of each major element in the human body. The DXA RST values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA RST value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body 40K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the RST values. The DXA RST values were strongly associated with the RST values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted RST to systematically exceed the DXA-measured RST (mean ± SD, 1.389 ± 0.024 versus 1.341 ± 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 ± 12.0% versus 24.9 ± 11.1%, r = 0.983, P < 0.001). DXA RST evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat. PMID:20393230

  5. Bone microarchitecture and bone fragility in men: DXA and histomorphometry in humans and in the orchidectomized rat model.

    PubMed

    Audran, M; Chappard, D; Legrand, E; Libouban, H; Baslé, M F

    2001-10-01

    In men, the risk of fragility fractures increases as bone mineral declines but there is an overlap in the bone mineral density (BMD) measurements between patients with and those without fractures. Biomechanical competence of trabecular (Tb) bone depends on the amount of bone and on microarchitecture. We have developed new histomorphometric methods for evaluating microarchitecture on histological sections. These methods were used in the orchidectomized male rat (ORX--a model of hypogonadism-induced osteoporosis) and on transiliac bone biopsies performed in male osteoporotic patients. ORX rats were studied at 2, 4, 8, and 16 weeks post-ORX. Bone mineral content (BMC) was reduced at 16 weeks. Trabecular bone volume (BV/TV) was significantly decreased from the 4th week. Differences in the sensitivity of the methods were found. Fractal dimension was modified as early as 2 weeks and appeared the most potent descriptor of Tb disorganization. The architectural changes in this model mimic those observed in hypogonadic men. We examined the relationships among BMD, micro-architecture, and vertebral fracture in 108 men with lumbar osteopenia (T-score <-2.5). At least one vertebral fracture was observed in 62 patients and none in 46 patients. After adjusting for age, body mass index (BMI), and BMD, there was no significant difference between the two groups in BV/TV, Tb.Th, and Star volume. In contrast, the mean values of ICI and Tb.Sp were significantly higher whereas Tb.N and nodes were lower in patients with vertebral fracture. Logistic regression analysis showed that ICI, strut analysis, and Tb.N were significant predictors of the presence of vertebral fracture: odds ratios for an alteration of I SD ranged from 1.7 for nodes to 3.2 for ICI. These results strongly suggest that bone Tb microarchitecture is a major and independent determinant of vertebral fracture in men with osteoporosis. PMID:11730253

  6. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    PubMed Central

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). Subjects/Methods Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole body magnetic resonance imaging. BMD was measured using whole body dual-energy x-ray absorptiometry. Results An inverse correlation was observed between pelvic BMAT and pelvic, total, and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs. older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434 to 0.928). Conclusion Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes. PMID:22491495

  7. TIBIAL PLATEAU PROXIMAL AND DISTAL BONE BEHAVE SIMILARLY: BOTH ARE ASSOCIATED WITH FEATURES OF KNEE OSTEOARTHRITIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing imperative to understand how changes in peri-articular bone relate to pathological progression of knee osteoarthritis (KOA). Peri-articular bone density can be measured using dual x-ray absorptiometry (DXA). The medial:lateral tibial BMD ratio (M:L BMD) is associated with MRI and...

  8. Technical note: Prediction of chemical rib section composition by dual energy X-ray absorptiometry in Zebu beef cattle.

    PubMed

    Prados, L F; Zanetti, D; Amaral, P M; Mariz, L D S; Sathler, D F T; Filho, S C Valadares; Silva, F F; Silva, B C; Pacheco, M C; Alhadas, H M; Chizzotti, M L

    2016-06-01

    It is expensive and laborious to evaluate carcass composition in beef cattle. The objective of this study was to evaluate a method to predict the 9th to 11th rib section (rib) composition through empirical equations using dual energy X-ray absorptiometry (DXA). Dual energy X-ray absorptiometry is a validated method used to describe tissue composition in humans and other animals, but few studies have evaluated this technique in beef cattle, and especially in the Zebu genotype. A total of 116 rib were used to evaluate published prediction equations for rib composition and to develop new regression models using a cross-validation procedure. For the proposed models, 93 ribs were randomly selected to calculate the new regression equations, and 23 different ribs were randomly selected to validate the regressions. The rib from left carcasses were taken from Nellore and Nellore × Angus bulls from 3 different studies and scanned using DXA equipment (GE Healthcare, Madison, WI) in the Health Division at Universidade Federal de Viçosa (Viçosa, Brazil). The outputs of the DXA report were DXA lean (g), DXA fat free mass (g), DXA fat mass (g), and DXA bone mineral content (BMC; g). After being scanned, the rib were dissected, ground, and chemically analyzed for total ether extract (EE), CP, water, and ash content. The predictions of rib fat and protein from previous published equations were different ( < 0.01) from the observed composition. New equations were established through leave-one-out cross-validation using the REG procedure in SAS. The equations were as follows: lean (g) = 37.082 + 0.907× DXA lean ( = 0.95); fat free mass (g) = 103.224 + 0.869 × DXA fat free mass ( = 0.93); EE mass (g) = 122.404 + 1.119 × DXA fat mass ( = 0.86); and ash mass (g) = 18.722 + 1.016 × DXA BMC ( = 0.39). The equations were validated using Mayer's test, the concordance correlation coefficient, and the mean square error of prediction for decomposition. For both equations, Mayer's test

  9. Bone loss: Quantitative imaging techniques for assessing bone mass in rheumatoid arthritis

    PubMed Central

    Njeh, Christopher F; Genant, Harry K

    2000-01-01

    Osteoporosis is associated with low bone mass and microarchitectural deterioration of bone tissue with clinical manifestation of low trauma fractures. Rheumatoid arthritis (RA) is a risk factor due to generalized and articular bone loss. This minireview presents past and current bone mass measurement techniques in RA. These techniques include: plain radiographs, absorptiometry, quantitative computed tomography (QCT) and ultrasound. The most widely used technique is dual x-ray absorptiometry (DXA). RA patients have lower bone mass as compared with normals and substantial bone loss may occur early after the onset of disease. Measurement of bone mineral density (BMD) at the hand using either DXA or ultrasound maybe a useful tool in the management of RA patients. PMID:11094457

  10. Validation of dual x-ray absorptiometry for body-composition assessment of rats exposed to dietary stressors.

    PubMed

    Lukaski, H C; Hall, C B; Marchello, M J; Siders, W A

    2001-01-01

    Evidence of the validity and accuracy of dual x-ray absorptiometry (DXA) to measure soft-tissue composition of laboratory rats with altered body composition associated with nutritional perturbations is lacking. We compared DXA determinations made in prone and supine positions with measurements of chemical composition of 49 male, weanling Sprague-Dawley rats that were fed the basal AIN-93 growth diet, were fed the basal diet modified to contain 30% fat, were fasted for 2 d, were limit fed 6 g of the basal diet daily for 1 wk, or were treated with furosemide (10 mg/kg intraperitoneally 2 h before DXA). DXA produced similar estimates of body mass and soft-tissue composition in the prone and supine positions. DXA estimates of body composition were significantly correlated with reference composition values (R(2) = 0.371-0.999). DXA discriminated treatment effects on body mass, fat-free and bone-free mass, fat mass, and body fatness; it significantly underestimated body mass (1% to 2%) and fat-free and bone-free mass (3%) and significantly overestimated fat mass and body fatness (3% to 25%). The greatest errors occurred in treatment groups in which body mass was diminished and body hydration was decreased. These findings suggest that DXA can determine small changes in fat-free, bone-free mass in response to obesity and weight loss. Errors in DXA determination of fat mass and body fatness associated with extra corporeal fluid and dehydration indicate the need for revision of calculation algorithms for soft-tissue determination. PMID:11448581

  11. Quantitative computed tomographic evaluation of femoral bone mineral content in renal osteodystrophy compared with radial photon absorptiometry

    SciTech Connect

    Sakurai, K.; Marumo, F.; Iwanami, S.; Uchida, H.; Matsubayashi, T.

    1989-05-01

    The computed tomography (CT) numbers of cortical bone at the level of 20 cm (CT20) and of spongiosa in the lateral condyle at the level of 2 cm (CT02) from the distal end of the femur were obtained by a quantitative CT method and compared with the bone mineral density of mostly cortical bone within the radius (BMD) by photon absorptiometry. The study included 47 patients with chronic renal failure not dialyzed or induced to regular hemodialysis within 4 weeks of the study (group 1), 28 patients on regular hemodialysis for more than one month (group 2), and ten healthy volunteers (group 3). The measures of bone mineral content (BMC), namely CT20, CT02, and BMD, were compared in terms of their abilities to distinguish members in the various groups. For group 1 and group 3, the greatest variation in BMC was in the difference in CT02, which was primarily a measurement of the BMC of spongiosa. For groups 1 and 2, the greatest variation was in the difference in BMD, which was primarily a measurement of the BMC of cortex. The reproducibility of CT02 was estimated as almost equal to the difference in CT02 values at intervals of 10 months' duration of hemodialysis. The results indicated that CT02 was a useful measurement for evaluating the progress in the early stage of the renal osteodystrophy, and it is recommended that the bone mineral measurement with this QCT method should be performed once or twice a year.

  12. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    PubMed

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults. PMID:27048946

  13. Radiographic morphometry and densitometry predict strength of cadaveric proximal humeri more reliably than age and DXA scan density.

    PubMed

    Skedros, John G; Knight, Alex N; Pitts, Todd C; O'Rourke, Peter J; Burkhead, Wayne Z

    2016-02-01

    Methods are needed for identifying poorer quality cadaver proximal humeri to ensure that they are not disproportionately segregated into experimental groups for fracture studies. We hypothesized that measurements made from radiographs of cadaveric proximal humeri are stronger predictors of fracture strength than chronological age or bone density values derived from dual-energy x-ray absorptiometry (DXA) scans. Thirty-three proximal humeri (range: 39-78 years) were analyzed for: (1) bone mineral density (BMD, g/cm(2)) using DXA, (2) bulk density (g/cm(3)) using DXA and volume displacement, (3) regional bone density in millimeters of aluminum (mmAl) using radiographs, and (4) regional mean (medial+lateral) cortical thickness and cortical index (CI) using radiographs. The bones were then fractured simulating a fall. Strongest correlations with ultimate fracture load (UFL) were: mean cortical thickness at two diaphyseal locations (r = 0.71; p < 0.001), and mean mmAl in the humeral head (r = 0.70; p < 0.001). Weaker correlations were found between UFL and DXA-BMD (r = 0.60), bulk density (r = 0.43), CI (r = 0.61), and age (r = -0.65) (p values <0.01). Analyses between UFL and the product of any two characteristics showed six combinations with r-values >0.80, but none included DXA-derived density, CI, or age. Radiographic morphometric and densitometric measurements from radiographs are therefore stronger predictors of UFL than age, CI, or DXA-derived density measurements. PMID:26218571

  14. Quick benefits of interval training versus continuous training on bone: a dual-energy X-ray absorptiometry comparative study.

    PubMed

    Boudenot, Arnaud; Maurel, Delphine B; Pallu, Stéphane; Ingrand, Isabelle; Boisseau, Nathalie; Jaffré, Christelle; Portier, Hugues

    2015-12-01

    To delay age-related bone loss, physical activity is recommended during growth. However, it is unknown whether interval training is more efficient than continuous training to increase bone mass both quickly and to a greater extent. The aim of this study was to compare the effects of a 10-week interval training regime with a 14-week continuous training regime on bone mineral density (BMD). Forty-four male Wistar rats (8 weeks old) were separated into four groups: control for 10 weeks (C10), control for 14 weeks (C14), moderate interval training for 10 weeks (IT) and moderate continuous training for 14 weeks (CT). Rats were exercised 1 h/day, 5 day/week. Body composition and BMD of the whole body and femur respectively were assessed by dual-energy X-ray absorptiometry at baseline and after training to determine raw gain and weight-normalized BMD gain. Both trained groups had lower weight and fat mass gain when compared to controls. Both trained groups gained more BMD compared to controls when normalized to body weight. Using a 30% shorter training period, the IT group showed more than 20% higher whole body and femur BMD gains compared to the CT. Our data suggest that moderate IT was able to produce faster bone adaptations than moderate CT. PMID:26754273

  15. Experimental validation of DXA-based finite element models for prediction of femoral strength.

    PubMed

    Dall'Ara, E; Eastell, R; Viceconti, M; Pahr, D; Yang, L

    2016-10-01

    Osteoporotic fractures are a major clinical problem and current diagnostic tools have an accuracy of only 50%. The aim of this study was to validate dual energy X-rays absorptiometry (DXA)-based finite element (FE) models to predict femoral strength in two loading configurations. Thirty-six pairs of fresh frozen human proximal femora were scanned with DXA and quantitative computed tomography (QCT). For each pair one femur was tested until failure in a one-legged standing configuration (STANCE) and one by replicating the position of the femur in a fall onto the greater trochanter (SIDE). Subject-specific 2D DXA-based linear FE models and 3D QCT-based nonlinear FE models were generated for each specimen and used to predict the measured femoral strength. The outcomes of the models were compared to standard DXA-based areal bone mineral density (aBMD) measurements. For the STANCE configuration the DXA-based FE models (R(2)=0.74, SEE=1473N) outperformed the best densitometric predictor (Neck_aBMD, R(2)=0.66, SEE=1687N) but not the QCT-based FE models (R(2)=0.80, SEE=1314N). For the SIDE configuration both QCT-based FE models (R(2)=0.85, SEE=455N) and DXA neck aBMD (R(2)=0.80, SEE=502N) outperformed DXA-based FE models (R(2)=0.77, SEE=529N). In both configurations the DXA-based FE model provided a good 1:1 agreement with the experimental data (CC=0.87 for SIDE and CC=0.86 for STANCE), with proper optimization of the failure criteria. In conclusion we found that the DXA-based FE models are a good predictor of femoral strength as compared with experimental data ex vivo. However, it remains to be investigated whether this novel approach can provide good predictions of the risk of fracture in vivo. PMID:27341287

  16. Bone mineral measurements: a comparison of delayed gamma neutron activation, dual-energy X-ray absorptiometry and direct chemical analysis.

    PubMed

    Economos, C D; Nelson, M E; Fiatarone Singh, M A; Kehayias, J J; Dallal, G E; Heymsfield, S B; Wang, J; Yasumura, S; Ma, R; Pierson, R N

    1999-01-01

    A system in vitro consisting of a femur from a cadaver and soft-tissue equivalent material was used to test the agreement between several techniques for measuring bone mineral. Calcium values measured by delayed gamma neutron activation (DGNA) and bone mineral content (BMC) by Lunar, Hologic and Norland dual-energy X-ray absorptiometers (DXA) were compared with calcium and ash content determined by direct chemical analysis. To assess the effect of soft-tissue thickness on measurements of bone mineral, we had three phantom configurations ranging from 15.0 to 26.0 cm in thickness, achieved by using soft-tissue equivalent overlays. Chemical analysis of the femur gave calcium and ash content values of 61.83 g +/- 0.51 g and 154.120 +/- 0.004 g, respectively. Calcium measured by DGNA did not differ from the ashed amount of calcium at any of the phantom configurations. The BMC measured by DXA was significantly higher, by 3-5%, than the amount determined by chemical analysis for the Lunar densitometer and significantly lower, by 3-6%, for the Norland densitometer (p<0.001-0.024), but only 1% lower (not significant) for the Hologic densitometer. DXA instruments showed a decreasing trend in BMC as the thickness increased from 20.5 to 26.0 cm (p<0.05). However, within the entire thickness range (15.0-26.0 cm), the overall influence of thickness on BMC by DXA was very small. These findings offer insight into the differences in these currently available methods for bone mineral measurement and challenge the comparability of different methods. PMID:10525711

  17. Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems

    PubMed Central

    Santori, Francesco S; Pavan, Laura; Learmonth, Ian D; Passariello, Roberto

    2009-01-01

    Background and purpose Dual-energy X-ray absorptiometry (DXA) analysis of the 7 periprosthetic Gruen zones is the most commonly used protocol to evaluate bone remodeling after the implantation of conventional femoral stems. We assessed the value of DXA after cementless primary total hip arthroplasty (THA) by comparing the effect of progressive shortening of the stem of two femoral implants on periprosthetic bone remodeling using a specifically developed protocol of analysis with 5 periprosthetic regions of interest (ROIs). Patients and methods Bone mineral density (BMD) was evaluated in 37 patients in the plateau stage, 3 years after THA. Two femoral implants featuring conceptually new designs and surgical technique were tested: types 1 and 2, characterized by extremely short stem and virtual absence of distal stem, respectively. Results We found that progressive shortening of the femoral stem produces more proximal loading, which effectively preserves metaphyseal bone stock and increases periprosthetic BMD in the medial ROIs over time. In the type 2 group, higher absolute BMD values were observed in medial ROIs 4 and 5. No differences were found in ROIs 1, 2, and 3. Interpretation This study shows the flexibility of DXA in adapting the protocol of periprosthetic analysis to the specific requirements of new implant designs, and it shows its high sensitivity in evaluation of the biological response of bone to changes in implant shape. PMID:19562565

  18. Body composition in taller individuals using DXA: A validation study for athletic and non-athletic populations.

    PubMed

    Santos, Diana A; Gobbo, Luís A; Matias, Catarina N; Petroski, Edio L; Gonçalves, Ezequiel M; Cyrino, Edilson S; Minderico, Claudia S; Sardinha, Luís B; Silva, Analiza M

    2013-01-01

    Dual energy X-ray absorptiometry (DXA) cannot be used to evaluate participants taller than the scan area. We aimed to analyse the accuracy of bone mineral content, fat mass, and lean mass assessed with DXA whole-body scan and from the sum of two scans (head and trunk plus limbs). Participants were 31 athletes (13 males and 18 females) and 65 non-athletes (34 males and 31 females), that fit within the DXA scan area. Three scans were performed using a Hologic Explorer-W fan-beam densitometer: a whole-body scan used as the reference; a head scan; and a trunk and limbs scan. The sum of the head scan and the trunk and limbs scan was used as the alternative procedure. Multiple regression and agreement analysis were performed. Non-significant differences between methods were observed for fat mass (0.06 kg) and lean mass (-0.07 kg) while bone mineral content from the alternative procedure differed from the reference scan (0.009 kg). The alternative procedure explained > 99% of the variance in the reference scan and low limits of agreement were observed. Precision analysis indicated low pure errors and the higher coefficients of variation were found for fat mass (whole-body: 3.70%; subtotal: 4.05%). The method proposed is a valid and simple solution to be used in individuals taller than the DXA scan area, including athletes engaged in sports recognised for including very tall competitors. PMID:23092580

  19. Dual-photon absorptiometry: Comparison of bone mineral and soft tissue mass measurements in vivo with established methods

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Heshka, S.; Kehayias, J.J.; Pierson, R.N.

    1989-06-01

    This study extended initial observations that indicated the potential of dual-photon absorptiometry (DPA) to measure total-body bone mineral (TBBM) and fat in vivo. DPA-derived TBBM and fat were compared with established methods in 13 subjects (aged 24-94 y) who underwent measurement of body density (Db), total-body water (TBW), potassium (TBK), calcium (TBCa, delayed-gamma neutron activation), and nitrogen (prompt-gamma neutron activation). TBBM was highly correlated with TBCa (r = 0.95, p less than 0.001) and the slope of TBCa vs TBBM (0.34) was similar to Ca content of ashed skeleton (0.34-0.38). DPA-measured fat (means +/- SD, 16.7 +/- 4.9 kg) correlated significantly (r = 0.79-0.94; p less than 0.01-0.001) with fat established by Db (16.3 +/- 5.4 kg), TBW (16.0 +/- 4.3 kg), TBK (17.7 +/- 4.6 kg), combined TBW-neutron activation (17.6 +/- 5.9 kg), and means of all four methods (16.9 +/- 4.8 kg). DPA thus offers a new opportunity to study human skeleton in vivo and to quantify fat by a method independent from the classical assumption that bone represents a fixed fraction of fat-free body mass.

  20. Adaptation of the lateral distal femur DXA scan technique to adults with disabilities.

    PubMed

    Henderson, Richard C; Henderson, Brent A; Kecskemethy, Heidi H; Hidalgo, Sebastian T; Nikolova, Beth Ann; Sheridan, Kevin; Harcke, H Theodore; Thorpe, Deborah E

    2015-01-01

    The technique that best addresses the challenges of assessing bone mineral density in children with neuromuscular impairments is a dual-energy X-ray absorptiometry (DXA) scan of the lateral distal femur. The purpose of this study was to adapt this technique to adults with neuromuscular impairments and to assess the reproducibility of these measurements. Thirty-one adults with cerebral palsy had both distal femurs scanned twice, with the subject removed and then repositioned between each scan (62 distal femurs, 124 scans). Each scan was independently analyzed twice by 3 different technologists of varying experience with DXA (744 analyses). Precision of duplicate analyses of the same scan was good (range: 0.4%-2.3%) and depended on both the specific region of interest and the experience of the technologist. Precision was reduced when comparing duplicate scans, ranging from 7% in the metaphyseal (cancellous) region to 2.5% in the diaphyseal (cortical) region. The least significant change was determined as recommended by the International Society for Clinical Densitometry for each technologist and each region of interest. Obtaining reliable, reproducible, and clinically relevant assessments of bone mineral density in adults with neuromuscular impairments can be challenging. The technique of obtaining DXA scans of the lateral distal femur can be successfully applied to this population but requires a commitment to developing the necessary expertise. PMID:24932899

  1. Longitudinal DXA Studies: Minimum scanning interval for pediatric assessment of body fat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased prevalence of obesity in the United States, has led to the increased use of dual-energy X-ray absorptiometry (DXA) for assessment of body fat mass (TBF) in pediatric populations. We examined DXA precision, in order to determine suitable scanning intervals for the measurement of change...

  2. Bone and Celiac Disease.

    PubMed

    Zanchetta, María Belén; Longobardi, Vanesa; Bai, Julio César

    2016-04-01

    More than 50 % of untreated patients with celiac disease (CD) have bone loss detected by bone densitometry (dual-energy X-ray absorptiometry:DXA). Moreover, patients with CD are more likely to have osteoporosis and fragility fractures, especially of the distal radius. Although still controversial, we recommend DXA screening in all celiac disease patients, particularly in those with symptomatic CD at diagnosis and in those who present risk factors for fracture such as older age, menopausal status, previous fracture history, and familial hip fracture history. Bone microarchitecture, especially the trabecular network, may be deteriorated, explaining the higher fracture risk in these patients. Adequate calcium and vitamin D supplementation are also recommended to optimize bone recovery, especially during the first years of gluten free diet (GFD). If higher fracture risk persists after 1 or 2 years of GFD, specific osteoactive treatment may be necessary to improve bone health. PMID:26875096

  3. A novel DXA-based hip failure index captures hip fragility independent of BMD.

    PubMed

    Sievänen, H; Weynand, L S; Wacker, W K; Simonelli, C; Burke, P K; Ragi, S; Del Rio, L

    2008-01-01

    Capability of a novel dual-energy X-ray absorptiometry (DXA)-based hip failure index (HiFI) to discriminate between hip fracture cases and controls was evaluated. Given the constraints of planar DXA, the femoral neck was assumed a foam-filled ( approximately trabecular bone), thin-walled ( approximately cortical bone) sandwich structure, while HiFI estimated the critical force sufficient to buckle the wall of such a structure. Proximal femur DXA data from 1379 women aged 65yr and older, 268 with prior hip fracture were used. Comparison between standard areal bone mineral density (BMD), femur strength index (FSI), and HiFI was based on areas under receiver operatoring characteristic curves (AUC). The mean femoral neck BMD (SD) was 0.689 (0.109) g/cm(2) among the cases and 0.768 (0.119) g/cm(2) among the controls; the mean FSI 1.33 (0.36) and 1.54 (0.41), and the mean HiFI -0.28 (0.14) and -0.18 (0.15), respectively; all intergroup differences were highly significant (p<0.001). The intergroup difference for HiFI remained significant (p<0.002) after adjusting for age and BMD or FSI. The AUCs were 0.696 (95% confidence interval [CI]: 0.661-0.730) for BMD, 0.665 (0.630-0.700) for FSI, and 0.701 (0.666-0.736) for HiFI. In conclusion, HiFI may capture structural traits that account for femoral neck fragility independently of BMD or FSI. Obviously, the use of actual geometric and structural information from three-dimensional imaging of the femoral neck would help diminish the crude assumptions of the present DXA approach and reveal the true potential of the HiFI approach to gauge hip fragility and identify at-risk individuals for hip fractures. PMID:18456529

  4. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  5. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows.

    PubMed

    Maetani, Ayami; Itoh, Megumi; Nishihara, Kahori; Aoki, Takahiro; Ohtani, Masayuki; Shibano, Kenichi; Kayano, Mitsunori; Yamada, Kazutaka

    2016-08-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  6. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows

    PubMed Central

    MAETANI, Ayami; ITOH, Megumi; NISHIHARA, Kahori; AOKI, Takahiro; OHTANI, Masayuki; SHIBANO, Kenichi; KAYANO, Mitsunori; YAMADA, Kazutaka

    2016-01-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  7. Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method

    PubMed Central

    2010-01-01

    Background Dual-energy x-ray absorptiometry (DXA) provides an affordable and practical assessment of multiple whole body and regional body composition. However, little information is available on the assessment of changes in body composition in top-level athletes using DXA. The present study aimed to assess the accuracy of DXA in tracking body composition changes (relative fat mass [%FM], absolute fat mass [FM], and fat-free mass [FFM]) of elite male judo athletes from a period of weight stability to prior to a competition, compared to a four compartment model (4C model), as the criterion method. Methods A total of 27 elite male judo athletes (age, 22.2 ± 2.8 yrs) athletes were evaluated. Measures of body volume by air displacement plethysmography, bone mineral content assessed by DXA, and total-body water assessed by deuterium dilution were used in a 4C model. Statistical analyses included examination of the coefficient of determinant (r2), standard error of estimation (SEE), slope, intercept, and agreement between models. Results At a group level analysis, changes in %FM, FM, and FFM estimates by DXA were not significantly different from those by the 4C model. Though the regression between DXA and the 4C model did not differ from the line of identity DXA %FM, FM, and FFM changes only explained 29%, 36%, and 38% of the 4C reference values, respectively. Individual results showed that the 95% limits of agreement were -3.7 to 5.3 for %FM, -2.6 to 3.7 for FM, and -3.7 to 2.7 for FFM. The relation between the difference and the mean of the methods indicated a significant trend for %FM and FM changes with DXA overestimating at the lower ends and underestimating at the upper ends of FM changes. Conclusions Our data indicate that both at group and individual levels DXA did not present an expected accuracy in tracking changes in adiposity in elite male judo athletes. PMID:20307312

  8. Comparison of dual-photon absorptiometry systems for total-body bone and soft tissue measurements: Dual-energy X-rays versus gadolinium 153

    SciTech Connect

    Russell-Aulet, M.; Wang, J.; Thornton, J.; Pierson, R.N. Jr. )

    1991-04-01

    A total of 81 subjects (41 males and 40 females) were scanned by dual-photon absorptiometry by 153Gd source (DPA; Lunar DP4) and by dual-energy x-ray absorptiometry (DEXA; Lunar-DPX) within a 24 h period. Total-body bone mineral density (TBMD), calcium content (Ca), and soft tissue mass (ST) were determined with a precision of about 1-1.5% using DPA and 0.5-1.0% using DEXA. Measurements of TBMD, Ca, ST, bone area (area), percentage fat, and regional bone mineral densities (BMD) were compared. Paired t-tests showed small but significant differences between all measurements. Correlations (r) for TBMD, Ca, area, ST, percentage fat, arm BMD, leg BMD, and trunk BMD were 0.99, 0.99, 0.97, 0.99, 0.97, 0.99, 0.99, and 0.98. There were small systematic differences for TBMD (less than 1%), calcium (3%), bone area (3%), soft tissue mass (7%), and percentage fat (9%) between the two approaches. Regression equations are given relating these measurements.

  9. Mid-term study of bone remodeling after femoral cemented stem implantation: comparison between DXA and finite element simulation.

    PubMed

    Herrera, Antonio; Rebollo, Sarai; Ibarz, Elena; Mateo, Jesús; Gabarre, Sergio; Gracia, Luis

    2014-01-01

    This five-year prospective study was designed to investigate periprosthetic bone remodeling associated with two cemented stem models, ABG-II (Stryker) and VerSys (Zimmer), randomly implanted in patients older than 75 years. The sample consisted of 64 cases (32, ABG-II; 32, VerSys). Inclusion criterion was diagnosis of osteoarthritis recommended for cemented total hip arthroplasty. Besides clinical study, Finite Element (FE) simulation was used to analyze biomechanical changes caused by hip arthroplasty. Bone Mineral Density (BMD) measurements showed a progressive increase in bone mass throughout the entire follow-up period for both stems, well correlated with FE results except in Gruen zones 4, 5, 6 for ABG-II and in zones 4, 5 for VerSys, denoting that remodeling in those zones does not depend on mechanical factors but rather on biological or physiological ones. PMID:23725926

  10. Comparison of Anthropometry to Dual Energy X-Ray Absorptiometry: A New Prediction Equation for Women

    ERIC Educational Resources Information Center

    Ball, Stephen; Swan, Pamela D.; DeSimone, Rosemarie

    2004-01-01

    The purpose of this study was to assess the accuracy of three recommended anthropometric equations for women and then develop an updated prediction equation using dual energy x-ray absorptiometry (DXA). The percentage of body fat (%BF) by anthropometry was significantly correlated (r = .896-. 929; p [is less than] .01) with DXA, but each equation…

  11. Postmenopausal bone loss and the risk of osteoporosis.

    PubMed

    Christiansen, C

    1994-01-01

    The two most important risk factors for long-term skeletal health are the peak bone mass and the subsequent rate of bone loss. The rate of bone loss after skeletal maturity is determined by both genetic factors and environmental factors. Furthermore, all factors that impair estrogen production will increase bone loss. The present risk of developing osteoporosis and fractures may be assessed by bone mass measurements in the total skeleton, or in local parts of the skeleton such as the spine, hip and forearm, by single-photon/X-ray absorptiometry (SPA or SXA), dual-photon/energy X-ray absorptiometry (DPA or DXA), or quantitative computed tomography (QCT). Furthermore, the rate of bone loss in postmenopausal women may be assessed by means of a number of biochemical markers. The fútúre risk of developing osteoporosis may thus be determined by combining the values for bone mineral content and bone loss. PMID:8081059

  12. Measurement of Percentage of Body Fat in 411 Children and Adolescents: A Comparison of Dual-Energy X-Ray Absorptiometry With a Four-Compartment Model

    PubMed Central

    Sopher, Aviva B.; Thornton, John C.; Wang, Jack; Pierson, Richard N.; Heymsfield, Steven B.; Horlick, Mary

    2015-01-01

    Objective Pediatricians are encountering body composition information more frequently, with percentage of body fat (%BF) measurement receiving particular attention as a result of the obesity epidemic. One confounding issue is that different methods may yield different %BF results in the same person. The objective of this study was to compare dual-energy X-ray absorptiometry (DXA) with the criterion 4-compartment model (4-CM) for measurement of %BF in a large pediatric cohort and to assist pediatricians in appropriate interpretation of body composition information by recognizing differences between techniques. Methods Height, weight, anthropometrics, body density by underwater weighing, total body water by deuterium dilution, and bone mineral content and %BF by DXA (Lunar DPX/DPX-L) were measured in 411 healthy subjects, aged 6 to 18 years. Values for %BF by 4-CM and DXA were compared using regression analysis. Results The mean ± standard deviation values for %BF by DXA (22.73% ± 11.23%) and by 4-CM (21.72% ± 9.42%) were different, but there was a strong relationship between the 2 methods (R2 = 0.85). DXA underestimated %BF in subjects with lower %BF and overestimated it in those with higher %BF. The relationship between the 2 methods was not affected by gender, age, ethnicity, pubertal stage, height, weight, or body mass index. The standard error of the estimate was 3.66%. Conclusion This analysis demonstrates a predictable relationship between DXA and 4-CM for %BF measurement. Because of its ease of use, consistent relationship with 4-CM, and availability, we propose that DXA has the capacity for clinical application including prediction of metabolic abnormalities associated with excess %BF in pediatrics. PMID:15121943

  13. Evaluation of the effects of hypergravity exposure and caging restraint on bone mineralization in the Beagle by in vivo photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Fisher, G. L.; Berding, K. L.; Goldman, M.

    1975-01-01

    Photon absorptiometry was used to evaluate bone mineral kinetics associated with normal development and the possible perturbations to bone development resulting from hypergravity exposure over a period of six months in developing Beagles. A series of seven measurements were performed at specific times with the first measurement prior to treatment and subsequent measurements at 2, 5, 9, 14, 20 and 26 weeks from the onset of the experiment. Four groups of six male Beagle pups, ranging in age from 85 to 92 days were studied. Two groups were chronically exposed to hypergravity treatments by centrifugation of 2.0 G (18.0 RPM, 11.7 ft radius) and 2.6 G (18.0 RPM, 19.8 ft radius) for the 26 week period. A third group of six dogs served as a caged control to evaluate possible changes due to confinement in small plexiglass cages similar to those of the centrifuge. Thus this control group was subjected to limited exercise due to caging restraint. The fourth group of animals was housed in open runs to allow exercise without the spatial confinement of the smaller plexiglass cages. Results show highly significant differences in body weight, bone length, increase in bone density of control group relative to other groups, and a decrease in bone mineral content in the two gravity treated groups.

  14. Bone Density in Peripubertal Boys with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Neumeyer, Ann M.; Gates, Amy; Ferrone, Christine; Lee, Hang; Misra, Madhusmita

    2013-01-01

    We determined whether bone mineral density (BMD) is lower in boys with autism spectrum disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 controls 8-14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and…

  15. Comparison of phalangeal ultrasound and dual energy X-ray absorptiometry in healthy male and female adolescents.

    PubMed

    Halaba, Zenon P; Konstantynowicz, Jerzy; Pluskiewicz, Wojciech; Kaczmarski, Maciej; Piotrowska-Jastrzebska, Janina

    2005-12-01

    The aims of this study were to determine if there is a correlation between dual energy X-ray absorptiometry (DXA) and phalangeal quantitative ultrasound (QUS) in identifying children and adolescents with low bone density, and to assess if body size influences the results of the two techniques to the same degree. Measurements were performed in 67 girls and 83 boys aged 14 to 19 y using DBM Sonic 1200 (IGEA, Carpi, Italy) and the DXA equipment (LUNAR Radiation Corp., Madison, WI, USA). Twelve adolescents (eight males and four females) reported a past history of nonosteoporotic fractures. Lumbar spine bone mineral density (LS BMD), total body bone mineral density (TB BMD) and total body bone mineral content (TB BMC) correlated positively with age, height, BMI and weight, in both genders. Amplitude-dependent speed of sound (Ad-SOS) was positively correlated with age, height and Tanner stages in both genders and negatively correlated with BMI in females. TB BMD, TB BMC and LS BMD positively correlated with Ad-SOS only in males. In females, there were no significant correlations between Ad-SOS, TB BMD, TB BMC and LS BMD measurements. Twelve teenagers with previous fractures (high impact fractures) were found to have lower DXA and QUS values than age-matched teenagers without fractures but the statistical significance was found only in relation to TB BMD values (p = 0.02). In conclusion, we obtained results similar to those that have been reported by other authors using different QUS techniques. Furthermore, the Ad-SOS measurements taken at the distal metaphysis of the proximal phalanges correlate poorly with LS BMD and TB BMD measured by DXA in growing subjects. PMID:16344124

  16. Skeletal Recovery Following Long-Duration Spaceflight Missions as Determined by Preflight and Postflight DXA Scans of 45 Crew Members

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2006-01-01

    Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.

  17. Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry.

    PubMed

    Woodhead, H J; Kemp, A F; Blimkie CJR; Briody, J N; Duncan, C S; Thompson, M; Lam, A; Howman-Giles, R; Cowell, C T

    2001-12-01

    Although macroscopic geometric architecture is an important determinant of bone strength, there is limited published information relating to the validation of the techniques used in its measurement. This study describes new techniques for assessing geometry at the midfemur using magnetic resonance imaging (MRI) and dual-energy X-ray absorptiometry (DXA) and examines both the repeatability and the accuracy of these and previously described DXA methods. Contiguous transverse MRI (Philips 1.5T) scans of the middle one-third femur were made in 13 subjects, 3 subjects with osteoporosis. Midpoint values for total width (TW), cortical width (CW), total cross-sectional area (TCSA), cortical cross-sectional area (CCSA), and volumes from reconstructed three-dimensional (3D) images (total volume [TV] and cortical volume [CVol]) were derived. Midpoint TW and CW also were determined using DXA (Lunar V3.6, lumbar software) by visual and automated edge detection analysis. Repeatability was assessed on scans made on two occasions and then analyzed twice by two independent observers (blinded), with intra- and interobserver repeatability expressed as the CV (CV +/- SD). Accuracy was examined by comparing MRI and DXA measurements of venison bone (and Perspex phantom for MRI), against "gold standard" measures made by vernier caliper (width), photographic image digitization (area) and water displacement (volume). Agreement between methods was analyzed using mean differences (MD +/- SD%). MRI CVs ranged from 0.5 +/- 0.5% (TV) to 3.1 +/- 3.1% (CW) for intraobserver and 0.55 +/- 0.5% (TV) to 3.6 +/- 3.6% (CW) for interobserver repeatability. DXA results ranged from 1.6 +/- 1.5% (TW) to 4.4 +/- 4.5% (CW) for intraobserver and 3.8 +/- 3.8% (TW) to 8.3 +/- 8.1% (CW) for interobserver variation. MRI accuracy was excellent for TV (3.3 +/- 6.4%), CVol (3.5 +/- 4.0%), TCSA (1.8 +/- 2.6%), and CCSA (1.6 +/- 4.2%) but not TW (4.1 +/- 1.4%) or CW (16.4 +/14.9%). DXA results were TW (6.8 +/- 2

  18. Executive Summary of the 2015 ISCD Position Development Conference on Advanced Measures From DXA and QCT: Fracture Prediction Beyond BMD.

    PubMed

    Shepherd, John A; Schousboe, John T; Broy, Susan B; Engelke, Klaus; Leslie, William D

    2015-01-01

    There have been many scientific advances in fracture risk prediction beyond bone density. The International Society for Clinical Densitometry (ISCD) convened a Position Development Conference (PDC) on the use of dual-energy X-ray absorptiometry beyond measurement of bone mineral density for fracture risk assessment, including trabecular bone score and hip geometry measures. Previously, no guidelines for nonbone mineral density DXA measures existed. Furthermore, there have been advances in the analysis of quantitative computed tomography (QCT) including finite element analysis, QCT of the hip, DXA-equivalent hip measurements, and opportunistic screening that were not included in the previous ISCD positions. The topics and questions for consideration were developed by the ISCD Board of Directors and the Scientific Advisory Committee and were designed to address the needs of clinical practitioners. Three task forces were created and asked to conduct comprehensive literature reviews to address specific questions. The task forces included participants from many countries and a variety of interests including academic institutions and private health care delivery organizations. Representatives from industry participated as consultants to the task forces. Task force reports with proposed position statements were then presented to an international panel of experts with backgrounds in bone densitometry. The PDC was held in Chicago, Illinois, USA, contemporaneously with the Annual Meeting of the ISCD, February 26 through February 28, 2015. This Executive Summary describes the methodology of the 2015 PDC on advanced measures from DXA and QCT and summarizes the approved official positions. Six separate articles in this issue will detail the rationale, discussion, and additional research topics for each question the task forces addressed. PMID:26277847

  19. The Effect of the Lumbar Vertebral Malpositioning on Bone Mineral Density Measurements of the Lumbar Spine by Dual-Energy X-Ray Absorptiometry.

    PubMed

    Izadyar, Sina; Golbarg, Shima; Takavar, Abbas; Zakariaee, Seyed Salman

    2016-01-01

    A significant discrepancy between the results of previous human and phantoms studies is identified regarding the effects of vertebral positioning on bone mineral density (BMD) measurements. We aimed to evaluate the effects of lumbar vertebral positioning on BMD measurements by dual-energy X-ray absorptiometry in a human cadaveric spine phantom. A spine phantom was designed using L1-L4 vertebrae harvested from a 48-year-old male cadaver without coronal or sagittal deformity. The spine phantom was scanned by DEXXUM T bone densitometer in a constant scanning speed of 30 mm/s and resolution of 1.0 × 1.0 mm. BMD values were measured in a positive and negative lumbar lordosis and kyphosis tilt angles in the sagittal plane, from 0° to 35°, with 7° increments. Also BMD values were measured in axial and lateral rotations with 5° increments. Projectional dual-energy X-ray absorptiometry measurements are significantly affected by positioning of the lumbar spine, more severely affected by kyphotic curvature, but also by axial and lateral rotational scoliosis as well as lordotic curvature. Increasing the severity of lordosis and kyphosis curvatures leads to false reduction of BMD value up to 17.5% and 11.5%, respectively. Increasing the degree of lateral and axial rotational scolioses results in a false decrease in BMD measurements by up to 10.8% and 9.6%, respectively. To achieve the most accurate scanning results, error sources and abnormal positioning should be identified and minimized as much as possible. If not correctable, they should be taken into consideration while interpreting the results. PMID:26778450

  20. Body Fat Mass Assessment: A Comparison between an Ultrasound-Based Device and a Discovery A Model of DXA

    PubMed Central

    Pineau, Jean-Claude; Lalys, Loïc; Pellegrini, Massimo; Battistini, Nino Carlo

    2013-01-01

    Objective. To examine measurement of body composition by ultrasound compared with a reference technique:dual energy X-ray absorptiometry (DXA). We evaluated the accuracy of a portable ultrasound-based device in estimating total body fat mass with those assessed by DXA in adult. Methods. Body fat mass has been estimated using a portable ultrasound-based device in comparison with a contemporary reference DXA apparatus: the Hologic Discovery A. Anthropometric data has been assessed in order to maximize the output of the software associated with the ultrasound-based device. A cross-validation between ultrasound technique (US) and DXA was developed in this study. Total body fat mass estimated by ultrasound was compared with this DXA model in a sample of 83 women and 41 men. Results. Ultrasound technique (US) of body fat (BF) was better correlated with DXA in both women (r2 = 0.97, P < 0.01) and men (r2 = 0.92, P < 0.01) with standard errors of estimates (SEE) being 2.1 kg and 2.2 kg, respectively. Conclusion. The use of a portable device based on a US produced a very accurate BF estimate in relation to DXA reference technique. As DXA absorptiometry techniques are not interchangeable, the use of our ultrasound-based device needs to be recalibrated on a more contemporary DXA. PMID:24575315

  1. Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets.

    PubMed

    Fusch, C; Slotboom, J; Fuehrer, U; Schumacher, R; Keisker, A; Zimmermann, W; Moessinger, A; Boesch, C; Blum, J

    1999-10-01

    An animal study to evaluate dual-energy x-ray absorptiometry (DXA) and magnetic resonance (MR) imaging and spectroscopy for measurement of neonatal body composition was performed. Twenty-three piglets with body weights ranging from 848 to 7550 g were used. After measuring total body water, animals were killed and body composition was assessed using DXA and MR (1.5 T; MR imaging, T1-weighted sagittal spin-echo sequence; MR spectroscopy, three-dimensional chemical shift imaging) as well as chemical carcass analysis (standard methods) after homogenization. Body composition by chemical analysis (percent of body weight, mean +/- SD) was as follows: body water, 75.3 +/- 3.9%; total protein, 13.9 +/- 8.8%; and total fat, 6.5 +/- 3.7%. Absolute content of fat and total ash was 7-674 and 35-237 g, respectively. Mean hydration of fat-free mass was 0.804 +/- 0.011 g/kg and decreased with increasing body weight (r2 = 0.419) independent of age. Using DXA, bone mineral content was highly correlated with calcium content (r2 = 0.992), and calcium per bone mineral content was 44.1 +/- 4.2%. DXA fat mass correlated with total fat (r2 = 0.961). Using MR, spectroscopy and chemical analysis were highly correlated with fat-to-water ratio (r2 = 0.984) and absolute fat content (r2 = 0.988). Total fat by MR imaging volumetry showed a lower correlation (r2 = 0.913) and overestimated total fat by a factor of 2.46. Conversion equations for DXA were developed (total fat = 1.31 x fat mass measured by DXA--68.8; calcium = 0.402 x bone mineral content + 1.7), which improved precision and accuracy of DXA measurements. In conclusion, both DXA and MR spectroscopy give accurate and precise estimates of neonatal body composition and may become valuable tools for the noninvasive assessment of neonatal growth and nutritional status. PMID:10509370

  2. Discriminatory Performance of the Calcaneal Quantitative Ultrasound and Osteoporosis Self-Assessment Tool to Select Older Women for Dual-Energy X-ray Absorptiometry.

    PubMed

    McLeod, Katherine M; Johnson, Shanthi; Rasali, Drona; Verma, Ashok

    2015-01-01

    The objective of this cross-sectional study was to evaluate the accuracy of the calcaneal quantitative ultrasound (QUS) and the Osteoporosis Self-Assessment Tool (OST) in identifying older women with osteoporosis as defined by dual-energy X-ray absorptiometry (DXA), and to establish optimal cutoffs to determine risk. We assessed bone mineral density of the femoral neck and lumbar spine using DXA and subsequent calcaneal QUS and OST measurements in 174 women aged 50-80 years. Pearson product correlation coefficients between QUS, OST, and DXA parameters were calculated. Receiver operating characteristic curves were constructed and areas under the curves (AUCs) and optimal thresholds for QUS and OST were defined based on sensitivity, specificity, and likelihood ratio analysis. The ability of calcaneal QUS to identify women with a T-score ≤-2.5 at the femoral neck (AUC = 0.892) consistently outperformed a T-score ≤-2.5 at the lumbar spine (AUC = 0.696) and OST at both the femoral neck and lumbar spine (AUC = 0.706-0.807). Stiffness index cutoff values that fall between 65 and 78 were found to warrant DXA screening, with a cutoff <65 indicating high likelihood of osteoporosis. Further prospective research is needed to examine the gender-related differences of QUS and OST diagnostic performance and their usefulness in clinical practice. PMID:25937306

  3. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  4. Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...

  5. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry.

    PubMed

    Keil, Mhairi; Totosy de Zepetnek, Julia O; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2016-01-01

    The purpose of this study was to assess the reproducibility of body composition measurements by dual-energy X-ray absorptiometry (DXA) in 12 elite male wheelchair basketball players (age 31 ± 7 years, BMI 21 ± 2 kg/m(2) and onset of disability 25 ± 9 years). Two whole body scans were performed on each participant in the supine position on the same day, using Lunar Prodigy Advance DXA (GE Lunar, Madison, WI, USA). Participants dismounted from the scanning table and were repositioned in-between the first and second scan. Whole body coefficient of variation (CV) values for bone mineral content (BMC), fat mass (FM) and soft tissue lean mass (LTM) were all <2.0%. With the exclusion of arm FM (CV = 7.8%), CV values ranged from 0.1 to 3.7% for all total body and segmental measurements of BMC, FM and LTM. The least significant change that can be attributed to the effect of treatment intervention in an individual is 1.0 kg, 1.1 kg, 0.12 kg for FM, LTM, and BMC, respectively. This information can be used to determine meaningful changes in body composition when assessed using the same methods longitudinally. Whilst there may be challenges in the correct positioning of an individual with disability that can introduce greater measurement error, DXA is a highly reproducible technique in the estimation of total and regional body composition of elite wheelchair basketball athletes. PMID:25307741

  6. DXA Utilization Between 2006 and 2012 in Commercially Insured Younger Postmenopausal Women.

    PubMed

    Overman, Robert A; Farley, Joel F; Curtis, Jeffrey R; Zhang, Jie; Gourlay, Margaret L; Deal, Chad L

    2015-01-01

    Reimbursement for dual-energy X-ray absorptiometry (DXA) scans in the outpatient setting has declined significantly since 2006. Research through 2011 has suggested reimbursement reductions for DXA scans have corresponded with an overall decreased utilization of DXA. This study updates utilization estimates for DXAs through 2012 in patients with commercial insurance and compares DXA rates before and after reimbursement changes. We evaluated DXA utilization for women aged 50-64 yr from Marketscan Commercial Claims and Encounter database between January 2006 and December 2012 based on CPT codes. We estimated utilization rates per 1000 person years (PY). We also used segmented regression analysis of monthly rates to evaluate the change in utilization rates after a proposed reimbursement reduction in July 2009. In women aged 50-64 yr, 451,656 DXAs were performed in 2006, a rate of 144 DXAs per 1000 PY. This rate increased to 149 DXAs per 1000 PY in 2009 before decreasing to 110 DXAs per 1000 PY or 667,982 scans in 2012. DXA utilization increased by 2.24 per 1000 PY until July 2009 then declined by 12.98 DXAs per 1000 persons, resulting in 37.5 DXAs per PY fewer performed in 2012 compared with 2006. Since July 2009 a significant decline in DXA utilization occurred in a younger postmenopausal commercially insured population. This decline corresponds with a time period of reductions in Medicare DXA reimbursement. PMID:25700662

  7. A systematic quality assurance study in bone densitometry devices

    NASA Astrophysics Data System (ADS)

    Tuncman, Duygu; Kovan, Hatice; Kovan, Bilal; Demir, Bayram; Turkmen, Cuneyt

    2015-07-01

    Osteoporosis is the most common metabolic bone disease and can result in devastating physical, psychosocial, and economic consequences. It occurs in women after menopause and affects most elderly. Dual-energy x-ray absorptiometry (DXA) is currently the most widely used method for the measurement of areal Bone Mineral Density (BMD) (g/cm2) .DXA is based on the variable absorption of X-ray by the different body components and uses high and low energy X-ray photons. There are two important values in the assessment of the DXA. These values are T-score and Z-score. The T-score is calculated by taking the difference between a patient's measured BMD with the mean BMD of the young normal population, matched for gender and ethnicity, and then by dividing the difference with the standard deviation (SD) of the BMD of the young normal population. T-score and also Z-score are directly depends on the Bone Mineral Density (BMD). BMD measurements should be made periodically in a patient life. But mostly, it is not possible with the same device. Therefore, in this study, for the quality assurance of bone densitometry devices, we evaluated the BMD results measured in the different Bone Densitometry (DXA) devices using a spine phantom.

  8. A novel approach to fracture-risk-assessment in osteoporosis by ROI-oriented application of the Minkowski-functionals to dual x-ray absorptiometry scans of the hip

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Panteleon, Alexandra; Vogel, Tobias; Burklein, Dominik; Reiser, Maximilian

    2008-03-01

    Fractures of the proximal femur represent the worst complication in osteoporosis with a mortality rate of up to 50% during the first post-traumatic year. Bone mineral density (BMD) as obtained from dual energy x-ray absorptiometry (DXA) is a good predictor of fracture risk. However, there is a considerable overlap in the BMD-results between individuals who have fractured and those who have not. As DXA uses highly standardized radiographic projection images to obtain the densitometric information, it can be postulated that these images contain much more information than just mineral density. Lately, geometric dimensions, e.g. hip axis length (HAL) or femoral neck axis length (FNAL), are considered in conjunction with BMD, which may allow to enhance the predictive potential of bone mass measurements. In recent studies we sucessfully introduced a novel methodology for topological analysis of multi-dimensional graylevel datasets, that, for instance, allows to predict the ultimate mechanical strength of femoral bone specimens. The new topolocial parameters are based on the so called Minkowski Functionals (MF), which represent a set of topographical descriptors that can be used universally. Since the DXA-images are multi-graylevel datasets in 2D obtained in a standardized way, they are ideally suited to be processed by the new method. In this study we introduce a novel algorithm to evaluate DXA-scans of the proximal femur using quantitative image analysis procedures based on the MF in 2D. The analysis is conducted in four defined regions of interest in analogy to the standard densitometric evaluation. The objective is to provide a tool to identifiy individuals with critically reduced mechanical competence of the hip. The result of the new method is compared with the evaluation bone mineral density obtained by DXA, which - at present - is the clinical standard of reference.

  9. Development of a phantom for morphometric X-ray absorptiometry.

    PubMed

    Rea, J A; Blake, G M; Fogelman, I

    2001-04-01

    Morphometric X-ray absorptiometry (MXA) has recently been developed to assess vertebral deformity status using dual energy X-ray absorptiometry (DXA) machines. In contrast to bone densitometry, a vertebral morphometry phantom is not supplied by any machine manufacturer. The aim of this study was to develop a suitable phantom to quantify the accuracy and precision of the vertebral measurement software on three DXA scanners in vitro and to perform a weekly quality control (QC) scan over a 30-month period to evaluate any drift or changes in measurement accuracy over time. The phantom was constructed from Perspex and aluminium to simulate soft tissue and bone, respectively. 13 aluminium rectangles (each 30 mm wide, 25 mm high and 3 mm thick, with edges ("endplates") 6 mm thick) were set into one side of a solid Perspex block to represent the vertebral bodies from the fourth thoracic (T4) to the fourth lumbar (L4). The phantom was scanned on both the Hologic QDR2000plus and the QDR-4500A as well as the Lunar Expert-XL. Three consecutive lateral MXA scans were acquired on the Hologic machines using each of the scan modes available. On the QDR-2000plus, the lateral scan modes available are fast, array and high definition, which are all dual energy modes. These three scan modes are also available on the QDR-4500A, with the addition of a single energy scan mode. Four lateral scans were acquired on the Expert-XL machine using the single scan mode available. Each MXA scan was analysed twice by a trained operator using the standard software supplied by each manufacturer. A QC scan was performed approximately weekly over a 30-month period on only the QDR-4500A machine, and total phantom height was measured from the inferior edge of L4 to the superior edge of T4. Accuracy of "vertebral" height measurement varied between the three DXA machines and between the scan modes available. All underestimated "true" vertebral height by between 0.4% and 8.6%, with the scan modes using finer

  10. Revised pediatric reference data for the lateral distal femur measured by Hologic Discovery/Delphi dual-energy X-ray absorptiometry.

    PubMed

    Zemel, Babette S; Stallings, Virginia A; Leonard, Mary B; Paulhamus, Donna R; Kecskemethy, Heidi H; Harcke, H Theodore; Henderson, Richard C

    2009-01-01

    Lateral distal femur (LDF) scans by dual-energy X-ray absorptiometry (DXA) are often feasible in children for whom other sites are not measurable. Pediatric reference data for LDF are not available for more recent DXA technology. The objective of this study was to assess older pediatric LDF reference data, construct new reference curves for LDF bone mineral density (BMD), and demonstrate the comparability of LDF BMD to other measures of BMD and strength assessed by DXA and by peripheral quantitative computed tomography (pQCT). LDF, spine and whole body scans of 821 healthy children, 5-18 yr of age, recruited at a single center were obtained using a Hologic Discovery/Delphi system (Hologic, Inc., Bedford, MA). Tibia trabecular and total BMD (3% site), cortical geometry (38% site) (cortical thickness, section modulus, and strain-strength index) were assessed by pQCT. Sex- and race-specific reference curves were generated using LMS Chartmaker (LMS Chartmaker Pro, version 2.3. Tim Cole and Huiqi Pan. Copyright 1997-2006, Medical Research Council, UK) and Z-scores calculated and compared by correlation analysis. Z-scores for LDF BMD based on published findings demonstrated overestimation or underestimation of the prevalence of low BMD-for-age depending on the region of interest considered. Revised LDF reference curves were generated. The new LDF Z-scores were strongly and significantly associated with weight, body mass index, spine and whole body BMD Z-scores, and all pQCT Z-scores. These findings demonstrate the comparability of LDF measurements to other clinical and research bone density assessment modes, and enable assessment of BMD in children with disabilities, who are particularly prone to low trauma fractures of long bones, and for whom traditional DXA measurement sites are not feasible. PMID:19321369

  11. Revised Pediatric Reference Data for the Lateral Distal Femur Measured by Hologic Discovery/Delphi Dual Energy X-Ray Absorptiometry

    PubMed Central

    Zemel, Babette S.; Stallings, Virginia A.; Leonard, Mary B.; Paulhamus, Donna R.; Kecskemethy, Heidi H.; Harcke, H. Theodore; Henderson, Richard C

    2015-01-01

    Background Lateral distal femur (LDF) scans by dual energy x-ray absorptiometry (DXA) are often feasible in children for whom other sites are not measurable. Pediatric reference data for LDF are not available for more recent DXA technology. Aims To assess older pediatric LDF reference data, construct new reference curves for LDF bone mineral density (BMD), and demonstrate the comparability of LDF BMD to other measures of BMD and strength assessed by DXA and by peripheral quantitative computed tomography (pQCT). Methods LDF, spine and whole body scans of 821 healthy children, 5 to 18 years of age, recruited at a single center were obtained using a Hologic Delphi/Discovery system. Tibia trabecular and total BMD (3% site), cortical geometry (38% site) (cortical thickness, section modulus, strain strength index) were assessed by pQCT. Sex and race-specific reference curves were generated using LMS-ChartMaker and Z-scores calculated and compared by correlation analysis. Results Z-scores for LDF BMD based on published findings demonstrated overestimation or underestimation of the prevalence of low BMD-for-age depending on the region of interest considered. Revised LDF reference curves were generated. The new LDF Z-scores were strongly and significantly associated with weight, BMI, spine and whole body BMD Z-scores, and all pQCT Z-scores. Conclusion These findings demonstrate the comparability of LDF measurements to other clinical and research bone density assessment modes, and enable assessment of BMD in children with disabilities, who are particularly prone to low trauma fractures of long bones, and for whom traditional DXA measurement sites are not feasible. PMID:19321369

  12. Preoperative bone quality as a factor in dual-energy X-ray absorptiometry analysis comparing bone remodelling between two implant types

    PubMed Central

    Rahmy, Ali; Grimm, Bernd; Heyligers, Ide; Tonino, Alphons

    2006-01-01

    Recently it was shown that the design changes from the ABG-I to ABG-II hip stem resulted in a better, although not significant, proximal bone preservation. Our hypothesis was that by matching patients for preoperative bone quality, statistical power would increase and that the trend of better proximal bone preservation in ABG-II might become significant. Twenty-four ABG-II patients were compared to two different ABG-I groups: (1) 25 patients from our earlier prospective study and (2) a group of 24 patients selected to perfectly match the ABG-II group regarding gender, age and preoperative bone quality. Postoperative changes in periprosthetic bone mineral density (BMD) were quantified at 2 years postoperatively using DEXA scanning. Bone preservation (less BMD loss) was better for the ABG-II than the ABG-I (all two groups) in the proximal zones 1 and 7. In Gruen zone 7, a statistically significant difference was found for group B (p = 0.03). By matching patients for preoperative bone quality and gender, a statistical significant difference was found in proximal bone preservation in favour of ABG-II. In future comparative bone remodelling studies using DEXA, patients should be matched for preoperative bone quality and gender. PMID:17086429

  13. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  14. Current methods and advances in bone densitometry.

    PubMed

    Guglielmi, G; Gluer, C C; Majumdar, S; Blunt, B A; Genant, H K

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis. PMID:11539928

  15. Effect of Self-Referral on Bone Mineral Density Testing and Osteoporosis Treatment

    PubMed Central

    Warriner, Amy H.; Outman, Ryan C.; Feldstein, Adrianne C.; Roblin, Douglas W.; Allison, Jeroan J.; Curtis, Jeffrey R.; Redden, David T.; Rix, Mary M.; Robinson, Brandi E.; Rosales, A. Gabriela; Safford, Monika M.; Saag, Kenneth G.

    2014-01-01

    Background Despite national guidelines recommending bone mineral density screening with dual-energy xray absorptiometry (DXA) in women ≥65 years old, many women do not receive initial screening. Objective To determine the effectiveness of health system and patient-level interventions designed to increase appropriate DXA testing and osteoporosis treatment through (1) an invitation to self-refer for DXA (self-referral), (2) self-referral plus patient educational materials, and (3) usual care (UC, physician referral). Research Design Parallel, group-randomized, controlled trials performed at Kaiser Permanente Northwest (KPNW) and Kaiser Permanente Georgia (KPG). Subjects Women ≥ 65 years old without a DXA in past 5 years. Measures DXA completion rates 90 days after intervention mailing and osteoporosis medication receipt 180 days after initial intervention mailing. Results From >12,000 eligible women, those randomized to self-referral were significantly more likely to receive a DXA than UC (13.0 – 24.1% self-referral vs. 4.9 – 5.9% UC, p < 0.05). DXA rates did not significantly increase with patient educational materials. Osteoporosis was detected in a greater proportion of self-referral women compared to UC (p < 0.001). The number needed to receive an invitation to result in a DXA in KPNW and KPG regions was approximately 5 and 12, respectively. New osteoporosis prescription rates were low (0.8 – 3.4%) but significantly greater among self-referral versus UC in KPNW. Conclusions DXA rates significantly improved with a mailed invitation to schedule a scan without physician referral. Providing women the opportunity to self-refer may be an effective, low-cost strategy to increase access for recommended osteoporosis screening. PMID:24984211

  16. Seasonal DXA-measured body composition changes in professional male soccer players.

    PubMed

    Milanese, Chiara; Cavedon, Valentina; Corradini, Giuliano; De Vita, Francesco; Zancanaro, Carlo

    2015-01-01

    This work investigated changes in body composition of professional soccer players attending an Italian Serie A club across the competitive season; it is original insofar as body composition was assessed at multiple time points across the season using the accurate three-compartment model provided by Dual-Energy X-Ray Absorptiometry (DXA). Thirty-one players (4 goalkeepers, 13 defenders, 8 midfielders, 6 forwards) underwent DXA and anthropometry at pre-, mid- and end-season. One operator measured whole body and regional body composition (fat mass, FM; fat-free soft tissue mass, FFSTM; mineral mass). Two players were excluded from analysis due to serious injury. Data were analysed with repeated measures ANOVA; factors were season time point and playing position. Results showed that whole-body FM and %FM significantly (P < 0.001) decrease at mid-season (-11.9%; -1.3%, respectively) and end-season (-8.3%; -0.8%, respectively) whereas FFSTM significantly (P < 0.001) increase at mid-season (+1.3%) and end-season (+1.5%). Limited, but significant changes took place in bone mineral content. Some regional (upper and lower limbs, trunk) differences in the pattern of body composition changes across the season were also found. Changes were similar for all playing positions. It was concluded that professional soccer players undergo changes in their FM, FFSTM, and mineral mass across the season with some regional variations, irrespective of the playing position. Changes are mostly positive at mid-season, possibly due to difference in training between the first and second phase of the season. PMID:25773172

  17. Optimizing Bone Health in Duchenne Muscular Dystrophy

    PubMed Central

    Buckner, Jason L.; Bowden, Sasigarn A.; Mahan, John D.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA. PMID:26124831

  18. TORSIONAL STIFFNESS AND STRENGTH OF THE PROXIMAL TIBIA ARE BETTER PREDICTED BY FINITE ELEMENT MODELS THAN DXA OR QCT

    PubMed Central

    Edwards, W. Brent; Schnitzer, Thomas J.; Troy, Karen L.

    2013-01-01

    Individuals with spinal cord injury experience a rapid loss of bone mineral below the neurological lesion. The clinical consequence of this bone loss is a high rate of fracture around regions of the knee. The ability to predict the mechanical competence of bones at this location may serve as an important clinical tool to assess fracture risk in the spinal cord injury population. The purpose of this study was to develop, and statistically compare, non-invasive methods to predict torsional stiffness (K) and strength (Tult) of the proximal tibia. Twenty-two human tibiae were assigned to either a “training set” or a “test set” (11 specimens each) and mechanically loaded to failure. The training set was used to develop subject-specific finite element (FE) models, and statistical models based on dual energy x-ray absorptiometry (DXA) and quantitative computed tomography (QCT), to predict K and Tult; the test set was used for cross-validation. Mechanical testing produced clinically relevant spiral fractures in all specimens. All methods were accurate and reliable predictors of K (cross-validation r2 ≥ 0.91; error ≤ 13%), however FE models explained an additional 15% of the variance in measured Tult and illustrated 12–16% less error than DXA and QCT models. Given the strong correlations between measured and FE predicted K (cross-validation r2= 0.95; error = 10%) and Tult (cross-validation r2= 0.91; error = 9%), we believe the FE modeling procedure has reached a level of accuracy necessary to answer clinically relevant questions. PMID:23680350

  19. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa.

    PubMed

    Bredella, Miriam A; Ghomi, Reza Hosseini; Thomas, Bijoy J; Torriani, Martin; Brick, Danielle J; Gerweck, Anu V; Misra, Madhusmita; Klibanski, Anne; Miller, Karen K

    2010-11-01

    Accurate methods for assessing body composition in subjects with obesity and anorexia nervosa (AN) are important for determination of metabolic and cardiovascular risk factors and to monitor therapeutic interventions. The purpose of our study was to assess the accuracy of dual-energy X-ray absorptiometry (DXA) for measuring abdominal and thigh fat, and thigh muscle mass in premenopausal women with obesity, AN, and normal weight compared to computed tomography (CT). In addition, we wanted to assess the impact of hydration on DXA-derived measures of body composition by using bioelectrical impedance analysis (BIA). We studied a total of 91 premenopausal women (34 obese, 39 with AN, and 18 lean controls). Our results demonstrate strong correlations between DXA- and CT-derived body composition measurements in AN, obese, and lean controls (r = 0.77-0.95, P < 0.0001). After controlling for total body water (TBW), the correlation coefficients were comparable. DXA trunk fat correlated with CT visceral fat (r = 0.51-0.70, P < 0.0001). DXA underestimated trunk and thigh fat and overestimated thigh muscle mass and this error increased with increasing weight. Our study showed that DXA is a useful method for assessing body composition in premenopausal women within the phenotypic spectrum ranging from obesity to AN. However, it is important to recognize that DXA may not accurately assess body composition in markedly obese women. The level of hydration does not significantly affect most DXA body composition measurements, with the exceptions of thigh fat. PMID:20111013

  20. DXA-derived abdominal fat mass, waist circumference, and blood lipids in postmenopausal women.

    PubMed

    Vatanparast, Hassanali; Chilibeck, Philip D; Cornish, Stephen M; Little, Jonathan P; Paus-Jenssen, Lisa S; Case, Allison M; Biem, H Jay

    2009-08-01

    The purpose of this study was to determine the utility of dual-energy X-ray absorptiometry (DXA)-derived fat mass indices for predicting blood lipid profile in postmenopausal women. A secondary purpose was to determine whether waist circumference is comparable with DXA-derived measurements in predicting blood lipid profile. Subjects were 423 postmenopausal women (age 58.1 +/- 6.3 years). Fat mass was assessed at abdomen, trunk, and total body using DXA. Anthropometric measurements included BMI and waist circumference. Blood samples were analyzed for total cholesterol (TC), triglyceride (TAG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and cholesterol/HDL ratio. Of the DXA-derived measures, abdominal-fat mass was the best predictor of blood lipid profiles. DXA-derived abdominal fat mass and waist girth explained 20 and 16.5% of variation in TC/HDL ratio, respectively, in univariate analysis, with no difference between the slopes of the regression coefficients. Eighty-four percent of subjects were common to the top quartiles of waist circumference and abdominal fat mass, and blood lipid profiles generally worsened across increasing quartiles. DXA-derived abdominal fat mass and waist circumference are of equivalent utility for predicting alterations in blood lipids. Waist circumference is, therefore, ideal as an inexpensive means in primary health-care services for predicting risk of cardiovascular diseases in postmenopausal women. PMID:19343013

  1. Small animal bone density and morphometry analysis with a dual energy x-ray absorptiometry bone densitometer using a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J. M.

    2005-04-01

    The LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. Technical principles and performances for BMD measurements have been presented in previous papers. Bone densitometers are also used on small animals for drug development. In this paper, we show how the LEXXOS system can be adapted to small animals examinations, and its performances are evaluated. At first, in order to take advantage of the whole area of the digital flat panel X-ray detector, the geometrical configuration has been adapted. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the total body BMD has been measured. This evaluation has shown that the right order of BMD magnitude has been obtained and, as expected, BMD increases on the two sets until age of puberty and after this period, decreases significantly for the ovariectomized set. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing with useful complementary information on bone morphometry and architecture.

  2. [Modification of bone quality by extreme physical stress. Bone density measurements in high-performance athletes using dual-energy x-ray absorptiometry].

    PubMed

    Sabo, D; Reiter, A; Pfeil, J; Güssbacher, A; Niethard, F U

    1996-01-01

    The treatment of osteoporosis is still controversial. Rehabilitation programs which stress strengthening exercises as well as impact loading activities increase the bone mass. On the other side activity level early in life has not been proven to correlate with increased bone mineral content later in life. Little is known on the influence of high performance sports on the bone density especially in athletes with high demands on weight bearing of the spine. In (n = 40) internationally top ranked high performance athletes of different disciplines (n = 28 weight-lifters, n = 6 sports-boxers and n = 6 bicycle-racers) bone density measurements of the lumbar spine and the left hip were performed. The measurements were carried out by dual-photonabsorptiometry (DEXA; QDR 2000, Siemens) and evaluated by an interactive software-programme (Hologic Inc.). The results were compared to the measurements of 21 age-matched male control individuals. In the high performance weight lifters there was an increase of bone density compared to the control individuals of 23% in the Ward's triangle (p < 0.01). The sports-boxers had an increase up to 17% (lumbar spine), 9% (hip) and 7% (Wards' triangle). In the third athletes group (Tour de France-bikers) BMD was decreased 10% in the lumbar spine, 14% in the hip and 17% in the Wards' triangle. Our results show that training programs stressing axial loads of the skeletal system may lead to an increase of BMD in the spine and the hip of young individuals. Other authors findings, that the BMD of endurance athletes may decrease, is confirmed. Nevertheless the bikers BMD-loss of 10 to 17% was surprisingly high. PMID:8650989

  3. Usefulness of bone density measurement in fallers.

    PubMed

    Blain, Hubert; Rolland, Yves; Beauchet, Olivier; Annweiler, Cedric; Benhamou, Claude-Laurent; Benetos, Athanase; Berrut, Gilles; Audran, Maurice; Bendavid, Sauveur; Bousson, Valérie; Briot, Karine; Brazier, Michel; Breuil, Véronique; Chapuis, Laure; Chapurlat, Roland; Cohen-Solal, Martine; Cortet, Bernard; Dargent, Patricia; Fardellone, Patrice; Feron, Jean-Marc; Gauvain, Jean-Bernard; Guggenbuhl, Pascal; Hanon, Olivier; Laroche, Michel; Kolta, Sami; Lespessailles, Eric; Letombe, Brigitte; Mallet, Eric; Marcelli, Christian; Orcel, Philippe; Puisieux, François; Seret, Patrick; Souberbielle, Jean-Claude; Sutter, Bruno; Trémollières, Florence; Weryha, Georges; Roux, Christian; Thomas, Thierry

    2014-10-01

    The objective of this systematic literature review is to discuss the latest French recommendation issued in 2012 that a fall within the past year should lead to bone mineral density (BMD) measurement using dual-energy X-ray absorptiometry (DXA). This recommendation rests on four facts. First, osteoporosis and fall risk are the two leading risk factors for nonvertebral fractures in postmenopausal women. Second, BMD measurement using DXA supplies significant information on the fracture risk independently from the fall risk. Thus, when a fall occurs, the fracture risk increases as BMD decreases. Third, osteoporosis drugs have been proven effective in preventing fractures only in populations with osteoporosis defined based on BMD criteria. Finally, the prevalence of osteoporosis is high in patients who fall and increases in the presence of markers for frailty (e.g., recurrent falls, sarcopenia [low muscle mass and strength], limited mobility, and weight loss), which are risk factors for both osteoporosis and falls. Nevertheless, life expectancy should be taken into account when assessing the appropriateness of DXA in fallers, as osteoporosis treatments require at least 12months to decrease the fracture risk. Another relevant factor is the availability of DXA, which may be limited due to geographic factors, patient dependency, or severe cognitive impairments, for instance. Studies are needed to better determine how the fall risk and frailty should be incorporated into the fracture risk evaluation based on BMD and the FRAX® tool. PMID:24703626

  4. Improving bone strength prediction in human proximal femur specimens through geometrical characterization of trabecular bone microarchitecture and support vector regression

    PubMed Central

    Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva; Majumdar, Sharmila; Link, Thomas M.; Wismüller, Axel

    2014-01-01

    We investigate the use of different trabecular bone descriptors and advanced machine learning tech niques to complement standard bone mineral density (BMD) measures derived from dual-energy x-ray absorptiometry (DXA) for improving clinical assessment of osteoporotic fracture risk. For this purpose, volumes of interest were extracted from the head, neck, and trochanter of 146 ex vivo proximal femur specimens on multidetector computer tomography. The trabecular bone captured was characterized with (1) statistical moments of the BMD distribution, (2) geometrical features derived from the scaling index method (SIM), and (3) morphometric parameters, such as bone fraction, trabecular thickness, etc. Feature sets comprising DXA BMD and such supplemental features were used to predict the failure load (FL) of the specimens, previously determined through biomechanical testing, with multiregression and support vector regression. Prediction performance was measured by the root mean square error (RMSE); correlation with measured FL was evaluated using the coefficient of determination R2. The best prediction performance was achieved by a combination of DXA BMD and SIM-derived geometric features derived from the femoral head (RMSE: 0.869 ± 0.121, R2: 0.68 ± 0.079), which was significantly better than DXA BMD alone (RMSE: 0.948 ± 0.119, R2: 0.61 ± 0.101) (p < 10−4). For multivariate feature sets, SVR outperformed multiregression (p < 0.05). These results suggest that supplementing standard DXA BMD measurements with sophisticated femoral trabecular bone characterization and supervised learning techniques can significantly improve biomechanical strength prediction in proximal femur specimens. PMID:24860245

  5. Improving Rural Bone Health and Minimizing Fracture Risk in West Virginia: Validation of the World Health Organization FRAX Assessment Tool as a Phone Survey for Osteoporosis Detection.

    PubMed

    Shuler, Franklin D; Scott, Kelly; Wilson-Byrne, Timothy; Morgan, Linda; Olajide, Omolola B

    2016-01-01

    West Virginia ranks second nationally in population ≥ 65 years old placing our state at greater risk for osteoporosis and fracture. The gold standard for detecting osteoporosis is dual X-ray absorptiometry (DXA), yet over half of West Virginia's counties do not have this machine. Due to access barriers, a validated phone-administered fracture prediction tool would be beneficial for osteoporosis screening. The World Health Organization's FRAX fracture prediction tool was administered as a phone survey to 45 patients; these results were compared to DXA bone mineral density determination. Results confirmed that the FRAX phone survey is as reliable as DXA in detecting osteoporosis or clinically significant osteopenia: 92% positive predictive value, 100% negative predictive value, 100% sensitivity and 91% specificity when compared to the gold standard. These promising results allow for the development of telephone-based protocols to improve osteoporosis detection, referral and treatment especially in areas with health care access barriers. PMID:27301160

  6. Association between Bone Mass and Dental Hypomineralization.

    PubMed

    van der Tas, J T; Elfrink, M E C; Vucic, S; Heppe, D H M; Veerkamp, J S J; Jaddoe, V W V; Rivadeneira, F; Hofman, A; Moll, H A; Wolvius, E B

    2016-04-01

    The aim of this study was to examine the association between the bone mass (bone mineral content [BMC]) and hypomineralized second primary molars (HSPMs)/molar incisor hypomineralization (MIH) in 6-y-old children. This cross-sectional study was embedded in the Generation R Study, a population-based prospective cohort study, starting from fetal life until adulthood in Rotterdam, Netherlands. The European Academy of Pediatric Dentistry criteria were used to score the intraoral photographs on the presence or absence of HSPMs and MIH. Bone mass was measured with a dual-energy x-ray absorptiometry (DXA) scan. Intraoral photographs and DXA scans were available in 6,510 6-y-old children. Binary logistic regression models were used to study the association between the bone mass and HSPMs/MIH. In total, 5,586 children had their second primary molars assessed and a DXA scan made; 507 children were diagnosed with HSPM. Of 2,370 children with data on their permanent first molars, 203 were diagnosed with MIH. In the fully adjusted model, children with lower BMC (corrected for bone area) were more likely to have HSPMs (odds ratio, 1.13; 95% confidence interval, 1.02 to 1.26 per 1-standard deviation decrease). A lower BMC (corrected for bone area) was not associated with MIH (odds ratio, 1.02; 95% confidence interval, 0.87 to 1.20 per 1-standard deviation decrease). We observed a negative association between BMC (corrected for bone area) and HSPMs. No association was found between BMC (corrected for bone area) and MIH. Future research should focus on investigating the mechanism underlying the negative association between the bone mass and HSPMs. Our study, in a large population of 6-y-old children, adds the finding that BMC (corrected for bone size) is associated with HSPMs but not with MIH in childhood. PMID:26747420

  7. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens. PMID:18212376

  8. The effect of lead in bone densitometry

    NASA Astrophysics Data System (ADS)

    Popovic, Marija; McNeill, Fiona E.; Webber, Colin E.; Chettle, David R.

    2004-01-01

    Dual energy X-ray absorptiometry (DXA) is presently considered the standard technique for diagnosis of osteoporosis. It has been suggested that the presence of lead interferes with the accurate measurement of bone mineral density (BMD) by DXA because of the increased attenuation and that an accurate measurement of BMD cannot be determined unless the patient's bone lead content of patients is known. We performed DXA measurements on plaster of Paris phantoms and a Hologic Spine phantom in combination with polyester resin doped with various concentrations of lead. At lead levels which correspond to bone concentrations in occupationally exposed individuals, the suggested increase in densitometric BMD was not detected. Numerical calculations show that the effect of the lead depends upon the two energies of the X-ray beam of a particular device. The discrepancy between the actual and the densitometric BMD increases linearly and is about 0.3% at 100 ppm. Such change cannot be detected by the Hologic QDR 4500A, the device used for this experiment.

  9. Effect of hydroxyapatite-coated tibial components on changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty: a prospective randomized study using dual-energy x-ray absorptiometry.

    PubMed

    Petersen, Michael M; Gehrchen, P Martin; Ostgaard, Svend E; Nielsen, Palle K; Lund, Bjarne

    2005-06-01

    Sixteen patients scheduled for an uncemented total knee arthroplasty (TKA) were randomized to receive a tibial component either with (n = 8) or without (n = 8) hydroxyapatite (HA) coating. In 4 regions of interest, prospective measurements of bone mineral density (BMD) using dual-energy x-ray absorptiometry were performed in the proximal tibia. Two years after the operation, the only significant change in BMD was in the lateral tibial condyle, where BMD had increased by 6.1% (95% confidence interval: 2.3%-9.9%) in patients with tibial components without HA. The intragroup changes (0-24 months) in the uncoated group and HA-coated group were significantly different (P = .003) in these regions of interest. There was no significant effect of HA coating on bone remodeling pattern of the proximal tibia. PMID:16124970

  10. Using Magnetic Resonance for Predicting Femoral Strength: Added Value with respect to Bone Densitometry

    PubMed Central

    Louis, Olivia; Fierens, Yves; Strantza, Maria; Luypaert, Robert; de Mey, Johan; Cattrysse, Erik

    2015-01-01

    Background and Purpose. To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. Material and Methods. Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable. Results. Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r2 range of 0.41–0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r2 = 0.68). Conclusions. The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction. PMID:26413544

  11. Associations between pQCT-based fat and muscle area and density and DXA-based total and leg soft tissue mass in healthy women and men

    PubMed Central

    Sherk, Vanessa D; Thiebaud, Robert S; Chen, Zhaojing; Karabulut, Murat; Kim, So Jung; Bemben, Debra A

    2015-01-01

    Peripheral Quantitative Computed Tomography (pQCT) can be used for muscle and fat area and density assessments. These may independently influence muscle and fat mass measurements from Dual Energy X-ray Absorptiometry (DXA). Objective To determine associations between pQCT-derived soft tissue density and area measures and DXA-derived soft tissue mass. Methods Linear regression models were developed based on BMI and calf fat and muscle cross-sectional area (FCSA and MCSA) and density measured by pQCT in healthy women (n=76) and men (n=82) aged 20–59 years. Independent variables for these models were leg and total bone-free lean mass (BFLM) and fat mass (FM) measured by DXA. Results Sex differences (p<0.01) were found in both muscle (Mean±SE: Women: 78.6±0.4; Men: 79.9 ± 0.2 mg/cm3) and fat (Women: 0.8±0.4 Men: 9.1±0.6 mg/cm3) density. BMI, fat density, and age (R2=0.86, p<0.01) best accounted for the variability in total FM. FCSA, BMI, and fat density explained the variance in leg FM (R2=0.87, p<0.01). MCSA and muscle density explained the variance in total (R2=0.65, p<0.01) and leg BFLM (R2=0.70, p<0.01). Conclusion Calf muscle and fat area and density independently predict lean and fat tissue mass. PMID:25524966

  12. Bone Mineralization in Celiac Disease

    PubMed Central

    Larussa, Tiziana; Suraci, Evelina; Nazionale, Immacolata; Abenavoli, Ludovico; Imeneo, Maria; Luzza, Francesco

    2012-01-01

    Evidence indicates a well-established relationship between low bone mineral density (BMD) and celiac disease (CD), but data on the pathogenesis of bone derangement in this setting are still inconclusive. In patients with symptomatic CD, low BMD appears to be directly related to the intestinal malabsorption. Adherence to a strict gluten-free diet (GFD) will reverse the histological changes in the intestine and also the biochemical evidence of calcium malabsorption, resulting in rapid increase of BMD. Nevertheless, GFD improves BMD but does not normalize it in all patients, even after the recovery of intestinal mucosa. Other mechanisms of bone injury than calcium and vitamin D malabsorption are thought to be involved, such as proinflammatory cytokines, parathyroid function abnormalities, and misbalanced bone remodeling factors, most of all represented by the receptor activator of nuclear factor B/receptor activator of nuclear factor B-ligand/osteoprotegerin system. By means of dual-energy X-ray absorptiometry (DXA), it is now rapid and easy to obtain semiquantitative values of BMD. However, the question is still open about who and when submit to DXA evaluation in CD, in order to estimate risk of fractures. Furthermore, additional information on the role of nutritional supplements and alternative therapies is needed. PMID:22737164

  13. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography.

    PubMed

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R(2)=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R(2)=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  14. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R2=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R2=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  15. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach. PMID:25743562

  16. Correlation of visceral adipose tissue measured by Lunar Prodigy dual X-ray absorptiometry with MRI and CT in older men.

    PubMed

    Cheung, A S; de Rooy, C; Hoermann, R; Gianatti, E J; Hamilton, E J; Roff, G; Zajac, J D; Grossmann, M

    2016-08-01

    Quantification of abdominal visceral adipose tissue (VAT) is important to understand obesity-related comorbidities. We hypothesized that dual X-ray absorptiometry (DXA) measurements of VAT would correlate with traditional gold standards of magnetic resonance imaging (MRI) and computed tomography (CT) in older men. Deming regression and Bland-Altman plots were used to assess the agreement between VAT measured simultaneously by DXA and MRI (n=95) in a cohort of older males participating in a randomized trial of testosterone replacement for diabetes. We also correlated DXA with single-slice CT (n=102) in a cohort of older males undergoing testosterone deprivation for prostate cancer. Lunar Prodigy DXA scanners using enCORE software was used to measure VAT. DXA VAT volume strongly correlated with MRI VAT volume (r=0.90, P<0.0001) and CT VAT area (r=0.83, P<0.0001). As DXA assesses VAT volume in a smaller compartment than MRI, Bland-Altman analysis demonstrated DXA systematically underestimated VAT by an approximately 30% proportional bias. DXA VAT volume measured by Lunar Prodigy DXA scanners correlate well with gold standard MRI and CT quantification methods, and provides a low radiation, efficient, cost-effective option. Future clinical studies examining the effects of interventions on body composition and regional fat distribution may find DXA an appropriate volumetric method to quantify VAT. PMID:27003112

  17. Calibration and Validation of EchoMRI Whole Body Composition Analysis Based on Chemical Analysis of Piglets, in comparison with the same for DXA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate the accuracy and precision of a new quantitative magnetic resonance (QMR) EchoMRI device body for composition analysis (BCA) of infants and to compare it with dual energy X-ray absorptiometry (DXA). The EchoMRI device measured fat, lean, free water, and total water,...

  18. The Relationship Between Fractures and DXA Measures of BMD in the Distal Femur of Children and Adolescents With Cerebral Palsy or Muscular Dystrophy

    PubMed Central

    Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore

    2010-01-01

    Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than −5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than −1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04–1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility. © 2010 American Society for Bone and Mineral Research PMID:19821773

  19. Recommendations for Evaluation and Management of Bone Disease in HIV

    PubMed Central

    Brown, Todd T.; Hoy, Jennifer; Borderi, Marco; Guaraldi, Giovanni; Renjifo, Boris; Vescini, Fabio; Yin, Michael T.; Powderly, William G.

    2015-01-01

    Thirty-four human immunodeficiency virus (HIV) specialists from 16 countries contributed to this project, whose primary aim was to provide guidance on the screening, diagnosis, and monitoring of bone disease in HIV-infected patients. Four clinically important questions in bone disease management were identified, and recommendations, based on literature review and expert opinion, were agreed upon. Risk of fragility fracture should be assessed primarily using the Fracture Risk Assessment Tool (FRAX), without dual-energy X-ray absorptiometry (DXA), in all HIV-infected men aged 40–49 years and HIV-infected premenopausal women aged ≥40 years. DXA should be performed in men aged ≥50 years, postmenopausal women, patients with a history of fragility fracture, patients receiving chronic glucocorticoid treatment, and patients at high risk of falls. In resource-limited settings, FRAX without bone mineral density can be substituted for DXA. Guidelines for antiretroviral therapy should be followed; adjustment should avoid tenofovir disoproxil fumarate or boosted protease inhibitors in at-risk patients. Dietary and lifestyle management strategies for high-risk patients should be employed and antiosteoporosis treatment initiated. PMID:25609682

  20. The measurement of body segment inertial parameters using dual energy X-ray absorptiometry.

    PubMed

    Durkin, Jennifer L; Dowling, James J; Andrews, David M

    2002-12-01

    Accurate body segment parameter (BSP) information is required for dynamic analyses of motion and the current methods available for obtaining these BSPs have been criticized. The purpose of this study was to determine whether dual energy X-ray absorptiometry (DXA) could accurately measure the BSPs of scanned objects and thus be used as a tool for measuring the BSPs of human subjects. Whole body mass (WBM) of 11 males was measured from a DXA scan and the values were compared to criterion scale-measured values by calculating the mean percent error. Two objects (plastic cylinder, human cadaver leg) were also scanned and DXA measurements of mass, length, centre of mass location (CM) and moment of inertia about the centre of mass (I(CM)) were made using custom software. Criterion BSP measurements were then made and compared to DXA BSP values by calculating the percent error. Criterion I(CM) measurements of the two objects were made using a pendulum technique and a second criterion I(CM) calculation was made for the cylinder using a geometric formula. A mean percent error of -1.05% +/-1.32% was found for WBM measurements of the human subjects. Errors for the cylinder and cadaver leg were under 3.2% for all BSPs except for I(CM) when DXA was compared to the pendulum method (14.3% and 8.2% for cylinder and leg, respectively). The errors between DXA and the pendulum method were attributed to uncertainty in the pendulum technique (J. Biomech. 2002, in Review). I(CM) error of the cylinder when DXA was compared to the geometric calculation was 2.63%. This error, combined with the low errors for all other BSPs, indicated that DXA can be used as a simple and accurate means of obtaining direct BSP information on living humans. PMID:12445610

  1. Comparison of body composition techniques before and after a 161-km ultramarathon using DXA, BIS and BIA.

    PubMed

    Hew-Butler, T; Holexa, B T; Fogard, K; Stuempfle, K J; Hoffman, M D

    2015-02-01

    The low cost, ease of application and portability of bioelectrical impedance analysis (BIA) and spectroscopy (BIS) devices make them attractive tools for measuring acute changes in body composition before and after exercise, despite potential limitations from active compartmental fluid shifts. The primary study aim was to evaluate use of dual energy x-ray absorptiometry (DXA) against BIA and BIS in measurements of percent body fat (%BF) and percent total body water (%TBW) before and after prolonged endurance exercise. 10 runners were measured pre-race and at race finish. Significant linear relationships were noted pre-race between DXA vs. BIS for %BF (r(2)=0.76; p<0.01) and %TBW (r(2)=0.74; p<0.01). Significant correlations were noted at race finish between DXA vs. BIS for %BF (r(2)=0.64; p<0.01) and %TBW (r(2)=0.66; p<0.05), but only when one outlier was removed. Limits of agreement (LOA) between DXA vs. BIS were wide for both %BF (mean difference of -3.6, LOA between 5.4 and -12.6) and %TBW (mean difference 2.4, LOA between 0.4 and -4.6). LOA was closer between the DXA vs. BIA with DXA measuring slightly higher than BIA for %BF (mean difference of 0.5, LOA between 2.1 and -3.1) and slightly lower than BIA for %TBW (mean difference 0.3, LOA between 3.3 and -2.7). Linear correlations between DXA vs. BIA were not statistically significant for %BF or %TBW before or after the race. DXA measurement of acute changes in %BF and %TBW are not congruent with BIA or BIS measurements. These 3 techniques should not be utilized interchangeably after prolonged endurance running. PMID:25285467

  2. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy.

    PubMed

    Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore

    2010-03-01

    Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than -5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than -1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04-1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility. PMID:19821773

  3. Associations Between Sedentary Time, Physical Activity, and Dual-Energy X-ray Absorptiometry Measures of Total Body, Android, and Gynoid Fat Mass in Children.

    PubMed

    McCormack, Lacey; Meendering, Jessica; Specker, Bonny; Binkley, Teresa

    2016-01-01

    Negative health outcomes are associated with excess body fat, low levels of physical activity (PA), and high sedentary time (ST). Relationships between PA, ST, and body fat distribution, including android and gynoid fat, assessed using dual-energy X-ray absorptiometry (DXA) have not been measured in children. The purpose of this study was to test associations between levels of activity and body composition in children and to evaluate if levels of activity predict body composition by DXA and by body mass index percentile in a similar manner. PA, ST, and body composition from 87 children (8.8-11.8 yr, grades 3-5, 44 boys) were used to test the association among study variables. Accelerometers measured PA and ST. Body composition measured by DXA included bone mineral content (BMC) and fat and lean mass of the total body (TB, less head), android, and gynoid regions. ST (range: 409-685 min/wk) was positively associated with TB percent fat (0.03, 95% confidence interval [CI]: 0.00-0.05) and android fat mass (1.5 g, 95% CI: 0.4-3.0), and inversely associated with the lean mass of the TB (-10.7 g, 95% CI: -20.8 to -0.63) and gynoid regions (-2.2 g, 95% CI: -4.3 to -0.2), and with BMC (-0.43 g, 95% CI: 0.77-0.09). Moderate-to-vigorous PA was associated with lower TB (-53 g, 95% CI: -87 to -18), android (-5 g, 95% CI: -8 to -2]), and gynoid fat (-6 g, 95% CI: -11 to -0.5). Vigorous activity results were similar. Light PA was associated with increased TB (17.1 g, 95% CI: 3.0-31.3) and gynoid lean mass (3.9 g, 95% CI: 1.0-6.8) and BMC (0.59 g, 95% CI: 0.10-1.07). In boys, there were significant associations between activity and DXA percent body fat measures that were not found with the body mass index percentile. Objective measures of PA were inversely associated with TB, android, and gynoid fat, whereas ST was directly associated with TB percent fat and, in particular, android fat. Activity levels predict body composition measures by DXA and, in

  4. Reliability of 2 Different Positioning Protocols for Dual-Energy X-ray Absorptiometry Measurement of Body Composition in Healthy Adults.

    PubMed

    Kerr, Ava; Slater, Gary J; Byrne, Nuala; Nana, Alisa

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is an accepted time-efficient method of body composition assessment for total body and regional fat mass (FM), lean mass (LM), and bone mineral content (BMC), but for longitudinal monitoring the measurements must be sufficiently reliable. The aim of this study was to compare the reliability of a new positioning protocol (Nana et al) with the current reference (National Health and Nutrition Examination Survey [NHANES]) protocol and investigate their within-protocol precision. Thirty healthy adults (16 females and 14 males) underwent 4 whole-body DXA scans in succession with full repositioning between scans. The scan order was randomized, with 2 scans undertaken in accordance with the current NHANES protocol and 2 using the Nana et al protocol. Magnitudes of typical errors of measurement and changes in the mean of DXA body composition estimates were assessed as standardized effect sizes. The Nana et al protocol repositioning produced trivial typical errors for total body across all LM estimates except for FM in the arms and trunk which were moderately substantial. The NHANES protocol produced similar typical errors for all measurements in LM except for FM and BMC in the trunk and arms which were substantially larger than the smallest worthwhile effect. The difference between protocols produced substantially large typical errors in estimations of both total body FM and regional FM and BMC, but differences in LM were all less than the smallest worthwhile effect. Although both protocols demonstrated acceptable intratest reliability, the Nana et al protocol produced enhanced precision in regional (arms and trunk) FM and BMC. The protocols were substantially different in body composition assessment especially for FM and thus should not to be interchanged. Anecdotally, subjects felt more comfortable and supported during the scan with the Nana et al protocol. PMID:26343822

  5. Bone Mineral Density Determinations by Dual-Energy x-ray Absorptiometry in the Management of Patients with Marfan Syndrome—Some Factors Which Affect the Measurement

    PubMed Central

    Peterson, Margaret G.E.; Schneider, Robert; Davis, Jessica G.; Burke, Stephen W.; Boachie-Adjei, Oheneba; Mueller, Charles M.; Raggio, Cathleen L.

    2006-01-01

    Reduced bone mineral density (BMD) was sporadically reported in patients with Marfan syndrome. This may or may not place the Marfan patient at increased risk for bone fracture. In comparing the BMDs of our patients with those reported in the literature, it seemed that agreement between values, and hence the degree of osteoporosis or osteopenia reported, was dependent on the instrumentation used. The objective of this study was to statistically assess this impression. Bone mineral density measurements from our previously published study of 30 adults with Marfan syndrome performed on a Lunar DPXL machine were compared with studies published between 1993–2000 measured using either Lunar or Hologic bone densitometry instruments. The differences of our measurements compared with those made on other Lunar machines were not statistically significant, but did differ significantly with published results from Hologic machines (P < 0.001). Before progress can be made in the assessment of BMD and fracture risk in Marfan patients and in the evidence-based orthopedic management of these patients, standardization of instrumental bone density determinations will be required along with considerations of height, obesity, age, and sex. PMID:18751776

  6. Clinical practice guidelines proposed by the Hellenic Foundation of Osteoporosis for the management of osteoporosis based on DXA results.

    PubMed

    Baltas, C S; Balanika, A P; Raptou, P D; Tournis, S; Lyritis, G P

    2005-01-01

    In recent years guidelines for the testing and treatment of osteoporotic patients have been published by recognised organisations, including the World Health Organisation (WHO), the National Osteoporosis Foundation (NOF) and the International Osteoporosis Foundation (IOF). Dual Energy X-ray Absorptiometry (DXA) has been considered the technique of choice because of its excellent precision and ability to predict osteoporotic fractures. Last December, based on the Appraisal of the Guidelines for Research and Evaluation (AGREE), the Hellenic Foundation of Osteoporosis, in collaboration with other scientific societies, provided guidelines for the use of DXA for the diagnosis, monitoring and treatment of osteoporosis and Quality Assurance (QA) of these systems. According to these guidelines, the adequacy of the present number of DXA units in Greece was assessed. There are 367 DXA units in Greece, and almost 50% are located in the capital city, Athens, where 34.1% of the population lives. The distribution of DXA devices per resident in the Greek provinces (except Attica) is between 4.2 units/100,000 heads (Ionian Islands) and 1.6 units/100,000 heads (Sterea Hellas). These guidelines have resulted in a suggestive yearly repeat of the measurements, to ensure the precision of the method, but mainly for reasons of compliance. Finally, these guidelines are viewed as a work in progress and will be updated periodically in response to advances in this field. PMID:16340144

  7. CAN DUAL ENERGY X-RAY ABSORPTIOMETRY PROVIDE A VALID ASSESSMENT OF CHANGES IN THIGH MUSCLE MASS WITH STRENGTH TRAINING IN OLDER ADULTS?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A longitudinal strength training (ST) intervention study was conducted in fifty previously sedentary, relatively healthy men (n = 23, 60 [SD=7.5] yr) and women (n = 27, 60 [SD=9.3] yr). One part of the study determined how dual-energy x-ray absorptiometry (DXA) compares to computed tomography (CT) f...

  8. Fundamental Movement Skill Proficiency and Body Composition Measured by Dual Energy X-Ray Absorptiometry in Eight-Year-Old Children

    ERIC Educational Resources Information Center

    Slotte, Sari; Sääkslahti, Arja; Metsämuuronen, Jari; Rintala, Pauli

    2015-01-01

    Objective: The main aim was to examine the association between fundamental movement skills (FMS) and objectively measured body composition using dual energy X-ray absorptiometry (DXA). Methods: A study of 304 eight-year-old children in Finland. FMS were assessed with the "Test of gross motor development," 2nd ed. Total body fat…

  9. Periprosthetic bone loss: diagnostic and therapeutic approaches

    PubMed Central

    Cavalli, Loredana; Brandi, Maria Luisa

    2014-01-01

    Total joint replacement surgery is being performed on an increasingly large part of the population. Clinical longevity of implants depends on their osseointegration, which is influenced by the load, the characteristics of the implant and the bone-implant interface, as well as by the quality and quantity of the surrounding bone. Aseptic loosening due to periprosthetic osteolysis is the most frequent known cause of implant failure. Wear of prosthetic materials results in the formation of numerous particles of debris that cause a complex biological response. Dual-energy X-ray Absorptiometry (DXA) is regarded as an accurate method to evaluate Bone Mineral Density (BMD) around hip or knee prostheses. Further data may be provided by a new device, the Bone Microarchitecture Analysis (BMA), which combines bone microarchitecture quantification and ultra high resolution osteo-articular imaging. Pharmacological strategies have been developed to prevent bone mass loss and to extend implant survival. Numerous trials with bisphosphonates show a protective effect on periprosthetic bone mass, up to 72 months after arthroplasty. Strontium ranelate has been demonstrated to increase the osseointegration of titanium implants in treated animals with improvement of bone microarchitecture and bone biomaterial properties. PMID:25642325

  10. Association between low-frequency ultrasound and hip fractures - comparison with DXA-based BMD

    PubMed Central

    2014-01-01

    Background New methods for diagnosing osteoporosis and evaluating fracture risk are being developed. We aim to study the association between low-frequency (LF) axial transmission ultrasound and hip fracture risk in a population-based sample of older women. Methods The study population consisted of 490 community-dwelling women (78–82 years). Ultrasound velocity (VLF) at mid-tibia was measured in 2006 using a low-frequency scanning axial transmission device. Bone mineral density (BMD) at proximal femur measured using dual-energy x-ray absorptiometry (DXA) was used as the reference method. The fracture history of the participants was collected from December 1997 until the end of 2010. Lifestyle-related risk factors and mobility were assessed at 1997. Results During the total follow-up period (1997–2010), 130 women had one or more fractures, and 20 of them had a hip fracture. Low VLF (the lowest quartile) was associated with increased hip fracture risk when compared with VLF in the normal range (Odds ratio, OR = 3.3, 95% confidence interval (CI) 1.3-8.4). However, VLF was not related to fracture risk when all bone sites were considered. Osteoporotic femoral neck BMD was associated with higher risk of a hip fracture (OR = 4.1, 95% CI 1.6-10.5) and higher risk of any fracture (OR = 2.4, 95% CI 1.6-3.8) compared to the non-osteoporotic femoral neck BMD. Decreased VLF remained a significant risk factor for hip fracture when combined with lifestyle-related risk factors (OR = 3.3, 95% CI 1.2-9.0). Conclusion Low VLF was associated with hip fracture risk in older women even when combined with lifestyle-related risk factors. Further development of the method is needed to improve the measurement precision and to confirm the results. PMID:24934318

  11. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  12. Reproducibility and accuracy of body composition assessments in mice by dual energy x-ray absorptiometry and time domain nuclear magnetic resonance

    PubMed Central

    Halldorsdottir, Solveig; Carmody, Jill; Boozer, Carol N.; Leduc, Charles A.; Leibel, Rudolph L.

    2011-01-01

    Objective To assess the accuracy and reproducibility of dual-energy absorptiometry (DXA; PIXImus™) and time domain nuclear magnetic resonance (TD-NMR; Bruker Optics) for the measurement of body composition of lean and obese mice. Subjects and measurements Thirty lean and obese mice (body weight range 19–67 g) were studied. Coefficients of variation for repeated (x 4) DXA and NMR scans of mice were calculated to assess reproducibility. Accuracy was assessed by comparing DXA and NMR results of ten mice to chemical carcass analyses. Accuracy of the respective techniques was also assessed by comparing DXA and NMR results obtained with ground meat samples to chemical analyses. Repeated scans of 10–25 gram samples were performed to test the sensitivity of the DXA and NMR methods to variation in sample mass. Results In mice, DXA and NMR reproducibility measures were similar for fat tissue mass (FTM) (DXA coefficient of variation [CV]=2.3%; and NMR CV=2.8%) (P=0.47), while reproducibility of lean tissue mass (LTM) estimates were better for DXA (1.0%) than NMR (2.2%) (

    DXA overestimated (vs chemical composition) LTM (+1.7 ± 1.3 g [SD], ~ 8%, P <0.001) as well as FTM (+2.0 ± 1.2 g, ~ 46%, P <0.001). NMR estimated LTM and FTM virtually identical to chemical composition analysis (LTM: −0.05 ± 0.5 g, ~0.2%, P =0.79) (FTM: +0.02 ± 0.7 g, ~15%, P =0.93). DXA and NMR-determined LTM and FTM measurements were highly correlated with the corresponding chemical analyses (r2=0.92 and r2=0.99 for DXA LTM and FTM, respectively; r2=0.99 and r2=0.99 for NMR LTM and FTM, respectively.) Sample mass did not affect accuracy in assessing chemical composition of small ground meat samples by either DXA or NMR. Conclusion DXA and NMR provide comparable levels of reproducibility in measurements of body composition lean and obese mice. While DXA and NMR measures are highly correlated with chemical analysis measures, DXA consistently overestimates LTM

  13. Muscle analysis using pQCT, DXA and MRI.

    PubMed

    Erlandson, M C; Lorbergs, A L; Mathur, S; Cheung, A M

    2016-08-01

    Skeletal muscle is one of the larger organs of the body and is integrally involved in metabolic processes in both health and disease. The ability to accurately and precisely measure skeletal muscle structure is essential for understanding the changes that occur naturally over the lifespan as well as those observed in chronic disease, and in response to targeted interventions. Musculoskeletal imaging allows for the quantification of skeletal muscle mass and select modalities are also able to determine muscle quality. The purpose of this paper is to review peripheral quantitative computed tomography (pQCT), dual X-ray energy absorptiometry (DXA) and magnetic resonance imaging (MRI) techniques used to assess skeletal muscle size and quality in-vivo. Each modality is briefly described and the strengths and limitations are provided. No single imaging technique will be able to best address every clinical and research question of interest. Selecting the most appropriate imaging device for measuring skeletal muscle depends on access to technology, availability of expertise required for image acquisition and analysis, characteristics of the population, anatomical site of interest, and the level of structural detail required. PMID:27005009

  14. Body composition analysis of inter-county Gaelic athletic association players measured by dual energy X-ray absorptiometry.

    PubMed

    Davies, Robert W; Toomey, Clodagh; McCormack, William; Hughes, Katie; Cremona, Alexandra; Jakeman, Philip

    2016-06-01

    Gaelic Football and Hurling are two sporting codes within the Gaelic Athletic Association. The purpose of this study was to report the body composition phenotype of inter-county Gaelic athletic association players, comparing groups by code and field position. 190 senior, male, outfield inter-county players (144 hurlers and 46 Gaelic footballers) were recruited. Stature and body mass was measured, estimates of three components of body composition, i.e. lean mass, fat mass and bone mineral content was obtained by dual energy X-ray absorptiometry (DXA), and normative data for Gaelic athletic association athletes by code and position was compared. Other than in the midfield, there was limited difference in body composition between codes or playing position. Stature-corrected indices nullified any existing group differences between midfielders for both codes. Further comparisons with a non-athletic control group (n = 431) showed no difference for body mass index (BMI); however, the athletic group has a lower fat mass index, with a greater lean mass in accounting for the matched BMI between groups. In addition to providing previously unknown normative data for the Gaelic athletic association athlete, a proportional and independent tissue evaluation of body composition is given. PMID:26343788

  15. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    PubMed Central

    Gallo, Sina; Vanstone, Catherine A.; Weiler, Hope A.

    2012-01-01

    For over 2 decades, dual-energy X-ray absorptiometry (DXA) has been the gold standard for estimating bone mineral density (BMD) and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation), weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada). Whole body (WB) as well as regional sites of the lumbar spine (LS 1–4) and femur was measured using DXA (QDR 4500A, Hologic Inc.) providing bone mineral content (BMC) for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0 ± 14.2 versus 227.0 ± 29.7 g), spine BMC by 130% (2.35 ± 0.42 versus 5.37 ± 1.02 g), and femur BMC by 190% (2.94 ± 0.54 versus 8.50 ± 1.84 g). Spine BMD increased by 14% (0.266 ± 0.044 versus 0.304 ± 0.044 g/cm2) during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals. PMID:23091773

  16. Elevated Circulating Sclerostin Concentrations in Individuals With High Bone Mass, With and Without LRP5 Mutations

    PubMed Central

    Poole, Kenneth E. S.; McCloskey, Eugene V.; Duncan, Emma L.; Rittweger, Jörn; Fraser, William D.; Smith, George Davey; Tobias, Jonathan H.

    2014-01-01

    Context: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. Objective: Our objective was to determine circulating sclerostin concentrations in HBM. Design and Participants: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. Main measures: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. Results: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). Conclusions: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to

  17. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  18. Bone mineral density and bone microarchitecture after long-term suppressive levothyroxine treatment of differentiated thyroid carcinoma in young adult patients.

    PubMed

    Mendonça Monteiro de Barros, Graziella; Madeira, Miguel; Vieira Neto, Leonardo; de Paula Paranhos Neto, Francisco; Carvalho Mendonça, Laura Maria; Corrêa Barbosa Lima, Inayá; Corbo, Rossana; Fleiuss Farias, Maria Lucia

    2016-07-01

    Bone mineral density (BMD) seems not to be decreased in young patients given long-term suppressive doses of levothyroxine (LT4), but information regarding the bone microstructure in these patients is lacking. The aim of this study was to determine whether supraphysiologic doses of LT4, initiated during childhood or adolescence for treatment of differentiated thyroid carcinoma (DTC), have any detrimental effects on bone microarchitecture as evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT). Seventeen patients (27.3 ± 7.1 years old) with DTC with subclinical hyperthyroidism since adolescence and 34 healthy volunteers matched for age, sex, and body mass index were studied by dual-energy X-ray absorptiometry (DXA) to determine the areal BMD at the lumbar spine, hip, and proximal third of the radius. Volumetric BMD and structural parameters of the trabecular and cortical bone were assessed by HR-pQCT of the distal radius and distal tibia. DTC patients were given suppressive doses of LT4 starting at a mean age of 12.6 years, and the mean duration of treatment was 14.2 years. In DTC patients, clinical parameters did not correlate with DXA or HR-pQCT parameters. No differences were found between the patients and controls with respect to BMD and Z scores at any site evaluated by DXA, and no differences were found in the bone microstructure parameters evaluated by HR-pQCT. This cross-sectional study suggests that long-standing suppressive therapy with LT4 during the attainment of peak bone mass may have no significant adverse effects on bone density or microarchitecture. PMID:26056020

  19. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    PubMed Central

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  20. Prediction and validation of DXA-derived appendicular lean soft tissue mass by ultrasound in older adults.

    PubMed

    Abe, Takashi; Thiebaud, Robert S; Loenneke, Jeremy P; Young, Kaelin C

    2015-12-01

    The purpose of this study was to develop regression-based prediction equations for estimating dual-energy X-ray absorptiometry (DXA)-derived appendicular lean soft tissue mass (aLM) using ultrasound and to investigate the validity of these equations in 102 Caucasian adults aged 50 to 76 years. The subjects were randomly separated into two groups: 71 in the model-development group (41 men and 30 women) and 31 in the cross-validation group (18 men and 13 women). aLM was measured using a DXA, and muscle thickness (MT) was measured using ultrasound at 9 sites. Stepwise linear regression analysis was used to determine predictive models for DXA-derived aLM from MT variables, sex, and age. A number of ultrasound prediction equations for estimation of aLM were developed and then cross-validated in a subsample of older adults. The results indicated that ultrasound MT and MT × height can be used to accurately and reliably estimate DXA-derived aLM in older Caucasian adults. PMID:26552906

  1. Screening for male osteoporosis at an academic medical center: retrospective analysis of DXA usage patterns over 5 years.

    PubMed

    Ivory, Dedri Markita; Siva, Chokkalingam; Velázquez, Celso; Abdinoor, Abdillahi Abdi

    2012-01-01

    Recent findings suggest that men have higher mortality rates than women after a hip fracture. Although the risk of osteoporotic fractures in men is increasing, male osteoporosis still remains underdiagnosed and undertreated. In general, male osteoporosis is given low priority by policy makers in public health initiatives. The purpose of this study is to examine the patterns of use and gender distribution of DXA (dual-energy X-ray absorptiometry) scan usage at a university medical center in the United States. The total number of DXA scans increased during the study period while the percentage of men studied actually declined. The results of this study may lead to heightened awareness among providers who are caring for male patients at risk for osteoporosis. PMID:21956247

  2. Total body bone mineral density in young children: influence of head bone mineral density.

    PubMed

    Taylor, A; Konrad, P T; Norman, M E; Harcke, H T

    1997-04-01

    Dual-energy X-ray absorptiometry (DXA) with its short scan time, low radiation dose, and high precision and accuracy have made this technique particularly suitable for measuring total body bone mineral density (TBMD) in children. Other published reports have related TBMD to age in children 2-18 years of age. However, in young normal children aged 2-9 years (51 girls, 43 boys), we found that regression equations for TBMD with age as the predictor did not explain enough of the variance to warrant their use for predicting TBMD (adjusted R2 0.47, females; 0.41, males). Subtotal BMD (TBMD-head BMD) is predicted better by age because of a possibly invalid adult algorithm for head BMD (adjusted R2 0.73, females; 0.71, males). PMID:9101377

  3. Bone Density Is Directly Associated With Glomerular Filtration and Metabolic Acidosis but Do Not Predict Fragility Fractures in Men With Moderate Chronic Kidney Disease.

    PubMed

    Lima, Guilherme Alcantara Cunha; de Paula Paranhos-Neto, Francisco; Silva, Luciana Colonese; de Mendonça, Laura Maria Carvalho; Delgado, Alvimar Gonçalves; Leite, Maurilo; Gomes, Carlos Perez; Farias, Maria Lucia Fleiuss

    2016-01-01

    Hyperparathyroidism, vitamin D deficiency, increased fibroblast growth factor-23 (FGF-23), and metabolic acidosis promote bone fragility in chronic kidney disease (CKD). Although useful in predicting fracture risk in the general population, the role of dual-energy X-ray absorptiometry (DXA) in CKD remains uncertain. This cross-sectional study included 51 men aged 50-75 yr with moderate CKD. The stage 4 CKD patients had higher levels of parathyroid hormone (p<0.001), FGF-23 (p=0.029), and lowest 25-hydroxyvitamin D (p=0.016), bicarbonate (p<0.001), total femur (p=0.003), and femoral neck (p=0.011) T-scores compared with stage 3 CKD patients. Total femur and femoral neck T-scores were directly correlated with serum bicarbonate (p=0.003, r=0.447 and p=0.005, r=0.427, respectively) and estimated glomerular filtration rate (p=0.024, r=0.325 and p=0.003, r=0.313, respectively) but were not significantly associated with parathyroid hormone, 25-hydroxyvitamin D, or FGF-23. Only 3.9% of the participants had osteoporosis on DXA scan, whereas 31.4% reported a low-impact fracture. Our data point to a pivotal role of metabolic acidosis for bone impairment and to the inadequacy of DXA to evaluate bone fragility in CKD patients. PMID:24709549

  4. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  5. How does long-term parenteral nutrition impact the bone mineral status of children with intestinal failure?

    PubMed

    Diamanti, Antonella; Bizzarri, Carla; Bizzarri, Claudia; Basso, Maria Sole; Gambarara, Manuela; Cappa, Marco; Daniele, Antonella; Noto, Cristian; Castro, Massimo

    2010-05-01

    Patients on long-term parenteral nutrition (PN) are at significantly increased risk for the development of metabolic bone disease (MBD); this condition is characterized by incomplete mineralization of osteoid with consequent disturbances ranging from osteopenia to severe bone disease with fractures. The aim of the study was: (1) to evaluate the prevalence of MBD, (2) to identify the PN- or intestinal failure (IF)-related factors and (3) to assess annual changes of bone mineral status. Since September 2005 all patients affected by IF and treated with PN started a BMD evaluation program using dual-energy X-ray absorptiometry (DXA). Twenty-four IF patients were included [15 with short bowel syndrome (SBS), 5 with severe protracted diarrhea and 4 with chronic intestinal pseudostruction]. The bone mineral density (BMD) Z-score was significantly lower in patients than in the control group. In our series SBS patients showed a BMD Z-score significantly higher in comparison with the medical causes of IF. No significant correlations were found between bone mineral status and PN duration and nutrient intake. Nine IF patients were submitted to a second DXA evaluation after 1 year from the baseline. All bone mineral variables were significantly increased at the second DXA evaluation. The high prevalence of MBD in IF patients undergoing long-term treatment with PN requires that these patients undergo careful and periodic monitoring of their bone mineral status; patients with congenital gut dysfunctions, such as epithelium defects and motility anomalies, are at major risk of developing this complication, probably due to the association with extra-intestinal causes of bone loss. PMID:20033239

  6. The effect of fat on the measurement of bone mineral density by digital X-ray radiogrammetry (DXR-BMD).

    PubMed

    Colt, Edward; Kälvesten, Johan; Cook, Kenneth; Khramov, Nata; Javed, Fahad

    2010-01-01

    OBJECTIVE: We have previously shown that surrounding fat causes an increase of up to 21% in bone mineral density (BMD) measured by Lunar 'Intelligent DXA' (iDXA), one of the latest generation dual energy X-ray absorptiometry (DXA) scanners [1]. The purpose of our study was to see if it was possible to avoid this artifact when measuring the BMD of metacarpals II, III, and IV by digital X-ray radiogrammetry (DXR). METHODS: We took X-rays of the bones of a cadaveric left hand which were immobilized in a wooden cradle to preserve an approximate in vivo configuration. The X-rays were digitized into Digital Imaging and Communications in Medicine (DICOM) files which were analyzed using dxr-online (dxr-online, Sectra, Sweden) which uses the same DXR-BMD algorithm previously used by Pronosco X-posure v2 and Sectra Osteoporosis package. The X-rays were repeated four times. We then surrounded the bones with a layer of lard, and again X-rayed four times. This process was repeated with the bones were covered by two layers, and then three layers of lard. RESULTS: The measured DXR-BMD increased by a maximum of 0.44% when the metacarpals were covered by either two or three layers of lard compared with when the metacarpals were not covered by lard. CONCLUSION: The measurement of metacarpal BMD measured by DXR is minimally affected by surrounding lard. The measurement of metacarpal BMD by DXR seems to be a way of avoiding the artifactual change in BMD caused by fat, when it is measured by DXA. PMID:21403849

  7. Predictors of bone mass by peripheral quantitative computed tomography in early adolescent girls.

    PubMed

    Moyer-Mileur, L; Xie, B; Ball, S; Bainbridge, C; Stadler, D; Jee, W S

    2001-01-01

    This cross-sectional study used peripheral quantitative computed tomography (pQCT) to evaluate the influences of age, body size, puberty, calcium intake, and physical activity on bone acquisition in healthy early adolescent girls. The pQCT technique provides analyses of volumetric bone mineral density (vBMD) (mg/cm(3)) for total as well as cortical and trabecular bone compartments and bone strength expressed as polar strength strain index (mm(2)). Bone mass of the nondominant distal and midshaft tibia by pQCT and lumbar spine and hip by dual X-ray absorptiometry (DXA) were measured in 84 girls ages 11-14 yr. Pubertal stage, menarche status, anthropometrics, and 3-d food intake and physical activity records were collected. Total and cortical bone mineral content and vBMD measurements by pQCT were significantly related to lumbar spine and femoral neck BMD measurements by DXA. We did not note any significant determinants or predictors for trabecular bone mass. Body weight was the most important predictor and determinant of total and cortical bone density and strength in healthy adolescent girls. Menarche, calcium intake, height, body mass index, and weight-bearing physical activity level age were also identified as minor but significant predictors and determinants of bone density and strength. Bone measurements by the pQCT technique provide information on bone acquisition, architecture, and strength during rapid periods of growth and development. Broader cross-sectional studies using the pQCT technique to evaluate the influence of age, gender, ethnicity, puberty, body size, and lifestyle factors on bone acquisition and strength are needed. PMID:11748336

  8. Provider Distribution Changes in Dual-Energy X-Ray Absorptiometry in the Medicare Population Over the Past Decade.

    PubMed

    Intenzo, Charles M; Parker, Laurence; Levin, David C; Kim, Sung M; Rao, Vijay M

    2016-01-01

    Both radiologists as well as nonimaging physicians perform dual-energy X-ray absorptiometry (DXA) imaging in the United States. This study aims to compare provider distribution between these physician groups on the Medicare population, which is the predominant age group of patients evaluated by this imaging procedure. Using the 2 relevant Current Procedural Terminology, Fourth Edition codes for DXA scans, source data were obtained from the CMS Physician Supplier Procedure Summary Master Files from 2003 through 2013. DXA scan procedure volumes for radiologists and nonradiologists on Medicare patients were tabulated. Utilization rates were calculated. From 2003 to 2013, the total number of DXA scans performed on Medicare patients decreased by 2%. However, over the same period, the number of scans performed by radiologists had increased by 25% over nonimaging specialists, whose utilization had declined by approximately the same amount. From 2003 to 2013, the rate of utilization of DXA scans in the Medicare fee-for-service population declined somewhat. However, radiologists continue to gain market share from other specialists and now predominate in this type of imaging by a substantial margin. PMID:26670626

  9. Assessment of Bone Mineral Status in Children With Marfan Syndrome

    PubMed Central

    Grover, Monica; Brunetti-Pierri, Nicola; Belmont, John; Phan, Kelly; Tran, Alyssa; Shypailo, Roman J; Ellis, Kenneth J; Lee, Brendan H

    2012-01-01

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-β, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone mineralization in children with MFS. Using dual-energy X-ray absorptiometry (DXA), we evaluated bone mineralization in 20 children with MFS unselected for bone problems. z-Scores were calculated based on age, gender, height, and ethnicity matched controls. Mean whole body bone mineral content (BMC) z-score was 0.26 ± 1.42 (P = 0.41). Mean bone mineral density (BMD) z-score for whole body was −0.34 ± 1.4 (P = 0.29) and lumbar spine was reduced at −0.55 ± 1.34 (P = 0.017). On further adjusting for stature, which is usually higher in MFS, mean BMC z-score was reduced at −0.677 ± 1.37 (P = 0.04), mean BMD z-score for whole body was −0.82 ± 1.55 (P = 0.002) and for lumbar spine was −0.83 ± 1.32 (P = 0.001). An increased risk of osteoporosis in MFS is controversial. DXA has limitations in large skeletons because it tends to overestimate BMD and BMC. By adjusting results for height, age, gender, and ethnicity, we found that MFS patients have significantly lower BMC and BMD in whole body and lumbar spine. Evaluation of diet, exercise, vitamin D status, and bone turnover markers will help gain insight into pathogenesis of the reduced bone mass. Further, larger longitudinal studies are required to evaluate the natural history, incidence of fractures, and effects of pharmacological therapy. © 2012 Wiley Periodicals, Inc. PMID:22887731

  10. Errors in dual energy x-ray absorptiometry estimation of body composition induced by hypohydration.

    PubMed

    Rodriguez-Sanchez, Nidia; Galloway, Stuart D R

    2015-02-01

    Dual energy x-ray absorptiometry (DXA) is a popular tool to determine body composition (BC) in athletes, and is used for analysis of fat-free soft tissue mass (FFST) or fat mass (FM) gain/loss in response to exercise or nutritional interventions. The aim of the current study was to assess the effect of exercise-heat stress induced hypohydration (HYP, >2% of body mass (BM) loss) vs. maintenance of euhydration (EUH) on DXA estimates of BC, sum of skinfolds (SF), and impedance (IMP) measurements in athletes. Competitive athletes (23 males and 15 females) recorded morning nude BM for 7 days before the first main trial. Measurements on the first trial day were conducted in a EUH condition, and again after exercise-heat stress induced HYP. On the second trial day, fluid and electrolyte losses were replaced during exercise using a sports drink. A reduction in total BM (1.6 ± 0.4 kg; 2.3 ± 0.4% HYP) and total FFST (1.3 ± 0.4 kg), mainly from trunk (1.1 ± 0.5 kg), was observed using DXA when participants were HYP, reflecting the sweat loss. Estimated fat percent increased (0.3 ± 0.3%), however, total FM did not change (0.1 ± 0.2 kg). SF and IMP declined with HYP (losses of 1.5 ± 2.9% and 1.6 ± 3% respectively) suggesting FM loss. When EUH was maintained there were no significant changes in BM, DXA estimates, or SF values pre to post exercise, but IMP still declined. We conclude that use of DXA for FFST assessment in athletes must ensure a EUH state, particularly when considering changes associated with nutritional or exercise interventions. PMID:25029477

  11. BMI and an Anthropometry-Based Estimate of Fat Mass Percentage Are Both Valid Discriminators of Cardiometabolic Risk: A Comparison with DXA and Bioimpedance

    PubMed Central

    Völgyi, Eszter; Savonen, Kai; Tylavsky, Frances A.; Alén, Markku; Cheng, Sulin

    2013-01-01

    Objective. To determine whether categories of obesity based on BMI and an anthropometry-based estimate of fat mass percentage (FM% equation) have similar discriminative ability for markers of cardiometabolic risk as measurements of FM% by dual-energy X-ray absorptiometry (DXA) or bioimpedance analysis (BIA). Design and Methods. A study of 40–79-year-old male (n = 205) and female (n = 388) Finns. Weight, height, blood pressure, triacylglycerols, HDL cholesterol, and fasting blood glucose were measured. Body composition was assessed by DXA and BIA and a FM%-equation. Results. For grade 1 hypertension, dyslipidaemia, and impaired fasting glucose >6.1 mmol/L, the categories of obesity as defined by BMI and the FM% equation had 1.9% to 3.7% (P < 0.01) higher discriminative power compared to DXA. For grade 2 hypertension the FM% equation discriminated 1.2% (P = 0.05) lower than DXA and 2.8% (P < 0.01) lower than BIA. Receiver operation characteristics confirmed BIA as best predictor of grade 2 hypertension and the FM% equation as best predictor of grade 1 hypertension. All other differences in area under curve were small (≤0.04) and 95% confidence intervals included 0. Conclusions. Both BMI and FM% equations may predict cardiometabolic risk with similar discriminative ability as FM% measured by DXA or BIA. PMID:24455216

  12. Body composition in young female eating-disorder patients with severe weight loss and controls: evidence from the four-component model and evaluation of DXA

    PubMed Central

    Wells, J C K; Haroun, D; Williams, J E; Nicholls, D; Darch, T; Eaton, S; Fewtrell, M S

    2015-01-01

    Background/Objectives: Whether fat-free mass (FFM) and its components are depleted in eating-disorder (ED) patients is uncertain. Dual energy X-ray absorptiometry (DXA) is widely used to assess body composition in pediatric ED patients; however, its accuracy in underweight populations remains unknown. We aimed (1) to assess body composition of young females with ED involving substantial weight loss, relative to healthy controls using the four-component (4C) model, and (2) to explore the validity of DXA body composition assessment in ED patients. Subjects/Methods: Body composition of 13 females with ED and 117 controls, aged 10–18 years, was investigated using the 4C model. Accuracy of DXA for estimation of FFM and fat mass (FM) was tested using the approach of Bland and Altman. Results: Adjusting for age, height and pubertal stage, ED patients had significantly lower whole-body FM, FFM, protein mass (PM) and mineral mass (MM) compared with controls. Trunk and limb FM and limb lean soft tissue were significantly lower in ED patients. However, no significant difference in the hydration of FFM was detected. Compared with the 4C model, DXA overestimated FM by 5±36% and underestimated FFM by 1±9% in ED patients. Conclusion: Our study confirms that ED patients are depleted not only in FM but also in FFM, PM and MM. DXA has limitations for estimating body composition in individual young female ED patients. PMID:26173868

  13. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  14. Bone mineral density, adiposity, and cognitive functions.

    PubMed

    Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  15. Effects of delaying puberty on bone mineralization in female rats.

    PubMed

    Rakover, Y; Lu, P; Briody, J N; Tao, C; Weiner, E; Ederveen, A G; Cowell, C T; Ben-Shlomo, I

    2000-07-01

    The effect of delaying puberty on bone mineralization was studied using female rats as a model. Repeated injections of gonadotrophin-releasing hormone antagonist (GnRHa) were used to suppress the onset of puberty from the age of 6-10 weeks. A group of control female rats was given aqueous solution injections at the same age and for the same duration. The effect of delaying puberty on bone mineralization was examined using dual energy X-ray absorptiometry (DXA) and peripheral quantitative computerized tomography (QCT), both methods being adapted for small animals. Bone mineral parameters were measured at baseline and at the ages of 10, 17 and 24 weeks in total body, femur and spine. Compared to controls, bone mineral content (BMC) and bone mineral density (BMD), as measured by DXA, were significantly decreased in GnRHa-treated rats in total body and femur at 10 and 24 weeks of age (P < 0.05). The results were even more significant after adjusting for weight. After this adjustment, spine BMC and BMD at 10, 17 and 24 weeks were significantly lower in the treatment group (P < 0.05). Trabecular BMD at the distal femur in the GnRHa treated group as measured by peripheral QCT was significantly lower (P < 0.05). However, cortical bone in the mid-femur had higher BMD, concurrent with lower cortical thickness in the treatment group. In conclusion, a delay in the onset of sexual maturation may cause prolonged, possibly irreversible defect in bone mineralization. PMID:10875850

  16. Image registration of proximal femur with substantial bone changes: application in 3D visualization of bone loss of astronauts after long-duration spaceflight

    NASA Astrophysics Data System (ADS)

    Li, Wenjun; Sode, Miki; Saeed, Isra; Lang, Thomas

    2006-03-01

    We recently studied bone loss in crewmembers making 4 to 6 months flights on the International Space Station. We employed Quantitative Computed Tomography (QCT) technology (Lang et. al., J Bone Miner Res. 2004; v. 19, p. 1006), which made measurements of both cortical and trabecular bone loss that could not be obtained by using 2-dimensional dual x-ray absorptiometry (DXA) imaging technology. To further investigate the bone loss after spaceflight, we have developed image registration technologies to align serial scans so that bone changes can be directly visualized in a subregional level, which can provide more detailed information for understanding bone physiology during long-term spaceflight. To achieve effective and robust registration when large bone changes exist, we have developed technical adaptations to standard registration methods. Our automated image registration is mutual-information based. We have applied an automatically adaptive binning method in calculating the mutual information. After the pre- and post-flight scans are geometrically aligned, the interior bone changes can be clearly visualized. Image registration can also be applied to Finite Element Modeling (FEM) to compare bone strength change, where consistent loading conditions must be applied to serial scans.

  17. Pregnancy-associated changes in bone density and bone turnover in the physiological state: prospective data on sixteen women.

    PubMed

    Fiore, C E; Pennisi, P; DiStefano, A; Riccobene, S; Caschetto, S

    2003-05-01

    Areal bone mineral density (BMD, g/cm 2) was measured for the total body, lumbar spine and hip with dual-energy x-ray absorptiometry (DXA) before pregnancy and after delivery in sixteen women aged 21 - 35 years. Additional measurements included quantitative ultrasound indices (broadband ultrasound attenuation, BUA, at the calcaneus at baseline and at 16, 26, and 36 weeks of pregnancy, and postpartum) as well as biochemical markers of bone formation and resorption (measured before pregnancy and during pregnancy at 16, 22, 26, 30, 34, and 36 weeks of pregnancy and postpartum). The results of measurements were as follows: 1. Postpartum BMD showed a significant reduction in the total body (- 13.4 %), in the spine (- 9.2 %) and in the hip (-7.8 % at the femoral neck and - 9.2 % at the Ward's triangle) compared to pre-pregnancy values. 2. Biochemical markers of bone resorption increased by 26 weeks. 3. Bone ultrasound measurements that provide information on bone density before delivery did not change throughout pregnancy. A significant reduction of BUA (- 14.5 % compared to baseline) was observed postpartum only. These data would suggest that pregnancy-induced bone loss develops rapidly after the 36 week of pregnancy, possibly via enhanced bone resorption. PMID:12916002

  18. Disordered-Eating Attitudes in Relation to Bone Mineral Density and Markers of Bone Turnover in Overweight Adolescents

    PubMed Central

    Schvey, Natasha A.; Tanofsky-Kraff, Marian; Yanoff, Lisa B.; Checchi, Jenna M.; Shomaker, Lauren B.; Brady, Sheila; Savastano, David M.; Ranzenhofer, Lisa M.; Yanovski, Susan Z.; Reynolds, James C.; Yanovski, Jack A.

    2009-01-01

    Purpose To examine the relationships between cognitive eating restraint and both bone mineral density (BMD) and markers of bone turnover in overweight adolescents. Methods 137 overweight (BMI 39.1±6.8 kg/m2) African American and Caucasian adolescent (age=14.4 ± 1.4y) girls (66.4%) and boys were administered the Eating Disorder Examination (EDE) interview and Eating Inventory (EI) questionnaire and underwent dual energy x-ray absorptiometry (DXA) to measure total lumbar spine BMD. Markers of bone formation (serum bone specific alkaline phosphatase and osteocalcin), bone resorption (24-hour urine N-telopeptides), and stress (urine free cortisol) were measured. Results After accounting for the contribution of demographics, height, weight, serum 25-hydroxyvitamin D, and depressive symptoms, adolescents’ weight concern, as assessed by interview, was a significant contributor to a model of urine free cortisol (β =.30, p <.05). Shape concern, as also assessed by interview, was significantly associated with lumbar spine bone mineral density (β =.−.15, p < 05). Dietary restraint was not a significant predictor in any of these models. Conclusions These findings suggest that among severely overweight adolescents, dissatisfaction with shape and weight may be salient stressors. Future research is required to illuminate the relationship between bone health and disordered-eating attitudes in overweight adolescents. PMID:19541247

  19. Can ultrasound be used to estimate bone mineral density in children with growth problems?

    PubMed Central

    Khan, Khalid M; Sarafoglou, Kyriakie; Somani, Arif; Frohnert, Brigitte; Miller, Bradley S.

    2016-01-01

    Aim To assess predictability of bone mineral density (BMD) of the lumbar spine (LS) determined by duel energy x-ray absorptiometry (DXA) using by ultrasound- speed of sound of the right and left radii (SOS-R and SOS-L) in patients with growth problems. Methods Ultrasound and DXA were compared in patients with advanced, normal and delayed bone ages assessed by Greulich and Pyle (GP) and Tanner and Whitehouse (TW3) methods. Results There was a strong correlation (r), of raw scores, between SOS-R and SOS-L, r=0.81, P=0.000, and their respective Z-scores, r=0.78, P=0.000. Z-score correlations were poor between SOS-R or SOS-L and LS-BMD. Sensitivity, specificity, positive- and negative predictive value of SOS-R, Z-scores for predicting normal (>−1 to < 1) and low (< −1) LS-BMD, Z scores were poor. For high (> 1) LS-BMD, Z scores were 22%, 93%, 29%, and 90% respectively for SOS-R and for SOS-L, 25%, 89%, 20%, and 91%. For very low (< −2) LS-BMD, SOS-R and SOS-L were the same, respectively 29%, 91%, 40%, and 86%. Conclusion Ultrasound of the radius is a poor predictor of radiologically assessed BMD at the lumbar spine, especially with delayed bone age. PMID:23750846

  20. Comparison of bone histomorphometry and μCT for evaluating bone quality in tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; Luan, Hui-Qin; Fan, Yu-Bo

    2014-10-01

    Astronauts often suffer from microgravity-induced osteoporosis due to their time in space. Bone histomorphometry, the 'gold standard' technique for detecting bone quality, is widely used in the evaluation of osteoporosis. This study investigates whether μCT has the same application value as histomorphometry in the evaluation of weightlessness-induced bone loss. A total of 24 SD rats were distributed into three groups (n = 8, each): tail-suspension (TS), TS plus active exercise (TSA), and control (CON). After 21 days, bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA) and μCT, and microstructure was measured by μCT and histomorphometry. BMD was found to have decreased significantly in TS and TSA compared with the CON group. The results of the μCT measurements showed that a change in BMD mainly occurred in the trabecular bone, and the trabecular BMD increased significantly in the TSA compared with the TS group. The comparison of μCT and histomorphometry showed that TS led to a significant decrease in bone volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N), and it led to an increase in trabecular separation (Tb.Sp). However, active exercise can prevent these changes. Significant differences in most parameters between TSA and CON were found by μCT but not by histomorphometry. Additionally, the parameters of these two methods are highly correlated. Therefore, the application value of μCT is as good as histomorphometry and DXA in the diagnosis of weightlessness-induced osteoporosis and is even better in evaluating the efficacy of exercise.

  1. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures. PMID:23612523

  2. The Lichfield bone study: the skeletal response to exercise in healthy young men

    PubMed Central

    Eleftheriou, Kyriacos I.; Kehoe, Anthony; James, Laurence E.; Payne, John R.; Skipworth, James R.; Puthucheary, Zudin A.; Drenos, Fotios; Pennell, Dudley J.; Loosemore, Mike; World, Michael; Humphries, Steve E.; Haddad, Fares S.; Montgomery, Hugh E.

    2012-01-01

    The skeletal response to short-term exercise training remains poorly described. We thus studied the lower limb skeletal response of 723 Caucasian male army recruits to a 12-wk training regime. Femoral bone volume was assessed using magnetic resonance imaging, bone ultrastructure by quantitative ultrasound (QUS), and bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA) of the hip. Left hip BMD increased with training (mean ± SD: 0.85 ± 3.24, 2.93 ± 4.85, and 1.89 ± 2.85% for femoral neck, Ward's area, and total hip, respectively; all P < 0.001). Left calcaneal broadband ultrasound attenuation rose 3.57 ± 0.5% (P < 0.001), and left and right femoral cortical volume by 1.09 ± 4.05 and 0.71 ± 4.05%, respectively (P = 0.0001 and 0.003), largely through the rise in periosteal volume (0.78 ± 3.14 and 0.59 ± 2.58% for right and left, respectively, P < 0.001) with endosteal volumes unchanged. Before training, DXA and QUS measures were independent of limb dominance. However, the dominant femur had higher periosteal (25,991.49 vs. 2,5572 mm3, P < 0.001), endosteal (6,063.33 vs. 5,983.12 mm3, P = 0.001), and cortical volumes (19,928 vs. 19,589.56 mm3, P = 0.001). Changes in DXA, QUS, and magnetic resonance imaging measures were independent of limb dominance. We show, for the first time, that short-term exercise training in young men is associated not only with a rise in human femoral BMD, but also in femoral bone volume, the latter largely through a periosteal response. PMID:22114178

  3. Short-Term Effects of Kefir-Fermented Milk Consumption on Bone Mineral Density and Bone Metabolism in a Randomized Clinical Trial of Osteoporotic Patients

    PubMed Central

    Tung, Yu-Tang; Kao, Chao-Chih; Hu, Fu-Chang; Chen, Chuan-Mu

    2015-01-01

    Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg) supplemented with calcium bicarbonate (CaCO3, 1,500 mg) and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD) values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA) at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX) in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC) turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH) increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients. Trial Registration: ClinicalTrials.gov NCT02361372 PMID:26655888

  4. Does Visceral Fat Estimated by Dual-Energy X-ray Absorptiometry Independently Predict Cardiometabolic Risks in Adults?

    PubMed Central

    Sasai, Hiroyuki; Brychta, Robert J.; Wood, Rachel P.; Rothney, Megan P.; Zhao, Xiongce; Skarulis, Monica C.; Chen, Kong Y.

    2015-01-01

    Background: Abdominal visceral fat, typically measured by computer tomography (CT) or magnetic resonance imaging (MRI), has been shown to correlate with cardiometabolic risks. The purpose of this study was to examine whether a newly developed and validated visceral fat measurement from dual-energy X-ray absorptiometry (DXA) provides added predictive value to the cross-sectional differences of cardiometabolic parameters beyond the traditional anthropometric and DXA adiposity parameters. Method: A heterogeneous cohort of 194 adults (81 males and 113 females) with a BMI of 19 to 54 kg/m2 participated in this cross-sectional study. Body composition was measured with a DXA densitometer. Visceral fat was then computed with a proprietary algorithm. Insulin sensitivity index (SI, measured by intravenous glucose tolerance test), blood pressures, and lipid profiles, and peak oxygen uptake were also measured as cardiometabolic risk parameters. Results: DXA-estimated visceral fat mass was associated with HDL cholesterol (regression coefficient [β] = −5.15, P < .01, adjusted R2 = .21), triglyceride (β = 26.01, P < .01, adjusted R2 = .14), and peak oxygen uptake (β = −3.15, P < .01, adjusted R2 = .57) after adjusting for age, gender, and ethnicity. A subanalysis stratifying gender-specific BMI tertiles showed visceral fat, together with ethnicity, was independently associated with SI in overweight men and moderately obese women (second tertile). Conclusions: Without requiring additional CT or MRI-based measurements, visceral fat detected by DXA might offer certain advantages over the traditional DXA adiposity parameters as means of assessing cardiometabolic risks. PMID:25802470

  5. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  6. Bone Structural Changes and Estimated Strength After Gastric Bypass Surgery Evaluated by HR-pQCT.

    PubMed

    Frederiksen, Katrine Diemer; Hanson, Stine; Hansen, Stinus; Brixen, Kim; Gram, Jeppe; Jørgensen, Niklas Rye; Støving, René Klinkby

    2016-03-01

    Roux-en-Y gastric bypass surgery (RYGB) is an effective treatment of morbid obesity, with positive effects on obesity-related complications. The treatment is associated with bone loss, which in turn might increase fracture risk. The aim of this study was to evaluate changes in bone mineral density (BMD) and bone architecture assessed using dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT), 6 and 12 months after RYGB, and correlate them to changes in selected biochemical markers. A prospective cohort study included 25 morbidly obese patients (10 males, 15 females). Patients were examined with DXA of the hip and spine, HR-pQCT of radius and tibia, and blood sampling before and 6 and 12 months after RYGB. Patients lost in average 33.5 ± 12.1 kg (25.8 ± 8.5 %) in 12 months. In tibia, we found significant loss of total, cortical and trabecular volumetric BMD after 12 months (all p < 0.001). Microarchitectural changes involved lower trabecular number, increased trabecular separation, and network inhomogeneity along with thinning of the cortex. Estimated bone failure load was decreased after 12 months (p = 0.005). We found only minor changes in radius. Results demonstrate significant alterations of bone microarchitecture suggesting an accelerated endosteal resorption along with disintegration of the trabecular structure which resulted in a loss of estimated bone strength in tibia. Such changes may underlie the recently reported increased risk of fracture in bariatric patients after surgery. We only observed bone structural changes in the weight-bearing bone, which indicates that mechanical un-loading is the primary mediator. PMID:26661530

  7. L-arginine prevents bone loss and bone collagen breakdown in cyclosporin A-treated rats.

    PubMed

    Fiore, C E; Pennisi, P; Cutuli, V M; Prato, A; Messina, R; Clementi, G

    2000-11-24

    Cyclosporin A is implicated in the pathogenesis of post-transplantation bone disease. Because of recent evidence that cyclosporin A may cause renal and cardiovascular toxicity by inhibiting nitric oxide (NO) activity, and that NO slows bone remodeling and bone loss in animal and human studies, we investigated a possible link between NO production and beneficial effects on bone health in cyclosporin A-treated rats. Thirty-six 10-week-old male rats were assigned to six groups of six animals each, and treated for 4 weeks with: vehicle; cyclosporin A; L-arginine; N(G)-nitro-L-arginine methylester (L-NAME, a general inhibitor of NO synthase activity); a combination of cyclosporin A+L-arginine; and a combination of cyclosporin A+L-NAME. Whole body and regional (spine and pelvis) bone mineral content of rats were measured under basal conditions and at the end of the treatment period by dual-energy X-ray absorptiometry (DXA) scanning. Femur weights and serum concentrations of pyridinoline, a reliable marker of bone resorption, were measured at the end of the study period. Cyclosporin A-, L-NAME-, and cyclosporin A+L-NAME-treated rats had significantly lower bone mineral content and femur weights, and significantly higher pyridinoline levels than did control animals. The administration of L-arginine appeared to prevent bone loss caused by cyclosporin A, suggesting that this amino acid, which can be converted to produce NO, might prove useful in preventing disturbed bone modeling and inhibition of bone growth associated with cyclosporin A therapy. PMID:11090650

  8. Precision error in dual-photon absorptiometry related to source age

    SciTech Connect

    Ross, P.D.; Wasnich, R.D.; Vogel, J.M.

    1988-02-01

    An average, variable precision error of up to 6% related to source age was observed for dual-photon absorptiometry of the spine in a longitudinal study of bone mineral content involving 393 women. Application of a software correction for source decay compensated for only a portion of this error. The authors conclude that measurement of bone-loss rates using serial dual-photon bone mineral measurements must be interpreted with caution.

  9. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  10. Assessment of adiposity in psoriatic patients by dual energy X-ray absorptiometry compared to conventional methods*

    PubMed Central

    Diniz, Michelle dos Santos; Bavoso, Nádia Couto; Kakehasi, Adriana Maria; Lauria, Márcio Weissheimer; Soares, Maria Marta Sarquis; Machado-Pinto, Jackson

    2016-01-01

    BACKGROUND Obesity is considered a chronic low-grade inflammatory disease that shares mediators of inflammation with psoriasis, such as TNF-α and IL-6. The relationship between these two conditions involves factors such as predisposition and response to therapy, in addition to an association with cardiovascular disease. OBJECTIVES The aim of the present study was to investigate the prevalence of adiposity as determined by body mass index (BMI), waist circumference (WC), and dual energy X-ray absorptiometry (DXA) evaluation in patients with psoriasis. METHODS BMI, WC and body composition by DXA were measured in 42 psoriatic patients without joint complaints and in 41 control patients using standard procedures. In the comparison between cases and controls, we used Pearson’s Χ2 test or Fisher’s exact test, and the nonparametric Mann-Whitney test. The difference between the diverse classification methods for obesity was evaluated using McNemar’s test. To test the level of agreement between those variables, we used the weighted kappa coefficient. RESULTS There was no difference in the prevalence of obesity among cases and controls. Both BMI and WC had low agreement with measures of body fat evaluated by DXA. With the use of DXA scanning, prevalence of overweight and obesity in patients with psoriasis was 83.3%, which constitutes a strong evidence of the need for intervention on this metabolic parameter. CONCLUSION Dual energy X-ray absorptiometry was more capable of identifying obesity compared with BMI and WC both in psoriatic and control patients. PMID:27192512

  11. Evaluation of Lunar small animal software for measuring bone mineral content in excised rat bones.

    PubMed

    Kiebzak, G M; Meyer, M H; Meyer, R A

    1999-01-01

    The purpose of this study was to evaluate software from Lunar Corporation (Madison, WI) designed for the measurement of bone mineral content ([BMC],g) in excised rat femurs using dual-energy X-ray absorptiometry (DXA). Femurs were harvested from intact 2- to 12-mo-old female Sprague-Dawley rats, stripped of soft tissues, wrapped in saline-soaked gauze, and frozen at -20 degrees F. Thawed bones were scanned in air on a 1.7-cm-thick Lucite plate that was laid on the manufacturer's supplied Delrin platform. Bones were in an anteroposterior position and scanned in a proximal-to-distal manner. Small animal software version 1.0d was used with a Lunar DPX-L densitometer. Regions of interest (ROIs) were the middle one-third of the diaphysis, a small central area of the distal metaphysis, and the total bone. Precision (n = 6 femurs) was calculated for each region of interest. After DXA scanning, one group of bones (n = 10 femurs) was dried and incinerated in a muffle furnace to obtain bone ash. The ash was then digested in acid and aliquots assayed for calcium using atomic absorption spectrophotometry. This group of bones was used to correlate BMC with ash weight and areal bone mineral density (BMD) with calcium concentration. A second group of bones (n = 14 femurs) was used to correlate BMC with maximal load to failure (N), a biomechanical variable that provides information about bone strength. Precision of repetitive measurements for the three ROIs was 1.2, 3.0, and 0.65%, respectively. Total femur BMC and total femur ash weights were significantly correlated (r = 0.974, p <0.0001). Total femur area BMD (g/cm2) was significantly correlated with calcium concentration (microM) of the bone hydrolysate (r = 0.686, p = 0.029). Total femur BMC and maximum load to midshaft fracture were also significantly correlated (r = 0.914, p<0.0001). The greatest problem with the software was with edge detection: operator intervention was necessary to place edges manually during scan

  12. Bones of Contention: Bone Mineral Density Recovery in Celiac Disease—A Systematic Review

    PubMed Central

    Grace-Farfaglia, Patricia

    2015-01-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  13. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    PubMed

    Grace-Farfaglia, Patricia

    2015-05-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  14. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss

    PubMed Central

    2012-01-01

    Background Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO), bioimpedance analysis (BIA) and ultrasonography (US) in cats, proposing equations to estimate fat (FM) and lean (LM) body mass, as compared to dual energy x-ray absorptiometry (DXA) as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females) in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals), after 10% of weight loss (T1) and after 20% of weight loss (T2). Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM) determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results The independent variables determined by BIO, BIA and US that best correlated (p < 0.005) with the dependent variables (FM and LM) were BW (body weight), TC (thoracic circumference), PC (pelvic circumference), R (resistance) and SFLT (subcutaneous fat layer thickness). Using Mallows’Cp statistics, p value and r2, 19 equations were selected (12 for FM, 7 for LM); however, only 7 equations accurately predicted FM and one LM of cats. Conclusions The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed. PMID:22781317

  15. Comparison of the Lunar Prodigy and iDXA Dual-Energy X-ray Absorptiometers for Assessing Total and Regional Body Composition.

    PubMed

    Morrison, Shannon A; Petri, Robert M; Hunter, Heather L; Raju, Dheeraj; Gower, Barbara

    2016-01-01

    The objective of the study was to assess the agreement of the Lunar Prodigy with the newer Lunar iDXA dual-energy X-ray absorptiometer for determining total body and regional (arms, legs, trunk) bone mineral density (BMD), bone mineral content (BMC), fat mass (FM), lean tissue mass (LTM), total body mass, and percent fat. Ninety-two healthy adult males (n = 36) and females (n = 56) were scanned consecutively on the iDXA and the Prodigy dual-energy X-ray absorptiometers. For iDXA, relative to Prodigy, paired t tests indicated significantly lower estimates for total body and regional BMD and BMC (p < 0.001). Measures of total body and trunk FM, LTM, and percent fat did not differ between the instruments. In regional analyses, estimates of FM and percent fat were greater, and that of LTM was lower, in the arms (p < 0.001). In contrast, iDXA estimates of LTM were higher in the legs (p < 0.001). All body composition measures were significantly correlated (p < 0.001). Bland-Altman analyses indicated that significant bias existed between iDXA and Prodigy for total body and regional BMD estimates (p < 0.001) such that iDXA underestimated BMD to a greater extent in persons with higher values. In addition, iDXA overestimation bias existed for FM in total body, arms, and legs, and the overestimation was primarily observed in participants with greater body fat (p < 0.001). When combining or comparing data from iDXA with those from Prodigy, investigators should be aware that certain total body and regional estimates are significantly different. The greatest percent differences were observed for arm BMD, FM, and percent fat. PMID:26209017

  16. Histological analysis of cells and matrix mineralization of new bone tissue induced in rabbit femur bones by Mg-Zr based biodegradable implants.

    PubMed

    Ragamouni, Sravanthi; Kumar, Jerald Mahesh; Mushahary, Dolly; Nemani, Harishankar; Pande, Gopal

    2013-09-01

    The biological efficacy of bone inducing implant materials in situ can be assessed effectively by performing histological analysis. We studied the peri-implant bone regeneration around two types of biodegradable magnesium-zirconium alloys, Mg-5Zr and Mg-Zr-2Sr, using histological, histochemical and immunohistochemical methods in the femur of New Zealand White strain rabbits. Our study includes three animal groups: (a) Mg-5Zr, (b) Mg-Zr-2Sr and (c) control. In each group three animals were used and in groups 'a' and 'b' the respective alloys were implanted in cavities made at the distal ends of the femur; control animals were left without implants to observe natural bone healing. Qualitative assessment of the cellularity and matrix mineralization events of the newly formed bone tissue was done at three months after implantation by histological methods in methyl methacrylate embedded tissue without decalcifying the bone. Quantitative mineral content and density of the new bone (NB) were evaluated by the statistical analysis of dual energy X-ray absorptiometry (DXA) data obtained from three animals in each experimental group. Based on our analysis we conclude that Mg-Zr-2Sr alloy showed better osseointegration of the newly formed bone with the implant surface. Our methodology of studying peri-implant osteoinduction of degradable implants using low temperature methyl methacrylate embedding resin can be useful as a general method for determining the bio-efficacy of implant materials. PMID:23628266

  17. Trabecular homogeneity index derived from plain radiograph to evaluate bone quality.

    PubMed

    Thevenot, Jérôme; Hirvasniemi, Jukka; Finnilä, Mikko; Pulkkinen, Pasi; Kuhn, Volker; Link, Thomas; Eckstein, Felix; Jämsä, Timo; Saarakkala, Simo

    2013-12-01

    Radiographic texture analysis has been developed lately to improve the assessment of bone architecture as a determinant of bone quality. We validate here an algorithm for the evaluation of trabecular homogeneity index (HI) in the proximal femur from hip radiographs, with a focus on the impact of the principal compressive system of the trabecular bone, and evaluate its correlation with femoral strength, bone mineral density (BMD), and volumetric trabecular structure parameters. A semiautomatic custom-made algorithm was applied to calculate the HI in the femoral neck and trochanteric areas from radiographs of 178 femoral bone specimens (mean age 79.3 ± 10.4 years). Corresponding neck region was selected in CT scans to calculate volumetric parameters of trabecular structure. The site-specific BMDs were assessed from dual-energy X-ray absorptiometry (DXA), and the femoral strength was experimentally tested in side-impact configuration. Regression analysis was performed between the HI and biomechanical femoral strength, BMD, and volumetric parameters. The correlation between HI and failure load was R(2)  = 0.50; this result was improved to R(2)  = 0.58 for cervical fractures alone. The discrimination of bones with high risk of fractures (load <3000 N) was similar for HI and BMD (AUC = 0.87). Regression analysis between the HIs versus site-specific BMDs yielded R(2)  = 0.66 in neck area, R(2)  = 0.60 in trochanteric area, and an overall of R(2)  = 0.66 for the total hip. Neck HI and BMD correlated significantly with volumetric structure parameters. We present here a method to assess HI that can explain 50% of an experimental failure load and determines bones with high fracture risk with similar accuracy as BMD. The HI also had good correlation with DXA and computed tomography-derived data. PMID:23677814

  18. Bone mineral density reference range in Estonia: a comparison with the standard database (NHANES III).

    PubMed

    Kull, Mart; Kallikorm, Riina; Lember, Margus

    2009-01-01

    Dual-energy X-ray absorptiometry (DXA) is accepted as a standard for diagnosing osteoporosis. Several databases are available for T-score calculation worldwide. Our aim was to compare hip bone mineral density (BMD) in young Estonian adults with the mean BMD in the National Health and Nutrition Examination Survey (NHANES) femur database and to compare the performance of these 2 databases. A population sample of 304 subjects was analyzed with a Lunar DPX-IQ DXA machine (GE Lunar Co., Madison, WI). Seventy-seven healthy young individuals were selected based on their age (25-39 yr). Their femur neck, trochanter, and total hip mean standardized BMD was compared with the corresponding data from the NHANES III database. Diagnostic agreement was assessed in a population sample of adults and in a clinical convenience sample from the densitometry unit. The BMD in the proximal femur in healthy young Estonian adults did not differ from the mean BMD in the NHANES subjects (p > 0.05). Differences in diagnosing osteoporosis and osteopenia are present if the Estonian reference database is used instead of the US standard database. Prospective studies with fracture data for assessing the predictive capability of these reference databases and the additional benefit of adding the FRAX (World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK) tool to fracture prediction and osteoporosis diagnosis are needed in Estonia. PMID:19880053

  19. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates. PMID:24149760

  20. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    PubMed

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density. PMID:25392856

  1. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis.

    PubMed

    Wang, Zimian; Pierson, Richard N

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo. PMID:20858915

  2. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Wang, ZiMian; Pierson, Richard N., Jr.

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  3. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: the Dallas Heart Study

    PubMed Central

    Neeland, I J; Grundy, S M; Li, X; Adams-Huet, B; Vega, G L

    2016-01-01

    Background/Objectives: Visceral adipose tissue (VAT) mass, a risk factor for cardiometabolic complications of obesity, is usually measured by magnetic resonance imaging (MRI) but this method is not practical in a clinical setting. In contrast, measurement of VAT by dual-x-ray absorptiometry (DXA) appears to circumvent the limitations of MRI. In this study, we compared measurements of VAT mass by MRI and DXA in the large, multiethnic cohort of the Dallas Heart Study (DHS). Subjects/Methods: About 2689 DHS participants underwent paired measurement of VAT by MRI and DXA. Sex-stratified analyses were performed to evaluate the correlation and agreement between DXA and MRI. Model validation was performed using bootstrapping and inter-reader variability was assessed. Results: Mean age of the cohort was 44 years, with 55% female, 48% Black and 75% overweight/obese participants. Regression analysis showed a linear relationship between DXA and MRI with R2=0.82 (95% confidence interval (CI) 0.81–0.84) for females and R2=0.86 (95% CI 0.85–0.88) for males. Mean difference between methods was 0.01 kg for females and 0.09 kg for males. Bland–Altman analysis showed that DXA tended to modestly underestimate VAT compared with MRI at lower VAT levels and overestimate it compared with MRI at higher VAT levels. Results were consistent in analyses stratified by race, body mass index status, waist girth and body fat. Inter-individual reader correlation among 50 randomly selected scans was excellent (inter-class correlation coefficient=0.997). Conclusions: VAT mass quantification by DXA was both accurate and valid among a large, multiethnic cohort within a wide range of body fatness. Further studies including repeat assessments over time will help determine its long-term applicability. PMID:27428873

  4. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and

  5. Factors that influence bone mass of healthy children and adolescents measured by quantitative ultrasound at the hand phalanges: a systematic review☆

    PubMed Central

    Krahenbühl, Tathyane; Gonçalves, Ezequiel Moreira; Costa, Eduardo Tavares; Barros, Antonio de Azevedo

    2014-01-01

    Objective: To analyze the main factors that influence bone mass in children and teenagers assessed by quantitative ultrasound (QUS) of the phalanges. Data source: A systematic literature review was performed according to the PRISMA method with searches in databases Pubmed/Medline, SciELO and Bireme for the period 2001-2012, in English and Portuguese languages, using the keywords: children, teenagers, adolescent, ultrasound finger phalanges, quantitative ultrasound of phalanges, phalangeal quantitative ultrasound. Data synthesis: 21 articles were included. Girls had, in QUS, Amplitude Dependent Speed of Sound (AD-SoS) values higher than boys during pubertal development. The values of the parameters of QUS of the phalanges and dual-energy X-ray Absorptiometry (DXA) increased with the increase of the maturational stage. Anthropometric variables such as age, weight, height, body mass index (BMI), lean mass showed positive correlations with the values of QUS of the phalanges. Physical activity has also been shown to be positively associated with increased bone mass. Factors such as ethnicity, genetics, caloric intake and socioeconomic profile have not yet shown a conclusive relationship and need a larger number of studies. Conclusions: QUS of the phalanges is a method used to evaluate the progressive acquisition of bone mass during growth and maturation of individuals in school phase, by monitoring changes that occur with increasing age and pubertal stage. There were mainly positive influences variables of sex, maturity, height, weight and BMI, with similar data when compared to the gold standard method, the DXA. PMID:25479860

  6. Cluster analysis of bone microarchitecture from high resolution peripheral quantitative computed tomography demonstrates two separate phenotypes associated with high fracture risk in men and women.

    PubMed

    Edwards, M H; Robinson, D E; Ward, K A; Javaid, M K; Walker-Bone, K; Cooper, C; Dennison, E M

    2016-07-01

    Osteoporosis is a major healthcare problem which is conventionally assessed by dual energy X-ray absorptiometry (DXA). New technologies such as high resolution peripheral quantitative computed tomography (HRpQCT) also predict fracture risk. HRpQCT measures a number of bone characteristics that may inform specific patterns of bone deficits. We used cluster analysis to define different bone phenotypes and their relationships to fracture prevalence and areal bone mineral density (BMD). 177 men and 159 women, in whom fracture history was determined by self-report and vertebral fracture assessment, underwent HRpQCT of the distal radius and femoral neck DXA. Five clusters were derived with two clusters associated with elevated fracture risk. "Cluster 1" contained 26 women (50.0% fractured) and 30 men (50.0% fractured) with a lower mean cortical thickness and cortical volumetric BMD, and in men only, a mean total and trabecular area more than the sex-specific cohort mean. "Cluster 2" contained 20 women (50.0% fractured) and 14 men (35.7% fractured) with a lower mean trabecular density and trabecular number than the sex-specific cohort mean. Logistic regression showed fracture rates in these clusters to be significantly higher than the lowest fracture risk cluster [5] (p<0.05). Mean femoral neck areal BMD was significantly lower than cluster 5 in women in cluster 1 and 2 (p<0.001 for both), and in men, in cluster 2 (p<0.001) but not 1 (p=0.220). In conclusion, this study demonstrates two distinct high risk clusters in both men and women which may differ in etiology and response to treatment. As cluster 1 in men does not have low areal BMD, these men may not be identified as high risk by conventional DXA alone. PMID:27130873

  7. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  8. Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level

    PubMed Central

    Verney, Julien; Schwartz, Chloé; Amiche, Saliha; Pereira, Bruno; Thivel, David

    2015-01-01

    This study aimed at comparing BIA and DXA results in assessing body composition in young adults depending on their physical activity level. Eighty healthy 19–30 years old subjects were enrolled and their body composition (Fat Mass and Fat-Free Mass) was assessed by dual-energy X-ray absorptiometry (DXA) and by a newly developed Bioelectrical Impedance Analyzer (BIA - Tanita MC780). A seven-day physical activity level was assessed using a 3-axial accelerometer. DXA-FM% and BIA-FM% were correlated (p<0.001; r= 0.852; ICC [IC95%]: 0.84 [0.75 – 0.90]; concordance coefficient: 0.844). DXA-FFM and BIA FFM were correlated (p<0.001; r=0.976; ICC [IC95%]: 0.95 [0.93 – 0.97], concordance coefficient: 0.955). DXA and BIA measurements of FM% and FFM were highly correlated in both boys and girls regardless of the physical activity level. Compared with DXA scans, newly developed bioelectrical impedance analyzers provide satisfactory fat mass and lean mass measures in healthy young women and men, despite their physical activity level. PMID:26557191

  9. Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading

    PubMed Central

    Lorbergs, Amanda L.

    2012-01-01

    ABSTRACT Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Method: Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. Main Results: While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Conclusions: Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties. PMID:23449969

  10. Trabecular Plate Loss and Deteriorating Elastic Modulus of Femoral Trabecular Bone in Intertrochanteric Hip Fractures

    PubMed Central

    Wang, Ji; Zhou, Bin; Parkinson, Ian; Thomas, C. David L.; Clement, John G.; Fazzalari, Nick; Guo, X. Edward

    2013-01-01

    Osteoporotic hip fracture is associated with significant trabecular bone loss, which is typically characterized as low bone density by dual-energy X-ray absorptiometry (DXA) and altered microstructure by micro-computed tomography (μCT). Emerging morphological analysis techniques, e.g. individual trabecula segmentation (ITS), can provide additional insights into changes in plate-like and rod-like trabeculae, two major microstructural types serving different roles in determining bone strength. Using ITS, we evaluated trabecular microstructure of intertrochanteric bone cores obtained from 23 patients undergoing hip replacement surgery for intertrochanteric fracture and 22 cadaveric controls. Micro-finite element (μFE) analyses were performed to further understand how the abnormalities seen by ITS might translate into effects on bone strength. ITS analyses revealed that, near fracture site, plate-like trabeculae were seriously depleted in fracture patients, but trabecular rod volume was maintained. Besides, decreased plate area and rod length were observed in fracture patients. Fracture patients also showed decreased elastic moduli and shear moduli of trabecular bone. These results provided evidence that in intertrochanteric hip fracture, preferential loss of plate-like trabeculae led to more rod-like microstructure and deteriorated mechanical competence adjacent to the fracture site, which increased our understanding of the biomechanical pathogenesis of hip fracture in osteoporosis. PMID:26273512

  11. Bone Mineral Density and Microarchitecture in Patients With Autosomal Dominant Osteopetrosis: A Report of Two Cases.

    PubMed

    Arruda, Mariana; Coelho, Maria Caroline Alves; Moraes, Aline Barbosa; de Paula Paranhos-Neto, Francisco; Madeira, Miguel; Farias, Maria Lucia Fleiuss; Neto, Leonardo Vieira

    2016-03-01

    The aim of this case study is to describe changes in areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) scan, as well as volumetric bone density and microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) in two patients with autosomal dominant osteopetrosis (ADO) and compare with 20 healthy subjects. We describe a 44-year-old male patient with six low-impact fractures since he was age 16 years, and a 32-year-old female patient with four low-impact fractures on her past history. Radiographic changes were typical of ADO. Consistent with the much higher aBMD, total volumetric BMD (average bone density of the whole bone, including trabecular and cortical compartments) at distal radius and tibia (HR-pQCT) was more than twice the mean values found in healthy subjects in both patients. Trabecular number and thickness were higher, leading to an evident increase in trabecular bone volume to tissue volume. Also, an enormous increase in cortical thickness was found. Most important, a great heterogeneity in bone microstructure of the affected patients was evident on HR-pQCT images: islets of very dense bone were interposed with areas with apparent normal density. The increase in aBMD, volumetric BMD, and most indices of trabecular and cortical bone, associated with the great heterogeneity on bone tridimensional microarchitecture, reflect the accumulation of old and fragile bone randomly distributed along the skeleton. These alterations in bone microstructure probably compromise bone quality, which might justify the high prevalence of low-impact fractures in patients with ADO, despite abnormally elevated BMD. © 2015 American Society for Bone and Mineral Research. PMID:26387875

  12. Bone Mineral Density in Gravida: Effect of Pregnancies and Breast-Feeding in Women of Differing Ages and Parity

    PubMed Central

    Mishukov, Yuri; Babchenko, Liana; Samueloff, Arnon; Zimran, Ari

    2014-01-01

    Changes of bone during pregnancy and during lactation evaluated by bone mineral density (BMD) may have implications for risk of osteoporosis and fractures. We studied BMD in women of differing ages, parity, and lactation histories immediately postpartum for BMD, T-scores, and Z-scores. Institutional Review Board approval was received. All women while still in hospital postpartum were asked to participate. BMD was performed by dual-energy X-ray absorptiometry (DXA) machine at femoral neck (FN) and lumbar spine (LS) by a single technician. Of 132 participants, 73 (55.3%) were ≤30 years; 27 (20.5%) were primiparous; 36 (27.3%) were grand multiparous; 35 (26.5%) never breast fed. Mean FN T-scores and Z-scores were higher than respective mean LS scores, but all means were within the normal limits. Mean LS T-scores and Z-scores were highest in the grand multiparas. There were only 2 (1.5%) outliers with low Z-scores. We conclude that, in a large cohort of Israeli women with BMD parameters assessed by DXA within two days postpartum, mean T-scores and Z-scores at both the LS and FN were within normal limits regardless of age (20–46 years), parity (1–13 viable births), and history of either no or prolonged months of lactation (up to 11.25 years). PMID:25506038

  13. Bone mineral density in gravida: effect of pregnancies and breast-feeding in women of differing ages and parity.

    PubMed

    Lebel, Ehud; Mishukov, Yuri; Babchenko, Liana; Samueloff, Arnon; Zimran, Ari; Elstein, Deborah

    2014-01-01

    Changes of bone during pregnancy and during lactation evaluated by bone mineral density (BMD) may have implications for risk of osteoporosis and fractures. We studied BMD in women of differing ages, parity, and lactation histories immediately postpartum for BMD, T-scores, and Z-scores. Institutional Review Board approval was received. All women while still in hospital postpartum were asked to participate. BMD was performed by dual-energy X-ray absorptiometry (DXA) machine at femoral neck (FN) and lumbar spine (LS) by a single technician. Of 132 participants, 73 (55.3%) were ≤30 years; 27 (20.5%) were primiparous; 36 (27.3%) were grand multiparous; 35 (26.5%) never breast fed. Mean FN T-scores and Z-scores were higher than respective mean LS scores, but all means were within the normal limits. Mean LS T-scores and Z-scores were highest in the grand multiparas. There were only 2 (1.5%) outliers with low Z-scores. We conclude that, in a large cohort of Israeli women with BMD parameters assessed by DXA within two days postpartum, mean T-scores and Z-scores at both the LS and FN were within normal limits regardless of age (20-46 years), parity (1-13 viable births), and history of either no or prolonged months of lactation (up to 11.25 years). PMID:25506038

  14. INTAKES OF SELECTED NUTRIENTS, BONE MINERALISATION AND DENSITY OF ADOLESCENT FEMALE SWIMMERS OVER A THREE-YEAR PERIOD

    PubMed Central

    Długołęcka, B.; Czeczelewska, E.; Raczyńska, B.

    2013-01-01

    The aim of this study was to conduct three-year monitoring of bone mineralization (BMC) and bone mineral density (BMD) of adolescent girls engaged in swimming at the time of attaining the peak bone mass and of their counterparts leading a rather sedentary life, considering the intakes of calcium, phosphorus and protein, as well as the proportions among those nutrients. Two groups of girls aged 11–13 years were studied 3 times at yearly intervals: untrained controls (n = 20) and those engaged in competitive swimming (n = 20). Bone density was determined by dual-energy X-ray absorptiometry (DXA) in the lumbar spine (L2 – L4). Nutrient intakes (energy, protein, calcium, phosphorus) were assessed from 24-h recalls. The group of swimmers had significantly lower BMI values than the control group. No systematic, significant between-group differences were found in nutrient intake or in bone mineralization variables. Calcium intake was below the recommended norm in all subjects but mean values of bone mineralization variables (BMC, BMD) steadily increased in both groups. The BMD z-scores proved negative throughout the three-year period of early adolescence in both groups of girls and that decrease was significant in swimmers. This could have been due to insufficient calcium intake as well as to inadequate calcium-to-phosphate and protein-to-calcium ratios and, when continued, might result in a decreased bone mass in adulthood. PMID:24744460

  15. Intakes of selected nutrients, bone mineralisation and density of adolescent female swimmers over a three-year period.

    PubMed

    Czeczelewski, J; Długołęcka, B; Czeczelewska, E; Raczyńska, B

    2013-03-01

    The aim of this study was to conduct three-year monitoring of bone mineralization (BMC) and bone mineral density (BMD) of adolescent girls engaged in swimming at the time of attaining the peak bone mass and of their counterparts leading a rather sedentary life, considering the intakes of calcium, phosphorus and protein, as well as the proportions among those nutrients. Two groups of girls aged 11-13 years were studied 3 times at yearly intervals: untrained controls (n = 20) and those engaged in competitive swimming (n = 20). Bone density was determined by dual-energy X-ray absorptiometry (DXA) in the lumbar spine (L2 - L4). Nutrient intakes (energy, protein, calcium, phosphorus) were assessed from 24-h recalls. The group of swimmers had significantly lower BMI values than the control group. No systematic, significant between-group differences were found in nutrient intake or in bone mineralization variables. Calcium intake was below the recommended norm in all subjects but mean values of bone mineralization variables (BMC, BMD) steadily increased in both groups. The BMD z-scores proved negative throughout the three-year period of early adolescence in both groups of girls and that decrease was significant in swimmers. This could have been due to insufficient calcium intake as well as to inadequate calcium-to-phosphate and protein-to-calcium ratios and, when continued, might result in a decreased bone mass in adulthood. PMID:24744460

  16. Effects of an 8-Month Ashtanga-Based Yoga Intervention on Bone Metabolism in Middle-Aged Premenopausal Women: A Randomized Controlled Study

    PubMed Central

    Kim, SoJung; Bemben, Michael G.; Knehans, Allen W.; Bemben, Debra A.

    2015-01-01

    Although Yoga has the potential to be an alternative physical activity to enhance bone health, there is a lack of high quality evidence for this type of intervention. The purpose of this randomized controlled trial was to examine the effects of a progressive 8-month Ashtanga-based Yoga program on bone turnover markers (BTM), areal bone mineral density (aBMD) and volumetric bone characteristics in premenopausal women. Thirty-four premenopausal women (35-50 years) were randomly assigned either to a Yoga group (YE, n = 16) or a control group (CON, n = 18). Participants in YE group performed 60 minutes of an Ashtanga-based Yoga series 2 times/week with one day between sessions for 8 months, and the session intensity was progressively increased by adding the number of sun salutations (SS). Participants in CON were encouraged to maintain their normal daily lifestyles monitored by the bone specific physical activity questionnaire (BPAQ) at 2 month intervals for 8 months. Body composition was measured by dual energy x-ray absorptiometry (DXA). Bone formation (bone alkaline phosphatase, Bone ALP) and bone resorption (Tartrate-Resistant Acid Phosphatase-5b, TRAP5b) markers were assessed at baseline and after 8 months. aBMD of total body, lumbar spine and dual proximal femur and tibia bone characteristics were measured using DXA and peripheral Quantitative Computed Tomography (pQCT), respectively. We found that the serum Bone ALP concentrations were maintained in YE, but significantly (p = 0.005) decreased in CON after the 8 month intervention, and there were significant (p = 0.002) group differences in Bone ALP percent changes (YE 9.1 ± 4.0% vs. CON -7.1 ± 2.3%). No changes in TRAP5b were found in either group. The 8-month Yoga program did not increase aBMD or tibia bone strength variables. Body composition results showed no changes in weight, fat mass, or % fat, but small significant increases in bone free lean body mass occurred in both groups. The findings of this study

  17. Efficiency of energy and protein deposition in swine during compensatory growth measured by dual energy X-ray absorptiometry (DXA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the effects of controlled intake, dietary protein (CP) level, and ractopamine supplementation on growth, body composition, and the efficiency of energy and protein deposition in pigs during uninterrupted or compensatory growth from 60 to 100 kg. Seven groups of pigs ...

  18. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups. PMID:20093970

  19. Performance of calcaneus quantitative ultrasound and dual-energy X-ray absorptiometry in the discrimination of prevalent asymptomatic osteoporotic fractures in postmenopausal women.

    PubMed

    El Maghraoui, A; Morjane, F; Mounach, A; Ghazi, M; Nouijai, A; Achemlal, L; Bezza, A; Ghozlani, I

    2009-03-01

    Due to its low cost, portability, and nonionizing radiation, quantitative ultrasound (QUS) of the heel is an alternative to the measurement with dual X-ray absorptiometry (DXA) in the evaluation of bone status. The objective of the study is to compare in asymptomatic postmenopausal women the ability of QUS and DXA to discriminate between those with and without prevalent vertebral fractures (VFs). The study cohort consists of a population of 295 postmenopausal women aged between 60 and 84 (mean age, weight and BMI of 66.3 years, 72.0 kg and 29.4 kg/m(2), respectively). Lateral VFA images and scans of the lumbar spine and proximal femur were obtained by two technologists using a GE Healthcare Lunar Prodigy densitometer. VFs were defined using a combination of Genant semiquantitative (SQ) approach and morphometry. All women had a calcaneous QUS examination. The mean age of the women in our sample was 66.3 (+/-5.3) years, ranging from 60 to 84 years. Eighty-seven (29.3%) women had VFs Genant grade 2 and 3. Patients with VFs had an age and a number of years of menopause higher to those without VFs, but showed lower height, weight, and BMI. All densitometric and ultrasonometric measurements were significantly reduced in women with VFs. The intercorrelations of BMD at different sites were high, and the correlations of BUA with BMD were lower. BUA correlated weakly with total hip BMD (r = 0.36), lumbar spine BMD (r = 0.32), and much less with femur BMD (r = 0.30); all correlations were significant (P < 0.01). Analysis of the AUC for the ROC curves showed lumbar spine T-score below -2.5 to provide consistently the highest AUC (0.64). Age-adjusted ORs after correction for confounding variables (years of menopause, weight, height, and BMI) for QUS and BMD measurements showed that only lumbar spine T-score below -2.5 could predict significantly the presence of VFs (OR, 1.94; 95%CI, 1.02-3.41). Lumbar spine BMD (and not QUS) was able to discriminate asymptomatic postmenopausal

  20. Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis

    PubMed Central

    El Badri, Dalal; Rostom, Samira; Bouaddi, Ilham; Hassani, Asmae; Chkirate, Bouchra; Amine, Bouchra; Hajjaj-Hassouni, Najia

    2014-01-01

    Introduction The link between bone mass and body composition is widely recognized, but only few works were selectively performed on subjects with juvenile idiopathic arthritis. The aim of our study was to investigate the effect of body composition on bone mineral density (BMD) in Moroccan patients with juvenile idiopathic arthritis. Methods Thirty three children with juvenile idiopathic arthritis (JIA) were included in a cross-sectional study. The diagnosis of JIA was made according to the criteria of the International League of Association of Rheumatology (ILAR). Body mass index (BMI) was calculated from the ratio of weight/height2(kg/m2). Pubertal status was determined according to the Tanner criteria. Bone status, body composition and bone mineral content (BMC) were analyzed by using dual-energy X-ray absorptiometry (DXA). BMD was assessed at the lumbar spine (L1-L4) and at total body in (g/cm2). Total body fat tissue mass (FTM) and lean tissue mass (LTM) were also analyzed by DXA and expressed in kilograms. In children, low BMD was defined as a Z-score less than -2 and osteoporosis was defined as a Z-score less than -2 with a fracture history. Results A cross-sectional study was conducted in 33 Moroccan patients with JIA aged between 4 and 16 years, Fat mass was not related to bone density; in contrast, BMD was positively associated to LTM in total body(r = =0.41, p= 0.04) but not in lumbar spine (r = 0.29, p= 0.17). There exist significant correlation between BMC and BMD in total body (r = 0.51, p = 0.01). Conclusion This study suggests that the LTM is a determining factor of the BMD during adolescence. Other studies with a broader sample would be useful to confirm this relation. PMID:25120859

  1. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    PubMed

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs. PMID:27256027

  2. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA

    PubMed Central

    Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian

    2014-01-01

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487

  3. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  4. The Effects of Hypergravity and Adrenalectomy on Bone Mineral Content, Urine Calcium and Body Mass in Rats

    NASA Technical Reports Server (NTRS)

    Lau, A.; Ramirez, J.; Melson, E.; Moran, M.; Baer, L.; Arnaud, S.; Wade, C.; Girten, B.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The effects of 14 days of increased gravitational load, and the absence of adrenal stress hormones on total body bone mineral content (BMC) were examined in male Sprague-Dawley rats. Centrifugation at 2 Gs (2G) was used to increase the gravitational load, and bilateral adrenalectomy (ADX) was used to eliminate the production of adrenal stress hormones. Stationary groups at 1 G (1G) and sham operated (SHAM) animals served as controls. Thirty rats (n=6 or 8) made up the four experimental groups (1G SHAM, 1G ADX, 2G SHAM and 2G ADX). BMC was assessed by dual energy x-ray absorptiometry (DXA) which was performed to determine the total body bone mineral content, and also through bone ashing of the left femur and the left humerus. Activity was determined through biotelemetry, also body mass and food intake were measured. Multi-factorial analysis of variance (MANCOVA) and Newman Keuls post hoc tests were used to analyze significant effects (p is less than 0.05) for the primary variables. Results from both DXA and the ashed femur indicated that BMC decreased significantly with increased G for both the SHAM and ADX groups. The BMC determined by DXA for the 1G ADX group was also significantly lower than the 1G SHAM group, however the 2G SHAM and 2G ADX groups were not significantly different. However, the bone ashing results showed the femur differed significantly only between the rates of centrifugation and not between the ADX and SHAM. The humerus showed no significant difference between any of the groups. There was a significant decrease in body mass with increased G and there was no ADX effect on body mass. When DXA BMC was normalized for body mass changes, there were no significant group differences. However, with bone ashing, the femur BMC/BW still showed significant difference between rates of centrifugation, with the 2G group being lower. Activity level decreased with body mass, and food intake data showed there was significant hypophagia during the first few days of

  5. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies--focus on wrist fracture.

    PubMed

    Firoozabadi, Reza; Morshed, Saam; Engelke, Klaus; Prevrhal, Sven; Fierlinger, Anke; Miclau, Theodore; Genant, Harry K

    2008-09-01

    Fractures of the distal radius are one of the most common injuries presented to orthopaedic surgeons. A variety of treatment options are available for the vast array of fracture patterns. Research that explores bone fragility and fracture healing has led to new treatment modalities. As new products and methods are derived to aid in fracture healing it is essential to develop noninvasive and/or nondestructive techniques to assess structural information about bone. Quantitative assessment of macro-structural characteristics such as geometry, and microstructural features such as relative trabecular volume, trabecular spacing, and connectivity may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual x-ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone include high resolution computed tomography (hrCT), micro computed tomography (microCT), high resolution magnetic resonance (hrMR), and micro magnetic resonance microMR. Volumetric QCT, hrCT and hrMR are generally applicable in vivo; microCT and microMR are principally applicable in vitro. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry versus the more complex architectural features of bone, or the deeper research requirements versus the broader clinical needs. PMID:18753895

  6. Application of the scaling index method to μCT images of human trabecular bone for the characterization of biomechanical strength

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Bauer, Jan; Müller, Dirk; Rummeny, Ernst; Matsuura, Maiko; Eckstein, Felix; Link, Thomas; Räth, Christoph

    2007-03-01

    Osteoporosis is a metabolic bone disorder characterized by the loss of bone mineral density (BMD) and the deterioration of the bone micro-architecture. Rarefied bone structures are more susceptible to fractures which are the worst complications of osteoporosis. Here, we apply a structure characterization method, namely the Scaling Index Method, to micro-computed tomographic (μ-CT) images of the distal radius and extract 3D nonlinear structure measures to assess the biomechanical properties of trabecular bone. Biomechanical properties were quantified by the maximum compressive strength (MCS) obtained in a biomechanical test and bone mineral density (BMD) was calculated using dual X-ray absorptiometry (DXA). μ-CT images allow for the application of two different modalities of the SIM which differ in the dimensional embedding of the image. Both representations lead to similar correlation coefficients with MCS which are significantly better than the ones obtained using standard 3D morphometric parameters and comparable to the result given by BMD. The analysis of μ-CT images based on the SIM allows for a sharp distinction of the different structural elements which compose the trabecular bone network.

  7. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices

    PubMed Central

    Gulsahi, A; Paksoy, CS; Ozden, S; Kucuk, NO; Cebeci, ARI; Genc, Y

    2010-01-01

    Objectives The aim of this study was to evaluate maxillary, mandibular and femoral neck bone mineral density using dual energy X-ray absorptiometry (DXA) and to determine any correlation between the bone mineral density of the jaws and panoramic radiomorphometric indices. Methods 49 edentulous patients (18 males and 31 females) aged between 41 and 78 years (mean age 60.2 ± 11.04) were examined by panoramic radiography. Bone mineral density (BMD) of the jaws and femoral neck was measured with a DXA; bone mineral density was calculated at the anterior, premolar and molar regions of the maxilla and mandible. Results The mean maxillary molar BMD (0.45 g cm−2) was significantly greater than the maxillary anterior and premolar BMD (0.31 g cm−2, P < 0.05). Furthermore, the mean mandibular anterior and premolar BMD (1.39 g cm−2 and 1.28 g cm−2, respectively) was significantly greater than the mean mandibular molar BMD (1.09 g cm−2, P < 0.01). Although BMD in the maxillary anterior and premolar regions were correlated, BMD in all the mandibular regions were highly correlated. Maxillary and mandibular BMD were not correlated with femoral BMD. In addition, mandibular cortical index (MCI) classification, mental index (MI) or panoramic mandibular index (PMI) values were not significantly correlated with the maxillary and mandibular BMDs (P > 0.05). Conclusions The BMD in this study was highest in the mandibular anterior region and lowest in the maxillary anterior and premolar regions. The BMD of the jaws was not correlated with either femoral BMD or panoramic radiomorphometric indices. PMID:20587652

  8. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  9. Correlates of Use of Antifracture Therapy in Older Women with Low Bone Mineral Density

    PubMed Central

    Ryder, Kathryn M; Shorr, Ronald I; Tylavsky, Frances A; Bush, Andrew J; Bauer, Douglas C; Simonsick, Eleanor M; Strotmeyer, Elsa S; Harris, Tamara B

    2006-01-01

    BACKGROUND Guidelines exist for treatment of low bone mineral density (BMD). Little is known about patient characteristics associated with use of treatment. OBJECTIVES To determine patient-related correlates of medication use following screening dual x-ray absorptiometry (DXA) of older adults. DESIGN Secondary analysis of a prospective cohort study. SETTING Pittsburgh, PA and Memphis, TN. PARTICIPANTS Community-dwelling women between the ages 70 and 79 years enrolled in the Health, Aging, and Body Composition (Health ABC) Study. MEASUREMENTS Risk factors for fracture and BMD of the hip were assessed at baseline. Patients and their community physicians were supplied the results of the DXA scan. Prescription and over-the-counter medication use was collected at annual exams for 2 years. RESULTS Of 1,584 women enrolled in Health ABC, 378 had an indication for antifracture therapy and were not receiving such treatment at baseline. By the second annual follow-up examination, prescription antiresorptive medication was reported in 49 (13.0%), whereas 65 (17.2%) received calcium and/or vitamin D supplementation. In adjusted models, the strongest predictor for use of any antifracture medicine was presence of osteoporosis [vs osteopenia, odds ratio (OR), 2.9 (1.7 to 4.7)], white race [OR, 2.6 (1.5 to 4.8)], and receipt of the flu shot [OR, 2.2 (1.3 to 3.8)]. Neither a history of falls nor prior fracture was associated with use of antifracture medications. CONCLUSION Even when physicians of study participants were provided with DXA scan results, 70% of older high-functioning women with an indication for therapy did not start or remain on an antifracture therapy. Substantial room for improvement exists in fracture prevention following a diagnosis of low BMD—especially among women with a history of falls, prior fractures, and among black women. PMID:16808749

  10. The generalized bone phenotype in children with neurofibromatosis 1: a sibling matched case-control study.

    PubMed

    Armstrong, Linlea; Jett, Kimberly; Birch, Patricia; Kendler, David L; McKay, Heather; Tsang, Erica; Stevenson, David A; Hanley, David A; Egeli, Deetria; Burrows, Melonie; Friedman, J M

    2013-07-01

    People with neurofibromatosis 1 (NF1) have low bone mineralization, but the natural history and pathogenesis are poorly understood. We performed a sibling-matched case-control study of bone mineral status, morphology, and metabolism. Eighteen children with NF1 without focal bony lesions were compared to unaffected siblings and local population controls. Bone mineral content at the lumbar spine and proximal femur (dual energy X-ray absorptiometry (DXA)) was lower in children with NF1; this difference persisted after adjusting for height and weight. Peripheral quantitative computed tomography (pQCT) of the distal tibia showed that trabecular density was more severely compromised than cortical. Peripheral QCT-derived estimates of bone strength and resistance to bending and stress were poorer among children with NF1 although there was no difference in fracture frequencies. There were no differences in the size or shape of bones after adjusting for height. Differences in markers of bone turnover between cases and controls were in the directions predicted by animal studies, but did not reach statistical significance. Average serum calcium concentration was higher (although within the normal range) in children with NF1; serum 25-OH vitamin D, and PTH levels did not differ significantly between cases and controls. Children with NF1 were less mature (assessed by pubertal stage) than unaffected siblings or population controls. Children with NF1 have a generalized difference of bone metabolism that predominantly affects trabecular bone. Effects of decreased neurofibromin on bone turnover, calcium homeostasis, and pubertal development may contribute to the differences in bone mineral content observed among people with NF1. PMID:23713011

  11. Obstacles in the optimization of bone health outcomes in the female athlete triad.

    PubMed

    Ducher, Gaele; Turner, Anne I; Kukuljan, Sonja; Pantano, Kathleen J; Carlson, Jennifer L; Williams, Nancy I; De Souza, Mary Jane

    2011-07-01

    Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the 'female athlete triad'. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture. This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging. Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad. PMID:21688870

  12. Motor Competence in Early Childhood Is Positively Associated With Bone Strength in Late Adolescence.

    PubMed

    Ireland, Alex; Sayers, Adrian; Deere, Kevin C; Emond, Alan; Tobias, Jon H

    2016-05-01

    The onset of walking in early childhood results in exposure of the lower limb to substantial forces from weight bearing activity that ultimately contribute to adult bone strength. Relationships between gross motor score (GMS), at 18 months and bone outcomes measured at age 17 years were examined in 2327 participants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Higher GMS indicated greater motor competence in weight-bearing activities. Total hip bone mineral density (BMD) and hip cross-sectional moment of inertia (CSMI) were assessed from dual-energy X-ray absorptiometry (DXA). Bone measures including cortical bone mineral content (BMC), periosteal circumference (PC), cortical thickness (CT), cortical bone area (CBA), cortical BMD (BMDC ) and cross-sectional moment of inertia (CSMI) were assessed by peripheral quantitative computed tomography (pQCT) at 50% distal-proximal length. Before adjustment, GMS was associated with hip BMD, CSMI, and tibia BMC, PC, CT, CBA and CSMI (all p < 0.001) but not BMDC (p > 0.25). Strongest associations (standardized regression coefficients with 95% CI) were between GMS and hip BMD (0.086; 95% CI, 0.067 to 0.105) and tibia BMC (0.105; 95% CI, 0.089 to 0.121). With the exception of hip BMD, larger regression coefficients were observed in males (gender interactions all p < 0.05). Adjustment for lean mass resulted in substantial attenuation of regression coefficients, suggesting associations between impaired motor competence and subsequent bone development are partly mediated by alterations in body composition. In conclusion, impaired motor competence in childhood is associated with lower adolescent bone strength, and may represent a risk factor for subsequent osteoporosis. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:26713753

  13. Motor Competence in Early Childhood Is Positively Associated With Bone Strength in Late Adolescence

    PubMed Central

    Sayers, Adrian; Deere, Kevin C; Emond, Alan; Tobias, Jon H

    2016-01-01

    ABSTRACT The onset of walking in early childhood results in exposure of the lower limb to substantial forces from weight bearing activity that ultimately contribute to adult bone strength. Relationships between gross motor score (GMS), at 18 months and bone outcomes measured at age 17 years were examined in 2327 participants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Higher GMS indicated greater motor competence in weight‐bearing activities. Total hip bone mineral density (BMD) and hip cross‐sectional moment of inertia (CSMI) were assessed from dual‐energy X‐ray absorptiometry (DXA). Bone measures including cortical bone mineral content (BMC), periosteal circumference (PC), cortical thickness (CT), cortical bone area (CBA), cortical BMD (BMDC) and cross‐sectional moment of inertia (CSMI) were assessed by peripheral quantitative computed tomography (pQCT) at 50% distal‐proximal length. Before adjustment, GMS was associated with hip BMD, CSMI, and tibia BMC, PC, CT, CBA and CSMI (all p < 0.001) but not BMDC (p > 0.25). Strongest associations (standardized regression coefficients with 95% CI) were between GMS and hip BMD (0.086; 95% CI, 0.067 to 0.105) and tibia BMC (0.105; 95% CI, 0.089 to 0.121). With the exception of hip BMD, larger regression coefficients were observed in males (gender interactions all p < 0.05). Adjustment for lean mass resulted in substantial attenuation of regression coefficients, suggesting associations between impaired motor competence and subsequent bone development are partly mediated by alterations in body composition. In conclusion, impaired motor competence in childhood is associated with lower adolescent bone strength, and may represent a risk factor for subsequent osteoporosis. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:26713753

  14. Periarticular Osteoporosis Is a Prominent Feature in Early Rheumatoid Arthritis: Estimation Using Shaft to Periarticular Bone Mineral Density Ratio

    PubMed Central

    Moon, Su-Jin; Ahn, Inhye E.; Kwok, Seung-Ki; Park, Kyung-Su; Min, Jun-Ki; Park, Sung-Hwan; Kim, Ho-Youn

    2013-01-01

    We aimed to quantify periarticular osteoporosis and investigate its significance in 45 patients with rheumatoid arthritis (RA) and 106 controls. Dual-energy X-ray absorptiometry (DXA) was used to determine the ratio of shaft to periarticular bone mineral density (BMD) as an index of periarticular demineralization. Periarticular osteoporosis was measured by conventional radiography. The BMDs of shaft and periarticular regions in eight designated areas on proximal phalanges were quantified. Clinical variables were examined to identify risk factors for periarticular osteoporosis. The assessment of periarticular osteoporosis on X-ray images reached a moderate degree of interobserver agreement among four physicians (ĸ = 0.47). For BMD quantification, we designed three types of mathematical formulae: the ratio of shaft to periarticular BMD, the mean of the ratios, and the ratio of the sums. These ratios were significantly higher in the patients with early RA (disease duration ≤ 3 yr) than in controls (P < 0.01). The findings were not as distinctive in patients with established RA. Body mass index, cumulative dose of corticosteroid, and C-terminal telopeptide were correlated with BMD ratios. Conclusively, DXA-assisted localized quantification and BMD ratio calculations are feasible for assessing periarticular demineralization. Periarticular osteoporosis is a relatively distinctive feature of early RA. PMID:23399828

  15. Periarticular osteoporosis is a prominent feature in early rheumatoid arthritis: estimation using shaft to periarticular bone mineral density ratio.

    PubMed

    Moon, Su-Jin; Ahn, Inhye E; Kwok, Seung-Ki; Park, Kyung-Su; Min, Jun-Ki; Park, Sung-Hwan; Kim, Ho-Youn; Ju, Ji Hyeon

    2013-02-01

    We aimed to quantify periarticular osteoporosis and investigate its significance in 45 patients with rheumatoid arthritis (RA) and 106 controls. Dual-energy X-ray absorptiometry (DXA) was used to determine the ratio of shaft to periarticular bone mineral density (BMD) as an index of periarticular demineralization. Periarticular osteoporosis was measured by conventional radiography. The BMDs of shaft and periarticular regions in eight designated areas on proximal phalanges were quantified. Clinical variables were examined to identify risk factors for periarticular osteoporosis. The assessment of periarticular osteoporosis on X-ray images reached a moderate degree of interobserver agreement among four physicians (ĸ = 0.47). For BMD quantification, we designed three types of mathematical formulae: the ratio of shaft to periarticular BMD, the mean of the ratios, and the ratio of the sums. These ratios were significantly higher in the patients with early RA (disease duration ≤ 3 yr) than in controls (P < 0.01). The findings were not as distinctive in patients with established RA. Body mass index, cumulative dose of corticosteroid, and C-terminal telopeptide were correlated with BMD ratios. Conclusively, DXA-assisted localized quantification and BMD ratio calculations are feasible for assessing periarticular demineralization. Periarticular osteoporosis is a relatively distinctive feature of early RA. PMID:23399828

  16. Serum Dioxin Concentrations and Bone Density and Structure in the Seveso Women’s Health Study

    PubMed Central

    Warner, Marcella; Sirtori, Marcella; Fuerst, Thomas; Rauch, Stephen A.; Brambilla, Paolo; Mocarelli, Paolo; Rubinacci, Alessandro

    2013-01-01

    Background: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a widespread environmental contaminant, is a known endocrine disruptor. In animal studies, TCDD exposure impairs bone metabolism and increases fragility. To our knowledge, no epidemiologic studies have examined this association. Objectives: On 10 July 1976, a chemical explosion in Seveso, Italy, resulted in the highest known residential exposure to TCDD. In 1996, we initiated the Seveso Women’s Health Study, a retrospective cohort study of the health of the women. In 2008, we followed up the cohort. Here, we evaluated the association between TCDD exposure and bone structure and geometry in adulthood, and considered whether timing of TCDD exposure before achievement of peak bone mass (assumed to occur 2 years after onset of menarche) modified the association. Methods: Individual TCDD concentration was measured in archived serum collected soon after the explosion. In 2008, 350 women who were < 20 years old in 1976 underwent a dual-energy X-ray absorptiometry (DXA) bone scan. Bone mineral density was measured at the lumbar spine and hip, and hip geometry was extracted from hip DXA scans using the hip structural analysis method. Results: Among premenopausal women, TCDD serum levels were associated with some indexes indicating better bone structure in women exposed before peak bone mass (n = 219), with stronger associations in those exposed before 5 years of age (n = 46). In contrast, among postmenopausal women, TCDD levels were associated with evidence of better bone structure in women exposed after peak bone mass (n = 48) than in other women (n = 18). Conclusions: Our current results do not support the hypothesis that postnatal TCDD exposure adversely affects adult bone health. Continued follow-up of women who were youngest at exposure is warranted. Future studies should also focus on those exposed in utero. Citation: Eskenazi B, Warner M, Sirtori M, Fuerst T, Rauch SA, Brambilla P, Mocarelli P, Rubinacci A

  17. Decreased bone mineralization in Children with Noonan Syndrome: Another Consequence of Dysregulated RAS MAPKinase Pathway?

    PubMed Central

    Choudhry, Kiran S.; Grover, Monica; Tran, Alyssa; O'Brian Smith, E.; Ellis, Kenneth J.; Lee, Brendan H.

    2012-01-01

    Introduction Noonan syndrome (NS) is a disorder of RAS- mitogen activated protein kinase (MAPK) pathway with clinical features of skeletal dysplasia. This pathway is essential for regulation of cell differentiation and growth including bone homeostasis. Currently, limited information exists regarding bone mineralization in NS. Material and Methods Using dual-energy X-ray absorptiometry (DXA), bone mineralization was evaluated in 12 subjects (mean age 8.7 years) with clinical features of NS. All subjects underwent genetic testing which showed mutations in PTPN11 gene (N=9) and SOS1 gene (N=1). In a subgroup of subjects with low bone mass, indices of calcium-phosphate metabolism and bone turnover were obtained. Results 50% of subjects had low bone mass as measured by DXA. Z-scores for bone mineral content (BMC) were calculated based on age, gender, height, and ethnicity. Mean BMC z-score was marginally decreased at -0.89 {95% CI -2.01 to 0.23; p=0.1}. Mean total body bone mineral density (BMD) z-score was significantly reduced at -1.87 {95% CI -2.73 to -1.0; p= 0.001}. Mean height percentile was close to -2 SD for this cohort, thus total body BMD z-scores were recalculated, adjusting for height age. Adjusted mean total body BMD z-score was less reduced but still significant at -0.82 {95% CI -1.39 to -0.25; p= 0.009}. Biochemical evaluation for bone turnover was unremarkable except serum IGF- I and IGF-BP3 levels which were low-normal for age. Discussion Children with Noonan syndrome have a significantly lower total body BMD compared to age, gender, ethnicity and height matched controls. In addition, total BMC appears to trend lower in children with Noonan syndrome compared to controls. We conclude that the metabolic bone disease present resulted from a subtle variation in the interplay of osteoclast and osteoblast activity, without clear abnormalities being defined in the metabolism of either. Clinical significance of this finding needs to be validated by larger

  18. Bone Mineral Density in Adolescent Females Using Injectable or Oral Contraceptives: A 24 Month Prospective Study

    PubMed Central

    Cromer, Barbara A.; Bonny, Andrea E.; Stager, Margaret; Lazebnik, Rina; Rome, Ellen; Ziegler, Julie; Camlin-Shingler, Kelly; Secic, Michelle

    2008-01-01

    Study Objective To determine whether bone mineral density (BMD) is lower in hormonal contraceptive users than that in an untreated, comparison group. Design Observational, prospective cohort; duration: 24 months. Setting Adolescent clinics in a midwestern, metropolitan setting. Patients 433 postmenarcheal girls, aged 12–18 years, on depot medroxyprogesterone acetate (DMPA) [n=58], oral contraceptives (OC) [n=187], or untreated (n=188). Intervention DMPA and OC containing 100 mcg levonorgestrel and 20 mcg ethinyl estradiol. Main Outcome Measure BMD measurements at spine and femoral neck were obtained with dual x-ray absorptiometry (DXA) at baseline and 6-month intervals. Results Over 24 months, mean percent change in spine BMD was: DMPA −1.5%, OC +4.2%, and untreated +6.3%. Mean percent change in femoral neck BMD was: DMPA −5.2%, OC +3.0%, untreated +3.8%. Statistical significance was found between the DMPA group and other two groups (p<.001). In the DMPA group, mean percent change in spine BMD over the first 12 months was −1.4%; the rate of change slowed to −0.1% over the second 12 months. No bone density loss reached the level of osteopenia. Conclusions Adolescent girls receiving DMPA had significant loss in BMD compared with bone gain in the OC and untreated group. However, its clinical significance is mitigated by slowed loss after the first year of DMPA use and general maintenance of bone density values within the normal range. PMID:18222431

  19. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  20. Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture

    PubMed Central

    Yang, Lang; Peel, Nicola; Clowes, Jackie A; McCloskey, Eugene V; Eastell, Richard

    2011-01-01

    Several DXA-based structural engineering models (SEMs) of the proximal femur have been developed to estimate stress caused by sideway falls. Their usefulness in discriminating hip fracture has not yet been established and we therefore evaluated these models. The hip DXA scans of 51 postmenopausal women with hip fracture (30 femoral neck, 17 trochanteric, and 4 unspecified) and 153 age-, height-, and weight-matched controls were reanalyzed using a special version of Hologic’s software that produced a pixel-by-pixel BMD map. For each map, a curved-beam, a curved composite-beam, and a finite element model were generated to calculate stress within the bone when falling sideways. An index of fracture risk (IFR) was defined over the femoral neck, trochanter, and total hip as the stress divided by the yield stress at each pixel and averaged over the regions of interest. Hip structure analysis (HSA) was also performed using Hologic APEX analysis software. Hip BMD and almost all parameters derived from HSA and SEM were discriminators of hip fracture on their own because their ORs were significantly >1. Because of the high correlation of total hip BMD to HSA and SEM-derived parameters, only the bone width discriminated hip fracture independently from total hip BMD. Judged by the area under the receiver operating characteristics curve, the trochanteric IFR derived from the finite element model was significant better than total hip BMD alone and similar to the total hip BMD plus bone width in discriminating all hip fracture and femoral neck fracture. No index was better than total hip BMD for discriminating trochanteric fractures. In conclusion, the finite element model has the potential to replace hip BMD in discriminating hip fractures. PMID:18767924

  1. Breastfeeding and Bone Mass at the Ages of 18 and 30: Prospective Analysis of Live Births from the Pelotas (Brazil) 1982 and 1993 Cohorts

    PubMed Central

    Muniz, Ludmila Correa; Menezes, Ana Maria Baptista; Assunção, Maria Cecília Formoso; Wehrmeister, Fernando Cesar; Martínez-Mesa, Jeovany; Gonçalves, Helen; Domingues, Marlos Rodrigues; Gigante, Denise Petrucci; Horta, Bernardo Lessa; Barros, Fernando C.

    2015-01-01

    Objective To evaluate the effect of total breastfeeding, breastfeeding duration and type of breastfeeding at 3 months of age on bone mass at 18 and 30 years. Study Design A prospective, longitudinal study was conducted with two birth cohorts (1982 and 1993) in Pelotas, Southern Brazil. Measurements of bone mineral content (BMC) and bone mineral density (BMD) at 18 and 30 years of age were obtained by dual-energy X-ray absorptiometry (DXA). Information on breastfeeding was collected during the first 4 years of life. Analyses were performed by linear regression and stratified by sex. Results A total of 1109 and 3226 participants provided complete information on breastfeeding in early life and bone mass at 18 and 30 years, respectively. No association between breastfeeding and bone mass was observed in women at both ages nor among men at age 30. Among men at the age of 18, BMC and BMD were higher among those breastfed regardless of duration (p=0.032 and p=0.043, respectively). Conclusions Despite a very weak positive effect of breastfeeding (yes/no) on BMC and BMD at age 18 in men, most findings pointed to a lack of association between breastfeeding and bone mass until young adulthood. PMID:25880483

  2. Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).

    PubMed

    Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2014-11-01

    The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is

  3. Periprosthetic tibial bone mineral density changes after total knee arthroplasty

    PubMed Central

    Jaroma, Antti; Soininvaara, Tarja; Kröger, Heikki

    2016-01-01

    Background and purpose Total knee arthroplasty (TKA) may cause postoperative periprosthetic bone loss due to stress shielding. Bone also adapts to mechanical alterations such as correction of malalignment. We investigated medium-term changes in bone mineral density (BMD) in tibial periprosthetic bone after TKA. Patients and methods 86 TKA patients were prospectively measured with dual-energy X-ray absorptiometry (DXA), the baseline measurement being within 1 week after TKA and the follow-up measurements being at 3 and 6 months, and at 1, 2, 4, and 7 years postoperatively. Long standing radiographs were taken and clinical evaluation was done with the American Knee Society (AKS) score. Results The baseline BMD of the medial tibial metaphyseal region of interest (ROI) was higher in the varus aligned knees (25%; p < 0.001). Medial metaphyseal BMD decreased in subjects with preoperatively varus aligned knees (13%, p < 0.001) and in those with preoperatively valgus aligned knees (12%, p = 0.02) between the baseline and 7-year measurements. No statistically significant changes in BMD were detected in lateral metaphyseal ROIs. No implant failures or revision surgery due to tibial problems occurred. Interpretation Tibial metaphyseal periprosthetic bone is remodeled after TKA due to mechanical axis correction, resulting in more balanced bone stock below the tibial tray. The diaphyseal BMD remains unchanged after the initial drop, within 3–6 months. This remodeling process was related to good component survival, as there were no implant failures or revision operations due to tibial problems in this medium-term follow-up. PMID:27120266

  4. Periprosthetic tibial bone mineral density changes after total knee arthroplasty.

    PubMed

    Jaroma, Antti; Soininvaara, Tarja; Kröger, Heikki

    2016-06-01

    Background and purpose - Total knee arthroplasty (TKA) may cause postoperative periprosthetic bone loss due to stress shielding. Bone also adapts to mechanical alterations such as correction of malalignment. We investigated medium-term changes in bone mineral density (BMD) in tibial periprosthetic bone after TKA. Patients and methods - 86 TKA patients were prospectively measured with dual-energy X-ray absorptiometry (DXA), the baseline measurement being within 1 week after TKA and the follow-up measurements being at 3 and 6 months, and at 1, 2, 4, and 7 years postoperatively. Long standing radiographs were taken and clinical evaluation was done with the American Knee Society (AKS) score. Results - The baseline BMD of the medial tibial metaphyseal region of interest (ROI) was higher in the varus aligned knees (25%; p < 0.001). Medial metaphyseal BMD decreased in subjects with preoperatively varus aligned knees (13%, p < 0.001) and in those with preoperatively valgus aligned knees (12%, p = 0.02) between the baseline and 7-year measurements. No statistically significant changes in BMD were detected in lateral metaphyseal ROIs. No implant failures or revision surgery due to tibial problems occurred. Interpretation - Tibial metaphyseal periprosthetic bone is remodeled after TKA due to mechanical axis correction, resulting in more balanced bone stock below the tibial tray. The diaphyseal BMD remains unchanged after the initial drop, within 3-6 months. This remodeling process was related to good component survival, as there were no implant failures or revision operations due to tibial problems in this medium-term follow-up. PMID:27120266

  5. Bone Strength and Arterial Stiffness Impact on Cardiovascular Mortality in a General Population.

    PubMed

    Avramovski, Petar; Avramovska, Maja; Sikole, Aleksandar

    2016-01-01

    Osteoporosis and increased arterial stiffness independently have been found to be associated with higher cardiovascular events rates in the general population (GP). We examined 558 patients from GP by dual-energy X-ray absorptiometry (DXA) and pulse wave velocity (PWV) measurements at baseline, with 36-month follow-up period. DXA assessed bone mineral density of femoral neck (BMD FN) and lumbar spine (BMD LS). Carotid-femoral PWV was assessed by pulsed-Doppler. The aim of our study is to find correlation between bone strength and arterial stiffness and their impact on cardiovascular mortality in GP. The mean ± SD of BMD FN, BMD LS, and PWV was 0.852 ± 0.1432 g/cm(2), 0.934 ± 0.1546 g/cm(2), and 9.209 ± 1.9815 m/s. In multiple regression analysis we found BMD FN (βst = -6.0094, p < 0.0001), hypertension (βst = 1.7340, p < 0.0091), and diabetes (βst = 0.4595, p < 0.0046). With Cox-regression analysis, after 17 cardiovascular events, the significant covariates retained by the backward model were BMD FN (b = -2.4129, p = 0.015) and PWV (b = 0.2606, p = 0.0318). The cut-off values were PWV = 9.4 m/s, BMD FN = 0.783 g/cm(2), and BMD LS = 0.992 g/cm(2). The results for BMD FN and PWV hazard ratio risk were 1.116 and 1.297, respectively. BMD FN as a measure of bone strength and PWV as a measure of arterial stiffness are strong independent predictors of cardiovascular mortality in GP. PMID:27047700

  6. Bone Strength and Arterial Stiffness Impact on Cardiovascular Mortality in a General Population

    PubMed Central

    Avramovska, Maja; Sikole, Aleksandar

    2016-01-01

    Osteoporosis and increased arterial stiffness independently have been found to be associated with higher cardiovascular events rates in the general population (GP). We examined 558 patients from GP by dual-energy X-ray absorptiometry (DXA) and pulse wave velocity (PWV) measurements at baseline, with 36-month follow-up period. DXA assessed bone mineral density of femoral neck (BMD FN) and lumbar spine (BMD LS). Carotid-femoral PWV was assessed by pulsed-Doppler. The aim of our study is to find correlation between bone strength and arterial stiffness and their impact on cardiovascular mortality in GP. The mean ± SD of BMD FN, BMD LS, and PWV was 0.852 ± 0.1432 g/cm2, 0.934 ± 0.1546 g/cm2, and 9.209 ± 1.9815 m/s. In multiple regression analysis we found BMD FN (βst = −6.0094, p < 0.0001), hypertension (βst = 1.7340, p < 0.0091), and diabetes (βst = 0.4595, p < 0.0046). With Cox-regression analysis, after 17 cardiovascular events, the significant covariates retained by the backward model were BMD FN (b = −2.4129, p = 0.015) and PWV (b = 0.2606, p = 0.0318). The cut-off values were PWV = 9.4 m/s, BMD FN = 0.783 g/cm2, and BMD LS = 0.992 g/cm2. The results for BMD FN and PWV hazard ratio risk were 1.116 and 1.297, respectively. BMD FN as a measure of bone strength and PWV as a measure of arterial stiffness are strong independent predictors of cardiovascular mortality in GP. PMID:27047700

  7. CLINICAL ASSESSMENT OF THE 1/3rd RADIUS USING A NEW DESKTOP ULTRASONIC BONE DENSITOMETER

    PubMed Central

    Stein, Emily M.; Rosete, Fernando; Young, Polly; Kamanda-Kosseh, Mafo; McMahon, Donald J.; Luo, Gangming; Kaufman, Jonathan J.; Shane, Elizabeth; Siffert, Robert S.

    2012-01-01

    The objectives of this study were to evaluate the capability of a novel ultrasound device to clinically estimate bone mineral density (BMD) at the 1/3rd radius. The device rests on a desktop and is portable, and permits real-time evaluation of the radial BMD. The device measures two (2) net time delay (NTD) parameters, NTDDW and NTDCW. NTDDW is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue, cortex and medullary cavity, and the transit time through soft tissue only of equal overall distance. NTDCW is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue and cortex only, and the transit time through soft tissue only again of equal overall distance. The square root of the product of these two parameters is a measure of the radial BMD at the 1/3rd location as measured by dual-energy x-ray absorptiometry (DXA). A clinical IRB-approved study measured ultrasonically sixty adults at the 1/3rd radius. BMD was also measured at the same anatomical site and time using DXA. A linear regression using NTD produced a linear correlation coefficient of 0.93 (P<0.001). These results are consistent with previously reported simulation and in vitro studies. In conclusion, although x-ray methods are effective in bone mass assessment, osteoporosis remains one of the largest undiagnosed and under-diagnosed diseases in the world today. The research described here should enable significant expansion of diagnosis and monitoring of osteoporosis through a desktop device that ultrasonically assesses bone mass at the 1/3rd radius. PMID:23312957

  8. A controlled trial of the effect of milk basic protein (MBP) supplementation on bone metabolism in healthy menopausal women.

    PubMed

    Aoe, Seiichiro; Koyama, Takao; Toba, Yasuhiro; Itabashi, Akira; Takada, Yukihiro

    2005-12-01

    Milk has more beneficial effects on bone health than other food sources. Recent in vitro and in vivo studies have shown that milk whey protein, especially its basic protein fraction (milk basic protein, MBP), contains several components capable of promoting bone formation and inhibiting bone resorption. The object of this study was to examine the effect of MBP on the bone metabolism of healthy menopausal women. Thirty-two healthy menopausal women were randomly assigned to treatment with either placebo or MBP (40 mg per day) for 6 months. The bone mineral density (BMD) of the lumbar vertebrae L2-L4 of each subject was measured by dual-energy X-ray absorptiometry (DXA) at 0 and 6 months of treatment. Serum and urine indices of bone metabolism were measured at 0, 3 and 6 months. Twenty-seven subjects who completed the study in accordance with the protocol were included in the analysis. The mean rate of gain of lumbar BMD in the MBP group (1.21%) was significantly higher than in the placebo group (-0.66%, P=0.046). When compared with the placebo group, urinary cross-linked N-telopeptides of type-I collagen (NTx) were significantly decreased in the MBP group at 6 months, but no significant difference in serum osteocalcin was observed between the two groups. The urinary NTx excretion was found to be related to serum osteocalcin in the MBP group at 3 and 6 months, indicating that MBP maintained the balance of bone remodeling. These results suggested that MBP supplementation was effective in preventing bone loss in menopausal women and that this improvement in BMD may be primarily mediated through the inhibition of bone resorption while maintaining the balance of bone remodeling by MBP supplementation. PMID:16133638

  9. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    PubMed

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (P<0.009) tibial bone mineral density (BMD) and bone mineral content (BMC) and lower (P=0.05) lipid peroxidation compared to the CO-fed rats. Reduced lipid peroxidation was associated with increased tibial BMD (r2=0.08, P=0.02) and BMC (r2=0.71, P=0.01). On the other hand, rats fed FO or MO, rich in alpha-linolenic acid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage. PMID:21672645

  10. Preliminary study report: topological texture features extracted from standard radiographs of the heel bone are correlated with femoral bone mineral density

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Lutz, J.; Koerner, M.; Notohamiprodjo, M.; Reiser, M.

    2009-02-01

    With the growing number of eldery patients in industrialized nations the incidence of geriatric, i.e. osteoporotic fractures is steadily on the rise. It is of great importance to understand the characteristics of hip fractures and to provide diagnostic tests for the assessment of an individual's fracture-risk that allow to take preventive action and give therapeutic advice. At present, bone-mineral-density (BMD) obtained from DXA (dual-energy x-ray-absorptiometry) is the clinical standard of reference for diagnosis and follow-up of osteoporosis. Since availability of DXA - other than that of clinical X-ray imaging - is usually restricted to specialized medical centers it is worth trying to implement alternative methods to estimate an individual's BMD. Radiographs of the peripheral skeleton, e.g. the ankle, range among the most ordered diagnostic procedures in surgery for exclusion or confirmation of fracture. It would be highly beneficial if - as a by-product of conventional imaging - one could obtain a quantitative parameter that is closely correlated with femoral BMD in addition to the original diagnostic information, e.g. fracture status at the peripheral site. Previous studies could demonstrate a correlation between calcaneal BMD and osteoporosis. The objective of our study was to test the hypothesis that topological analysis of calcaneal bone texture depicted by a lateral x-ray projection of the ankle allows to estimate femoral BMD. Our analysis on 34 post-menopausal patients indicate that texture properties based on graylevel topology in calcaneal x-ray-films are closely correlated with BMD at the hip and may qualify as a substitute indicator of femoral fracture risk.

  11. Masticatory demands induce region-specific changes in mandibular bone density in growing rats.

    PubMed

    Mavropoulos, Anestis; Ammann, Patrick; Bresin, Andrea; Kiliaridis, Stavros

    2005-07-01

    This study investigates the structural adaptation of the mandibular bone when subjected to different masticatory functional and mechanical demands during growth. The effect of two experimental factors, the insertion of a bite block and the alteration of food consistency, on the bone mineral density (BMD) of the mandible was investigated in growing rats. Fifty-two male albino rats were divided into two equal groups, fed with either the standard hard diet or soft diet, at the age of four weeks. After two weeks, half the animals in both groups had their upper molars fitted with an upper posterior bite block. The remaining animals served as a control. Region-specific BMD of the mandible was subsequently measured using dual-energy X-ray absorptiometry (DXA). Soft diet and the consequent reduction of the forces applied to the mandible during mastication resulted in the reduction of BMD in all regions under study. The insertion of the bite-opening appliance (bite block) and the resulting stretching of the soft tissues led to the application of a continuous light force on the lower molars, which was associated with a significant increase of the BMD in the part of the alveolar process just below the root apices. These results raise the question of whether orthodontic treatment with similar appliances may have some, previously unsuspected, short- or long-term effects on the mandibular bone during growth and whether their effects depend on the individual soft-tissue characteristics. PMID:16097232

  12. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus.

    PubMed

    Gerdhem, P; Isaksson, A; Akesson, K; Obrant, Karl J

    2005-12-01

    Bone density, bone turnover and fracture susceptibility were evaluated in 1,132 randomly recruited women, all 75 years old. Seventy-four of the women had diabetes, while 1,058 women did not. Areal bone mineral density (aBMD) of the hip and lumbar spine was investigated by dual energy X-ray absorptiometry (DXA), and bone mass of the calcaneus was measured by ultrasound. Urinary deoxypyridinoline/creatinine (U-DPD/Crea) and serum C-terminal cross-linked telopeptide of type 1 collagen (S-CTX) were assessed as markers of bone resorption. Serum bone-specific alkaline phosphatase (S-bone ALP) and serum osteocalcin (S-OC) were assessed as markers of bone formation. Also, serum 25(OH) vitamin D and serum parathyroid hormone (S-PTH) were assessed. Fracture susceptibility was evaluated retrospectively and prospectively for up to 6.5 years. In diabetic women, the aBMD of the femoral neck was 11% higher (p<0.001), and BMD of the lumbar spine was 8% higher (p=0.002) than in non-diabetic women. There was no difference in bone mass by ultrasound of the calcaneus. Women with diabetes had higher BMD of the femoral neck (p<0.001) and lumbar spine (p=0.03) also after correction for differences in body weight. In diabetic women, U-DPD/Crea, S-CTX, and S-OC were decreased when compared with non-diabetic women (p=0.001 or less). After correction for covariance of body weight and plasma creatinine, S-CTX (p<0.001) and S-OC (p<0.001) were still lower in the diabetic women. Diabetic patients had hypovitaminosis D (p=0.008), a difference explained by differences in time spent outdoors and body weight. S-PTH did not differ between the groups. Women with diabetes had no more lifetime fractures (52%) than women without diabetic disease (57%), (p=0.31). This study shows that elderly women with diabetes and without severe renal insufficiency have high bone mass and low bone turnover. The high bone mass and low bone turnover is not likely to have a strong influence on fracture susceptibility

  13. What Happens to bone health during and after spaceflight?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.

    2006-01-01

    Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.

  14. Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-Duration Missions as Fitted with an Exponential Function

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2007-01-01

    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) before and after flight on astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts ( by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members -- a small number of whom flew on more than one mission -- were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: i) BMD change on landing day (day 0) and ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2-9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.

  15. Measurement of the subcutaneous fat in the distal forearm by single photon absorptiometry

    SciTech Connect

    Hassager, C.; Borg, J.; Christiansen, C.

    1989-02-01

    The influence of subcutaneous fat on single photon (/sup 125/I) absorptiometry (SPA) measurement of bone mineral content of the distal forearm was investigated. A fat correction model was tested by measurements on eight lean subjects with different amounts of porcine fat around their forearm, and further validated from measurements on 128 females. In addition, it is shown that the fat content in the distal forearm can be measured by SPA with a short-term precision at 1.9% in an obese subject and that it correlates well with total body fat (r2 = .7) measured by dual photon absorptiometry, skinfold thickness (r2 = .5), and body mass index (r2 = .6). By using this method in a double-blind placebo-controlled trial, hormonal substitutional therapy significantly decreased the forearm fat content without affecting the body weight in postmenopausal osteoporotic women.

  16. Use of MR-based trabecular bone microstructure analysis at the distal radius for osteoporosis diagnostics: a study in post-menopausal women with breast cancer and treated with aromatase inhibitor

    PubMed Central

    Baum, Thomas; Karampinos, Dimitrios C.; Seifert-Klauss, Vanadin; Pencheva, Tsvetelina D.; Jungmann, Pia M.; Rummeny, Ernst J.; Müller, Dirk; Bauer, Jan S.

    2016-01-01

    Summary Purpose Treatment with aromatase inhibitor (AI) is recommended for post-menopausal women with hormone-receptor positive breast cancer. However, AI therapy is known to induce bone loss leading to osteoporosis with an increased risk for fragility fractures. The purpose of this study was to investigate whether changes of magnetic resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarker can already be detected in subjects with AI intake but still without evidence for osteoporosis according to dual energy X-ray absorptiometry (DXA)-based bone mineral density (BMD) measurements as current clinical gold standard. Methods Twenty-one postmenopausal women (62±6 years of age) with hormone-receptor positive breast cancer, ongoing treatment with aromatase inhibitor for 23±15 months, and no evidence for osteoporosis (current DXA T-score greater than −2.5) were recruited for this study. Eight young, healthy women (24±2 years of age) were included as controls. All subjects underwent 3 Tesla magnetic resonance imaging (MRI) of the distal radius to assess the trabecular bone microstructure. Results Trabecular bone microstructure parameters were not significantly (p>0.05) different between subjects with AI intake and controls, including apparent bone fraction (0.42±0.03 vs. 0.42±0.05), trabecular number (1.95±0.10 mm−1 vs 1.89±0.15 mm−1), trabecular separation (0.30±0.03 mm vs 0.31±0.06 mm), trabecular thickness (0.21±0.01 mm vs 0.22±0.02 mm), and fractal dimension (1.70±0.02 vs. 1.70±0.03). Conclusion These findings suggest that the initial deterioration of trabecular bone microstructure as measured by MRI and BMD loss as measured by DXA occur not sequentially but rather simultaneously. Thus, the use of MR-based trabecular bone microstructure assessment is limited as early diagnostic biomarker in this clinical setting. PMID:27252740

  17. Bone Mass and Strength in School-Age Children Exhibit Sexual Dimorphism Related to Differences in Lean Mass: The Generation R Study.

    PubMed

    Medina-Gomez, Carolina; Heppe, Denise Hm; Yin, Jia-Lian; Trajanoska, Katerina; Uitterlinden, André G; Beck, Thomas J; Jaddoe, Vincent Wv; Rivadeneira, Fernando

    2016-05-01

    Bone strength, a key determinant of fracture risk, has been shown to display clear sexual dimorphism after puberty. We sought to determine whether sex differences in bone mass and hip bone geometry as an index of strength exist in school-age prepubertal children and the degree to which the differences are independent of body size and lean mass. We studied 3514 children whose whole-body and hip scans were measured using the same densitometer (GE-Lunar iDXA) at a mean age of 6.2 years. Hip dual-energy X-ray absorptiometry (DXA) scans underwent hip structural analyses (HSA) with derivation of bone strength indices. Sex differences in these parameters were assessed by regression models adjusted for age, height, ethnicity, weight, and lean mass fraction (LMF). Whole-body bone mineral density (BMD) and bone mineral content (BMC) levels were 1.3% and 4.3% higher in girls after adjustment by LMF. Independent of LMF, boys had 1.5% shorter femurs, 1.9% and 2.2% narrower shaft and femoral neck with 1.6% to 3.4% thicker cortices than girls. Consequent with this geometry configuration, girls observed 6.6% higher stresses in the medial femoral neck than boys. When considering LMF, the sexual differences on the derived bone strength indices were attenuated, suggesting that differences in muscle loads may reflect an innate disadvantage in bone strength in girls, as consequence of their lower muscular acquisition. In summary, we show that bone sexual dimorphism is already present at 6 years of age, with boys having stronger bones than girls, the relation of which is influenced by body composition and likely attributable to differential adaptation to mechanical loading. Our results support the view that early life interventions (ie, increased physical activity) targeted during the pre- and peripubertal stages may be of high importance, particularly in girls, because before puberty onset, muscle mass is strongly associated with bone density and geometry in children. © 2015 American

  18. Tibolone increases bone mineral density but also relapse in breast cancer survivors: LIBERATE trial bone substudy

    PubMed Central

    2012-01-01

    Introduction The Livial Intervention Following Breast Cancer: Efficacy, Recurrence and Tolerability Endpoints (LIBERATE: Clinical http://Trials.gov number NCT00408863), a randomized, placebo-controlled, double-blind trial that demonstrated that tibolone (Livial), a tissue-selective hormone-replacement therapy (HRT), increased breast cancer (BC) recurrence HR 1.40 (95% CI, 1.14 to 1.70; P = 0.001). A subgroup of women was entered into a study of bone mineral density (BMD). Methods Women with surgically excised primary BC (T1-3, N0-2, M-0) within the last 5 years, complaining of vasomotor symptoms, were assigned to tibolone, 2.5 mg daily, or placebo treatment for a maximum of 5 years. The BMD substudy enrolled 763 patients, using dual-energy X-ray absorptiometry (DXA) scanning at baseline and at 2 years. Results In the bone substudy, 699 of 763 women were eligible (345 allocated to tibolone, and 354, to placebo). After undergoing DXA scans, 300 (43%) women had normal BMD; 317 (45%), osteopenia; and 82 (11.7%), osteoporosis. Low body-mass index (P < 0.001), Asian race (P < 0.001), and late age at menarche (P < 0.04) predicted low bone mass at baseline. Tibolone increased BMD by 3.2% at the lumbar spine and 2.9% at the hip compared with placebo (both P < 0.001). The majority of fractures (55%) occurred in osteopenic patients. Women with normal BMD had increased recurrence with tibolone, 22 (15.6%) of 141 compared with placebo, 11 (6.9%) of 159 (P = 0.016), whereas no increased BC recurrence was seen in women with low BMD; 15 (7.4%) of 204 taking tibolone versus 13 (6.7%) of 195 taking placebo. Conclusions Tibolone is contraindicated after BC treatment, as it increases BMD and BC recurrence. Risk of BC recurrence was elevated in BC women with normal BMD (compared with low) who took tibolone. PMID:22251615

  19. Trabecular bone score in healthy ageing

    PubMed Central

    Bazzocchi, A; Ponti, F; Diano, D; Amadori, M; Albisinni, U; Battista, G

    2015-01-01

    Objective: The main aim of this work was to report on trabecular bone score (TBS) by dual-energy X-ray absorptiometry (DXA) of healthy Italian subjects to be used as a reference standard for future study in clinical and research settings. The secondary aim was to investigate the link between TBS and conventional parameters of bone and body composition by DXA. Methods: 250 individuals of 5 age bands (spanning from 18 to 70 years of age, equally distributed for both age and sex) were prospectively recruited. A lumbar spine (LS) DXA scan (Lunar iDXA™; GE Healthcare, Madison, WI) was acquired for each subject and then analysed with the latest version of TBS iNsight v. 2.1 (Med-Imaps, Pessac, France) software. LS bone mineral density (LS BMD), Z-score, T-score and TBS values were collected. Pearson's test was used to investigate the correlations between TBS and LS BMD and the influence of age, body mass index (BMI) and body composition on these parameters. Results: A significant decrease of TBS and LS BMD was observed with ageing in both males (TBS mean values from 1.486 to 1.374; LS BMD mean values from 1.219 to 1.187) and females (TBS mean values from 1.464 to 1.306; LS BMD mean values from 1.154 to 1.116). No statistically significant difference was achieved among males and females of the same age group for both TBS and LS BMD, with the exception of the fifth age group. A significant correlation was found between LS BMD and TBS values in both sexes (r  = 0.555–0.655, p < 0.0001). BMI influenced LS BMD but not TBS. TBS values were inversely correlated with some fat mass parameters, in particular with visceral adipose tissue (in males: r = −0.332, p < 0.001; in females: r = −0.348, p < 0.0001). No significant correlation was found between TBS and total lean mass, opposite to LS BMD (in males: r = 0.418; p < 0.0001; in females: r = −0.235; p < 0.001). Conclusion: This report is an attempt to start building a database for

  20. Depression, Antidepressants and Bone Health in Older Adults: A Systematic Review

    PubMed Central

    Gebara, Marie Anne; Shea, Marcie L.O.; Lipsey, Kim L; Teitelbaum, Steven L.; Civitelli, Roberto; Müller, Daniel J.; Reynolds, Charles F.; Mulsant, Benoit H.; Lenze, Eric J.

    2014-01-01

    Objectives Some studies have reportedan association between depression or serotonin reuptake inhibitor (SRI) antidepressant use and osteoporosis. This association raises concern about the widespread use of antidepressants in older adults and suggests the need to reevaluate this practice. This review examines the association of both depression and antidepressant use with bone health in older adults and the implications for treatment. Design A systematic review of studies of the association between depression or antidepressants and bone health in older adults. Setting All studies that measured depression or antidepressant exposure and bone mineral density (BMD). Participants Adults aged 60 and above. Measurements Age, site of BMD measurement by dual-energy x-ray absorptiometry (DXA), measure of depression or depressive symptoms, association between BMD changes and depression or antidepressant use. Results Nineteen observational studies met the final inclusion criteria; no experimental studies were found. Several cross-sectional and longitudinal studies found that depression or depressive symptoms were associated with decreased BMD. Few studies and only two longitudinal studies addressed the association between SRI antidepressant use and a decrease in BMD and they had conflicting results. Conclusion Depression and depressive symptoms are associated with decreased bone mass and accelerated bone loss in older adults; putative mechanisms underlying this relationship are discussed. There is insufficient evidence that SRI antidepressants adversely affect bone health.Thus, a change in current recommendations for the use of antidepressants in older adults is not justified at the present time. Given the high public health significance of this question, more studies are required to determine whether (and in whom) antidepressants may be deleterious for bone health. PMID:25039259

  1. Modifiable risk factors associated with bone deficits in childhood cancer survivors

    PubMed Central

    2012-01-01

    Background To determine the prevalence and severity of bone deficits in a cohort of childhood cancer survivors (CCS) compared to a healthy sibling control group, and the modifiable factors associated with bone deficits in CCS. Methods Cross-sectional study of bone health in 319 CCS and 208 healthy sibling controls. Bone mineral density (BMD) was measured by dual-energy x-ray absorptiometry (DXA). Generalized estimating equations were used to compare measures between CCS and controls. Among CCS, multivariable logistic regression was used to evaluate odds ratios for BMD Z-score ≤ -1. Results All subjects were younger than 18 years of age. Average time since treatment was 10.1 years (range 4.3 - 17.8 years). CCS were 3.3 times more likely to have whole body BMD Z-score ≤ -1 than controls (95% CI: 1.4-7.8; p = 0.007) and 1.7 times more likely to have lumbar spine BMD Z-score ≤ -1 than controls (95% CI: 1.0-2.7; p = 0.03). Among CCS, hypogonadism, lower lean body mass, higher daily television/computer screen time, lower physical activity, and higher inflammatory marker IL-6, increased the odds of having a BMD Z-score ≤ -1. Conclusions CCS, less than 18 years of age, have bone deficits compared to a healthy control group. Sedentary lifestyle and inflammation may play a role in bone deficits in CCS. Counseling CCS and their caretakers on decreasing television/computer screen time and increasing activity may improve bone health. PMID:22455440

  2. Differences in geriatric anthropometric data between DXA-based subject-specific estimates and non-age-specific traditional regression models

    PubMed Central

    Sukits, Alison L.; McCrory, Jean L.; Cham, Rakié

    2016-01-01

    Age, obesity, and gender can have a significant impact on the anthropometrics of adults aged 65 and older. The aim of this study was to investigate differences in body segment parameters derived using two methods: (1) a dual-energy x-ray absorptiometry (DXA) subject-specific method (Chambers et al., 2010) and (2) traditional regression models (de Leva, 1996). The impact of aging, gender, and obesity on the potential differences between these methods was examined. Eighty-three healthy older adults were recruited for participation. Participants underwent a whole-body DXA scan (Hologic QDR 1000/W). Mass, length, center of mass, and radius of gyration were determined for each segment. In addition, traditional regressions were used to estimate these parameters (de Leva, 1996). A mixed linear regression model was performed (α = 0.05). Method type was significant in every variable of interest except forearm segment mass. The obesity and gender differences that we observed translate into differences associated with using traditional regressions to predict anthropometric variables in an aging population. Our data point to a need to consider age, obesity, and gender when utilizing anthropometric data sets and to develop regression models that accurately predict body segment parameters in the geriatric population, considering gender and obesity. PMID:21844608

  3. Differences in geriatric anthropometric data between DXA-based subject-specific estimates and non-age-specific traditional regression models.

    PubMed

    Chambers, April J; Sukits, Alison L; McCrory, Jean L; Cham, Rakie

    2011-08-01

    Age, obesity, and gender can have a significant impact on the anthropometrics of adults aged 65 and older. The aim of this study was to investigate differences in body segment parameters derived using two methods: (1) a dual-energy x-ray absorptiometry (DXA) subject-specific method (Chambers et al., 2010) and (2) traditional regression models (de Leva, 1996). The impact of aging, gender, and obesity on the potential differences between these methods was examined. Eighty-three healthy older adults were recruited for participation. Participants underwent a whole-body DXA scan (Hologic QDR 1000/W). Mass, length, center of mass, and radius of gyration were determined for each segment. In addition, traditional regressions were used to estimate these parameters (de Leva, 1996). A mixed linear regression model was performed (α = 0.05). Method type was significant in every variable of interest except forearm segment mass. The obesity and gender differences that we observed translate into differences associated with using traditional regressions to predict anthropometric variables in an aging population. Our data point to a need to consider age, obesity, and gender when utilizing anthropometric data sets and to develop regression models that accurately predict body segment parameters in the geriatric population, considering gender and obesity. PMID:21844608

  4. Assessing Body Fat of Children by Skinfold Thickness, Bioelectrical Impedance Analysis, and Dual-Energy X-Ray Absorptiometry: A Validation Study Among Malay Children Aged 7 to 11 Years.

    PubMed

    Noradilah, Mohd Jonit; Ang, Yeow Nyin; Kamaruddin, Nor Azmi; Deurenberg, Paul; Ismail, Mohd Noor; Poh, Bee Koon

    2016-07-01

    This study aims to validate skinfold (SKF) and bioelectrical impedance analysis (BIA) against dual-energy X-ray absorptiometry (DXA) in determining body fat percentage (BF%) of Malay children aged 7 to 11 years. A total of 160 children had their BF% assessed using SKF and BIA, with DXA as the criterion method. Four SKF equations (SKFBray, SKFJohnston, SKFSlaughter, and SKFGoran) and 4 BIA equations (BIAManufacturer, BIAHoutkooper, BIARush, and BIAKushner) were used to estimate BF%. Mean age, weight, and height were 9.4 ± 1.1years, 30.5 ± 9.9 kg, and 131.3 ± 8.4 cm. All equations significantly underestimated BF% (P < .05). BIA equations had reasonable agreement with DXA and were independent of BF% with BIAManufacturer being the best equation. Although BIA underestimates BF% as compared with DXA, BIA was more suitable to measure BF% in a population that is similar to this study sample than SKF, suggesting a need to develop new SKF equations that are population specific. PMID:27073201

  5. Association with replication between estrogen-related receptor gamma (ESRRgamma) polymorphisms and bone phenotypes in women of European ancestry.

    PubMed

    Elfassihi, Latifa; Giroux, Sylvie; Bureau, Alexandre; Laflamme, Nathalie; Cole, David Ec; Rousseau, François

    2010-04-01

    Osteoporosis is a bone disease characterized by low bone mineral density (BMD), a highly heritable polygenic trait. Women are more prone than men to develop osteoporosis owing to a lower peak bone mass and accelerated bone loss at menopause. Lack of estrogen thus is a major risk factor for osteoporosis. In addition to having strong similarity to the estrogen receptor 1 (ESR1), the orphan nuclear estrogen-related receptor gamma (ESRRgamma) is widely expressed and shows overlap with ESR1 expression in tissues where estrogen has important physiologic functions. For these reasons, we have undertaken a study of ESRRgamma sequence variants in association with bone measurements [heel quantitative ultrasound (QUS) by measurements of broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (SI) and dual-energy X-ray absorptiometry (DXA) at the femoral neck (FN) and lumbar spine (LS)]. A silent variant was found to be associated with multiple bone measurements (LS, BUA, SOS, and SI), the p values ranging from .006 to .04 in a sample of 5144 Quebec women. The region of this variant was analyzed using the HapMap database and the Gabriel method to define a block of 20 kb. Using the Tagger method, eight TagSNPs were identified and genotyped in a sample of 1335 women. Four of these SNPs capture the five major block haplotypes. One SNP (rs2818964) and one haplotype were significantly associated with multiple bone measures. All SNPs involved in the associations were analyzed in two other sample sets with significant results in the same direction. These results suggest involvement of ESRRgamma in the determination of bone density in women. PMID:19821770

  6. Early injury to cortical and cancellous bone from induction chemotherapy for adolescents and young adults treated for acute lymphoblastic leukemia.

    PubMed

    Orgel, E; Mueske, N M; Wren, T A L; Gilsanz, V; Butturini, A M; Freyer, D R; Mittelman, S D

    2016-04-01

    Diminished bone density and skeletal fractures are common morbidities during and following therapy for acute lymphoblastic leukemia (ALL). While cumulative doses of osteotoxic chemotherapy for ALL have been reported to adversely impact bone density, the timing of onset of this effect as well as other changes to bone structure is not well characterized. We therefore conducted a prospective cohort study in pre-adolescent and adolescent patients (10-21years) newly diagnosed with ALL (n=38) to explore leukemia-related changes to bone at diagnosis and the subsequent impact of the first phase of chemotherapy ("Induction"). Using quantitative computerized tomography (QCT), we found that pre-chemotherapy bone properties were similar to age- and sex-matched controls. Subsequently over the one month Induction period, however, cancellous volumetric bone mineral density (vBMD) decreased markedly (-26.8%, p<0.001) with sparing of cortical vBMD (tibia -0.0%, p=0.860, femur -0.7%, p=0.290). The tibia underwent significant cortical thinning (average cortical thickness-1.2%, p<0.001; cortical area-0.4%, p=0.014), while the femur was less affected. Areal BMD (aBMD) concurrently measured by dual-energy X-ray absorptiometry (DXA) underestimated changes from baseline as compared to vBMD. Biochemical evidence revealed prevalent Vitamin D insufficiency and a net resorptive state at start and end of Induction. Our findings demonstrate for the first time that significant alterations to cancellous and cortical bone develop during the first month of treatment, far earlier during ALL therapy than previously considered. Given that osteotoxic chemotherapy is integral to curative regimens for ALL, these results provide reason to re-evaluate traditional approaches toward chemotherapy-associated bone toxicity and highlight the urgent need for investigation into interventions to mitigate this common adverse effect. PMID:26851412

  7. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures.

    PubMed

    Patsch, Janina M; Li, Xiaojuan; Baum, Thomas; Yap, Samuel P; Karampinos, Dimitrios C; Schwartz, Ann V; Link, Thomas M

    2013-08-01

    The goal of this magnetic resonance (MR) imaging study was to quantify vertebral bone marrow fat content and composition in diabetic and nondiabetic postmenopausal women with fragility fractures and to compare them with nonfracture controls with and without type 2 diabetes mellitus. Sixty-nine postmenopausal women (mean age 63 ± 5 years) were recruited. Thirty-six patients (47.8%) had spinal and/or peripheral fragility fractures. Seventeen fracture patients were diabetic. Thirty-three women (52.2%) were nonfracture controls. Sixteen women were diabetic nonfracture controls. To quantify vertebral bone marrow fat content and composition, patients underwent MR spectroscopy (MRS) of the lumbar spine at 3 Tesla. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry (DXA) of the hip and lumbar spine (LS) and quantitative computed tomography (QCT) of the LS. To evaluate associations of vertebral marrow fat content and composition with spinal and/or peripheral fragility fractures and diabetes, we used linear regression models adjusted for age, race, and spine volumetric bone mineral density (vBMD) by QCT. At the LS, nondiabetic and diabetic fracture patients had lower vBMD than controls and diabetics without fractures (p = 0.018; p = 0.005). However, areal bone mineral density (aBMD) by DXA did not differ between fracture and nonfracture patients. After adjustment for age, race, and spinal vBMD, the prevalence of fragility fractures was associated with -1.7% lower unsaturation levels (confidence interval [CI] -2.8% to -0.5%, p = 0.005) and +2.9% higher saturation levels (CI 0.5% to 5.3%, p = 0.017). Diabetes was associated with -1.3% (CI -2.3% to -0.2%, p = 0.018) lower unsaturation and +3.3% (CI 1.1% to 5.4%, p = 0.004) higher saturation levels. Diabetics with fractures had the lowest marrow unsaturation and highest saturation. There were no associations of marrow fat content with diabetes or fracture. Our results

  8. Prevalence of Osteoporosis and Low Bone Mass in Older Chinese Population Based on Bone Mineral Density at Multiple Skeletal Sites.

    PubMed

    Lu, Yi-Chien; Lin, Ying Chin; Lin, Yen-Kuang; Liu, Yi-Jui; Chang, Kwang-Hwa; Chieng, Poon-Ung; Chan, Wing P

    2016-01-01

    Diagnosis of osteoporosis is based on bone mineral density (BMD) measurement, which is site dependent and commonly discordant between measurement sites. We aimed to determine the prevalence of osteoporosis diagnosed based on BMD T-scores measured by dual-energy x-ray absorptiometry (DXA) at different sites: the lumbar spine (LS) alone, femoral neck (FN) alone, or both. A total of 1712 women and 2028 men with LS and FN BMD measurements were enrolled. Over 50% discordance was found between osteoporosis classifications based on T-scores measured at the LS and FN. Use of the lowest T-scores measured at both the LS and right and left FN (rather than one site) significantly increased the prevalence of osteoporosis from 4.03 to 10.75% in postmenopausal women and 1.82 to 4.29% in men aged ≧50 years (p < 0.001). The trends of overall and age-adjusted prevalence of osteoporosis were similar in women and men. Osteoporosis was diagnosed at a higher rate if the USA reference rather than the Asia reference was used to calculate the T-score (26.64% vs. 10.75%). In conclusion, diagnosis based on the lowest T-score from multiple site BMD measurement can increase the prevalence of osteoporosis, demonstrating the higher sensitivity of the multiple site measurement strategy. PMID:27143609

  9. Prevalence of Osteoporosis and Low Bone Mass in Older Chinese Population Based on Bone Mineral Density at Multiple Skeletal Sites

    PubMed Central

    Lu, Yi-Chien; Lin, Ying Chin; Lin, Yen-Kuang; Liu, Yi-Jui; Chang, Kwang-Hwa; Chieng, Poon-Ung; Chan, Wing P.

    2016-01-01

    Diagnosis of osteoporosis is based on bone mineral density (BMD) measurement, which is site dependent and commonly discordant between measurement sites. We aimed to determine the prevalence of osteoporosis diagnosed based on BMD T-scores measured by dual-energy x-ray absorptiometry (DXA) at different sites: the lumbar spine (LS) alone, femoral neck (FN) alone, or both. A total of 1712 women and 2028 men with LS and FN BMD measurements were enrolled. Over 50% discordance was found between osteoporosis classifications based on T-scores measured at the LS and FN. Use of the lowest T-scores measured at both the LS and right and left FN (rather than one site) significantly increased the prevalence of osteoporosis from 4.03 to 10.75% in postmenopausal women and 1.82 to 4.29% in men aged ≧50 years (p < 0.001). The trends of overall and age-adjusted prevalence of osteoporosis were similar in women and men. Osteoporosis was diagnosed at a higher rate if the USA reference rather than the Asia reference was used to calculate the T-score (26.64% vs. 10.75%). In conclusion, diagnosis based on the lowest T-score from multiple site BMD measurement can increase the prevalence of osteoporosis, demonstrating the higher sensitivity of the multiple site measurement strategy. PMID:27143609

  10. Reproducibility of dual-photon absorptiometry using a clinical phantom

    SciTech Connect

    DaCosta, M.; DeLaney, M.; Goldsmith, S.J.

    1985-05-01

    The use of dual-photon absorptiometry (DPA) bone mineral density (BMD) to monitor bone for diagnosis and monitoring therapy of osteoporosis has been established. The objective of this study is to determine the reproducibility of DPA measurements. A phantom was constructed using a section of human boney pelvis and lumbo-sacral spine. Provisions were made to mimic changes in patient girth. To evaluate the DPA reproducibility within a single day, 12 consecutive studies were performed on the phantom using standard acquisition and processing procedures. The mean BMD +-1 SD in gms/cm/sup 2/ (BMD-bar)of lumbar vertebrae 2-4 was 0.771 +- 0.007 with a 0.97% coefficient of variation (1SD) (CV). This evaluation was repeated 7 times over the next 4 months with the performance of 3 to 6 studies each time, the maximum CV found was 1.93. In order to evaluate the DPA reproducibility with time, phantom studies were performed over a 7 month period which included a 153-Gd source change. The BMD-bar was 0.770 +- 0.017 with a 2.15CV. DPA reproducibility with patient girth changes was evaluated by performing the phantom studies at water depths of 12.5, 17.0 and 20.0cm. Five studies of each were performed using standard acquisition and processing procedures. The BMD-bar was 0.779 +- 0.012 with a 1.151CV. based on these results, BMD measurements by DPA are reproducible within 2%. This reliability is maintained for studies performed over extended period of time and are independent of changes in patient girth.

  11. Effect of Low-Magnitude Mechanical Stimuli on Bone Density and Structure in Pediatric Crohn's Disease: A Randomized Placebo-Controlled Trial.

    PubMed

    Leonard, Mary B; Shults, Justine; Long, Jin; Baldassano, Robert N; Brown, J Keenan; Hommel, Kevin; Zemel, Babette S; Mahboubi, Soroosh; Howard Whitehead, Krista; Herskovitz, Rita; Lee, Dale; Rausch, Joseph; Rubin, Clinton T

    2016-06-01

    Pediatric Crohn's Disease (CD) is associated with low trabecular bone mineral density (BMD), cortical area, and muscle mass. Low-magnitude mechanical stimulation (LMMS) may be anabolic. We conducted a 12-month randomized double-blind placebo-controlled trial of 10 minutes daily exposure to LMMS (30 Hz frequency, 0.3 g peak-to-peak acceleration). The primary outcomes were tibia trabecular BMD and cortical area by peripheral quantitative CT (pQCT) and vertebral trabecular BMD by QCT; additional outcomes included dual-energy X-ray absorptiometry (DXA) whole body, hip and spine BMD, and leg lean mass. Results were expressed as sex-specific Z-scores relative to age. CD participants, ages 8 to 21 years with tibia trabecular BMD <25th percentile for age, were eligible and received daily cholecalciferol (800 IU) and calcium (1000 mg). In total, 138 enrolled (48% male), and 121 (61 active, 60 placebo) completed the 12-month trial. Median adherence measured with an electronic monitor was 79% and did not differ between arms. By intention-to-treat analysis, LMMS had no significant effect on pQCT or DXA outcomes. The mean change in spine QCT trabecular BMD Z-score was +0.22 in the active arm and -0.02 in the placebo arm (difference in change 0.24 [95% CI 0.04, 0.44]; p = 0.02). Among those with >50% adherence, the effect was 0.38 (95% CI 0.17, 0.58, p < 0.0005). Within the active arm, each 10% greater adherence was associated with a 0.06 (95% CI 0.01, 1.17, p = 0.03) greater increase in spine QCT BMD Z-score. Treatment response did not vary according to baseline body mass index (BMI) Z-score, pubertal status, CD severity, or concurrent glucocorticoid or biologic medications. In all participants combined, height, pQCT trabecular BMD, and cortical area and DXA outcomes improved significantly. In conclusion, LMMS was associated with increases in vertebral trabecular BMD by QCT; however, no effects were observed at DXA or pQCT sites. © 2016 American Society for Bone

  12. The Benefit of Bone Health by Drinking Coffee among Korean Postmenopausal Women: A Cross-Sectional Analysis of the Fourth & Fifth Korea National Health and Nutrition Examination Surveys

    PubMed Central

    Park, Sang Min; Shin, Doosup; Joh, Hee-Kyung; Cho, Eunyoung

    2016-01-01

    Purpose Although the concern about coffee-associated health problems is increasing, the effect of coffee on osteoporosis is still conflicting. This study aimed to determine the relationship between coffee consumption and bone health in Korean postmenopausal women. Methods A population-based, cross-sectional study was performed using a nationally representative sample of the Korean general population. All 4,066 postmenopausal women (mean age 62.6 years) from the fourth and fifth Korean National Health and Nutrition Examination Survey (2008–2011), who completed the questionnaire about coffee consumption and had data of dual-energy X-ray absorptiometry (DXA) examination. Bone mineral density (BMD) was measured using DXA at the femoral neck and lumbar spine and osteoporosis was defined by World Health Organization T-score criteria in addition to self-report of current anti-osteoporotic medication use. Results After adjusting for various demographic and lifestyle confounders (including hormonal factors), subjects in the highest quartile of coffee intake had 36% lower odds for osteoporosis compared to those in the lowest quartile (Adjusted odds ratio [aOR] = 0.64; 95% confidence interval [CI], 0.43–0.95; P for trend = 0.015). This trend was consistent in osteoporosis of lumbar spine and femoral neck (aOR = 0.65 and 0.55; P for trend = 0.026 and 0.003, respectively). In addition, age- and body mass index (BMI)-adjusted BMD of the femoral neck and lumbar spine increased with higher coffee intake (P for trend = 0.019 and 0.051, respectively). Conclusions Coffee consumption may have protective benefits on bone health in Korean postmenopausal women in moderate amount. Further, prospective studies are required to confirm this association. PMID:26816211

  13. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice

    PubMed Central

    Harvey, N.C.; Glüer, C.C.; Binkley, N.; McCloskey, E.V.; Brandi, M-L.; Cooper, C.; Kendler, D.; Lamy, O.; Laslop, A.; Camargos, B.M.; Reginster, J-Y.; Rizzoli, R.; Kanis, J.A.

    2015-01-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g. diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX. PMID:25988660

  14. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  15. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice.

    PubMed

    Harvey, N C; Glüer, C C; Binkley, N; McCloskey, E V; Brandi, M-L; Cooper, C; Kendler, D; Lamy, O; Laslop, A; Camargos, B M; Reginster, J-Y; Rizzoli, R; Kanis, J A

    2015-09-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX. PMID:25988660

  16. Bone mineral density reduction in adolescents with systemic erythematosus lupus: association with lack of vitamin D supplementation.

    PubMed

    Caetano, M; Terreri, M T; Ortiz, T; Pinheiro, M; Souza, F; Sarni, R

    2015-12-01

    The aim of this study is to evaluate body composition and the bone mineral density in female adolescents with juvenile systemic lupus erythematosus. Body composition (BC) and bone mineral density (BMD) were evaluated in an observational cohort study with 35 postmenarcheal adolescent females. The variables studied were as follows: current and cumulative corticosteroid dose, intake of supplements containing calcium and vitamin D, 24-h proteinuria, body mass index (BMI), and height for age (Z-score). BC was assessed using dual-energy X-ray absorptiometry (DXA) at two time points (median interval of 1.2 years). The fat mass index (FMI = fat mass in kilograms divided by the height in meters squared) and lean mass index (LMI = lean mass in kilograms divided by the height in meters squared) were calculated based on the DXA results. BMD was classified according to the International Society of Clinical Densitometry (low BMD for chronological age < -2.0 standard deviations). .The mean age of the subjects was 15.4 ± 1.8 years. Of patients, 54.3 % were normal weight, 22.8 % were overweight, 22.8 % were obese, and 8.6 % had short stature. Low BMD for chronological age was observed in 42.8 % of patients, and 60 % were not taking vitamin D. There was no significant difference between the two time points with respect to FMI, LMI, or body mass index Z-score (ZBMI); however, BMD has decreased significantly (p = 0.011). There was an association between not taking a vitamin D supplement and decreased BMD (p = 0.027). Almost half of the patients had altered nutritional status. The BMD decrease in adolescents with juvenile systemic lupus erythematosus (JSLE) was associated with the lack of vitamin D supplementation, highlighting the importance of well-defined vitamin D supplementation protocols. PMID:26227163

  17. Data Mining Activity for Bone Discipline: Calculating a Factor of Risk for Hip Fracture in Long-Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Ellman, R.; Sibonga, J. D.; Bouxsein, M. L.

    2010-01-01

    The factor-of-risk (Phi), defined as the ratio of applied load to bone strength, is a biomechanical approach to hip fracture risk assessment that may be used to identify subjects who are at increased risk for fracture. The purpose of this project was to calculate the factor of risk in long duration astronauts after return from a mission on the International Space Station (ISS), which is typically 6 months in duration. The load applied to the hip was calculated for a sideways fall from standing height based on the individual height and weight of the astronauts. The soft tissue thickness overlying the greater trochanter was measured from the DXA whole body scans and used to estimate attenuation of the impact force provided by soft tissues overlying the hip. Femoral strength was estimated from femoral areal bone mineral density (aBMD) measurements by dual-energy x-ray absorptiometry (DXA), which were performed between 5-32 days of landing. All long-duration NASA astronauts from Expedition 1 to 18 were included in this study, where repeat flyers were treated as separate subjects. Male astronauts (n=20) had a significantly higher factor of risk for hip fracture Phi than females (n=5), with preflight values of 0.83+/-0.11 and 0.36+/-0.07, respectively, but there was no significant difference between preflight and postflight Phi (Figure 1). Femoral aBMD measurements were not found to be significantly different between men and women. Three men and no women exceeded the theoretical fracture threshold of Phi=1 immediately postflight, indicating that they would likely suffer a hip fracture if they were to experience a sideways fall with impact to the greater trochanter. These data suggest that male astronauts may be at greater risk for hip fracture than women following spaceflight, primarily due to relatively less soft tissue thickness and subsequently greater impact force.

  18. Difference in Bone Mineral Density Change at the Lateral Femoral Cortices according to Administration of Different Bisphosphonate Agents

    PubMed Central

    Kim, Sungjun; Bang, Hyun Hee; Yoo, Hanna; Lim, Hyunsun; Jung, Woo Seok

    2016-01-01

    Background To retrospectively assess whether the response of subtrochanteric lateral cortex (STLC) is different according to the bisphosphonate agents in terms of bone mineral density (BMD) change. Methods A total of 149 subjects, who had 2- to 4-year interval follow-up of BMD using dual energy X-ray absorptiometry (DXA), were included in this retrospective study divided into following 3 groups: control group (no consumption of any anti-osteoporotic drugs, n=38), alendronate group (naïve alendronate users, n=48), risedronate group (naïve risedronate users, n=63). BMD was measured at the STLC and subtrochanteric medial cortex (STMC) in each patient by drawing rectangular ROIs at the bone cortices. The percent change of BMD at the STLC were compared between the aforementioned 3 groups by using analysis of covariance model to control five independent variables of age, body mass index, percent change of STMC, hip axis length, time interval between DXA examinations. Results The least square mean values±standard deviation of the percent change of BMD in the control, alendronate, and risedronate groups were 1.46±1.50, 2.23±1.26, and 6.96±1.11, respectively. The risedronate group showed significantly higher change of BMD percentage compared with the control (adjusted P=0.012) or alendronate (adjusted P=0.016) groups. Conclusions The percent change of BMD at the STLC in the risedronate user group was greater than the alendronate and control groups. The implication of these changes needs to be further verified. PMID:27294080

  19. Associations of genetic lactase non-persistence and sex with bone loss in young adulthood.

    PubMed

    Laaksonen, Marika M L; Impivaara, Olli; Sievänen, Harri; Viikari, Jorma S A; Lehtimäki, Terho J; Lamberg-Allardt, Christel J E; Kärkkäinen, Merja U M; Välimäki, Matti; Heikkinen, Jorma; Kröger, Liisa M; Kröger, Heikki P J; Jurvelin, Jukka S; Kähönen, Mika A P; Raitakari, Olli T

    2009-05-01

    Some studies have reported that after attainment of peak bone mass (PBM), slow bone loss may occur in both men and women; however, findings are inconsistent. Genetic factors play a significant role in bone loss, but the available evidence is conflicting. Genetic lactase non-persistence (lactase C/C(-13910) genotype) is suggested to increase risk for inadequate calcium intake predisposing to poorer bone health. We investigated whether this genotype is associated with PBM and bone loss in young Finnish adults. Subjects belong to the Cardiovascular Risk in Young Finns Study that is an ongoing multi-centre follow-up of atherosclerosis risk factors. From the original cohort, randomly selected subjects aged 20-29 participated in baseline bone mineral density (BMD) measurements (n=358), and in follow-up measurements 12 years later (n=157). Bone mineral content (BMC) and BMD at lumbar spine (LS) and femoral neck (FN) were measured at baseline and follow-up with dual energy X-ray absorptiometry (DXA). Lactase C/T(-13910) polymorphism was determined by PCR and allele-specific fluorogenic probes. Information on lifestyle was elicited with questionnaires. During the follow-up, bone loss at both bone sites was greater in males (LS BMD: -1.1%, FN BMD: -5.2%) than in females (LS BMD: +2.1%, FN BMD: -0.7%) (both bone sites p=0.001). Younger age predicted greater loss of FN BMC and BMD in females (p=0.013 and p=0.001, respectively). Increased calcium intake predicted FN BMD gain in both sexes (in females B=0.007 g/cm(2)/mg, p=0.002; in males B=0.006, p=0.045), and increased physical activity LS BMD gain in females (B=0.091 g/cm(2)/physical activity point, p=0.023). PBM did not differ between the lactase genotypes, but males with the CC(-13910) genotype seemed to be prone to greater bone loss during the follow-up (LS BMD: C/C vs. T/T p=0.081). In conclusion, bone loss in young adulthood was more common in males than in females and seemed to occur mainly at the femoral neck. Young

  20. Weight regulation and bone mass: a comparison between professional jockeys, elite amateur boxers, and age, gender and BMI matched controls.

    PubMed

    Dolan, Eimear; Crabtree, Nicola; McGoldrick, Adrian; Ashley, David T; McCaffrey, Noel; Warrington, Giles D

    2012-03-01

    The aim of this study was to compare bone mass between two groups of jockeys (flat: n = 14; national hunt: n = 16); boxers (n = 14) and age, gender and BMI matched controls (n = 14). All subjects underwent dual energy X-ray absorptiometry (DXA) scanning for assessment of bone mass, with measurements made of the total body, vertebra L2-4 and femoral neck. Body composition and the relative contribution of fat and lean mass were extrapolated from the results. Data were analysed in accordance with differences in body composition, in particular, height, lean mass, fat mass and age. Both jockey groups were shown to display lower bone mass than either the boxers or control group at a number of sites including total body bone mineral density (BMD) (1.019 ± 0.06 and 1.17 ± 1.05 vs. 1.26 ± 0.01 and 1.26 ± 0.06 g cm(-2) for flat, national hunt, boxer and control, respectively), total body bone mineral content (BMC) less head, L2-4 BMD and femoral neck BMD and BMC (p < 0.05). Regression analysis revealed that lean mass and height were the primary predictors of total body BMC, although additional group-specific influences were present which reduced bone mass in the flat jockey group and enhanced it in the boxers (R (2) = 0.814). Reduced bone mass in jockeys may be a consequence of reduced energy availability in response to chronic weight restriction and could have particular implications for these athletes in light of the high risk nature of the sport. In contrast, the high intensity, high impact training associated with boxing may have conveyed an osteogenic stimulus on these athletes. PMID:21773703

  1. Placental size at 19 weeks predicts offspring bone mass at birth: Findings from the Southampton Women’s Survey

    PubMed Central

    Crozier, SR; Winder, NR; Mahon, PA; Ntami, G; Godfrey, KM; Inskip, HM; Cooper, C

    2013-01-01

    Objectives In this study we investigate the relationships between placental size and neonatal bone mass and body composition, in a population based cohort. Study design 914 mother-neonate pairs were included. Placental dimensions were measured via ultrasound at 19 weeks gestation. Dual X-ray absorptiometry (DXA) was performed on the neonates within the first two weeks of life. Results We observed positive relationships between placental volume at 19 weeks, and neonatal bone area (BA; r=0.26, p<0.001), bone mineral content (BMC; r=0.25, p<0.001) and bone mineral density (BMD; r=0.10, p=0.001). Thus placental volume accounted for 6.25% and 1.2% of the variation in neonatal BMC and BMD respectively at birth. These associations remained after adjustment for maternal factors previously shown to be associated with neonatal bone mineral accrual (maternal height, smoking, walking speed in late pregnancy, serum 25(OH) vitamin D and triceps skinfold thickness). Conclusions We found that placental volume at 19 weeks gestation was positively associated with neonatal bone size and mineral content. These relationships appeared independent of those maternal factors known to be associated with neonatal bone mass, consistent with notion that such maternal influences might act through modulation of aspects of placental function, e.g. utero-placental blood flow or maternal nutrient concentrations, rather than placental size itself. Low placental volume early in pregnancy may be a marker of a reduced postnatal skeletal size and increased risk of later fracture. PMID:22640438

  2. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels.

    PubMed

    Pennisi, P; Signorelli, S S; Riccobene, S; Celotta, G; Di Pino, L; La Malfa, T; Fiore, C E

    2004-05-01

    Patients with vascular calcifications often have low bone mineral density (BMD), but it is still uncertain if osteoporosis and peripheral vascular disease (VD) are interrelated and linked by a common pathomechanism. Moreover, data on bone turnover in patients with advanced atherosclerosis are lacking. We measured BMD by dual-energy X-ray absorptiometry (DXA) and quantitative bone ultrasound (QUS), as well as the serum levels of osteocalcin (OC), bone-specific alkaline phosphatase (BAP), osteoprotegerin (OPG) and its ligand RANKL, and the urinary concentration of the C-terminal telopeptides of type I collagen (CrossLaps), in 36 patient (20 male and 16 female) with serious atherosclerotic involvement of the carotid and/or femoral artery to investigate the underlying mechanism of vascular and osseous disorders. Thirty age-matched and gender matched healthy individuals served as controls. After adjustment for age, BMD was significantly reduced at the lumbar spine in 23/36 (63%) patients (mean T score -1.71+/-1.42) and at the proximal femur in 34/36 (93%) patients (neck mean T score -2.5+/-0.88). Ten patients (27%) had abnormal QUS parameters. Gender and diabetes had no effect on the relationship between vascular calcification and bone density at any site measured. VD subjects had OC and BAP serum levels lower than controls (13.3+/-3.1 vs 27.7+/-3.3 ng/ml, P<0.01, and 8.4+/-2.3 vs 12.5+/-1.4 microg/l, P<0.01, respectively). Urinary CrossLaps excretion was not significantly different in patients with VD and in controls (257.9+/-138.9 vs 272.2+/-79.4 micro g/mmol Cr, respectively). Serum OPG and RANKL levels were similar in patients and in controls (3.5+/-1.07 vs 3.4+/-1.05 pmol/l, and 0.37+/-0.07 vs 0.36+/-0.06 pmol/l, respectively). We proved high occurrence of osteoporosis in VD, with evidence of age and gender independence. Negative bone remodelling balance would be a consequence of reduced bone formation, with no apparent increased activation of the OPG-RANKL system

  3. Bone mineral density in MPS IV A (Morquio syndrome type A).

    PubMed

    Kecskemethy, Heidi H; Kubaski, Francyne; Harcke, H T; Tomatsu, Shunji

    2016-02-01

    Mucopolysaccharidosis IV A (MPS IV A), Morquio A, is caused by deficiency in lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which is responsible for the catabolism of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S). Accumulation of GAGs results in disrupted cartilage formation and skeletal dysplasia. In this prospective cross-sectional study, bone mineral density (BMD) of the whole body (WB), lumbar spine (LS), and lateral distal femur (LDF) was acquired by dual-energy X-ray absorptiometry (DXA) on patients with MPS IV A. Functional abilities, medical history, Tanner score, and laboratory results were reviewed. Age and sex-matched norms were used to calculate Z-scores. Participants included 18 patients (13 females; 16 were unrelated) with a mean age of 21.4years (3.3 to 40.8years). While every patient was able to bear weight, 9 were full-time ambulators. Whole-body DXA could be obtained on only 6 patients (5 full-time ambulators) because of respiratory compromise caused by the position, presence of hardware, or positioning difficulties. Mean WB Z-score was -2.0 (range-0.3 to -4.1). Technical issues invalidating LS DXA in 8 patients included kyphosis at the thoracolumbar junction resulting in overlap of vertebrae in the posterior-anterior view. Mean LS BMD Z-score in full-time ambulators was -3.4 (range-1.6 to -5.0) and in the non-/partial ambulator was -4.0 (-3.7 to -4.2). Lateral distal femur BMD was acquired on every patient, and average Z-scores were -2 or less at all sites; full-time ambulators exhibited higher BMD. In conclusion, the LDF proved to be the most feasible site to measure in patients with MPS IV A. The higher LDF values in ambulators suggest this should be a consideration in promoting bone health for this group. PMID:26670863

  4. Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency.

    PubMed

    Coakley, Kathryn E; Douglas, Teresa D; Goodman, Michael; Ramakrishnan, Usha; Dobrowolski, Steven F; Singh, Rani H

    2016-05-01

    Phenylalanine hydroxylase (PAH) deficiency is an inherited metabolic disorder requiring life-long restriction of dietary protein and phenylalanine-free medical food. Low bone mineral density (BMD) is reported, but factors associated with BMD Z-score (standard deviations from normal) are unknown. We examined associations between clinical and dietary parameters and total BMD Z-score in PAH deficiency patients, and developed models to predict Z-score. Data collected from patients >4 years of age (n = 88; mean age = 18.8 y; 61 % female) included demographic, clinical, laboratory, and dietary intakes. Adjusted Spearman's correlation coefficients were calculated between parameters and TBMD Z-score, measured by dual energy x-ray absorptiometry (DXA). Parameters approaching significance (p-value < 0.10) were candidate predictors for four linear regression models predicting TBMD Z-score. To validate, model-predicted Z-scores were compared to DXA Z-scores. Mean TBMD Z-score was -0.326; 18 (20.4 %) had Z-score < -1. Z-scores were positively correlated with dietary vitamin D, calcium, and medical food intake and compliance with prescription, and negatively with dietary carbohydrate, sugar, caffeine intake, glycemic load, and prescribed medical food (grams protein/day; p-value < 0.05). The best model included medical food compliance, medical food intake, caffeine intake, and bone-specific alkaline phosphatase (r-square = 0.364). This model predicted Z-score category [normal or low (<-1)] with sensitivity = 66.7 %, likelihood ratio = 14.7, and AUC = 0.83 compared to DXA Z-score. No subjects had low BMD for chronological age (Z-score ≤ -2). Compliance with medical food prescription was the strongest predictor of TBMD Z-score. One model, if validated in a separate sample of patients with more cases of low BMD, showed potential to estimate TBMD Z-score using routine clinical patient parameters. PMID:26883219

  5. DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men

    PubMed Central

    Stults-Kolehmainen, M A; Stanforth, P R; Bartholomew, J B; Lu, T; Abolt, C J; Sinha, R

    2013-01-01

    Objective: The aim of this study was to determine whether the quantity of fat is different across the central (that is, android, trunk) and peripheral (that is, arm, leg and gynoid) regions among young African-American (AA), Asian (AS), Hispanic (HI) and non-Hispanic White (NHW) men. Subjects and Methods: A cohort of 852 men (18–30 years; mean total body fat percent (TBF%)=18.8±7.9, range=3.7–45.4) were assessed for body composition in five body regions via dual-emission X-ray absorptiometry (DXA). Results: HI men (21.8±8.3) had higher TBF% than AA (17.0±10.0), NHW (17.9±7.2) and AS (18.9±8.0) groups (P-values <0.0001). AS had a lower BMI (23.9±3.4) than all other groups, and NHW (24.7±3.2) had a lower BMI than HI (25.7±3.9) and AA (26.5±4.7; P-values<0.0001). A linear mixed model (LMM) revealed a significant ethnicity by region fat% interaction (P<0.0001). HI men had a greater fat% than NHW for every region (adjusted means (%); android: 29.6 vs 23.3; arm: 13.3 vs 10.6; gynoid: 27.2 vs 23.8; leg: 21.2 vs 18.3; trunk: 25.5 vs 20.6) and a greater fat% than AA for every region except the arm. In addition, in the android and trunk regions, HI had a greater fat% than AS, and AS had a higher fat% than AA. Finally, the android fat% for AS was higher than that of NHW. When comparing the region fat% within ethnicities, the android region was greater than the gynoid region for AS and HI, but did not differ for AA and NHW, and the arm region had the least fat% in all ethnicities. Conclusions: Fat deposition and body fat patterning varies by ethnicity. PMID:23507968

  6. Early loss of bone mineral density is correlated with a gain of fat mass in patients starting a protease inhibitor containing regimen: the prospective Lipotrip study

    PubMed Central

    2013-01-01

    Background HIV-infected patients starting antiretroviral treatment (ART) experience deep and early disorders in fat and bone metabolism, leading to concomitant changes in fat mass and bone mineral density. Methods We conducted a prospective study in treatment-naive HIV-infected patients randomized to receive two nucleoside reverse transcriptase inhibitors in combination with either a protease inhibitor (PI) or a non-nucleosidic reverse transcriptase inhibitor (NNRTI), to evaluate early changes in body composition, bone mineral density and metabolic markers as differentially induced by antiretroviral therapies. We measured changes in markers of carbohydrate, of fat and bone metabolism, and, using dual-emission X-ray absorptiometry (DXA), body composition and bone mineral density (BMD). Complete data on changes between baseline and after 21 months treatment were available for 35 patients (16 in the PI group and 19 in the NNRTI group). Results A significant gain in BMI and in total and lower limb fat mass was recorded only in patients receiving PI. A loss of lumbar BMD was observed in both groups, being higher with PI. Plasma markers of bone metabolism (alkaline phosphatase, osteocalcin, collagen crosslaps) and levels of parathormone and of 1,25diOH-vitamin D3 significantly increased in both groups, concomitant with a decline in 25OH-vitamin D3. Lipids and glucose levels increased in both groups but rise in triglyceride was more pronounced with PI. A correlation between loss of BMD and gain of fat mass is observed in patients starting PI. Conclusions We evidenced an early effect of ART on lipid and bone metabolisms. PI lead to a significant gain in fat mass correlated with a sharp drop in BMD but active bone remodelling is evident with all antiretroviral treatments, associated with low vitamin D levels and hyperparathyroidism. In parallel, signs of metabolic restoration are evident. However, early increases in lean and fat mass, triglycerides, waist circumference and

  7. Development of an Automated Bone Mineral Density Software Application: Facilitation Radiologic Reporting and Improvement of Accuracy.

    PubMed

    Tsai, I-Ta; Tsai, Meng-Yuan; Wu, Ming-Ting; Chen, Clement Kuen-Huang

    2016-06-01

    The conventional method of bone mineral density (BMD) report production by dictation and transcription is time consuming and prone to error. We developed an automated BMD reporting system based on the raw data from a dual energy X-ray absorptiometry (DXA) scanner for facilitating the report generation. The automated BMD reporting system, a web application, digests the DXA's raw data and automatically generates preliminary reports. In Jan. 2014, 500 examinations were randomized into an automatic group (AG) and a manual group (MG), and the speed of report generation was compared. For evaluation of the accuracy and analysis of errors, 5120 examinations during Jan. 2013 and Dec. 2013 were enrolled retrospectively, and the context of automatically generated reports (AR) was compared with the formal manual reports (MR). The average time spent for report generation in AG and in MG was 264 and 1452 s, respectively (p < 0.001). The accuracy of calculation of T and Z scores in AR is 100 %. The overall accuracy of AR and MR is 98.8 and 93.7 %, respectively (p < 0.001). The mis-categorization rate in AR and MR is 0.039 and 0.273 %, respectively (p = 0.0013). Errors occurred in AR and can be grouped into key-in errors by technicians and need for additional judgements. We constructed an efficient and reliable automated BMD reporting system. It facilitates current clinical service and potentially prevents human errors from technicians, transcriptionists, and radiologists. PMID:26644156

  8. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    SciTech Connect

    Riis, B.J.; Christiansen, C.

    1988-04-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement.

  9. Diminished bone strength is observed in adult women and men who sustained a mild trauma distal forearm fracture during childhood.

    PubMed

    Farr, Joshua N; Khosla, Sundeep; Achenbach, Sara J; Atkinson, Elizabeth J; Kirmani, Salman; McCready, Louise K; Melton, L Joseph; Amin, Shreyasee

    2014-10-01

    Children and adolescents who sustain a distal forearm fracture (DFF) owing to mild, but not moderate, trauma have reduced bone strength and cortical thinning at the distal radius and tibia. Whether these skeletal deficits track into adulthood is unknown. Therefore, we studied 75 women and 75 men (age range, 20 to 40 years) with a childhood (age < 18 years) DFF and 150 sex-matched controls with no history of fracture using high-resolution peripheral quantitative computed tomography (HRpQCT) to examine bone strength (ie, failure load) by micro-finite element (µFE) analysis, as well as cortical and trabecular bone parameters at the distal radius and tibia. Level of trauma (mild versus moderate) was assigned using a validated classification scheme, blind to imaging results. When compared to sex-matched, nonfracture controls, women and men with a mild trauma childhood DFF (eg, fall from standing height) had significant reductions in failure load (p < 0.05) of the distal radius, whereas women and men with a moderate trauma childhood DFF (eg, fall while riding a bicycle) had values similar to controls. Consistent findings were observed at the distal tibia. Furthermore, women and men with a mild trauma childhood DFF had significant deficits in distal radius cortical area (p < 0.05), and significantly lower dual-energy X-ray absorptiometry (DXA)-derived bone density at the radius, hip, and total body regions compared to controls (all p < 0.05). By contrast, women and men with a moderate trauma childhood DFF had bone density, structure, and strength that did not differ significantly from controls. These findings in young adults are consistent with our observations in children/adolescents with DFF, and they suggest that a mild trauma childhood DFF may presage suboptimal peak bone density, structure, and strength in young adulthood. Children and adolescents who suffer mild trauma DFFs may need to be targeted for lifestyle interventions to help achieve improved skeletal health

  10. Diminished Bone Strength Is Observed in Adult Women and Men Who Sustained a Mild Trauma Distal Forearm Fracture During Childhood

    PubMed Central

    Farr, Joshua N; Khosla, Sundeep; Achenbach, Sara J; Atkinson, Elizabeth J; Kirmani, Salman; McCready, Louise K; Melton, L Joseph; Amin, Shreyasee

    2015-01-01

    Children and adolescents who sustain a distal forearm fracture (DFF) owing to mild, but not moderate, trauma have reduced bone strength and cortical thinning at the distal radius and tibia. Whether these skeletal deficits track into adulthood is unknown. Therefore, we studied 75 women and 75 men (age range, 20 to 40 years) with a childhood (age <18 years) DFF and 150 sex-matched controls with no history of fracture using high-resolution peripheral quantitative computed tomography (HRpQCT) to examine bone strength (ie, failure load) by micro–finite element (µFE) analysis, as well as cortical and trabecular bone parameters at the distal radius and tibia. Level of trauma (mild versus moderate) was assigned using a validated classification scheme, blind to imaging results. When compared to sex-matched, nonfracture controls, women and men with a mild trauma childhood DFF (eg, fall from standing height) had significant reductions in failure load (p < 0.05) of the distal radius, whereas women and men with a moderate trauma childhood DFF (eg, fall while riding a bicycle) had values similar to controls. Consistent findings were observed at the distal tibia. Furthermore, women and men with a mild trauma childhood DFF had significant deficits in distal radius cortical area (p < 0.05), and significantly lower dual-energy X-ray absorptiometry (DXA)-derived bone density at the radius, hip, and total body regions compared to controls (all p < 0.05). By contrast, women and men with a moderate trauma childhood DFF had bone density, structure, and strength that did not differ significantly from controls. These findings in young adults are consistent with our observations in children/adolescents with DFF, and they suggest that a mild trauma childhood DFF may presage suboptimal peak bone density, structure, and strength in young adulthood. Children and adolescents who suffer mild trauma DFFs may need to be targeted for lifestyle interventions to help achieve improved skeletal

  11. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo

    PubMed Central

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-01-01

    Background and objective: Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). Methods: This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Results: Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Conclusion: Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life. PMID:26543419

  12. The Initial Slope of the Variogram, Foundation of the Trabecular Bone Score, Is Not or Is Poorly Associated With Vertebral Strength.

    PubMed

    Maquer, Ghislain; Lu, Yongtao; Dall'Ara, Enrico; Chevalier, Yan; Krause, Matthias; Yang, Lang; Eastell, Richard; Lippuner, Kurt; Zysset, Philippe K

    2016-02-01

    Trabecular bone score (TBS) rests on the textural analysis of dual-energy X-ray absorptiometry (DXA) to reflect the decay in trabecular structure characterizing osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible because prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly owing to an unrealistic setup and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings were used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation ("full vertebra"); 2) via the classical endplate embedding ("vertebral body"); or 3) via a ball joint to induce anterior wedge failure ("vertebral section"). High-resolution peripheral quantitative computed tomography (HR-pQCT) scans acquired from prior testing were used to simulate anterior-posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (F(exp)) and apparent failure stress (σexp) was assessed, and their relative contribution to a multilinear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with F(exp) and σexp , except for the "vertebral body" case (r(2) = 0.396, p = 0.028). Aside from the "vertebra section" setup where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing setup, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk. PMID:26234619

  13. A phase I feasibility study of multi-modality imaging assessing rapid expansion of marrow fat and decreased bone mineral density in cancer patients

    PubMed Central

    Hui, Susanta K; Arentsen, Luke; Sueblinvong, Thanasak; Brown, Keenan; Bolan, Pat; Ghebre, Rahel G; Downs, Levi; Shanley, Ryan; Hansen, Karen E.; Minenko, Anne G.; Takhashi, Yutaka; Yagi, Masashi; Zhang, Yan; Geller, Melissa; Reynolds, Margaret; Lee, Chung K; Blaes, Anne H.; Allen, Sharon; Zobel, Bruno Beomonte; Le, Chap; Froelich, Jerry; Rosen, Clifford; Yee, Douglas

    2014-01-01

    Purpose Cancer survivors are at an increased risk for fractures, but lack of effective and economical biomarkers limits quantitative assessments of marrow fat (MF), bone mineral density (BMD) and their relation in response to cytotoxic cancer treatment. We report dual energy CT (DECT) imaging, commonly used for cancer diagnosis, treatment and surveillance, as a novel biomarker of MF and BMD. Methods We validated DECT in pre-clinical and Phase I clinical trials and verified with water-fat MRI (WF-MRI), quantitative CT (QCT) and dual-energy X-ray absorptiometry (DXA). Basis material composition framework was validated using water and small-chain alcohols simulating different components of bone marrow. Histologic validation was achieved by measuring percent adipocyte in cadaver vertebrae and compared with DECT and WF-MRI. For a Phase I trial, sixteen patients with gynecologic malignancies (treated with oophorectomy, radiotherapy or chemotherapy) underwent DECT, QCT, WF-MRI and DXA before and 12 months after treatment. BMD and MF percent and distribution were quantified in lumbar vertebrae and the right femoral neck. Results Measured precision (3 mg/cm3) was sufficient to distinguish test solutions. Adiposity in cadaver bone histology was highly correlated with MF measured using DECT and WF-MRI (r = 0.80 and 0.77, respectively). In the clinical trial, DECT showed high overall correlation (r = 0.77, 95% CI: 0.69, 0.83) with WF-MRI. MF increased significantly after treatment (p<0.002). Chemotherapy and radiation caused greater increases in MF than oophorectomy (p<0.032). L4 BMD decreased 14% by DECT, 20% by QCT, but only by 5% by DXA (p<0.002 for all). At baseline, we observed a statistically significant inverse association between MF and BMD which was dramatically attenuated after treatment. Conclusion Our study demonstrated that DECT, similar to WF-MRI, can accurately measure marrow adiposity. Both imaging modalities show rapid increase in MF following cancer treatment

  14. Evolution and predictors of change in total bone mineral density over time in HIV-infected men and women in the Nutrition for Healthy Living Study

    PubMed Central

    Jacobson, DL; Spiegelman, D; Knox, TK; Wilson, IB

    2014-01-01

    Background Osteopenia is common in the era of effective antiretroviral therapy (ART), yet the etiology is unclear. We evaluated the association of host factors, disease severity and ART to changes in total body bone mineral density (Total BMD) over time in HIV-infected men (n=283) and women (n=96). Methods Total BMD was measured annually by whole body dual energy absorptiometry (DXA) and medical, dietary and behavioral history was collected. The median time from first to last DXA was 2.5 years (range 0.9 to 6.8). Using a repeated measures regression model, we identified variables independently associated with percent change in Total BMD between consecutive DXA exams (n=799 intervals), adjusted for age, race, sex, menopause and smoking. We estimated percent change in Total BMD over an average interval (one year) standardized for representative levels of each determinant in males, pre- and post-menopausal women. Results Median baseline age, CD4 and viral load were 42 years, 364 cells/mm3 and 2.7 log10 copies/ml, respectively. The estimated change in Total BMD for those not on ART was −0.37%/yr (95%CI −0.76, −0.02) for men, −0.08%/yr (95%CI −0.49, 0.33) for pre-menopausal women and −1.07%/yr (95%CI −1.86, −0.28) for post-menopausal women. Greater loss of Total BMD was associated with lower albumin, lower BMI, prednisone/hydrocortisone use, tenofovir use and longer duration of ddI. Strength training and long duration of d4T and saquinavir prevented or mitigated bone loss. For those on ART for 3 years (not including the above agents), the rate of loss was −0.57%/yr (95%CI −1.00, −0.14) for men, −0.28% (95%CI −0.71, 0.15 ) for pre-menopausal women and −1.27% (95%CI −2.07, −0.47) for post menopausal women. Post-menopausal women had greater loss than pre-menopausal women and men. Conclusion Low body weight, low albumin, catabolic steroid use and menopause may accelerate bone loss, and strength training may be protective. Tenofovir and dd

  15. Supplementation of L-arginine prevents glucocorticoid-induced reduction of bone growth and bone turnover abnormalities in a growing rat model.

    PubMed

    Pennisi, Pietra; D'Alcamo, Maria Antonia; Leonetti, Concetta; Clementi, Anna; Cutuli, Vincenza Maria; Riccobene, Stefania; Parisi, Natalia; Fiore, Carmelo Erio

    2005-01-01

    The present study was designed to evaluate the effects of glucocorticoid (GC) treatment on bone turnover and bone mineral density in the growing rat. Because of the recent evidence that nitric oxide (NO) can counteract prednisolone-induced bone loss in mature rats, we examined the effect on bone of the NO donor L: -arginine in young male rats, in which bone mass is increased by the same biological mechanism as in children and adolescents. Thirty-six 10-week-old Sprague-Dawley male rats were assigned to six groups of six animals each, and treated for 4 weeks with either vehicle (once a week subcutaneous injection of 100 microl of sesame oil); prednisolone sodium succinate, 5 mg/kg, 5 days per week by intramuscular injection (i.m.); L-arginine, 10 mg/kg intraperitoneally (i.p.) once a day; N(G)-nitro-L-arginine methylester (L-NAME), 50 mg/kg subcutaneously once a day; prednisolone sodium succinate 5 mg/kg, 5 days per week i.m. +L-arginine 10 mg/kg i.p. once a day; or prednisolone sodium succinate, 5 mg/kg, 5 days per week i.m. +L-NAME 50 mg/kg subcutaneously once a day. Serum calcium, alkaline phosphatase (ALP), osteocalcin, and the C-terminal telopeptides of type I collagen (RatLaps) were measured at baseline conditions and after 2 and 4 weeks. Prior to treatment, and after 2 and 4 weeks, the whole body, vertebral, pelvic, and femoral bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) scanning. Prednisolone and prednisolone+L-NAME treated rats had significantly lower ALP and osteocalcin levels than controls at 2 and 4 weeks, and significantly higher levels of Rat-Laps than controls at 4 weeks. Prednisolone, L-NAME, and prednisolone+L-NAME produced a significant inhibition of bone accumulation and bone growth at all sites measured. Supplementation with L-arginine appeared to prevent the inhibition of bone growth and increase in bone resorption induced by prednisolone. These data would suggest, for the first time, that supplementation

  16. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density.

    PubMed

    Chang, Gregory; Honig, Stephen; Liu, Yinxiao; Chen, Cheng; Chu, Kevin K; Rajapakse, Chamith S; Egol, Kenneth; Xia, Ding; Saha, Punam K; Regatte, Ravinder R

    2015-05-01

    detected by dual-energy X-ray absorptiometry (DXA). PMID:24752823

  17. High-Dose Vitamin D and Calcium Attenuates Bone Loss with Antiretroviral Therapy Initiation

    PubMed Central

    Overton, Edgar Turner; Chan, Ellen S.; Brown, Todd T.; Tebas, Pablo; McComsey, Grace A.; Melbourne, Kathleen M.; Napoli, Andrew; Hardin, William Royce; Ribaudo, Heather J.; Yin, Michael T.

    2015-01-01

    Background Antiretroviral therapy (ART) initiation for HIV-1 infection is associated with 2-6% loss in bone mineral density (BMD). Objective To evaluate vitamin D3 (4000 IU daily) plus calcium (1000 mg calcium carbonate daily) supplementation on bone loss associated with ART initiation. Design 48-week prospective, randomized, double-blind, placebo-controlled study. Setting Thirty nine AIDS Clinical Trials Network research units. Participants ART-naïve HIV-infected adults. Measurements BMD by dual-energy X-ray absorptiometry (DXA); 25-hydroxy vitamin D (25(OH)D) levels, parathyroid hormone (PTH), phosphate metabolism, markers of bone turnover and systemic inflammation. Results 165 eligible subjects were randomized (79 Vitamin D/calcium (VitD/Cal); 86 placebo); 142 subjects with evaluable DXA data were included in the primary analysis. The study arms were well-balanced at baseline: median age 33 years; 90% male; 33% non-Hispanic black; median CD4 count 341 cells/mm3; and median 25(OH)D 23 ng/mL (57 nmol/L). At 48 weeks, subjects receiving placebo had greater decline in total hip BMD than VitD/Cal: −3.19% median change (1st-3rd quartile (Q1, Q3) −5.12%, −1.02%) vs. (−1.46% −3.16%,−0.40%). respectively (p=0.001). Lumbar spine BMD loss for the two groups was similar: −2.91% (−4.84%, −1.06%) vs. −1.41% (−3.78%, 0.00%), (p=0.085). At week 48, 90% of participants achieved HIV-1 RNA <50 copies/mL. Levels of 25(OH)D3 increased in the VitD/Cal but not the placebo group: median change of 24.5 (14.6, 37.8) vs. 0.7 (−5.3, 4.3) ng/mL, respectively (p<0.001). Additionally, increases in markers of bone turnover were blunted in the VitD/Cal group. Limitations No international sites were included; only 48 weeks of follow up Conclusion Vitamin D/calcium supplementation mitigates the loss of BMD seen with initiation of efavirenz/emtricitabine/tenofovir, particularly at the total hip, which is the site of greatest concern for fragility fracture. Primary Funding

  18. Seven years of follow up of trabecular bone score, bone mineral density, body composition and quality of life in adults with growth hormone deficiency treated with rhGH replacement in a single center

    PubMed Central

    Allo Miguel, Gonzalo; Serraclara Plá, Alicia; Partida Muñoz, Myriam Lorena; Martínez Díaz-Guerra, Guillermo; Hawkins, Federico

    2016-01-01

    Background: Adult growth hormone deficiency (AGHD) is characterized by impaired physical activity, diminished quality of life (QoL), weight and fat mass gain, decreased muscle mass and decreased bone mineral density (BMD). The aim of this study was to evaluate the effects of long-term treatment (7 years) with recombinant human growth hormone (rhGH) on metabolic parameters, body composition (BC), BMD, bone microarchitecture and QoL. Patients and Methods: In this prospective study, BMD and BC were assessed by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture was assessed with the trabecular bone score (TBS). The QoL-AGHDA test was used to assess QoL. Results: A total of 18 AGHD patients (mean age, 37.39 ± 12.42) were included. Body weight and body mass index (BMI) showed a significant increase after 7 years (p = 0.03 and p = 0.001, respectively). There was a significant tendency of body fat mass (BFM) (p = 0.028) and lean body mass (LBM) (p = 0.005) to increase during the 7 years of rhGH treatment. There was a significant increase in lumbar spine (LS) BMD (p = 0.01). TBS showed a nonsignificant decrease after 7 years of treatment, with a change of -0.86% ± 1.95. QoL showed a large and significant improvement (p = 0.02). Conclusion: Long-term rhGH treatment in AGHD patients induces a large and sustained improvement in QoL. Metabolic effects are variable with an increase in LBM as well as in BMI and BFM. There is a positive effect on BMD based on the increase in LS BMD, which stabilizes during long-term therapy and is not associated with a similar increase in bone microarchitecture. PMID:27293538

  19. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry.

    PubMed

    Ido, Ayumi; Nakayama, Yuki; Ishii, Kojiro; Iemitsu, Motoyuki; Sato, Koji; Fujimoto, Masahiro; Kurihara, Toshiyuki; Hamaoka, Takafumi; Satoh-Asahara, Noriko; Sanada, Kiyoshi

    2015-01-01

    Sarcopenia has never been diagnosed based on site-specific muscle loss, and little is known about the relationship between site-specific muscle loss and metabolic syndrome (MetS) risk factors. To this end, this cross-sectional study aimed to investigate the relationship between site-specific muscle size and MetS risk factors. Subjects were 38 obese men and women aged 40-82 years. Total body fat and lean body mass were assessed by whole-body dual-energy X-ray absorptiometry (DXA) scan. Muscle thickness (MTH) was measured using B-mode ultrasound scanning in six body regions. Subjects were classified into general obesity (GO) and sarcopenic obesity (SO) groups using the threshold values of one standard deviation below the sex-specific means of either MTH or skeletal muscle index (SMI) measured by DXA. MetS risk score was acquired by standardizing and summing the following continuously distributed variables: visceral fat area, mean blood pressure, HbA1c, and serum triglyceride / high density lipoprotein cholesterol, to obtain the Z-score. Multiple regression analysis revealed that the MetS risk score was independently associated with abdominal MTH in all subjects, but not with MTH in other muscle regions, including the thigh. Although HbA1c and the number of MetS risk factors in the SO group were significantly higher than those in the GO group, there were no significant differences between GO and SO groups as defined by SMI. Ultrasound-derived abdominal MTH would allow a better assessment of sarcopenia in obese patients and can be used as an alternative to the conventionally-used SMI measured by DXA. PMID:26700167

  20. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry

    PubMed Central

    Ido, Ayumi; Nakayama, Yuki; Ishii, Kojiro; Iemitsu, Motoyuki; Sato, Koji; Fujimoto, Masahiro; Kurihara, Toshiyuki; Hamaoka, Takafumi; Satoh-Asahara, Noriko; Sanada, Kiyoshi

    2015-01-01

    Sarcopenia has never been diagnosed based on site-specific muscle loss, and little is known about the relationship between site-specific muscle loss and metabolic syndrome (MetS) risk factors. To this end, this cross-sectional study aimed to investigate the relationship between site-specific muscle size and MetS risk factors. Subjects were 38 obese men and women aged 40–82 years. Total body fat and lean body mass were assessed by whole-body dual-energy X-ray absorptiometry (DXA) scan. Muscle thickness (MTH) was measured using B-mode ultrasound scanning in six body regions. Subjects were classified into general obesity (GO) and sarcopenic obesity (SO) groups using the threshold values of one standard deviation below the sex-specific means of either MTH or skeletal muscle index (SMI) measured by DXA. MetS risk score was acquired by standardizing and summing the following continuously distributed variables: visceral fat area, mean blood pressure, HbA1c, and serum triglyceride / high density lipoprotein cholesterol, to obtain the Z-score. Multiple regression analysis revealed that the MetS risk score was independently associated with abdominal MTH in all subjects, but not with MTH in other muscle regions, including the thigh. Although HbA1c and the number of MetS risk factors in the SO group were significantly higher than those in the GO group, there were no significant differences between GO and SO groups as defined by SMI. Ultrasound-derived abdominal MTH would allow a better assessment of sarcopenia in obese patients and can be used as an alternative to the conventionally-used SMI measured by DXA. PMID:26700167

  1. Dual-Energy X-Ray Absorptiometry, Skinfold Thickness, and Waist Circumference for Assessing Body Composition in Ambulant and Non-Ambulant Wheelchair Games Players

    PubMed Central

    Willems, Annika; Paulson, Thomas A. W.; Keil, Mhairi; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L.

    2015-01-01

    Field-based assessments provide a cost–effective and accessible alternative to dual-energy X-ray absorptiometry (DXA) for practitioners determining body composition in athletic populations. It remains unclear how the range of physical impairments classifiable in wheelchair sports may affect the utility of field-based body composition techniques. The present study assessed body composition using DXA in 14 wheelchair games players who were either wheelchair dependent (non-walkers; n = 7) or relied on a wheelchair for sports participation only (walkers; n = 7). Anthropometric measurements were used to predict body fat percentage with existing regression equations established for able-bodied persons by Sloan and Weir, Durnin and Womersley, Lean et al, Gallagher et al, and Pongchaiyakul et al. In addition, linear regression analysis was performed to calculate the association between body fat percentage and BMI, waist circumference, sum of 6 skinfold thickness and sum of 8 skinfold thickness. Results showed that non-walkers had significantly lower total lean tissue mass (46.2 ± 6.6 kg vs. 59.4 ± 8.2 kg, P = 0.006) and total body mass (65.8 ± 4.2 kg vs. 79.4 ± 14.9 kg; P = 0.05) than walkers. Body fat percentage calculated from most existing regression equations was significantly lower than that from DXA, by 2 to 9% in walkers and 8 to 14% in non-walkers. Of the anthropometric measurements, the sum of 8 skinfold thickness had the lowest standard error of estimation in predicting body fat content. In conclusion, existing anthropometric equations developed in able-bodied populations substantially underestimated body fat content in wheelchair athletes, particularly non-walkers. Impairment specific equations may be needed in wheelchair athletes. PMID:26640442

  2. Atypical Femoral Fracture: 2015 Position Statement of the Korean Society for Bone and Mineral Research.

    PubMed

    Yang, Kyu Hyun; Min, Byung Woo; Ha, Yong-Chan

    2015-08-01

    Bisphosphonate (BP) is a useful anti-resorptive agent which decreases the risk of osteoporotic fracture by about 50%. However, recent evidences have shown its strong correlation with the occurrence of atypical femoral fracture (AFF). The longer the patient takes BP, the higher the risk of AFF. Also, the higher the drug adherence, the higher the risk of AFF. It is necessary to ask the patients who are taking BP for more than 3 years about the prodromal symptoms such as dull thigh pain. Simple radiography, bone scan, and magnetic resonance imaging (MRI) are good tools for the diagnosis of AFF. The pre-fracture lesion depicted on the hip dual energy X-ray absorptiometry (DXA) images should not be missed. BP should be stopped immediately after AFF is diagnosed and calcium and vitamin D (1,000 to 2,000 IU) should be administered. The patient should be advised not to put full weight on the injured limb. Daily subcutaneous injection of recombinant human parathyroid hormone (PTH; 1-34) is recommended if the patient can afford it. Prophylactic femoral nailing is indicated when the dreaded black line is visible in the lateral femoral cortex, especially in the subtrochanteric area. PMID:26389082

  3. Relationship between insulin-like growth factor I, dehydroepiandrosterone sulfate and proresorptive cytokines and bone density in cystic fibrosis

    PubMed Central

    Binello, E.; LeBoff, M. S.; Wohl, M. E.; Rosen, C. J.; Colin, A. A.

    2011-01-01

    Introduction Patients with cystic fibrosis (CF) are known to be at risk for early osteoporosis, and the mechanisms that mediate bone loss are still being delineated. The aim of the present investigation was to investigate if a correlation exists in these patients between skeletal measurements by dual-energy x-ray absorptiometry (DXA) and two anabolic factors, dehydroepiandrosterone (DHEA) and insulin-like growth factor I (IGF-I), and proresorptive factors such as the cytokines interleukin-1β, tumor necrosis factor α, and interleukin-6. Methods We studied 32 outpatients (18 females; mean age: 26.2 ± 7.9 years) at a tertiary care medical center. The subjects had venous samples obtained, underwent anthropometric and bone mineral density (BMD) measurements, and completed a health survey. Serum IGF-I concentrations were below the age-adjusted mean in 78% of the participants, and DHEA sulfate (DHEAS) concentrations were low in 72%. Serum concentrations of all cytokines were on the low side of normal; nonetheless, there was a modest inverse correlation between IL-1β and BMD at all sites. Results In univariate analyses, IGF-I and DHEAS were significant correlates of BMD or bone mineral content. In final multivariate models controlling for anthropometric and other variables of relevance to bone density, only IGF-I was identified as a significant independent skeletal predictor. While alterations in DHEAS, IGF-I, and specific cytokines may contribute to skeletal deficits in patients with CF, of these factors a low IGF-I concentration appears to be most strongly correlated with BMD. Conclusions These findings may have therapeutic implications for enhancing bone density in these patients. PMID:16541207

  4. In vivo measurement of body composition of chickens using quantitative magnetic resonance (QMR)and dual x-ray absorptiometry (DXA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QMR is a nuclear magnetic resonance based method for measuring the fat, lean and water content of the total body of the live animal. The purpose of this study was to evaluate the use of QMR for measuring the body composition of chickens while comparing QMR results to those obtained by dual X-ray ab...

  5. Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis

    PubMed Central

    Moreno, Rodrigo; Brismar, Torkel B.; Pahr, Dieter H.; Smedby, Örjan

    2016-01-01

    Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young’s modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research. PMID:27513664

  6. Proteomics in bone research.

    PubMed

    Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan

    2010-02-01

    Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480

  7. Appropriate use of bone densitometry

    SciTech Connect

    Genant, H.K.; Block, J.E.; Steiger, P.; Glueer, C.C.; Ettinger, B.; Harris, S.T.

    1989-03-01

    The authors discuss current capabilities of three common bone densitometry techniques--single photon absorptiometry, dual photon absorptiometry, and quantitative computed tomography--and potential capabilities of new innovations of each of these techniques. They believe that use of bone densitometry is valid in the following four clinical applications and recommend its usage to (a) assess patients with metabolic diseases known to affect the skeleton, (b) assess perimenopausal women for initiation of estrogen replacement therapy, (c) establish a diagnosis of osteoporosis or assess its severity in the context of general clinical care, and (d) monitor the efficacy of treatment interventions or the natural course of disease.

  8. Validation of dual-energy X-ray absorptiometry in live White Leghorns.

    PubMed

    Schreiweis, M A; Orban, J I; Ledur, M C; Moody, D E; Hester, P Y

    2005-01-01

    Dual energy x-ray absorptiometry (DEXA) was evaluated for use as a noninvasive tool to monitor skeletal integrity in live laying hens. The objectives of the current study were 1) to validate the use of DEXA in evaluating bone integrity in live birds as compared with excised bones under a normal nutritional regimen as well as in hens fed varying levels of dietary Ca and 2) to correlate densitometric scans with other bone strength criteria and egg traits. Densitometric scans were conducted on the tibia and humerus of live hens at 10-wk intervals from 17 to 67 wk of age. After each scan, bones were excised from euthanized hens to measure breaking strength characteristics and bone ash (experiment 1). Similar measurements were collected at 38, 48, and 58 wk of age from hens fed hypercalcemic (5.4%), control (3.6%), and hypocalcemic (1.8%) diets from 32 to 58 wk of age (experiment 2). The bone mineral density (BMD) and bone mineral content (BMC) between live and excised bone scans were highly correlated (r = 0.85 and 0.92, respectively, P < 0.0001, experiment 1). Densitometric scans of live birds were positively correlated with bone breaking force and bone ash (r = 0.68 and 0.73, respectively, P < 0.001) with little to no correlation with shell traits. In experiment 2, the excised tibial scan had lower BMD and BMC than the live bird (P < 0.01), whereas no difference was detected in densitometric scans of the humerus. The live and excised BMD and BMC of the tibia (r = 0.87 and 0.82, respectively, P < 0.001) and humerus (r = 0.94 and 0.93, respectively, P < 0.001) were highly correlated. Due to the high correlations between live and excised bone scans and the significant correlations of live scans to more traditional invasive bone measurement tests such as bone breaking force and bone ash, we concluded that DEXA is a useful noninvasive tool for evaluating skeletal integrity in live birds. PMID:15685947

  9. Spatial modeling of bone microarchitecture

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Kang; Kim, Taehyong; Zhang, Aidong; Ramanathan, Murali

    2012-03-01

    We develop and evaluate a novel 3D computational bone framework, which is capable of enabling quantitative assessment of bone micro-architecture, bone mineral density and fracture risks. Our model for bone mineral is developed and its parameters are estimated from imaging data obtained with dual energy x-ray absorptiometry and x-ray imaging methods. Using these parameters, we propose a proper 3D microstructure bone model. The research starts by developing a spatio-temporal 3D microstructure bone model using Voronoi tessellation. Then, we simulate and analyze the architecture of human normal bone network and osteoporotic bone network with edge pruning process in an appropriate ratio. Finally, we design several measurements to analyze Bone Mineral Density (BMD) and bone strength based on our model. The validation results clearly demonstrate our 3D Microstructure Bone Model is robust to reflect the properties of bone in the real world.

  10. The Relationship Between Greater Prepubertal Adiposity, Subsequent Age of Maturation, and Bone Strength During Adolescence.

    PubMed

    Glass, Natalie A; Torner, James C; Letuchy, Elena M; Burns, Trudy L; Janz, Kathleen F; Eichenberger Gilmore, Julie M; Schlechte, Janet A; Levy, Steven M

    2016-07-01

    This longitudinal study investigated whether greater prepubertal adiposity was associated with subsequent timing of maturation and bone strength during adolescence in 135 girls and 123 boys participating in the Iowa Bone Development Study. Greater adiposity was defined using body mass index (BMI) data at age 8 years to classify participants as overweight (OW, ≥85th percentile for age and sex) or healthy weight (HW). Maturation was defined as the estimated age of peak height velocity (PHV) based on a series of cross-sectional estimates. Measurements were taken at ages 11, 13, 15, and 17 years for estimates of body composition by dual-energy X-ray absorptiometry (DXA), bone compression (bone strength index), and torsion strength (polar strength-strain index) at the radius and tibia by pQCT, and femoral neck bending strength (section modulus) by hip structural analysis. Bone strength in OW versus HW were evaluated by fitting sex-specific linear mixed models that included centered age (visit age - grand mean age of cohort) as the time variable and adjusted for change in fat mass, and limb length in model 1. Analyses were repeated using biological age (visit age - age PHV) as the time variable for model 1 with additional adjustment for lean mass in model 2. BMI was negatively associated with age of maturation (p < 0.05). OW versus HW girls had significantly greater bone strength (p < 0.001) in model 1, whereas OW versus HW boys had significantly greater bone strength (p < 0.001) at the tibia and femoral neck but not radius (p > 0.05). Analyses were repeated using biological age, which yielded reduced parameter estimates for girls but similar results for boys (model 1.) Differences were no longer present after adjustment for lean mass (model 2) in girls (p > 0.05) whereas differences at the tibia were sustained in boys (p < 0.05). These findings demonstrate sex- and site-specific differences in the associations between adiposity, maturation, and

  11. Meconium Tenofovir Concentrations and Growth and Bone Outcomes in Prenatally Tenofovir Exposed HIV-Uninfected Children

    PubMed Central

    Himes, Sarah K.; Wu, Julia W.; Jacobson, Denise L.; Tassiopoulos, Katherine; Hazra, Rohan; Kacanek, Deborah; Van Dyke, Russell B.; Rich, Kenneth C.; Siberry, George K.; Huestis, Marilyn A.

    2015-01-01

    Background Maternal tenofovir disoproxil fumarate (TDF) treatment among HIV-infected pregnant women results in fetal tenofovir (TFV) exposure. Fetal TFV toxicity was demonstrated in animals, but most clinical investigations have not observed toxicity in humans. Methods We evaluated HIV-exposed, uninfected infants in the SMARTT cohort of the Pediatric HIV/AIDS Cohort Study whose mothers were prescribed TDF for ≥8 third trimester weeks. Infant dual-energy X-ray absorptiometry (DXA) scans were obtained at 0–4 weeks to measure whole body bone mineral content (BMC). Meconium TFV concentrations were quantified by liquid chromatography-tandem mass spectrometry. Results Fifty-eight TFV-exposed infants had meconium TFV quantified. Detectable concentrations were 11–48,100 ng/g; 3 infants had undetectable concentrations. Maternal TDF prescription duration ranged from 8–41 gestational weeks; infant gestational ages were 36–41 weeks. Meconium TFV concentrations were not correlated with TFV exposure duration or timing and did not vary by concomitant prescription of protease inhibitors. Increased meconium TFV concentrations were associated with greater gestational ages (ρ=0.29, P=0.03) and lower maternal plasma HIV RNA before delivery (ρ=−0.29, P=0.04). Meconium TFV concentrations were not associated with infant weight, length (n=58), or BMC (n=49). Conclusions For the first time, we explored associations between meconium TFV concentrations and infant growth and bone measurements; we did not observe a meconium concentration-dependent relationship for these infant outcomes. These findings support other clinical research failing to show dose-response relationships for growth and bone outcomes among intrauterine TFV-exposed infants. High meconium TFV concentrations correlated with low maternal viral load, suggesting maternal TDF adherence significantly contributes to meconium TFV concentrations. PMID:25961889

  12. Associations Between Bone Mineral Density, Grip Strength, and Lead Body Burden Among Older Men

    PubMed Central

    Khalil, Naila; Faulkner, Kimberly A.; Greenspan, Susan L.; Cauley, Jane A.

    2013-01-01

    Objectives To study the association of blood lead concentration (BPb) to bone mineral density (BMD), physical, and cognitive function in non-institutionalized community dwelling older men. Design Cross sectional study. Setting University of Pittsburgh clinic, Pittsburgh, PA. Participants Non-Hispanic Caucasian men aged 65 or older (N=445) recruited as a subset of a prospective cohort Osteoporotic Fractures in Men (MrOS) study. Measurement BPb was measured in 2007-2008. From 2007-2009 BMD (g/cm2) was measured using dual energy x-ray absorptiometry (DXA). At the same time physical performance was measured with five tests: grip strength, leg extension power, walking speed, narrow-walk pace, and chair stands. Cognitive performance was assessed using the Modified Mini-Mental State Examination and the Trail Making Test Part B. Participants were categorized into quartiles of BPb. Multivariate regression analysis was used to evaluate independent relationship between BPb, BMD, cognitive and physical function. Results Mean ±sd BPb was 2.25±1.20 μg/dL (median =2 μg/dL, range 1-10). In multivariable adjusted models, men in higher BPb quartiles had lower BMD at femoral neck, and total hip (p-trend =<0.001 for both). Men with higher BPb had lower age adjusted score for grip strength (p-trend<0.001). However, this association was not significant in multivariate adjusted models (p-trend <0.148). BPb was not associated with lumbar spine BMD, cognition, leg extension power, walking speed, narrow-walk pace, and chair stands. Conclusion Environmental lead exposure may adversely affect bone health in older men. These findings support consideration of environmental exposures in age associated bone fragility. PMID:24383935

  13. Predicting visceral adipose tissue by MRI using DXA and anthropometry in adolescents and young adults

    PubMed Central

    Laddu, Deepika R.; Lee, Vinson R.; Blew, Robert M.; Sato, Tetsuya; Lohman, Timothy G.; Going, Scott B.

    2015-01-01

    Objective Accumulation of intra-abdominal (visceral) adipose tissue, independent of total adiposity, is associated with development of metabolic abnormalities such as insulin resistance and type-2 diabetes in children and adults. The objective of this study was to develop prediction equations for estimating visceral adiposity (VAT) measured by magnetic resonance imaging (MRI) using anthropometric variables and measures of abdominal fat mass from DXA in adolescents and young adults. Methods Cross-sectional data was collected from a multiethnic population of seventy males and females, aged 12–25 years, with BMI ranging from 14.5–38.1 kg/m2. Android (AFM; android region as defined by manufacturers instruction) and lumbar L1-L4 regional fat masses were assessed using DXA (GE Lunar Prodigy; GE Lunar Corp, Madison, WI, USA). Criterion measures of intra-abdominal visceral fat were obtained using single-slice MRI (General Electric Signa Model 5x 1.5T) and VAT area was analyzed at the level OF L4–L5. Image analysis was carried out using ZedView 3.1. Results DXA measures of AFM (r=0.76) and L1-L4 (r=0.71) were significantly (P<0.0001) correlated with MRI-measured VAT. DXA AFM, together with gender and weight, explained 62% of the variance in VAT (SEE=10.06 cm2). DXA L1-L4 fat mass with gender explained 54% of the variance in VAT (SEE=11.08 cm2). Addition of the significant interaction, gender × DXA fat mass, improved prediction of VAT from AFM (Radj2=0.61, SEE=10.10cm2) and L1-L4 (Radj2=0.59, SEE=10.39cm2). Conclusion These results demonstrate that VAT is accurately estimated from regional fat masses measured by DXA in adolescents and young adults. PMID:26097436

  14. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    SciTech Connect

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver; Odet, Christophe; Yot, Sophie; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Kotzki, Pierre-Olivier; Peyrin, Francoise

    2006-09-15

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further used for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.

  15. Relationship Between Femur Bone Mineral Density, Body Mass Index and Dental Panoramic Mandibular Cortical Width in Diagnosis of Elderly Postmenopausal Women With Osteoporosis

    PubMed Central

    Devi B.K., Yashoda; Rakesh, N.; Reddy, Sujatha S.; Santana, N.; Shetty, Naresh

    2014-01-01

    Objectives: To measure and determine mandibular cortical width (MCW) on the panoramic radiographs, to evaluate the usefulness of the method in identifying postmenopausal women with low femoral bone mineral densities (f- BMD) and to correlate the radiographic findings on panoramic radiographs with the f-BMD assessed by dual X-ray absorptiometry (DXA) to predict the efficacy of the radiographic method in diagnosing osteoporosis. Materials and Methods: One hundred and twenty postmenopausal women (60 normal and 60 osteoporotic) in the age group of 50-75 y with f-BMD assessed by DXA had undergone panoramic radiographic examination. The patients were classified as normal (T-score ≥ -1.0) and osteoporotic (T-score ≤ -2.5). MCW on panoramic radiographs was measured bilaterally at the mental foramen region with a caliper and their mean was used as the exposure measure in the analysis. Results: Student t-test showed that mean f-BMD, BMI and MCW was found be less in osteoporotic patients as compared to normal group with a statistically significant p-value < 0.001. Pearson correlation coefficient test revealed that MCW correlated positively with f-BMD and showed a significant decrease with age of the patient. Conclusion: Postmenopausal women with low f-BMD had thinner mandibular cortex at the mental foramen region when compared to normal subjects and are more susceptible to femoral neck fractures. Mandibular inferior cortical width at the mental foramen region could be used to identify postmenopausal women with low f- BMD. Hence, dental panoramic radiographs serve as a useful screening tool for early diagnosis of osteoporotic fractures. PMID:25302265

  16. Bone densitometry in infants

    SciTech Connect

    Barden, H.S.; Mazess, R.B.

    1988-07-01

    Bone mineral mass and density can be measured noninvasively by various absorptiometric procedures. Two methods, dual-photon absorptiometry (DPA) and quantitative computed tomography, have widespread application in adults but only limited use in children. One method, single-photon absorptiometry (SPA), has been used extensively in adults and children and has been modified for use in infants. The radius shaft has been used for most research on infants. However, the difficulty of using older SPA methods on this small bone (4 to 7 mm width) has led a few investigators to measure the shaft of the humerus. The typical precision of measurement in a newborn is about 5% with the use of computerized rectilinear scanners for the radius; older linear scanners have a precision error of 5% to 10% on the humerus. Linear scanners cannot measure precisely the radius in individual neonates. The SPA scans typically take about 5 minutes. The DPA technique using /sup 153/Gd has been modified for use on smaller animals (5 to 10 kg monkeys and dogs), but it has not been used on infants because DPA scans take 20 minutes. New methods using x-ray absorptiometry allow rapid (1 minute), precise (1%) measurements in the perinate. The need for a soft tissue bolus is eliminated, and both the axial and peripheral skeletons can be measured with dual-energy x-ray absorptiometry. Ultrasonic measurements do not yet offer adequate precision in the neonate, given the limited biologic range of values. 83 references.

  17. Bone fragility and imaging techniques

    PubMed Central

    D’Elia, Giovanni; Caracchini, Giuseppe; Cavalli, Loredana; Innocenti, Paolo

    2009-01-01

    Bone fragility is a silent condition that increases bone fracture risk, enhanced by low bone mass and microarchitecture deterioration of bone tissue that lead to osteoporosis. Fragility fractures are the major clinical manifestation of osteoporosis. A large body of epidemiological data indicates that the current standard for predicting fragility fracture risk is an areal BMD (aBMD) measurement by DXA. Although mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Thus, bone strength is explained not only by BMD but also by macrostructural and microstructural characteristics of bone tissue. Imaging diagnostics, through the use of X-rays, DXA, Ultrasonography, CT and MR, provides methods for diagnosis and characterization of fractures, and semi- and quantitative methods for assessment of bone consistency and strength, that become precious for bone fragility clinical management if they are integrated by clinical risk factors. The last employment of sophisticated non-invasively imaging techniques in clinical research as high-resolution CT (hrCT), microCT (μ-CT), high-resolution MR (hrMR) and, microRM (μRM), combined with finite element analysis methods, open to new challenges in a better bone strength assessment to enhance the comprehension of biomechanical parameters and the prediction of fragility fractures. PMID:22461252

  18. Bone loss without the loss of bone mineral material? A new perspective on anorexia nervosa.

    PubMed

    Bolotin, H H

    2009-06-01

    Since the advent on non-invasive in vivo clinical bone densitometry, investigators have reported that regional bone mineral material loss accompanies the onset and continuance of anorexia nervosa (AN). Initial single-energy photon absorptiometric (SPA) studies were followed by a succession of dual-energy X-ray absorptiometric (DXA) investigations, and a few single-energy quantitative computer assisted tomographic (SEQCT) bone densitometry vertebral measurements. Although most all DXA studies found a relatively small diminution (approximately 3%) of bone mineral material at lumbar vertebral and proximal femoral bone-sites of AN-afflicted adolescent girls and young women, these findings have been consensually interpreted and near-universally accepted as losses of actual bone mineral material accompanying AN. It has also been claimed by some that about 50% of those beset by AN while still young adolescents were osteoporotic. Nonetheless, over the last intervening 2 decades of these studies, no specific underlying direct bone-biological causal link between AN and trabecular bone material loss has yet been uncovered. The present exposition shows that in vivo SPA, DXA, and SEQCT measurements of bone mineral material losses do not constitute evidence of actual loss of bone material, and that the attribution of osteopenia and osteoporosis to AN-afflicted younger adolescent girls is not sustainable. Rather, the full gamut of these reported bone material "losses" can be accounted for by the already well-documented AN-induced changes in the anthropometrics and compositional mixes of extra-osseous soft tissues (primarily in a very noticeable reduction of extra-skeletal fat) and intra-osseous bone marrow yellowing (marrow hypoplasia and marrow cell necrosis). These changes in soft tissue compositions and anthropometrics alone have been shown to be sufficient to cause in vivo SPA, DXA, and SEQCT to systematically mis-estimate true bone material density and erroneously register

  19. A two-year program of aerobics and weight training enhances bone mineral density of young women

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Genant, H. K.; Sadowsky, S.; Byl, N. N.; Gluer, C. C.

    1995-01-01

    Previous research suggests that physical activity may have a beneficial effect on bone mineral density (BMD) in women. This relationship was explored in a 2-year, randomized, intervention trial investigating the efficacy of exercise and calcium supplementation on increasing peak bone mass in young women. One hundred and twenty-seven subjects (ages of 20-35 years) were randomly assigned either to an exercise program that contained both aerobics and weight training components or to a stretching program. Calcium supplementation (up to 1500 mg/day including dietary intake) or placebo was given in a double-blinded design to all subjects. Spinal trabecular BMD was determined using quantitative computed tomography (QCT). Spinal integral, femoral neck, and trochanteric BMD were measured by dual X-ray absorptiometry (DXA) and calcaneal BMD by single photon absorptiometry (SPA). Fitness variables included maximal aerobic capacity (VO2max), and isokinetic muscle performance of the trunk and thigh. Measurements were made at baseline, 1 year, and 2 years. Sixty-three subjects (32 exercise, 31 stretching) completed the study, and all the measured bone parameters indicated a positive influence of the exercise intervention. There were significant positive differences in BMD between the exercise and stretching groups for spinal trabecular (2.5%), femoral neck (2.4%), femoral trochanteric (2.3%), and calcaneal (6.4%) measurements. The exercise group demonstrated a significant gain in BMD for spinal integral (1.3 +/- 2.8%, p < 0.02), femoral trochanteric (2.6 +/- 6.1%, p < 0.05), and calcaneal (5.6 +/- 5.1, p < 0.01) measurements. In contrast to exercise, the calcium intervention had no positive effect on any of the bone parameters. In regard to fitness parameters, the exercise group completed the study with significant gains in VO2max and isokinetic (peak torque) values for the knee flexion and extension and trunk extension. This study indicates that over a 2-year period, a combined

  20. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by the FDA under 21 CFR part 807, or approved for marketing by the FDA for this use under 21 CFR part... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton)...

  1. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by the FDA under 21 CFR part 807, or approved for marketing by the FDA for this use under 21 CFR part... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton)...

  2. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by the FDA under 21 CFR part 807, or approved for marketing by the FDA for this use under 21 CFR part... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed bya dual energy x-ray absorptiometry system (axial skeleton)...

  3. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by the FDA under 21 CFR part 807, or approved for marketing by the FDA for this use under 21 CFR part... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton)...

  4. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by the FDA under 21 CFR part 807, or approved for marketing by the FDA for this use under 21 CFR part... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed bya dual energy x-ray absorptiometry system (axial skeleton)...

  5. Body Segment Inertial Parameters of elite swimmers Using DXA and indirect Methods

    PubMed Central

    Rossi, Marcel; LYTTLE, Andrew; EL-SALLAM, Amar; BENJANUVATRA, Nat; BLANKSBY, Brian

    2013-01-01

    As accurate body segment inertial parameters (BSIPs) are difficult to obtain in motion analysis, this study computed individual BSIPs from DXA scan images. Therefore, by co-registering areal density data with DXA grayscale image, the relationship between pixel color gradient and the mass within the pixel area could be established. Thus, one can calculate BSIPs, including segment mass, center of mass (COM) and moment of inertia about the sagittal axis (Ixx). This technique calculated whole body mass very accurately (%RMSE of < 1.5%) relatively to results of the generic DXA scanner software. The BSIPs of elite male and female swimmers, and young adult Caucasian males (n = 28), were computed using this DXA method and 5 other common indirect estimation methods. A 3D surface scan of each subject enabled mapping of key anthropometric variables required for the 5 indirect estimation methods. Mass, COM and Ixx were calculated for seven body segments (head, trunk, head + trunk, upper arm, forearm, thigh and shank). Between-group comparisons of BSIPs revealed that elite female swimmers had the lowest segment masses of the three groups (p < 0.05). Elite male swimmers recorded the greatest inertial parameters of the trunk and upper arms (p < 0.05). Using the DXA method as the criterion, the five indirect methods produced errors greater than 10% for at least one BSIP in all three populations. Therefore, caution is required when computing BSIPs for elite swimmers via these indirect methods, DXA accurately estimated BSIPs in the frontal plane. Key Points Elite swimmers have significantly different body segment inertial parameters than young adult Caucasian males. The errors computed from indirect BSIP estimation methods are large regardless whether applied to elite swimmers or young adult Caucasian males. No indirect estimation method consistently performed best. PMID:24421737

  6. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry.

    PubMed

    Smith, Scott M; Heer, Martina A; Shackelford, Linda C; Sibonga, Jean D; Ploutz-Snyder, Lori; Zwart, Sara R

    2012-09-01

    Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the "interim resistive exercise device" (iRED), which allowed loads of up to 297 lb(f) (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lb(f) (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions. PMID

  7. Accuracy of dual-photon absorptiometry compared to computed tomography of the spine

    SciTech Connect

    Mazess, R.; Vetter, J.; Towsley, M.; Perman, W.; Holden, J.

    1984-01-01

    Dual-photon absorptiometry (DPA) was done using Gd-153 (44 and 100keV) in vivo and on various bone specimens including 39 vertebrae and 24 femora. The precision error for triplicate determinations on individual vertebrae was 3.3%, 2.9%, and 1.7% for bone mineral content (BMC), projected area, and areal density of bone mineral (BMD) respectively. The accuracy of determinations was 3-4% on the femora and 5% on the vertebrae. Computed tomography (CT) determinations were done on seven vertebrae immersed in alcohol (50%) to simulate the effects of marrow fat. CT measurements were done using a dual-energy scanner (Siemens) from which single-energy data files also were analyzed. There was a high correlation between Gd-153 DPA scans and either single- or dual-energy CT scans of the same vertebrae (rapprox. =0.97). For dual-energy CT the determined bone values were only 2% higher than the Gd-153 DPA values; however, single-energy CT scans showed a marked deviation. The CT values at 75kVp were 38% lower than those obtained from dual-energy CT scans or from Gd-153 DPA scans, while the values at 125kVp were 46% lower. Calcium chloride solutions made up with 50% alcohol showed the same systematic error of single-energy CT. Dual-energy determinations are mandatory on trabecular bone in order to avoid the errors introduced by variable marrow fat. The magnitude of the latter error depends upon the energy of the CT scan.

  8. Bone Density in Patients with Cervical Cancer or Endometrial Cancer in comparison with Healthy Control; According to the stages

    PubMed Central

    Lee, Yubin; Kim, Ari; Kim, Heung Yeol; Eo, Wan Kyu; Lee, Eun Sil; Chun, Sungwook

    2015-01-01

    Objective: To evaluate the bone mineral density (BMD) in the lumbar spine and femur in postmenopausal women with cervical cancer and endometrial cancer without bone metastasis in comparison with that in healthy control postmenopausal women, and to assess the loss of BMD according to the cancer stage. Materials and methods: We analyzed the BMD of the lumbar spine and femur using dual-energy X-ray absorptiometry (DXA) in 218 patients with cervical cancer, 85 patients with endometrial cancer, and 259 healthy controls. The serum levels of calcium (Ca), phosphorus (P), osteocalcin (OSC), and total alkaline phosphatase (ALP), and urine deoxypyridinoline(DPL) were measured in all participants. Results: Age, body mass index, parity, and time since menopause were not significantly different between the three groups. Serum Ca level was higher in the cervical cancer group (p = 0.000), however, urine DPL was lower in endometrial cancer group (p = 0.000). The T-scores of basal BMD at the second and fourth lumbar vertebra (L2, L4) were significantly lower in patients with cervical cancer (p = 0.038, 0.000, respectively) compared to those in the healthy control groups. Additionally, the incidence of osteoporosis and osteopenia basal status of bone mass was significantly higher in patients with cervical cancer compared to that in controls (p = 0.016). No differences in basal BMD of the lumbar spine and femur were observed between patients with cervical cancer according to their stages. Conclusion: Our results suggest that postmenopausal women with cervical cancer have a lower BMD and are at increased risk of osteoporosis in the lumbar spine before receiving anticancer treatment compared with postmenopausal women with endometrial cancer. PMID:26185529

  9. Lean mass and fat mass have differing associations with bone microarchitecture assessed by high resolution peripheral quantitative computed tomography in men and women from the Hertfordshire Cohort Study.

    PubMed

    Edwards, Mark H; Ward, Kate A; Ntani, Georgia; Parsons, Camille; Thompson, Jennifer; Sayer, Avan A; Dennison, Elaine M; Cooper, Cyrus

    2015-12-01

    Understanding the effects of muscle and fat on bone is increasingly important in the optimisation of bone health. We explored relationships between bone microarchitecture and body composition in older men and women from the Hertfordshire Cohort Study. 175 men and 167 women aged 72-81 years were studied. High resolution peripheral quantitative computed tomography (HRpQCT) images (voxel size 82 μm) were acquired from the non-dominant distal radius and tibia with a Scanco XtremeCT scanner. Standard morphological analysis was performed for assessment of macrostructure, densitometry, cortical porosity and trabecular microarchitecture. Body composition was assessed using dual energy X-ray absorptiometry (DXA) (Lunar Prodigy Advanced). Lean mass index (LMI) was calculated as lean mass divided by height squared and fat mass index (FMI) as fat mass divided by height squared. The mean (standard deviation) age in men and women was 76 (3) years. In univariate analyses, tibial cortical area (p<0.01), cortical thickness (p<0.05) and trabecular number (p<0.01) were positively associated with LMI and FMI in both men and women. After mutual adjustment, relationships between cortical area and thickness were only maintained with LMI [tibial cortical area, β (95% confidence interval (CI)): men 6.99 (3.97,10.01), women 3.59 (1.81,5.38)] whereas trabecular number and density were associated with FMI. Interactions by sex were found, including for the relationships of LMI with cortical area and FMI with trabecular area in both the radius and tibia (p<0.05). In conclusion, LMI and FMI appeared to show independent relationships with bone microarchitecture. Further studies are required to confirm the direction of causality and explore the mechanisms underlying these tissue-specific associations. PMID:26187195

  10. Bone mineral density and factors influencing it in Asian Indian population with type 2 diabetes mellitus

    PubMed Central

    Kamalanathan, Sadishkumar; Nambiar, Vimal; Shivane, Vyankatesh; Bandgar, Tushar; Menon, Padmavathy; Shah, Nalini

    2014-01-01

    Objective: To assess bone mineral density (BMD) in type 2 diabetes mellitus (T2DM) patients and its relation, if any, to clinical, hormonal and metabolic factors. Materials and Methods: A prospective evaluation of 194 T2DM patients (97 men and 97 women) was carried out. BMD was done with dual energy X-ray absorptiometry (DXA) at the lumbar spine and total hip. Physical activity, nutritional intake and sunlight exposure were calculated. Biochemical and hormonal tests included serum 25 hydroxy vitamin D [25(OH) D], parathyroid hormone, estrogen, testosterone and urinary calcium-creatinine ratio. Glycosylated hemoglobin and complete lipid profiles were done in patients with diabetes. Five hundred and seventy one non-diabetic controls (262 males and 309 females) were evaluated for BMD alone. Results: BMD was normal (Z score > -2) in 156 (80.5%) and low (Z score ≤ -2) in 38 (19.5%) patients in the diabetes study group. BMD in the diabetes group was significantly higher than the control group in both sexes at the hip and spine. The difference was no longer significant on analysis of a BMI matched control subgroup. Weight and BMI showed significant correlation to BMD. Duration of T2DM, degree of glycemic control, use of drugs like statins and thiazolidinediones, 25(OH) D levels, calcium intake, sunlight exposure and physical activity did not significantly affect BMD in this cohort of individuals with diabetes. Conclusions: Bone mineral density of Asian Indian T2DM subjects was similar to that of healthy volunteers in this study. PMID:25364679

  11. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

    PubMed Central

    Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka

    2016-01-01

    Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617

  12. Bone marrow lesion volume reduction is not associated with improvement of other periarticular bone measures: data from the Osteoarthritis Initiative

    PubMed Central

    2013-01-01

    Introduction We evaluated the associations between bone marrow lesion (BML) volume change and changes in periarticular bone mineral density (paBMD) as well as subchondral sclerosis to determine whether BML change is associated with other local bone changes. Methods The convenience sample comprised participants in the Osteoarthritis Initiative (OAI) with weight-bearing posterior-anterior knee radiographs and magnetic resonance images (MRIs) at the 24- and 48-month visits and dual-energy x-ray absorptiometry (DXA) at the 30-/36-month and 48-month visits. The right knee was assessed unless contraindicated for MRI. We used knee DXA scans to measure medial tibia paBMD and medial/lateral paBMD ratio (M:L paBMD). Knee radiographs were scored for sclerosis (grades 0 to 3) in the medial tibia. Two raters determined BML volume on sagittal fat-suppressed MRI by using a semiautomated segmentation method. To focus on knees with only medial tibia BML changes, knees with lateral tibial BMLs were excluded. Medial tibial BML volume change was classified into three groups: BML regression (lowest quartile of medial tibial BML volume change), no-to-minimal change (middle two quartiles), and BML progression (highest quartile). We used proportional odds logistic regression models to evaluate the association between quartiles of changes in medial paBMD or M:L paBMD ratio, as outcomes, and BML volume change. Results The sample (n = 308) included 163 (53%) female subjects, 212 (69%) knees with radiographic osteoarthritis, and participants with a mean age of 63.8 ± 9.3 years and mean body mass index of 29.8 ± 4.7 kg/m2. We found an association between greater increases in medial tibia paBMD and BML regression (OR = 1.7 (95% confidence interval (CI) = 1.1 to 2.8)) and a similar trend for BML progression (OR = 1.6 (95% CI = 1.0 to 2.6]). We also detected associations between greater increase in M:L paBMD and BML regression (OR = 1.6 (95% CI = 1.0 to 2

  13. Cross-mode bioelectrical impedance analysis in a standing position for estimating fat-free mass validated against dual-energy x-ray absorptiometry.

    PubMed

    Huang, Ai-Chun; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Lu, Hsueh-Kuan; Lin, Hung-Chi; Chen, Kuen-Tsann; Hsiao, An-Chi; Hsieh, Kuen-Chang

    2015-11-01

    Bioelectrical impedance analysis (BIA) is commonly used to assess body composition. Cross-mode (left hand to right foot, Z(CR)) BIA presumably uses the longest current path in the human body, which may generate better results when estimating fat-free mass (FFM). We compared the cross-mode with the hand-to-foot mode (right hand to right foot, Z(HF)) using dual-energy x-ray absorptiometry (DXA) as the reference. We hypothesized that when comparing anthropometric parameters using stepwise regression analysis, the impedance value from the cross-mode analysis would have better prediction accuracy than that from the hand-to-foot mode analysis. We studied 264 men and 232 women (mean ages, 32.19 ± 14.95 and 34.51 ± 14.96 years, respectively; mean body mass indexes, 24.54 ± 3.74 and 23.44 ± 4.61 kg/m2, respectively). The DXA-measured FFMs in men and women were 58.85 ± 8.15 and 40.48 ± 5.64 kg, respectively. Multiple stepwise linear regression analyses were performed to construct sex-specific FFM equations. The correlations of FFM measured by DXA vs. FFM from hand-to-foot mode and estimated FFM by cross-mode were 0.85 and 0.86 in women, with standard errors of estimate of 2.96 and 2.92 kg, respectively. In men, they were 0.91 and 0.91, with standard errors of the estimates of 3.34 and 3.48 kg, respectively. Bland-Altman plots showed limits of agreement of -6.78 to 6.78 kg for FFM from hand-to-foot mode and -7.06 to 7.06 kg for estimated FFM by cross-mode for men, and -5.91 to 5.91 and -5.84 to 5.84 kg, respectively, for women. Paired t tests showed no significant differences between the 2 modes (P > .05). Hence, cross-mode BIA appears to represent a reasonable and practical application for assessing FFM in Chinese populations. PMID:26409342

  14. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCTstudy

    PubMed Central

    Määttä, M.; Macdonald, H. M.; Mulpuri, K.

    2016-01-01

    Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a

  15. Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty

    PubMed Central

    Salemyr, Mats; Muren, Olle; Ahl, Torbjörn; Bodén, Henrik; Eisler, Thomas; Stark, André; Sköldenberg, Olof

    2015-01-01

    Background and purpose — We hypothesized that an ultra-short stem would load the proximal femur in a more physiological way and could therefore reduce the adaptive periprosthetic bone loss known as stress shielding. Patients and methods — 51 patients with primary hip osteoarthritis were randomized to total hip arthroplasty (THA) with either an ultra-short stem or a conventional tapered stem. The primary endpoint was change in periprosthetic bone mineral density (BMD), measured with dual-energy x-ray absorptiometry (DXA), in Gruen zones 1 and 7, two years after surgery. Secondary endpoints were change in periprosthetic BMD in the entire periprosthetic region, i.e. Gruen zones 1 through 7, stem migration measured with radiostereometric analysis (RSA), and function measured with self-administered functional scores. Results — The periprosthetic decrease in BMD was statistically significantly lower with the ultra-short stem. In Gruen zone 1, the mean difference was 18% (95% CI: −27% to −10%). In zone 7, the difference was 5% (CI: −12% to −3%) and for Gruen zones 1–7 the difference was also 5% (CI: −9% to −2%). During the first 6 weeks postoperatively, the ultra-short stems migrated 0.77 mm more on average than the conventional stems. 3 months after surgery, no further migration was seen. The functional scores improved during the study and were similar in the 2 groups. Interpretation — Up to 2 years after total hip arthroplasty, compared to the conventional tapered stem the ultra-short uncemented anatomical stem induced lower periprosthetic bone loss and had equally excellent stem fixation and clinical outcome. PMID:26134386

  16. Multivariate analysis of lifestyle, constitutive and body composition factors influencing bone health in community-dwelling older adults from Madeira, Portugal.

    PubMed

    Gouveia, Élvio Rúbio; Blimkie, Cameron Joseph; Maia, José António; Lopes, Carla; Gouveia, Bruna Raquel; Freitas, Duarte Luís

    2014-01-01

    This study describes the association between habitual physical activity (PA), other lifestyle/constitutive factors, body composition, and bone health/strength in a large sample of older adults from Madeira, Portugal. This cross-sectional study included 401 males and 401 females aged 60-79 years old. Femoral strength index (FSI) and bone mineral density (BMD) of the whole body, lumbar spine (LS), femoral neck (FN), and total lean tissue mass (TLTM) and total fat mass (TFM) were determined by dual-energy X-ray absorptiometry-DXA. PA was assessed during face-to-face interviews using the Baecke questionnaire and for a sub-sample by Tritrac accelerometer. Demographic and health history information were obtained by telephone interview through questionnaire. The relationship between habitual PA variables and bone health/strength indicators (whole body BMD, FNBMD, LSBMD, and FSI) investigated using Pearson product-moment correlation coefficient was similar for females (0.098≤r≤0.189) and males (0.104≤r≤0.105). Results from standard multiple regression analysis indicated that the primary and most significant predictors for FNBMD in both sexes were age, TLTM, and TFM. For LSBMD, the most significant predictor was TFM in men and TFM, age, and TLTM in females. Our regression model explained 8.3-14.2% and 14.8-29.6% of the total variance in LSBMD and FNBMD for males and females, respectively. This study suggests that habitual PA is minimally but positively associated with BMD and FSI among older adult males and females and that body composition factors like TLTM and TFM are the strongest determinants of BMD and FSI in this population. PMID:24704345

  17. [Radiological assessment of bone quality].

    PubMed

    Ito, Masako

    2016-01-01

    Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;micro-CT or synchrotron-CT is available to analyze micro- or nano-structural property of bone samples ex vivo, and multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo. For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available aw sell se radiography and DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone. PMID:26728530

  18. Panoramic-Based Mandibular Indices and Bone Mineral Density of Femoral Neck and Lumbar Vertebrae in Women

    PubMed Central

    Marandi, S.; Bagherpour, A.; Imanimoghaddam, M.; Hatef, MR.; Haghighi, AR.

    2010-01-01

    Objective: The aim of this cross-sectional analytic study was to evaluate the diagnostic efficacy of panoramic-based indices of the mandible (Mental Index-MI, Mandibular Cortical Index-MCI and Panoramic Mandibular Index-PMI) and to determine their correlation with bone mineral density (BMD) of the femoral neck and lumbar vertebrae (L2-L4) in order to assess the possibility of using these parameters as indicators of osteoporosis. Materials and Methods: The mandibular indices of 67 women over 35 years old were measured from panoramic radiographs, and bone densitometry was performed in the femoral neck and lumbar vertebrae (L2-L4), using DXA (Dual Energy X-ray Absorptiometry) technique. The patients were divided into three categories of normal, osteopenic and osteoporotic in each skeletal region. One-way ANOVA and ROC curve analyses were applied. The results were considered statistically significant when the P-value was less than 0.05. Results: Comparing the mean BMD in the femoral neck in women between C1 and C3 subgroups of MCI, a significant difference was detected (P=0.04). The mean PMI in the three skeletal subgroups was not different according to the skeletal region (P>0.05). We found a significant difference in mean MI between normal and osteopenic subgroups in the femoral neck (P=0.042). Conclusion: Using radiomorphometric indices of the mandible (MCI-MI) may be useful in determining the skeletal status of the patients, but is not sufficient for precise evaluation. PMID:21998782

  19. Reducing the need for central dual-energy X-ray absorptiometry in postmenopausal women: efficacy of a clinical algorithm including peripheral densitometry.

    PubMed

    Jiménez-Núñez, Francisco Gabriel; Manrique-Arija, Sara; Ureña-Garnica, Inmaculada; Romero-Barco, Carmen María; Panero-Lamothe, Blanca; Descalzo, Miguel Angel; Carmona, Loreto; Rodríguez-Pérez, Manuel; Fernández-Nebro, Antonio

    2013-07-01

    We evaluated the efficacy of a triage approach based on a combination of osteoporosis risk-assessment tools plus peripheral densitometry to identify low bone density accurately enough to be useful for clinical decision making in postmenopausal women. We conducted a cross-sectional diagnostic study in postmenopausal Caucasian women from primary and tertiary care. All women underwent dual-energy X-ray absorptiometric (DXA) measurement at the hip and lumbar spine and were categorized as osteoporotic or not. Additionally, patients had a nondominant heel densitometry performed with a PIXI densitometer. Four osteoporosis risk scores were tested: SCORE, ORAI, OST, and OSIRIS. All measurements were cross-blinded. We estimated the area under the curve (AUC) to predict the DXA results of 16 combinations of PIXI plus risk scores. A formula including the best combination was derived from a regression model and its predictability estimated. We included 505 women, in whom the prevalence of osteoporosis was 20 %, similar in both settings. The best algorithm was a combination of PIXI + OST + SCORE with an AUC of 0.826 (95 % CI 0.782-0.869). The proposed formula is Risk = (-12) × [PIXI + (-5)] × [OST + (-2)] × SCORE and showed little bias in the estimation (0.0016). If the formula had been implemented and the intermediate risk cutoff set at -5 to 20, the system would have saved 4,606.34 in the study year. The formula proposed, derived from previously validated risk scores plus a peripheral bone density measurement, can be used reliably in primary care to avoid unnecessary central DXA measurements in postmenopausal women. PMID:23608922

  20. Body composition assessment of English Premier League soccer players: a comparative DXA analysis of first team, U21 and U18 squads.

    PubMed

    Milsom, Jordan; Naughton, Robert; O'Boyle, Andy; Iqbal, Zafar; Morgans, Ryland; Drust, Barry; Morton, James P

    2015-01-01

    Professional soccer players from the first team (1st team, n = 27), under twenty-one (U21, n = 21) and under eighteen (U18, n = 35) squads of an English Premier League soccer team were assessed for whole body and regional estimates of body composition using dual-energy X-ray absorptiometry (DXA). Per cent body fat was lower in 1st team (10.0 ± 1.6) compared with both U21 (11.6 ± 2.5, P = 0.02) and U18 (11.4 ± 2.6, P = 0.01) players. However, this difference was not due to variations (P = 0.23) in fat mass between squads (7.8 ± 1.6 v. 8.8 ± 2.1 v. 8.2 ± 2.4 kg, respectively) but rather the presence of more lean mass in 1st team (66.9 ± 7.1 kg, P < 0.01) and U21 (64.6 ± 6.5 kg, P = 0.02) compared with U18 (60.6 ± 6.3 kg) players. Accordingly, fat mass index was not different (P = 0.138) between squads, whereas lean mass index was greater (P < 0.01) in 1st team players (20.0 ± 1.1 kg · m(-2)) compared with U18 players (18.8 ± 1.4 kg · m(-2)). Differences in lean mass were also reflective of higher lean tissue mass in all regions, for example, upper limbs/lower limbs and trunk. Data suggest that training and nutritional interventions for younger players should therefore be targeted to lean mass growth as opposed to body fat loss. PMID:25686107

  1. 3D structural measurements of the proximal femur from 2D DXA images using a statistical atlas

    NASA Astrophysics Data System (ADS)

    Ahmad, Omar M.; Ramamurthi, Krishna; Wilson, Kevin E.; Engelke, Klaus; Bouxsein, Mary; Taylor, Russell H.

    2009-02-01

    A method to obtain 3D structural measurements of the proximal femur from 2D DXA images and a statistical atlas is presented. A statistical atlas of a proximal femur was created consisting of both 3D shape and volumetric density information and then deformably registered to 2D fan-beam DXA images. After the registration process, a series of 3D structural measurements were taken on QCT-estimates generated by transforming the registered statistical atlas into a voxel volume. These measurements were compared to the equivalent measurements taken on the actual QCT (ground truth) associated with the DXA images for each of 20 human cadaveric femora. The methodology and results are presented to address the potential clinical feasibility of obtaining 3D structural measurements from limited angle DXA scans and a statistical atlas of the proximal femur in-vivo.

  2. Changes in bone mineral density 10 years after marked reduction of cadmium exposure in a Chinese population

    SciTech Connect

    Chen, Xiao; Zhu, Guoying; Jin, Taiyi; Akesson, Agneta; Bergdahl, Ingvar A.; Lei, Lijian; Weng, Shifang; Liang, Yihuai

    2009-10-15

    The main focus of this study was to evaluate the long-term effects of Cd on forearm bone mineral density after the cessation of the ingestion of Cd-polluted rice. A total of 458 persons (294 women, 164 men) from three Cd exposure areas (low, moderately, and heavy) participated in this study. Those living in the moderate and heavy exposure areas ceased ingesting Cd-polluted rice (0.51 and 3.7 mg/kg, respectively) in 1996 (10 years prior to present analysis). The participants completed a questionnaire and bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA) at the proximal radius and ulna. The changes and change percentage in forearm bone density and the prevalence of osteoporosis between 1998 and 2006 were used as markers of bone recovery. The Cd concentrations in urine (UCd) and blood (BCd) in 1998 were used as Cd exposure markers. The values of the BMD change and change percentage of groups in which UCd was above 5 {mu}g/g creatinine ({mu}g/g crea) and BCd was above 10 {mu}g/L were significantly higher than those of the low-exposure groups (in women, p<0.001; in men, p>0.05). The BMD change and change percentage correlated positively with the UCd and BCd (in women, p<0.01; in men, p>0.05). Analysis of the Z-score revealed that the prevalence of osteoporosis in 2006 was higher than that in 1998 and increased along with the level of UCd and BCd in both women and men, especially for those subjects with the higher BCd [BCd>5 {mu}g/L, OR=3.45 (0.95-13.6); BCd>10 {mu}g/L, OR=4.51(1.57-13.54)] and UCd [UCd>10 {mu}g/g crea, OR=4.74 (1.82-12.81)] in women. It is concluded that decreasing dietary cadmium exposure at the population level is not associated with bone recovery at the individual level, and the adverse bone effects of Cd exposure persisted after the main source of Cd exposure had been blocked, especially in women.

  3. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  4. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  5. Body fat from body density: underwater weighing vs. dual-photon absorptiometry.

    PubMed

    Wang, J; Heymsfield, S B; Aulet, M; Thornton, J C; Pierson, R N

    1989-06-01

    We measured fat in 286 healthy volunteers by underwater weighing (FUWW) and dual-photon absorptiometry (FDPA) to develop a translation table for the differing results from these entirely different techniques and to study the sources of these differences. In 99 males and 187 females aged 19-94 yr, fatness was 7-47%. Prediction equations are presented for FUWW-FDPA (delta F), density of lean body mass (DLBM), and FDPA. FUWW and FDPA were significantly different from each other (P less than 0.01). Calculated DLBM is less than the assumed constant of 1.10 (P less than 0.01), ranging widely from 1.05 to 1.13 and being highly correlated with the ratio of total body bone mineral to lean body mass (TBBM/LBM). delta F, the differences between FUWW and FDPA measurements in individual subjects, varied widely (-7 to +11% in males and -18 to +13% in females). The difference was positively correlated with the DLBM. FUWW was no better than anthropometrics in equations for predicting FDPA. The FDPA predicted from anthropometrics showed smaller standard errors than when FUWW was used. Neither anthropometrics nor FUWW equations are clearly superior to those previously available. PMID:2735405

  6. Factors That Contribute to Low Bone Density in Postmenopausal Women in Different Amazonian Communities

    PubMed Central

    Borba-Pinheiro, Cláudio Joaquim; Drigo, Alexandre Janotta; de Alencar Carvalho, Mauro César Gurgel; da Silva, Nádia Souza Lima; Dantas, Estélio Henrique Martin

    2011-01-01

    Background: The aim of this study was to verify socioeconomic differences, nutrition, body balance and quality of life (QoL) in postmenopausal women with low bone mineral density (BMD) in two Amazonian communities. Methods: A total of 42 female volunteers participated in the study. The volunteers were separated into two groups: Villa (n = 20; 53 ± 5.5 years) and City (n = 22; 56 ± 7.9 years). The following evaluation instruments were used: dual energy X-ray absorptiometry (DXA); a socioeconomic questionnaire; a QoL questionnaire; a dietary habits questionnaire; and a balance test. Parametric and nonparametric tests were used. Results: The data showed significant differences in socioeconomic level (Δ%=+15.9%, p = 0.000), lumbar spine L2-L4 (Δ% = +0.10%, p = 0.007), balance (Δ% = +4.3%, p = 0.03) and some important aspects of nutrition, such as the consumption of milk (Δ%=+34%, p = 0.01) and alcohol (+14.8%, p = 0.0001). These significant differences also contributed to the total QoL score (Δ%=+76.2%, p = 0.000) and the majority of the QoL-related functions. Conclusion: This study verified that socioeconomic level, nutritional status, physical activity levels and QoL can influence the BMD of postmenopausal women. The study suggests new strategies for official health organizations to use in order to prevent and treat osteoporosis. In addition, this study can provide an orientation to physical activity, nutrition and medical professionals. PMID:22870468

  7. Evaluation of decision rules for identifying low bone density in postmenopausal African-American women.

    PubMed Central

    Wallace, Lorraine Silver; Ballard, Joyce E.; Holiday, David; Turner, Lori W.; Keenum, Amy J.; Pearman, Cynthia M.

    2004-01-01

    OBJECTIVE: While African-American women tend to have greater bone mineral density (BMD) than caucasian women, they are still at risk of developing osteoporosis later in life. Clinical decision rules (i.e., algorithms) have been developed to assist clinicians identify women at greatest risk of low BMD. However, such tools have only been validated in caucasian and Asian populations. Accordingly, the objective of this study was to compare the performance of five clinical decision rules in identifying postmenopausal African-American women at greatest risk for low femoral BMD. METHODOLOGY: One hundred-seventy-four (n=174) postmenopausal African-American women completed a valid and reliable oral questionnaire to assess lifestyle characteristics, and completed height and weight measures. BMD at the femoral neck was measured via dual energy x-ray absorptiometry (DXA). We calculated sensitivity, specificity, positive predictive value, and negative predictive value for identifying African-American women with low BMD (T-Score < or = -2.0 SD) using five clinical decision rules: Age, Body Size, No Estrogen (ABONE), Osteoporosis Risk Assessment Instrument (ORAI), Osteoporosis Self-Assessment Tool (OST), Simple Calculated Osteoporosis Risk Estimation (SCORE), and body weight less than 70 kg. RESULTS: Approximately 30% of African-American women had low BMD, half of whom had osteoporosis (BMD T-Score < or = -2.5 SD). Sensitivity for identifying women with a low BMD (T-Score < or = -2.0 SD) ranged from 65.57-83.61%, while specificity ranged from 53.85-78.85%. Positive predictive values ranged from 80.95-87.91%, while negative predictive values ranged from 48.44-58.33%. CONCLUSION: Our data suggest that the clinical decision rules analyzed in this study have some usefulness for identifying postmenopausal African-American women with low BMD. However, there is a need to establish cut-points for these clinical decision rules in a larger, more diverse sample of African-American women

  8. Effects of Hypergravity and Adrenalectomy on Total Body Bone Mineral Content in Male Rats

    NASA Technical Reports Server (NTRS)

    Girten, Beverly; Moran, Megan; Baer, Lisa; Pruitt, Sean; O'Brien, Cheryl; Arnaud, Sara; Wade, Charles; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    The effects of 14 days of increased gravitational load, and the absence of adrenal stress hormones on total body bone mineral content (BMC) were examined in male Sprague-Dawley rats. Centrifugation at 2 Gs (2G) was used to increase the gravitational load, and bilateral adrenalectomy (ADX) was used to eliminate the production of adrenal stress hormones. Stationary groups at 1 G (1G) and sham operated (SHAM) animals served as controls. Thirty rats (n=6 or 8) made up the four experimental groups (1G SHAM, 1G ADX, 2G SHAM and 2G ADX). BMC was assessed by dual energy X-ray absorptiometry (DXA) and activity was determined through biotelemetry. Body mass and food intake were also measured. Multi-factorial analysis of variance (MANCOVA) and Newman Keuls post hoc tests were used to analyze significant effects (p less than 0.05) for the primary variables. Results indicated that BMC decreased significantly with increased G for both the SHAM and ADX groups. The BMC for the 1 G ADX group was also significantly lower than the 1G SHAM group, however the 2G SHAM and ADX groups were not significantly different. There was a significant decrease in body mass with increased G and there was no ADX effect on body mass. When BMC was normalized for body mass changes, there were no significant group differences. Activity level decreased with body mass, and food intake data showed there was significant hypophagia during the first few days of centrifugation. These results suggest that the decrease in total body BMC seen with hypergravity may be based to a large extent on the differences in body mass induced by the 2 G load.

  9. Association of sarcopenia and physical activity with femur bone mineral density in elderly women

    PubMed Central

    Lee, Inhwan; Ha, Changduk; Kang, Hyunsik

    2016-01-01

    [Purpose] This study examined the association of femur bone mineral density (BMD) with body composition and physical activity in elderly women. [Methods] This was a cross sectional study involving 119 women with mean age of 73.1±5.5 years. Body composition parameters including body mass index (BMI), percent of body fat (%BF), appendicular skeletal muscle mass (ASM) index and femur BMD was measured by dual-energy X-ray absorptiometry (DXA). Physical activity was assessed by the uniaxial accelerometer for 7 consecutive days including weekends. Based on femur BMD T-scores, subjects were classified as optimal group, osteopenia group, and osteoporosis group. Based on ASM index, subjects were classified as normal group and sarcopenia group. According to WHO recommendations of physical activity for elderly, the subjects were classified as active group or inactive group. Logistic regression analyses were used to determine the odds ratio (OR) for osteopenia and osteoporosis. [Results] There were linear decreases for body composition parameters including weight (P=.023), BMI (P=.039), lean mass (P=.032), ASM index (P=.007) and physical activity parameters including daily of step (P<.001), low intensity physical activity (P<.001), moderate intensity physical activity (P=.001) across femur BMD levels. Compared to the normal group (OR=1), the sarcopenia group had a significantly higher OR (OR=4.823; P=.042), and the inactive group had a significantly higher OR (OR=5.478; P=.005) having osteopenia and osteoporosis when compared to the active group (OR=1). [Conclusion] The findings of this study suggested that physical activity along with a healthy nutrition should be promoted as a preventive strategy against osteopenia and osteoporosis in elderly women. PMID:27298809

  10. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence

    NASA Technical Reports Server (NTRS)

    van der Meulen, M. C.; Marcus, R.; Bachrach, L. K.; Carter, D. R.

    1997-01-01

    We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.

  11. Geographic differences in bone mineral density of Mexican women.

    PubMed

    Delezé, M; Cons-Molina, F; Villa, A R; Morales-Torres, J; Gonzalez-Gonzalez, J G; Calva, J J; Murillo, A; Briceño, A; Orozco, J; Morales-Franco, G; Peña-Rios, H; Guerrero-Yeo, G; Aguirre, E; Elizondo, J

    2000-01-01

    The aim of this study was to generate standard curves for normal spinal and femoral neck bone mineral density (BMD) in Mexican women using dual-energy X-ray absorptiometry (DXA), to analyze geographic differences and to compare these with 'Hispanic' reference data to determine its applicability. This was a cross-sectional study of 4460 urban, clinically normal, Mexican women, aged 20-90 years, from 10 different cities in Mexico (5 in the north, 4 in the center and 1 in the southeast) with densitometry centers. Women with suspected medical conditions or who had used drugs affecting bone metabolism, were excluded. Lumbar spine BMD was significantly higher (1.089 +/- 0.18 g/cm2) in women from the northern part of Mexico, with intermediate values in the center (1.065 +/- 0.17 g/cm2) and lower values (1.013 +/- 0.19 g/cm2) in the southeast (p < 0.0001). Similarly, femoral neck BMD was significantly higher in women from the north (0.895 +/- 0.14 g/cm2), intermediate in the center (0.864 +/- 0.14 g/cm2) and lower (0.844 +/- 0.14 g/cm ) in the southeast part of Mexico (p < 0.0001). Northern Mexican women tend to be taller and heavier than women from the center and, even more, than those from the southeast of Mexico (p < 0.0001). However, these differences in BMD remained significant after adjustment for weight (p < 0.0001). A significant loss (p < 0.0001) in BMD was observed from 40 to 69 years of age at the lumbar spine and up to the eighth decade at the femoral neck. Higher and lower lumbar spine values, as compared with the 'Hispanic' population, were observed in Mexican mestizo women from the northern and southeastern regions, respectively. In conclusion, there are geographic differences in weight and height of Mexican women, and in BMD despite adjustment for weight. PMID:11069189

  12. Single- and dual-photon absorptiometry in osteoporosis and osteomalacia

    SciTech Connect

    Wahner, H.W.

    1987-10-01

    Single- and dual-photon absorptiometric methods have been used in the past to identify populations at risk for bone loss, to define the osteoporotic syndrome in terms of bone mass, and to evaluate treatment regimens to prevent bone loss. Technical improvements have made these procedures available for the nontraumatic measurement of bone mineral in the management of the individual patient suspected of having osteoporosis or other bone loss. This requires a different approach to data interpretation because decisions have to be made on the basis of a single measurement. Osteoporosis and osteomalacia cannot be distinguished by bone mineral measurements because both are characterized by a decrease in content of bone mineral. Bone mineral measurements can be used to assess the risk of fracture and, with it, the severity of bone loss. This allows treatment decisions to be made. Repeated measurements made under well-defined conditions allow estimation of long-term rate of bone loss and monitoring of treatment effect. 38 references.

  13. Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling.

    PubMed

    Nasiri, Masoud; Luo, Yunhua

    2016-09-01

    There is controversy about whether or not body parameters affect hip fracture in men and women in the same way. In addition, although bone mineral density (BMD) is currently the most important single discriminator of hip fracture, it is unclear if BMD alone is equally effective for men and women. The objective of this study was to quantify and compare the associations of hip fracture risk with BMD and body parameters in men and women using our recently developed two-level biomechanical model that combines a whole-body dynamics model with a proximal-femur finite element model. Sideways fall induced impact force of 130 Chinese clinical cases, including 50 males and 80 females, were determined by subject-specific dynamics modeling. Then, a DXA-based finite element model was used to simulate the femur bone under the fall-induced loading conditions and calculate the hip fracture risk. Body weight, body height, body mass index, trochanteric soft tissue thickness, and hip bone mineral density were determined for each subject and their associations with impact force and hip fracture risk were quantified. Results showed that the association between impact force and hip fracture risk was not strong enough in both men (r=-0.31,p<0.05) and women (r=0.42,p<0.001) to consider the force as a sole indicator of hip fracture risk. The correlation between hip BMD and hip fracture risk in men (r=-0.83,p<0.001) was notably stronger than that in women (r=-0.68,p<0.001). Increased body mass index was not a protective factor against hip fracture in men (r=-0.13,p>0.05), but it can be considered as a protective factor among women (r=-0.28,p<0.05). In contrast to men, trochanteric soft tissue thickness can be considered as a protective factor against hip fracture in women (r=-0.50,p<0.001). This study suggested that the biomechanical risk/protective factors for hip fracture are sex-specific. Therefore, the effect of body parameters should be considered differently for men and women in hip

  14. High intensity resistance training: effects on bone in older men and women.

    PubMed

    Maddalozzo, G F; Snow, C M

    2000-06-01

    There is evidence that high intensity resistance training promotes bone maintenance in older women, however, the effect of high intensity free weight training has not been investigated in older men or women. Furthermore, little is known about the chronic effect of weight training on serum insulin growth factor-I (IGF-I) in this population. We compared the effects of a moderate intensity seated resistance-training program with a high intensity standing free weight exercise program on bone mass and serum levels of IGF-I and IGFBP3 in healthy older men and women. Twenty-eight men (54.6 +/- 3. 2 years) and 26 nonestrogen-replaced women (52.8 +/- 3.3 years) served as their own controls for 12 weeks, then were randomly assigned to a moderate or high intensity training group and trained three times/week for 24 weeks. Prior to and after the control period and at the end of training, bone mass and body composition were assessed by dual energy X-ray absorptiometry (DXA), muscle strength by isokinetic dynamometry, muscular power by Wingate Anaerobic Power Test, and IGF-I by radioimmunoassay (RIA). A repeated measures analysis of covariance (ANCOVA) revealed that high intensity training resulted in a gain in spine BMD in men (1.9%), P < 0.05, but not in women, whereas moderate intensity training produced no changes in either gender at this site. Increases were observed at the greater trochanter, P < 0.03, in men regardless of training intensity, but not in women at any hip site. However, when compared with zero, both men and women in the high intensity group demonstrated significant increases in trochanteric BMD (1.3% and 2. 0%, respectively) and a decrease in femoral BMD (-1.8%). Neither circulating serum IGF-I nor IGFBP3 were altered by either training regimen, but both training programs resulted in improvements in total body strength (37.62%) and lean mass (males 4.1%, females 3. 1%). We conclude that although resistance training of moderate to high intensity produced

  15. A Piece of the Puzzle: The Bone Health Index of the BoneXpert Software Reflects Cortical Bone Mineral Density in Pediatric and Adolescent Patients

    PubMed Central

    Schündeln, Michael M.; Marschke, Laura; Bauer, Jens J.; Hauffa, Pia K.; Schweiger, Bernd; Führer-Sakel, Dagmar; Lahner, Harald; Poeppel, Thorsten D.; Kiewert, Cordula; Hauffa, Berthold P.; Grasemann, Corinna

    2016-01-01

    Introduction Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths. Study Design The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius. Results The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 –L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 –L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation. Conclusions The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands. PMID:27014874

  16. Decreased bone mineral density in rats rendered follicle-deplete by an ovotoxic chemical correlates with changes in follicle-stimulating hormone and inhibin A.

    PubMed

    Lukefahr, A L; Frye, J B; Wright, L E; Marion, S L; Hoyer, P B; Funk, J L

    2012-03-01

    Bone loss during perimenopause, an estrogen-sufficient period, correlates with elevated serum follicle-stimulating hormone (FSH) and decreased inhibins A and B. Utilizing a recently described ovotoxin-induced animal model of perimenopause characterized by a prolonged estrogen-replete period of elevated FSH, we examined longitudinal changes in bone mineral density (BMD) and their association with FSH. Additionally, serum inhibin levels were assessed to determine whether elevated FSH occurred secondary to decreased ovarian inhibin production and, if so, whether inhibins also correlated with BMD. BMD of the distal femur was assessed using dual-energy X-ray absorptiometry (DXA) over 19 months in Sprague-Dawley rats treated at 1 month with vehicle or 4-vinylcyclohexene diepoxide (VCD, 80 or 160 mg/kg daily). Serum FSH, inhibins A and B, and 17-ß estradiol (E(2)) were assayed and estrus cyclicity was assessed. VCD caused dose-dependent increases in FSH that exceeded values occurring with natural senescence, hastening the onset and prolonging the duration of persistent estrus, an acyclic but E(2)-replete period. VCD decreased serum inhibins A and B, which were inversely correlated with FSH (r(2) = 0.30 and 0.12, respectively). In VCD rats, significant decreases in BMD (5-13%) occurred during periods of increased FSH and decreased inhibins, while BMD was unchanged in controls. In skeletally mature rats, FSH (r(2) = 0.13) and inhibin A (r(2) = 0.15) correlated with BMD, while inhibin B and E(2) did not. Thus, for the first time, both the hormonal milieu of perimenopause and the association of dynamic perimenopausal changes in FSH and inhibin A with decreased BMD have been reproduced in an animal model. PMID:22249524

  17. Decreased Bone Mineral Density in Rats Rendered Follicle-Deplete by an Ovotoxic Chemical Correlates with Changes in Follicle-Stimulating Hormone and Inhibin A

    PubMed Central

    Lukefahr, A. L.; Frye, J. B.; Wright, L. E.; Marion, S. L.; Hoyer, P. B.; Funk, J. L.

    2012-01-01

    Bone loss during perimenopause, an estrogen-sufficient period, correlates with elevated serum follicle-stimulating hormone (FSH) and decreased inhibins A and B. Utilizing a recently described ovotoxin-induced animal model of perimenopause characterized by a prolonged estrogen-replete period of elevated FSH, we examined longitudinal changes in bone mineral density (BMD) and their association with FSH. Additionally, serum inhibin levels were assessed to determine whether elevated FSH occurred secondary to decreased ovarian inhibin production and, if so, whether inhibins also correlated with BMD. BMD of the distal femur was assessed using dual-energy X-ray absorptiometry (DXA) over 19 months in Sprague-Dawley rats treated at 1 month with vehicle or 4-vinylcyclohexene diepoxide (VCD, 80 or 160 mg/kg daily). Serum FSH, inhibins A and B, and 17-ß estradiol (E2) were assayed and estrus cyclicity was assessed. VCD caused dose-dependent increases in FSH that exceeded values occurring with natural senescence, hastening the onset and prolonging the duration of persistent estrus, an acyclic but E2-replete period. VCD decreased serum inhibins A and B, which were inversely correlated with FSH (r2 = 0.30 and 0.12, respectively). In VCD rats, significant decreases in BMD (5–13%) occurred during periods of increased FSH and decreased inhibins, while BMD was unchanged in controls. In skeletally mature rats, FSH (r2 = 0.13) and inhibin A (r2 = 0.15) correlated with BMD, while inhibin B and E2 did not. Thus, for the first time, both the hormonal milieu of perimenopause and the association of dynamic perimenopausal changes in FSH and inhibin A with decreased BMD have been reproduced in an animal model. PMID:22249524

  18. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population

    PubMed Central

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  19. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population.

    PubMed

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  20. A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX.

    PubMed

    McCloskey, Eugene V; Odén, Anders; Harvey, Nicholas C; Leslie, William D; Hans, Didier; Johansson, Helena; Barkmann, Reinhard; Boutroy, Stephanie; Brown, Jacques; Chapurlat, Roland; Elders, Petra Jm; Fujita, Yuki; Glüer, Claus-C; Goltzman, David; Iki, Masayuki; Karlsson, Magnus; Kindmark, Andreas; Kotowicz, Mark; Kurumatani, Norio; Kwok, Timothy; Lamy, Oliver; Leung, Jason; Lippuner, Kurt; Ljunggren, Östen; Lorentzon, Mattias; Mellström, Dan; Merlijn, Thomas; Oei, Ling; Ohlsson, Claes; Pasco, Julie A; Rivadeneira, Fernando; Rosengren, Björn; Sornay-Rendu, Elisabeth; Szulc, Pawel; Tamaki, Junko; Kanis, John A

    2016-05-01

    Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical

  1. A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women.

    PubMed

    Villalon, Karen L; Gozansky, Wendolyn S; Van Pelt, Rachael E; Wolfe, Pam; Jankowski, Catherine M; Schwartz, Robert S; Kohrt, Wendy M

    2011-12-01

    Previously, we reported significant bone mineral density (BMD) loss in postmenopausal women after modest weight loss. It remains unclear whether the magnitude of BMD change in response to weight loss is appropriate (i.e., proportional to weight loss) and whether BMD is recovered with weight regain. We now report changes in BMD after a 1-year follow-up. Subjects (n = 23) in this secondary analysis were postmenopausal women randomized to placebo as part of a larger trial. They completed a 6-month exercise-based weight loss program and returned for follow-up at 18 months. Dual-energy X-ray absorptiometry (DXA) was performed at baseline, 6, and 18 months. At baseline, subjects were aged 56.8 ± 5.4 years (mean ± s.d.), 10.0 ± 9.2 years postmenopausal, and BMI was 29.6 ± 4.0 kg/m(2). They lost 3.9 ± 3.5 kg during the weight loss intervention. During follow-up, they regained 2.9 ± 3.9 kg. Six months of weight loss resulted in a significant decrease in lumbar spine (LS) (-1.7 ± 3.5%; P = 0.002) and hip (-0.04 ± 3.5%; P = 0.03) BMD that was accompanied by an increase in a biomarker of bone resorption (serum C-terminal telopeptide of type I collagen, CTX: 34 ± 54%; P = 0.08). However, weight regain was not associated with LS (0.05 ± 3.8%; P = 0.15) or hip (-0.6 ± 3.0%; P = 0.81) bone regain or decreased bone resorption (CTX: -3 ± 37%; P = 0.73). The findings suggest that BMD lost during weight reduction may not be fully recovered with weight regain in hormone-deficient, postmenopausal women. Future studies are needed to identify effective strategies to prevent bone loss during periods of weight loss. PMID:21852813

  2. Assessment of Body Composition Using Dual Energy X-Ray Absorptiometry in Patients with Liver Cirrhosis: Comparison with Anthropometry

    PubMed Central

    Jeong, Seong Han; Lee, Jeong A; Kim, Jin A; Lee, Mun Woo; Chae, Hee Bok; Choi, Won Jun; Shin, Hyoung Shik; Lee, Ki Hyeong; Youn, Sei Jin; Koong, Sung Soo; Park, Seon Mee

    1999-01-01

    Objectives The aim of this study was to evaluate changes of body composition in cirrhotic patients. Dual energy x-ray absorptiometry (DEXA) and anthropometry were used, and the values obtained were compared. Methods Mid-arm fat and muscle areas were calculated by anthropometry in 66 cirrhotic patients and 94 healthy controls. In 37 of the cirrhotic patients and 39 of the controls, fat mass, lean soft tissue mass and bone mineral contents were measured with DEXA. Results The number of cirrhotic patients with measured values below the fifth percentile of normal controls was 21 (31.8%) by mid-arm fat area, six (9.1%) by mid-arm muscle area, 15 (40.5%) by fat mass and 0 (0%) by lean soft tissue mass. The fat mass in cirrhotic patients was less than in controls, whereas lean soft tissue mass and bone mineral content were not different. Fat depletion was severe in Child-class C patients and with severe ascites. Mid-arm fat area and fat mass showed close correlation (r = 0.85, p<0.01), but mid-arm muscle area and lean soft tissue mass showed poor correlation (r = 0.32, p<0.05). Conclusion Cirrhotic patients showed lower fat component, with preserved lean soft tissue mass and bone mineral content. In clinical practice, the measurement of mid-arm fat area was useful for the assessment of fat mass. PMID:10461427

  3. Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX.

    PubMed

    Kälvesten, Johan; Lui, Li-Yung; Brismar, Torkel; Cummings, Steven

    2016-05-01

    Osteoporosis is often underdiagnosed and undertreated. Screening of post-menopausal women for clinical risk factors and/or low bone mineral density (BMD) has been proposed to overcome this. Digital X-ray radiogrammetry (DXR) estimates hand BMD from standard hand X-ray images and have shown to predict fractures and osteoporosis. Recently, digital radiology and the internet have opened up the possibility of conducting automated opportunistic screening with DXR in post-fracture care or in combination with mammography. This study compared the performance of DXR with FRAX® and DXA in discriminating major osteoporotic fracture (MOF) (hip, clinical spine, forearm or shoulder), hip fracture and femoral neck osteoporosis. This prospective cohort study was conducted on 5278 women 65years and older in the Study of Osteoporotic Fractures (SOF) cohort. Baseline hand X-ray images were analyzed and fractures were ascertained during 10years of follow up. Age-adjusted area under receiver operating characteristic curve (AUC) for MOF and hip fracture and for femoral neck osteoporosis (DXA FN BMD T-score ≤-2.5) was used to compare the methods. Sensitivity to femoral neck osteoporosis at equal selection rates was tabulated for FRAX and DXR. DXR-BMD, FRAX (no BMD) and lumbar spine DXA BMD were all similar in fracture discriminative performance with an AUC around 0.65 for MOF and 0.70 for hip fractures for all three methods. As expected femoral neck DXA provided fracture discrimination superior both to other BMD measurements and to FRAX. AUC for selection of patients with femoral neck osteoporosis was higher with DXR-BMD, 0.76 (0.74-0.77), than with FRAX, 0.69 (0.67-0.71), (p<0.0001). In conclusion, DXR-BMD discriminates incident fractures to a similar degree as FRAX and predicts femoral neck osteoporosis to a larger degree than FRAX. DXR shows promise as a method to automatically flag individuals who might benefit from an osteoporosis assessment. PMID:26921822

  4. Increased migration of uncemented acetabular cups in female total hip arthroplasty patients with low systemic bone mineral density

    PubMed Central

    Finnilä, Sami; Moritz, Niko; SvedströM, Erkki; Alm, Jessica J; Aro, Hannu T

    2016-01-01

    Background and purpose Low bone mineral density (BMD) may jeopardize the initial component stability and delay osseointegration of uncemented acetabular cups in total hip arthroplasty (THA). We measured the migration of uncemented cups in women with low or normal BMD. Patients and methods We used radiostereometric analysis (RSA) to measure the migration of hydroxyapatite-coated titanium alloy cups with alumina-on-alumina bearings in THA of 34 female patients with a median age of 64 (41–78) years. 10 patients had normal BMD and 24 patients had low systemic BMD (T-score ≤ −1) based on dual-energy X-ray absorptiometry (DXA). Cup migration was followed with RSA for 2 years. Radiographic follow-up was done at a median of 8 (2–10) years. Results Patients with normal BMD did not show a statistically significant cup migration after the settling period of 3 months, while patients with low BMD had a continuous proximal migration between 3 and 12 months (p = 0.03). These differences in cup migration persisted at 24 months. Based on the perceived risk of cup revision, 14 of the 24 cases were “at risk” (proximal translation of 0.2 to 1.0 mm) in the low-BMD group and 2 of the10 cases were “at risk” in the normal-BMD group (odds ratio (OR) = 8.0, 95% CI: 1.3–48). The radiographic follow-up showed no radiolucent lines or osteolysis. 2 cups have been revised for fractures of the ceramic bearings, but none for loosening. Interpretation Low BMD contributed to cup migration beyond the settling period of 3 months, but the migrating cups appeared to osseointegrate eventually. PMID:26569616

  5. Hormonal relationships to bone mass in elderly Spanish men as influenced by dietary calcium and vitamin D.

    PubMed

    Moran, Jose M; Lopez-Arza, Luis Gonzalez; Lavado-Garcia, Jesus M; Pedrera-Canal, Maria; Rey-Sanchez, Purificacion; Rodriguez-Velasco, Francisco J; Fernandez, Pilar; Pedrera-Zamorano, Juan D

    2013-12-01

    We aim to evaluate whether calcium and vitamin D intake is associated with 25-hydroxyvitamin D (25-OH-Vitamin D3) and parathyroid hormone (PTH) serum concentrations or is associated with either the phalangeal dual energy X-ray absorptiometry (pDXA) or the quantitative bone ultrasound (QUS) in independent elderly men. Serum PTH and 25-OH-Vitamin D3 were measured in 195 healthy elderly men (mean age: 73.31 ± 5.10 year). Food intake was quantified using a dietetic scale. Participants with 25-OH-Vitamin D3 levels ≥ 30 ng/mL (75 nmol/L) and a calcium intake of 800-1200 mg/day exhibited the lowest PTH levels (41.49 ± 16.72 ng/mL). The highest PTH levels (75.60 ± 14.16 ng/mL) were observed in the <30 ng/mL group 25-OH-Vitamin D3 with a calcium intake >1200 mg/day. No significant differences in the serum PTH levels based on the serum 25-OH-Vitamin D3 levels were observed among participants with a calcium intake of 800-1200 mg/day. Serum PTH was inversely correlated with serum 25-OH-Vitamin D3 in the entire patient sample (r = -0.288, p = 0.019). No differences in any of the three densitometry techniques were observed between any of the age groups in the 800-1200 mg/day and >1200 mg/day calcium intake groups. PTH levels correlate negatively with serum 25-OH-Vitamin D3 levels, and neither calcium nor vitamin D intake exert a strong influence on either of the two parameters. PMID:24304609

  6. Bone Mineral Density in Sjögren Syndrome Patients with and Without Distal Renal Tubular Acidosis.

    PubMed

    Both, Tim; Zillikens, M Carola; Hoorn, Ewout J; Zietse, Robert; van Laar, Jan A M; Dalm, Virgil A S H; van Duijn, Cornelia M; Versnel, Marjan A; Maria, Naomi I; van Hagen, P Martin; van Daele, Paul L A

    2016-06-01

    Primary Sjögren's syndrome (pSS) can be complicated by distal renal tubular acidosis (dRTA), which may contribute to low bone mineral density (BMD). Our objective was to evaluate BMD in pSS patients with and without dRTA as compared with healthy controls. BMD of lumbar spine (LS) and femoral neck (FN) was measured in 54 pSS patients and 162 healthy age- and sex-matched controls by dual-energy X-ray absorptiometry (DXA). dRTA was defined as inability to reach urinary pH <5.3 after an ammonium chloride (NH4Cl) test. LS- and FN-BMD were significantly higher in pSS patients compared with controls (1.18 ± 0.21 g/cm(2) for patients vs. 1.10 ± 0.18 g/cm(2) for controls, P = 0.008 and 0.9 ± 0.16 g/cm(2) for patients vs. 0.85 ± 0.13 g/cm(2) for controls, P = 0.009, respectively). After adjustment for BMI and smoking, the LS- and FN-BMD remained significantly higher. Patients with dRTA (N = 15) did not have a significantly different LS- and FN-BMD compared with those without dRTA (N = 39) after adjustment for BMI, age, and gender. Thirty-seven (69 %) pSS patients were using hydroxychloroquine (HCQ). Unexpectedly, pSS patients had a significantly higher LS- and FN-BMD compared with healthy controls. Patients with dRTA had similar BMD compared with patients without dRTA. We postulate that an explanation for the higher BMD in pSS patients may be the frequent use of HCQ. PMID:26873478

  7. Non-Invasive Investigation of Bone Adaptation in Humans to Cumulative Daily Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Cleek, Tammy; Sode, Miki

    2003-01-01

    The goal of our research is to better understand the functional relationship between cumulative daily skeletal loading generated by daily activity and the regulation of bone density and bone structure. We have proposed the calcaneus and tibia as useful model bone sites loaded by internal forces in equilibrium with the ground reaction force during gait. The daily history of the ground reaction force is a good relative measure of daily lower limb and calcaneal loading that can be compared to bone density and structure of the calcaneus and cross-sectional geometry of the tibia and fibula. Over the past several years, we have developed image-processing technologies to improve our ability to measure bone density and structure in the calcaneus and lower leg non-invasively with computed tomography and bone densitometry, or DXA. The objective of our current research effort is to determine the accuracy and precision of our CT and DXA image processing methods.

  8. Automatic location of vertebrae on DXA images using random forest regression.

    PubMed

    Roberts, M G; Cootes, Timothy F; Adams, J E

    2012-01-01

    We provide a fully automatic method of segmenting vertebrae in DXA images. This is of clinical relevance to the diagnosis of osteoporosis by vertebral fracture, and to grading fractures in clinical trials. In order to locate the vertebrae we train detectors for the upper and lower vertebral endplates. Each detector uses random forest regressor voting applied to Haar-like input features. The regressors are applied at a grid of points across the image, and each tree votes for an endplate centre position. Modes in the smoothed vote image are endplate candidates, some of which are the neighbouring vertebrae of the one sought. The ambiguity is resolved by applying geometric constraints to the connections between vertebrae, although there can be some ambiguity about where the sequence starts (e.g., is the lowest vertebra L4 or L5, fig 2a). The endplate centres are used to initialise a final phase of active appearance model search for a detailed solution. The method is applied to a dataset of 320 DXA images. Accuracy is comparable to manually initialised AAM segmentation in 91% of images, but multiple grade 3 fractures can cause some edge confusion in severely osteoporotic cases. PMID:23286151

  9. Reduced vertebral bone density in hypercalciuric nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pietschmann, F.; Breslau, N. A.; Pak, C. Y.

    1992-01-01

    Dual-energy x-ray absorptiometry and single-photon absorptiometry were used to determine bone density at the lumbar spine and radial shaft in 62 patients with absorptive hypercalciuria, 27 patients with fasting hypercalciuria, and 31 nonhypercalciuric stone formers. Lumbar bone density was significantly lower in patients with absorptive (-10%) as well as in those with fasting hypercalciuria (-12%), with 74 and 92% of patients displaying values below the normal mean, whereas only 48% of the nonhypercalciuric stone formers had bone density values below the normal mean. In contrast, radial bone density was similar in all three groups of renal stone formers investigated. The comparison of urinary chemistry in patients with absorptive hypercalciuria and low normal bone density compared to those with high normal bone density showed a significantly increased 24 h urinary calcium excretion on random diet and a trend toward a higher 24 h urinary uric acid excretion and a higher body mass index in patients with low normal bone density. Moreover, among the patients with absorptive hypercalciuria we found a statistically significant correlation between the spinal bone density and the 24 h sodium and sulfate excretion and the urinary pH. These results gave evidence for an additional role of environmental factors (sodium and animal proteins) in the pathogenesis of bone loss in absorptive hypercalciuria. In conclusion, our data suggest an osteopenia of trabecular-rich bone tissues in patients with fasting and absorptive hypercalciurias.

  10. The effects of bazedoxifene on bone structural strength evaluated by hip structure analysis.

    PubMed

    Beck, Thomas J; Fuerst, Thomas; Gaither, Kenneth W; Sutradhar, Santosh; Levine, Amy B; Hines, Teresa; Yu, Ching-Ray; Williams, Robert; Mirkin, Sebastian; Chines, Arkadi A

    2015-08-01

    Bazedoxifene (BZA) is a selective estrogen receptor modulator that has been shown to prevent and treat postmenopausal osteoporosis. Hip structure analysis (HSA) can be used to extract bone structural properties related to strength from hip bone mineral density (BMD) scans. This exploratory analysis used HSA to evaluate changes in hip structural geometry in postmenopausal women enrolled in a phase 3 osteoporosis treatment study who were treated with BZA 20mg or placebo for 2 years. This analysis cohort included women at increased fracture risk based on known skeletal risk factors (n = 521); 1 or more moderate or severe fractures or 2 or more mild vertebral fractures and/or femoral neck BMD T-score ≤ -3.0 at baseline combined with additional women from the overall study population (n = 475); a subgroup analysis included just those women at increased fracture risk. HSA was applied to duplicate hip dual-energy X-ray absorptiometry (DXA) scans acquired at screening and 24 months. Percent change from baseline was evaluated using an analysis of covariance for BMD and geometric parameters including section modulus (SM), cross-sectional area (CSA), outer diameter (OD), and buckling ratio (BR). In all regions, BZA was associated with increased BMD and improvements in hip structural geometry. In the narrow neck, BZA 20mg significantly increased SM, CSA, OD, and BMD compared with placebo (P < 0.05 for all). In the intertrochanter region, BZA 20mg significantly increased CSA and BMD and decreased BR compared with placebo (P < 0.05 for all). Other than BMD (P < 0.05), effects of BZA 20mg at the shaft did not reach statistical significance. Similar trends toward improvement in structural geometry with BZA 20mg were observed in all three regions of the hip for the subgroup of women at increased fracture risk. Overall, BZA was associated with geometry-related improvements in bone strength with regard to resistance to bending and compressive forces and to local buckling. These

  11. Association of the vitamin D receptor genotype BB with low bone density in hyperthyroidism.

    PubMed

    Obermayer-Pietsch, B M; Frühauf, G E; Chararas, K; Mikhail-Reinisch, S; Renner, W; Berghold, A; Kenner, L; Lackner, C

    2000-10-01

    Bone mineral density (BMD) is modulated by genetic and environmental factors or certain diseases. In several conditions such as low calcium intake, an influence of vitamin D receptor (VDR) polymorphisms on BMD has been suggested. In the present study, we investigated the relationship of Bsm I and Fok I polymorphisms of the VDR gene and BMD in patients with hyperthyroidism, a disease that often results in low BMD. Bsm I and Fok I genotypes were determined in 76 postmenopausal hyperthyroid patients and 62 healthy postmenopausal women as controls. Patients and controls were matched for age, time since menopause, and lifestyle factors and were free of estrogen medication. BMD evaluation included axial dual X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (PQCT). Low BMD was defined as -2.5 STD below the young adult mean value. Biochemical parameters investigated were thyroid hormones, osteocalcin, and 25-(OH)-vitamin D3 as well as routine laboratory data. Low BMD was found in 61% of hyperthyroid patients and in only 23% of euthyroid controls. In the group of hyperthyroid patients with low bone density, the BB genotype (VDR Bsm I polymorphisms) was significantly more frequent (39%) than in controls (13%; p = 0.003) and hyperthyroid patients with normal BMD (6%; p = 0.013). The odds ratio (OR) for low BMD in patients with BB genotype was 5.7 (95% CI, 1.7-19.1; p < 0.005) as compared with the Bb and bb genotypes and 5.5 (95% CI, 2.3-13.2; p < 0.0001) for hyperthyroidism alone. The cumulative risk for low BMD in patients with hyperthyroidism and BB genotype was 31.4 (95% CI, 3.9-256; p < 0.0003). VDR Fok I genotypes showed no significant relationship with BMD or other general or bone-specific parameters. Thus, hyperthyroidism and the genetic background of a BB genotype may promote synergistically the development of low BMD in hyperthyroid patients. Screening for the BB genotype in these patients therefore could help to identify those with

  12. Relationship between the Bertin index to estimate visceral adipose tissue from dual-energy X-ray absorptiometry and cardiometabolic risk factors before and after weight loss.

    PubMed

    Karelis, Antony D; Rabasa-Lhoret, Rémi; Pompilus, Roseline; Messier, Virginie; Strychar, Irene; Brochu, Martin; Aubertin-Leheudre, Mylene

    2012-04-01

    The purpose of this study was to investigate the relationship between visceral adipose tissue (VAT), estimated with the Bertin index obtained from dual-energy X-ray absorptiometry (DXA), with cardiometabolic risk factors before and after a weight loss program and compare it with VAT measured with computed tomography (CT) scan. The study population for this analysis included 92 nondiabetic overweight and obese sedentary postmenopausal women (age: 58.1 ± 4.7 years, BMI: 31.8 ± 4.2 kg/m(2)) participating in a weight loss intervention that consisted of a caloric restricted diet with and without resistance training (RT). We measured (i) VAT using CT scan, (ii) body composition (using DXA) from which the Bertin index was calculated, (iii) cardiometabolic risk factors such as insulin sensitivity (using the hyperinsulinenic-euglycemic clamp technique), peak oxygen consumption, blood pressure, plasma lipids, C-reactive protein as well as fasting glucose and insulin. VAT levels for both methods significantly decreased after the weight loss intervention. Furthermore, no differences in VAT levels between both methods were observed before (88.0 ± 25.5 vs. 83.8 ± 22.0 cm(2)) and after (76.8 ± 27.8 vs. 73.6 ± 23.2 cm(2)) the weight loss intervention. In addition, the percent change in VAT levels after the weight loss intervention was similar between both methods (-13.0 ± 16.5 vs. -12.5 ± 12.6%). Moreover, similar relationships were observed between both measures of VAT with cardiometabolic risk factors before and after the weight loss intervention. Finally, results from the logistic regression analysis consistently showed that fat mass and lean body mass were independent predictors of pre- and post-VAT levels for both methods in our cohort. In conclusion, estimated visceral fat levels using the Bertin index may be able to trace variations of VAT after weight loss. This index also shows comparable relationships with cardiometabolic risk factors when compared to VAT

  13. Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls.

    PubMed

    Güerri-Fernández, Roberto C; Nogués, Xavier; Quesada Gómez, José M; Torres Del Pliego, Elisa; Puig, Lluís; García-Giralt, Natalia; Yoskovitz, Guy; Mellibovsky, Leonardo; Hansma, Paul K; Díez-Pérez, Adolfo

    2013-01-01

    Atypical femoral fractures (AFF) associated with long-term bisphosphonates (LTB) are a growing concern. Their etiology is unknown, but bone material properties might be deteriorated. In an AFF series, we analyzed the bone material properties by microindentation. Four groups of patients were included: 6 AFF, 38 typical osteoporotic fractures, 6 LTB, and 20 controls without fracture. Neither typical osteoporotic fractures nor controls have received any antiosteoporotic medication. A general laboratory workup, bone densitometry by dual-energy X-ray absorptiometry (DXA), and microindentation testing at the tibia were done in all patients. Total indentation distance (Total ID), indentation distance increase (IDI), and creep indentation distance (Creep ID) were measured (microns). Age-adjusted analysis of covariance (ANCOVA) was used for comparisons. Controls were significantly younger than fracture groups. Bisphosphonate exposure was on average 5.5 years (range 5 to 12 years) for the AFF and 5.4 years (range 5 to 8 years) for the LTB groups. Total ID (microns) showed better material properties (lower Total ID) for controls 36 (± 6; mean ± SD) than for AFF 46 (± 4) and for typical femoral fractures 47 (± 13), respectively. Patients on LTB showed values between controls and fractures, 38 (± 4), although not significantly different from any of the other three groups. IDI values showed a similar pattern 13 (± 2), 16 (± 6), 19 (± 3), and 18 (± 5). After adjusting by age, significant differences were seen between controls and typical (p < 0.001) and atypical fractures (p = 0.03) for Total ID and for IDI (p < 0.001 and p < 0.05, respectively). There were no differences in Creep ID between groups. Our data suggest that patients with AFF have a deep deterioration in bone material properties at a tissue level similar to that for the osteoporotic fracture group. The LTB group shows levels that are in between controls and both type of

  14. Bone Mineral Density Changes among HIV-Uninfected Young Adults in a Randomised Trial of Pre-Exposure Prophylaxis with Tenofovir-Emtricitabine or Placebo in Botswana

    PubMed Central

    Kasonde, Michael; Niska, Richard W.; Rose, Charles; Henderson, Faith L.; Segolodi, Tebogo M.; Turner, Kyle; Smith, Dawn K.; Thigpen, Michael C.; Paxton, Lynn A.

    2014-01-01

    Background Tenofovir-emtricitabine (TDF-FTC) pre-exposure prophylaxis (PrEP) has been found to be effective for prevention of HIV infection in several clinical trials. Two studies of TDF PrEP among men who have sex with men showed slight bone mineral density (BMD) loss. We investigated the effect of TDF and the interaction of TDF and hormonal contraception on BMD among HIV-uninfected African men and women. Method We evaluated the effects on BMD of using daily oral TDF-FTC compared to placebo among heterosexual men and women aged 18–29 years enrolled in the Botswana TDF2 PrEP study. Participants had BMD measurements at baseline and thereafter at 6-month intervals with dual-energy X-ray absorptiometry (DXA) scans at the hip, spine, and forearm. Results A total of 220 participants (108 TDF-FTC, 112 placebo) had baseline DXA BMD measurements at three anatomic sites. Fifteen (6.8%) participants had low baseline BMD (z-score of <−2.0 at any anatomic site), including 3/114 women (2.6%) and 12/106 men (11.3%) (p = 0.02). Low baseline BMD was associated with being underweight (p = 0.02), having high blood urea nitrogen (p = 0.02) or high alkaline phosphatase (p = 0.03), and low creatinine clearance (p = 0.04). BMD losses of >3.0% at any anatomic site at any time after baseline were significantly greater for the TDF-FTC treatment group [34/68 (50.0%) TDF-FTC vs. 26/79 (32.9%) placebo; p = 0.04]. There was a small but significant difference in the mean percent change in BMD from baseline for TDF-FTC versus placebo at all three sites at month 30 [forearm −0.84% (p = 0.01), spine −1.62% (p = 0.0002), hip −1.51% (p = 0.003)]. Conclusion Use of TDF-FTC was associated with a small but statistically significant decrease in BMD at the forearm, hip and lumbar spine. A high percentage (6.8%) of healthy Batswana young adults had abnormal baseline BMD Further evaluation is needed of the longer-term use of TDF in HIV-uninfected persons. Trial

  15. The role of dual energy x-ray absorptiometry in aiding the diagnosis of pediatric osteogenesis imperfecta.

    PubMed

    Moore, M S; Minch, C M; Kruse, R W; Harcke, H T; Jacobson, L; Taylor, A

    1998-12-01

    The role of dual energy x-ray absorptiometry (DEXA) in the evaluation of the pediatric patient with multiple fractures has not been well established. We retrospectively examined the medical records of 45 patients who had presented to our institution with multiple fractures of unknown cause, who were not known to have osteogenesis imperfecta, and who had obtained DEXA as part of their evaluation. Of these, 26 patients had sufficient clinical data for inclusion in this study. Patients underwent DEXA of the anteroposterior spine and whole body. A z score was calculated to normalize the DEXA values for age. The diagnosis of osteogenesis imperfecta was correlated with the outcome of each DEXA scan to assess the validity of DEXA as a diagnostic tool. The DEXA of the anteroposterior spine had the highest sensitivity at 91.7%, while DEXA of the whole body had the highest specificity at 100.0%. Decreased bone mineral density may be associated with osteogenesis imperfecta, and DEXA is helpful in detecting low bone mineral density that may be missed on plain radiographs of children with milder forms of osteogenesis imperfecta. PMID:9880097

  16. Bone turnover in early rheumatoid arthritis. 2. Longitudinal bone density studies.

    PubMed Central

    Sambrook, P N; Ansell, B M; Foster, S; Gumpel, J M; Hesp, R; Reeve, J

    1985-01-01

    Serial measurements of bone mineral in 17 ambulant female patients with rheumatoid arthritis (RA) of recent onset and 19 age matched female controls were made in the radius by computed tomography and in the vertebrae by dual photon absorptiometry. Loss of trabecular bone from the distal radius was more rapid in RA (p = 0.0014), but there was no difference in the rate of loss of bone mineral from the radial midshaft or lumbar spine compared with the controls. This study is consistent with the hypothesis that the predominant form of bone loss early in the disease is the vicinity of affected joints. PMID:3876077

  17. [Dual x-ray absorptiometry in the diagnosis of osteoporosis].

    PubMed

    Vojtassák, J

    1993-01-01

    The author presents a review providing information on contemporary modern radiological possibilities as regards the diagnosis of osteoporosis at the First Orthopaedic Clinic in Bratislava. At present this department possesses a densitometer LUNAR DPX-L. This apparatus assesses the bone density on the basis of double X-ray absorption. The software available at present makes it possible to assess the bone density of the lumbar spine in the anterio-posterior and lateral projection, as well as the proximal femur and whole body. The mean time required for assessment is 4 mins. 24 secs. to 16 mins. 30 secs. The mean radiation load of the patient is 1.5 mrem, the maximal load 3.5 mrem. The apparatus compares the assessed density values with mean values of the healthy population, it evaluates automatically statistical values of the Z and T score. These results are presented either as a coloured graph or as values of bone mineral density and bone mineral content. The author explains in more detail the principle of modern densitometry and its development during the past three decades. PMID:8346691

  18. Texture analysis of X-ray radiographs is a more reliable descriptor of bone loss than mineral content in a rat model of localized disuse induced by the Clostridium botulinum toxin.

    PubMed

    Chappard, D; Chennebault, A; Moreau, M; Legrand, E; Audran, M; Basle, M F

    2001-01-01

    Botulism is a generalized paralyzing disease caused by the toxin of Clostridium botulinum (BTX). The toxin acts 3-4 days after injection by blocking the release of acetylcholine to the muscle. Six Wistar rats received a 2-U injection of BTX in the right quadriceps. Six rats were similarly injected with saline and were used as control. Paralysis of the quadriceps was obtained 4-5 days after the injection. Animals were killed 4 weeks after the BTX injection. The bone mineral content (BMC) was measured by dual-energy X-ray absorptiometry (DXA) on the femur and tibia. No side-to-side difference was observed for BMC on the whole tibia and femur in the BTX group. When subregions were selected in the bones, a significant decrease in BMC was obtained on the proximal tibia (-17.4 +/- 2.5%, p < 0.02). No significant difference could be observed on the proximal or distal femur, nor on the diaphyseal shafts. Numeric X-rays were done and a region of interest was transferred to an image analyzer. The texture of the trabecular bone was analyzed by the run length and fractal methods (skyscrapers and blanket). Significant differences were obtained on the proximal tibia for all methods except with fractal skyscrapers. On the distal femur, significant differences were obtained with the run length method, and the skyscrapers and the blanket method in the vertical direction. No differences were obtained with any method on the tibia and femur from control animals. Bone is a highly anisotropic material and its architecture at the microscopic level is conditioned by strains. The trabecular pattern differs in the proximal tibia than in the distal femural. Depending on the trabecular anisotropy, the algorithms can be more or less pertinent. BTX induced a significant bone loss on the bony subparts that are directly influenced by disuse. Texture analysis of X-ray images can reveal differences that were not evidenced by naked eyes. However, a combination of several methods appears necessary to

  19. Weight and Lean Body Mass Change with Antiretroviral Initiation and Impact on Bone Mineral Density: AIDS Clinical Trials Group Study A5224s

    PubMed Central

    Erlandson, Kristine Mace; Kitch, Douglas; Tierney, Camlin; Sax, Paul E.; Daar, Eric S.; Tebas, Pablo; Melbourne, Kathleen; Ha, Belinda; Jahed, Nasreen C.; Mccomsey, Grace A.

    2014-01-01

    Objective To compare the effect initiating different antiretroviral therapy (ART) regimens have on weight, body mass index (BMI), and lean body mass (LBM) and explore how changes in body composition are associated with bone mineral density (BMD). Methods A5224s was a substudy of A5202, a prospective trial of 1857 ART-naïve participants randomized to blinded abacavir-lamivudine (ABC/3TC) or tenofovir DF-emtricitabine (TDF/FTC) with open-label efavirenz (EFV) or atazanavir-ritonavir (ATV/r). All subjects underwent dual-energy absorptiometry (DXA) and abdominal CT for body composition. Analyses used 2-sample t-tests and linear regression. Results A5224s included 269 subjects: 85% male, 47% white non-Hispanic, median age 38 years, HIV-1 RNA 4.6 log10 copies/mL, and CD4 233 cells/µL. Overall, significant gains occurred in weight, BMI, and LBM at 96 weeks post randomization (all p<0.001). Assignment to ATV/r (vs EFV) resulted in significantly greater weight (mean difference 3.35 kg) and BMI gain (0.88 kg/m2; both p=0.02), but not LBM (0.67 kg; p=0.15), while ABC/3TC and TDF/FTC were not significantly different (p≥0.10). In multivariable analysis, only lower baseline CD4 count and higher HIV-1 RNA were associated with greater increase in weight, BMI, or LBM. In multivariable analyses, increased LBM was associated with an increased hip BMD. Conclusions ABC/3TC vs. TDF/FTC did not differ in change in weight, BMI, or LBM; ATV/r vs. EFV resulted in greater weight and BMI gain but not LBM. A positive association between increased LBM and increased hip BMD should be further investigated through prospective interventional studies to verify the impact of increased LBM on hip BMD. PMID:24384588

  20. Update on Bone Health in Pediatric Chronic Disease.

    PubMed

    Williams, Kristen M

    2016-06-01

    Children and adolescents with chronic disease are predisposed to impaired bone health. Pediatric illness, including type 1 diabetes mellitus, celiac disease, and cystic fibrosis, have significant risk of low bone mineralization and fracture due to underlying inflammation, malabsorption, lack of physical activity, and delayed puberty. Dual-energy x-ray absorptiometry is the primary imaging method to assess bone health in this population. The purpose of this review is to update readers about the assessment and management of bone health in children with common pediatric chronic illnesses and review recent advances in the prevention and treatment of impaired bone health. PMID:27241973

  1. [Possible methods for evaluating bone density in the maxillofacial region].

    PubMed

    Koppány, Ferenc; Joób-Fancsaly, Arpád; Szabo, György

    2007-04-01

    Bone densitometry is a commonly used procedure in general medicine to measure the mineral content of the bone. The method helps in establishing an early diagnosis of metabolic diseases of the bone (especially osteoporosis), which decreases the incidence of pathological fractures in a high degree. Recent studies have shown that significant correlation can be found between the optical densitometric evaluations of the jaws and the densitometric figures of other bones of the skeleton (spine, hip). These results point out the possible role of the dentist in the early diagnosis of osteoporosis. The recent methods in general medicine are based on the measurement of photon and x-ray absorption followed by computerized analysis (single photon absorptiometry, single energy x-ray absorptiometry, dual photon absorptiometry, dual energy x-ray absorptiometry). Besides the previously mentioned techniques ultrasound attenuation detection (quantitative ultrasound) and computed tomographic approaches are also widely spread. Methods utilizing the developed panoramic x-ray films are also being used for densitometric evaluations. The results given by these measurements seem to be promising as a unique detection of the early signs of osteoporosis. PMID:17546899

  2. Factors associated with low bone density in patients referred for assessment of bone health

    PubMed Central

    2013-01-01

    Background To identify factors that predict low bone mineral density (BMD) in pediatric patients referred for dual-energy x-ray absorptiometry assessments. Methods This is a retrospective cohort study of 304 children and adolescents referred for dual-energy x-ray absorptiometry assessments at a tertiary care center. Outcomes included risk factors which predicted a significant low bone density for age, defined as BMD Z-score ≤ -2.0 SD. A univariate analysis involved Chi-square, Fisher’s Exact test, and analysis of variance, and multivariate logistic regression models were constructed to determine predictors of low bone mineral density. Results In the multivariate logistic regression model, predictors of low bone mineral density included low body mass index Z-score (odds ratio 0.52, 95% confidence interval 0.39 – 0.69), low height Z-score (OR 0.71, 95% CI 0.57 – 0.88), vitamin D insufficiency (OR 3.97, 95% CI 2.08 – 7.59), and history of bone marrow transplant (OR 5.78, 95% CI 1.00 – 33.45). Conclusions Underlying health problems and associated treatments can impair bone mineral accrual. We identified risk factors most predictive of low bone mineral density in subjects referred for bone density measurement. Recognition of these factors may allow for earlier assessment to maximize bone mass in at-risk children. PMID:23388217

  3. Dual photon absorptiometry: Validation of mineral and fat measurements

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Sulet, M.; Lichtman, S.; Pierson, R.N. Jr. ); Kehayias, J. . USDA Human Nutrition Research Center on Aging at Tufts Univ.); Kamen, Y.; Dilmanian, F.A. ); Lindsay, R. . Coll. of Physicians and Surgeons)

    1989-01-01

    Photons passing through human tissue undergo attenuation in relation to the specific chemical substances with which they interact. By selecting two appropriate photon energies and recording their attenuation, the investigator can solve simultaneous equations that subdivide body mass into two components: soft tissue and bone mineral ash. The aim of this paper is to describe and to validate the estimates of body composition derived by dual photon systems. The initial studies largely involved dual photon absorptiometers, although the discussion will also include the more recently developed dual energy x-ray absorptiometers. 13 refs., 7 figs., 4 tabs.

  4. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    ERIC Educational Resources Information Center

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  5. Lack of association between free testosterone and bone density separate from age in elderly males.

    PubMed

    Drinka, P J; Olson, J; Bauwens, S; Voeks, S K; Carlson, I; Wilson, M

    1993-01-01

    It is unclear what proportion of the variance in bone density in elderly males is accounted for by testosterone status. We studied 112 ambulatory, elderly volunteers (mean age 71.7 years) and determined free testosterone (FT), as well as bone density measurements by photon absorptiometry at multiple sites. Our studies of 35 of these subjects 4 years later included morning FT and dual energy X-ray absorptiometry. There were no significant correlations between FT and bone density at multiple scanning sites with the effects of age partialed out. We suspect that our inability to detect a significant effect of FT on bone density was related to the relative strength of other determinants of bone density, as well as to the fact that FT values are far more dynamic than bone density. PMID:8453508

  6. Commentary: Concurrent administration of PTH and antiresorptives: Additive effects or DXA cosmetics.

    PubMed

    Eriksen, Erik Fink; Brown, Jacques P

    2016-05-01

    Osteoanabolic therapy with parathyroid hormone (PTH(1-84)) or the PTH analogues teriparatide (PTH(1-34), TPTD) and abaloparatide induces a positive remodeling balance and increases modeling and remodeling activity on bone surfaces. As the anabolic action of PTH is primarily remodeling based increased bone turnover maximizes bone accrual. Increased remodeling, however, also increases cortical porosity and reduces mineralization of newly formed bone, which may cause initial reductions in BMD, particularly at sites rich in cortical bone. Increased cortical porosity may also have negative consequences for bone strength. Consequently, an interest developed in concurrent therapies offsetting the potential early negative cortical bone effects developed, and several studies using varying concurrent combinations of TPTD or PTH(1-84) with various antiresorptive (anti-catabolic) agents (estrogen, SERMs, bisphosphonates and denosumab) have been published. This commentary addresses the discrepancy between changes in areal bone mineral density (BMD) and bone turnover markers (BTM) in concurrent therapy studies leading to possible misinterpretations of the results. In studies of concurrent therapies increases in BMD are generally accompanied by decreases in biochemical markers of bone turnover. This includes Procollagen Type I N-Terminal Propetide (PINP), which has emerged as a reliable marker of bone formation during osteoanabolic therapy. We therefore want to submit, that the larger increases in BMD seen initially in patients on concurrent therapy mask the potential for later reduced osteoanabolic action of PTH. This notion is corroborated by: 1) the lesser impairment of bone anabolism seen with milder antiresorptive modalities like hormone replacement therapy (HRT) or Selective Estrogen Receptor Modulators (SERMs); 2) the changes in BMD seen in extension studies where treatment naïve patients previously treated with PTH alone are crossed over to antiresorptive drugs. We

  7. Is miniscrew primary stability influenced by bone density?

    PubMed

    Marquezan, Mariana; Souza, Margareth Maria Gomes de; Araújo, Mônica Tirre de Souza; Nojima, Lincoln Issamu; Nojima, Matilde da Cunha Gonçalves

    2011-01-01

    Primary stability is absence of mobility in the bone bed after mini-implant placement and depends on bone quality among other factors. Bone quality is a subjective term frequently considered as bone density. The aim of this preliminary study was to evaluate bone density in two bovine pelvic regions and verify the primary stability of miniscrews inserted into them. Forty bone blocks were extracted from bovine pelvic bones, 20 from iliac and 20 from pubic bone, all of them containing cortical bone about 1 mm thick. Half of the sections extracted from each bone were designated for histological evaluation of bone density (trabecular bone area - TBA) and the other half for bone mineral density (BMD) evaluation by means of central dual-energy X-ray absorptiometry (DEXA). Then, twenty self-drilling miniscrews (INP®, São Paulo, Brazil) 1.4 mm in diameter and 6 mm long were inserted into the bone blocks used for BMD evaluation. Peak implant insertion torque (IT) and pull-out strength (PS) were used for primary stability evaluation. It was found that iliac and pubic bones present different bone densities, iliac bone being less dense considering BMD and TBA values (P > 0.05). However, the miniscrew primary stability was not different when varying the bone type (P < 0.05). IT and PS were not influenced by these differences in bone density when cortical thickness was about 1 mm thick. PMID:22031056

  8. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long-Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Smith, Scott A.; Watts, Nelson; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; King, Lisa; Sibonga, Jean

    2014-01-01

    Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density (BMD) and structure result in increased fracture incidence. NASA astronauts currently fly 5 to 6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT) and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone micro-architecture from lumbar spine (LS). DXA scans are routinely performed pre- and postflight on all ISS astronauts to follow BMD changes associated with spaceflight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from LS DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: Lumbar Spine (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4 yrs) were divided into 3 groups based on the exercise regimens performed onboard the ISS. "Pre-ARED" (exercise using a load-limited resistive exercise device, <300 lb), "ARED" (exercise with a high-load resistive exercise device, up to 600 lb) and "Bisphos+ARED" group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and post-flight scans. LSC for the LS in our laboratory is 0.025 g/sq. cm. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. Data were analyzed using a paired, 2-tailed Student's t-test for the difference between pre- and postflight means. Percent change and % change per month are noted

  9. Determinants of the mechanical properties of bones

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1991-01-01

    The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.

  10. Low‐Level Cadmium Exposure Is Associated With Decreased Bone Mineral Density and Increased Risk of Incident Fractures in Elderly Men: The MrOS Sweden Study

    PubMed Central

    Barregard, Lars; Sallsten, Gerd; Lundh, Thomas; Karlsson, Magnus K; Lorentzon, Mattias; Ohlsson, Claes; Mellström, Dan

    2015-01-01

    ABSTRACT One risk factor for osteoporosis that has attracted increasing attention in recent years is exposure to cadmium. The aim of this study was to examine the associations between low‐level cadmium exposure, from diet and smoking, and bone mineral density (BMD) and incident fractures in elderly men. The study population consisted of 936 men from the Swedish cohort of the Osteoporotic Fractures in Men (MrOS) study, aged 70 to 81 years at inclusion (years 2002 to 2004), with reliable data on cadmium in urine (U‐Cd) analyzed using inductively coupled plasma mass spectrometry in baseline samples. The participants also answered a questionnaire on lifestyle factors and medical history. BMD was measured at baseline using dual‐energy X‐ray absorptiometry (DXA) in the total body, hip, and lumbar spine. During the follow‐up period (until 2013), all new fractures were registered by date and type. Associations between BMD and U‐Cd were assessed using multiple linear regression, and associations between incident fractures and baseline U‐Cd were analyzed using Cox regression. In both cases, a number of potential confounders and other risk factors (eg, age, smoking, body mass index [BMI], and physical activity) were included in the models. We found significant negative associations between U‐Cd and BMD, with lower BMD (4% to 8%) for all sites in the fourth quartile of U‐Cd, using the first quartile as the reference. In addition, we found positive associations between U‐Cd and incident fractures, especially nonvertebral osteoporosis fractures in the fourth quartile of U‐Cd, with hazard ratios of 1.8 to 3.3 in the various models. U‐Cd as a continuous variable was significantly associated with nonvertebral osteoporosis fractures (adjusted hazard ratio 1.3 to 1.4 per μg Cd/g creatinine), also in never‐smokers, but not with the other fracture groups (all fractures, hip fractures, vertebral fractures, and other fractures). Our results indicate that even

  11. Lack of seasonal variation in bone mass and biochemical estimates of bone turnover

    SciTech Connect

    Overgaard, K.; Nilas, L.; Johansen, J.S.; Christiansen, C.

    1988-01-01

    Three previous studies have indicated a seasonal variation in bone mineral content, with values during the summer being 1.7% to 7.5% higher than during the winter. We have examined the seasonal influence on both bone mass, biochemical estimates of bone turnover and vitamin D metabolites in 86 healthy women, aged 29-53 years. All participants were followed up for 2 years with examinations every 6 weeks or 3 months. Bone mineral content in the proximal and distal part of the forearm (single photon absorptiometry) did not reveal any significant seasonal variation, whereas bone mineral density of the lumbar spine (dual photon absorptiometry) indicated that the highest values occurred in winter. None of the biochemical parameters showed any statistically significant cyclical changes. Serum concentrations of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D3 showed a highly significant seasonal variation, whereas the serum 1,25-dihydroxyvitamin D concentration was virtually unchanged. We conclude that seasonal variation in bone mineral content and bone turnover should not be taken into account when interpreting data from longitudinal studies of healthy pre- and postmenopausal women on a sufficient vitamin D nutriture.

  12. Effects of bariatric surgery on bone.

    PubMed

    Uebelhart, Brigitte

    2016-05-01

    Bariatric surgery currently relies on combinations of restrictive and malabsorptive procedures. Early decreases in bone mineral density (BMD) have been reported. However, the accuracy of dual-energy X-ray absorptiometry used to measure BMD can be diminished by the major weight loss, whereas quantitative computed tomography (QCT) measurements are less affected. The nutritional deficiencies induced by mixed bariatric surgery procedures, together with changes in hormones produced by adipocytes and/or the gastrointestinal tract, are often associated with elevations in serum levels of bone resorption markers. Although the data are limited, the incidence of fractures does not seem higher after bariatric surgery than in non-operated obese patients. PMID:26992952

  13. Bone mineral changes in the Apollo astronauts

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency or weightlessness have been observed. These losses are more apparent in the lower extremity than the upper and have been observed to exceed 30% in the case of the central os calcis during 36 weeks of bedrest. In early Gemini studies using X-ray densitometry, large losses of bone mineral were observed in the radius and ulna. This observation was not validated in the Apollo 14, 15 and 16 crewmen when a more precise technique, gamma ray absorptiometry, was used. The large losses reported for the early Gemini missions were not seen when this new measuring technique was employed.

  14. [Is it possible to-predict fracture in CKD patients?].

    PubMed

    Tsukamoto, Yusuke

    2016-09-01

    Routine examination of bone mineral density(BMD)by DXA(dual energy X-ray absorptiometry)is useful to predict bone fracture in both CKD nondialysis and dialysis patients. The cutoff value of BMD to predict bone fracture is different between genders and its predictive power is better in patients with lower serum PTH levels than higher counterpart. Increase in serum bone specific alkaline phosphatase is a better predictor of the bone fracture than serum PTH levels. PMID:27561344

  15. Estimation of the sensitivity in dual wave X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Gogolev, A.; Rezaev, R.; Cherepennikov, Yu; Vukolov, A.; Gogoleva, T.

    2016-07-01

    Dual wave X-ray absorptiometry is considered theoretically and the application of suggested technique extends to the multiphase flow analysis. Proposed method allows for specifying dynamically the percentage of fluid components with the resolution as high as 0.25% (according to the mathematical simulating). The accuracy of this measurement is one order higher by magnitude than that provided by the state of the art flow analyzing devices.

  16. Bone Grafts

    MedlinePlus

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  17. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  18. Application of a model based on dual-energy X-ray absorptiometry and finite element simulation for predicting the probability of osteoporotic hip fractures to a sample of people over 60 years.

    PubMed

    López, Enrique; Casajús, José A; Ibarz, Elena; Gómez-Cabello, Alba; Ara, Ignacio; Vicente-Rodríguez, Germán; Mateo, Jesús; Herrera, Antonio; Gracia, Luis

    2015-05-01

    The aim of this work is the application of a mechanical predictive model to a sample of people over 60 years of age, in order to analyze the fracture probability related to age and sex. A total of 223 elderly people (63 men, aged 63-88, 72.32±6.10; 157 women, aged 61-89, 73.28±5.73) participated in the study. A dual-energy X-ray absorptiometry scanner was used to measure the bone mineral content and bone mineral density at total hip and femoral neck. The application of the predictive model also required a finite element simulation of the proximal femur, obtaining the mechanical damage and fracture probability maps corresponding to each sex and age groups analyzed. Statistical analysis shows higher values of bone mineral density, and consequently of Young's modulus, for men than for women. In general, a decrease of BMD is observed since 65 years old. The maximum mechanical damage value is always located at the femoral neck. The results indicate that mechanical damage tends to increase with age. Coherently with mechanical damage, the maximum fracture probability value is always located at the femoral neck and tends to increase with age. The simulation model to determine the probability of fracture is more complete than the simple measurement of bone mineral density, because provides additional information about mechanical properties of bone, and allows for a prospective detection of fracture risk. The model may be used for risk evaluation in specific patients, if anatomical and dual-energy X-ray absorptiometry measurements are available, helping us to decide about preventive pharmacological treatment for hip fracture. PMID:25963384

  19. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Smith, Scott A.; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; Evans, Harlan; King, Lisa

    2014-01-01

    Background: Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density and structure result in increased fracture incidence. NASA astronauts currently fly on 5-6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT), and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone microarchitecture from lumbar spine (LS). DXA scans are routinely performed pre- and post-flight on all ISS astronauts to follow BMD changes associated with space flight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from lumbar spine DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: LS (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4) were divided into 3 groups based on the exercise regimes performed while onboard the ISS. Pre-ARED (exercise using a load-limited resistive exercise device, <300lb), ARED (exercise with a high-load resistive exercise device, up to 600lb) and a Bisphos group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and postflight scans. LSC for the LS in our laboratory is 0.025 g/cm2. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. TBS precision was calculated from 16 comparable test subjects (0.0XX g/cm2). Data were preliminary analyzed using a paired, 2-tailed t-test for the difference between

  20. Changes in fat and skeletal muscle with exercise training in obese adolescents: comparison of whole-body MRI and dual energy X-ray absorptiometry

    PubMed Central

    Lee, SoJung; Kuk, Jennifer L.

    2013-01-01

    Objective We examined skeletal muscle (SM) and fat distribution using whole-body MRI in response to aerobic (AE) versus resistance exercise (RE) training in obese adolescents and whether DXA provides similar estimates of fat and SM change as MRI. Design and Methods Thirty-nine obese boys (12–18 yr) were randomly assigned to one of three 3-month interventions: AE (n=14), RE (n=14) or a control (n=11). Results At baseline, MRI-measured total fat was significantly greater than DXA-measured total fat [Δ=3.1 kg (95% CI: −0.4 to 7.4 kg, P<0.05)], wherein underestimation by DXA was greatest in those with the highest total fat. Overall, the changes in total fat were not significantly different between MRI and DXA [Δ= −0.4 kg (95% CI: −3.5 to 2.6 kg, P>0.05)], but DXA tended to overestimate MRI fat losses in those with larger fat losses. MRI-measured SM and DXA-measured LBM (lean body mass) were significantly correlated, but as expected the absolute values were different at baseline [Δ= −28.4 kg (95% CI: −35.4 to −21.3 kg, P<0.05)]. Further, DXA overestimated MRI gains in SM in those with larger SM gains. Conclusions Although DXA and MRI-measured total and regional measures tended to be correlated at baseline and changes with exercise, there were substantial differences in the absolute values derived using DXA versus MRI. Further, there were systemic biases in the estimation between the methods wherein DXA tended to overestimate fat losses and SM gains compared to MRI. Thus, the changes in body composition observed are influenced by the method employed. PMID:23512818

  1. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management

    PubMed Central

    Hardcastle, Sarah A.; Cooper, Cyrus; Tobias, Jonathan H.

    2013-01-01

    A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders. PMID:23445662

  2. Methods and application of bone densitometry in clinical diagnosis

    SciTech Connect

    Wahner, H.W.; Riggs, B.L.

    1986-01-01

    With the awareness of osteoporosis as a major health problem for an aging population, there is great interest in early recognition and treatment of abnormal bone loss. Effective prevention of bone loss has to occur prior to the occurrence of irreparable damage. Standard radiographic procedures are not sensitive enough for the task. Therefore, a number of alternative procedures to estimate bone loss have been developed over the years, ranging from efforts to quantitate information obtained from radiographic images to sophisticated procedures such as neutron activation analysis or procedures based on the Compton scatter phenomenon. Only two procedures, photon absorptiometry and computed tomography (CT), have emerged as applicable for routine clinical use. In photon absorptiometry the entire bone mineral (cortical and trabecular bone) of a specific skeletal site is measured. CT allows measuring of bone mineral of trabecular or cortical bone alone. Normally, bone mass reaches a maximum in the third decade and then continuously declines. This age-related bone loss is greater in women in whom an accelerated rate of loss occurs at the menopause. When bone density reaches a critical fracture threshold, skeletal fractures occur (spine, hip, and distal long bones). The age at which this critical fracture threshold is reached depends on the maximal bone mass achieved in early adulthood and the rate of loss with increasing age. With the exception of NaF, present-day therapeutic efforts only retard or prevent bone loss but do not significantly add bone mineral to the skeleton. Recognition of high-risk groups and early treatment are therefore required. 79 references.

  3. Dual Energy X-Ray Absorptiometry of the Distal Femur May Be More Reliable than the Proximal Tibia in Spinal Cord Injury

    PubMed Central

    Morse, Leslie R.; Lazzari, Antonio A.; Battaglino, Ricardo; Stolzmann, Kelly L.; Matthess, Kirby R.; Gagnon, David R.; Davis, Samuel A.; Garshick, Eric

    2009-01-01

    Objective Although spinal cord injury frequently results in low impact fractures at the distal femur and proximal tibia, there are no standard clinical protocols for assessing bone mineral density at these sites. We evaluated the precision of dual energy x-ray absorptiometry scanning at two skeletal sites at the knee (proximal femur and distal tibia) in individuals with spinal cord injury. Design Cross-sectional. Setting VA Medical Center. Participants 20 subjects with chronic SCI. Interventions Not Applicable. Main Outcome Measures Precision as determined by root mean square coefficient of variation (RMS-CV) and root mean standard deviation (RMS-SD). Results At the distal femur the root RMS-CV was 3.01% and the RMS-SD was 0.025 g/cm2. At the proximal tibia the RMS-CV was 5.91% and the RMS-SD was 0.030 g/cm2. Conclusions Precision at the distal femur is greater than the proximal tibia and we recommend it as the preferred site for the longitudinal assessment of bone mineral density at the knee in chronic spinal cord injury. PMID:19406303

  4. Baseline Vitamin D Status is Predictive of Longitudinal Change in Tibial BMD in Knee Osteoarthritis (OA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With its lack of effective treatment and high prevalence, the public health impact of OA is substantial. Peri-articular bone in OA can be evaluated with the medial:lateral tibial BMD ratio (M:L BMD) obtained from dual x-ray absorptiometry (DXA). Higher M:L BMD is associated with medial OA features...

  5. Risk Factors for Osteoporosis Among Middle-Aged Women

    ERIC Educational Resources Information Center

    Turner, Lori W.; Wallace, Lorraine Silver; Perry, Blake Allen; Bleeker, Jeanne

    2004-01-01

    Objective: To investigate the risk factors for osteoporosis among a sample of middle-aged women. Methods: Adipose tissue and bone mineral density levels at the left femur, lumbar spine, and total body were assessed using dual-energy x-ray absorptiometry (DXA). Subjects (n=342) were surveyed regarding a variety of osteoporosis-related risk factors.…

  6. Space: The Final Frontier of Bone Density

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.

    2011-01-01

    It is a medical requirement at NASA to evaluate the skeletal integrity of "long-duration" astronauts by measuring bone mineral density [BMD] with DXA technology. A long-duration mission is a spaceflight that is greater than 30 days but is typically the continuous 120-180 day missions aboard the International Space Station [ISS]. Not only does NASA use the BMD index to monitor fracture risk in this astronaut population, but these measures are also used to describe the effects of spaceflight, to certify skeletal health readiness for flight, to monitor the recovery of lost bone mass after return to earth, and to evaluate the efficacy of countermeasures to bone loss. However, despite the fact that DXA-based BMD is a widely-applied surrogate for bone strength that is grounded in an abundance of population-based fracture data, its applicability to the long-duration astronaut is limited. The cohort of long-duration astronauts is not the typical group for evaluating osteoporosis or determining age-related fracture risk. The cohort is young (< 55 years), predominantly male and exposed to novel risk factors for bone loss besides the weightlessness of space. NASA is concerned about early onset osteoporosis in the astronaut exposed to long-duration spaceflight, especially since any detectable symptoms are likely to manifest after return to earth and perhaps years after space travel. This risk raises the question: is NASA doing enough now to mitigate a fracture event that may manifest later? This presentation will discuss the limitations and constraints to understanding skeletal changes due to prolonged spaceflight and the recommendations, by clinical experts in osteoporosis and BMD, to transition research technologies for clinical decision-making by NASA.

  7. Precocious Ossification of the Tympanoperiotic Bone in Fetal and Newborn Dolphins: An Evolutionary Adaptation to the Aquatic Environment?

    PubMed

    Cozzi, Bruno; Podestà, Michela; Vaccaro, Calogero; Poggi, Roberto; Mazzariol, Sandro; Huggenberger, Stefan; Zotti, Alessandro

    2015-07-01

    The present study, performed with a dual-energy X-ray (DXA) bone densitometer on a series of fetal and newborn striped and short-beaked common dolphins, shows that the bone density of the area of the tympanic bulla within the tympanoperiotic complex starts with 0.483 g cm(-2) in 5- to 6-month-old specimens of striped (or common) dolphin fetuses and reaches 1.841 g cm(-2) in newborn striped dolphins, with values consistently higher than in other parts of the skull or elsewhere in the skeleton. The same results apply to the common bottlenose dolphins, in which the area of the tympanic bulla has a density of 0.312 g cm(-2) in 5-month-old specimens and becomes four times as much in newborns. Regardless of the areal bone density results correlated to the DXA-technique, comparisons with DXA-bone density data in the literature referred to other mammals emphasize the presence of very high mineral deposition in the area of the tympanoperiotic bone in fetal and newborn dolphins and the most dense part of it belongs to the tympanic bulla. The early osseous maturation of the tympanic bulla area may be compared to what described in fin whales and may represent an unique ontogenetic and phylogenetic feature of cetaceans, possibly related to the development of essential acoustic sense and establishment of immediate post-natal mother-calf relationship. PMID:25676796

  8. Bone Diseases

    MedlinePlus

    ... avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... break Osteogenesis imperfecta makes your bones brittle Paget's disease of bone makes them weak Bones can also ...

  9. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    PubMed Central

    Sharafi, A A; Larijani, B; Mokhlesian, N; Hasanzadeh, H

    2008-01-01

    Objective The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Results There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 µGy and 1.81 µGy, respectively. Also, the scan center dose in the women was 5.70 µGy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry. PMID:18385556

  10. The Role of Bone Marrow and Visceral Fat on Bone Metabolism

    PubMed Central

    Cauley, Jane A.

    2014-01-01

    The protective effect of total fat mass on bone mineral density (BMD) has been challenged with studies showing no or negative association after adjusting for weight. Subsequently, more studies have evaluated the relationship of regional adiposity with BMD, and findings were inconsistent for central obesity. Advancements in imaging techniques enable us to directly and noninvasively study the role of adiposity on skeletal health. Visceral adiposity measured by computed tomography (CT) has consistently been shown to have negative effects on bone. Availability of magnetic resonance spectroscopy (MRS) also allows us to noninvasively quantify bone marrow fat (BMF), which has been known to be associated with osteoporosis from histomorphometric studies. Using MRS along with dual energy x-ray absorptiometry, studies have reported a detrimental role of BMF on BMD. With the increase in aging and obesity of the population, it is important to continue this effort in identifying the contribution of adipose tissues to bone quality and fracture. PMID:21374105

  11. Bone mineral density and body composition of collegiate modern dancers.

    PubMed

    Friesen, Karlie J; Rozenek, Ralph; Clippinger, Karen; Gunter, Kathy; Russo, Albert C; Sklar, Susan E

    2011-03-01

    This study investigates body composition (BC), bone mineral density (BMD), eating behaviors, and menstrual dysfunction in collegiate modern dancers. Thirty-one female collegiate modern dance majors (D), 18 to 25 years of age, and 30 age-matched controls (C) participated in the study. BC and BMD were measured using dual energy x-ray absorptiometry (DXA). Upper and lower body strength was assessed by chest and leg press one-repetition maximum tests. Participants completed three-day food records, and the diet was analyzed using nutritional software. Menstrual dysfunction (MD) and history of eating disorder (ED) data were collected via questionnaires. BC and BMD variables were analyzed using MANCOVA and frequency of ED and MD by Chi-Square analysis. BMD was greater in D than C at the spine (1.302 ± 0.135 g/cm(2) vs. 1.245 ± 0.098 g/cm(2)), and both the right hip (1.163 ± 0.111 g/cm(2) vs. 1.099 ± 0.106 g/cm(2)) and left hip (1.160 ± 0.114 g/cm(2) vs. 1.101 ± 0.104 g/cm(2); p ≤ 0.05). Total body fat percentage was lower in D than C (25.9 ± 4.2% vs. 32.0 ± 5.9%; p ≤ 0.05), and percent of fat distributed in the android region was also lower in D than C (28.0 ± 6.2% vs. 37.6 ± 8.6%; p ≤ 0.05). With regard to diet composition, only percent fat intake was lower in D than C (27.54 ± 6.8% vs. 31.5 ± 7.4%, p ≤ 0.05). A greater incidence of ED was reported by D than C (12.9% vs. 0%; p ≤ 0.05), as well as a greater incidence of secondary amenorrhea (41.9% vs 13.3%; p ≤ 0.05). No differences were found for incidence of primary amenorrhea, oligomenorrhea, or use of birth control. Strength values were higher in D than C for both chest press (30.1 ± 0.9 kg vs. 28.4 ± 1.0 kg; p ≤ 0.05) and leg press (170.7 ± 4.2 kg vs.163.1 ± 3.9 kg; p ≤ 0.05). It is concluded that the dancers in our study had a healthy body weight, yet reported a higher incidence of eating disorders and menstrual dysfunction, than non-dancers. These dancers' higher BMD may be

  12. Artificial Gravity: Effects on Bone Turnover

    NASA Technical Reports Server (NTRS)

    Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.

  13. Ultrasound-Derived Forearm Muscle Thickness Is a Powerful Predictor for Estimating DXA-Derived Appendicular Lean Mass in Japanese Older Adults.

    PubMed

    Abe, Takashi; Fujita, Eiji; Thiebaud, Robert S; Loenneke, Jeremy P; Akamine, Takuya

    2016-09-01

    To test the validity of published equations, anterior forearm muscle thickness (MT-ulna) of 158 Japanese older adults (72 men and 86 women) aged 50-79 y was measured with ultrasound. Appendicular lean soft tissue mass (aLM) was estimated from MT-ulna using two equations (body height without [eqn 1] and with [eqn 2]) previously published in the literature. Appendicular lean mass was measured using dual-energy X-ray absorption (DXA), and this method served as the reference criterion. There was a strong correlation between DXA-derived and ultrasound-estimated aLM in both equations (r = 0.882 and r = 0.944). Total error was 2.60 kg for eqn (1) and 1.38 kg for eqn (2). A Bland-Altman plot revealed that there was no systematic bias between DXA-derived and ultrasound-estimated aLM; however, eqn (1) overestimated aLM compared with DXA-derived aLM. Our results suggest that an ultrasound MT-ulna equation that includes body height is appropriate and useful for estimating aLM in Japanese adults. PMID:27321173

  14. Bone mineral content in normal US whites

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Cameron, J. R.

    1974-01-01

    Photon absorptiometry with I-125 was used to measure the bone mineral content and the bone width on 763 children between the ages of 5 and 19 years, on 538 adults between the ages of 20 and 49 years, and on 550 adults over the age of 50 years. Measurements were made on the midshaft and the distal end of the radius and the ulna, and on the humerus midshaft. This has permitted analysis of annual bone growth in children, and the rate of change in elderly adults per decade. Male and female children grew at about the same rate until adolescence. After adolescence females grew at a slow rate until the mid-twenties, while males reached adult mineralization by age 20. Males remained relatively constant until the fifties, and females began their decline in the forties.

  15. Assessment of bone health in children with disabilities.

    PubMed

    Kecskemethy, Heidi H; Harcke, H Theodore

    2014-01-01

    Evaluating the bone health of children with disabilities is challenging and requires consideration of many factors in clinical decision-making. Feeding problems and growth deficits, immobility/inability to bear weight, effect of medications, and the nature of his or her disease can all directly affect a child's overall picture of bone health. Familiarity with the tools available to assess bone health is important for practitioners. The most commonly used method to assess bone density, dual energy x-ray absorptiometry, can be performed effectively when one appreciates the techniques that make scanning patients with disabilities possible. There are specific techniques that are especially useful for measuring bone density in children with disabilities; standard body sites are not always obtainable. Consideration of clinical condition and treatment must be considered when interpreting dual energy x-ray absorptiometry scans. Serial measurements have been shown to be effective in monitoring change in bone content and in providing information on which to base decisions regarding medical treatment. PMID:25096863

  16. Correlations between the MR Diffusion-weighted Image (DWI) and the bone mineral density (BMD) as a function of the soft tissue thickness-focus on phantom and patient

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Sam; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sang-Jeong; Park, Cheol-Soo; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Lee, Jong-Woong; Kim, Ho-Sung; Kim, Eun-Hye; Kweon, Dae Cheol; Yeo, Hwa-Yeon

    2013-02-01

    In this study we used lumbar phantoms to determine if the BMD (bone mineral density) changes when only the thickness of soft tissue is increased. Second, we targeted osteoporosis patients to analyze the dependences of the changes in the SNR (signal-to-noise ratio) and the ADC (apparent diffusion coefficient) on changes in T-score. We used a bone mineral densitometer, phantoms such as an aluminum spine phantom (ASP), a Hologic spine phantom (HSP), and a European spine phantom (ESP), five sheets of acrylic panel, and a water bath to study the effects of changes in the thickness of soft tissue. First, we measured the ASP, the HSP and the ESP. For the measurement of the ASP, we filled it with water to increase the height by 0.5 cm starting from the baseline height. We then did three measurements for each height. For the measurements of the HSP and the ESP, we placed an acrylic panel on the phantom and then did three measurements at each height. We used the ASP to calculate the degree of precision of the standard mode and the thick mode at the maximum height of the water bath. To assess the degree of precision in the measurements of the three types of phantoms, we calculated precision errors and analyzed the correlation between the change in the thickness of soft tissue and the variables of the BMD. Using DWIs (diffusion weighted images), we targeted 30 healthy persons without osteoporosis and 30 patients with a finding of osteoporosis and measured the T-scores for the L1 — L4 (lumbar spine) segments of by the spine using the dual-energy X-ray absorptiometry (DXA) before classifying the measurement at each part of the spine as osteopenia or osteoporosis. We measured the signal intensity on all four parts of L1-L4 in the DWIs obtained using a 1.5T MR scanner and measured the ADC in the ADC map image. We compared changes in the SNR and the ADC for each group. The study results confirmed that an increase in the thickness of the soft tissue had a significant correlation

  17. The peak bone mass concept: is it still relevant?

    PubMed

    Schönau, Eckhard

    2004-08-01

    researchers is shifting away from bone mass to bone geometry or bone strength. Bone mass is one surrogate marker of bone strength. Widely available techniques for measurement of bone mass, such as dual-energy X-ray absorptiometry, radiogrammetry, and computed tomography, can also be used to measure variables of bone geometry such as cortical thickness, cortical area, and moment of inertia. PMID:15197638

  18. Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density

    PubMed Central

    Lac, Gerard; Cavalie, Helian; Ebal, Edmond; Michaux, Odile

    2008-01-01

    In this study, we investigated some bone parameters (bone mineral content, bone mineral density, skeleton area) in growing rats fed with a high fat diet. Correlations between bone and body composition parameters are reported. Two groups of Wistar male rats (35 days old, body mass 80 ± 6 g) were used. Water and food were given "ad libitum" during 10 weeks. Sixteen rats (L) were given a lipid enriched diet and were compared to 16 rats (S) fed with a standard diet. Body composition and bone parameters were assessed using DXA. Results indicated that L rats had lower body mass, lean body mass; fat mass was not different between the two groups. Bone mineral content, bone mineral density, skeleton area of L rats were lower compared with S rats. Significant correlations were noted between body composition, adiponectin and bone parameters. High fat diet intake during the growing period has deleterious effects on bone parameters in rats. This study confirms in growing rats that a high fat diet is pathogenic, including bone metabolism. PMID:18442361

  19. <