Science.gov

Sample records for absorptiometry dxa system

  1. A review of the use of dual-energy X-ray absorptiometry (DXA) in rheumatology

    PubMed Central

    Tanner, S Bobo; Moore, Charles F

    2012-01-01

    The principal use of dual-energy X-ray absorptiometry (DXA) is to diagnose and monitor osteoporosis and therefore reduce fracture risk, associated morbidity, and mortality. In the field of rheumatology, DXA is an essential component of patient care because of both rheumatologists’ prescription of glucocorticoid treatment as well as the effects of rheumatological diseases on bone health. This review will summarize the use of DXA in the field of rheumatology, including the concern for glucocorticoid-induced osteoporosis, as well as the association of osteoporosis with a sampling of such rheumatologic conditions as rheumatoid arthritis (RA), systemic lupus erythematosus, ankylosing spondylitis, juvenile idiopathic arthritis, and scleroderma or systemic sclerosis. Medicare guidelines recognize the need to perform DXA studies in patients treated with glucocorticoids, and the World Health Organization FRAX tool uses data from DXA as well as the independent risk factors of RA and glucocorticoid use to predict fracture risk. However, patient access to DXA measurement in the US is in jeopardy as a result of reimbursement restrictions. DXA technology can simultaneously be used to discover vertebral fractures with vertebral fracture assessment and provide patients with a rapid, convenient, and low-radiation opportunity to clarify future fracture and comorbidity risks. An emerging use of DXA technology is the analysis of body composition of RA patients and thus the recognition of “rheumatoid cachexia,” in which patients are noted to have a worse prognosis even when the RA appears well controlled. Therefore, the use of DXA in rheumatology is an important tool for detecting osteoporosis, reducing fracture risk and unfavorable outcomes in rheumatological conditions. The widespread use of glucocorticoids and the underlying inflammatory conditions create a need for assessment with DXA. There are complications of conditions found in rheumatology that could be prevented with

  2. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations.

    PubMed

    Soladoye, O P; López Campos, Ó; Aalhus, J L; Gariépy, C; Shand, P; Juárez, M

    2016-11-01

    The accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from pigs with diverse characteristics was examined in the present study. A total of 648 pigs from three different sire breeds, two sexes, two slaughter weights and three different diets were employed. DXA estimations were used to predict the dissected/chemical yield for lean and fat of carcass sides and primal cuts. The accuracy of the predictions was assessed based on coefficient of determination (R(2)) and residual standard deviation (RSD). The linear relationships for dissected fat and lean for all the primal cuts and carcass sides were high (R(2)>0.94, P<0.01), with low RSD (<1.9%). Relationships between DXA and chemical fat and lean of pork bellies were also high (R(2)>0.94, P<0.01), with RSD <2.9%. These linear relationships remained high over the full range of variation in the pig population, except for sire breed, where the coefficient of determination decreased when carcasses were classified based on this variable. PMID:27395824

  3. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Considerations.

    PubMed

    Hart, Nicolas H; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L; Newton, Robert U

    2015-09-01

    Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coefficients (ICC) were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures outlined in this

  4. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Considerations

    PubMed Central

    Hart, Nicolas H.; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L.; Newton, Robert U.

    2015-01-01

    Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coefficients (ICC) were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures outlined in this

  5. Cortical thickness estimation of the proximal femur from multi-view dual-energy X-ray absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Tsaousis, N.; Gee, A. H.; Treece, G. M.; Poole, K. E. S.

    2013-02-01

    Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 +/- 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 +/- 0:79 mm.

  6. The validity of commonly used adipose tissue body composition equations relative to dual energy X-ray absorptiometry (DXA) in gaelic games players.

    PubMed

    Doran, D A; Mc Geever, S; Collins, K D; Quinn, C; McElhone, R; Scott, M

    2014-02-01

    Dual-energy X-ray absorptiometry (DXA) and adipose tissue percentage estimates (AT%) derived from regression based skinfold equations were compared. 35 Gaelic games players [20.9 ± 1.7 years; 78.1 ± 8.6 kg; 179.5 ± 5.7 cm] underwent whole body fan beam DXA scans following a standardised protocol and assessment of skinfold thickness at 8 sites. Adipose tissue% from the sum of skinfolds and/or via body density were calculated for general and athlete specific equations (SKf-AT %). The relationship, i. e., proportional bias, fixed bias and random error (SEE) between DXA-AT % and AT % derived from the 6 skinfold equations were determined using least squares regression analysis. Skinfold AT% estimates were underestimated relative to DXA-AT % across all skinfold equations except that of Durnin and Wormersley [9] (D&W-∑(4AT %)) (16.7 ± 3.4 vs. 16.6 ± 4.0 %). All equations demonstrated 95 % prediction intervals ranges exceeding ~10 %. Each equation failed to predict AT% relative to DXA within an accepted ± 3.5 % anthropometric error rate. It is recommended that the conversion of absolute skinfold thickness to an AT % is avoided and that the skinfold equations assessed herein are not utilised in Gaelic games players. Alternate 'sum of skinfold' approaches should be considered.

  7. A study on the effects of a calcium drug on the bone mineral density (BMD) by using dual-energy X-ray Absorptiometry (DXA)

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hye; Kim, Ho-Sung; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    Measurements of osteoporosis might contain errors caused by the calcium drug used in the prevention and the treatment of osteoporosis. This study conducted a lumbar spine phantom experiment to examine whether a calcium drug can influence the measured values of the bone mineral density (BMD) because of the drug taken by a real patient remaining undigested in the stomach. Dual-energy X-ray Absorptiometry (DXA) was used to measure the BMD for a calcium-drug in an equipment-dedicated lumbar spine phantom and 10 patients selected for the BMD measurement. Three types of drugs that are prescribed in actual clinical practice calcium drugs were used for the phantom experiment, and the drugs were divided into a fixed dose, 1/2 of the fixed dose, 1/4 of the fixed dose and 1/8 of the fixed dose. Without the drugs included, the phantom was scanned 60 times continuously to calculate the baseline BMD. The BMD was measured as the calcium drug coated with paraffin was placed in the lumbar vertebra 2 and the soft tissue region of the phantom. To determine when the drug was invisible to the naked eye are measured, the BMD at different drug dilutions. The measurements were conducted three times to calculate the mean. In the patient experiment, patients were selected who visited hospital after taking the drug before measuring the BMD. After a certain time had passed, the BMD was measured again to examine the difference in images and the change in BMD values due to the calcium-drug intake. The BMD measurements of lumbar 1-4 in the phantom were higher, with statistical significant, than the least significant change (LSC) in the bone region for all three drugs (Ca carbonate, Ca citrate and Ca cholecalciferol), showing a significant increase. On the other hand, there was no significant change in the soft tissue. When Ca Cholecalciferol was used in a fixed dose, the BMD of L2 increased by 11.6%, showing the largest increase among the drugs examined, but only a 2.8% increase in the BMD of L1

  8. Prenatal pesticide exposure and PON1 genotype associated with adolescent body fat distribution evaluated by dual X-ray absorptiometry (DXA).

    PubMed

    Tinggaard, J; Wohlfahrt-Veje, C; Husby, S; Christiansen, L; Skakkebaek, N E; Jensen, T K; Grandjean, P; Main, K M; Andersen, H R

    2016-07-01

    Many modern pesticides have endocrine disrupting abilities and early-life exposure may affect growth and disease risk later in life. Previously, we reported associations between prenatal pesticide exposure and higher childhood body fat content measured by anthropometry. The associations were affected by child PON1 Q192R genotype. We aimed to study whether prenatal pesticide exposure was still associated with body fat content and distribution in the children at puberty and the potential impact of both maternal and child PON1 Q192R genotype. In this prospective cohort study of 247 children born by occupationally exposed or unexposed women (greenhouse workers and controls) two follow-up examinations (age 10-15 and 11-16 years) including simple anthropometry, skinfold measurements, pubertal staging and blood sampling were performed. Total and regional fat% was determined by dual X-ray absorptiometry (DXA) at age 10-15. Prenatal pesticide exposure was associated with increased total, android, and gynoid fat percentage (DXA) at age 10-15 years after adjustment for sex, socioeconomic status, and puberty (all β = 0.5 standard deviation score (SDS) p < 0.05). Stratified by sex, the associations were significant in girls (total fat: β = 0.7 SDS, android-gynoid ratio: β = 0.1, both p < 0.05), but not in boys. Carrying the R-allele (child or mother, separately, or both) augmented the differences between exposed and unexposed children (total fat: β = 1.0 SDS, β = 0.8 SDS, p < 0.05, respectively, and β = 1.2 SDS, p < 0.01). No exposure-related differences were found if either the child or mother had the QQ wild-type. At age 11-16, exposed children tended to have a higher total fat% estimated by skinfolds than unexposed children (p = 0.06). No significant associations between prenatal exposure and body mass index or waist circumference were found. Prenatal pesticide exposure was associated with higher adolescent body fat content, including android

  9. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses. PMID:26206525

  10. DXA: Technical aspects and application.

    PubMed

    Bazzocchi, Alberto; Ponti, Federico; Albisinni, Ugo; Battista, Giuseppe; Guglielmi, Giuseppe

    2016-08-01

    The key role of dual-energy X-ray absorptiometry (DXA) in the management of metabolic bone diseases is well known. The role of DXA in the study of body composition and in the clinical evaluation of disorders which directly or indirectly involve the whole metabolism as they may induce changes in body mass and fat percentage is less known or less understood. DXA has a range of clinical applications in this field, from assessing associations between adipose or lean mass and the risk of disease to understanding and measuring the effects of pathophysiological processes or therapeutic interventions, in both adult and paediatric human populations as well as in pre-clinical settings. DXA analyses body composition at the molecular level that is basically translated into a clinical model made up of fat mass, non-bone lean mass, and bone mineral content. DXA allows total and regional assessment of the three above-mentioned compartments, usually by a whole-body scan. Since body composition is a hot topic today, manufacturers have steered the development of DXA technology and methodology towards this. New DXA machines have been designed to accommodate heavier and larger patients and to scan wider areas. New strategies, such as half-body assessment, permit accurate body scan and analysis of individuals exceeding scan field limits. Although DXA is a projective imaging technique, new solutions have recently allowed the differential estimate of subcutaneous and intra-abdominal visceral fat. The transition to narrow fan-beam densitometers has led to faster scan times and better resolution; however, inter- or intra-device variation exists depending on several factors. The purposes of this review are: (1) to appreciate the role of DXA in the study of body composition; (2) to understand potential limitations and pitfalls of DXA in the analysis of body composition; (3) to learn about technical elements and methods, and to become familiar with biomarkers in DXA. PMID:27157852

  11. Clinical comparison of a novel breast DXA technique to mammographic density

    SciTech Connect

    Shepherd, John A.; Herve, Lionel; Landau, Jessie; Fan Bo; Kerlikowske, Karla; Cummings, Steve R.

    2006-05-15

    We compare mammography breast density (BD{sub MD}) to the measure of breast composition using a clinical dual energy absorptiometry (DXA) system (BD{sub DXA}) calibrated to measure breast density. A DXA scanning protocol was developed to scan breasts isolated in the DXA scan field in either a prone pendulous or decubitus mediolateral position. A total of 17 participants were recruited among women undergoing clinical mammography examinations. Each participant had duplicate DXA scans and duplicate craniocaudal-view mammograms of their right breast with repositioning between each scan and one DXA and one craniocaudal-view mammogram of their left breast. The in vivo repeatability (RMS SD) of BD{sub DXA} and BD{sub MD} on duplicate scans was found to be 1.2% for BD{sub DXA} and 1.4% for BD{sub MD} when repeat BD{sub MD} measures were made on the same day. When repeat BD{sub MD} measures of the same breast were made more than 50 days apart, the repeatability decreased to 5.5%. Left and right breast measurements were highly correlated with both techniques at r{sup 2}=0.98 for BD{sub DXA} and r{sup 2}=0.86 for BD{sub MD}. Moderate correlation (r{sup 2}=0.52) was found between BD{sub DXA} and BD{sub MD} measurements. However, after recalibrating the DXA system to mammography reference materials, negative percent fibroglandular values were measured for the most fatty breasts. Thus, our results are reproducible and accurate to common mammography tissue standards, but did not accurately reflect true percent fibroglandular levels and further development of phantom standards are necessary. We conclude that breast composition can be precisely evaluated and assessed with clinical DXA densitometers at a lower dose than with mammographic breast density methods.

  12. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  13. Relationship among MRTA, DXA, and QUS.

    PubMed

    Djokoto, Christina; Tomlinson, George; Waldman, Stephen; Grynpas, Marc; Cheung, Angela M

    2004-01-01

    Dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) are the accepted modalities for the evaluation of fracture risk in the clinical setting. However, neither method provides a direct measurement of bone mechanics. In this study, we investigated a prototype device, known as a mechanical response tissue analyzer (MRTA), which provides direct mechanical measurements of mechanical properties of bone. A total of 56 healthy volunteers (20 men and 36 women) between the ages of 18 and 83 were recruited. The MRTA was used to measure the cross-sectional bending stiffness (EI) of the ulna bone. Axial speed of sound (SOS) at the ulna bone was determined by QUS; bone mineral content (BMC) and bone mineral density (BMD) were determined by DXA. Correlations, regression analysis, and analyses of variance (ANOVAs) were used to compare the three modalities. These analyses revealed that although there are strong linear relationships among the data collected by the various technologies, the bone properties reflected by MRTA are not fully explained by DXA and QUS. We conclude that the total information conveyed by MRTA measurements is unique. Further research is needed to delineate the different qualities of bone strength that are captured by MRTA, but not by DXA or QUS. PMID:15618607

  14. Relationship among MRTA, DXA, and QUS.

    PubMed

    Djokoto, Christina; Tomlinson, George; Waldman, Stephen; Grynpas, Marc; Cheung, Angela M

    2004-01-01

    Dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) are the accepted modalities for the evaluation of fracture risk in the clinical setting. However, neither method provides a direct measurement of bone mechanics. In this study, we investigated a prototype device, known as a mechanical response tissue analyzer (MRTA), which provides direct mechanical measurements of mechanical properties of bone. A total of 56 healthy volunteers (20 men and 36 women) between the ages of 18 and 83 were recruited. The MRTA was used to measure the cross-sectional bending stiffness (EI) of the ulna bone. Axial speed of sound (SOS) at the ulna bone was determined by QUS; bone mineral content (BMC) and bone mineral density (BMD) were determined by DXA. Correlations, regression analysis, and analyses of variance (ANOVAs) were used to compare the three modalities. These analyses revealed that although there are strong linear relationships among the data collected by the various technologies, the bone properties reflected by MRTA are not fully explained by DXA and QUS. We conclude that the total information conveyed by MRTA measurements is unique. Further research is needed to delineate the different qualities of bone strength that are captured by MRTA, but not by DXA or QUS.

  15. Comparison of Anthropometry to Dual Energy X-Ray Absorptiometry: A New Prediction Equation for Women

    ERIC Educational Resources Information Center

    Ball, Stephen; Swan, Pamela D.; DeSimone, Rosemarie

    2004-01-01

    The purpose of this study was to assess the accuracy of three recommended anthropometric equations for women and then develop an updated prediction equation using dual energy x-ray absorptiometry (DXA). The percentage of body fat (%BF) by anthropometry was significantly correlated (r = .896-. 929; p [is less than] .01) with DXA, but each equation…

  16. In vivo precision of dual-energy X-ray absorptiometry-derived hip structural analysis in adults.

    PubMed

    Hind, Karen; Oldroyd, Brian; Prajapati, Anup; Rhodes, Laura

    2012-01-01

    Precision is integral to the monitoring of bone mineral density (BMD) change using dual-energy X-ray absorptiometry (DXA). Hip structural analysis (HSA) is a relatively recent method of assessing cross-sectional geometrical strength from the 2-dimensional images produced by DXA scans. By performing serial scans, we evaluated the in vivo precision of DXA-derived HSA in adults using a GE Lunar iDXA absorptiometer (GE Medical Systems, Madison, WI) in males and females (n=42), mean age of 34.5 (standard deviation [SD]: 8.5; range: 19.3-52.6)yr with a heterogeneous sample. Two consecutive intelligent DXA (iDXA) scans with repositioning of both femurs were conducted for each participant. The coefficient of variation, root-mean-square (RMS) averages of SD, and hence the least significant change (95%) were calculated. We found a high level of precision for BMD measurements of both the total hip and femoral neck, with RMS-SD=0.006 and 0.010 g/cm(2) and percent coefficient of variation (%CV)=0.52% and 0.94%, respectively. We also found good precision for HSA-derived geometrical properties, including sectional modulus, cross-sectional moment of inertia, and cross-sectional area, with %CV (average of the left and right sides) at 4.48%, 3.78%, and 3.13%, respectively. Precision was poorer for buckling ratio and femoral strength index with %CV 28.5% and 9.25%, respectively. The iDXA provides high precision for BMD measurements and with varying levels of precision for HSA geometrical properties.

  17. Body Fat Mass Assessment: A Comparison between an Ultrasound-Based Device and a Discovery A Model of DXA

    PubMed Central

    Pineau, Jean-Claude; Lalys, Loïc; Pellegrini, Massimo; Battistini, Nino Carlo

    2013-01-01

    Objective. To examine measurement of body composition by ultrasound compared with a reference technique:dual energy X-ray absorptiometry (DXA). We evaluated the accuracy of a portable ultrasound-based device in estimating total body fat mass with those assessed by DXA in adult. Methods. Body fat mass has been estimated using a portable ultrasound-based device in comparison with a contemporary reference DXA apparatus: the Hologic Discovery A. Anthropometric data has been assessed in order to maximize the output of the software associated with the ultrasound-based device. A cross-validation between ultrasound technique (US) and DXA was developed in this study. Total body fat mass estimated by ultrasound was compared with this DXA model in a sample of 83 women and 41 men. Results. Ultrasound technique (US) of body fat (BF) was better correlated with DXA in both women (r2 = 0.97, P < 0.01) and men (r2 = 0.92, P < 0.01) with standard errors of estimates (SEE) being 2.1 kg and 2.2 kg, respectively. Conclusion. The use of a portable device based on a US produced a very accurate BF estimate in relation to DXA reference technique. As DXA absorptiometry techniques are not interchangeable, the use of our ultrasound-based device needs to be recalibrated on a more contemporary DXA. PMID:24575315

  18. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  19. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  20. Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...

  1. Suspension criteria for dual energy X ray absorptiometry.

    PubMed

    McLean, I D

    2013-02-01

    The use of dual-energy X-ray absorptiometry (DXA) units primarily for the assessment of fracture risk and in the diagnosis of osteoporosis is ubiquitous in Europe and ever-expanding in its implementation worldwide. DXA is known for its reported low radiation dose and precision in the determination of bone mineral density. However, the use of simple suspension criteria, as proposed in the new EC report RP-162, will identify units that are unfit for useful and safe diagnosis. Such suspension levels, however, are not a substitute for regular maintenance, quality control testing and optimisation of clinical outcomes.

  2. Comparison of bone density measurement techniques: DXA and Archimedes' principle.

    PubMed

    Keenan, M J; Hegsted, M; Jones, K L; Delany, J P; Kime, J C; Melancon, L E; Tulley, R T; Hong, K D

    1997-11-01

    The standard method for determination of density (g/cm3) of bones from small animals has been the application of Archimedes' principle. A recent development has been software for the determination of "density" (g/cm2) of small animal bones with dual-energy X-ray absorptiometry (DXA). We compared Archimedes' principle and DXA (Hologic QDR-2000) in the measurement of the densities of whole and hollowed femurs of 5- to 6-month-old retired female breeder rats. In an attempt to ensure detectable treatment differences, rats were used from a low-vitamin D Holtzman and a supplemental-vitamin D Sprague-Dawley colony. Whole femur densities were higher for supplemental-vitamin D colony rats than for low vitamin D rats using both techniques (Archimedes' principle, p < 0.002; DXA, p < 0.005), and the densities from the two techniques were highly correlated (r = 0.82, p < 0.0001). Actual density values were higher for Archimedes' principle than for DXA. Other variables such as femur ash weight and calcium content were also highly correlated to densities with both techniques. Hollowed femur density values were higher than whole femur values with Archimedes' principle but lower with DXA. Colony effects for hollowed femur densities were diminished with Archimedes' principle (p < 0.03) and eliminated with DXA (p < 0.53). Investigation of whole bones is more biologically relevant, and both techniques were effective in detecting differences between whole femurs from low-vitamin D and supplemental-vitamin D colony rats.

  3. Comparison of bone density measurement techniques: DXA and Archimedes' principle.

    PubMed

    Keenan, M J; Hegsted, M; Jones, K L; Delany, J P; Kime, J C; Melancon, L E; Tulley, R T; Hong, K D

    1997-11-01

    The standard method for determination of density (g/cm3) of bones from small animals has been the application of Archimedes' principle. A recent development has been software for the determination of "density" (g/cm2) of small animal bones with dual-energy X-ray absorptiometry (DXA). We compared Archimedes' principle and DXA (Hologic QDR-2000) in the measurement of the densities of whole and hollowed femurs of 5- to 6-month-old retired female breeder rats. In an attempt to ensure detectable treatment differences, rats were used from a low-vitamin D Holtzman and a supplemental-vitamin D Sprague-Dawley colony. Whole femur densities were higher for supplemental-vitamin D colony rats than for low vitamin D rats using both techniques (Archimedes' principle, p < 0.002; DXA, p < 0.005), and the densities from the two techniques were highly correlated (r = 0.82, p < 0.0001). Actual density values were higher for Archimedes' principle than for DXA. Other variables such as femur ash weight and calcium content were also highly correlated to densities with both techniques. Hollowed femur density values were higher than whole femur values with Archimedes' principle but lower with DXA. Colony effects for hollowed femur densities were diminished with Archimedes' principle (p < 0.03) and eliminated with DXA (p < 0.53). Investigation of whole bones is more biologically relevant, and both techniques were effective in detecting differences between whole femurs from low-vitamin D and supplemental-vitamin D colony rats. PMID:9383695

  4. On new opportunities for absorptiometry.

    PubMed

    Ferretti, J L; Schiessl, H; Frost, H M

    1998-01-01

    Mechanical loads cause bone strains; and muscle forces, not body weight, cause the largest strains. The strains help to control the effects of bone modeling and remodeling on bone strength and "mass." When strains exceed a threshold range, modeling increases bone strength and "mass." When strains stay below a smaller threshold range, remodeling begins removing bone next to marrow. As a result, increasing muscle strength increases bone strength and "mass," and decreasing muscle strength decreases bone strength and "mass." Estrogen apparently lowers the remodeling threshold, which reduces bone losses. Loss of estrogen raises that threshold to cause losses of bone next to marrow. Such facts help to explain: 1. Bone loss in aging adults. 2. An increase in bone "mass" in girls at menarche. 3. The loss of bone during menopause. 4. The greater bone "mass" in obese than in slender subjects, and in weightlifters than in marathon runners. 5. And the pathogenesis of physiologic osteopenias and true osteoporoses. Thus new standards are needed for the relationships between bone and muscle strengths, and as functions of sex, age, race, disease, endocrine status, nutrition, vitamin and mineral intakes, medications, puberty, and menopause. Obtaining those standards and studying such relationships provide many new opportunities for studies that involve dual energy X-ray absorptiometry (DXA) and peripheral quantitative computer tomography (pQCT) and, perhaps some day, ultrasound and magnetic resonance imaging (MRI) techniques. PMID:15304912

  5. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases.

  6. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity. PMID:23562363

  7. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity.

  8. Distal radius strength: a comparison of DXA-derived vs pQCT-measured parameters in adolescent females.

    PubMed

    Dowthwaite, Jodi N; Hickman, Rebecca M; Kanaley, Jill A; Ploutz-Snyder, Robert J; Spadaro, Joseph A; Scerpella, Tamara A

    2009-01-01

    Although quantitative computed tomography (QCT) is considered the gold standard for in vivo densitometry, dual-energy X-ray absorptiometry (DXA) scans assess larger bone regions and are more appropriate for pediatric longitudinal studies. Unfortunately, DXA does not yield specific bone architectural output. To address this issue in healthy, postmenarcheal girls, Sievänen's distal radius formulae [1996] were applied to derive indices of bone geometry, volumetric bone mineral density (vBMD), and strength from DXA data; results were compared to peripheral quantitative computed tomography (pQCT) output. Contemporaneous scans were performed on the left, distal radii of 35 gymnasts, ex-gymnasts, and nongymnasts (aged 13.3-20.4 yr, mean 16.6 yr). For 4% and 33% regions, pQCT measured cross-sectional areas (CSAs) and vBMD; comparable DXA indices were generated at ultradistal and 1/3 regions. Index of structural strength in axial compression was calculated from 4% pQCT and DXA output for comparison; 33% pQCT strength-strain index was compared to 1/3 DXA section modulus. Sievänen DXA indices were significantly, positively correlated with pQCT output (R=+0.61 to +0.98; p<0.0001). At the distal radius, in healthy postmenarcheal girls, Sievänen's method yielded potentially useful DXA indices of diaphyseal cortical CSA and bone strength at both the diaphysis (section modulus) and the metaphysis (index of structural strength in axial compression).

  9. Comparison of nuclear magnetic resonance spectroscopy with dual-photon absorptiometry and dual-energy X-ray absorptiometry in the measurement of thoracic vertebral bone mineral density: compressive force versus bone mineral.

    PubMed

    Myers, T J; Battocletti, J H; Mahesh, M; Gulati, M; Wilson, C R; Pintar, F; Reinartz, J

    1994-05-01

    31P nuclear magnetic resonance spectroscopy (NMRS) measurements were made on human T2 and T3 vertebral bodies. The bone mineral content (BMC) of isolated vertebral bodies minus the posterior elements and disks was measured using (1) NMRS on a 3.5 T, 85 mm bore GE Medical Systems NT-150 superconducting spectrometer, (2) a Lunar Corporation DPX-L dual-energy X-ray absorptiometry (DXA) scanner in an anterior-posterior (AP) orientation, (3) a Norland Corporation XR26 DXA scanner, also in an AP direction, and (4) a Norland Corporation model 2600 dual-photon absorptiometry (DPA) densitometer in both the AP and superior-inferior (SI) directions. Vertebral body volumes were measured using a water displacement technique to determine volume bone mineral densities (VBMD). They were then compressed to failure using an electrohydraulic testing device, followed by ashing in a muffle furnace at 700 degrees C for 18 h. Correlations of BMC between NMRS and DPA, DXA and ashing were excellent (0.96 < or = r < or = 0.99); in a one-way analysis of variance (ANOVA) test, means were not statistically different at a p level of 0.757. The correlations of VBMD between NMRS and the other methods were not as good (0.83 < or = r < or = 0.95); in a one-way ANOVA test, means were not statistically different at a p level of 0.089. BMC was a better predictor of ultimate compressive failure than VBMD for all six methods. For NMRS, the regression coefficient for BMC was r2 = 0.806, compared with r2 = 0.505 for VBMD. NMRS may prove an alternative to present methods of determining bone mineral. PMID:8069051

  10. Description and performance comparison of commercial and prototype dual photon absorptiometry (DPA) systems

    SciTech Connect

    Dunn, W.L.; Wahner, H.W.

    1985-05-01

    DPA has become of major interest for clinical measurements of bone mineral (BM) in the axial skeleton. Several commercial instruments are now available. The objective of this paper is a description and comparison of these instruments with some of the instruments used in clinical research laboratories. /sup 153/Gd is almost exclusively used as a source (1-1.5Ci). All instruments use NaI(T1) detectors. Detector collimator sizes vary from about 0.6 to 1.3 cm diameter. Linearity, accuracy and reproducibility of BM measurements were evaluated by scanning a series of ashed bones in 20 cm of water. Reproducibility was studied by performing multiple scans of ashed bones and a cadaver spine, CV being less than 2.1% for the spine. Minimum performance criteria for a clinical bone mineral test is a reproducibility of less than 3%. Dosimetry studies conducted to date show a peak skin dose of 18 mrad (0.18mGy). Additional dosimetry measurements are presently being performed. The authors conclude that the commercial DPA units provide results which are clinically acceptable and comparable to the prototype systems.

  11. Osteoporosis pharmacotherapy following bone densitometry: importance of patient beliefs and understanding of DXA results

    PubMed Central

    Cadarette, S. M.; Eskildsen, P.; Abrahamsen, B.

    2016-01-01

    Summary Persistence with osteoporosis therapy remains low and identification of factors associated with better persistence is essential in preventing osteoporosis and fractures. In this study, patient understanding of dual energy X-ray absorptiometry (DXA) results and beliefs in effects of treatment were associated with treatment initiation and persistence. Introduction The purpose of this study is to examine patient understanding of their DXA results and evaluate factors associated with initiation of and persistence with prescribed medication in first-time users of anti-osteoporotic agents. Self-reported DXA results reflect patient understanding of diagnosis and may influence acceptance of osteoporosis therapy. To improve patient understanding of DXA results, we provided written information to patients and their referring general practitioner (GP), and evaluated factors associated with osteoporosis treatment initiation and 1-year persistence. Methods Information on diagnosis was mailed to 1,000 consecutive patients and their GPs after DXA testing. One year after, a questionnaire was mailed to all patients to evaluate self-report of DXA results, drug initiation and 1-year persistence. Quadratic weighted kappa was used to estimate agreement between self-report and actual DXA results. Multivariable logistic regression was used to evaluate predictors of understanding of diagnosis, and correlates of treatment initiation and persistence. Results A total of 717 patients responded (72%). Overall, only 4% were unaware of DXA results. Agreement between self-reported and actual DXA results was very good (κ=0.83); younger age and glucocorticoid use were associated with better understanding. Correctly reported DXA results was associated with treatment initiation (OR 4.3, 95% CI 1.2–15.1, p=0.02), and greater beliefs in drug treatment benefits were associated with treatment initiation (OR 1.4, 95%CI 1.1–1.9, p=0.006) and persistence with therapy (OR 1.8, 95% CI 1.2–2

  12. Bone mineral density assessment: comparison of dual-energy X-ray absorptiometry measurements at the calcaneus, spine, and hip.

    PubMed

    Sweeney, Ann T; Malabanan, Alan O; Blake, Michael A; Weinberg, Janice; Turner, Adrian; Ray, Patricia; Holick, Michael F

    2002-01-01

    It is widely accepted that bone mineral density (BMD) measurements obtained by dual-energy X-ray absorptiometry (DXA) at the spine, hip, and calcaneus predict fracture risk. Few published studies to date have examined the relationship between pDXA measurements at the calcaneus to those at the hip and spine. It has been demonstrated that T-score-based criteria cannot be universally applied to all skeletal sites and measurement technologies. Our goal was to define the calcaneal T-score threshold equivalent to low bone mass at the hip or spine. A total of 119 female patients between the ages of 33 and 76 yr of age were recruited at Boston University Medical Center for bone densitometry screening. Bone density measurements were obtained at the calcaneus using the portable Norland Apollo Densitometer (Norland Medical Systems, Fort Atkinson, WI) and at the hip and spine using the Norland Eclipse densitometer. By defining a pDXA T-score < or =-1 as a positive test and DXA scores < or =-1 as the presence of low bone mass, we obtained a specificity of 100% and a sensitivity of 73% (positive predictive value 100% and negative predictive value 80%) in detecting low bone mass at the femoral neck in women over age 65 yr. In women between 40 and 65 yr of age, we obtained a sensitivity of 50% and a specificity of 93% (positive predictive value 93% and negative predictive value 50%) in detecting low bone mass at the femoral neck. In women less than 40 yr of age, we obtained a sensitivity of 13% and a specificity of 100% (positive predictive value 100% and negative predictive value 75%) in detecting low bone mass at the femoral neck. From receiver operating characteristic curves, a calcaneal T-score < or =0.0 detects those with a T-score < or =-1 at the femoral neck and lumbar spine with 100% and 85% sensitivity, respectively. Peripheral DXA of the calcaneus is a sensitive and specific test to diagnose low bone mass in women over 65 yr of age. In women under 65 yr of age, this

  13. Evolution of bisphosphonate-related atypical fracture retrospectively observed with DXA scanning.

    PubMed

    Ahlman, Mark A; Rissing, Michael S; Gordon, Leonie

    2012-02-01

    We present a case of a 61-year-old female with history of long-term bisphosphonate therapy for osteoporosis initially diagnosed by screening dual-energy X-ray absorptiometry (DXA). After 4 years of treatment with bisphosphonates, the patient presented to primary care with left hip pain. Diagnostic hip radiographs were interpreted as normal, and she continued to take bisphosphonates. Two months later, she experienced a complete transverse subtrochanteric left femur fracture after minimal trauma. The patient underwent open reduction and internal fixation. Review of the patient's postoperative films revealed lateral subtrochanteric cortical beaking at the fracture. This type of "atypical" fracture has been reported to be a result of chronic bisphosphonate-associated fractures with high specificity. In addition, the right femur also showed cortical beaking with a horizontal linear lucency in an identical location, suggesting an impending fracture. Longitudinal review of the both diagnostic radiographs as well as DXA images shows a stepwise development of these subtrochanteric abnormalities in both femurs. A current hypothesis regarding the pathophysiology of bisphosphonate-associated fracture is that the medication inhibits bone turnover and repair of microscopic trauma. A cycle of defective repair and continual microtrauma compounded over time gradually weakens the bone and creates an architectural conduit for transverse or "atypical" fracture. Standard practice is not to use DXA as a diagnostic "image." We present this case to show that a common location and classic appearance of subtrochanteric bisphosphonate-associated fractures may be clearly visualized on absorptiometry images long before fracture. This observation is important because the majority of patients taking bisphosphonate therapy also receive regular DXA imaging. Because of the chronicity of standard bone-density monitoring for these patients throughout their treatment regimen, DXA may find a role for

  14. Total-body calcium estimated by delayed gamma neutron activation analysis and dual-energy X-ray absorptiometry.

    PubMed

    Aloia, J F; Ma, R; Vaswani, A; Feuerman, M

    1999-01-01

    Total body calcium (TBCa) in 270 black and white women age 21-79 years was measured concurrently by delayed gamma neutron activation analysis (DGNA) and dual-energy X-ray absorptiometry (DXA). The mean value for TBCa calculated from DXA was 933 g compared with 730 g for DGNA. By regression, TBCa(DXA(g)) = 1.35 x TBCa(DGNA(g)) -54 (r = 0. 90, r(2) = 81.4%, SEE = 66.9 g). This remarkable difference of 203 g suggests that one or both these methods is not accurate. Adjustment of the regression of DXA versus DGNA for body mass index or trunk thickness explained 8.5-10% of the variability between methods. The unadjusted slope for the DXA values regressed against the DGNA values was 1.35, indicating significant discordance between the methods. There is greater agreement between the two DGNA facilities (Brookhaven National Laboratory and Baylor College of Medicine) and between the various DXA instruments. Either DGNA underestimates TBCa or DXA overestimates total-body bone mineral content. Resolution of these disparate results may possibly be achieved by concurrent measurement of whole human cadavers of different sizes with chemical determination of the calcium content of the ash. In the interim, cross-calibration equations between DGNA and standardized values for DXA for total-body bone mineral content may be used, which will permit reporting of consistent values for TBCa from the two technologies. PMID:10663353

  15. Experimental validation of DXA-based finite element models for prediction of femoral strength.

    PubMed

    Dall'Ara, E; Eastell, R; Viceconti, M; Pahr, D; Yang, L

    2016-10-01

    Osteoporotic fractures are a major clinical problem and current diagnostic tools have an accuracy of only 50%. The aim of this study was to validate dual energy X-rays absorptiometry (DXA)-based finite element (FE) models to predict femoral strength in two loading configurations. Thirty-six pairs of fresh frozen human proximal femora were scanned with DXA and quantitative computed tomography (QCT). For each pair one femur was tested until failure in a one-legged standing configuration (STANCE) and one by replicating the position of the femur in a fall onto the greater trochanter (SIDE). Subject-specific 2D DXA-based linear FE models and 3D QCT-based nonlinear FE models were generated for each specimen and used to predict the measured femoral strength. The outcomes of the models were compared to standard DXA-based areal bone mineral density (aBMD) measurements. For the STANCE configuration the DXA-based FE models (R(2)=0.74, SEE=1473N) outperformed the best densitometric predictor (Neck_aBMD, R(2)=0.66, SEE=1687N) but not the QCT-based FE models (R(2)=0.80, SEE=1314N). For the SIDE configuration both QCT-based FE models (R(2)=0.85, SEE=455N) and DXA neck aBMD (R(2)=0.80, SEE=502N) outperformed DXA-based FE models (R(2)=0.77, SEE=529N). In both configurations the DXA-based FE model provided a good 1:1 agreement with the experimental data (CC=0.87 for SIDE and CC=0.86 for STANCE), with proper optimization of the failure criteria. In conclusion we found that the DXA-based FE models are a good predictor of femoral strength as compared with experimental data ex vivo. However, it remains to be investigated whether this novel approach can provide good predictions of the risk of fracture in vivo. PMID:27341287

  16. SINISTER CAUSE OF HIGH BONE MINERAL DENSITY ON DUAL ENERGY X-RAY ABSORPTIOMETRY.

    PubMed

    Razi, Mairah; Hassan, Aamna

    2016-01-01

    Dual energy X-ray absorptiometry (DXA) has an established, well standardized role in the measurement of bone mineral density (BMD). In routine clinical practice, the main focus of bone densitometry is to identify low bone mass for the diagnosis and monitoring of osteoporosis particularly in postmenopausal females and in high risk individuals. Less commonly, elevated BMD can also be seen on routine DXA scanning usually due to degenerative disease. However, a range of other skeletal disorders can also lead to high BMD. Careful recognition of various artefacts and pathologic processes that can falsely elevate the BMD is essential for accurate DXA scan analysis and reporting. We present a case of high BMD in a patient of prostate carcinoma with widespread sclerotic metastases. PMID:27323594

  17. Determination of thigh volume in youth with anthropometry and DXA: agreement between estimates.

    PubMed

    Coelho-E-Silva, Manuel J; Malina, Robert M; Simões, Filipe; Valente-Dos-Santos, João; Martins, Raul A; Vaz Ronque, Enio R; Petroski, Edio L; Minderico, Claudia; Silva, Analiza M; Baptista, Fátima; Sardinha, Luís B

    2013-01-01

    This study examined the agreement between estimates of thigh volume (TV) with anthropometry and dual-energy x-ray absorptiometry (DXA) in healthy school children. Participants (n=168, 83 boys and 85 girls) were school children 10.0-13.9 years of age. In addition to body mass, height and sitting height, anthropometric dimensions included those needed to estimate TV using the equation of Jones & Pearson. Total TV was also estimated with DXA. Agreement between protocols was examined using linear least products regression (Deming regressions). Stepwise regression of log-transformed variables identified variables that best predicted TV estimated by DXA. The regression models were then internally validated using the predicted residual sum of squares method. Correlation between estimates of TV was 0.846 (95%CI: 0.796-0.884, Sy·x=0.152 L). It was possible to obtain an anthropometry-based model to improve the prediction of TVs in youth. The total volume by DXA was best predicted by adding body mass and sum of skinfolds to volume estimated with the equation of Jones & Pearson (R=0.972; 95%CI: 0.962-0.979; R (2)=0.945).

  18. Comparison of body composition techniques before and after a 161-km ultramarathon using DXA, BIS and BIA.

    PubMed

    Hew-Butler, T; Holexa, B T; Fogard, K; Stuempfle, K J; Hoffman, M D

    2015-02-01

    The low cost, ease of application and portability of bioelectrical impedance analysis (BIA) and spectroscopy (BIS) devices make them attractive tools for measuring acute changes in body composition before and after exercise, despite potential limitations from active compartmental fluid shifts. The primary study aim was to evaluate use of dual energy x-ray absorptiometry (DXA) against BIA and BIS in measurements of percent body fat (%BF) and percent total body water (%TBW) before and after prolonged endurance exercise. 10 runners were measured pre-race and at race finish. Significant linear relationships were noted pre-race between DXA vs. BIS for %BF (r(2)=0.76; p<0.01) and %TBW (r(2)=0.74; p<0.01). Significant correlations were noted at race finish between DXA vs. BIS for %BF (r(2)=0.64; p<0.01) and %TBW (r(2)=0.66; p<0.05), but only when one outlier was removed. Limits of agreement (LOA) between DXA vs. BIS were wide for both %BF (mean difference of -3.6, LOA between 5.4 and -12.6) and %TBW (mean difference 2.4, LOA between 0.4 and -4.6). LOA was closer between the DXA vs. BIA with DXA measuring slightly higher than BIA for %BF (mean difference of 0.5, LOA between 2.1 and -3.1) and slightly lower than BIA for %TBW (mean difference 0.3, LOA between 3.3 and -2.7). Linear correlations between DXA vs. BIA were not statistically significant for %BF or %TBW before or after the race. DXA measurement of acute changes in %BF and %TBW are not congruent with BIA or BIS measurements. These 3 techniques should not be utilized interchangeably after prolonged endurance running. PMID:25285467

  19. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed Central

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-01-01

    Objective The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. Results The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from −0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Conclusions Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population. PMID:21586503

  20. Technical note: Prediction of chemical rib section composition by dual energy X-ray absorptiometry in Zebu beef cattle.

    PubMed

    Prados, L F; Zanetti, D; Amaral, P M; Mariz, L D S; Sathler, D F T; Filho, S C Valadares; Silva, F F; Silva, B C; Pacheco, M C; Alhadas, H M; Chizzotti, M L

    2016-06-01

    It is expensive and laborious to evaluate carcass composition in beef cattle. The objective of this study was to evaluate a method to predict the 9th to 11th rib section (rib) composition through empirical equations using dual energy X-ray absorptiometry (DXA). Dual energy X-ray absorptiometry is a validated method used to describe tissue composition in humans and other animals, but few studies have evaluated this technique in beef cattle, and especially in the Zebu genotype. A total of 116 rib were used to evaluate published prediction equations for rib composition and to develop new regression models using a cross-validation procedure. For the proposed models, 93 ribs were randomly selected to calculate the new regression equations, and 23 different ribs were randomly selected to validate the regressions. The rib from left carcasses were taken from Nellore and Nellore × Angus bulls from 3 different studies and scanned using DXA equipment (GE Healthcare, Madison, WI) in the Health Division at Universidade Federal de Viçosa (Viçosa, Brazil). The outputs of the DXA report were DXA lean (g), DXA fat free mass (g), DXA fat mass (g), and DXA bone mineral content (BMC; g). After being scanned, the rib were dissected, ground, and chemically analyzed for total ether extract (EE), CP, water, and ash content. The predictions of rib fat and protein from previous published equations were different ( < 0.01) from the observed composition. New equations were established through leave-one-out cross-validation using the REG procedure in SAS. The equations were as follows: lean (g) = 37.082 + 0.907× DXA lean ( = 0.95); fat free mass (g) = 103.224 + 0.869 × DXA fat free mass ( = 0.93); EE mass (g) = 122.404 + 1.119 × DXA fat mass ( = 0.86); and ash mass (g) = 18.722 + 1.016 × DXA BMC ( = 0.39). The equations were validated using Mayer's test, the concordance correlation coefficient, and the mean square error of prediction for decomposition. For both equations, Mayer's test

  1. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance.

    PubMed

    Lewiecki, E Michael; Binkley, Neil; Morgan, Sarah L; Shuhart, Christopher R; Camargos, Bruno Muzzi; Carey, John J; Gordon, Catherine M; Jankowski, Lawrence G; Lee, Joon-Kiong; Leslie, William D

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring.

  2. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance.

    PubMed

    Lewiecki, E Michael; Binkley, Neil; Morgan, Sarah L; Shuhart, Christopher R; Camargos, Bruno Muzzi; Carey, John J; Gordon, Catherine M; Jankowski, Lawrence G; Lee, Joon-Kiong; Leslie, William D

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technology that is widely used to diagnose osteoporosis, assess fracture risk, and monitor changes in bone mineral density (BMD). The clinical utility of DXA is highly dependent on the quality of the scan acquisition, analysis, and interpretation. Clinicians are best equipped to manage patients when BMD measurements are correct and interpretation follows well-established standards. Poor-quality acquisition, analysis, or interpretation of DXA data may mislead referring clinicians, resulting in unnecessary diagnostic evaluations, failure to evaluate when needed, inappropriate treatment, or failure to provide medical treatment, with potentially ineffective, harmful, or costly consequences. Misallocation of limited healthcare resources and poor treatment decisions can be minimized, and patient care optimized, through meticulous attention to DXA instrument calibration, data acquisition and analysis, interpretation, and reporting. This document from the International Society for Clinical Densitometry describes quality standards for BMD testing at DXA facilities worldwide to provide guidance for DXA supervisors, technologists, interpreters, and clinicians. High-quality DXA testing is necessary for correct diagnostic classification and optimal fracture risk assessment, and is essential for BMD monitoring. PMID:27020004

  3. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  4. Peripheral dual-energy X-ray absorptiometry in the management of osteoporosis: the 2007 ISCD Official Positions.

    PubMed

    Hans, Didier B; Shepherd, John A; Schwartz, Elliott N; Reid, David M; Blake, Glen M; Fordham, John N; Fuerst, Thomas; Hadji, Peyman; Itabashi, Akira; Krieg, Marc-Antoine; Lewiecki, E Michael

    2008-01-01

    Peripheral assessment of bone density using photon absorptiometry techniques has been available for over 40 yr. The initial use of radio-isotopes as the photon source has been replaced by the use of X-ray technology. A wide variety of models of single- or dual-energy X-ray measurement tools have been made available for purchase, although not all are still commercially available. The Official Positions of the International Society for Clinical Densitometry (ISCD) have been developed following a systematic review of the literature by an ISCD task force and a subsequent Position Development Conference. These cover the technological diversity among peripheral dual-energy X-ray absorptiometry (pDXA) devices; define whether pDXA can be used for fracture risk assessment and/or to diagnose osteoporosis; examine whether pDXA can be used to initiate treatment and/or monitor treatment; provide recommendations for pDXA reporting; and review quality assurance and quality control necessary for effective use of pDXA.

  5. The impact of recent technological advances on the trueness and precision of DXA to assess body composition.

    PubMed

    Toombs, Rebecca J; Ducher, Gaele; Shepherd, John A; De Souza, Mary Jane

    2012-01-01

    The introduction of dual-energy X-ray absorptiometry (DXA) in the 1980s for the assessment of areal bone mineral density (BMD) greatly benefited the field of bone imaging and the ability to diagnose and monitor osteoporosis. The additional capability of DXA to differentiate between bone mineral, fat tissue, and lean tissue has contributed to its emergence as a popular tool to assess body composition. Throughout the past 2 decades, technological advancements such as the transition from the original pencil-beam densitometers to the most recent narrow fan-beam densitometers have allowed for faster scan times and better resolution. The majority of reports that have compared DXA-derived body composition measurements to the gold standard method of body composition appraisal, the four-compartment model, have observed significant differences with this criterion method; however, the extent to which the technological advancements of the DXA have impacted its ability to accurately assess body composition remains unclear. Thus, this paper reviews the evidence regarding the trueness and precision of DXA body composition measurements from the pencil-beam to the narrow fan-beam densitometers.

  6. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    PubMed

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults. PMID:27048946

  7. Fundamental Movement Skill Proficiency and Body Composition Measured by Dual Energy X-Ray Absorptiometry in Eight-Year-Old Children

    ERIC Educational Resources Information Center

    Slotte, Sari; Sääkslahti, Arja; Metsämuuronen, Jari; Rintala, Pauli

    2015-01-01

    Objective: The main aim was to examine the association between fundamental movement skills (FMS) and objectively measured body composition using dual energy X-ray absorptiometry (DXA). Methods: A study of 304 eight-year-old children in Finland. FMS were assessed with the "Test of gross motor development," 2nd ed. Total body fat…

  8. Validation of fan beam dual energy x ray absorptiometry for body composition assessment in adults aged 18–45 years

    PubMed Central

    Norcross, J; Van Loan, M D

    2004-01-01

    Background: Pencil beam dual energy x ray absorptiometry (DXA) has been shown to provide valid estimates of body fat (%BF), but DXA fan beam technology has not been adequately tested to determine its validity. Objective: To compare %BF estimated from fan beam DXA with %BF determined using two and three compartment (2C, 3C) models. Methods: Men (n = 25) and women (n = 31), aged 18–41 years, participated in the study. Body density, from hydrostatic weighing, was used in the 2C estimate of %BF; DXA was used to determine bone mineral content (BMC) for the 3C estimate of %BF calculated using body density and BMC (3CBMC). DXA was also used to determine %BF. Analysis of variance was used to test for significant differences in %BF between sexes and among methods. Results: Women were significantly shorter, weighed less, had less fat free mass, and a higher %BF than men. No significant differences were found among methods (2C, 3CBMC, DXA) for determination of %BF in either sex. Although not significant, Bland-Altman plots showed that DXA gave higher values for %BF than the 2C and 3CBMC methods. Conclusion: DXA determination of %BF was not different from that of the 2C and 3CBMC models in this group of young adults. However, to validate fan beam DXA fully as a method for body composition assessment in a wide range of individuals and populations, comparisons are needed that use a 4C model with a measure of total body water and BMC. PMID:15273189

  9. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density

    PubMed Central

    Yu, Elaine W.; Bouxsein, Mary; Roy, Adam E.; Baldwin, Chantel; Cange, Abby; Neer, Robert M; Kaplan, Lee M.; Finkelstein, Joel S.

    2013-01-01

    Several studies, using dual-energy x-ray absorptiometry (DXA), have reported substantial bone loss after bariatric surgery. However, profound weight loss may cause artifactual changes in DXA areal bone mineral density (aBMD) results. Assessment of volumetric bone mineral density (vBMD) by quantitative computed tomography (QCT) may be less susceptible to such artifacts. We assessed changes in BMD of the lumbar spine and proximal femur prospectively for 1 year using DXA and QCT in 30 morbidly obese adults undergoing Roux-en-Y gastric bypass surgery and 20 obese non-surgical controls. At one year, subjects who underwent gastric bypass surgery lost 37 ± 2 kg compared with 3 ± 2 kg lost in the non-surgical controls (p<0.0001). Spine BMD declined more in the surgical group than in the non-surgical group whether assessed by DXA (−3.3 vs. −1.1%, p=0.034) or by QCT (−3.4 vs. 0.2%, p=0.010). Total hip and femoral neck aBMD declined significantly in the surgical group when assessed by DXA (−8.9 vs. −1.1%, p<0.0001 for the total hip and −6.1 vs. −2.0%, p=0.002 for the femoral neck), but no changes in hip vBMD were noted using QCT. Within the surgical group, serum P1NP and CTX levels increased by 82 ± 10% and by 220 ± 22%, respectively, by 6 months and remained elevated over 12 months (p<0.0001 for all). Serum calcium, vitamin D, and PTH levels remained stable in both groups. We conclude that moderate vertebral bone loss occurs in the first year after gastric bypass surgery. However, striking declines in DXA aBMD at the proximal femur were not confirmed with QCT vBMD measurements. These discordant results suggest that artifacts induced by large changes in body weight after bariatric surgery affect DXA and/or QCT measurements of bone, particularly at the hip. PMID:23929784

  10. Chemical versus dual energy x-ray absorptiometry for detecting age-associated body compositional changes in male rats☆

    PubMed Central

    Feely, Rebecca. S.; Larkin, Lisa M.; Halter, Jeffrey B.; Dengel, Donald R.

    2009-01-01

    Aging is associated with increases in body mass and fat mass (FM), whereas fat-free mass (FFM) either decreases or remains unchanged. The purpose of this study was to determine whether dual-energy X-ray absorptiometry (DXA) accurately detects age-associated changes in male Fischer 344 × Brown–Norway rats ages 8, 18, and 28 months. Eviscerated animal carcasses were first examined via the Lunar DPX-IQ DXA (small animal software version 1.0; HiRes (0.6 × 1.2 mm) medium mode). Eviscerated carcasses were then weighed, autoclaved, homogenized, and fat isolated from aliquots of homogenate via methanol/chloroform extraction. In both chemical (CHEM) and DXA analysis, carcass mass (CM), FM, and % fat were significantly higher (P < 0.0001) in the 18 and 28 versus 8-month-old rats. CHEM showed greater FFM in the 18 versus 8 months-old rats but not the 28 months-old animals. DXA was unable to detect the age-associated changes in FFM. Regression analysis showed a strong correlation between CHEM and DXA methods for CM (r = 0.98, P < 0.0001) and FM (r = 0.97, P < 0.0001), but less strong for FFM (r = 0.59, P = 0.0002). In conclusion, compared to CHEM, DXA consistently overestimated CM and FM across the age groups by 9% and 77%, respectively, and underestimated FFM by 5%. PMID:10832061

  11. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  12. Radiographic morphometry and densitometry predict strength of cadaveric proximal humeri more reliably than age and DXA scan density.

    PubMed

    Skedros, John G; Knight, Alex N; Pitts, Todd C; O'Rourke, Peter J; Burkhead, Wayne Z

    2016-02-01

    Methods are needed for identifying poorer quality cadaver proximal humeri to ensure that they are not disproportionately segregated into experimental groups for fracture studies. We hypothesized that measurements made from radiographs of cadaveric proximal humeri are stronger predictors of fracture strength than chronological age or bone density values derived from dual-energy x-ray absorptiometry (DXA) scans. Thirty-three proximal humeri (range: 39-78 years) were analyzed for: (1) bone mineral density (BMD, g/cm(2)) using DXA, (2) bulk density (g/cm(3)) using DXA and volume displacement, (3) regional bone density in millimeters of aluminum (mmAl) using radiographs, and (4) regional mean (medial+lateral) cortical thickness and cortical index (CI) using radiographs. The bones were then fractured simulating a fall. Strongest correlations with ultimate fracture load (UFL) were: mean cortical thickness at two diaphyseal locations (r = 0.71; p < 0.001), and mean mmAl in the humeral head (r = 0.70; p < 0.001). Weaker correlations were found between UFL and DXA-BMD (r = 0.60), bulk density (r = 0.43), CI (r = 0.61), and age (r = -0.65) (p values <0.01). Analyses between UFL and the product of any two characteristics showed six combinations with r-values >0.80, but none included DXA-derived density, CI, or age. Radiographic morphometric and densitometric measurements from radiographs are therefore stronger predictors of UFL than age, CI, or DXA-derived density measurements. PMID:26218571

  13. Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method

    PubMed Central

    2010-01-01

    Background Dual-energy x-ray absorptiometry (DXA) provides an affordable and practical assessment of multiple whole body and regional body composition. However, little information is available on the assessment of changes in body composition in top-level athletes using DXA. The present study aimed to assess the accuracy of DXA in tracking body composition changes (relative fat mass [%FM], absolute fat mass [FM], and fat-free mass [FFM]) of elite male judo athletes from a period of weight stability to prior to a competition, compared to a four compartment model (4C model), as the criterion method. Methods A total of 27 elite male judo athletes (age, 22.2 ± 2.8 yrs) athletes were evaluated. Measures of body volume by air displacement plethysmography, bone mineral content assessed by DXA, and total-body water assessed by deuterium dilution were used in a 4C model. Statistical analyses included examination of the coefficient of determinant (r2), standard error of estimation (SEE), slope, intercept, and agreement between models. Results At a group level analysis, changes in %FM, FM, and FFM estimates by DXA were not significantly different from those by the 4C model. Though the regression between DXA and the 4C model did not differ from the line of identity DXA %FM, FM, and FFM changes only explained 29%, 36%, and 38% of the 4C reference values, respectively. Individual results showed that the 95% limits of agreement were -3.7 to 5.3 for %FM, -2.6 to 3.7 for FM, and -3.7 to 2.7 for FFM. The relation between the difference and the mean of the methods indicated a significant trend for %FM and FM changes with DXA overestimating at the lower ends and underestimating at the upper ends of FM changes. Conclusions Our data indicate that both at group and individual levels DXA did not present an expected accuracy in tracking changes in adiposity in elite male judo athletes. PMID:20307312

  14. Ethnic Bias in Anthropometric Estimates of DXA Abdominal Fat: the TIGER Study

    PubMed Central

    O’Connor, Daniel P.; Bray, Molly S.; McFarlin, Brian K.; Ellis, Kenneth J.; Sailors, Mary H.; Jackson, Andrew S.

    2011-01-01

    Background/Introduction The purpose of this study was to examine race/ethnicity bias of using waist circumference (WC) to estimate abdominal fat. Methods A total of 771 females and 484 males (17–35 y) were tested one to three times during a prescribed 30-week aerobic exercise program. The race/ethnicity distribution for women was: non-Hispanic white (NHW), 29%; Hispanic, 25%; African-American (AA), 35%; Asian-Indian, 3%; and Asian, 8%. The distribution for men was: NHW, 37%; Hispanic, 26%; AA 22%; Asian-Indian, 5%; and Asian, 10%. Abdominal fat (L1 to L5) was estimated from whole body scanning using dual energy x-ray absorptiometry (DXA Abd-Fat). Results DXA Abd-Fat varied by race/ethnicity after accounting for WC and height in both women and men. The increase in DXA Abd-Fat per increase in WC was lower in the Asian and Asian-Indian women than in the other women. The increase in DXA Abd-Fat per increase in WC was higher in the AA men and lower in the Asian-Indian men than in the other men. These differential race/ethnicity effects were most notable when WC exceeded 90 cm in the women and 100 cm in the men, values which are consistent with current definitions of abdominal obesity in the United States. Conclusions Prediction equations for abdominal fat using WC that do not account for race/ethnicity group provide biased estimates. These results may affect assessment of disease risk from abdominal obesity among racial/ethnic groups. PMID:21364481

  15. Comparison of the Bod Pod and dual energy x-ray absorptiometry in men.

    PubMed

    Ball, Stephen D; Altena, Thomas S

    2004-06-01

    The majority of studies investigating the accuracy of the Bod Pod have compared it to hydrostatic weighing (HW), the long held, and perhaps outdated 'gold standard' method of body composition analysis. Much less research has compared the Bod Pod to dual energy x-ray absorptiometry (DXA), a technique that is becoming popular as an alternative reference method. The purpose of this study was to compare per cent fat estimates by the Bod Pod to those of DXA in a large number of men. Participants were 160 men (32 +/- 11 years). Per cent body fat was estimated to be 19.4 +/- 6.8 and 21.6 +/- 8.4 for DXA and the Bod Pod, respectively. Although the two methods were highly correlated (0.94), the mean difference of 2.2% was significant (p < 0.01). The amount of difference increased as body fatness increased (p < 0.0001). The results of this study indicate that a difference between methods existed for our sample of men. It is uncertain exactly where the difference lies. Practitioners should be aware that even with the use of technologically sophisticated methods (i.e., Bod Pod, DXA), differences between methods exist and the determination of body composition is at best, an estimation.

  16. The use of dual-energy x-ray absorptiometry in animals.

    PubMed

    Grier, S J; Turner, A S; Alvis, M R

    1996-01-01

    The use of dual-energy absorptiometry (DXA) to measure bone mineral content (BMC) and bone mineral density (BMD) is widespread in humans and has been adapted to animals because of the need to examine bone and body composition in longitudinal studies. In this review, the indications and techniques for DXA in small-sized animals (rodents, cats, and rabbits) and large-sized animals (dogs, swine, nonhuman primates, sheep, and horses) are discussed. Now that software has been developed for measuring BMD in small laboratory animals, the most frequent use of DXA in animals is in rats. An ultrahigh-resolution mode of acquisition is used for their small bones but also is necessary for other small-sized animals such as rabbits and cats. In larger-sized animals such as dogs, pigs, and sheep, software used in humans has been adapted successfully to measure BMC/BMD and body composition. The human spine and left and right hip protocols are adapted easily to animals of this size, and the software for body composition has been adapted to dogs. Measurement of bone mass around metallic implants is possible in animals and most studies have involved dogs. To ensure precision of DXA in the noninvasive measurement of BMD in animals, attention to positioning and ability of the operator to define the same region of interest using clearly defined anatomical landmarks on the scan image cannot be overemphasized. This is one of the essential requirements for successful densitometry in animals. PMID:8850365

  17. Influence of different DXA acquisition modes on monitoring the changes in bone mineral density after hip resurfacing arthroplasty.

    PubMed

    Hakulinen, Mikko A; Borg, Håkan; Häkkinen, Arja; Parviainen, Tapani; Kiviranta, Ilkka; Jurvelin, Jukka S

    2012-01-01

    Dual-energy X-ray absorptiometry (DXA) is a technique enabling the measurement of bone mineral density (BMD) around prostheses after hip resurfacing arthroplasty (HRA). In this study, we evaluated the consistency of different DXA acquisition modes with 33 patients who had undergone HRA. Patients were scanned with DXA immediately after surgery and at 3-, 6-, and 12-mo time points. All the patients were scanned with dual femur and orthopedic hip acquisition modes and analyzed using 10-region ROI model. With both acquisition modes, a statistically significant decrease (p<0.05, Wilcoxon's test) in BMD at 3mo was revealed in 3 ROIs, located to upper and lateral upper femur. Both acquisition modes detected similarly (p<0.01) preservation of the femoral bone stock within 12mo in all but 1 ROI. The applied acquisition protocols involved the use of different footplates for hip fixation. Because the differences between acquisition modes ranged between +1.6% and -7.1% and the reproducibility of BMD values can vary by as much as 28% due to hip rotation, it is proposed that both dual femur and orthopedic hip acquisition modes can be used to monitor the changes in BMD after HRA. However, the same hip rotation is recommended for all DXA measurements.

  18. Body composition in taller individuals using DXA: A validation study for athletic and non-athletic populations.

    PubMed

    Santos, Diana A; Gobbo, Luís A; Matias, Catarina N; Petroski, Edio L; Gonçalves, Ezequiel M; Cyrino, Edilson S; Minderico, Claudia S; Sardinha, Luís B; Silva, Analiza M

    2013-01-01

    Dual energy X-ray absorptiometry (DXA) cannot be used to evaluate participants taller than the scan area. We aimed to analyse the accuracy of bone mineral content, fat mass, and lean mass assessed with DXA whole-body scan and from the sum of two scans (head and trunk plus limbs). Participants were 31 athletes (13 males and 18 females) and 65 non-athletes (34 males and 31 females), that fit within the DXA scan area. Three scans were performed using a Hologic Explorer-W fan-beam densitometer: a whole-body scan used as the reference; a head scan; and a trunk and limbs scan. The sum of the head scan and the trunk and limbs scan was used as the alternative procedure. Multiple regression and agreement analysis were performed. Non-significant differences between methods were observed for fat mass (0.06 kg) and lean mass (-0.07 kg) while bone mineral content from the alternative procedure differed from the reference scan (0.009 kg). The alternative procedure explained > 99% of the variance in the reference scan and low limits of agreement were observed. Precision analysis indicated low pure errors and the higher coefficients of variation were found for fat mass (whole-body: 3.70%; subtotal: 4.05%). The method proposed is a valid and simple solution to be used in individuals taller than the DXA scan area, including athletes engaged in sports recognised for including very tall competitors. PMID:23092580

  19. The long-term performance of DXA bone densitometers.

    PubMed

    Wells, J; Ryan, P J

    2000-07-01

    Long-term performance of a bone mass measuring device is an important criterion when considering the purchase of such equipment and has been regarded as an important feature of dual X-ray absorptiometry (DXA). The performance of a 6-year-old bone densitometer, the Lunar DPX alpha, which has undertaken 1500 scans annually over this period, was assessed. The short-term coefficient of variation calculated from 15 measurements with repositioning on a single day, using the Lunar aluminium phantom, was 0.242%. Long-term precision, also calculated by the coefficient of variation, was 0.548%. The manufacturer's quality control (QC) procedure was performed daily and allowed the machine to be used except on 15 occasions when bone density measurements could be acquired after rebooting. However, a 2.2% shift in phantom values occurred in July 1996 owing to a photomultiplier tube failure, but this did not produce a failure in the Lunar QC. The optical disc drive was replaced in July 1997. The machine failed to back up on six occasions over the last 2 years owing to software corruption and the acquired femur data were not saved on seven occasions owing to overloading of the memory buffer. In conclusion, expected hardware failure and minor software problems have occurred. We were concerned that the manufacturer's QC failed to detect a 2% shift in the phantom bone mineral density values and recommend regular measurements of the Lunar aluminum phantom in addition to the daily QC measurement of the tissue-equivalent block. We were nevertheless impressed by the long-term stability and reproducibility of the Lunar DPX alpha.

  20. Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished?

    PubMed Central

    Hands, Beth; Pennell, Craig E.; Lye, Stephen J.; Mountain, Jennifer A.

    2016-01-01

    Background and Aims Assessment of adiposity using dual energy x-ray absorptiometry (DXA) has been considered more advantageous in comparison to anthropometry for predicting cardio-metabolic risk in the older population, by virtue of its ability to distinguish total and regional fat. Nonetheless, there is increasing uncertainty regarding the relative superiority of DXA and little comparative data exist in young adults. This study aimed to identify which measure of adiposity determined by either DXA or anthropometry is optimal within a range of cardio-metabolic risk factors in young adults. Methods and Results 1138 adults aged 20 years were assessed by DXA and standard anthropometry from the Western Australian Pregnancy Cohort (Raine) Study. Cross-sectional linear regression analyses were performed. Waist to height ratio was superior to any DXA measure with HDL-C. BMI was the superior model in relation to blood pressure than any DXA measure. Midriff fat mass (DXA) and waist circumference were comparable in relation to glucose. For all the other cardio-metabolic variables, anthropometric and DXA measures were comparable. DXA midriff fat mass compared with BMI or waist hip ratio was the superior measure for triglycerides, insulin and HOMA-IR. Conclusion Although midriff fat mass (measured by DXA) was the superior measure with insulin sensitivity and triglycerides, the anthropometric measures were better or equal with various DXA measures for majority of the cardio-metabolic risk factors. Our findings suggest, clinical anthropometry is generally as useful as DXA in the evaluation of the individual cardio-metabolic risk factors in young adults. PMID:27622523

  1. Body composition in young female eating-disorder patients with severe weight loss and controls: evidence from the four-component model and evaluation of DXA

    PubMed Central

    Wells, J C K; Haroun, D; Williams, J E; Nicholls, D; Darch, T; Eaton, S; Fewtrell, M S

    2015-01-01

    Background/Objectives: Whether fat-free mass (FFM) and its components are depleted in eating-disorder (ED) patients is uncertain. Dual energy X-ray absorptiometry (DXA) is widely used to assess body composition in pediatric ED patients; however, its accuracy in underweight populations remains unknown. We aimed (1) to assess body composition of young females with ED involving substantial weight loss, relative to healthy controls using the four-component (4C) model, and (2) to explore the validity of DXA body composition assessment in ED patients. Subjects/Methods: Body composition of 13 females with ED and 117 controls, aged 10–18 years, was investigated using the 4C model. Accuracy of DXA for estimation of FFM and fat mass (FM) was tested using the approach of Bland and Altman. Results: Adjusting for age, height and pubertal stage, ED patients had significantly lower whole-body FM, FFM, protein mass (PM) and mineral mass (MM) compared with controls. Trunk and limb FM and limb lean soft tissue were significantly lower in ED patients. However, no significant difference in the hydration of FFM was detected. Compared with the 4C model, DXA overestimated FM by 5±36% and underestimated FFM by 1±9% in ED patients. Conclusion: Our study confirms that ED patients are depleted not only in FM but also in FFM, PM and MM. DXA has limitations for estimating body composition in individual young female ED patients. PMID:26173868

  2. BMI and an Anthropometry-Based Estimate of Fat Mass Percentage Are Both Valid Discriminators of Cardiometabolic Risk: A Comparison with DXA and Bioimpedance

    PubMed Central

    Völgyi, Eszter; Savonen, Kai; Tylavsky, Frances A.; Alén, Markku; Cheng, Sulin

    2013-01-01

    Objective. To determine whether categories of obesity based on BMI and an anthropometry-based estimate of fat mass percentage (FM% equation) have similar discriminative ability for markers of cardiometabolic risk as measurements of FM% by dual-energy X-ray absorptiometry (DXA) or bioimpedance analysis (BIA). Design and Methods. A study of 40–79-year-old male (n = 205) and female (n = 388) Finns. Weight, height, blood pressure, triacylglycerols, HDL cholesterol, and fasting blood glucose were measured. Body composition was assessed by DXA and BIA and a FM%-equation. Results. For grade 1 hypertension, dyslipidaemia, and impaired fasting glucose >6.1 mmol/L, the categories of obesity as defined by BMI and the FM% equation had 1.9% to 3.7% (P < 0.01) higher discriminative power compared to DXA. For grade 2 hypertension the FM% equation discriminated 1.2% (P = 0.05) lower than DXA and 2.8% (P < 0.01) lower than BIA. Receiver operation characteristics confirmed BIA as best predictor of grade 2 hypertension and the FM% equation as best predictor of grade 1 hypertension. All other differences in area under curve were small (≤0.04) and 95% confidence intervals included 0. Conclusions. Both BMI and FM% equations may predict cardiometabolic risk with similar discriminative ability as FM% measured by DXA or BIA. PMID:24455216

  3. DXA femoral neck strength analysis in Chinese overweight and normal weight adolescents.

    PubMed

    Gong, Jian; Xu, Yi; Guo, Bin; Xu, Hao

    2012-01-01

    The aim of this study was to compare femoral neck (FN) strength in Chinese overweight adolescents with gender-matched normal weight controls and investigate the relationship of total body soft tissue composition (lean and fat masses) to indices of FN strength. Dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur and total body were made in 65 Chinese overweight adolescents and 89 gender-matched normal weight controls using Lunar Prodigy DXA bone densitometer (GE Healthcare, Madison, WI). FN bone mineral density (BMD), total body lean mass, fat mass, and bone mineral content (BMC) were measured. Using FN BMD values derived from DXA measurements, hip structural analysis (HSA) was performed using Lunar enCORE (GE Healthcare), version 10.5 software. Structural parameters derived by HSA were bone cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), and the section modulus (Z). Data were analyzed by Student's t-test, Pearson correlation coefficients (r), and one-way analysis of covariance (ANCOVA). Overweight boys and girls had higher body weight, lean mass, fat mass, and body mass index (p<0.001) than normal controls. CSA, CSMI, and Z were higher in overweight groups compared with controls (p<0.05). Lean mass correlated well with all HSA parameters (range of r: 0.501--0.714) for both genders. ANCOVA test showed no significant differences between overweight and normal weight groups regarding HSA variables in both genders after adjustment for lean mass. However, the differences remain significant after adjustment for fat mass in boys but not in girls. This study supports the conclusion that overweight individuals have greater hip neck strength in comparison with normal weight controls in Chinese adolescents. Lean mass is a major determinant for FN strength.

  4. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro.

    PubMed

    Kuiper, J W; van Kuijk, C; Grashuis, J L; Ederveen, A G; Schütte, H E

    1996-01-01

    Bone mineral measurements with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) were compared with chemical analysis (ChA) to determine (1) the accuracy and (2) the influence of bone marrow fat. Total bone mass of 19 human femoral necks in vitro was determined with QCT and DXA before and after defatting. ChA consisted of defatting and decalcification of the femoral neck samples for determination of bone mineral mass (BmM) and amount of fat. The mean BmM was 4.49 g. Mean fat percentage was 37.2% (23.3%-48.5%). QCT, DXA and ChA before and after defatting were all highly correlated (r > 0.96, p < 0.0001). Before defatting the QCT values were on average 0.35 g less than BmM and the DXA values were on average 0.65 g less than BmM. After defatting, all bone mass values increased; QCT values were on average 0.30 g more than BmM and DXA values were 0.29 g less than BmM. It is concluded that bone mineral measurements of the femoral neck with QCT and DXA are highly correlated with the chemically determined bone mineral mass and that both techniques are influenced by the femoral fat content.

  5. First all-solid pediatric phantom for dual X-ray absorptiometry measurements in infants.

    PubMed

    Picaud, Jean-Charles; Duboeuf, François; Vey-Marty, Vey; Delams, Pierre; Claris, Oliver; Salle, Bernard-Louis; Rigo, Jacques

    2003-01-01

    Manufacturer-supplied lumbar spine phantoms are normally used for quality control of dual X-ray absorptiometry (DXA) instruments. Presently, there is no pediatric phantom for whole-body mineralization and softtissue composition DXA measurements. We designed blocks of acrylic (for fat mass), polyvinyl chloride (for lean mass), and aluminum (for bone mass) whose combination provides five whole-body phantoms ("Inphants") that mimic body weight and composition during the first year of life and help solve problems that require repeated scans in stable conditions. Inphants were scanned using an Hologic QDR 2000. Comparisons were made between values obtained with and without the table pad, using infant software. Then we compared data obtained using infant and adult softwares successively in the same phantoms. The table pad significantly influenced DXA measurements. We observed significant differences in fat mass (p = 0.04) and lean mass (p = 0.03) with the smaller Inphant (3 kg) and in bone mineral content (BMC) (p = 0.02) with the larger Inphant (13 kg). BMC was three to five times lower with adult than with infant software. Adult software yielded systematically significantly lower fat masses but higher lean masses than infant software. Because there was no overlap with larger Inphants, we calculated conversion formulae between values of infant and adult software. The results suggest guidelines for scan acquisition and analysis in young subjects. PMID:12665698

  6. Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems

    PubMed Central

    Santori, Francesco S; Pavan, Laura; Learmonth, Ian D; Passariello, Roberto

    2009-01-01

    Background and purpose Dual-energy X-ray absorptiometry (DXA) analysis of the 7 periprosthetic Gruen zones is the most commonly used protocol to evaluate bone remodeling after the implantation of conventional femoral stems. We assessed the value of DXA after cementless primary total hip arthroplasty (THA) by comparing the effect of progressive shortening of the stem of two femoral implants on periprosthetic bone remodeling using a specifically developed protocol of analysis with 5 periprosthetic regions of interest (ROIs). Patients and methods Bone mineral density (BMD) was evaluated in 37 patients in the plateau stage, 3 years after THA. Two femoral implants featuring conceptually new designs and surgical technique were tested: types 1 and 2, characterized by extremely short stem and virtual absence of distal stem, respectively. Results We found that progressive shortening of the femoral stem produces more proximal loading, which effectively preserves metaphyseal bone stock and increases periprosthetic BMD in the medial ROIs over time. In the type 2 group, higher absolute BMD values were observed in medial ROIs 4 and 5. No differences were found in ROIs 1, 2, and 3. Interpretation This study shows the flexibility of DXA in adapting the protocol of periprosthetic analysis to the specific requirements of new implant designs, and it shows its high sensitivity in evaluation of the biological response of bone to changes in implant shape. PMID:19562565

  7. Concurrent validity of the BOD POD and dual energy x-ray absorptiometry techniques for assessing body composition in young women.

    PubMed

    Maddalozzo, Gianni F; Cardinal, Bradley J; Snow, Christine A

    2002-11-01

    The purpose of this study was to determine the concurrent validity of the BOD POD (BP) (Life Measurement Instruments) and Dual Energy X-Ray Absorptiometry (DXA) Elite 4500A (Hologic, Inc.) techniques for assessing the body fat percentage of young women. The participants were forty-three white college-aged women (19.4 +/- 1.4 years) with a BMI of 23.4 +/- 2.3. Both body composition analyses were completed on the same day and were taken within 10 minutes of each other. Body fat percentage was estimated to be 24.3 (SE = 1.1) and 23.8 (SE = 0.8) using the BP and DXA techniques, respectively. Exact matches, in terms of body fat percentage, were obtained for 10 of the 43 participants (23.3%). In conclusion, our data supports the concurrent validity of the BP and DXA techniques for assessing body fat in young women.

  8. Does Visceral Fat Estimated by Dual-Energy X-ray Absorptiometry Independently Predict Cardiometabolic Risks in Adults?

    PubMed Central

    Sasai, Hiroyuki; Brychta, Robert J.; Wood, Rachel P.; Rothney, Megan P.; Zhao, Xiongce; Skarulis, Monica C.; Chen, Kong Y.

    2015-01-01

    Background: Abdominal visceral fat, typically measured by computer tomography (CT) or magnetic resonance imaging (MRI), has been shown to correlate with cardiometabolic risks. The purpose of this study was to examine whether a newly developed and validated visceral fat measurement from dual-energy X-ray absorptiometry (DXA) provides added predictive value to the cross-sectional differences of cardiometabolic parameters beyond the traditional anthropometric and DXA adiposity parameters. Method: A heterogeneous cohort of 194 adults (81 males and 113 females) with a BMI of 19 to 54 kg/m2 participated in this cross-sectional study. Body composition was measured with a DXA densitometer. Visceral fat was then computed with a proprietary algorithm. Insulin sensitivity index (SI, measured by intravenous glucose tolerance test), blood pressures, and lipid profiles, and peak oxygen uptake were also measured as cardiometabolic risk parameters. Results: DXA-estimated visceral fat mass was associated with HDL cholesterol (regression coefficient [β] = −5.15, P < .01, adjusted R2 = .21), triglyceride (β = 26.01, P < .01, adjusted R2 = .14), and peak oxygen uptake (β = −3.15, P < .01, adjusted R2 = .57) after adjusting for age, gender, and ethnicity. A subanalysis stratifying gender-specific BMI tertiles showed visceral fat, together with ethnicity, was independently associated with SI in overweight men and moderately obese women (second tertile). Conclusions: Without requiring additional CT or MRI-based measurements, visceral fat detected by DXA might offer certain advantages over the traditional DXA adiposity parameters as means of assessing cardiometabolic risks. PMID:25802470

  9. Comparison of dual-photon absorptiometry systems for total-body bone and soft tissue measurements: Dual-energy X-rays versus gadolinium 153

    SciTech Connect

    Russell-Aulet, M.; Wang, J.; Thornton, J.; Pierson, R.N. Jr. )

    1991-04-01

    A total of 81 subjects (41 males and 40 females) were scanned by dual-photon absorptiometry by 153Gd source (DPA; Lunar DP4) and by dual-energy x-ray absorptiometry (DEXA; Lunar-DPX) within a 24 h period. Total-body bone mineral density (TBMD), calcium content (Ca), and soft tissue mass (ST) were determined with a precision of about 1-1.5% using DPA and 0.5-1.0% using DEXA. Measurements of TBMD, Ca, ST, bone area (area), percentage fat, and regional bone mineral densities (BMD) were compared. Paired t-tests showed small but significant differences between all measurements. Correlations (r) for TBMD, Ca, area, ST, percentage fat, arm BMD, leg BMD, and trunk BMD were 0.99, 0.99, 0.97, 0.99, 0.97, 0.99, 0.99, and 0.98. There were small systematic differences for TBMD (less than 1%), calcium (3%), bone area (3%), soft tissue mass (7%), and percentage fat (9%) between the two approaches. Regression equations are given relating these measurements.

  10. Precision Error in Dual-Energy X-Ray Absorptiometry Body Composition Measurements in Elite Male Rugby League Players.

    PubMed

    Barlow, Matthew J; Oldroyd, Brian; Smith, Debbie; Lees, Matthew J; Brightmore, Amy; Till, Kevin; Jones, Benjamin; Hind, Karen

    2015-01-01

    Body composition analysis using dual-energy X-ray absorptiometry (DXA) is becoming increasingly popular in both clinical and sports science settings. Obesity, characterized by high fat mass (FM), is associated with larger precision errors; however, precision error for athletic groups with high levels of lean mass (LM) are unclear. Total (TB) and regional (limbs and trunk) body composition were determined from 2 consecutive total body scans (GE Lunar iDXA) with re-positioning in 45 elite male rugby league players (age: 21.8 ± 5.4 yr; body mass index: 27.8 ± 2.5 kg m(-1)). The root mean squared standard deviation (percentage co-efficient of variation) were TB bone mineral content: 24g (1.7%), TB LM: 321 g (1.6%), and TB FM: 280 g (2.3%). Regional precision values were superior for measurements of bone mineral content: 4.7-16.3 g (1.7-2.1%) and LM: 137-402 g (2.0-2.4%), than for FM: 63-299 g (3.1-4.1%). Precision error of DXA body composition measurements in elite male rugby players is higher than those reported elsewhere for normal adult populations and similar to those reported in those who are obese. It is advised that caution is applied when interpreting longitudinal DXA-derived body composition measurements in male rugby players and population-specific least significant change should be adopted. PMID:26072358

  11. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss

    PubMed Central

    2012-01-01

    Background Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO), bioimpedance analysis (BIA) and ultrasonography (US) in cats, proposing equations to estimate fat (FM) and lean (LM) body mass, as compared to dual energy x-ray absorptiometry (DXA) as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females) in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals), after 10% of weight loss (T1) and after 20% of weight loss (T2). Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM) determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results The independent variables determined by BIO, BIA and US that best correlated (p < 0.005) with the dependent variables (FM and LM) were BW (body weight), TC (thoracic circumference), PC (pelvic circumference), R (resistance) and SFLT (subcutaneous fat layer thickness). Using Mallows’Cp statistics, p value and r2, 19 equations were selected (12 for FM, 7 for LM); however, only 7 equations accurately predicted FM and one LM of cats. Conclusions The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed. PMID:22781317

  12. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women

    PubMed Central

    Chen, J.; Punyanitya, M.; Shapses, S.; Heshka, S.; Heymsfield, S. B.

    2007-01-01

    Introduction Recent studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Previous research using regional magnetic resonance spectroscopy methods to measure BMAT has reported inconsistent findings on the relationship between BMAT and dual-energy absorptiometry (DXA)-measured bone mineral density (BMD). Methods In the present study, total body and pelvic BMAT were evaluated in 56 healthy women (age 18–88 yrs, mean±SD, 47.4±17.6 yrs; BMI, 24.3±4.2 kg/m2) with T1-weighted whole-body magnetic resonance imaging (MRI). BMD was measured using the whole-body DXA mode (GE Lunar DPX, software version 4.7). Results A strong negative correlation was observed between pelvic BMAT and BMD (total-body BMD, R=− 0.743, P<0.001; pelvic BMD, R=− 0.646, P<0.001), and between total-body BMAT and BMD (total-body BMD, R=− 0.443, P<0.001; pelvic BMD, R=− 0.308, P < 0.001). The inverse association between pelvic BMAT and BMD remained strong after adjusting for age, weight, total body fat, and menopausal status (partial correlation: total-body BMD, R=− 0.553, P< 0.001; pelvic BMD, R=− 0.513, P<0.001). BMAT was also highly correlated with age (pelvic BMAT, R=0.715, P< 0.001; total-body BMAT, R=0.519, P<0.001). Conclusion MRI-measured BMAT is thus strongly inversely correlated with DXA-measured BMD independent of other predictor variables. These observations, in the context of DXA technical concerns, support the growing evidence linking BMAT with low bone density. PMID:17139464

  13. Assessment of adiposity in psoriatic patients by dual energy X-ray absorptiometry compared to conventional methods*

    PubMed Central

    Diniz, Michelle dos Santos; Bavoso, Nádia Couto; Kakehasi, Adriana Maria; Lauria, Márcio Weissheimer; Soares, Maria Marta Sarquis; Machado-Pinto, Jackson

    2016-01-01

    BACKGROUND Obesity is considered a chronic low-grade inflammatory disease that shares mediators of inflammation with psoriasis, such as TNF-α and IL-6. The relationship between these two conditions involves factors such as predisposition and response to therapy, in addition to an association with cardiovascular disease. OBJECTIVES The aim of the present study was to investigate the prevalence of adiposity as determined by body mass index (BMI), waist circumference (WC), and dual energy X-ray absorptiometry (DXA) evaluation in patients with psoriasis. METHODS BMI, WC and body composition by DXA were measured in 42 psoriatic patients without joint complaints and in 41 control patients using standard procedures. In the comparison between cases and controls, we used Pearson’s Χ2 test or Fisher’s exact test, and the nonparametric Mann-Whitney test. The difference between the diverse classification methods for obesity was evaluated using McNemar’s test. To test the level of agreement between those variables, we used the weighted kappa coefficient. RESULTS There was no difference in the prevalence of obesity among cases and controls. Both BMI and WC had low agreement with measures of body fat evaluated by DXA. With the use of DXA scanning, prevalence of overweight and obesity in patients with psoriasis was 83.3%, which constitutes a strong evidence of the need for intervention on this metabolic parameter. CONCLUSION Dual energy X-ray absorptiometry was more capable of identifying obesity compared with BMI and WC both in psoriatic and control patients. PMID:27192512

  14. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults.

    PubMed

    Hind, K; Oldroyd, B; Truscott, J G

    2011-01-01

    In vivo precision for body composition measurements using dual energy X-ray absorptiometry (DXA; GE Lunar iDXA, GE Healthcare, Bucks, UK) was evaluated in 52 men and women, aged 34.8 (s.d. 8.4; range 20.1-50.5) years, body mass index (25.8 kg/m(2); range 16.7-42.7 kg/m(2)). Two consecutive total body scans (with re-positioning) were conducted. Precision was excellent for all measurements, particularly for total body bone mineral content and lean tissue mass (root mean square 0.015 and 0.244 kg; coefficients of variation (CV) 0.6 and 0.5%, respectively). Precision error was CV 0.82% for total fat mass and 0.86% for percentage fat. Precision was better for gynoid (root mean square 0.397 kg; CV 0.96%) than for android fat distribution (root mean square 0.780 kg, CV 2.32%). There was good agreement between consecutive measurements for all measurements (slope (s.e.) 0.993-1.002; all R(2) = 0.99). The Lunar iDXA provided excellent precision for total body composition measurements. Research into the effect of body size on the precision of DXA body fat distribution measurements is required.

  15. Validation of Dual Energy X-Ray Absorptiometry Measures of Abdominal Fat by Comparison with Magnetic Resonance Imaging in an Indian Population

    PubMed Central

    Taylor, Amy E.; Kuper, Hannah; Varma, Ravi D.; Wells, Jonathan C.; Bell, Jimmy D.; V.Radhakrishna, K.; Kulkarni, Bharati; Kinra, Sanjay; Timpson, Nicholas J.; Ebrahim, Shah; Smith, George Davey; Ben-Shlomo, Yoav

    2012-01-01

    Objective Abdominal adiposity is an important risk factor for diabetes and cardiovascular disease in Indians. Dual energy X-ray absorptiometry (DXA) can be used to determine abdominal fat depots, being more accessible and less costly than gold standard measures such as magnetic resonance imaging (MRI). DXA has not been fully validated for use in South Asians. Here, we determined the accuracy of DXA for measurement of abdominal fat in an Indian population by comparison with MRI. Design 146 males and females (age range 18–74, BMI range 15–46 kg/m2) from Hyderabad, India underwent whole body DXA scans on a Hologic Discovery A scanner, from which fat mass in two abdominal regions was calculated, from the L1 to L4 vertebrae (L1L4) and from the L2 to L4 vertebrae (L2L4). Abdominal MRI scans (axial T1-weighted spin echo images) were taken, from which adipose tissue volumes were calculated for the same regions. Results Intra-class correlation coefficients between DXA and MRI measures of abdominal fat were high (0.98 for both regions). Although at the level of the individual, differences between DXA and MRI could be large (95% of DXA measures were between 0.8 and 1.4 times MRI measures), at the sample level, DXA only slightly overestimated MRI measures of abdominal fat mass (mean difference in L1L4 region: 2% (95% CI:0%, 5%), mean difference in L2L4 region:4% (95% CI: 1%, 7%)). There was evidence of a proportional bias in the association between DXA and MRI (correlation between difference and mean −0.3), with overestimation by DXA greater in individuals with less abdominal fat (mean bias in leaner half of sample was 6% for L1L4 (95%CI: 2, 11%) and 7% for L2L4 (95% CI:3,12%). Conclusions DXA measures of abdominal fat are suitable for use in Indian populations and provide a good indication of abdominal adiposity at the population level. PMID:23272086

  16. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Wang, ZiMian; Pierson, Richard N., Jr.

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  17. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: the Dallas Heart Study

    PubMed Central

    Neeland, I J; Grundy, S M; Li, X; Adams-Huet, B; Vega, G L

    2016-01-01

    Background/Objectives: Visceral adipose tissue (VAT) mass, a risk factor for cardiometabolic complications of obesity, is usually measured by magnetic resonance imaging (MRI) but this method is not practical in a clinical setting. In contrast, measurement of VAT by dual-x-ray absorptiometry (DXA) appears to circumvent the limitations of MRI. In this study, we compared measurements of VAT mass by MRI and DXA in the large, multiethnic cohort of the Dallas Heart Study (DHS). Subjects/Methods: About 2689 DHS participants underwent paired measurement of VAT by MRI and DXA. Sex-stratified analyses were performed to evaluate the correlation and agreement between DXA and MRI. Model validation was performed using bootstrapping and inter-reader variability was assessed. Results: Mean age of the cohort was 44 years, with 55% female, 48% Black and 75% overweight/obese participants. Regression analysis showed a linear relationship between DXA and MRI with R2=0.82 (95% confidence interval (CI) 0.81–0.84) for females and R2=0.86 (95% CI 0.85–0.88) for males. Mean difference between methods was 0.01 kg for females and 0.09 kg for males. Bland–Altman analysis showed that DXA tended to modestly underestimate VAT compared with MRI at lower VAT levels and overestimate it compared with MRI at higher VAT levels. Results were consistent in analyses stratified by race, body mass index status, waist girth and body fat. Inter-individual reader correlation among 50 randomly selected scans was excellent (inter-class correlation coefficient=0.997). Conclusions: VAT mass quantification by DXA was both accurate and valid among a large, multiethnic cohort within a wide range of body fatness. Further studies including repeat assessments over time will help determine its long-term applicability. PMID:27428873

  18. Relationship between dual-energy X-ray absorptiometry volumetric assessment and X-ray computed tomography-derived single-slice measurement of visceral fat.

    PubMed

    Xia, Yi; Ergun, David L; Wacker, Wynn K; Wang, Xin; Davis, Cynthia E; Kaul, Sanjiv

    2014-01-01

    To reduce radiation exposure and cost, visceral adipose tissue (VAT) measurement on X-ray computed tomography (CT) has been limited to a single slice. Recently, the US Food and Drug Administration has approved a dual-energy X-ray absorptiometry (DXA) application validated against CT to measure VAT volume. The purpose of this study was to develop an algorithm to compute single-slice area values on DXA at 2 common landmarks, L2/3 and L4/5, from an automated volumetrically derived measurement of VAT. Volumetric CT and total body DXA were measured in 55 males (age: 21-77 yr; body mass index [BMI]: 21.1-37.9) and 60 females (age: 21-85 yr; BMI: 20.0-39.7). Equations were developed by applying the relationship of CT single-slice area and volume measurements of VAT to the DXA VAT volume measure as well as validating these against the CT single-slice measurements. Correlation coefficients between DXA estimate of single-slice area and CT were 0.94 for L2/3 and 0.96 for L4/5. The mean difference between DXA estimate of single-slice area and CT was 5 cm(2) at L2/3 and 3.8 cm(2) at L4/5. Bland-Altman analysis showed a fairly constant difference across the single-slice range in this study, and the 95% limits of agreement for the 2 methods were -44.6 to +54.6 cm(2) for L2/3 and -47.3 to +54.9 cm(2) for L4/5. In conclusion, a volumetric measurement of VAT by DXA can be used to estimate single-slice measurements at the L2/3 and the L4/5 landmarks.

  19. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method.

  20. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  1. Air Displacement Plethysmography versus Dual-Energy X-Ray Absorptiometry in Underweight, Normal-Weight, and Overweight/Obese Individuals

    PubMed Central

    Lowry, David W.; Tomiyama, A. Janet

    2015-01-01

    Background Accurately estimating fat percentage is important for assessing health and determining treatment course. Methods of estimating body composition such as hydrostatic weighing or dual-energy x-ray absorptiometry (DXA), however, can be expensive, require extensive operator training, and, in the case of hydrostatic weighing, be highly burdensome for patients. Our objective was to evaluate air displacement plethysmography via the Bod Pod, a less burdensome method of estimating body fat percentage. In particular, we filled a gap in the literature by testing the Bod Pod at the lower extreme of the Body Mass Index (BMI) distribution. Findings Three BMI groups were recruited and underwent both air displacement plethysmography and dual-energy x-ray absorptiometry. We recruited 30 healthy adults at the lower BMI distribution from the Calorie Restriction (CR) Society and followers of the CR Way. We also recruited 15 normal weight and 19 overweight/obese healthy adults from the general population. Both Siri and Brozek equations derived body fat percentage from the Bod Pod, and Bland-Altman analyses assessed agreement between the Bod Pod and DXA. Compared to DXA, the Bod Pod overestimated body fat percentage in thinner participants and underestimated body fat percentage in heavier participants, and the magnitude of difference was larger for underweight BMI participants, reaching 13% in some. The Bod Pod and DXA had smaller discrepancies in normal weight and overweight/obese participants. Conclusions While less burdensome, clinicians should be aware that Bod Pod estimates may deviate from DXA estimates particularly at the lower end of the BMI distribution. PMID:25607661

  2. The Ability of Lumbar Spine DXA and Phalanx QUS to Detect Previous Fractures in Young Thalassemic Patients With Hypogonadism, Hypothyroidism, Diabetes, and Hepatitis-B: A 2-Year Subgroup Analysis From the Taranto Area of Apulia Region

    PubMed Central

    Neglia, Cosimo; Peluso, Angelo; di Rosa, Salvatore; Ferrarese, Antonio; Di Tanna, Gianluca; Caiaffa, Vincenzo; Benvenuto, Marco; Cozma, Alexandru; Chitano, Giovanna; Agnello, Nadia; Paladini, Daniele; Baldi, Nicola; Distante, Alessandro; Piscitelli, Prisco

    2013-01-01

    Background: Osteoporosis is a leading cause of morbidity in patients affected by β-thalassemia major or intermediate; we aimed to assess the association between demineralization observed in young thalassemic patients. Methods: A total of 88 patients with β-thalassemia were recruited at Microcitemia Center of Taranto Hospital under the Prevention Osteoporosis and Fractures research project from 2008 to 2010. All the patients were screened with both dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS). T score and Z score values were obtained for each subject. Results: The overall prevalence of demineralization was 84% with DXA and 70% with QUS, whereas normality was found in 16% of patients screened with DXA and in 30% of cases with QUS. Hypogonadism, hypothyroidism, diabetes mellitus, hepatitis-B, and the presence of previous fragility fractures were significantly associated with the demineralization status (lower T scores values) both with DXA and QUS. Conclusion: Our data confirm that DXA and QUS examinations are both useful for detecting bone demineralization in thalassemic patients. PMID:23652868

  3. 3D bone mineral density distribution and shape reconstruction of the proximal femur from a single simulated DXA image: an in vitro study

    NASA Astrophysics Data System (ADS)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; del Río Barquero, Luis M.; Fritscher, Karl; Schubert, Rainer; Eckstein, Felix; Link, Thomas; Frangi, Alejandro F.

    2010-03-01

    Area Bone Mineral Density (aBMD) measured by Dual-energy X-ray Absorptiometry (DXA) is an established criterion in the evaluation of hip fracture risk. The evaluation from these planar images, however, is limited to 2D while it has been shown that proper 3D assessment of both the shape and the Bone Mineral Density (BMD) distribution improves the fracture risk estimation. In this work we present a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image. A statistical model of shape and a separate statistical model of the BMD distribution were automatically constructed from a set of Quantitative Computed Tomography (QCT) scans. The reconstruction method incorporates a fully automatic intensity based 3D-2D registration process, maximizing the similarity between the DXA and a digitally reconstructed radiograph of the combined model. For the construction of the models, an in vitro dataset of QCT scans of 60 anatomical specimens was used. To evaluate the reconstruction accuracy, experiments were performed on simulated DXA images from the QCT scans of 30 anatomical specimens. Comparisons between the reconstructions and the same subject QCT scans showed a mean shape accuracy of 1.2mm, and a mean density error of 81mg/cm3. The results show that this method is capable of accurately reconstructing both the 3D shape and 3D BMD distribution of the proximal femur from DXA images used in clinical routine, potentially improving the diagnosis of osteoporosis and fracture risk assessments at a low radiation dose and low cost.

  4. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA.

    PubMed

    Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian

    2014-01-27

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.

  5. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA

    PubMed Central

    Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian

    2014-01-01

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487

  6. Executive Summary of the 2015 ISCD Position Development Conference on Advanced Measures From DXA and QCT: Fracture Prediction Beyond BMD.

    PubMed

    Shepherd, John A; Schousboe, John T; Broy, Susan B; Engelke, Klaus; Leslie, William D

    2015-01-01

    There have been many scientific advances in fracture risk prediction beyond bone density. The International Society for Clinical Densitometry (ISCD) convened a Position Development Conference (PDC) on the use of dual-energy X-ray absorptiometry beyond measurement of bone mineral density for fracture risk assessment, including trabecular bone score and hip geometry measures. Previously, no guidelines for nonbone mineral density DXA measures existed. Furthermore, there have been advances in the analysis of quantitative computed tomography (QCT) including finite element analysis, QCT of the hip, DXA-equivalent hip measurements, and opportunistic screening that were not included in the previous ISCD positions. The topics and questions for consideration were developed by the ISCD Board of Directors and the Scientific Advisory Committee and were designed to address the needs of clinical practitioners. Three task forces were created and asked to conduct comprehensive literature reviews to address specific questions. The task forces included participants from many countries and a variety of interests including academic institutions and private health care delivery organizations. Representatives from industry participated as consultants to the task forces. Task force reports with proposed position statements were then presented to an international panel of experts with backgrounds in bone densitometry. The PDC was held in Chicago, Illinois, USA, contemporaneously with the Annual Meeting of the ISCD, February 26 through February 28, 2015. This Executive Summary describes the methodology of the 2015 PDC on advanced measures from DXA and QCT and summarizes the approved official positions. Six separate articles in this issue will detail the rationale, discussion, and additional research topics for each question the task forces addressed.

  7. Measuring body composition in dogs using multifrequency bioelectrical impedance analysis and dual energy X-ray absorptiometry.

    PubMed

    Rae, L S; Vankan, D M; Rand, J S; Flickinger, E A; Ward, L C

    2016-06-01

    Thirty-five healthy, neutered, mixed breed dogs were used to determine the ability of multifrequency bioelectrical impedance analysis (MFBIA) to predict accurately fat-free mass (FFM) in dogs using dual energy X-ray absorptiometry (DXA)-measured FFM as reference. A second aim was to compare MFBIA predictions with morphometric predictions. MFBIA-based predictors provided an accurate measure of FFM, within 1.5% when compared to DXA-derived FFM, in normal weight dogs. FFM estimates were most highly correlated with DXA-measured FFM when the prediction equation included resistance quotient, bodyweight, and body condition score. At the population level, the inclusion of impedance as a predictor variable did not add substantially to the predictive power achieved with morphometric variables alone; in individual dogs, impedance predictors were more valuable than morphometric predictors. These results indicate that, following further validation, MFBIA could provide a useful tool in clinical practice to objectively measure FFM in canine patients and help improve compliance with prevention and treatment programs for obesity in dogs.

  8. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry.

    PubMed

    Keil, Mhairi; Totosy de Zepetnek, Julia O; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2016-01-01

    The purpose of this study was to assess the reproducibility of body composition measurements by dual-energy X-ray absorptiometry (DXA) in 12 elite male wheelchair basketball players (age 31 ± 7 years, BMI 21 ± 2 kg/m(2) and onset of disability 25 ± 9 years). Two whole body scans were performed on each participant in the supine position on the same day, using Lunar Prodigy Advance DXA (GE Lunar, Madison, WI, USA). Participants dismounted from the scanning table and were repositioned in-between the first and second scan. Whole body coefficient of variation (CV) values for bone mineral content (BMC), fat mass (FM) and soft tissue lean mass (LTM) were all <2.0%. With the exclusion of arm FM (CV = 7.8%), CV values ranged from 0.1 to 3.7% for all total body and segmental measurements of BMC, FM and LTM. The least significant change that can be attributed to the effect of treatment intervention in an individual is 1.0 kg, 1.1 kg, 0.12 kg for FM, LTM, and BMC, respectively. This information can be used to determine meaningful changes in body composition when assessed using the same methods longitudinally. Whilst there may be challenges in the correct positioning of an individual with disability that can introduce greater measurement error, DXA is a highly reproducible technique in the estimation of total and regional body composition of elite wheelchair basketball athletes.

  9. Body Composition in Premature Adrenarche by Structural MRI, 1H MRS and DXA

    PubMed Central

    Leibel, Natasha; Shen, Wei; Mao, Xiangling; Punyanitya, Mark; Gallagher, Dympna; Horlick, Mary; Shungu, Dikoma C.; Oberfield, Sharon E.

    2010-01-01

    Background Premature adrenarche (PA) is recognized to be a possible precursor of polycystic ovarian syndrome, type 2 diabetes mellitus and cardiovascular disease. Visceral adiposity and increased intramyocellular lipid (IMCL) are associated with insulin resistance and increased risk of cardiovascular disease. Aim To determine whether prepubertal girls with PA have altered visceral adiposity and/or increased muscle lipid content compared to prepubertal girls without PA using proton magnetic resonance imaging (MRI) and spectroscopy (1H MRS). Patients and Methods We performed total body dual energy X-ray absorptiometry (DXA) scans, MRI of the trunk, and MRS of the tibialis anterior muscle in the right calf on six girls with PA and eight prepubertal controls. Results Amount of visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (SAT), and VAT to SAT ratio did not differ significantly between the PA and control girls. Those with PA, however, had significantly greater IMCL than controls (p = 0.004). Conclusions This study adds further evidence that PA is not a benign condition, and future studies investigating early intervention with dietary and exercise counseling may help diminish potential risk for diabetes mellitus and/or cardiovascular disease. PMID:19554803

  10. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis.

    PubMed

    Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2007-10-01

    The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density. PMID:21224926

  11. Air displacement plethysmography, dual-energy X-ray absorptiometry, and total body water to evaluate body composition in preschool-age children.

    PubMed

    Crook, Tina A; Armbya, Narain; Cleves, Mario A; Badger, Thomas M; Andres, Aline

    2012-12-01

    Anthropometrics and body mass index are only proxies in the evaluation of adiposity in the pediatric population. Air displacement plethysmography technology was not available for children aged 6 months to 9 years until recently. Our study was designed to test the precision of air displacement plethysmography (ADP) in measuring body fat mass in children at ages 3 to 5 years compared with a criterion method, deuterium oxide dilution (D(2)O), which estimates total body water and a commonly used methodology, dual-energy x-ray absorptiometry (DXA). A prospective, cross-sectional cohort of 66 healthy children (35 girls) was recruited in the central Arkansas region between 2007 and 2009. Weight and height were obtained using standardized procedures. Fat mass (%) was measured using ADP, DXA, and D(2)O. Concordance correlation coefficient and Bland-Altman plots were used to investigate the precision of the ADP techniques against D(2)O and DXA in children at ages 3 to 5 years. ADP concordance correlation coefficient for fat mass was weak (0.179) when compared with D(2)O. Bland-Altman plots revealed a low accuracy and large scatter of ADP fat mass (%) results (mean=-2.5, 95% CI -20.3 to 15.4) compared with D(2)O. DXA fat mass (%) results were more consistent although DXA systematically overestimated fat mass by 4% to 5% compared with D(2)O. Compared with D(2)O, ADP does not accurately assess percent fat mass in children aged 3 to 5 years. Thus, D(2)O, DXA, or quantitative nuclear magnetic resonance may be considered better options for assessing fat mass in young children.

  12. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-01-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.

  13. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness.

    PubMed

    Bolotin, H H

    2001-05-01

    New, anatomically realistic simulation studies based on a cadaveric lumbar vertebra and a broad range of soft tissue anthropometric representations have quantitatively delineated inaccuracies inherent in dual-energy X-ray absorptiometry (DXA) in vivo bone mineral density (BMD) methodology. It is found that systematic inaccuracies in DXA BMD measurements may readily exceed +/-20% at typical in vivo lumbar vertebral sites, especially for osteopenic/osteoporotic, postmenopausal, and elderly patients. These findings are quantitatively compared with extensive clinical evidence of strong, positive correlations between soft tissue anthropometrics and DXA in vivo BMD upon which prior significant bone biology interpretations and implications have been based. The agreement is found to be both qualitatively and quantitatively excellent. Moreover, recent extensive multicenter clinical studies have also exposed new facets of strong linkages between body mass/percent body fat/body mass index (BMI) and DXA-measured BMD that are particularly relevant to osteopenia/osteoporosis and remedial effectiveness of antiresorptive drug therapy. These seemingly disparate and unrelated diagnostic and prognostic aspects of clinically observed associations between soft tissue anthropometrics and measured vertebral BMD are, in this study, self-consistently shown to share the common origin of being manifestations of systematic inherent inaccuracies in DXA in vivo BMD methodology, without the need to invoke any underlying biologically causal mechanism(s). These inaccuracies arise principally from absorptiometric disparities between the intra- and extraosseous soft tissues within the DXA scan region of interest. The present evaluative comparisons are based exclusively on an incisive and diverse body of clinical data that appears difficult to dismiss or discount. Previous invocations of biologically causal mechanisms responsible for this broad range of observations linking body mass, percent body

  14. Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in postmenopausal women from the general population: a cost-effectiveness analysis.

    PubMed

    Marín, F; López-Bastida, J; Díez-Pérez, A; Sacristán, J A

    2004-03-01

    The aim of our study was to assess, from the perspective of the National Health Services in Spain, the cost-effectiveness of quantitative ultrasound (QUS) as a prescreen referral method for bone mineral density (BMD) assessment by dual-energy X-ray absorptiometry (DXA) in postmenopausal women of the general population. Using femoral neck DXA and heel QUS. We evaluated 267 consecutive postmenopausal women 65 years and older and attending primary care physician offices for any medical reason. Subjects were classified as osteoporotic or nonosteoporotic (normal or osteopenic) using the WHO definition for DXA. Effectiveness was assessed in terms of the sensitivity and specificity of the referral decisions based on the QUS measurement. Local costs were estimated from health services and actual resource used. Cost-effectiveness was evaluated in terms of the expected cost per true positive osteoporotic case detected. Baseline prevalence of osteoporosis evaluated by DXA was 55.8%. The sensitivity and specificity for the diagnosis of osteoporosis by QUS using the optimal cutoff thresholds for the estimated heel BMD T-score were 97% and 94%, respectively. The average cost per osteoporotic case detected based on DXA measurement alone was 23.85 euros. The average cost per osteoporotic case detected using QUS as a prescreen was 22.00 euros. The incremental cost-effectiveness of DXA versus QUS was 114.00 euros per true positive case detected. Our results suggest that screening for osteoporosis with QUS while applying strict cufoff values in postmenopausal women of the general population is not substantially more cost-effective than DXA alone for the diagnosis of osteoporosis. However, the screening strategy with QUS may be an option in those circumstances where the diagnosis of osteoporosis is deficient because of the difficulty in accessing DXA equipment.

  15. Comparison of air-displacement plethysmography, hydrodensitometry, and dual X-ray absorptiometry for assessing body composition of children 10 to 18 years of age.

    PubMed

    Lockner, D W; Heyward, V H; Baumgartner, R N; Jenkins, K A

    2000-05-01

    Body density (Db) of 54 boys and girls 10-18 years of age (13.9 +/- 2.4 years) was measured in an air-displacement plethysmograph, the BOD POD, and compared to Db determined by hydrodensitometry (HW). Both Db values were converted to percent body fat (%BF) using a two-component model conversion formula and compared to %BF determined by dual energy X-ray absorptiometry (DXA). Body density estimated from the BOD POD (1.04657 +/- 0.01825 g/cc) was significantly higher than that estimated from HW (1.04032 +/- 0.01872 g/cc). The relative body fat calculated from the BOD POD (23.12 +/- 8.39 %BF) was highly correlated but, on average, 2.9% BF lower than %BF DXA. Average %BF estimates from HW and DXA were not significantly different. Despite consistently underestimating the %BF of children, the strong relationship between DXA and the BOD POD suggests that further investigation may improve the accuracy of the BOD POD for assessing body composition in children.

  16. Black hole artifacts-a new potential pitfall for DXA accuracy?

    PubMed

    Morgan, Sarah L; Lopez-Ben, Robert; Nunnally, Nancy; Burroughs, Leandria; Fineberg, Naomi; Tubbs, R Shane; Yester, Michael V

    2008-01-01

    Certain types of metallic objects apparently have high attenuation (a white image) on dual-energy X-ray absorptiometry (DXA) scan images, but instead show up as black (black hole artifacts). When small, these artifacts may easily be missed on visual inspection. We hypothesized that such "black hole" artifacts could have a significant effect on bone mineral density (BMD) results. Human use approval (Institutional Review Board [IRB]) was obtained to publish patient scans and an IRB waiver was obtained for nonhuman research. We placed individual surgical clips and cassettes of clips of tantalum, stainless steel and titanium, and a bullet over the third lumbar vertebra (L3) of a Hologic spine phantom. In addition, 4 or 8 individual tantalum or stainless steel clips and tantalum squares were placed over L3 of cadaveric spines (high-density spine L1-L4 BMD=1.049 g/cm2) and low-density spine BMD (L1-L4 BMD=0.669 g/cm2) with attached soft tissues. Stainless steel and titanium clips scanned as white objects with DXA. A bullet and tantalum clips scanned black (black holes). All clip types were visible on single-energy scans as white objects. Eight tantalum clips significantly lowered L3 BMD compared to 4 or 0 clips in the high-density spine. There were no significant differences in BMD L1-L4 between 0, 4, and 8 tantalum clips in the high-density spine. In the low-density spine, 8 tantalum clips over L3 had significantly lower BMD compared to 4 tantalum clips overlying L3 and 4 clips lateral to L3 and 4 clips over L3. All of these scenarios had lower L3 BMD than no tantalum clips overlying L3. The BMD of L1-L4 was lowest with 8 clips at L3, but was not significantly different than no clips overlying L3. Eight tantalum clips lateral to L3 was significantly higher than no clips over L3. Black hole artifacts can occur in DXA scans containing certain metals like tantalum surgical clips. Although these surgical clips could decrease BMD at a localized area, they do not

  17. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are

  18. Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume.

    PubMed

    Sran, Meena M; Khan, Karim M; Keiver, Kathy; Chew, Jason B; McKay, Heather A; Oxland, Thomas R

    2005-12-01

    Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard-ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5-T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice. PMID:15616862

  19. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults.

    PubMed

    Hind, Karen; Oldroyd, Brian; Truscott, John G

    2010-01-01

    Knowledge of precision is integral to the monitoring of bone mineral density (BMD) changes using dual-energy X-ray absorptiometry (DXA). We evaluated the precision for bone measurements acquired using a GE Lunar iDXA (GE Healthcare, Waukesha, WI) in self-selected men and women, with mean age of 34.8 yr (standard deviation [SD]: 8.4; range: 20.1-50.5), heterogeneous in terms of body mass index (mean: 25.8 kg/m(2); SD: 5.1; range: 16.7-42.7 kg/m(2)). Two consecutive iDXA scans (with repositioning) of the total body, lumbar spine, and femur were conducted within 1h, for each subject. The coefficient of variation (CV), the root-mean-square (RMS) averages of SDs of repeated measurements, and the corresponding 95% least significant change were calculated. Linear regression analyses were also undertaken. We found a high level of precision for BMD measurements, particularly for scans of the total body, lumbar spine, and total hip (RMS: 0.007, 0.004, and 0.007 g/cm(2); CV: 0.63%, 0.41%, and 0.53%, respectively). Precision error for the femoral neck was higher but still represented good reproducibility (RMS: 0.014 g/cm(2); CV: 1.36%). There were associations between body size and total-body BMD and total-hip BMD SD precisions (r=0.534-0.806, p<0.05) in male subjects. Regression parameters showed good association between consecutive measurements for all body sites (r(2)=0.98-0.99). The Lunar iDXA provided excellent precision for BMD measurements of the total body, lumbar spine, femoral neck, and total hip.

  20. An evaluation of the United Kingdom National Osteoporosis Society position statement on the use of peripheral dual-energy X-ray absorptiometry.

    PubMed

    Patel, Rajesh; Blake, Glen M; Fogelman, Ignac

    2004-06-01

    A recent position statement issued by the UK National Osteoporosis Society recommends a triage approach to the use of peripheral dual-energy X-ray absorptiometry (pDXA) devices. Patients with a forearm T-score greater than -1 or less than -2.5 are regarded as normal or osteoporotic, respectively, while those with a T-score between -1 and -2.5 are sent for further assessment with spine and hip DXA. We have evaluated the NOS pDXA algorithm by comparing it with the alternative strategies of relying on forearm BMD alone, or performing spine and hip DXA in every patient. The evaluation was carried out using a mathematical model, and the predictions were compared with in vivo data obtained in patients referred for investigation by their general practitioner. In the model the population distribution of spine, hip, and forearm BMD was described by a trivariant Gaussian function. Relative risks of fracture were taken from a meta-analysis. The three strategies were compared using receiver operating characteristic (ROC) curves in which the percentage of future fracture cases identified was plotted against the percentage of the whole population found to have osteoporosis. ROC curves plotted for the discrimination of hip, vertebral, and Colles fracture risk and the risk of a fracture at any skeletal site were similar for all three strategies, with the curves for the NOS pDXA algorithm nearly identical to those for spine and hip DXA. For the case of hip fracture, vertebral fracture, or a fracture at any site, forearm BMD was slightly inferior to the NOS algorithm, but the reverse was true for Colles fracture. The small difference between the ROC curves suggests that forearm BMD used alone can reproduce clinical decision-making with the NOS pDXA algorithm provided that a T-score threshold of T=-2.1 is used for the diagnosis of osteoporosis, instead of the conventional figure of T=-2.5. Results from the in vivo study were in good agreement with the predictions of the model

  1. Prevalence and predictors of low bone mineral density and fragility fractures among HIV-infected patients at one Italian center after universal DXA screening: sensitivity and specificity of current guidelines on bone mineral density management.

    PubMed

    Mazzotta, Elena; Ursini, Tamara; Agostinone, Adriana; Di Nicola, Angelo Domenico; Polilli, Ennio; Sozio, Federica; Vadini, Francesco; Pieri, Alessandro; Trave, Francesca; De Francesco, Valerio; Capasso, Lorenzo; Borderi, Marco; Manzoli, Lamberto; Viale, Pierluigi; Parruti, Giustino

    2015-04-01

    Low bone mineral density (BMD) is frequent in HIV infection regardless of the use of antiretroviral therapy (ART). Uncertainties remain, however, as to when in HIV infection BMD screening should be performed. We designed a prospective study to estimate the efficacy of universal BMD screening by dual-energy X-ray absorptiometry (DXA). Since April 2009 through March 2011, HIV patients attending our Center were offered femoral/lumbar DXA to screen BMD. Low BMD for chronological age, that is significant osteopenia, was defined as a Z-score ≤ -2.0 at femur and lumbar spine. Nontraumatic bone fractures (NTBFs) were evaluated. The final sample included 163 patients. A Z-score ≤ -2.0 at any site was observed in 19.6% of cases: among these, 18.8% had no indication to DXA using current Italian HIV guidelines for BMD screening. A lower femoral Z-score was independently associated with lower BMI, AIDS diagnosis, HCV co-infection, antiretroviral treatment, and NTBFs; a lower lumbar Z-score with age, BMI, Nadir CD4 T-cell counts, and NTBFs. Prevalence of NTBFs was 27.0%, predictors being male gender, HCV co-infection, and lower femoral Z-scores. Our results suggest that measuring BMD by DXA in all HIV patients regardless of any further specification may help retrieving one-fifth of patients with early BMD disorders not identified using current criteria for selective screening of BMD.

  2. Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants.

    PubMed

    Brunton, J A; Weiler, H A; Atkinson, S A

    1997-04-01

    Previously, we conducted dual energy x-ray absorptiometry (DXA) (Hologic QDR-1000/W) scans and carcass analysis of piglets to evaluate the Pediatric Whole Body software (PedWB) (V5.35) for use in infants. A software upgrade designed for infant whole body (InfWB) (V5.56) led to a reassessment of DXA by: 1) reanalysis of the original scans using InfWB software and 2) comparison of InfWB-estimates of bone mineral content (BMC) and lean and fat mass with chemical analysis. Other assessments included 1) methods of regional analysis and 2) artifacts and the Infant Table Pad in the scan field. The mean coefficients of variation for InfWB whole body measures in small piglets (n = 10, weight 1575 +/- 73 g) and large piglets (n = 10, weight 5894 +/- 208 g) were less than 2.6% except for fat mass which was higher (8.0% versus 6.3% and 6.6% versus 3.5%, respectively) compared with PedWB. In large piglets InfWB produced good estimates of BMC, lean and fat masses. In small piglets, fat mass by InfWB was correlated with chemical analysis, but not by PedWB. There was improvement in the estimation of BMC with InfWB, from 27 +/- 2.2 g to 32 +/- 2.3 g (carcass ash = 38 +/- 3.3 g). Femur BMC analysis by InfWB was precise and was accurate when compared with chemical analysis. Artifacts in the DXA scan field (diapers and blankets) resulted in an increase of the DXA-estimated fat and lean masses. The Infant Table Pad increased the estimate of fat mass in a small piglet by 50%, thus further study is required before it is used routinely. Improvements of the DXA technology have resulted in a more accurate tool, if scanning procedures are carefully implemented. PMID:9098865

  3. Characteristics of long bone DXA reference data in Hong Kong Chinese.

    PubMed

    Leung, Kwok Sui; Lee, Kwong Man; Cheung, Wing Hoi; Ng, Edmond Siu Woon; Qin, Ling

    2004-01-01

    With the increasing number of geriatric long bone fractures, the establishment of long bone reference BMD data is desirable for the accurate diagnosis of osteoporosis, study of fracture mechanics, implant design, and indications for augmentation of fracture fixation with biomaterials. We report the normal reference bone mineral density (BMD) and bone mineral content (BMC) at three femoral sites (proximal, diaphyseal, and distal) in 106 male and 93 female Hong Kong Chinese aged 12 to 80, measured with dual-energy X-ray absorptiometry (DXA). The length and width of the femur were also measured. The results suggest that males reached peak bone mass earlier than females and the value was also higher in all measured sites. After reaching the peak bone mass, bones lost BMD faster in females. The age-related annual bone loss (in BMD) calculated with a regression model in female subjects were, on average, 3.3, 4.0, and 3.0 times higher than those in males at the diaphyseal, proximal, and distal regions, respectively. The decrease in BMD and BMC occurred slightly earlier in the proximal and distal regions than the diaphysis in both sexes. The male femur was significantly longer than that of the female in all age groups after 20 yr of age and remained unchanged with advancing age. The femoral width in females showed an increasing trend from adolescence. Our study provides reference data for the changes in diaphyseal BMC and BMD associated with aging. The age-related changes in the femoral diameter in females might attenuate the negative impact on fracture risk as a result of decreasing BMD with age.

  4. Dual-Energy X-Ray Absorptiometry Prediction of Adipose Tissue Depots in Children and Adolescents

    PubMed Central

    Bauer, Jacqueline; Thornton, John; Heymsfield, Steven; Kelly, Kim; Ramirez, Alexander; Gidwani, Sonia; Gallagher, Dympna

    2013-01-01

    Background The measurement of adipose tissue depots in-vivo requires expensive imaging methods not accessible to most clinicians and researchers. The study aim was to derive mathematical models to predict total adipose tissue (TAT) and sub-depots from total body fat derived from a dual energy x-ray absorptiometry (DXA) scan. Methods Models were developed to predict magnetic resonance imaging derived TAT and sub-depots subcutaneous (SAT), visceral (VAT), and intermuscular (IMAT) from DXA total body fat using cross-sectional data (T0) and validated results using 1 (T1) and 2 (T2) year follow-up data. Subjects were 176 multi-ethnic healthy children ages 5 to 17 years at T0. 22 were measured at T1 and T2. TAT was compared to fat. Results At T0, TAT was greater than fat (12.5 ± 8.4 vs.12.0 ± 9.4 kg; p< 0.0001), with a quadratic relationship between TAT and fat which varied by sex. Predicted mean TAT’s were not different from measured TAT’s: T1: (9.84±4.45 kg vs. 9.50±4.37 kg; p=0.11) T2: (12.94±6.75 kg vs. 12.89±7.09 kg; p=0.76). The quadratic relationship was not influenced by race or age. Conclusions In general, the prediction equations for TAT and sub-depots were consistent with the measured values using T1 and T2 data. PMID:22821057

  5. Skeletal Recovery Following Long-Duration Spaceflight Missions as Determined by Preflight and Postflight DXA Scans of 45 Crew Members

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2006-01-01

    Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.

  6. DXA surrogates for visceral fat are inversely associated with bone density measures in adolescent athletes with menstrual dysfunction

    PubMed Central

    Ackerman, Kathryn E.; Davis, Brittany; Jacoby, Leah; Misra, Madhusmita

    2013-01-01

    Objective Lean mass is associated with bone mineral density (BMD) in athletes, attributable to the anabolic pull of muscle on bone. Fat mass is also important, and subcutaneous fat positively and visceral fat negatively correlates with BMD in obese adolescents. The contribution of regional body composition to low BMD in amenorrheic athletes (AA) has not been elucidated. We hypothesized that in adolescent athletes (runners), BMD is associated positively with total fat (surrogate for subcutaneous fat) and lean mass, and inversely with percent trunk fat and trunk-to-extremity fat ratio (surrogates for visceral fat). Design Cross-sectional study. Subjects and methods We examined BMD and body composition using dual energy X-ray absorptiometry (DXA) in 21 AA and 19 eumenorrheic athletes (EA) (12–18 years) (runners). We report total hip and height-adjusted BMD [lumbar bone mineral apparent density (LBMAD) and whole body bone mineral content/height (WBBMC/Ht)]. Results AA had lower BMD than EA. Lean mass was less strongly associated with hip BMD in AA than EA; fat mass was positively associated with LBMAD in EA. Percent trunk fat and trunk-to-extremity fat ratio were inversely associated with lumbar and WB measures in AA. In a regression model, lean and fat mass were positively, and percent trunk fat and trunk-to-extremity fat ratio negatively associated with LBMAD and WBBMC/Ht for all athletes, even after controlling for serum estradiol. Conclusions DXA surrogates for visceral fat are inversely associated with bone density in athletes. PMID:21932588

  7. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  8. Dual X-ray absorptiometry detects disease- and treatment-related alterations of bone density in prostate cancer patients.

    PubMed

    Smith, G L; Doherty, A P; Banks, L M; Dutton, J; Hanham, L W; Christmas, T J; Epstein, R J

    2000-01-01

    Metastatic bone disease is an important clinical problem which has proven difficult to study because of a lack of noninvasive investigative modalities. Here we show that dual-energy X-ray absorptiometry (DXA) scanning provides clinically useful information about the status of metastatic bone lesions in cancer patients undergoing palliative treatment. In the study group of 21 patients, a significant increase in metastatic bone mineral density (BMD) was confirmed in prostate (n = 14) relative to breast (n = 7) cancer patients. With respect to the prostate cancer cohort, further increases in lesional BMD were evident in all evaluable patients in whom biochemical progression occurred; conversely, lesional BMD declined in patients who had a partial response to therapy. BMD of uninvolved bone decreased with all types of androgen-deprivation therapy regardless of whether patients responded or relapsed. We conclude that BMD changes in both lesional and uninvolved bone are readily detectable in metastatic prostate cancer, and propose that DXA scanning represents a promising new approach to monitoring the natural history and therapeutic course of this disease.

  9. Characterization of low bone mass in young patients with thalassemia by DXA, pQCT and markers of bone turnover.

    PubMed

    Fung, Ellen B; Vichinsky, Elliott P; Kwiatkowski, Janet L; Huang, James; Bachrach, Laura K; Sawyer, Aenor J; Zemel, Babette S

    2011-06-01

    Previous reports using dual x-ray absorptiometry (DXA) suggest that up to 70% of adults with thalassemia major (Thal) have low bone mass. However, few studies have controlled for body size and pubertal delay, variables known to affect bone mass in this population. In this study, bone mineral content and areal density (BMC, aBMD) of the spine and whole body were assessed by DXA, and volumetric BMD and cortical geometries of the distal tibia by peripheral quantitative computed tomography (pQCT) in subjects with Thal (n = 25, 11 male, 10 to 30 years) and local controls (n=34, 15 male, 7 to 30 years). Z-scores for bone outcomes were calculated from reference data from a large sample of healthy children and young adults. Fasting blood and urine were collected, pubertal status determined by self-assessment and dietary intake and physical activity assessed by written questionnaires. Subjects with Thal were similar in age, but had lower height, weight and lean mass index Z-scores (all p < 0.001) compared to controls. DXA aBMD was significantly lower in Thal compared to controls at all sites. Adult Thal subjects (> 18 years, n = 11) had lower tibial trabecular vBMD (p = 0.03), cortical area, cortical BMC, cortical thickness, periosteal circumference and section modulus Z-scores (all p < 0.01) compared to controls. Cortical area, cortical BMC, cortical thickness, and periosteal circumference Z-scores (p = 0.02) were significantly lower in young Thal (≤ 18 years, n = 14) compared to controls. In separate multivariate models, tibial cortical area, BMC, and thickness and spine aBMD and whole body BMC Z-scores remained lower in Thal compared to controls after adjustment for gender, lean mass and/or growth deficits (all p < 0.01). Tanner stage was not predictive in these models. Osteocalcin, a marker of bone formation, was significantly reduced in Thal compared to controls after adjusting for age, puberty and whole body BMC (p=0.029). In summary, we have found evidence of

  10. Dual-energy X-ray absorptiometry in sheep: experiences with in vivo and ex vivo studies.

    PubMed

    Turner, A S; Mallinckrodt, C H; Alvis, M R; Bryant, H U

    1995-10-01

    As different large animal models of osteopenia and osteoporosis are explored, the use of DXA to rapidly, non-invasively and accurately estimate BMD will become widespread. We used DXA in live sheep and cadaveric material and the areas of trabecular bone that are most accessible on a simple, repeatable basis in the sheep were the lumbar vertebrae (L4-L6/L5-L7), the CAL and the DR. We performed dual-energy X-ray absorptiometry (DXA) using an Hologic QDR 1000-W bone densitometer to measure bone mineral density (BMD) at various regions of interest in anesthetized sheep and cadaveric specimens of sheep. In vivo measurements of L4-L6/L5-L7, the calcaneus (CAL) and distal radius (DR) in 48 intact 3 to 5-year-old ewes (same breed) were performed. Correlations between the different bones were investigated. In an in vivo precision study, BMD of L3-L6/L7, CAL and DR was determined with one animal repositioned between 10 scans of each bone. In another study, ex-vivo BMD measurements of the proximal and distal femur, proximal tibia, and proximal humerus were performed on isolated bones of 45 ewes of similar age. Excised vertebrae were scanned on the Hologic QDR 1000-W and on a Lunar DPX (at another site) and the data were compared. Correlations of BMD between individual vertebrae in anesthetized sheep were excellent (r = 0.944- 0.843; P < 0.0001). Correlation between BMD of individual vertebrae and CAL was good (r = 0.677-0.630), while correlation between BMD of individual vertebrae and DR was also good (r = 0.551-0.507; P < .0001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8579941

  11. Hip Fractures Risk in Older Men and Women Associated With DXA-Derived Measures of Thigh Subcutaneous Fat Thickness, Cross-Sectional Muscle Area, and Muscle Density.

    PubMed

    Malkov, Serghei; Cawthon, Peggy M; Peters, Kathy Wilt; Cauley, Jane A; Murphy, Rachel A; Visser, Marjolein; Wilson, Joseph P; Harris, Tamara; Satterfield, Suzanne; Cummings, Steve; Shepherd, John A

    2015-08-01

    Mid-thigh cross-sectional muscle area (CSA), muscle attenuation, and greater trochanter soft tissue thickness have been shown to be independent risk factors of hip fracture. Our aim was to determine whether muscle and adipose tissue measures derived from dual-energy X-ray absorptiometry (DXA) scans would have a similar risk association as those measured using other imaging methods. Using a case-cohort study design, we identified 169 incident hip fracture cases over an average of 13.5 years among participants from the Health ABC Study, a prospective study of 3075 individuals initially aged 70 to 79 years. We modeled the thigh 3D geometry and compared DXA and computed tomography (CT) measures. DXA-derived thigh CSA, muscle attenuation, and subcutaneous fat thickness were found to be highly correlated to their CT counterparts (Pearson's r = 0.82, 0.45, and 0.91, respectively; p < 0.05). The fracture risk of men and women were calculated separately. We found that decreased subcutaneous fat, CT thigh muscle attenuation, and appendicular lean mass by height squared (ALM/Ht(2)) were associated with fracture risk in men; hazard ratios (HR) = 1.44 (1.02, 2.02), 1.40 (1.05, 1.85), and 0.58 (0.36, 0.91), respectively, after adjusting for age, race, clinical site, body mass index (BMI), chronic disease, hip bone mineral density (BMD), self-reported health, alcohol use, smoking status, education, physical activity, and cognitive function. In a similar model for women, only decreases in subcutaneous fat and DXA CSA were associated with hip fracture risk; HR = 1.39 (1.07, 1.82) and 0.78 (0.62, 0.97), respectively. Men with a high ALM/Ht(2) and low subcutaneous fat thickness had greater than 8 times higher risk for hip fracture compared with those with low ALM/Ht(2) and high subcutaneous fat. In women, ALM/Ht(2) did not improve the model when subcutaneous fat was included. We conclude that the DXA-derived subcutaneous fat thickness is a strong marker for hip fracture

  12. Dual-energy X-ray absorptiometry measured regional body composition least significant change: effect of region of interest and gender in athletes.

    PubMed

    Buehring, Bjoern; Krueger, Diane; Libber, Jessie; Heiderscheit, Bryan; Sanfilippo, Jennifer; Johnson, Brian; Haller, Irina; Binkley, Neil

    2014-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used to evaluate body composition in athletes. Knowledge of measurement precision is essential for monitoring body composition changes over time. This study begins characterizing DXA body composition precision in 60 (30 males and 30 females) Division 1 athletes focusing on gender, regional, and tissue type differences. Two total body scans with repositioning between were performed on the same day. Least significant change (LSC) for the root-mean-square deviation (LSCRMSD) and the percent coefficient of variation (LSC%CV) for total, lean, and fat mass was calculated for 6 regions of interest. The effect of gender, region, tissue type, and mass on the standard deviation (SD) and percent coefficient of variation (%CV) between the 2 scans was evaluated using repeated measures regression analysis. Statistically significant effects of gender, region, tissue type, and mass on SD and %CV were noted. To generalize, a nonlinear positive relationship between LSCRMSD and mass and a nonlinear negative relationship between LSC%CV and mass were observed. In conclusion, DXA body composition LSC varies among genders, regions, tissues, and mass. As such, when evaluating serial body composition in athletes, especially if assessing regional change, knowledge of precision in individuals of similar body size and gender to the population of interest is needed.

  13. Cross-calibration of pencil-beam (DPX-NT) and fan-beam (QDR-4500C) dual-energy X-ray absorptiometry for sarcopenia.

    PubMed

    Ito, Kenyu; Tsushita, Kazuyo; Muramoto, Akiko; Kanzaki, Hiroki; Nohara, Takashi; Shimizu, Hitomi; Nakazawa, Tomoko; Harada, Atsushi

    2015-11-01

    Sarcopenia, defined as the loss of muscle mass accompanied by weakness, is an important factor leading to frailty and is a growing concern in the aging Japanese society. Muscle mass can be calculated by dual-energy X-ray absorptiometry (DXA), but results differ between devices produced by different manufactures. Thus, cross-calibration is needed to compare body composition results in multicenter trials or when scanners are replaced. The purpose of this study was to perform an in vivo calibration of total body scans between pencil-beam (DPX-NT, GE Healthcare) and fan-beam (QDR-4500C, Hologic Inc.) DXA units. A total 30 subjects (15 women, 15 men, mean age = 35 years, range 22-49 years) were recruited. The lumbar bone mineral density (BMD), femoral neck BMD, appendicular fat and lean body mass, and the appendicular skeletal muscle mass index (ASMI) were highly correlated (r = 0.979-0.993, r(2) = 0.889-0.977). The conversion formulas were as follows: lumbar BMD, Y = -0.08 + 1.16X (X = QDR-4500C, Y = DPX-NT), femoral neck BMD, Y = -0.015 + 1.11X, and ASMI Y = 0.92 + 0.90X. There is excellent comparability between the DPX-NT and the QDR-4500C DXA units. However, cross-calibration equations are required to assess muscle volume, fat, and ASMI in multicenter studies investigating sarcopenia.

  14. Associations between pQCT-based fat and muscle area and density and DXA-based total and leg soft tissue mass in healthy women and men

    PubMed Central

    Sherk, Vanessa D; Thiebaud, Robert S; Chen, Zhaojing; Karabulut, Murat; Kim, So Jung; Bemben, Debra A

    2015-01-01

    Peripheral Quantitative Computed Tomography (pQCT) can be used for muscle and fat area and density assessments. These may independently influence muscle and fat mass measurements from Dual Energy X-ray Absorptiometry (DXA). Objective To determine associations between pQCT-derived soft tissue density and area measures and DXA-derived soft tissue mass. Methods Linear regression models were developed based on BMI and calf fat and muscle cross-sectional area (FCSA and MCSA) and density measured by pQCT in healthy women (n=76) and men (n=82) aged 20–59 years. Independent variables for these models were leg and total bone-free lean mass (BFLM) and fat mass (FM) measured by DXA. Results Sex differences (p<0.01) were found in both muscle (Mean±SE: Women: 78.6±0.4; Men: 79.9 ± 0.2 mg/cm3) and fat (Women: 0.8±0.4 Men: 9.1±0.6 mg/cm3) density. BMI, fat density, and age (R2=0.86, p<0.01) best accounted for the variability in total FM. FCSA, BMI, and fat density explained the variance in leg FM (R2=0.87, p<0.01). MCSA and muscle density explained the variance in total (R2=0.65, p<0.01) and leg BFLM (R2=0.70, p<0.01). Conclusion Calf muscle and fat area and density independently predict lean and fat tissue mass. PMID:25524966

  15. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures

    PubMed Central

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Lowe, Timothy; Cussen, Patricia; Ballard, Joyce E.; Paolo, David Di; Shirvaikar, Mukul

    2015-01-01

    Bone mineral density (BMD) measurements from Dual-energy X-ray Absorptiometry (DXA) alone cannot account for all factors associated with the risk of hip fractures. For example, the inhomogeneity of bone mineral density in the hip region also contributes to bone strength. In the stochastic assessment of bone inhomogeneity, the BMD map in the hip region is considered as a random field and stochastic predictors can be calculated by fitting a theoretical model onto the experimental variogram of the BMD map. The objective of this study was to compare the ability of bone mineral density and stochastic assessment of inhomogeneous distribution of bone mineral density in predicting hip fractures for postmenopausal women. DXA scans in the hip region were obtained from postmenopausal women with hip fractures (N=47, Age: 71.3±11.4 years) and without hip fractures (N=45, Age: 66.7±11.4 years). Comparison of BMD measurements and stochastic predictors in assessing bone fragility was based on the area under the receiver operating characteristic curves (AUC) from logistic regression analyses. Although stochastic predictors offered higher accuracy (AUC=0.675) in predicting the risk of hip fractures than BMD measurements (AUC=0.625), such difference was not statistically significant (p=0.548). Nevertheless, the combination of stochastic predictors and BMD measurements had significantly (p=0.039) higher prediction accuracy (AUC=0.748) than BMD measurements alone. This study demonstrates that stochastic assessment of bone mineral distribution from DXA scans can serve as a valuable tool in enhancing the prediction of hip fractures for postmenopausal women in addition to BMD measurements. PMID:25683520

  16. Assessing Body Fat of Children by Skinfold Thickness, Bioelectrical Impedance Analysis, and Dual-Energy X-Ray Absorptiometry: A Validation Study Among Malay Children Aged 7 to 11 Years.

    PubMed

    Noradilah, Mohd Jonit; Ang, Yeow Nyin; Kamaruddin, Nor Azmi; Deurenberg, Paul; Ismail, Mohd Noor; Poh, Bee Koon

    2016-07-01

    This study aims to validate skinfold (SKF) and bioelectrical impedance analysis (BIA) against dual-energy X-ray absorptiometry (DXA) in determining body fat percentage (BF%) of Malay children aged 7 to 11 years. A total of 160 children had their BF% assessed using SKF and BIA, with DXA as the criterion method. Four SKF equations (SKFBray, SKFJohnston, SKFSlaughter, and SKFGoran) and 4 BIA equations (BIAManufacturer, BIAHoutkooper, BIARush, and BIAKushner) were used to estimate BF%. Mean age, weight, and height were 9.4 ± 1.1years, 30.5 ± 9.9 kg, and 131.3 ± 8.4 cm. All equations significantly underestimated BF% (P < .05). BIA equations had reasonable agreement with DXA and were independent of BF% with BIAManufacturer being the best equation. Although BIA underestimates BF% as compared with DXA, BIA was more suitable to measure BF% in a population that is similar to this study sample than SKF, suggesting a need to develop new SKF equations that are population specific. PMID:27073201

  17. Assessing Body Fat of Children by Skinfold Thickness, Bioelectrical Impedance Analysis, and Dual-Energy X-Ray Absorptiometry: A Validation Study Among Malay Children Aged 7 to 11 Years.

    PubMed

    Noradilah, Mohd Jonit; Ang, Yeow Nyin; Kamaruddin, Nor Azmi; Deurenberg, Paul; Ismail, Mohd Noor; Poh, Bee Koon

    2016-07-01

    This study aims to validate skinfold (SKF) and bioelectrical impedance analysis (BIA) against dual-energy X-ray absorptiometry (DXA) in determining body fat percentage (BF%) of Malay children aged 7 to 11 years. A total of 160 children had their BF% assessed using SKF and BIA, with DXA as the criterion method. Four SKF equations (SKFBray, SKFJohnston, SKFSlaughter, and SKFGoran) and 4 BIA equations (BIAManufacturer, BIAHoutkooper, BIARush, and BIAKushner) were used to estimate BF%. Mean age, weight, and height were 9.4 ± 1.1years, 30.5 ± 9.9 kg, and 131.3 ± 8.4 cm. All equations significantly underestimated BF% (P < .05). BIA equations had reasonable agreement with DXA and were independent of BF% with BIAManufacturer being the best equation. Although BIA underestimates BF% as compared with DXA, BIA was more suitable to measure BF% in a population that is similar to this study sample than SKF, suggesting a need to develop new SKF equations that are population specific.

  18. Comparing non contrast computerized tomography criteria versus dual X-ray absorptiometry as predictors of radio-opaque upper urinary tract stone fragmentation after electromagnetic shockwave lithotripsy.

    PubMed

    Hameed, Diaa A; Elgammal, Mohammed A; ElGanainy, Ehab O; Hageb, Adel; Mohammed, Khaled; El-Taher, Ahmed Mohamed; Mostafa, Mostafa Mohamed; Ahmed, Abdelfatah Ibrahim

    2013-11-01

    The objective of this study was to assess the value of dual X-ray absorptiometry (DXA) in comparison to non contrast computed tomography (NCCT) density as possible predictors of upper urinary tract stone disintegration by shock wave lithotripsy (SWL). This study included 100 consecutive patients, with solitary renal stone 0.5-2 cm or upper ureteral stone up to 1 cm. DXA to calculate stone mineral density (SMD) and stone mineral content (SMC) was done. NCCT was performed to measure Hounsfield units (HU). SWL was performed with an electromagnetic lithotripsy, plain X-ray documented disintegration after SWL. Successful treatment was defined as stone free or complete fragmentation after 1 or 2 sessions of SWL. The impact of patients age, sex, body mass index, stone laterality, location, volume, length, mean SMC and SMD, HU and Hounsfield density (HD), skin to stone distance (SSD) and number of shock waves were evaluated by univariate and multivariate analysis. Only 76 patients were available for follow-up. Success of disintegration was observed in 50 out of 76 patients (65.8 %). On multivariate analysis, SMC and number of shock wave were the significant independent factors affecting SWL outcome (p = 0.04 and p = 0.000, respectively). SMC as detected by DXA is a significant predictor of success of stone disintegration by SWL. SMC measured by DXA is more accurate than HU measured by CT. Patients with high stone mineral content (SMC greater than 0.65 g) should be directly offered another treatment option.

  19. Validation and application of dual-energy X-ray absorptiometry to measure bone mineral density in rabbit vertebrae.

    PubMed

    Norris, S A; Pettifor, J M; Gray, D A; Biscardi, A; Buffenstein, R

    2000-01-01

    The rabbit could be a superior animal model to use in bone physiology studies, for the rabbit does attain true skeletal maturity. However, there are neither normative bone mineral density (BMD) data on the rabbit nor are there any validation studies on the use of dual-energy X-ray absorptiometry (DXA) to measure spinal BMD in the rabbit. Therefore, our aim was twofold: first, to investigate whether DXA could be used precisely and accurately to determine the bone mineral content (BMC). bone area (BA). and BMD of the rabbit lumbar spine: Second. to evaluate the new generation fan-beam DXA (Hologic QDR-4500) with small animal software by comparing two DXA methodologies QDR-1000 and QDR-4500 with each other, as well as against volumetric bone density (VBMD) derived from Archimedes principle. As expected. there was a magnification error in the QDR-4500 (BMC, BA. and BMD increased by 52%. 38%. and 10%, respectively, when the vertebrae were positioned flat against the scanning table). With the magnification error kept constant (vertebrae positioned 10 cm above the scanning table to match the height in vivo). there were no differences among the mean BMC. BA. and BMD of the rabbit vertebrae (Ll-L7) in vivo and in vitro using the QDR-4500 (p > 0.05). BMC, BA, and BMD differed between QDR-1000 and QDR-4500 in vitro because of a magnification error when the vertebrae were flat on the table (p <0.0001). and, consequently. the machines did not correlate with one another (p > 0.05). However, the BMC, BA, and BMD of the two DXAs did significantly correlate with each other in vivo and in vitro when the magnification error was compensated for (r = 0.44 and 0.52. i2 = 0.45 and 0.63. and 12 = 0.41 and 0.60. respectively. p < 0.05-0.008). The BMC and BMD (in vivo and in vitro) of the rabbit vertebrae measured by QDR-4500 was significantly correlated with VMBD, ash weight, and mineral content (,2 = 0.67-0.90,j <0.01-0.0001). Therefore, the QDR-4500 can be used to yield precise and

  20. DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men

    PubMed Central

    Stults-Kolehmainen, M A; Stanforth, P R; Bartholomew, J B; Lu, T; Abolt, C J; Sinha, R

    2013-01-01

    Objective: The aim of this study was to determine whether the quantity of fat is different across the central (that is, android, trunk) and peripheral (that is, arm, leg and gynoid) regions among young African-American (AA), Asian (AS), Hispanic (HI) and non-Hispanic White (NHW) men. Subjects and Methods: A cohort of 852 men (18–30 years; mean total body fat percent (TBF%)=18.8±7.9, range=3.7–45.4) were assessed for body composition in five body regions via dual-emission X-ray absorptiometry (DXA). Results: HI men (21.8±8.3) had higher TBF% than AA (17.0±10.0), NHW (17.9±7.2) and AS (18.9±8.0) groups (P-values <0.0001). AS had a lower BMI (23.9±3.4) than all other groups, and NHW (24.7±3.2) had a lower BMI than HI (25.7±3.9) and AA (26.5±4.7; P-values<0.0001). A linear mixed model (LMM) revealed a significant ethnicity by region fat% interaction (P<0.0001). HI men had a greater fat% than NHW for every region (adjusted means (%); android: 29.6 vs 23.3; arm: 13.3 vs 10.6; gynoid: 27.2 vs 23.8; leg: 21.2 vs 18.3; trunk: 25.5 vs 20.6) and a greater fat% than AA for every region except the arm. In addition, in the android and trunk regions, HI had a greater fat% than AS, and AS had a higher fat% than AA. Finally, the android fat% for AS was higher than that of NHW. When comparing the region fat% within ethnicities, the android region was greater than the gynoid region for AS and HI, but did not differ for AA and NHW, and the arm region had the least fat% in all ethnicities. Conclusions: Fat deposition and body fat patterning varies by ethnicity. PMID:23507968

  1. A novel approach to fracture-risk-assessment in osteoporosis by ROI-oriented application of the Minkowski-functionals to dual x-ray absorptiometry scans of the hip

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Panteleon, Alexandra; Vogel, Tobias; Burklein, Dominik; Reiser, Maximilian

    2008-03-01

    Fractures of the proximal femur represent the worst complication in osteoporosis with a mortality rate of up to 50% during the first post-traumatic year. Bone mineral density (BMD) as obtained from dual energy x-ray absorptiometry (DXA) is a good predictor of fracture risk. However, there is a considerable overlap in the BMD-results between individuals who have fractured and those who have not. As DXA uses highly standardized radiographic projection images to obtain the densitometric information, it can be postulated that these images contain much more information than just mineral density. Lately, geometric dimensions, e.g. hip axis length (HAL) or femoral neck axis length (FNAL), are considered in conjunction with BMD, which may allow to enhance the predictive potential of bone mass measurements. In recent studies we sucessfully introduced a novel methodology for topological analysis of multi-dimensional graylevel datasets, that, for instance, allows to predict the ultimate mechanical strength of femoral bone specimens. The new topolocial parameters are based on the so called Minkowski Functionals (MF), which represent a set of topographical descriptors that can be used universally. Since the DXA-images are multi-graylevel datasets in 2D obtained in a standardized way, they are ideally suited to be processed by the new method. In this study we introduce a novel algorithm to evaluate DXA-scans of the proximal femur using quantitative image analysis procedures based on the MF in 2D. The analysis is conducted in four defined regions of interest in analogy to the standard densitometric evaluation. The objective is to provide a tool to identifiy individuals with critically reduced mechanical competence of the hip. The result of the new method is compared with the evaluation bone mineral density obtained by DXA, which - at present - is the clinical standard of reference.

  2. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  3. Associations Between Sedentary Time, Physical Activity, and Dual-Energy X-ray Absorptiometry Measures of Total Body, Android, and Gynoid Fat Mass in Children.

    PubMed

    McCormack, Lacey; Meendering, Jessica; Specker, Bonny; Binkley, Teresa

    2016-01-01

    Negative health outcomes are associated with excess body fat, low levels of physical activity (PA), and high sedentary time (ST). Relationships between PA, ST, and body fat distribution, including android and gynoid fat, assessed using dual-energy X-ray absorptiometry (DXA) have not been measured in children. The purpose of this study was to test associations between levels of activity and body composition in children and to evaluate if levels of activity predict body composition by DXA and by body mass index percentile in a similar manner. PA, ST, and body composition from 87 children (8.8-11.8 yr, grades 3-5, 44 boys) were used to test the association among study variables. Accelerometers measured PA and ST. Body composition measured by DXA included bone mineral content (BMC) and fat and lean mass of the total body (TB, less head), android, and gynoid regions. ST (range: 409-685 min/wk) was positively associated with TB percent fat (0.03, 95% confidence interval [CI]: 0.00-0.05) and android fat mass (1.5 g, 95% CI: 0.4-3.0), and inversely associated with the lean mass of the TB (-10.7 g, 95% CI: -20.8 to -0.63) and gynoid regions (-2.2 g, 95% CI: -4.3 to -0.2), and with BMC (-0.43 g, 95% CI: 0.77-0.09). Moderate-to-vigorous PA was associated with lower TB (-53 g, 95% CI: -87 to -18), android (-5 g, 95% CI: -8 to -2]), and gynoid fat (-6 g, 95% CI: -11 to -0.5). Vigorous activity results were similar. Light PA was associated with increased TB (17.1 g, 95% CI: 3.0-31.3) and gynoid lean mass (3.9 g, 95% CI: 1.0-6.8) and BMC (0.59 g, 95% CI: 0.10-1.07). In boys, there were significant associations between activity and DXA percent body fat measures that were not found with the body mass index percentile. Objective measures of PA were inversely associated with TB, android, and gynoid fat, whereas ST was directly associated with TB percent fat and, in particular, android fat. Activity levels predict body composition measures by DXA and, in

  4. Usefulness of calcaneal quantitative ultrasound stiffness for the evaluation of bone health in HIV-1-infected subjects: comparison with dual X-ray absorptiometry

    PubMed Central

    Fantauzzi, Alessandra; Floridia, Marco; Ceci, Fabrizio; Cacciatore, Francesco; Vullo, Vincenzo; Mezzaroma, Ivano

    2016-01-01

    Objectives With the development of effective treatments and the resulting increase in life expectancy, bone mineral density (BMD) alteration has emerged as an important comorbidity in human immunodeficiency virus type-1 (HIV-1)-infected individuals. The potential contributors to the pathogenesis of osteopenia/osteoporosis include a higher prevalence of risk factors, combined antiretroviral therapy (cART)-exposure, HIV-1 itself and chronic immune activation/inflammation. Dual-energy X-ray absorptiometry (DXA) is the “gold standard” technique for assessing bone status in HIV-1 population. Methods We conducted a cross-sectional study to investigate bone mineral status in a group of 158 HIV-1-infected subjects. The primary endpoint was the feasibility of calcaneal quantitative ultrasound (QUS) as a screening tool for BMD. All subjects were receiving stable cART and were virologically suppressed (HIV-RNA <37 copies/mL) from at least 12 months. Calcaneal QUS parameters were analyzed to obtain information on bone mass and microarchitecture. The results were compared with those obtained by DXA. Results No correlations were found between DXA/QUS parameters and demographic or HIV-1-specific characteristics, also including cART strategies. In the univariate analyses BMD, QUS indexes, and Fracture Risk Assessment Tool scores conversely showed significant associations with one or more demographic or HIV-1-related variables. Moreover, a significant relationship between calcaneal quantitative ultrasound index/stiffness and femoral/lumbar BMD values from DXA was described. The multivariate analysis showed an independent association between calcaneal quantitative ultrasound index/stiffness and body mass index, higher CD4+ T-cell numbers and low 25-OH D2/D3 vitamin D levels <10 ng/mL (P-values: 0.004, 0.016, and 0.015, respectively). Conclusion As an alternative and/or integrative examination to DXA, calcaneal QUS could be proposed as a useful screening in HIV-1-infected

  5. Dual-photon Gd-153 absorptiometry of bone

    SciTech Connect

    Wahner, H.W.; Dunn, W.L.; Mazess, R.B.; Towsley, M.; Lindsay, R.; Markhard, L.; Dempster, D.

    1985-07-01

    Dual-photon absorptiometry with gadolinium 153 was used to measure the mineral content of lumbar vertebrae in cadavers, excised vertebrae with marrow, and dry, marrow-free vertebrae. The error introduced by the surrounding soft tissue of cadavers was 3%, and the error in determining mineral mass or density in excised vertebrae was about 5%. The correlation coefficient between the results of Gd-153 and corrected iodine 125 (single-photon) absorptiometry on 24 femoral necks was 0.99, and the predictive error was 3.7%. Dual-photon absorptiometry accurately indicates bone mass and bone density and is only slightly affected by either surrounding tissue or fat changes in bone marrow.

  6. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy.

    PubMed

    Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore

    2010-03-01

    Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than -5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than -1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04-1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility.

  7. Correlation between the values of bone measurements using DXA, QCT and USD methods and the bone strength in calcanei in vitro.

    PubMed

    Imamoto, K; Hamanaka, Y; Yamamoto, I; Niiho, C

    1998-10-01

    In this study we used the calcanei from 32 female and 29 male cadavers, ages 58 to 100. The bone mineral density (BMD) and average bone density (ABD) were measured using dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) respectively, while speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness index (SI) were measured using ultrasound densitometry (USD). Thereafter, the bone strength was measured using a compressor to cause bone fracture, and evaluated in comparison with the values of the three measurement methods. The scatter diagrams of the values of the three different methods versus age displayed a negative linear regression in both sexes. Values for BMD and ABD were generally about 20% higher in males than in females, while SOS, BUA and SI were a few percents higher in males than in females. A significantly high correlation existed between BMD and ABD (r = 0.95), and a moderate correlation between BMD and either SOS, BUA or SI (r = 0.65; r = 0.39; r = 0.57, respectively). Thus, among the values measured using USD, SOS most closely corresponded to BMD of the calcanei. The bone strength of the calcanei indicated a moderate correlation with BMD, ABD and SOS (r = 0.38, P < 0.01; r = 0.43, P < 0.001; r = 0.45, P < 0.001, respectively). However, 42 calcanei fractured under pressures of less than 40 kgf, although the other 19 calcanei endured pressure of 40 kgf or more. Two calcanei with high BMD over 0.7 g/cm2 by DXA were very fragile, whereas a few with low BMD less than 0.4 g/cm2 were not very fragile. Similarly, high SOS, BUA and SI values by USD did not always correspond to high bone strength. Thus, some discrepancies among the bone strength and measurement values remained to be solved in the future.

  8. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits.

    PubMed

    Beck, T J; Ruff, C B; Mourtada, F A; Shaffer, R A; Maxwell-Williams, K; Kao, G L; Sartoris, D J; Brodine, S

    1996-05-01

    A total of 626 U.S. male Marine Corps recruits underwent anthropometric measurements and dual-energy X-ray absorptiometry (DXA) scans of the femoral midshaft and the distal third of the tibia prior to a 12 week physical training program. Conventionally obtained frontal plane DXA scan data were used to measure the bone mineral density (BMD) as well as to derive the cross-sectional area, moment of inertia, section modulus, and bone width in the femur, tibia, and fibula. During training, 23 recruits (3.7%) presented with a total of 27 radiologically confirmed stress fractures in various locations in the lower extremity. After excluding 16 cases of shin splints, periostitis, and other stress reactions that did not meet fracture definition criteria, we compared anthropometric and bone structural geometry measurements between fracture cases and the remaining 587 normals. There was no significant difference in age (p = 0.8), femur length (p = 0.2), pelvic width (p = 0.08), and knee width at the femoral condyles (p = 0.06), but fracture cases were shorter (p = 0.01), lighter (p = 0.0006), and smaller in most anthropometric girth dimensions (p < 0.04). Fracture case bone cross-sectional areas (p < 0.001), moments of inertia (p < 0.001), section moduli (p < 0.001), and widths (p < 0.001) as well as BMD (p < 0.03) were significantly smaller in the tibia and femur. After correcting for body weight differences, the tibia cross-sectional area (p = 0.03), section modulus (p = 0.05), and width (p = 0.03) remained significantly smaller in fracture subjects. We conclude that both small body weight and small diaphyseal dimensions relative to body weight are factors predisposing to the development of stress fractures in this population. These results suggest that bone structural geometry measurements derived from DXA data may provide a simple noninvasive methodology for assessing the risk of stress fracture.

  9. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry.

    PubMed

    Ido, Ayumi; Nakayama, Yuki; Ishii, Kojiro; Iemitsu, Motoyuki; Sato, Koji; Fujimoto, Masahiro; Kurihara, Toshiyuki; Hamaoka, Takafumi; Satoh-Asahara, Noriko; Sanada, Kiyoshi

    2015-01-01

    Sarcopenia has never been diagnosed based on site-specific muscle loss, and little is known about the relationship between site-specific muscle loss and metabolic syndrome (MetS) risk factors. To this end, this cross-sectional study aimed to investigate the relationship between site-specific muscle size and MetS risk factors. Subjects were 38 obese men and women aged 40-82 years. Total body fat and lean body mass were assessed by whole-body dual-energy X-ray absorptiometry (DXA) scan. Muscle thickness (MTH) was measured using B-mode ultrasound scanning in six body regions. Subjects were classified into general obesity (GO) and sarcopenic obesity (SO) groups using the threshold values of one standard deviation below the sex-specific means of either MTH or skeletal muscle index (SMI) measured by DXA. MetS risk score was acquired by standardizing and summing the following continuously distributed variables: visceral fat area, mean blood pressure, HbA1c, and serum triglyceride / high density lipoprotein cholesterol, to obtain the Z-score. Multiple regression analysis revealed that the MetS risk score was independently associated with abdominal MTH in all subjects, but not with MTH in other muscle regions, including the thigh. Although HbA1c and the number of MetS risk factors in the SO group were significantly higher than those in the GO group, there were no significant differences between GO and SO groups as defined by SMI. Ultrasound-derived abdominal MTH would allow a better assessment of sarcopenia in obese patients and can be used as an alternative to the conventionally-used SMI measured by DXA. PMID:26700167

  10. Dual-Energy X-Ray Absorptiometry, Skinfold Thickness, and Waist Circumference for Assessing Body Composition in Ambulant and Non-Ambulant Wheelchair Games Players.

    PubMed

    Willems, Annika; Paulson, Thomas A W; Keil, Mhairi; Brooke-Wavell, Katherine; Goosey-Tolfrey, Victoria L

    2015-01-01

    Field-based assessments provide a cost-effective and accessible alternative to dual-energy X-ray absorptiometry (DXA) for practitioners determining body composition in athletic populations. It remains unclear how the range of physical impairments classifiable in wheelchair sports may affect the utility of field-based body composition techniques. The present study assessed body composition using DXA in 14 wheelchair games players who were either wheelchair dependent (non-walkers; n = 7) or relied on a wheelchair for sports participation only (walkers; n = 7). Anthropometric measurements were used to predict body fat percentage with existing regression equations established for able-bodied persons by Sloan and Weir, Durnin and Womersley, Lean et al, Gallagher et al, and Pongchaiyakul et al. In addition, linear regression analysis was performed to calculate the association between body fat percentage and BMI, waist circumference, sum of 6 skinfold thickness and sum of 8 skinfold thickness. Results showed that non-walkers had significantly lower total lean tissue mass (46.2 ± 6.6 kg vs. 59.4 ± 8.2 kg, P = 0.006) and total body mass (65.8 ± 4.2 kg vs. 79.4 ± 14.9 kg; P = 0.05) than walkers. Body fat percentage calculated from most existing regression equations was significantly lower than that from DXA, by 2 to 9% in walkers and 8 to 14% in non-walkers. Of the anthropometric measurements, the sum of 8 skinfold thickness had the lowest standard error of estimation in predicting body fat content. In conclusion, existing anthropometric equations developed in able-bodied populations substantially underestimated body fat content in wheelchair athletes, particularly non-walkers. Impairment specific equations may be needed in wheelchair athletes.

  11. Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA Scans in the study of osteoporotic fractures.

    PubMed

    Yang, Lang; Palermo, Lisa; Black, Dennis M; Eastell, Richard

    2014-12-01

    A bone fractures only when loaded beyond its strength. The purpose of this study was to determine the association of femoral strength, as estimated by finite element (FE) analysis of dual-energy X-ray absorptiometry (DXA) scans, with incident hip fracture in comparison to hip bone mineral density (BMD), Fracture Risk Assessment Tool (FRAX), and hip structure analysis (HSA) variables. This prospective case-cohort study included a random sample of 1941 women and 668 incident hip fracture cases (295 in the random sample) during a mean ± SD follow-up of 12.8 ± 5.7 years from the Study of Osteoporotic Fractures (n = 7860 community-dwelling women ≥67 years of age). We analyzed the baseline DXA scans (Hologic 1000) of the hip using a validated plane-stress, linear-elastic finite element (FE) model of the proximal femur and estimated the femoral strength during a simulated sideways fall. Cox regression accounting for the case-cohort design assessed the association of estimated femoral strength with hip fracture. The age-body mass index (BMI)-adjusted hazard ratio (HR) per SD decrease for estimated strength (2.21; 95% CI, 1.95-2.50) was greater than that for total hip (TH) BMD (1.86; 95% CI, 1.67-2.08; p < 0.05), FN BMD (2.04; 95% CI, 1.79-2.32; p > 0.05), FRAX scores (range, 1.32-1.68; p < 0.0005), and many HSA variables (range, 1.13-2.43; p < 0.005), and the association was still significant (p < 0.05) after further adjustment for hip BMD or FRAX scores. The association of estimated strength with incident hip fracture was strong (Harrell's C index 0.770), significantly better than TH BMD (0.759; p < 0.05) and FRAX scores (0.711-0.743; p < 0.0001), but not FN BMD (0.762; p > 0.05). Similar findings were obtained for intracapsular and extracapsular fractures. In conclusion, the estimated femoral strength from FE analysis of DXA scans is an independent predictor and performs at least as well as FN BMD in predicting incident

  12. Body composition analysis of inter-county Gaelic athletic association players measured by dual energy X-ray absorptiometry.

    PubMed

    Davies, Robert W; Toomey, Clodagh; McCormack, William; Hughes, Katie; Cremona, Alexandra; Jakeman, Philip

    2016-01-01

    Gaelic Football and Hurling are two sporting codes within the Gaelic Athletic Association. The purpose of this study was to report the body composition phenotype of inter-county Gaelic athletic association players, comparing groups by code and field position. 190 senior, male, outfield inter-county players (144 hurlers and 46 Gaelic footballers) were recruited. Stature and body mass was measured, estimates of three components of body composition, i.e., lean mass, fat mass and bone mineral content was obtained by dual energy X-ray absorptiometry (DXA), and normative data for Gaelic athletic association athletes by code and position was compared. Other than in the midfield, there was limited difference in body composition between codes or playing position. Stature-corrected indices nullified any existing group differences between midfielders for both codes. Further comparisons with a non-athletic control group (n = 431) showed no difference for body mass index (BMI); however, the athletic group has a lower fat mass index, with a greater lean mass in accounting for the matched BMI between groups. In addition to providing previously unknown normative data for the Gaelic athletic association athlete, a proportional and independent tissue evaluation of body composition is given.

  13. Predicting visceral adipose tissue by MRI using DXA and anthropometry in adolescents and young adults

    PubMed Central

    Laddu, Deepika R.; Lee, Vinson R.; Blew, Robert M.; Sato, Tetsuya; Lohman, Timothy G.; Going, Scott B.

    2015-01-01

    Objective Accumulation of intra-abdominal (visceral) adipose tissue, independent of total adiposity, is associated with development of metabolic abnormalities such as insulin resistance and type-2 diabetes in children and adults. The objective of this study was to develop prediction equations for estimating visceral adiposity (VAT) measured by magnetic resonance imaging (MRI) using anthropometric variables and measures of abdominal fat mass from DXA in adolescents and young adults. Methods Cross-sectional data was collected from a multiethnic population of seventy males and females, aged 12–25 years, with BMI ranging from 14.5–38.1 kg/m2. Android (AFM; android region as defined by manufacturers instruction) and lumbar L1-L4 regional fat masses were assessed using DXA (GE Lunar Prodigy; GE Lunar Corp, Madison, WI, USA). Criterion measures of intra-abdominal visceral fat were obtained using single-slice MRI (General Electric Signa Model 5x 1.5T) and VAT area was analyzed at the level OF L4–L5. Image analysis was carried out using ZedView 3.1. Results DXA measures of AFM (r=0.76) and L1-L4 (r=0.71) were significantly (P<0.0001) correlated with MRI-measured VAT. DXA AFM, together with gender and weight, explained 62% of the variance in VAT (SEE=10.06 cm2). DXA L1-L4 fat mass with gender explained 54% of the variance in VAT (SEE=11.08 cm2). Addition of the significant interaction, gender × DXA fat mass, improved prediction of VAT from AFM (Radj2=0.61, SEE=10.10cm2) and L1-L4 (Radj2=0.59, SEE=10.39cm2). Conclusion These results demonstrate that VAT is accurately estimated from regional fat masses measured by DXA in adolescents and young adults. PMID:26097436

  14. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach. PMID:25743562

  15. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  16. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  17. REVIEW: Photon absorptiometry, bone densitometry and the challenge of osteoporosis

    NASA Astrophysics Data System (ADS)

    Webber, Colin E.

    2006-07-01

    During the lifetime of Physics in Medicine and Biology, osteoporosis has been recognized as the cause of a major health burden for societies, particularly within developed countries. The health detriment is associated with the consequences of bone fractures and the subsequent increases in morbidity and mortality. Much of the credit for the current availability of means for identifying groups of subjects at risk of fracture and the provision of means for the effective treatment of excessive bone loss can be attributed to the technique of dual photon absorptiometry. In this review, the history of the development of techniques based on the interactions of x- and γ-rays with bone is considered and the ultimate dominance of x-ray based absorptiometry is described. The advantages and disadvantages of current absorptiometric techniques are presented and the likely future path for bone measurement is outlined.

  18. Body Segment Inertial Parameters of elite swimmers Using DXA and indirect Methods

    PubMed Central

    Rossi, Marcel; LYTTLE, Andrew; EL-SALLAM, Amar; BENJANUVATRA, Nat; BLANKSBY, Brian

    2013-01-01

    As accurate body segment inertial parameters (BSIPs) are difficult to obtain in motion analysis, this study computed individual BSIPs from DXA scan images. Therefore, by co-registering areal density data with DXA grayscale image, the relationship between pixel color gradient and the mass within the pixel area could be established. Thus, one can calculate BSIPs, including segment mass, center of mass (COM) and moment of inertia about the sagittal axis (Ixx). This technique calculated whole body mass very accurately (%RMSE of < 1.5%) relatively to results of the generic DXA scanner software. The BSIPs of elite male and female swimmers, and young adult Caucasian males (n = 28), were computed using this DXA method and 5 other common indirect estimation methods. A 3D surface scan of each subject enabled mapping of key anthropometric variables required for the 5 indirect estimation methods. Mass, COM and Ixx were calculated for seven body segments (head, trunk, head + trunk, upper arm, forearm, thigh and shank). Between-group comparisons of BSIPs revealed that elite female swimmers had the lowest segment masses of the three groups (p < 0.05). Elite male swimmers recorded the greatest inertial parameters of the trunk and upper arms (p < 0.05). Using the DXA method as the criterion, the five indirect methods produced errors greater than 10% for at least one BSIP in all three populations. Therefore, caution is required when computing BSIPs for elite swimmers via these indirect methods, DXA accurately estimated BSIPs in the frontal plane. Key Points Elite swimmers have significantly different body segment inertial parameters than young adult Caucasian males. The errors computed from indirect BSIP estimation methods are large regardless whether applied to elite swimmers or young adult Caucasian males. No indirect estimation method consistently performed best. PMID:24421737

  19. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  20. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  1. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  2. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

    PubMed Central

    Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka

    2016-01-01

    Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617

  3. Comparative study of quantitative ultrasonography and dual-energy X-ray absorptiometry for evaluating renal osteodystrophy in children with chronic kidney disease.

    PubMed

    Christoforidis, Athanasios; Printza, Nikoleta; Gkogka, Chrysa; Siomou, Ekaterini; Challa, Anna; Kazantzidou, Eirini; Kollios, Konstantinos; Papachristou, Fotis

    2011-05-01

    Our aim was to assess bone parameters in children with chronic kidney disease (CKD) with both dual-energy X-ray absorptiometry (DXA) and quantitative ultrasonography (QUS) and additionally with biochemical markers of bone turnover. Twenty children (12 boys and 8 girls) with CKD and a mean decimal age of 9.47 ± 4.44 years were included in the study where anthropometric parameters (height and weight), pubertal status, bone mineral density (BMD) at lumbar spine, speed of sound (SOS) measured by QUS at radius and at tibia, and biochemical markers of bone metabolism were measured. Six patients (30%) had tibial SOS Z score <-1, and 52.7% had radial SOS Z score <-1, whereas only 16.67% had BMD Z score <-1. Patients had significantly increased levels of serum intact parathormone (p < 0.001), serum bone alkaline phosphatase (BAP) (p < 0.001) and serum N-terminal-mid fragment (aminoacids 1-43) of osteocalcin (p < 0.001) compared to controls, whereas serum osteoprotegerin was significantly decreased in patients compared to controls (p = 0.001). SOS was significantly correlated to BAP (r = -0.586, p = 0.013 and r = -0.709, p = 0.001, respectively, for radius and tibia). In conclusion no association between DXA and QUS measurements was documented in our study, whereas QUS was better correlated to biochemical indices of ROD.

  4. Cross-mode bioelectrical impedance analysis in a standing position for estimating fat-free mass validated against dual-energy x-ray absorptiometry.

    PubMed

    Huang, Ai-Chun; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Lu, Hsueh-Kuan; Lin, Hung-Chi; Chen, Kuen-Tsann; Hsiao, An-Chi; Hsieh, Kuen-Chang

    2015-11-01

    Bioelectrical impedance analysis (BIA) is commonly used to assess body composition. Cross-mode (left hand to right foot, Z(CR)) BIA presumably uses the longest current path in the human body, which may generate better results when estimating fat-free mass (FFM). We compared the cross-mode with the hand-to-foot mode (right hand to right foot, Z(HF)) using dual-energy x-ray absorptiometry (DXA) as the reference. We hypothesized that when comparing anthropometric parameters using stepwise regression analysis, the impedance value from the cross-mode analysis would have better prediction accuracy than that from the hand-to-foot mode analysis. We studied 264 men and 232 women (mean ages, 32.19 ± 14.95 and 34.51 ± 14.96 years, respectively; mean body mass indexes, 24.54 ± 3.74 and 23.44 ± 4.61 kg/m2, respectively). The DXA-measured FFMs in men and women were 58.85 ± 8.15 and 40.48 ± 5.64 kg, respectively. Multiple stepwise linear regression analyses were performed to construct sex-specific FFM equations. The correlations of FFM measured by DXA vs. FFM from hand-to-foot mode and estimated FFM by cross-mode were 0.85 and 0.86 in women, with standard errors of estimate of 2.96 and 2.92 kg, respectively. In men, they were 0.91 and 0.91, with standard errors of the estimates of 3.34 and 3.48 kg, respectively. Bland-Altman plots showed limits of agreement of -6.78 to 6.78 kg for FFM from hand-to-foot mode and -7.06 to 7.06 kg for estimated FFM by cross-mode for men, and -5.91 to 5.91 and -5.84 to 5.84 kg, respectively, for women. Paired t tests showed no significant differences between the 2 modes (P > .05). Hence, cross-mode BIA appears to represent a reasonable and practical application for assessing FFM in Chinese populations.

  5. [OsteoLaus: prediction of osteoporotic fractures by clinical risk factors and DXA, IVA and TBS].

    PubMed

    Lamy, O; Metzger, M; Krieg, M-A; Aubry-Rozier, B; Stoll, D; Hans, D

    2011-11-01

    OsteoLaus is a cohort of 1400 women 50 to 80 years living in Lausanne, Switzerland. Clinical risk factors for osteoporosis, bone ultrasound of the heel, lumbar spine and hip bone mineral density (BMD), assessment of vertebral fracture by DXA, and microarchitecture evaluation by TBS (Trabecular Bone Score) will be recorded. TBS is a new parameter obtained after a re-analysis of a DXA exam. TBS is correlated with parameters of microarchitecture. His reproducibility is good. TBS give an added diagnostic value to BMD, and predict osteoporotic fracture (partially) independently to BMD. The position of TBS in clinical routine in complement to BMD and clinical risk factors will be evaluated in the OsteoLaus cohort.

  6. Comparison of Speed of Sound Measures Assessed by Multisite Quantitative Ultrasound to Bone Mineral Density Measures Assessed by Dual-Energy X-Ray Absorptiometry in a Large Canadian Cohort: the Canadian Multicentre Osteoporosis Study (CaMos).

    PubMed

    Olszynski, Wojciech P; Adachi, Jonathon D; Hanley, David A; Davison, Kenneth S; Brown, Jacques P

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is an important tool for the estimate of fracture risk through the measurement of bone mineral density (BMD). Similarly, multisite quantitate ultrasound can prospectively predict future fracture through the measurement of speed of sound (SOS). This investigation compared BMD (at the femoral neck, total hip, and lumbar spine) and SOS measures (at the distal radius, tibia, and phalanx sites) in a large sample of randomly-selected and community-based individuals from the Canadian Multicentre Osteoporosis Study. Furthermore, mass, height, and age were also compared with both measures. There were 4123 patients included with an age range of 30-96.8 yr. Pearson product moment correlations between BMD and SOS measures were low (0.21-0.29; all p<0.001), irrespective of site. Mass was moderately correlated with BMD measures (0.40-0.58; p<0.001), but lowly correlated with SOS measures (0.03-0.13; p<0.05). BMD and SOS were negatively correlated to age (-0.17 to -0.44; p<0.001). When regression analyses were performed to predict SOS measures at the 3 sites, the models predicted 20%-23% of the variance, leaving 77%-80% unaccounted for. The SOS measures in this study were found to be largely independent from BMD measures. In areas with no or limited access to DXA, the multisite quantitative ultrasound may act as a valuable tool to assess fracture risk. In locales with liberal access to DXA, the addition of SOS to BMD and other clinical risk factors may improve the identification of those patients at high risk for future fracture.

  7. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population

    PubMed Central

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  8. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population.

    PubMed

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  9. Bone mineral measurements: a comparison of delayed gamma neutron activation, dual-energy X-ray absorptiometry and direct chemical analysis.

    PubMed

    Economos, C D; Nelson, M E; Fiatarone Singh, M A; Kehayias, J J; Dallal, G E; Heymsfield, S B; Wang, J; Yasumura, S; Ma, R; Pierson, R N

    1999-01-01

    A system in vitro consisting of a femur from a cadaver and soft-tissue equivalent material was used to test the agreement between several techniques for measuring bone mineral. Calcium values measured by delayed gamma neutron activation (DGNA) and bone mineral content (BMC) by Lunar, Hologic and Norland dual-energy X-ray absorptiometers (DXA) were compared with calcium and ash content determined by direct chemical analysis. To assess the effect of soft-tissue thickness on measurements of bone mineral, we had three phantom configurations ranging from 15.0 to 26.0 cm in thickness, achieved by using soft-tissue equivalent overlays. Chemical analysis of the femur gave calcium and ash content values of 61.83 g +/- 0.51 g and 154.120 +/- 0.004 g, respectively. Calcium measured by DGNA did not differ from the ashed amount of calcium at any of the phantom configurations. The BMC measured by DXA was significantly higher, by 3-5%, than the amount determined by chemical analysis for the Lunar densitometer and significantly lower, by 3-6%, for the Norland densitometer (p<0.001-0.024), but only 1% lower (not significant) for the Hologic densitometer. DXA instruments showed a decreasing trend in BMC as the thickness increased from 20.5 to 26.0 cm (p<0.05). However, within the entire thickness range (15.0-26.0 cm), the overall influence of thickness on BMC by DXA was very small. These findings offer insight into the differences in these currently available methods for bone mineral measurement and challenge the comparability of different methods. PMID:10525711

  10. Effect of weight loss on bone mineral density determined by ultrasound of phalanges in obese women after Roux-en-y gastric bypass: conflicting results with dual-energy X-ray absorptiometry.

    PubMed

    Lima, Tatiana Pereira; Nicoletti, Carolina Ferreira; Marchini, Julio Sergio; Junior, Wilson Salgado; Nonino, Carla Barbosa

    2014-01-01

    The rapid weight loss that occurs in obese patients submitted to Roux-en-y gastric bypass (RYGB) as well as the changes in dietary pattern and the intestinal malabsorption result in changes in bone mineral density (BMD). The objective of the present study was to assess the changes in BMD after the weight loss induced by RYGB using ultrasound of the phalanges and compare the results with those obtained by dual-energy X-ray absorptiometry (DXA). We conducted a 1-yr prospective longitudinal study on women with grade III obesity submitted to RYGB. Anthropometric (weight, height, body mass index, and abdominal circumference) and body composition measurements by electrical bioimpedance, assessment of food consumption by 24-h recall, biochemical evaluation, and assessment of BMD by ultrasonography of the phalanges and DXA (BMD values are from the 33% radius site) were performed during the preoperative period and 3, 6, and 12 mo after surgery. The mixed-effects linear regression model was used to analyze the effect of postoperative time on the variable of interest, and the kappa coefficient (p < 0.05) was used to compare the concordance of the methods used for BMD evaluation. Twenty-nine patients were included in the study. During the 1-yr follow-up, a reduction of 39 ± 8 kg (71 ± 15% of excess weight) and 29 ± 7 kg of fat mass was observed. Calcium and zinc concentrations were reduced after 12 mo. No difference in caffeine, calcium, or sodium consumption was observed between the preoperative and postoperative periods. Analysis of BMD by ultrasonography of the phalanges 1 yr after surgery showed increased values of amplitude-dependent speed of sound (2064.6 ± 59.4 vs 2154.7 ± 63 m/s; p < 0.001) and ultrasound bone profile index (0.73 ± 0.13 vs 0.76 ± 0.14; p < 0.001). Analysis of BMD by DXA showed a reduction of BMD values (0.6 ± 0.04 vs 0.57 ± 0.05 g/cm³; p < 0.001) in the sixth month and maintenance of the values from the sixth to the 12th month. At the end of

  11. Reproducibility of dual-photon absorptiometry using a clinical phantom

    SciTech Connect

    DaCosta, M.; DeLaney, M.; Goldsmith, S.J.

    1985-05-01

    The use of dual-photon absorptiometry (DPA) bone mineral density (BMD) to monitor bone for diagnosis and monitoring therapy of osteoporosis has been established. The objective of this study is to determine the reproducibility of DPA measurements. A phantom was constructed using a section of human boney pelvis and lumbo-sacral spine. Provisions were made to mimic changes in patient girth. To evaluate the DPA reproducibility within a single day, 12 consecutive studies were performed on the phantom using standard acquisition and processing procedures. The mean BMD +-1 SD in gms/cm/sup 2/ (BMD-bar)of lumbar vertebrae 2-4 was 0.771 +- 0.007 with a 0.97% coefficient of variation (1SD) (CV). This evaluation was repeated 7 times over the next 4 months with the performance of 3 to 6 studies each time, the maximum CV found was 1.93. In order to evaluate the DPA reproducibility with time, phantom studies were performed over a 7 month period which included a 153-Gd source change. The BMD-bar was 0.770 +- 0.017 with a 2.15CV. DPA reproducibility with patient girth changes was evaluated by performing the phantom studies at water depths of 12.5, 17.0 and 20.0cm. Five studies of each were performed using standard acquisition and processing procedures. The BMD-bar was 0.779 +- 0.012 with a 1.151CV. based on these results, BMD measurements by DPA are reproducible within 2%. This reliability is maintained for studies performed over extended period of time and are independent of changes in patient girth.

  12. Disproportionate, age-related bone loss in long bone ends: a structural analysis based on dual-energy X-ray absorptiometry.

    PubMed

    Sievänen, H; Uusi-Rasi, K; Heinonen, A; Oja, P; Vuori, I

    1999-01-01

    The width of long bone diaphyses apparently increase with age, a phenomenon that is suggested to have some positive impact on bone strength. On the other hand, these changes in size that are site-specific may cause a deterioration in the local mechanical integrity of the whole bone. Physical activity and calcium intake are known to be able to modify bone mass and size. It is, however, not known whether these lifestyle habits can modify the postulated disproportionate changes in bone size. To address this question, bone mineral content (BMC)-derived estimates of cross-sectional areas (CSA) of femur and radius in 158 premenopausal (mean age 43, standard deviation 2 years) and 134 postmenopausal (63 (2) years), clinically healthy women with contrasting long-term histories in physical activity and calcium intake were determined from dual-energy X-ray absorptiometry (DXA) data. The DXA-obtained BMC correlated strongly with the actual CSA (r = 0.94) determined with peripheral quantitative computed tomography. The ratios between functionally interrelated CSA data (i.e., (radial shaft CSA/distal radius CSA), (trochanter CSA/femoral neck CSA), (femoral shaft CSA/trochanter CSA) and (femoral shaft CSA/femoral neck CSA)) were considered primary outcome variables. Neither physical activity nor calcium intake separately or interactively were associated with any CSA ratio. Age showed no interaction with physical activity or calcium intake but was independently associated with all CSA ratios, except the ratio of femoral shaft CSA to trochanteric CSA. This study indicated clearly that a preferential reduction in the cross-sectional area occupied by bone mineral occurs disproportionately at the long bone ends as compared with diaphyseal sites, and this apparently inherent, age-associated relative loss seems not to be prevented by physical activity or calcium intake. In particular, given the utmost clinical relevance of the proximal femur region, an observed loss in femoral neck CSA

  13. Association between Abdominal Fat (DXA) and Its Subcomponents (CT Scan) before and after Weight Loss in Obese Postmenopausal Women: A MONET Study.

    PubMed

    Doyon, Caroline Y; Brochu, Martin; Messier, Virginie; Lavoie, Marie-Ève; Faraj, May; Doucet, Eric; Rabasa-Lhoret, Rémi; Dionne, Isabelle J

    2011-01-01

    Introduction. Subcutaneous fat (ScF) and visceral fat (VF) measurements using CT scan are expensive and may imply significant radiation doses. Cross-sectional studies using CT scan showed that ScF and VF are significantly correlated with abdominal fat measured by DXA (AF-DXA). The association has not been studied after a weight loss. Objective. To determine (1) the associations between AF-DXA and ScF and VF before and after weight loss and (2) the associations between their changes. Methods. 137 overweight/obese postmenopausal women were divided in two groups (1-caloric restriction or 2-caloric restriction + resistance training). AF was assessed using DXA and CT scan. Results. Correlations between AF-DXA and ScF (before: r = 0.87, after; r = 0.87; P < .01) and, AF-DXA and VF (before: r = 0.61, after; r = 0.69; P < .01) are not different before and after the weight loss. Correlations between delta AF-DXA and delta ScF (r = 0.72; P < .01) or delta VF (r = 0.51; P < .01) were found. Conclusion. The use of AF-DXA as a surrogate for VF after weight loss is questionable, but may be interesting for ScF.

  14. Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture

    PubMed Central

    Yang, Lang; Peel, Nicola; Clowes, Jackie A; McCloskey, Eugene V; Eastell, Richard

    2011-01-01

    Several DXA-based structural engineering models (SEMs) of the proximal femur have been developed to estimate stress caused by sideway falls. Their usefulness in discriminating hip fracture has not yet been established and we therefore evaluated these models. The hip DXA scans of 51 postmenopausal women with hip fracture (30 femoral neck, 17 trochanteric, and 4 unspecified) and 153 age-, height-, and weight-matched controls were reanalyzed using a special version of Hologic’s software that produced a pixel-by-pixel BMD map. For each map, a curved-beam, a curved composite-beam, and a finite element model were generated to calculate stress within the bone when falling sideways. An index of fracture risk (IFR) was defined over the femoral neck, trochanter, and total hip as the stress divided by the yield stress at each pixel and averaged over the regions of interest. Hip structure analysis (HSA) was also performed using Hologic APEX analysis software. Hip BMD and almost all parameters derived from HSA and SEM were discriminators of hip fracture on their own because their ORs were significantly >1. Because of the high correlation of total hip BMD to HSA and SEM-derived parameters, only the bone width discriminated hip fracture independently from total hip BMD. Judged by the area under the receiver operating characteristics curve, the trochanteric IFR derived from the finite element model was significant better than total hip BMD alone and similar to the total hip BMD plus bone width in discriminating all hip fracture and femoral neck fracture. No index was better than total hip BMD for discriminating trochanteric fractures. In conclusion, the finite element model has the potential to replace hip BMD in discriminating hip fractures. PMID:18767924

  15. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture.

    PubMed

    Yang, Lang; Peel, Nicola; Clowes, Jackie A; McCloskey, Eugene V; Eastell, Richard

    2009-01-01

    Several DXA-based structural engineering models (SEMs) of the proximal femur have been developed to estimate stress caused by sideway falls. Their usefulness in discriminating hip fracture has not yet been established and we therefore evaluated these models. The hip DXA scans of 51 postmenopausal women with hip fracture (30 femoral neck, 17 trochanteric, and 4 unspecified) and 153 age-, height-, and weight-matched controls were reanalyzed using a special version of Hologic's software that produced a pixel-by-pixel BMD map. For each map, a curved-beam, a curved composite-beam, and a finite element model were generated to calculate stress within the bone when falling sideways. An index of fracture risk (IFR) was defined over the femoral neck, trochanter, and total hip as the stress divided by the yield stress at each pixel and averaged over the regions of interest. Hip structure analysis (HSA) was also performed using Hologic APEX analysis software. Hip BMD and almost all parameters derived from HSA and SEM were discriminators of hip fracture on their own because their ORs were significantly >1. Because of the high correlation of total hip BMD to HSA and SEM-derived parameters, only the bone width discriminated hip fracture independently from total hip BMD. Judged by the area under the receiver operating characteristics curve, the trochanteric IFR derived from the finite element model was significant better than total hip BMD alone and similar to the total hip BMD plus bone width in discriminating all hip fracture and femoral neck fracture. No index was better than total hip BMD for discriminating trochanteric fractures. In conclusion, the finite element model has the potential to replace hip BMD in discriminating hip fractures.

  16. Sex- and age-related differences in femoral neck cross-sectional structural changes in mainland Chinese men and women measured using dual-energy X-ray absorptiometry.

    PubMed

    Gong, Jian; Tang, Min; Guo, Bin; Shang, JingJie; Tang, Yongjin; Xu, Hao

    2016-02-01

    We investigated age-related changes in estimated bone strength and cross-sectional structure of the femoral neck (FN) in mainland Chinese men and women (according to age and sex) using dual-energy X-ray absorptiometry (DXA). A total of 3855 healthy adults (2713 women, 1142 men; ages 25-91years) were analyzed by FN bone mineral density (BMD) assessment and hip structural/strength analysis (HSA), including cross-sectional moment of inertia (CSMI), cross-sectional area (CSA), section modulus (Z), periosteal diameter (PD), endocortical diameter (ED), and cortical thickness (CT) using DXA. HSA differences between age and sex groups were adjusted for body weight, height and FN BMD. Trends according to age were estimated by linear regression analysis. There was no inverse correlation between HSA parameters and age in young adults. Some HSA parameters (CSMI, CSA, Z, CT) decreased significantly with age, whereas PD and ED increased significantly. Older adults had less estimated bone strength and CT and higher PD and ED (p<0.05) than young adults. Men had greater increases in PD and ED than women across all ages. FN strength decreases with age in both sexes, caused by FN cross-sectional structural deterioration. Indirect comparison of our data with those from other populations showed less age-related FN periosteal apposition in Chinese than Caucasian men, but similar amounts in women. This may partly explain different male/female hip fracture rates among ethnic groups. Chinese men have more structural disadvantages regarding FN geometry during aging than Caucasian men, possibly conferring added susceptibility to hip fracture.

  17. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  18. Reference data and percentile curves of body composition measured with dual energy X-ray absorptiometry in healthy Chinese children and adolescents.

    PubMed

    Guo, Bin; Xu, Yi; Gong, Jian; Tang, Yongjin; Shang, Jingjie; Xu, Hao

    2015-09-01

    Measurements of body composition by dual-energy X-ray absorptiometry (DXA) have evident value in evaluating skeletal and muscular status in growing children and adolescents. This study aimed to generate age-related trends for body composition in Chinese children and adolescents, and to establish gender-specific reference percentile curves for the assessment of muscle-bone status. A total of 1541 Chinese children and adolescents aged from 5 to 19 years were recruited from southern China. Bone mineral content (BMC), lean mass (LM) and fat mass (FM) were measured for total body and total body less head (TBLH). After 14 years, total body LM was significantly higher in boys than girls (p < 0.001). However, total body FM was significantly higher in girls than boys in age groups 13-19 years (p < 0.01). Both LM and FM were consistent independent predictors of total body and subcranial bone mass in both sexes, even after adjustment for the well-known predictors of BMC. The results of multiple linear regression identified LM as the stronger predictor of total body and subcranial skeleton BMC while the fat mass contributed less. For all the subjects, significant positive correlations were observed between total body LM, height, total body BMC and subcranial BMC (p < 0.01). Subcranial BMC had a better correlation with LM than total body BMC. We have also presented gender-specific percentile curves for LM-for-height and BMC-for-LM which could be used to evaluate and follow various pediatric disorders with skeletal manifestations in this population. PMID:25319556

  19. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  20. Bone quality and bone mass as assessed by quantitative ultrasound and dual energy x ray absorptiometry in women with rheumatoid arthritis: relationship with quadriceps strength

    PubMed Central

    Madsen, O; Sorensen, O; Egsmose, C

    2002-01-01

    Objective: To examine relationships of bone quality as assessed by quantitative ultrasound (QUS) and bone mineral density (BMD, g/cm2) with quadriceps strength (QS) in women with rheumatoid arthritis (RA). Methods: Sixty seven women with RA according to the 1987 American College of Rheumatology (ACR) criteria were examined. Mean (SD) age was 62 (13) years, mean disease duration 15 years. Most were or had been receiving glucocorticoid treatment. Calcaneal bone quality expressed as speed of sound (SOS, m/s), broadband ultrasound attenuation (BUA, dB/MHz), and stiffness was measured by QUS. BMD of the femoral neck, spine, and distal forearm was measured by dual energy x ray absorptiometry (DXA). Maximal voluntary isokinetic quadriceps strength (Nm) was assessed by isokinetic dynamometry. Pain was recorded on a visual analogue scale (VAS), disability was scored by the Stanford Health Assessment Questionnaire (HAQ), and the degree of physical impairment was expressed by the Steinbrocker index (SI). Results: In multiple regression analyses, QS predicted SOS, BUA, and stiffness (rpartial ranging from 0.36 to 0.45, p<0.005) and femoral neck BMD (rpartial=0.30, p<0.05) independently of age, height, weight, disease duration, HAQ, VAS, SI, and cumulative steroid dose. BMD of the spine and distal forearm was not associated with QS. After adjustment for covariates, women with subnormal BMD of the femoral neck (T score <-1), had a 20% lower QS than those with normal BMD (p<0.0001). Conclusions: Calcaneal bone quality and femoral neck BMD were associated with QS in women with RA. This finding indicates that physical activity including muscle strengthening exercises may play a part in the prevention of bone loss in these patients. PMID:11874835

  1. Photon absorptiometry for non-invasive measurement of bone mineral content

    SciTech Connect

    Gupta, S.; Luna, E.; Belsky, J.; Gelfman, N.; Miller, K.; Davies, T.

    1984-08-01

    Bone mineral content of the distal radius was determined in 106 patients by single photon absorptiometry using iodine-125 monochromatic source. The technique provided a reliable means to assess the degree of mineral loss in conditions such as osteoporosis, renal osteodystrophy in patients on chronic maintenance dialysis, subjects on long-term steroid therapy, and those with diabetes mellitus. It is more sensitive than conventional radiography and completely noninvasive compared to bone biopsy. It is suggested that photon absorptiometry is a simple, sensitive, and reliable technique for assessment and follow-up of the bone mineral content in a host of disorders associated with bone demineralization.

  2. Body composition of Native-American women estimated by dual-energy X-ray absorptiometry and hydrodensitometry.

    PubMed

    Hicks, V L; Heyward, V H; Baumgartner, R N; Flores, A J; Stolarczyk, L M; Wotruba, E A

    1993-01-01

    In the present sample, the Native-American women varied in age (18-60 y) and fatness (23.0-57.4% BF). The cross-validation analysis for %BF estimated by DXA for this sample yielded a high validity coefficient (r = 0.89), and the average %BFDXA (37.3%) and %BFHW (37.6%) did not differ significantly. The prediction error (3.28% BF) was less than the theoretical expected value, given the wide range in age and fatness in this sample. Thus, it appears that DXA may be a viable alternative method for estimating the %BF of a diverse group of Native-American women. The DXA method is more practical than hydrostatic weighing, especially for subjects who are uncomfortable in the water. Also, DXA estimates of bone mineral may lead to improved estimates of FFB density for different ethnic populations. PMID:8110173

  3. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    ERIC Educational Resources Information Center

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  4. Determination of radial bone mineral content in low birth weight infants by photon absorptiometry

    SciTech Connect

    Greer, F.R.

    1988-07-01

    Studies at the University of Wisconsin have demonstrated that photon absorptiometry is a precise, accurate, and reproducible technique for measuring bone mineral content in premature infants and can be used to establish an intrauterine curve of bone mineralization in the fetus. Photon absorptiometry can also be used to measure bone width, thereby documenting appositional bone growth. The bone mineral content/bone width ratio may be helpful in identifying disorders of bone mineral metabolism in premature infants. The technique has been used to demonstrate that relatively poor bone mineralization (compared with the intrauterine curve) occurs in very low birth weight infants after birth, regardless of the type of feeding or the presence or absence of bronchopulmonary dysplasia. 31 references.

  5. Measurement of the subcutaneous fat in the distal forearm by single photon absorptiometry

    SciTech Connect

    Hassager, C.; Borg, J.; Christiansen, C.

    1989-02-01

    The influence of subcutaneous fat on single photon (/sup 125/I) absorptiometry (SPA) measurement of bone mineral content of the distal forearm was investigated. A fat correction model was tested by measurements on eight lean subjects with different amounts of porcine fat around their forearm, and further validated from measurements on 128 females. In addition, it is shown that the fat content in the distal forearm can be measured by SPA with a short-term precision at 1.9% in an obese subject and that it correlates well with total body fat (r2 = .7) measured by dual photon absorptiometry, skinfold thickness (r2 = .5), and body mass index (r2 = .6). By using this method in a double-blind placebo-controlled trial, hormonal substitutional therapy significantly decreased the forearm fat content without affecting the body weight in postmenopausal osteoporotic women.

  6. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  7. Precision error in dual-photon absorptiometry related to source age

    SciTech Connect

    Ross, P.D.; Wasnich, R.D.; Vogel, J.M.

    1988-02-01

    An average, variable precision error of up to 6% related to source age was observed for dual-photon absorptiometry of the spine in a longitudinal study of bone mineral content involving 393 women. Application of a software correction for source decay compensated for only a portion of this error. The authors conclude that measurement of bone-loss rates using serial dual-photon bone mineral measurements must be interpreted with caution.

  8. Bone mineral density reduction in adolescents with systemic erythematosus lupus: association with lack of vitamin D supplementation.

    PubMed

    Caetano, M; Terreri, M T; Ortiz, T; Pinheiro, M; Souza, F; Sarni, R

    2015-12-01

    The aim of this study is to evaluate body composition and the bone mineral density in female adolescents with juvenile systemic lupus erythematosus. Body composition (BC) and bone mineral density (BMD) were evaluated in an observational cohort study with 35 postmenarcheal adolescent females. The variables studied were as follows: current and cumulative corticosteroid dose, intake of supplements containing calcium and vitamin D, 24-h proteinuria, body mass index (BMI), and height for age (Z-score). BC was assessed using dual-energy X-ray absorptiometry (DXA) at two time points (median interval of 1.2 years). The fat mass index (FMI = fat mass in kilograms divided by the height in meters squared) and lean mass index (LMI = lean mass in kilograms divided by the height in meters squared) were calculated based on the DXA results. BMD was classified according to the International Society of Clinical Densitometry (low BMD for chronological age < -2.0 standard deviations). .The mean age of the subjects was 15.4 ± 1.8 years. Of patients, 54.3 % were normal weight, 22.8 % were overweight, 22.8 % were obese, and 8.6 % had short stature. Low BMD for chronological age was observed in 42.8 % of patients, and 60 % were not taking vitamin D. There was no significant difference between the two time points with respect to FMI, LMI, or body mass index Z-score (ZBMI); however, BMD has decreased significantly (p = 0.011). There was an association between not taking a vitamin D supplement and decreased BMD (p = 0.027). Almost half of the patients had altered nutritional status. The BMD decrease in adolescents with juvenile systemic lupus erythematosus (JSLE) was associated with the lack of vitamin D supplementation, highlighting the importance of well-defined vitamin D supplementation protocols.

  9. Fracture Risk Prediction by Non-BMD DXA Measures: the 2015 ISCD Official Positions Part 1: Hip Geometry.

    PubMed

    Broy, Susan B; Cauley, Jane A; Lewiecki, Michael E; Schousboe, John T; Shepherd, John A; Leslie, William D

    2015-01-01

    Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry is the current imaging procedure of choice to assess fracture risk. However, BMD is only one of the factors that explain bone strength or resistance to fracture. Other factors include bone microarchitecture and macroarchitecture. We now have the ability to assess some of these non-BMD parameters from a dual-energy X-ray absorptiometry image. Available measurements include various measurements of hip geometry including hip structural analysis, hip axis length, and neck-shaft angle. At the 2015 Position Development Conference, the International Society of Clinical Densitometry established official positions for the clinical utility of measurements of hip geometry. We present the official positions approved by an expert panel after careful review of the recommendations and evidence prepared by an independent task force. Each question addressed by the task force is presented followed by the official position with the associated medical evidence and rationale. PMID:26277848

  10. Dual photon absorptiometry: Validation of mineral and fat measurements

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Sulet, M.; Lichtman, S.; Pierson, R.N. Jr. ); Kehayias, J. . USDA Human Nutrition Research Center on Aging at Tufts Univ.); Kamen, Y.; Dilmanian, F.A. ); Lindsay, R. . Coll. of Physicians and Surgeons)

    1989-01-01

    Photons passing through human tissue undergo attenuation in relation to the specific chemical substances with which they interact. By selecting two appropriate photon energies and recording their attenuation, the investigator can solve simultaneous equations that subdivide body mass into two components: soft tissue and bone mineral ash. The aim of this paper is to describe and to validate the estimates of body composition derived by dual photon systems. The initial studies largely involved dual photon absorptiometers, although the discussion will also include the more recently developed dual energy x-ray absorptiometers. 13 refs., 7 figs., 4 tabs.

  11. Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data.

    PubMed

    Beck, T J; Looker, A C; Ruff, C B; Sievanen, H; Wahner, H W

    2000-12-01

    Hip scans of U.S. adults aged 20-99 years acquired in the Third National Health and Nutrition Examination Survey (NHANES III) using dual-energy X-ray absorptiometry (DXA) were analyzed with a structural analysis program. The program analyzes narrow (3 mm wide) regions at specific locations across the proximal femur to measure bone mineral density (BMD) as well as cross-sectional areas (CSAs), cross-sectional moments of inertia (CSMI), section moduli, subperiosteal widths, and estimated mean cortical thickness. Measurements are reported here on a non-Hispanic white subgroup of 2,719 men and 2,904 women for a cortical region across the proximal shaft 2 cm distal to the lesser trochanter and a mixed cortical/trabecular region across the narrowest point of the femoral neck. Apparent age trends in BMD and section modulus were studied for both regions by sex after correction for body weight. The BMD decline with age in the narrow neck was similar to that seen in the Hologic neck region; BMD in the shaft also declined, although at a slower rate. A different pattern was seen for section modulus; furthermore, this pattern depended on sex. Specifically, the section modulus at both the narrow neck and the shaft regions remains nearly constant until the fifth decade in females and then declined at a slower rate than BMD. In males, the narrow neck section modulus declined modestly until the fifth decade and then remained nearly constant whereas the shaft section modulus was static until the fifth decade and then increased steadily. The apparent mechanism for the discord between BMD and section modulus is a linear expansion in subperiosteal diameter in both sexes and in both regions, which tends to mechanically offset net loss of medullary bone mass. These results suggest that aging loss of bone mass in the hip does not necessarily mean reduced mechanical strength. Femoral neck section moduli in the elderly are on the average within 14% of young values in females and within 6

  12. Dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and micro-computed tomography techniques are discordant for bone density and geometry measurements in the guinea pig.

    PubMed

    Mak, Ivy L; DeGuire, Jason R; Lavery, Paula; Agellon, Sherry; Weiler, Hope A

    2016-05-01

    This study aims to examine agreement among bone mineral content (BMC) and density (BMD) estimates obtained using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and micro-computed tomography (μCT) against high-resolution μCT and bone ash of the guinea pig femur. Middle-aged (n = 40, 86 weeks) male guinea pigs underwent in vivo followed by ex vivo DXA (Hologic QDR 4500A) scanning for intact and excised femur BMC and areal density. To assess bone architecture and strength, excised femurs were scanned on pQCT (Stratec XCT 2000L) as well as on two μCT scanners (LaTheta LCT-200; Skyscan 1174), followed by three-point bending test. Reproducibility was determined using triplicate scans; and agreement assessed using Bland-Altman plots with reference methods being high-resolution μCT (Skyscan) for BMD and bone ashing for BMC. All techniques showed satisfactory ex vivo precision (CV 0.05-4.3 %). However, bias compared to the reference method was highest (207.5 %) in trabecular bone volume fraction (BV/TV) measured by LaTheta, and unacceptable in most total femur and cortical bone measurements. Volumetric BMD (vBMD) and BV/TV derived by LaTheta and pQCT at the distal metaphysis were biased from the Skyscan by an average of 49.3 and 207.5 %, respectively. Variability of vBMD, BV/TV and cross-sectional area at the diaphysis ranged from -5.5 to 30.8 %. LaTheta best quantified total femur BMC with an upper bias of 3.3 %. The observed differences among imaging techniques can be attributable to inherent dissimilarity in construction design, calibration, segmentation and scanning resolution used. These bone imaging tools are precise but are not comparable, at least when assessing guinea pig bones.

  13. Treatment of subclinical hypothyroidism does not affect bone mass as determined by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative bone ultrasound in Spanish women

    PubMed Central

    Roncero-Martin, Raul; Calderon-Garcia, Julian F.; Santos-Vivas, Mercedes; Vera, Vicente; Martínez-Alvárez, Mariana; Rey-Sanchez, Purificación

    2015-01-01

    Introduction The results of studies examining the influence of subclinical hypothyroidism (SCH) and levothyroxine (L-T4) replacement therapy on bone have generated considerable interest but also controversy. The present research aims to evaluate the effects of L-T4 treatment on different skeletal sites in women. Material and methods A group of 45 premenopausal (mean age: 43.62 ±6.65 years) and 180 postmenopausal (mean age: 59.51 ±7.90 years) women with SCH who were undergoing L-T4 replacement therapy for at least 6 months were compared to 58 pre- and 180 postmenopausal women with SCH (untreated) matched for age. The mean doses of L-T4 were 90.88 ±42.59 µg/day in the premenopausal women and 86.35 ±34.11 µg/day in the postmenopausal women. Bone measurements were obtained using quantitative bone ultrasound (QUS) for the phalanx, dual-energy X-ray absorptiometry (DXA) for the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT) for the non-dominant distal forearm. Results No differences were observed between patients and untreated controls in these bone measurements except in the bone mineral density (BMD) of the spine (p = 0.0214) in postmenopausal women, which was greater in treated women than in untreated controls. Conclusions Our results indicate that adequate metabolic control through replacement treatment with L-T4 in pre- and postmenopausal women does not affect bone mass. PMID:26528344

  14. Ultrasound-Derived Forearm Muscle Thickness Is a Powerful Predictor for Estimating DXA-Derived Appendicular Lean Mass in Japanese Older Adults.

    PubMed

    Abe, Takashi; Fujita, Eiji; Thiebaud, Robert S; Loenneke, Jeremy P; Akamine, Takuya

    2016-09-01

    To test the validity of published equations, anterior forearm muscle thickness (MT-ulna) of 158 Japanese older adults (72 men and 86 women) aged 50-79 y was measured with ultrasound. Appendicular lean soft tissue mass (aLM) was estimated from MT-ulna using two equations (body height without [eqn 1] and with [eqn 2]) previously published in the literature. Appendicular lean mass was measured using dual-energy X-ray absorption (DXA), and this method served as the reference criterion. There was a strong correlation between DXA-derived and ultrasound-estimated aLM in both equations (r = 0.882 and r = 0.944). Total error was 2.60 kg for eqn (1) and 1.38 kg for eqn (2). A Bland-Altman plot revealed that there was no systematic bias between DXA-derived and ultrasound-estimated aLM; however, eqn (1) overestimated aLM compared with DXA-derived aLM. Our results suggest that an ultrasound MT-ulna equation that includes body height is appropriate and useful for estimating aLM in Japanese adults. PMID:27321173

  15. Unexplained high BMD in DXA-scanned patients is generalized throughout the skeleton and characterized by thicker cortical and trabecular bone.

    PubMed

    Lomholt, S; Amstrup, A K; Moser, E; Jakobsen, N F B; Mosekilde, L; Vestergaard, P; Rejnmark, L

    2015-04-01

    Unexplained high bone mineral density (BMD) is a rare condition and the mechanisms responsible are yet to be described in detail. The aim of the study was to identify patients with unexplained high BMD from a local DXA database and compare their radiological phenotype with an age- and a gender-matched group of population-based controls. We defined high BMD as a DXA Z-score ≥ + 2.5 at the total hip and lumbar spine. We characterized the findings as "unexplained" if no osteodegenerative changes, bone metabolic disease, or arthritis at the hip or lumbar spine was observed. All participants were investigated with high-resolution peripheral quantitative computed tomography (HR-pQCT), QCT, DXA, fasting blood samples, a 24-h urine sample, and questionnaires. The DXA database contained data on 25,118 patients. Initially, 138 (0.55%) potential participants with high BMD were identified, and during the study ten additional cases were identified from new DXA scans. Sixty-seven patients accepted to participate in the study, and among these we identified 15 women and one man with unexplained high BMD. These 15 women had higher BMD throughout the skeleton relative to controls, similar area/volume at the hip and the distal extremities, a higher number of trabeculae, which was thicker than in the controls, and a higher finite element estimated bone strength. The 15 women were heavier and had a higher fat mass then controls. We conclude that patients with unexplained high BMD have a generalized high BMD phenotype throughout their skeleton, which is characterized with a denser microarchitecture.

  16. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  17. Comparison of single- and dual-photon absorptiometry in postmenopausal bone mineral loss

    SciTech Connect

    Nilas, L.; Borg, J.; Gotfredsen, A.; Christiansen, C.

    1985-11-01

    The authors describe a single photon absorptiometric (SPA) technique, which enables differential estimation of the rates of loss from trabecular and cortical bone. Ten scans are obtained in the forearm: six in an area with about 7% trabecular bone and four scans in the adjacent distal area with a trabecular bone content of 25%. By comparing bone masses of these two sites in 19 postmenopausal and 53 premenopausal women, the postmenopausal trabecular bone loss was estimated to be approximately seven times greater than cortical loss within the first years of cessation of regular vaginal bleeding. On a group basis the bone loss at the distal forearm scan site (by SPA) corresponded closely to the spinal bone loss (by dual-photon absorptiometry). The reproducibility of the two scan sites in the forearm was 1-1.5% (CV%), which makes the method suitable for longitudinal studies. Corrections for variations in fatty tissue covering can be made without deterioration of the reproducibility.

  18. Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes

    ERIC Educational Resources Information Center

    Company, Joe; Ball, Stephen

    2010-01-01

    The primary purpose of this study was to investigate the accuracy of the DF50 (ImpediMed Ltd, Eight Mile Plains, Queensland, Australia) bioelectrical impedance analysis device using dual-energy x-ray absorptiometry as the criterion in two groups: endurance athletes and power athletes. The secondary purpose was to develop accurate body fat…

  19. Assessing Body Composition of Children and Adolescents Using Dual-Energy X-Ray Absorptiometry, Skinfolds, and Electrical Impedance

    ERIC Educational Resources Information Center

    Mooney, Angela; Kelsey, Laurel; Fellingham, Gilbert W.; George, James D.; Hager, Ron L.; Myrer, J. William; Vehrs, Pat R.

    2011-01-01

    To determine the validity and reliability of percent body fat estimates in 177 boys and 154 girls between 12-17 years of age, percent body fat was assessed once using dual-energy X-ray absorptiometry and twice using the sum of two skinfolds and three bioelectrical impedance analysis devices. The assessments were repeated on 79 participants on a…

  20. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system.

    PubMed

    Leslie, William D; Lix, Lisa M

    2011-03-01

    The World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) computes 10-year probability of major osteoporotic fracture from multiple risk factors, including femoral neck (FN) T-scores. Lumbar spine (LS) measurements are not currently part of the FRAX formulation but are used widely in clinical practice, and this creates confusion when there is spine-hip discordance. Our objective was to develop a hybrid 10-year absolute fracture risk assessment system in which nonvertebral (NV) fracture risk was assessed from the FN and clinical vertebral (V) fracture risk was assessed from the LS. We identified 37,032 women age 45 years and older undergoing baseline FN and LS dual-energy X-ray absorptiometry (DXA; 1990-2005) from a population database that contains all clinical DXA results for the Province of Manitoba, Canada. Results were linked to longitudinal health service records for physician billings and hospitalizations to identify nontrauma vertebral and nonvertebral fracture codes after bone mineral density (BMD) testing. The population was randomly divided into equal-sized derivation and validation cohorts. Using the derivation cohort, three fracture risk prediction systems were created from Cox proportional hazards models (adjusted for age and multiple FRAX risk factors): FN to predict combined all fractures, FN to predict nonvertebral fractures, and LS to predict vertebral (without nonvertebral) fractures. The hybrid system was the sum of nonvertebral risk from the FN model and vertebral risk from the LS model. The FN and hybrid systems were both strongly predictive of overall fracture risk (p < .001). In the validation cohort, ROC analysis showed marginally better performance of the hybrid system versus the FN system for overall fracture prediction (p = .24) and significantly better performance for vertebral fracture prediction (p < .001). In a discordance subgroup with FN and LS T-score differences greater than 1 SD, there was a significant

  1. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components.

    PubMed

    Malkov, Serghei; Shepherd, John

    2014-02-17

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  2. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  3. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  4. New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry.

    PubMed

    den Boer, F C; Patka, P; Bakker, F C; Wippermann, B W; van Lingen, A; Vink, G Q; Boshuizen, K; Haarman, H J

    1999-09-01

    An appropriate animal model is required for the study of treatments that enhance bone healing. A new segmental long bone defect model was developed for this purpose, and dual energy x-ray absorptiometry was used to quantify healing of this bone defect. In 15 sheep, a 3-cm segmental defect was created in the left tibia and fixed with an interlocking intramedullary nail. In seven animals, the defect was left empty for the assessment of the spontaneous healing response. In eight animals serving as a positive control, autologous bone grafting was performed. After 12 weeks, healing was evaluated with radiographs, a torsional test to failure, and dual energy x-ray absorptiometry. The mechanical test results were used for the assessment of unions and nonunions. Radiographic determination of nonunion was not reliably accomplished in this model. By means of dual energy x-ray absorptiometry, bone mineral density and content were measured in the middle of the defect. Bone mineral density was 91+/-7% (mean +/- SEM) and 72+/-6% that of the contralateral intact tibia in, respectively, the autologous bone-grafting and empty defect groups (p = 0.04). For bone mineral content, the values were, respectively, 117+/-18 and 82+/-9% (p = 0.07). Torsional strength and stiffness were also higher, although not significantly, in the group with autologous bone grafting than in that with the empty defect. Bone mineral density and content were closely related to the torsional properties (r2 ranged from 0.76 to 0.85, p < or = 0.0001). Because interlocking intramedullary nailing is a very common fixation method in patients, the newly developed segmental defect model has clinical relevance. The interlocking intramedullary nail provided adequate stability without implant failure. This model may be useful for the study of treatments that affect bone healing, and dual energy x-ray absorptiometry may be somewhat helpful in the analysis of healing of this bone defect.

  5. Double-energy X-ray absorptiometry in the diagnosis of osteopenia in ancient skeletal remains.

    PubMed

    González-Reimers, E; Velasco-Vázquez, J; Arnay-de-la-Rosa, M; Santolaria-Fernández, F; Gómez-Rodríguez, M A; Machado-Calvo, M

    2002-06-01

    Bone mineral density (BMD) assessed by double-energy X-ray absorptiometry (DEXA) accurately estimates the bone mass in living individuals, and is thus the method usually employed in the diagnosis and follow-up of osteopenia. It is preferred, in clinical settings, to the more invasive and destructive histomorphometrical assessment of trabecular bone mass in undecalcified bone samples. This study was performed in order to examine the value of DEXA-assessed BMD at the proximal end of the right tibia, either alone or in combination with the cortico-medullary index at the midshaft point of the right tibia (CMI), in the diagnosis of osteopenia in a prehistoric sample composed of 95 pre-Hispanic individuals from Gran Canaria. Age at death could be estimated in 34 cases. Diagnosis of osteopenia was performed by histomorphometrical assessment of trabecular bone mass (TBM) in an undecalcified bone section of a small portion of the proximal epiphysis of the right tibia. A high prevalence of osteopenia was found among the population of Gran Canaria. Both TBM and BMD were significantly lower in the older individuals than in younger ones, and BMD was also significantly lower in female individuals. BMD was moderately correlated with TBM (r = +0.51); the correlation was higher if CMI was included (multiple r = +0.615). BMD values lower than 0.7 g/cm2 showed a high specificity (>93%) at excluding normal TBM values. These methods were prospectively applied in a further sample of 21 right tibiae from Gran Canaria, Tenerife, and El Hierro. The results were similar to those obtained in the larger sample. Thus, DEXA-assessed BMD combined with CMI (noninvasive procedures) may be useful in detecting osteopenia in ancient populations.

  6. Accuracy of lumbar spine bone mineral content by dual photon absorptiometry

    SciTech Connect

    Gotfredsen, A.; Podenphant, J.; Norgaard, H.; Nilas, L.; Nielsen, V.A.; Christiansen, C.

    1988-02-01

    The accuracy of measurement of the bone mineral content (BMC, g) and bone mineral density (BMD, g/cm/sup 2/) of the lumbar spine by dual photon absorptiometry (DPA) was estimated by means of two different spine scanners (a Nuclear Data 2100 and a Lunar Radiation DP3). The lumbar spines of 13 cadavers were used. BMC and BMD were measured in situ and on the excised vertebrae in a solution of water/ethanol; and covered with ox muscle/porcine muscle/lard. The actual mineral weight and areal density were determined after chemical maceration, fat extraction, drying to a constant weight, ashing for 24 hr at 600 degrees C, and correction for the transverse processes. The true are was measured by parallax free X rays and planimetry. All measurements of BMC or BMD were highly interrelated (r = 0.94-0.99). The standard error of estimate (s.e.e.) of BMC in situ versus BMC in water/ethanol was 5.2%. The agreement between the BMD values of the two scanners was very good (s.e.e. = 2.9%). BMC in situ predicted the actual vertebral mineral mass with an s.e.e. of 8.1%. BMD in situ and BMD in water/ethanol predicted the actual area density with s.e.e.s of 10.3% and 5.0%, respectively. This study discloses the correlation and accuracy error of spinal DPA measurements in situ in whole cadavers versus the actual BMC and BMD. The error, which is underestimated in in vitro studies, amounts to 10%.

  7. Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling.

    PubMed

    Nasiri, Masoud; Luo, Yunhua

    2016-09-01

    There is controversy about whether or not body parameters affect hip fracture in men and women in the same way. In addition, although bone mineral density (BMD) is currently the most important single discriminator of hip fracture, it is unclear if BMD alone is equally effective for men and women. The objective of this study was to quantify and compare the associations of hip fracture risk with BMD and body parameters in men and women using our recently developed two-level biomechanical model that combines a whole-body dynamics model with a proximal-femur finite element model. Sideways fall induced impact force of 130 Chinese clinical cases, including 50 males and 80 females, were determined by subject-specific dynamics modeling. Then, a DXA-based finite element model was used to simulate the femur bone under the fall-induced loading conditions and calculate the hip fracture risk. Body weight, body height, body mass index, trochanteric soft tissue thickness, and hip bone mineral density were determined for each subject and their associations with impact force and hip fracture risk were quantified. Results showed that the association between impact force and hip fracture risk was not strong enough in both men (r=-0.31,p<0.05) and women (r=0.42,p<0.001) to consider the force as a sole indicator of hip fracture risk. The correlation between hip BMD and hip fracture risk in men (r=-0.83,p<0.001) was notably stronger than that in women (r=-0.68,p<0.001). Increased body mass index was not a protective factor against hip fracture in men (r=-0.13,p>0.05), but it can be considered as a protective factor among women (r=-0.28,p<0.05). In contrast to men, trochanteric soft tissue thickness can be considered as a protective factor against hip fracture in women (r=-0.50,p<0.001). This study suggested that the biomechanical risk/protective factors for hip fracture are sex-specific. Therefore, the effect of body parameters should be considered differently for men and women in hip

  8. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    PubMed Central

    Lewis, John E; Tannenbaum, Stacey L; Gao, Jinrun; Melillo, Angelica B; Long, Evan G; Alonso, Yaima; Konefal, Janet; Woolger, Judi M; Leonard, Susanna; Singh, Prabjot K; Chen, Lawrence; Tiozzo, Eduard

    2011-01-01

    Background and purpose The Electro Sensor Complex (ESC) is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1) ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL) to assess body composition, (2) EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology) to predict autonomic nervous system activity, and (3) ES Oxi (Electro Sensor Oxi; LD Technology) to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA), EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA). Patients and methods The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. Results We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001) with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001) with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R2 = 0.56, P = 0.03). For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001), after the first exercise stage (r = 0.79, P < 0.001), and after the second exercise stage (r = 0.86, P < 0.001). Absolute agreement was found at baseline and after both bouts of exercise; ES Oxi overestimated baseline and stage 1 exercise cardiac output by 0.3 L/minute and 0.1 L/minute, respectively, but exactly estimated stage 2 exercise cardiac output. Conclusion ES-BC and ES Oxi accurately assessed body composition and cardiac output compared to standardized instruments, whereas EIS

  9. Relationship between body mass index and bone mineral density in HIV-infected patients referred for DXA

    PubMed Central

    Pinnetti, Carmela; Federico, Lupi; Lorenzini, Patrizia; Domenico, Chiappetta; Rita, Bellagamba; Laura, Loiacono; Zaccarelli, Mauro; Cicalini, Stefania; Libertone, Raffaella; Giannetti, Alberto; Mosti, Silvia; Busi Rizzi, Elisa; Antinori, Andrea; Ammassari, Adriana

    2014-01-01

    Introduction Reduced bone mass density (BMD) is a frequent observation in HIV-infected persons. Relationship between body mass index (BMI), weight, height and BMD was reported for many populations. In particular, BMI has been found to be inversely related to the risk of osteoporosis. Methods This is a cross-sectional, monocentric study where all HIV-infected patients referred to first DXA scan in clinical routine during 2010–2013 were included. Osteopenia and osteoporosis were defined by T- score <−1 and <−2.5, respectively. Patients were categorized according to WHO BMI classification: underweight <18.5 kg/m2; normal weight 18.5–24.9 kg/m2; over weight 25–29.9 kg/m2; obese >30 kg/m2. Statistical analysis was carried using logistic regression. Results A total of 918 patients were included: median age 49 years (IQR, 44–55); 59.4% male; 93% Caucasian. Median anthrometric characteristics were: 68 kg (IQR, 59–78); 1.7 m (IQR, 1.6–1.75); 23.5 kg/m2 (IQR, 21.4–26.2). Underweight was found in 5%, normal weight in 61%, overweight in 26% and obesity in 8% of patients. According to T-scores, 110 (11.2%) patients were osteoporotic and 502 (54.7%) had osteopenia. In the femoral neck area, the prevalence of osteoporosis was slightly lower (5.7%) than lumbar spine site (9.2%). Agreements between sites of T-scores for the diagnosis of osteoporosis were 26 and 172 and 346 for osteopenia and normal BMD values, respectively. T-scores at femoral neck or lumbar spine positively correlated with BMI (p<0.001) (Figure 1). Among predictors of osteopenia/osteoporosis, univariable analysis showed: older age (p<0.0001); lower weight (p<0.0001); increasing height (p<0.002). Patients underweight had a higher risk of osteopenia (p=0.02) as well as of osteoporosis (p=0.003). Patients with BMI above normal had a reduced risk of low BMD (osteopenia p<0.0001; osteoporosis p<0.03). Controlling for calendar year, gender, ethnicity, and age, BMI was confirmed as risk factor if below

  10. A comparison of dual energy x-ray absorptiometry and two bioelectrical impedance analyzers to measure body fat percentage and fat-free mass index in a group of Mexican young women.

    PubMed

    Velazquez-Alva, Maria Del Consuelo; Irigoyen-Camacho, Maria Esther; Huerta-Huerta, Raquel; Delgadillo-Velazquez, Jaime

    2014-05-01

    Introducción: Los estudios de obesidad requieren estimación de masa grasa (FM) y masa libre de grasa (FFM). Objetivo: Comparar dos equipos de impedancia bioeléctrica (BIA) para estimar FM y FFM usando absorciometría de rayos X de energía dual (DXA) como referencia. Métodos: Estudio transversal. FM y FFM fueron evaluados por DXA y BIA: sistema pie-pie (FFS) y sistema mano-pie (HFS). Se realizaron pruebas t pareadas, coeficientes de correlación y análisis de Bland y Altman. Limites de acuerdo fueron calculados (CL). Resultados: Fueron estudiadas 175 mujeres (22,9 ± 2,2 años). Hubo diferencias significativas entre el promedio del porcentaje de grasa estimado por los equipos de BIA en comparación con DXA (FFS = 28,7%, HFS = 34,4% y DXA = 35,3%). La diferencia de medias del porcentaje de grasa entre HFS y DXA fue -0.96, (CL -5,29, 7,21). La diferencia de medias para FFS fue de -6,69,(CL -0,29, - 13.09) Hubo diferencias significativas entre las estimaciones de FFMI por BIA y DXA (FFS = 16,29, HFS = 14,95, DXA = 14,18). La diferencia de medias entre HFS y DXA fue = 0,78, (CL -2,27, 0,72) y la diferencia de medias de FFS fue -2,11: (CL -3,73 , -0,49). Conclusiones: Niveles diferentes de sesgo se observaron entre los equipos de BIA. El HFS parece ser más confiable que el FFS, sobre todo en la obtención de FFMI en mujeres jóvenes.

  11. A DXA study of muscle-bone relationships in the whole body and limbs of 2512 normal men and pre- and post-menopausal women.

    PubMed

    Capozza, R F; Cointry, G R; Cure-Ramírez, P; Ferretti, J L; Cure-Cure, C

    2004-07-01

    A whole-body DXA study of 1450 healthy Caucasian individuals [Bone 22 (1998) 683] found that mineral mass, either crude (BMC) or statistically adjusted to fat mass (FM-adjusted BMC), correlated linearly with lean mass (LM, proportional to muscle mass). The results showed similar slopes but decreasing intercepts (ordinate values) in the order: pre-MP women > men > post-MP women > children. This supports the hypothesis that sex hormones influence the control of bone status by muscle strength in all species. Now we further study those relationships in 2512 healthy Hispanic adults (307 men, 753 pre-MP women, 1452 post-MP women), including separate determinations in their upper and lower limbs. The slopes of the BMC or FM-adjusted BMC vs. LM relationships were parallel in all the studied regions. However, region-related differences were found between the ordinates of the curves. In the whole body, the crude-BMC/LM relationships showed the same ordinate differences as previously observed. In the lower limbs, those differences were smaller in magnitude but highly significant, showing the order: pre-MP women > men = post-MP women. In the upper limbs, the decreasing ordinate order was: men > pre-MP women > post-MP women. After fat adjustment of the BMC, order in both limbs was: men > pre-MP women > post-MP women. Parallelism of the curves was maintained in all cases. LM had a larger independent influence on these results than FM, body weight, or age. The parallelism of the curves supports the idea that a common biomechanical control of bones by muscles occurs in humans. Results suggest that sex-hormone-associated differences in DXA-assessed muscle-bone proportionality in humans could vary according to the region studied. This could be related to the different weight-bearing nature of the musculoskeletal structures studied. Besides the obvious anthropometric associations, FM would exert a mechanical effect as a component of body weight, evident in the lower limbs, while

  12. Bone Indices in Thyroidectomized Patients on Long-Term Substitution Therapy with Levothyroxine Assessed by DXA and HR-pQCT

    PubMed Central

    Moser, Emil; Sikjaer, Tanja; Mosekilde, Leif; Rejnmark, Lars

    2015-01-01

    Background. Studies on bone effects of long-term substitution therapy with levothyroxine (LT4) have shown discrepant results. Previous studies have, however, not evaluated volumetric bone mineral densities (vBMD), bone structure, and strength using high resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA). Using a cross-sectional design, we aimed to determine whether BMD, structure, and strength are affected in hypothyroid patients on LT4 substitution therapy. Methods. We compared 49 patients with well-substituted hypothyroidism with 49 age- and gender-matched population based controls. Areal BMD was assessed by DXA, vBMD and bone geometry by HR-pQCT, and bone strength by FEA. Results. Patients had been thyroidectomized due to thyroid cancer (10%) and nontoxic (33%) or toxic goiter (57%). 82% were women. TSH levels did not differ between groups, but patients had significantly higher levels of T4 (p < 0.001) and lower levels of T3 (p < 0.01). Compared to controls, patients had higher levels of magnesium (p < 0.05), whereas ionized calcium and PTH were lower (p < 0.05). Bone scans did not reveal any differences in BMD, bone geometry, or strength. Conclusion. If patients with hypothyroidism are well-substituted with LT4, the disease does not affect bone indices to any major degree. PMID:26246934

  13. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence.

    PubMed

    van der Meulen, M C; Marcus, R; Bachrach, L K; Carter, D R

    1997-05-01

    We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.

  14. Dual-photon absorptiometry: Comparison of bone mineral and soft tissue mass measurements in vivo with established methods

    SciTech Connect

    Heymsfield, S.B.; Wang, J.; Heshka, S.; Kehayias, J.J.; Pierson, R.N.

    1989-06-01

    This study extended initial observations that indicated the potential of dual-photon absorptiometry (DPA) to measure total-body bone mineral (TBBM) and fat in vivo. DPA-derived TBBM and fat were compared with established methods in 13 subjects (aged 24-94 y) who underwent measurement of body density (Db), total-body water (TBW), potassium (TBK), calcium (TBCa, delayed-gamma neutron activation), and nitrogen (prompt-gamma neutron activation). TBBM was highly correlated with TBCa (r = 0.95, p less than 0.001) and the slope of TBCa vs TBBM (0.34) was similar to Ca content of ashed skeleton (0.34-0.38). DPA-measured fat (means +/- SD, 16.7 +/- 4.9 kg) correlated significantly (r = 0.79-0.94; p less than 0.01-0.001) with fat established by Db (16.3 +/- 5.4 kg), TBW (16.0 +/- 4.3 kg), TBK (17.7 +/- 4.6 kg), combined TBW-neutron activation (17.6 +/- 5.9 kg), and means of all four methods (16.9 +/- 4.8 kg). DPA thus offers a new opportunity to study human skeleton in vivo and to quantify fat by a method independent from the classical assumption that bone represents a fixed fraction of fat-free body mass.

  15. Quick benefits of interval training versus continuous training on bone: a dual-energy X-ray absorptiometry comparative study.

    PubMed

    Boudenot, Arnaud; Maurel, Delphine B; Pallu, Stéphane; Ingrand, Isabelle; Boisseau, Nathalie; Jaffré, Christelle; Portier, Hugues

    2015-12-01

    To delay age-related bone loss, physical activity is recommended during growth. However, it is unknown whether interval training is more efficient than continuous training to increase bone mass both quickly and to a greater extent. The aim of this study was to compare the effects of a 10-week interval training regime with a 14-week continuous training regime on bone mineral density (BMD). Forty-four male Wistar rats (8 weeks old) were separated into four groups: control for 10 weeks (C10), control for 14 weeks (C14), moderate interval training for 10 weeks (IT) and moderate continuous training for 14 weeks (CT). Rats were exercised 1 h/day, 5 day/week. Body composition and BMD of the whole body and femur respectively were assessed by dual-energy X-ray absorptiometry at baseline and after training to determine raw gain and weight-normalized BMD gain. Both trained groups had lower weight and fat mass gain when compared to controls. Both trained groups gained more BMD compared to controls when normalized to body weight. Using a 30% shorter training period, the IT group showed more than 20% higher whole body and femur BMD gains compared to the CT. Our data suggest that moderate IT was able to produce faster bone adaptations than moderate CT.

  16. Quantitative computed tomographic evaluation of femoral bone mineral content in renal osteodystrophy compared with radial photon absorptiometry

    SciTech Connect

    Sakurai, K.; Marumo, F.; Iwanami, S.; Uchida, H.; Matsubayashi, T.

    1989-05-01

    The computed tomography (CT) numbers of cortical bone at the level of 20 cm (CT20) and of spongiosa in the lateral condyle at the level of 2 cm (CT02) from the distal end of the femur were obtained by a quantitative CT method and compared with the bone mineral density of mostly cortical bone within the radius (BMD) by photon absorptiometry. The study included 47 patients with chronic renal failure not dialyzed or induced to regular hemodialysis within 4 weeks of the study (group 1), 28 patients on regular hemodialysis for more than one month (group 2), and ten healthy volunteers (group 3). The measures of bone mineral content (BMC), namely CT20, CT02, and BMD, were compared in terms of their abilities to distinguish members in the various groups. For group 1 and group 3, the greatest variation in BMC was in the difference in CT02, which was primarily a measurement of the BMC of spongiosa. For groups 1 and 2, the greatest variation was in the difference in BMD, which was primarily a measurement of the BMC of cortex. The reproducibility of CT02 was estimated as almost equal to the difference in CT02 values at intervals of 10 months' duration of hemodialysis. The results indicated that CT02 was a useful measurement for evaluating the progress in the early stage of the renal osteodystrophy, and it is recommended that the bone mineral measurement with this QCT method should be performed once or twice a year.

  17. Correspondence between theoretical models and dual energy x-ray absorptiometry measurements of femoral cross-sectional growth during adolescence

    NASA Technical Reports Server (NTRS)

    van der Meulen, M. C.; Marcus, R.; Bachrach, L. K.; Carter, D. R.

    1997-01-01

    We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.

  18. Magnetic resonance imaging and dual energy X-ray absorptiometry of the lumbar spine in professional wrestlers and untrained men.

    PubMed

    Hu, M; Sheng, J; Kang, Z; Zou, L; Guo, J; Sun, P

    2014-08-01

    The aim of this study was to examine the relation between bone marrow adipose tissue (BMAT) and bone mineral density (BMD) of lumbar spine in male professional wrestlers and healthy untrained men. A total of 14 wrestlers (22.9±3.4 years) and 11 controls (24.4±1.6 years) were studied cross-sectionally. Body composition and BMD were measured by dual-energy X-ray absorptiometry. Magnetic resonance imaging of the lumbar spine was examined in a sagittal T1-weighted (T1-w) spin-echo (SE) sequence. The averaged bone marrow signal intensity (SI) of L2-L4 was related to the signal of an adjacent nondegenerative disk. Mean SI of T1-w SE in wrestlers was lower than controls (P=0.001), indicating L2-L4 BMAT in wrestlers was lower compared to controls. L2-L4 BMD in wrestlers was higher than controls (P<0.001). In the total subject population, L2-L4 BMD was inversely correlated with mean SI of T1-w SE (r=-0.62, P=0.001). This association remained strong after adjusting for body mass and whole lean mass, but became weaker after adjusting for whole body or trunk fat percentage. The inverse relationship between BMAT and BMD was confirmed in this relatively small subject sample with narrow age range, which implies that exercise training is an important determinant of this association.

  19. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  20. Dual-energy X-ray absorptiometry–based body volume measurement for 4-compartment body composition123

    PubMed Central

    Wilson, Joseph P; Mulligan, Kathleen; Fan, Bo; Sherman, Jennifer L; Murphy, Elizabeth J; Tai, Viva W; Powers, Cassidy L; Marquez, Lorena; Ruiz-Barros, Viviana

    2012-01-01

    Background: Total body volume (TBV), with the exclusion of internal air voids, is necessary to quantify body composition in Lohman's 4-compartment (4C) model. Objective: This investigation sought to derive a novel, TBV measure with the use of only dual-energy X-ray absorptiometry (DXA) attenuation values for use in Lohman's 4C body composition model. Design: Pixel-specific masses and volumes were calculated from low- and high-energy attenuation values with the use of first principle conversions of mass attenuation coefficients. Pixel masses and volumes were summed to derive body mass and total body volume. As proof of concept, 11 participants were recruited to have 4C measures taken: DXA, air-displacement plethysmography (ADP), and total body water (TBW). TBV measures with the use of only DXA (DXA-volume) and ADP-volume measures were compared for each participant. To see how body composition estimates were affected by these 2 methods, we used Lohman's 4C model to quantify percentage fat measures for each participant and compared them with conventional DXA measures. Results: DXA-volume and ADP-volume measures were highly correlated (R2 = 0.99) and showed no statistically significant bias. Percentage fat by DXA volume was highly correlated with ADP-volume percentage fat measures and DXA software-reported percentage fat measures (R2 = 0.96 and R2 = 0.98, respectively) but were slightly biased. Conclusions: A novel method to calculate TBV with the use of a clinical DXA system was developed, compared against ADP as proof of principle, and used in Lohman's 4C body composition model. The DXA-volume approach eliminates many of the inherent inaccuracies associated with displacement measures for volume and, if validated in larger groups of participants, would simplify the acquisition of 4C body composition to a single DXA scan and TBW measure. PMID:22134952

  1. Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX.

    PubMed

    Kälvesten, Johan; Lui, Li-Yung; Brismar, Torkel; Cummings, Steven

    2016-05-01

    Osteoporosis is often underdiagnosed and undertreated. Screening of post-menopausal women for clinical risk factors and/or low bone mineral density (BMD) has been proposed to overcome this. Digital X-ray radiogrammetry (DXR) estimates hand BMD from standard hand X-ray images and have shown to predict fractures and osteoporosis. Recently, digital radiology and the internet have opened up the possibility of conducting automated opportunistic screening with DXR in post-fracture care or in combination with mammography. This study compared the performance of DXR with FRAX® and DXA in discriminating major osteoporotic fracture (MOF) (hip, clinical spine, forearm or shoulder), hip fracture and femoral neck osteoporosis. This prospective cohort study was conducted on 5278 women 65years and older in the Study of Osteoporotic Fractures (SOF) cohort. Baseline hand X-ray images were analyzed and fractures were ascertained during 10years of follow up. Age-adjusted area under receiver operating characteristic curve (AUC) for MOF and hip fracture and for femoral neck osteoporosis (DXA FN BMD T-score ≤-2.5) was used to compare the methods. Sensitivity to femoral neck osteoporosis at equal selection rates was tabulated for FRAX and DXR. DXR-BMD, FRAX (no BMD) and lumbar spine DXA BMD were all similar in fracture discriminative performance with an AUC around 0.65 for MOF and 0.70 for hip fractures for all three methods. As expected femoral neck DXA provided fracture discrimination superior both to other BMD measurements and to FRAX. AUC for selection of patients with femoral neck osteoporosis was higher with DXR-BMD, 0.76 (0.74-0.77), than with FRAX, 0.69 (0.67-0.71), (p<0.0001). In conclusion, DXR-BMD discriminates incident fractures to a similar degree as FRAX and predicts femoral neck osteoporosis to a larger degree than FRAX. DXR shows promise as a method to automatically flag individuals who might benefit from an osteoporosis assessment. PMID:26921822

  2. Bone mineral density test

    MedlinePlus

    ... test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low-dose x- ...

  3. The frequency of low muscle mass and its overlap with low bone mineral density and lipodystrophy in individuals with HIV--a pilot study using DXA total body composition analysis.

    PubMed

    Buehring, Bjoern; Kirchner, Elizabeth; Sun, Zhiyuan; Calabrese, Leonard

    2012-01-01

    As a result of the advances in antiretroviral therapy, the life span of human immunodeficiency virus (HIV)-infected patients has increased dramatically. Attendant to these effects are signs of premature aging with notable changes in the musculoskeletal system. Although changes in bone and fat distribution have been studied extensively, far less is known about changes in muscle. This study examined the extent of low muscle mass (LMM) and its relationship with low bone mineral density (BMD) and lipodystrophy (LD) in HIV-positive males. As such, HIV-positive males on therapy or treatment naive underwent dual-energy X-ray absorptiometry total body composition measurements. Appendicular lean mass/(height)2 and lowest 20% of residuals from regression analysis were used to define LMM. BMD criteria defined osteopenia/osteoporosis, and the percent central fat/percent lower extremity ratio defined LD. Several potential risk factors were assessed through chart review. Sixty-six males (57 with treatment and 9 treatment naive) volunteered. Treated individuals were older than naive (44 vs 34 yr) and had HIV longer (108 vs 14 mo). When definitions for sarcopenia (SP) in elderly individuals were applied, the prevalence of LMM was 21.9% and 18.8% depending on the definition used. Low BMD was present in 68.2% of participants. LD with a cutoff of 1.5 and 1.961 was present in 54.7% and 42.2% of participants, respectively. LMM and LD were negatively associated. In conclusion, this study shows that LMM is common in males with HIV and that SP affecting muscle function could be present in a substantial number of individuals. Future research needs to examine what impact decreased muscle mass and function has on morbidity, physical function, and quality of life in individuals with HIV. PMID:22169198

  4. Increasing body fat mass reverses bone loss in osteopenia as detected by dual-energy X-ray absorptiometry scans

    PubMed Central

    Hedges, William P.; Bukhari, Marwan

    2016-01-01

    Objective Low body mass index (BMI) is a known risk factor for osteoporosis and is part of the FRAX™ 10-year fracture risk stratification tool for predicting fragility fractures. Little is known regarding the effects of changing body composition on bone mineral density (BMD). However, increasing fat mass (FM) improves BMD in young women with anorexia nervosa. This study aimed to assess whether changes in FM over time affected BMD in the general population. Material and Methods Data was collected from patients who underwent dual-energy X-ray absorptiometry (DEXA) assessment between 2004 and 2011. Patients were included if they had multiple scans, including FM measurements. Our scanners limited these to scans of the lumbar spine. Linear regression analysis was performed to identify the relationship between changes in FM and BMD. Backwards stepwise linear regression analysis was performed to identify confounding factors, including sex, risk factors, previous fractures, and baseline BMI. Results In this study, 23,239 patients were included, of which 702 met the inclusion criteria. There were 609 (86%) females and 93 (13%) males with a mean age of 64.5 (SD 11.2) years at first scan. We identified a strong positive correlation between increasing FM and BMD between scans (coefficient 28.4; p<0.01; 95% CI, 26.6–30.1). Previous pelvic and femur fractures and a history of inflammatory diseases were also associated with increasing FM (p<0.05). This relationship was true regardless of patients BMI at their first scan. Conclusion These findings suggest that patients at high risk of fragility fractures should be encouraged to increase their FM as long as they are at a low risk for disease states related to high FM. PMID:27708960

  5. Body composition in neonates: relationship between measured and derived anthropometry with dual-energy X-ray absorptiometry measurements.

    PubMed

    Koo, Winston W K; Walters, Jocelyn C; Hockman, Elaine M

    2004-11-01

    This study examined the relationship between measured and derived anthropometric measurements with dual-energy X-ray absorptiometry measured lean and fat mass at 3.0 +/- 2.8 (SD) days in 120 neonates with birth weights appropriate (AGA; n=74), large (LGA; n=30); or small (SGA, n=16) for gestational age. Anthropometric measurements, including total body weight and length, and regional measurements, including circumferences of head, chest, abdomen, midarm, and midthigh and dynamic skinfold thickness (15 and 60 s) at tricep, subscapular, suprailiac, and midthigh, were performed. Derived anthropometry included muscle and fat areas, and ratios were calculated from direct measurements. The skinfold thickness measurements between 15 and 60 s were highly correlated (r=0.973-0.996, p <0.001 for all comparisons). Strong correlations existed within the four circumferences of trunk and extremities, the four skinfolds, and the ratios of weight to length and its higher powers. Weight and length accounted for >97% of the variance of lean mass in AGA and SGA infants and 46% of the variance in LGA infants and for 80, 82, and 84% of the variance of fat mass in SGA, AGA, and LGA infants, respectively, whereas midarm:head circumference ratio and arm muscle and fat areas are the most important derived anthropometry in the prediction for body composition. They independently accounted for up to 16.5 and 10.2%, respectively, of the variance in body composition depending on the state of in utero growth. Thus, total body weight and length and some selected regional and derived anthropometry accounted for the vast majority of the variance of body composition. PMID:15371563

  6. Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer.

    PubMed

    Kalder, Matthias; Hans, Didier; Kyvernitakis, Ioannis; Lamy, Olivier; Bauer, Martina; Hadji, Peyman

    2014-01-01

    We performed an analysis of a substudy of the randomized Tamoxifen Exemestane Adjuvant Multinational trial to determine the effects of exemestane (EXE) and tamoxifen (TAM) adjuvant treatment on bone mineral density (BMD) measured by dual-energy X-ray absorptiometry compared with the trabecular bone score, a novel grey-level texture measurement that correlates with 3-dimensional parameters of bone texture in postmenopausal women with hormone receptor-positive breast cancer for the first time. In total, 36 women were randomized to receive TAM (n = 17) or EXE (n = 19). Patients receiving TAM showed a mean increase of BMD in lumbar spine from baseline of 1.0%, 1.5%, and 1.9% and in trabecular bone score of 2.2%, 3.5%, and 3.3% at 6-, 12-, and 24-mo treatment, respectively. Conversely, patients receiving EXE showed a mean decrease from baseline in lumbar spine BMD of -2.3%, -3.6%, and -5.3% and in trabecular bone score of -0.9%, -1.7%, and -2.3% at 6-, 12-, and 24-mo treatment, respectively. Changes in trabecular bone score from baseline at spine were also significantly different between EXE and TAM: p = 0.05, 0.007, and 0.006 at 6, 12, and 24 mo, respectively. TAM induced an increase in BMD and bone texture analysis, whereas EXE resulted in decreases. The results were independent from each other.

  7. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    PubMed Central

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). Subjects/Methods Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole body magnetic resonance imaging. BMD was measured using whole body dual-energy x-ray absorptiometry. Results An inverse correlation was observed between pelvic BMAT and pelvic, total, and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs. older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434 to 0.928). Conclusion Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes. PMID:22491495

  8. Comparison of Methods for Assessing Body Composition Changes during Weight Loss.

    ERIC Educational Resources Information Center

    Weyers, Anna M.; Mazzetti, Scott A.; Love, Dawn M.; Gomez, Ana L.; Kraemer, William J.; Volek, Jeff S.

    2002-01-01

    Investigated whether dual-energy x-ray absorptiometry (DXA) and air displacement plethysmography (ADP) would detect similar changes in body composition after moderate weight loss. Twenty adults had their body composition measured using DXA and ADP before and after an 8-week weight loss program. Overall, both DXA and ADP detected similar changes in…

  9. [In vivo measurement of the mineral content of renal calculi by dual-photon absorptiometry. Correlation with its fragility to extracorporeal shockwave lithotripsy].

    PubMed

    Zanchetta, J R; Bogado, C E; Sánchez, T V; Gigler, C; Ghirlanda, J

    1995-01-01

    After a few years of experience with extracorporeal shock wave lithotripsy (ESWL) and other fragmentation techniques, it has become apparent that stone fragility is a significant clinical distinction that should be taken into consideration when selecting a treatment program. In 30 unselected patients, stone mineral content, density and area were measured in vivo by dual-photon absorptiometry prior to perform ESWL treatment. Stone area determinations showed a median of 4.21 with a range of 0.46 to 49.7 cm2. Stone mineral content (g) and stone density (g/cm2) values were 2.47 and 0.46 with ranges of 0.37 to 13.7 and 0.167 to 1.203 respectively. The number of shocks needed for total fragmentation were 2375 with a range of 1200 to 7800. No correlation could be found between the number of shocks needed for fragmentation and the stone area or density. On the other hand, a strong linear correlation (r = 0.81, p < 0.001) (Fig. 1) could be demonstrated between stone mineral content and the number of shocks needed for fragmentation. Our results support the concept that size alone is not always a suitable criterion for selecting a stone as appropiate for ESWL, since no correlation could be found between stone area and the number of shocks needed for total fragmentation. We were also unable to find any correlation between in vivo stone density measured by dual-photon absorptiometry and the number of shocks required for stone fragmentation. Instead, a strong linear correlation between stone mineral content and its resistance to shock wave fragmentation was found. Therefore, calculation of mineral content appears to be the determinant of the amount of energy required for total fragmentation. Our results strongly suggest that in vivo stone mineral content measurement provides helpful information for predicting the fragmentation prospect of a stone.

  10. Risk factors for osteoporosis and fragility fractures in patients with systemic lupus erythematosus.

    PubMed

    Carli, L; Tani, C; Spera, V; Vagelli, R; Vagnani, S; Mazzantini, M; Di Munno, O; Mosca, M

    2016-01-01

    Osteoporosis (OP) and fragility fractures (FFx) are a known comorbidity in patients with systemic lupus erythematosus (SLE). This work aimed at evaluating (1) the prevalence of OP and FFx in a cohort of SLE and (2) the risk factors associated with both OP and FFx. The following data were collected from clinical charts: age, sex, menopausal status (MP), body mass index, smoking habits, disease duration, daily dose and cumulative glucocorticoids (GCs), type of organ involvement, comorbidities and medications. Data on bone metabolism, calcium and vitamin D supplementation and treatment with bisphosphonates, teriparatide or denosumab were collected, together with bone mineral density (BMD) values (measured by dual-energy X-ray absorptiometry (DXA)) and history of FFx (occurred after the onset of SLE and unrelated to trauma). OP and reduced BMD were defined according to the WHO. 186 patients were included (women 175, men 11; mean age 46.4±13 years, mean disease duration 14.9±9 years). At their last visit, 97 patients (52.2%) had a reduced BMD and 52 (27.9%) had OP. 22 patients (11.8%), all women, had at least one FFx; six patients (27.3%) were pre-menopausal. On univariate analysis, age, cumulative dose of GC, MP, therapy with antiepileptics and chronic renal failure (CRF) were correlated with OP (p<0.03); age, total amount of GC, MP, CRF, anticoagulants (AC) and antiepileptic therapy were correlated with FFx (p<0.05). The multivariate logistic model confirmed a direct association of OP and age, MP and antiepileptic therapy (p≤0.01) and of FFx and age, chronic therapy with AC and antiepileptics (p<0.03). In conclusion, low BMD is frequently observed in SLE, and FFx are observed also in premenopausal patients. Together with traditional risk factors (age, MP and GC), CRF and chronic treatments with AC or antiepileptics seem to be associated with a higher risk profile for OP and FFx occurrence.

  11. Risk factors for osteoporosis and fragility fractures in patients with systemic lupus erythematosus

    PubMed Central

    Carli, L; Tani, C; Spera, V; Vagelli, R; Vagnani, S; Mazzantini, M; Di Munno, O; Mosca, M

    2016-01-01

    Osteoporosis (OP) and fragility fractures (FFx) are a known comorbidity in patients with systemic lupus erythematosus (SLE). This work aimed at evaluating (1) the prevalence of OP and FFx in a cohort of SLE and (2) the risk factors associated with both OP and FFx. The following data were collected from clinical charts: age, sex, menopausal status (MP), body mass index, smoking habits, disease duration, daily dose and cumulative glucocorticoids (GCs), type of organ involvement, comorbidities and medications. Data on bone metabolism, calcium and vitamin D supplementation and treatment with bisphosphonates, teriparatide or denosumab were collected, together with bone mineral density (BMD) values (measured by dual-energy X-ray absorptiometry (DXA)) and history of FFx (occurred after the onset of SLE and unrelated to trauma). OP and reduced BMD were defined according to the WHO. 186 patients were included (women 175, men 11; mean age 46.4±13 years, mean disease duration 14.9±9 years). At their last visit, 97 patients (52.2%) had a reduced BMD and 52 (27.9%) had OP. 22 patients (11.8%), all women, had at least one FFx; six patients (27.3%) were pre-menopausal. On univariate analysis, age, cumulative dose of GC, MP, therapy with antiepileptics and chronic renal failure (CRF) were correlated with OP (p<0.03); age, total amount of GC, MP, CRF, anticoagulants (AC) and antiepileptic therapy were correlated with FFx (p<0.05). The multivariate logistic model confirmed a direct association of OP and age, MP and antiepileptic therapy (p≤0.01) and of FFx and age, chronic therapy with AC and antiepileptics (p<0.03). In conclusion, low BMD is frequently observed in SLE, and FFx are observed also in premenopausal patients. Together with traditional risk factors (age, MP and GC), CRF and chronic treatments with AC or antiepileptics seem to be associated with a higher risk profile for OP and FFx occurrence. PMID:26848397

  12. Skeletal status and soft tissue composition in astronauts. Tissue and fluid changes by radionuclide absorptiometry in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Mazess, R. B.; Wilson, C. R.

    1973-01-01

    A device has been constructed and tested which provides immediate readout of bone mineral content and bone width from absorptiometric scans with low energy radionuclides. The basis of this analog system is a logarithmic converter-integrator coupled with a precision linear ratemeter. The system provided accurate and reliable results on standards and ashed bone sections. Clinical measurements were made on about 100 patients with the direct readout system, and these were highly correlated with the results from digital scan data on the same patients. The direct readout system has been used successfully in field studies and surveys as well as for clinical observations.

  13. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    SciTech Connect

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-11-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process.

  14. Comparison of Body Composition Assessed by Dual-Energy X-Ray Absorptiometry and BMI in Current and Former U.S. Navy Service Members

    PubMed Central

    Gasier, Heath G.; Hughes, Linda M.; Young, Colin R.; Richardson, Annely M.

    2015-01-01

    Background Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Methods Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20–91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. Results The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. Conclusions From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs. PMID:26197480

  15. A phantom based study on the effect of subject positioning on morphometric X-ray absorptiometry using the Lunar Expert-XL.

    PubMed

    Thorpe, J A; Steel, S A; Langton, C M

    1998-11-01

    Morphometric X-ray absorptiometry (MXA) relies on accurate measurement of vertical dimensions of vertebrae from a lateral perspective. Deviations resulting from scoliotic curvature or poor patient positioning produce distortions of visible vertebral dimensions and may lead to analysis error. This study utilized a phantom developed at this centre to assess the effect of vertebral malalignment on the accuracy of the MXA technique on the Lunar Expert-XL. Measured vertebral heights were found to be consistently underestimated by an average of 3.7%. Precision ranged from 0.79% for anterior height measurement to 1.03% for middle height measurement. Vertebral malalignment was investigated as the effect of rotation around the anteroposterior, lateral and superoinferior axes. Rotation around the lateral axis produced little discernible effect. However, superoinferior axial rotation showed a change of more than two standard deviations in the mid/posterior ratios of biconcave vertebrae at comparatively small angles of rotation. Anteroposterior axial rotation produced an increase in observed height at small angles of rotation, and a rapid decrease in vertebral height as rotation increased. The results suggest that whilst kyphosis or lordosis of up to at least 5.8 degrees has a minimal effect on MXA, scoliosis of 4.6 degrees or above produces a distinctive effect on the defining crush height ratios.

  16. Evaluation of the effects of hypergravity exposure and caging restraint on bone mineralization in the Beagle by in vivo photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Fisher, G. L.; Berding, K. L.; Goldman, M.

    1975-01-01

    Photon absorptiometry was used to evaluate bone mineral kinetics associated with normal development and the possible perturbations to bone development resulting from hypergravity exposure over a period of six months in developing Beagles. A series of seven measurements were performed at specific times with the first measurement prior to treatment and subsequent measurements at 2, 5, 9, 14, 20 and 26 weeks from the onset of the experiment. Four groups of six male Beagle pups, ranging in age from 85 to 92 days were studied. Two groups were chronically exposed to hypergravity treatments by centrifugation of 2.0 G (18.0 RPM, 11.7 ft radius) and 2.6 G (18.0 RPM, 19.8 ft radius) for the 26 week period. A third group of six dogs served as a caged control to evaluate possible changes due to confinement in small plexiglass cages similar to those of the centrifuge. Thus this control group was subjected to limited exercise due to caging restraint. The fourth group of animals was housed in open runs to allow exercise without the spatial confinement of the smaller plexiglass cages. Results show highly significant differences in body weight, bone length, increase in bone density of control group relative to other groups, and a decrease in bone mineral content in the two gravity treated groups.

  17. X-ray scatter correction for dual-energy x-ray absorptiometry: compensation of patient's lean/fat composition

    NASA Astrophysics Data System (ADS)

    Dinten, Jean-Marc; Darboux, Michel; Bordy, Thomas; Robert-Coutant, Christine; Gonon, Georges

    2004-05-01

    At CEA-LETI, a DEXA approach for systems using a digital 2D radiographic detector has been developed. It relies on an original X-rays scatter management method, based on a combined use of an analytical model and of scatter calibration data acquired through different thicknesses of Lucite slabs. Since Lucite X-rays interaction properties are equivalent to fat, the approach leads to a scatter flux map representative of a 100% fat region. However, patients" soft tissues are composed of lean and fat. Therefore, the obtained scatter map has to be refined in order to take into account the various fat ratios that can present patients. This refinement consists in establishing a formula relating the fat ratio to the thicknesses of Low and High Energy Lucite slabs leading to same signal level. This proportion is then used to compute, on the basis of X-rays/matter interaction equations, correction factors to apply to Lucite equivalent X-rays scatter map. Influence of fat ratio correction has been evaluated, on a digital 2D bone densitometer, with phantoms composed of a PVC step (simulating bone) and different Lucite/water thicknesses as well as on patients. The results show that our X-rays scatter determination approach can take into account variations of body composition.

  18. Measurement of bone mineral density by dual-energy x-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem.

    PubMed

    Kiratli, B J; Checovich, M M; McBeath, A A; Wilson, M A; Heiner, J P

    1996-02-01

    Although qualitative evidence of femoral bone remodeling, secondary to total hip arthroplasty (THA), is apparent on radiographs, quantification of change in bone mass from radiographs is limited. Dual-energy x-ray absorptiometry overcomes many of the limitations and yields accurate and precise bone mineral density (BMD) data. In this study, regional changes in femoral BMD were examined in 89 THA patients with a 2-year follow-up period. Thirty-two patients were evaluated initially before surgery and followed through the first 2 postoperative years. A second group was comprised of 57 patients whose surgery had been performed 1 to 6 years prior to entry into the study; they were also followed for 2 years hence. Thus, both immediate and later bone responses were evaluated prospectively. Maximal bone remodeling was seen in the first 6 months after THA and with a near plateau by the end of the first year. A slow yearly decline in BMD appeared to occur as long as 8 years after THA, thus demonstrating the long-term effects of the introduction of a femoral stem. Variance in preoperative BMD was explained by disease only; no other factors (age, weight, sex) showed significant associations, and body weight was the only variable that affected rate of remodeling after THA (not age, weight, sex, prosthesis size, nor disease). All patients were healthy, relatively young individuals who were good candidates for uncemented implantation, and none showed evidence of clinical complications or surgical failure. It is therefore suggested that the patterns and results reported here be viewed as normative data, that is, the typical skeletal adaptation to THA. In future application, observation of disparate BMD results as compared with these "normal" data may be predictive of abnormal response to surgery and potential for later problems.

  19. Novel single x-ray absorptiometry method to solve for volumetric breast density in mammograms with paddle tilt

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Wang, Jeff; Shepherd, John

    2007-03-01

    We report on the design and validation of a breast tissue equivalent phantom for automated measurement of breast composition in film/screen and digital mammography systems. This phantom is a multi-step phantom made of a single material and containing nine lead positioning markers around its periphery. The markers allow for the phantom position to be solved relative to the x-ray gantry. The phantom was adhered to the top of the mammographic compression paddle such that it projected an attenuation image onto the unused corner of the image without overlapping with CC- nor MLO-view breast edges. The markers and their centroids were identified using automatic morphological image processing operations. The phantom, and thus the paddle, orientation is then obtained by minimizing a simple least-square error function of the difference between a pseudo projection image of the phantom markers at known coordinates and the actual marker image. Fibroglandular-equivalent breast attenuation values were found directly from step phantom projections. Fat attenuation values were derived from the attenuation coefficient ratios of fat to fibroglandular tissue. Finally, breast density was calculated by comparing image pixel values to the fat/fibroglandular references at the same thickness. Multiple scans of a test object (a density step phantom with 7 densities) at nine different compression thicknesses and six paddle-tilt angles were acquired. We found the precision for determining the breast thickness to be 0.015 cm (standard deviation) and for determining individual paddle angles to be 0.05 degrees. Multiple clinical studies using the technique on film/screen and digital mammography machines are also currently under way.

  20. Experimental studies on the bone metabolism of male rats chronically exposed to cadmium intoxication using dual-energy X-ray absorptiometry.

    PubMed

    Yokota, H; Tonami, H

    2008-04-01

    Cadmium (Cd) has been identified as the etiologic agent of itai-itai disease. The purpose of this study was to investigate whether chronic Cd exposure affects bone metabolism in a male rat model and to estimate the bone mineral density (BMD) differences in lumbar and femoral bone because of Cd exposure. Six-week-old male Hos Donryu rats were used in this experiment. Cadmium was administered at a dose of 200 ppm to rats in the diet to produce experimental chronic Cd poisoning. Bone mineral density was measured using dual-energy X-ray absorptiometry (DEXA) with a high-resolution scan collimator (0.25 mm diameter) (Hologic QDR-2000). The Cd content in renal tissue reached a critical concentration of 128.42 +/- 14.38 microg/g 10 months after the administration of the element (Table 3). The average blood urea nitrogen (BUN) value was increased throughout the period of the experiment, and the serum creatinine value of the experimental group showed an increase after 2 months of Cd administration (0.46 +/- 0.09 mg/dL). The concentration of urinary calcium changed in the experimental group after exposure to Cd for 12 months (15.4 +/- 0.13 mg/dL). DEXA showed a greater reduction in the bone mineral density of the 5th vertebral body (L5) in rats that had ingested Cd for 4 months (0.359 +/- 0.013 g/cm2) than in control rats (0.372 +/- 0.012 g/cm2, P < 0.01). On the contrary, the difference in bone mineral content between rats ingesting Cd for 6-8 months and control rats was not significant. However, significant reductions in bone mineral content were again noted in rats that had ingested Cd for 12 months (0.339 +/- 0.023 g/cm2) compared with the control group (0.385 +/- 0.012 g/cm2, P < 0.01). The bone mineral density of the right femoral bone in control rats was 0.328 +/- 0.018 g/cm2 and that in experimental rats was 0.306 +/- 0.012 g/cm2, and a meaningful difference was recognized (P < 0.05). Histological examination of the rats exposed to Cd for 12 months showed that the 5

  1. Fracture risk in the femoral hip region: A finite element analysis supported experimental approach.

    PubMed

    Tsouknidas, Alexander; Anagnostidis, Kleovoulos; Maliaris, Georgios; Michailidis, Nikolaos

    2012-07-26

    The decrease of bone mineral density (BMD) is a multifactorial bone pathology, commonly referred to as osteoporosis. The subsequent decline of the bone's micro-structural characteristics renders the human skeletal system, and especially the hip, susceptible to fragility fractures. This study represents a systematic attempt to correlate BMD spectrums to the mechanical strength characteristics of the femoral neck and determine a fracture risk indicator based on non-invasive imaging techniques. The BMD of 30 patients' femurs was measured in vivo by Dual-energy X-ray absorptiometry (DXA). As these patients were subjected to total hip replacement, the mechanical strength properties of their femurs' were determined ex-vivo using uniaxial compression experiments. FEA simulations facilitated the correlation of the DXA measurements to the apparent fracture risk, indicating critical strain values during complex loading scenarios. PMID:22648146

  2. Fracture risk in the femoral hip region: A finite element analysis supported experimental approach.

    PubMed

    Tsouknidas, Alexander; Anagnostidis, Kleovoulos; Maliaris, Georgios; Michailidis, Nikolaos

    2012-07-26

    The decrease of bone mineral density (BMD) is a multifactorial bone pathology, commonly referred to as osteoporosis. The subsequent decline of the bone's micro-structural characteristics renders the human skeletal system, and especially the hip, susceptible to fragility fractures. This study represents a systematic attempt to correlate BMD spectrums to the mechanical strength characteristics of the femoral neck and determine a fracture risk indicator based on non-invasive imaging techniques. The BMD of 30 patients' femurs was measured in vivo by Dual-energy X-ray absorptiometry (DXA). As these patients were subjected to total hip replacement, the mechanical strength properties of their femurs' were determined ex-vivo using uniaxial compression experiments. FEA simulations facilitated the correlation of the DXA measurements to the apparent fracture risk, indicating critical strain values during complex loading scenarios.

  3. A 4-compartment model based validation of air displacement plethysmography, dual energy X-ray absorptiometry, skinfold technique & bio-electrical impedance for measuring body fat in Indian adults

    PubMed Central

    Kuriyan, Rebecca; Thomas, Tinku; Ashok, Sangeetha; J, Jayakumar; Kurpad, Anura V.

    2014-01-01

    Background & objectives: Many methods are available for measuring body fat of an individual, each having its own advantages and limitations. The primary objective of the present study was to validate body fat estimates from individual methods using the 4-compartment (4C) model as reference. The second objective was to obtain estimates of hydration of fat free mass (FFM) using the 4C model. Methods: The body fat of 39 adults (19 men and 20 women) aged 20-40 yr was estimated using air displacement plethysmography (ADP), dual energy X-ray absorptiometry (DEXA), 4-skinfold technique and bio-electrical impedance (BIA). Total body water was estimated using isotope dilution method. Results: All the methods underestimated body fat when compared to 4C model, except for DEXA and the mean difference from the reference was lowest for DEXA and ADP. The precision of the fat mass estimated from 4C model using the propagation of error was 0.25 kg, while the mean hydration factor obtained by the 4C model was found to be 0.74 ± 0.02 in the whole group of men and women. Interpretations & conclusion: The results of the present study suggest that DEXA and ADP methods can provide reasonably accurate estimates of body fat, while skinfold and bio-electrical impedance methods require the use of population specific equations. PMID:25027079

  4. Smartphone-Based Bioelectrical Impedance Analysis Devices for Daily Obesity Management.

    PubMed

    Choi, Ahyoung; Kim, Justin Younghyun; Jo, Seongwook; Jee, Jae Hwan; Heymsfield, Steven B; Bhagat, Yusuf A; Kim, Insoo; Cho, Jaegeol

    2015-01-01

    Current bioelectric impedance analysis (BIA) systems are often large, cumbersome devices which require strict electrode placement on the user, thus inhibiting mobile capabilities. In this work, we developed a handheld BIA device that measures impedance from multiple frequencies (5 kHz~200 kHz) with four contact electrodes and evaluated the BIA device against standard body composition analysis systems: a dual-energy X-ray absorptiometry (DXA) system (GE Lunar Prodigy, GE Healthcare, Buckinghamshire, UK) and a whole-body BIA system (InBody S10, InBody, Co. Ltd, Seoul, Korea). In the study, 568 healthy participants, varying widely in body mass index, age, and gender, were recruited at two research centers: the Samsung Medical Center (SMC) in South Korea and the Pennington Biomedical Research Center (PBRC) in the United States. From the measured impedance data, we analyzed individual body fat and skeletal muscle mass by applying linear regression analysis against target reference data. Results indicated strong correlations of impedance measurements between the prototype pathways and corresponding InBody S10 electrical pathways (R = 0.93, p < 0.0001). Additionally, body fat estimates from DXA did not yield significant differences (p > 0.728 (paired t-test), DXA mean body fat 29.45 ± 10.77 kg, estimated body fat 29.52 ± 12.53 kg). Thus, this portable BIA system shows a promising ability to estimate an individual's body composition that is comparable to large stationary BIA systems. PMID:26364636

  5. Assessment of trabecular bone quality in human cadaver calcaneus using scanning confocal ultrasound and dual x-ray absorptiometry (DEXA) measurements

    NASA Astrophysics Data System (ADS)

    Qin, Yixian; Xia, Yi; Lin, Wei; Rubin, Clinton; Gruber, Barry

    2004-10-01

    Microgravity and aging induced bone loss is a critical skeleton complication, occurring particularly in the weight-supporting skeleton, which leads to osteoporosis and fracture. Advents in quantitative ultrasound (QUS) provide a unique method for evaluating bone strength and density. Using a newly developed scanning confocal acoustic diagnostic (SCAD) system, QUS assessment for bone quality in the real body region was evaluated. A total of 19 human cadaver calcanei, age 66 to 97 years old, were tested by both SCAD and nonscan mode. The scanning region covered an approximate 40×40 mm2 with 0.5 mm resolution. Broadband ultrasound attenuation (BUA, dB/MHz), energy attenuation (ATT, dB), and ultrasound velocity (UV, m/s) were measured. The QUS properties were then correlated to the bone mineral density (BMD) measured by DEXA. Correlations between BMD and QUS parameters were significantly improved by using SCAD as compared to nonscan mode, yielding correlations between BMD and SCAD QUS parameters as R=0.82 (BUA), and R=0.86 (est. BMD). It is suggested that SCAD is feasible for in vivo bone quality mapping. It can be potentially used for monitoring instant changes of bone strength and density. [Work supported by the National Space Biomedical Research Institute (TD00207), and New York Center for Biotechnology.

  6. [Modification of bone quality by extreme physical stress. Bone density measurements in high-performance athletes using dual-energy x-ray absorptiometry].

    PubMed

    Sabo, D; Reiter, A; Pfeil, J; Güssbacher, A; Niethard, F U

    1996-01-01

    The treatment of osteoporosis is still controversial. Rehabilitation programs which stress strengthening exercises as well as impact loading activities increase the bone mass. On the other side activity level early in life has not been proven to correlate with increased bone mineral content later in life. Little is known on the influence of high performance sports on the bone density especially in athletes with high demands on weight bearing of the spine. In (n = 40) internationally top ranked high performance athletes of different disciplines (n = 28 weight-lifters, n = 6 sports-boxers and n = 6 bicycle-racers) bone density measurements of the lumbar spine and the left hip were performed. The measurements were carried out by dual-photonabsorptiometry (DEXA; QDR 2000, Siemens) and evaluated by an interactive software-programme (Hologic Inc.). The results were compared to the measurements of 21 age-matched male control individuals. In the high performance weight lifters there was an increase of bone density compared to the control individuals of 23% in the Ward's triangle (p < 0.01). The sports-boxers had an increase up to 17% (lumbar spine), 9% (hip) and 7% (Wards' triangle). In the third athletes group (Tour de France-bikers) BMD was decreased 10% in the lumbar spine, 14% in the hip and 17% in the Wards' triangle. Our results show that training programs stressing axial loads of the skeletal system may lead to an increase of BMD in the spine and the hip of young individuals. Other authors findings, that the BMD of endurance athletes may decrease, is confirmed. Nevertheless the bikers BMD-loss of 10 to 17% was surprisingly high.

  7. Radionuclide Sensors for Environmental Monitoring: From Flow Injection Solid-Phase Absorptiometry to Equilibration-Based Preconcentrating Minicolumn Sensors with Radiometric Detection

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.; O'Hara, Matthew J.; Devol, Timothy A.

    2008-02-01

    The development of in situ sensors for ultratrace detection applications in process control and environmental monitoring remains a significant challenge. Such sensors must meet difficult detection limit requirements while selectively detecting the analyte of interest in complex or otherwise challenging sample matrixes. Nowhere are these requirements more daunting than in the field of radionuclide sensing. The detection limit requirements can be extremely low. Nevertheless, a promising approach to radionuclide sensing based on preconcentrating minicolumn sensors has been developed. In addition, a method of operating such sensors, which we call equilibration-based sensing, has been developed that provides substantial preconcentration and a signal that is proportional to analyte concentration, while eliminating the need for reagents to regenerate the sorbent medium following each measurement. While this equilibration-based sensing method was developed for radionuclide sensing, it can be applied to nonradioactive species as well, given a suitable on-column detection system. By replacing costly sampling and laboratory analysis procedures, in situ sensors could have a significant impact on monitoring and long term stewardship applications. The aim of this review is to cover radionuclide sensors that combine some form of selective sorption with a radiometric detection method, and­as a primary aim­to comprehensively review preconcentrating minicolumn sensors for radionuclide detection. As a secondary aim, we will cover radionuclide sensors that combine sorption and scintillation in formats other than minicolumn sensors. We are particularly concerned with the detection of alpha- and beta-emitting radionuclides, which present particular challenges for measurements in liquid media.

  8. Solid phase extraction--multisyringe flow injection system for the spectrophotometric determination of selenium with 2,3-diaminonaphthalene.

    PubMed

    Serra, A M; Estela, J M; Coulomb, B; Boudenne, J L; Cerdà, V

    2010-04-15

    In the present work, a solid phase extraction (SPE) is hyphenated with an automatic MSFIA system to improve the selenite determination based on the reaction of selenite with aromatic o-diamines (such as 2,3-diaminonaphthalene (DAN)) to form the piazselenol complex. This reaction is greatly influenced by acid concentration, temperature, the time needed for colour development, and presence of foreign ions. For these reasons a thermostatic bath, glycine, and Na(2)-EDTA are used as heater, buffer, and masking agent, respectively. The principle of the determination is based on the sorption of the piazselenol onto a C(18) membrane disk, followed by its elution by acetonitrile. The piazselenol can then be detected by absorptiometry or fluorometry, both detection techniques being tested in our system. The best detection limit (1.7 microg L(-1)) and RSD (3.04%) are obtained by absorptiometry at 380 nm. Environmental samples were spiked and analyzed, with recoveries close to 100%. PMID:20188964

  9. Relationship between body composition and both cardiovascular risk factors and lung function in systemic sclerosis.

    PubMed

    Caramaschi, Paola; Biasi, Domenico; Caimmi, Cristian; Barausse, Giovanni; Gatti, Davide; Ferrari, Marcello; Pieropan, Sara; Sabbagh, Dania; Adami, Silvano

    2014-01-01

    The aims of this study were to evaluate body composition in systemic sclerosis (SSc) and to assess its association with the traditional risk factors for atherosclerosis and parameters of lung function. Eighty-six patients affected by SSc (13 men and 73 women, mean age 58.5 years, mean disease duration 10.7 years, 31 with diffuse form and 55 with limited pattern) underwent evaluation of body composition using a dual-energy X-ray (DXA) fan beam densitometer (GE Lunar iDXA) in order to assess total and regional body fat mass and fat-free mass. Clinical features, pulmonary function parameters, and the concomitant presence of the traditional cardiovascular risk factors were recorded. Android fat resulted to be higher in SSc patients with coexistence of hypercholesterolemia (P = 0.021), hypertension (P = 0.028), and overweight/obesity (P < 0.001) and positively correlated with body mass index (P < 0.001). Forced vital capacity (FVC) was inversely correlated with android fat (P = 0.034) and with the android fat/gynoid fat ratio (P = 0.013) and positively correlated with android lean (P = 0.041); the correlations were improved when FVC data were adjusted for sex, age, disease duration, and smoking habits (P = 0.010 for android fat, P = 0.010 for android fat/gynoid fat ratio, P = 0.011 for android lean). In this study, we showed that visceral abdominal fat, measured by DXA, is correlated with the main cardiovascular risk factors and lung volumes in SSc patients. Longitudinal studies are needed to evaluate if decrease of abdominal fat would improve lung function. PMID:24052413

  10. New perspectives in echographic diagnosis of osteoporosis on hip and spine.

    PubMed

    Casciaro, Sergio; Conversano, Francesco; Pisani, Paola; Muratore, Maurizio

    2015-01-01

    Currently, the accepted "gold standard" method for bone mineral density (BMD) measurement and osteoporosis diagnosis is dual-energy X-ray absorptiometry (DXA). However, actual DXA effectiveness is limited by several factors, including intrinsic accuracy uncertainties and possible errors in patient positioning and/or post-acquisition data analysis. DXA employment is also restricted by the typical issues related to ionizing radiation employment (high costs, need of dedicated structures and certified operators, unsuitability for population screenings). The only commercially-available alternative to DXA is represented by "quantitative ultrasound" (QUS) approaches, which are radiation-free, cheaper and portable, but they cannot be applied on the reference anatomical sites (lumbar spine and proximal femur). Therefore, their documented clinical usefulness is restricted to calcaneal applications on elderly patients (aged over 65 y), in combination with clinical risk factors and only for the identification of healthy subjects at low fracture risk. Literature-reported studies performed some QUS measurements on proximal femur, but their clinical translation is mostly hindered by intrinsic factors (e.g., device bulkiness). An innovative ultrasound methodology has been recently introduced, which performs a combined analysis of B-mode images and corresponding "raw" radiofrequency signals acquired during an echographic scan of the target reference anatomical site, providing two novel parameters: Osteoporosis Score and Fragility Score, indicative of BMD level and bone strength, respectively. This article will provide a brief review of the available systems for osteoporosis diagnosis in clinical routine contexts, followed by a synthesis of the most promising research results on the latest ultrasound developments for early osteoporosis diagnosis and fracture prevention. PMID:26604940

  11. Validity of Four Commercial Bioelectrical Impedance Scales in Measuring Body Fat among Chinese Children and Adolescents

    PubMed Central

    Wang, Lin; Hui, Stanley Sai-chuen

    2015-01-01

    The aim of the study is to examine the validity in predicting body fat percentage (%BF) of different bioelectrical impedance (BIA) devices among Chinese children and adolescents. A total of 255 Chinese children and adolescents aged 9–19 years old participated in the study. %BF was assessed by BIA scales, namely, Biodynamics-310 (Model A), Tanita TBF-543 (Model B), Tanita BC-545 (Model C), and InBody 520 (Model D). Dual-energy X-ray absorptiometry (DXA) was used as the criterion measurement. Lin's concordance correlation coefficients of estimated %BF between Model A, Model B, Model C, and DXA showed poor agreements for both genders. Moderate agreements for %BF were found between DXA and Model D measurements. In boys, differences in %BF were found between DXA and Model B and Model C. No significant %BF differences were found between Model A, Model D, and DXA. However, the two BIA analyzers showed a significant positive correlation between the bias and average %BF between BIA and DXA. In girls, differences in %BF were observed between Model B, Model C, Model D, and DXA. Model A and DXA showed no significant differences of %BF; however, the bias and the average %BF between the BIA and DXA had a significant positive correlation. Using embedded equations in BIA devices should be validated in assessing the %BF of Chinese children and adolescents. PMID:26167491

  12. The contribution of energy systems during the upper body Wingate anaerobic test.

    PubMed

    Lovell, Dale; Kerr, Ava; Wiegand, Aaron; Solomon, Colin; Harvey, Leonie; McLellan, Chris

    2013-02-01

    The purpose of this study was to measure the contribution of the aerobic, anaerobic lactic, and alactic systems during an upper body Wingate Anaerobic test (WAnT). Oxygen uptake and blood lactate were measured before, during, and after the WAnT and body composition analyzed by dual-energy X-ray absorptiometry. The contribution of the energy systems was 11.4% ± 1.4%, 60.3% ± 5.6%, and 28.3% ± 4.9% for the aerobic, anaerobic lactic, and alactic systems, respectively.

  13. TIBIAL PLATEAU PROXIMAL AND DISTAL BONE BEHAVE SIMILARLY: BOTH ARE ASSOCIATED WITH FEATURES OF KNEE OSTEOARTHRITIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing imperative to understand how changes in peri-articular bone relate to pathological progression of knee osteoarthritis (KOA). Peri-articular bone density can be measured using dual x-ray absorptiometry (DXA). The medial:lateral tibial BMD ratio (M:L BMD) is associated with MRI and...

  14. Baseline Vitamin D Status is Predictive of Longitudinal Change in Tibial BMD in Knee Osteoarthritis (OA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With its lack of effective treatment and high prevalence, the public health impact of OA is substantial. Peri-articular bone in OA can be evaluated with the medial:lateral tibial BMD ratio (M:L BMD) obtained from dual x-ray absorptiometry (DXA). Higher M:L BMD is associated with medial OA features...

  15. Nuclear magnetic resonance for measurement of body composition in infants and children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of body composition in infants and children is currently challenging. Air Displacement Plethysmography (ADP) has not been validated between ages 6 mo and 6 y and the requirement for stillness of the Dual-energy X-ray Absorptiometry (DXA) technique limits its use. Quantitative Nuclear Ma...

  16. Interaction of clothing and body mass index affects validity of air displacement plethysmography in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Examine the effect of alternate clothing schemes on validity of Bod Pod to estimate percent body fat (BF) compared to dual x-ray absorptiometry (DXA), and determine if these effects differ by body mass index (BMI). Design: Cross-sectional Subjects: 132 healthy adults aged 19-81 classifi...

  17. Standards and measurements for assessing bone health-workshop report co-sponsored by the International Society for Clinical Densitometry (ISCD) and the National Institute of Standards and Technology (NIST).

    PubMed

    Bennett, Herbert S; Dienstfrey, Andrew; Hudson, Lawrence T; Oreskovic, Tammy; Fuerst, Thomas; Shepherd, John

    2006-01-01

    This article reports and discusses the results of the recent ISCD-NIST Workshop on Standards and Measurements for Assessing Bone Health. The purpose of the workshop was to assess the status of efforts to standardize and compare results from dual-energy X-ray absorptiometry (DXA) scans, and then to identify and prioritize ongoing measurement and standards needs.

  18. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  19. Risk Factors for Osteoporosis Among Middle-Aged Women

    ERIC Educational Resources Information Center

    Turner, Lori W.; Wallace, Lorraine Silver; Perry, Blake Allen; Bleeker, Jeanne

    2004-01-01

    Objective: To investigate the risk factors for osteoporosis among a sample of middle-aged women. Methods: Adipose tissue and bone mineral density levels at the left femur, lumbar spine, and total body were assessed using dual-energy x-ray absorptiometry (DXA). Subjects (n=342) were surveyed regarding a variety of osteoporosis-related risk factors.…

  20. Fat and Lean Masses in Youths with Down Syndrome: Gender Differences

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Ara, Ignacio; Moreno, Luis A.; Vicente-Rodriguez, German; Casajus, Jose A.

    2011-01-01

    The present study aimed at comparing fat and lean masses between children and adolescents with and without Down syndrome (DS) and evaluating the presence of sexual dimorphism. Total and regional fat and lean masses were assessed by dual energy X-ray absorptiometry (DXA) and the percentage of body fat (%BF) by air-displacement plethysmography (ADP)…

  1. Body mass index bias in defining obesity of diverse young adults: The Training Intervention and Genetics of Exercise Response (TIGER) Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The BMI cut-score used to define overweight and obesity was derived primarily using data from Caucasian men and women. The present study evaluated the racial/ethnic bias of BMI to estimate the adiposity of young men and women (aged 17–35 years) using dual-energy X-ray absorptiometry (DXA) determinat...

  2. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows

    PubMed Central

    MAETANI, Ayami; ITOH, Megumi; NISHIHARA, Kahori; AOKI, Takahiro; OHTANI, Masayuki; SHIBANO, Kenichi; KAYANO, Mitsunori; YAMADA, Kazutaka

    2016-01-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  3. Smartphone-Based Bioelectrical Impedance Analysis Devices for Daily Obesity Management

    PubMed Central

    Choi, Ahyoung; Kim, Justin Younghyun; Jo, Seongwook; Jee, Jae Hwan; Heymsfield, Steven B.; Bhagat, Yusuf A.; Kim, Insoo; Cho, Jaegeol

    2015-01-01

    Current bioelectric impedance analysis (BIA) systems are often large, cumbersome devices which require strict electrode placement on the user, thus inhibiting mobile capabilities. In this work, we developed a handheld BIA device that measures impedance from multiple frequencies (5 kHz~200 kHz) with four contact electrodes and evaluated the BIA device against standard body composition analysis systems: a dual-energy X-ray absorptiometry (DXA) system (GE Lunar Prodigy, GE Healthcare, Buckinghamshire, UK) and a whole-body BIA system (InBody S10, InBody, Co. Ltd, Seoul, Korea). In the study, 568 healthy participants, varying widely in body mass index, age, and gender, were recruited at two research centers: the Samsung Medical Center (SMC) in South Korea and the Pennington Biomedical Research Center (PBRC) in the United States. From the measured impedance data, we analyzed individual body fat and skeletal muscle mass by applying linear regression analysis against target reference data. Results indicated strong correlations of impedance measurements between the prototype pathways and corresponding InBody S10 electrical pathways (R = 0.93, p < 0.0001). Additionally, body fat estimates from DXA did not yield significant differences (p > 0.728 (paired t-test), DXA mean body fat 29.45 ± 10.77 kg, estimated body fat 29.52 ± 12.53 kg). Thus, this portable BIA system shows a promising ability to estimate an individual’s body composition that is comparable to large stationary BIA systems. PMID:26364636

  4. Regional variation in the denial of reimbursement for bone mineral density testing among US Medicare beneficiaries.

    PubMed

    Curtis, Jeffrey R; Laster, Andrew J; Becker, David J; Carbone, Laura; Gary, Lisa C; Kilgore, Meredith L; Matthews, Robert; Morrisey, Michael A; Saag, Kenneth G; Tanner, S Bobo; Delzell, Elizabeth

    2008-01-01

    Although the Bone Mass Measurement Act outlines the indications for central dual-energy X-ray absorptiometry (DXA) testing for US Medicare beneficiaries, the specifics regarding the appropriate ICD-9 codes to use for covered indications have not been specified by Medicare and are sometimes ambiguous. We describe the extent to which DXA reimbursement was denied by gender and age of beneficiary, ICD-9 code submitted, time since previous DXA, whether the scan was performed in the physician's office and local Medicare carrier. Using Medicare administrative claims data from 1999 to 2005, we studied a 5% national sample of beneficiaries age > or =65 yr with part A+B coverage who were not health maintenance organization enrollees. We identified central DXA claims and evaluated the relationship between the factors listed above and reimbursement for central DXA (CPT code 76075). Multivariable logistic regression was used to evaluate the independent relationship between DXA reimbursement, ICD-9 diagnosis code, and Medicare carrier. For persons who had no DXA in 1999 or 2000 and who had 1 in 2001 or 2002, the proportion of DXA claims denied was 5.3% for women and 9.1% for men. For repeat DXAs performed within 23 mo, the proportion denied was approximately 19% and did not differ by sex. Reimbursement varied by more than 6-fold according to the ICD-9 diagnosis code submitted. For repeat DXAs performed at <23 mo, the proportion of claims denied ranged from 2% to 43%, depending on Medicare carrier. Denial of Medicare reimbursement for DXA varies significantly by sex, time since previous DXA, ICD-9 diagnosis code submitted, place of service (office vs facility), and local Medicare carrier. Greater guidance and transparency in coding policies are needed to ensure that DXA as a covered service is reimbursed for Medicare beneficiaries with the appropriate indications.

  5. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures. PMID:23612523

  6. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures.

  7. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    PubMed

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning.

  8. Reduced bone mass and normal calcium metabolism in systemic sclerosis with and without calcinosis.

    PubMed

    Di Munno, O; Mazzantini, M; Massei, P; Ferdeghini, M; Pitaro, N; Latorraca, A; Ferri, C

    1995-07-01

    Forty-three female patients with systemic sclerosis divided into subgroups based on the extent of skin involvement and the presence of calcinosis, and 50 sex and age-matched healthy controls were investigated for bone mineral density (BMD) on the basis of radial (dual photon absorptiometry, Osteograph, NIM), lumbar, and total body measurements (dual energy X-ray absorptiometry, Lunar DPX, Lunar Corp.), and for parameters of calcium metabolism. The patients showed a lower BMD (mean +/- SD; mg/cm2) than the controls at the radial (313 +/- 69 vs 347 +/- 73; p < 0.005), lumbar (974 +/- 143 vs 1081 +/- 154; p < 0.005), and total body (997 +/- 82 vs 1075 +/- 109; p < 0.05) determinations. The patients with the diffuse form of skin involvement had lower values than those with the limited form. There was a negative correlation between BMD and the duration of the disease. The presence of calcinosis was not found to have any effect on BMD. Calcium metabolism was found to be normal in each subgroup. It may be concluded that generalized osteoporosis is a feature of systemic sclerosis, with and without calcinosis. The extent and duration of the disease may play a role in determining bone loss. PMID:7586976

  9. Accuracy of a digital skinfold system for measuring skinfold thickness and estimating body fat.

    PubMed

    Amaral, Teresa F; Restivo, Maria Teresa; Guerra, Rita S; Marques, Elisa; Chousal, Maria F; Mota, Jorge

    2011-02-01

    The use of skinfold thickness measurements to evaluate the distribution of subcutaneous adipose tissue and to predict body fat has recognised advantages. However, the different types of skinfold calliper available present limitations that make them unattractive and perhaps less used in daily practice. The purpose of the present study was to evaluate the accuracy and functionality of a new digital skinfold system, the Liposoft 2008+Adipsmeter V0 (LA), for measuring skinfold thickness and determining body fat proportion (%BF). Skinfold thickness measurements made by the LA were compared with those obtained with a Harpenden (H) calliper from two samples of adults (n 45) and older adults (n 56) in a university-based cross-sectional study. A comparison was also conducted between estimated %BF from skinfolds and dual-energy X-ray absorptiometry. Bland and Altman plots show that skinfolds measured by the LA and H calliper are in high agreement, with a mean difference of 0·3 (95% CI -3·1, 3·4) mm. In regard to the %BF estimated from LA and H skinfolds measurement, the LA produced a similar approximation to dual-energy X-ray absorptiometry %BF, with a mean difference of 0·2 (95% CI -0·8, 1·2) %, compared with %BF obtained with the H calliper. The LA system is an accurate instrumentation and represents an innovation in the evaluation of skinfold thickness and body composition based on anthropometric measurement.

  10. Single- and dual-photon absorptiometry in osteoporosis and osteomalacia

    SciTech Connect

    Wahner, H.W.

    1987-10-01

    Single- and dual-photon absorptiometric methods have been used in the past to identify populations at risk for bone loss, to define the osteoporotic syndrome in terms of bone mass, and to evaluate treatment regimens to prevent bone loss. Technical improvements have made these procedures available for the nontraumatic measurement of bone mineral in the management of the individual patient suspected of having osteoporosis or other bone loss. This requires a different approach to data interpretation because decisions have to be made on the basis of a single measurement. Osteoporosis and osteomalacia cannot be distinguished by bone mineral measurements because both are characterized by a decrease in content of bone mineral. Bone mineral measurements can be used to assess the risk of fracture and, with it, the severity of bone loss. This allows treatment decisions to be made. Repeated measurements made under well-defined conditions allow estimation of long-term rate of bone loss and monitoring of treatment effect. 38 references.

  11. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton) and the initial measurement was not performed by a dual energy x-ray absorptiometry system (axial...

  12. Bone Density in Peripubertal Boys with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Neumeyer, Ann M.; Gates, Amy; Ferrone, Christine; Lee, Hang; Misra, Madhusmita

    2013-01-01

    We determined whether bone mineral density (BMD) is lower in boys with autism spectrum disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 controls 8-14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and…

  13. [Is it possible to-predict fracture in CKD patients?].

    PubMed

    Tsukamoto, Yusuke

    2016-09-01

    Routine examination of bone mineral density(BMD)by DXA(dual energy X-ray absorptiometry)is useful to predict bone fracture in both CKD nondialysis and dialysis patients. The cutoff value of BMD to predict bone fracture is different between genders and its predictive power is better in patients with lower serum PTH levels than higher counterpart. Increase in serum bone specific alkaline phosphatase is a better predictor of the bone fracture than serum PTH levels. PMID:27561344

  14. [Bone and Calcium Research Update 2015. Recent advances in clinical assessment of trabecular bone architecture: trabecular bone score (TBS)].

    PubMed

    Sone, Teruki

    2015-01-01

    Although dual-energy X-ray absorptiometry (DXA) is regarded as the gold-standard technique for diagnosing osteoporosis, bone mineral density (BMD) alone by DXA is not sufficient for bone strength assessment. Trabecular bone score (TBS) is a texture analysis parameter that evaluates pixel gray-level variations in DXA images of the lumbar spine and allows to assess bone microarchitectural status that is one of the determinants of bone strength. Recent clinical evidences show that TBS is associated with fracture risk in primary and secondary osteoporosis, has a complementary role to lumbar spine BMD and responds to osteoporosis medications somewhat differently than BMD. Thus TBS has the potential to become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.

  15. Improving Rural Bone Health and Minimizing Fracture Risk in West Virginia: Validation of the World Health Organization FRAX Assessment Tool as a Phone Survey for Osteoporosis Detection.

    PubMed

    Shuler, Franklin D; Scott, Kelly; Wilson-Byrne, Timothy; Morgan, Linda; Olajide, Omolola B

    2016-01-01

    West Virginia ranks second nationally in population ≥ 65 years old placing our state at greater risk for osteoporosis and fracture. The gold standard for detecting osteoporosis is dual X-ray absorptiometry (DXA), yet over half of West Virginia's counties do not have this machine. Due to access barriers, a validated phone-administered fracture prediction tool would be beneficial for osteoporosis screening. The World Health Organization's FRAX fracture prediction tool was administered as a phone survey to 45 patients; these results were compared to DXA bone mineral density determination. Results confirmed that the FRAX phone survey is as reliable as DXA in detecting osteoporosis or clinically significant osteopenia: 92% positive predictive value, 100% negative predictive value, 100% sensitivity and 91% specificity when compared to the gold standard. These promising results allow for the development of telephone-based protocols to improve osteoporosis detection, referral and treatment especially in areas with health care access barriers. PMID:27301160

  16. OST risk index and calcaneus bone densitometry in osteoporosis diagnosis.

    PubMed

    Pérez-Castrillón, José L; Sagredo, Manuel G; Conde, Rosa; del Pino-Montes, Javier; de Luis, Daniel

    2007-01-01

    The gold-standard method for osteoporosis diagnosis is by dual-energy X-ray absorptiometry (DXA) of the lumbar spine and/or hip. DXA is expensive and alternative approaches are being analyzed. The objective of this study was to evaluate whether the Osteoporosis Self-Assessment Tool (OST) combined with calcaneal DXA improves the sensitivity and specificity of the DXA. One hundred and sixty-one (67 males and 94 females) outpatients referred due to suspected osteoporosis or lumbar pain were included. Hip, spinal, or calcaneal DXA was performed in all patients and the OST index was administered. The cutoff point for patients of high- or low-risk osteoporosis was 2 for women and 3 for men. The mean OST index value was 3.62+/-4.3. Twenty-seven percent of the patients were osteoporotic. Sixty-two percent presented a low risk and 38% a high risk. In men, the OST had a sensitivity of 39% and a specificity of 86%, whereas in women the sensitivity was 94% with a specificity of 59%. The combination of the calcaneal DXA with the OST index did not modify the validity of DXA in men. In women, the sensitivity of the different cutoff points was improved at the expense of a decrease in the specificity without modifying the area under the curve. The combination of the calcaneal DXA with the OST index did not improve the value of each of the separate techniques. The OST index is useful in women to facilitate the densitometry indication for hip and/or spine.

  17. Dual-energy X-ray performs as well as clinical computed tomography for the measurement of visceral fat.

    PubMed

    Micklesfield, Lisa K; Goedecke, Julia H; Punyanitya, Mark; Wilson, Kevin E; Kelly, Thomas L

    2012-05-01

    Visceral adipose tissue (VAT) is associated with adverse health effects including cardiovascular disease and type 2 diabetes. We developed a dual-energy X-ray absorptiometry (DXA) measurement of visceral adipose tissue (DXA-VAT) as a low cost and low radiation alternative to computed tomography (CT). DXA-VAT was compared to VAT assessed using CT by an expert reader (E-VAT). In addition, the same CT slice was also read by a clinical radiographer (C-VAT) and a best-fit anthropomorphic and demographic VAT model (A-VAT) was developed. Whole body DXA, CT at L4-L5, and anthropometry were measured on 272 black and white South African women (age 29 ± 8 years, BMI 28 ± 7 kg/m(2), waist circumference (WC) 89 ± 16 cm). Approximately one-half of the dataset (n = 141) was randomly selected and used as a training set for the development of DXA-VAT and A-VAT, which were then used to estimate VAT on the remaining 131 women in a blinded fashion. DXA-VAT (r = 0.93, standard error of the estimate (SEE) = 16 cm(2)) and C-VAT (r = 0.93, SEE = 16 cm(2)) were strongly correlated to E-VAT. These correlations with E-VAT were significantly stronger (P < 0.001) than the correlations of individual anthropometry measurements and the A-VAT model (WC + age, r = 0.79, SEE = 27 cm(2)). The inclusion of anthropometric and demographic measurements did not substantially improve the correlation between DXA-VAT and E-VAT. DXA-VAT performed as well as a clinical read of VAT from a CT scan and better than anthropomorphic and demographic models. PMID:22240726

  18. Reliability and intermethod agreement for body fat assessment among two field and two laboratory methods in adolescents.

    PubMed

    Vicente-Rodríguez, Germán; Rey-López, Juan P; Mesana, Maria I; Poortvliet, Eric; Ortega, Francisco B; Polito, Angela; Nagy, Eniko; Widhalm, Kurt; Sjöström, Michael; Moreno, Luis A

    2012-01-01

    To increase knowledge about reliability and intermethods agreement for body fat (BF) is of interest for assessment, interpretation, and comparison purposes. It was aimed to examine intra- and inter-rater reliability, interday variability, and degree of agreement for BF using air-displacement plethysmography (Bod-Pod), dual-energy X-ray absorptiometry (DXA), bioelectrical impedance analysis (BIA), and skinfold measurements in European adolescents. Fifty-four adolescents (25 females) from Zaragoza and 30 (14 females) from Stockholm, aged 13-17 years participated in this study. Two trained raters in each center assessed BF with Bod-Pod, DXA, BIA, and anthropometry (DXA only in Zaragoza). Intermethod agreement and reliability were studied using a 4-way ANOVA for the same rater on the first day and two additional measurements on a second day, one each rater. Technical error of measurement (TEM) and percentage coefficient of reliability (%R) were also reported. No significant intrarater, inter-rater, or interday effect was observed for %BF for any method in either of the cities. In Zaragoza, %BF was significantly different when measured by Bod-Pod and BIA in comparison with anthropometry and DXA (all P < 0.001). The same result was observed in Stockholm (P < 0.001), except that DXA was not measured. Bod-Pod, DXA, BIA, and anthropometry are reliable for %BF repeated assessment within the same day by the same or different raters or in consecutive days by the same rater. Bod-Pod showed close agreement with BIA as did DXA with anthropometry; however, Bod-Pod and BIA presented higher values of %BF than anthropometry and DXA.

  19. Development of an Automated Bone Mineral Density Software Application: Facilitation Radiologic Reporting and Improvement of Accuracy.

    PubMed

    Tsai, I-Ta; Tsai, Meng-Yuan; Wu, Ming-Ting; Chen, Clement Kuen-Huang

    2016-06-01

    The conventional method of bone mineral density (BMD) report production by dictation and transcription is time consuming and prone to error. We developed an automated BMD reporting system based on the raw data from a dual energy X-ray absorptiometry (DXA) scanner for facilitating the report generation. The automated BMD reporting system, a web application, digests the DXA's raw data and automatically generates preliminary reports. In Jan. 2014, 500 examinations were randomized into an automatic group (AG) and a manual group (MG), and the speed of report generation was compared. For evaluation of the accuracy and analysis of errors, 5120 examinations during Jan. 2013 and Dec. 2013 were enrolled retrospectively, and the context of automatically generated reports (AR) was compared with the formal manual reports (MR). The average time spent for report generation in AG and in MG was 264 and 1452 s, respectively (p < 0.001). The accuracy of calculation of T and Z scores in AR is 100 %. The overall accuracy of AR and MR is 98.8 and 93.7 %, respectively (p < 0.001). The mis-categorization rate in AR and MR is 0.039 and 0.273 %, respectively (p = 0.0013). Errors occurred in AR and can be grouped into key-in errors by technicians and need for additional judgements. We constructed an efficient and reliable automated BMD reporting system. It facilitates current clinical service and potentially prevents human errors from technicians, transcriptionists, and radiologists.

  20. Single x-ray transmission system for bone mineral density determination

    SciTech Connect

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  1. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting.

  2. Trained vs untrained evaluator assessment of body condition score as a predictor of percent body fat in adult cats.

    PubMed

    Shoveller, Anna K; DiGennaro, Joe; Lanman, Cynthia; Spangler, Dawn

    2014-12-01

    Body condition scoring (BCS) provides a readily available technique that can be used by both veterinary professionals and owners to assess the body condition of cats, and diagnose overweight or underweight conditions. The objective of this study was to evaluate a five-point BCS system with half-point delineations using dual-energy x-ray absorptiometry (DXA). Four evaluators (a veterinarian, veterinary technician, trained scorer and untrained scorer) assessed 133 neutered adult cats. For all scorers, BCS score was more strongly correlated with percent body fat than with body weight. Percent body fat increased by approximately 7% within each step increase in BCS. The veterinarian had the strongest correlation coefficient between BCS and percent fat (r = 0.80). Mean body fat in cats classified as being in ideal body condition was 12 and 19%, for 3.0 and 3.5 BCS, respectively. Within BCS category, male cats were significantly heavier in body weight than females within the same assigned BCS category. However, DXA-measured percent body fat did not differ significantly between male and female cats within BCS category, as assigned by the veterinarian (P >0.13). Conversely, when assessed by others, mean percent body fat within BCS category was lower in males than females for cats classified as being overweight (BCS >4.0). The results of this study show that using a BCS system that has been validated within a range of normal weight to moderately overweight cats can help to differentiate between lean cats and cats that may not be excessively overweight, but that still carry a higher proportion of body fat.

  3. Air-displacement plethysmography pediatric option in 2-6 years old using the four-compartment model as a criterion method.

    PubMed

    Fields, David A; Allison, David B

    2012-08-01

    The objective of this study was to determine the accuracy, precision, bias, and reliability of percent fat (%fat) determined by air-displacement plethysmography (ADP) with the pediatric option against the four-compartment model in 31 children (4.1 ± 1.2 years, 103.3 ± 10.2 cm, 17.5 ± 3.4 kg). %Fat was determined by (BOD POD Body Composition System; COSMED USA, Concord, CA) with the pediatric option. Total body water (TBW) was determined by isotope dilution ((2)H(2)O; 0.2 g/kg) while bone mineral was determined by dual-energy X-ray absorptiometry (DXA) (Lunar iDXA v13.31; GE, Fairfield, CT and analyzed using enCore 2010 software). The four-compartment model by Lohman was used as the criterion measure of %fat. The regression for %fat by ADP vs. %fat by the four-compartment model did not deviate from the line of identity where: y = 0.849(x) + 4.291. ADP explained 75.2% of the variance in %fat by the four-compartment model while the standard error of the estimate (SEE) was 2.09 %fat. The Bland-Altman analysis showed %fat by ADP did not exhibit any bias across the range of fatness (r = 0.04; P = 0.81). The reliability of ADP was assessed by the coefficient of variation (CV), within-subject SD, and Cronbach's α. The CV was 3.5%, within-subject SD was 0.9%, and Cronbach's α was 0.95. In conclusion, ADP with the pediatric option is accurate, precise, reliable, and without bias in estimating %fat in children 2-6 years old.

  4. Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype.

    PubMed

    Haine, Elsa; Salles, Jean-Pierre; Khau Van Kien, Philippe; Conte-Auriol, Françoise; Gennero, Isabelle; Plancke, Aurélie; Julia, Sophie; Dulac, Yves; Tauber, Maithé; Edouard, Thomas

    2015-08-01

    Marfan syndrome (MFS) is a rare connective tissue disorder caused by mutation in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1), leading to transforming growth factor-beta (TGF-β) signaling dysregulation. Although decreased axial and peripheral bone mineral density (BMD) has been reported in adults with MFS, data about the evolution of bone mass during childhood and adolescence are limited. The aim of the present study was to evaluate bone and muscle characteristics in children, adolescents, and young adults with MFS. The study population included 48 children and young adults (22 girls) with MFS with a median age of 11.9 years (range 5.3 to 25.2 years). The axial skeleton was analyzed at the lumbar spine using dual-energy X-ray absorptiometry (DXA), whereas the appendicular skeleton (hand) was evaluated using the BoneXpert system (with the calculation of the Bone Health Index). Muscle mass was measured by DXA. Compared with healthy age-matched controls, bone mass at the axial and appendicular levels and muscle mass were decreased in children with MFS and worsened from childhood to adulthood. Vitamin D deficiency (<50 nmol/L) was found in about a quarter of patients. Serum vitamin D levels were negatively correlated with age and positively correlated with lumbar spine areal and volumetric BMD. Lean body mass (LBM) Z-scores were positively associated with total body bone mineral content (TB-BMC) Z-scores, and LBM was an independent predictor of TB-BMC values, suggesting that muscle hypoplasia could explain at least in part the bone loss in MFS. Patients with a FBN1 premature termination codon mutation had a more severe musculoskeletal phenotype than patients with an inframe mutation, suggesting the involvement of TGF-β signaling dysregulation in the pathophysiologic mechanisms. In light of these results, we recommend that measurement of bone mineral status should be part of the longitudinal clinical investigation of MFS children. PMID

  5. Bone densitometry in infants and young children: the 2013 ISCD Pediatric Official Positions.

    PubMed

    Kalkwarf, Heidi J; Abrams, Steven A; DiMeglio, Linda A; Koo, Winston W K; Specker, Bonny L; Weiler, Hope

    2014-01-01

    Infants and children <5 yr were not included in the 2007 International Society for Clinical Densitometry Official Positions regarding Skeletal Health Assessment of Children and Adolescents. To advance clinical care of very young children, the International Society for Clinical Densitometry 2013 Position Development Conference reviewed the literature addressing appropriate methods and skeletal sites for clinical dual-energy X-ray absorptiometry (DXA) measurements in infants and young children and how results should be reported. DXA whole-body bone mineral content and bone mineral density for children ≥3 yr and DXA lumbar spine measurements for infants and young children 0-5 yr were identified as feasible and reproducible. There was insufficient information regarding methodology, reproducibility, and reference data to recommended forearm and femur measurements at this time. Appropriate methods to account for growth delay when interpreting DXA results for children <5 yr are currently unknown. Reference data for children 0-5 yr at multiple skeletal sites are insufficient and are needed to enable interpretation of DXA measurements. Given the current scarcity of evidence in many areas, it is likely that these positions will change over time as new data become available.

  6. bone mineral densities and mechanical properties of retrieved femoral bone samples in relation to bone mineral densities measured in the respective patients.

    PubMed

    Haba, Yvonne; Skripitz, Ralf; Lindner, Tobias; Köckerling, Martin; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The bone mineral density (BMD) of retrieved cancellous bone samples is compared to the BMD measured in vivo in the respective osteoarthritic patients. Furthermore, mechanical properties, in terms of structural modulus (E(s)) and ultimate compression strength (σ(max)) of the bone samples, are correlated to BMD data. Human femoral heads were retrieved from 13 osteoarthritic patients undergoing total hip replacement. Subsequently, the BMD of each bone sample was analysed using dual energy X-ray absorptiometry (DXA) as well as ashing. Furthermore, BMDs of the proximal femur were analysed preoperatively in the respective patients by DXA. BMDs of the femoral neck and head showed a wide variation, from 1016 ± 166 mg/cm(2) to 1376 ± 404 mg/cm(2). BMDs of the bone samples measured by DXA and ashing yielded values of 315 ± 199 mg/cm(2) and 347 ± 113 mg/cm(3), respectively. E(s) and σ(max) amounted to 232 ± 151 N/mm(2) and 6.4 ± 3.7 N/mm(2). Significant correlation was found between the DXA and ashing data on the bone samples and the DXA data from the patients at the femoral head (r = 0.85 and 0.79, resp.). E(s) correlated significantly with BMD in the patients and bone samples as well as the ashing data (r = 0.79, r = 0.82, and r = 0.8, resp.).

  7. Does osteoporosis classification using heel BMD agree across manufacturers?

    PubMed

    Grigorian, M; Shepherd, J A; Cheng, X G; Njeh, C F; Toschke, J O; Genant, H K

    2002-08-01

    The lack of standardization in bone mineral density (BMD) measurements is known. Several studies have been carried out to cross-calibrate the axial dual X-ray absorptiometry (DXA) devices. Recently, a number of peripheral DXA (pDXA) densitometers have been introduced. In this study we evaluated the agreement between two heel DXA devices on BMD and T-scores. A total of 99 females aged 21-78 years (ca. 16 per decade) had their non-dominant heel BMD measured using the PIXI (Lunar Inc.) and the Apollo (Norland Medical) pDXA scanners. The mean BMD values were 0.492 and 0.607 g/cm(2) and the mean T-scores using manufacturers' specified reference data were -0.07 and -0.25 for the PIXI and Apollo, respectively. Both the BMD and T-score intermachine relationships were highly correlated but showed significant nonidentity slopes and non-zero offsets. The diagnostic comparison on T-scores resulted in 86% agreement between the instruments (weighted kappa score of 0.550). Normalizing the reference peaks and SDs using this study's young adult population BMD results removed the systematic T-score disagreement. We found that PIXI and Apollo are highly correlated. Differences in BMD values are mainly due to different region of interest (ROI) definitions and additional T-score disagreement reflects the difference in normative databases.

  8. Using Magnetic Resonance for Predicting Femoral Strength: Added Value with respect to Bone Densitometry

    PubMed Central

    Louis, Olivia; Fierens, Yves; Strantza, Maria; Luypaert, Robert; de Mey, Johan; Cattrysse, Erik

    2015-01-01

    Background and Purpose. To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. Material and Methods. Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable. Results. Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r2 range of 0.41–0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r2 = 0.68). Conclusions. The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction. PMID:26413544

  9. IL6 and IL1B polymorphisms are associated with fat mass in older men: the MrOS Study Sweden.

    PubMed

    Strandberg, Louise; Mellström, Dan; Ljunggren, Osten; Grundberg, Elin; Karlsson, Magnus K; Holmberg, Anna H; Orwoll, Eric S; Eriksson, Anna L; Svedberg, Johan; Bengtsson, Magnus; Ohlsson, Claes; Jansson, John-Olov

    2008-03-01

    There is growing evidence that immune functions are linked to the regulation of body fat. Our studies of knockout mice indicate that both endogenous interleukin (IL)-6 and IL-1 can suppress mature-onset obesity. We now investigated whether four common polymorphisms of the IL6 and IL1 systems are associated with the fat mass measured with dual-energy X-ray absorptiometry (DXA) in elderly men (n = 3,014). The study subjects were from the Swedish part of the MrOS multicenter population study and 69-81 years of age. The IL6 -174 G>C (Minor allele frequency (MAF) = 48%) gene promoter polymorphism was associated with the primary outcome total fat mass (P = 0.006) and regional fat masses, but not with lean body mass. The IL1B -31T>C (MAF = 34%) polymorphism was also associated with total fat (P = 0.007) and regional fat masses, but not lean body mass. The IL-1 receptor antagonist (IL-1ra) gene (IL1RN) +2018 T>C (MAF = 27%) polymorphism (in linkage disequilibrium (LD) with a well-studied variable number tandem repeat of 86 base pair (bp)) and IL1B +3953 C>T (MAF = 26%) polymorphism were not associated with total fat mass. In conclusion, the IL-1 and IL-6 systems, shown to suppress mature-onset obesity in experimental animals, contain gene polymorphisms that are associated with fat, but not lean, mass in elderly men.

  10. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  11. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  12. Dental panoramic image analysis for enhancement biomarker of mandibular condyle for osteoporosis early detection

    NASA Astrophysics Data System (ADS)

    Suprijanto; Azhari; Juliastuti, E.; Septyvergy, A.; Setyagar, N. P. P.

    2016-03-01

    Osteoporosis is a degenerative disease characterized by low Bone Mineral Density (BMD). Currently, a BMD level is determined by Dual Energy X-ray Absorptiometry (DXA) at the lumbar vertebrae and femur. Previous studies reported that dental panoramic radiography image has potential information for early osteoporosis detection. This work reported alternative scheme, that consists of the determination of the Region of Interest (ROI) the condyle mandibular in the image as biomarker and feature extraction from ROI and classification of bone conditions. The minimum value of intensity in the cavity area is used to compensate an offset on the ROI. For feature extraction, the fraction of intensity values in the ROI that represent high bone density and the ROI total area is perfomed. The classification will be evaluated from the ability of each feature and its combinations for the BMD detection in 2 classes (normal and abnormal), with the artificial neural network method. The evaluation system used 105 panoramic image data from menopause women which consist of 36 training data and 69 test data that were divided into 2 classes. The 2 classes of classification obtained 88.0% accuracy rate and 88.0% sensitivity rate.

  13. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  14. [Muscle-wasting in end stage renal disease in dialysis treatment: a review].

    PubMed

    Battaglia, Yuri; Galeano, Dario; Cojocaru, Elena; Fiorini, Fulvio; Forcellini, Silvia; Zanoli, Luca; Storari, Alda; Granata, Antonio

    2016-01-01

    Progressive and generalized loss of muscle mass (muscle wasting) is a frequent complication in dialysis patients. Common uremic signs and symptoms such as insulin-resistance, increase in glucocorticoid activity, metabolic acidosis, malnutrition, inflammation and dialysis per se contribute to muscle wasting by modulating proteolytic intracellular mechanisms (ubiquitin-proteasome system, activation of caspase-3 and IGF-1/PI3K/Akt pathway). Since muscle wasting is associated with an increase in mortality, bone fractures and worsening in life quality, a prompt and personalised diagnostic and therapeutic approach seems to be essential in dialysis patients. At present, nuclear magnetic resonance (NMR), computed tomography (CT), dual-energy x-ray absorptiometry (DXA), impedance analysis, bioelectric impedance analysis (BIA) and anthropometric measurements are the main tools used to assess skeletal muscle mass. Aerobic and anaerobic training programmes and treatment of uremic complications reduce muscle wasting and increase muscle strength in uremic patients. The present review analyses the most recent data about the physiopathology, diagnosis, therapy and future perspectives of treatment of muscle wasting in dialysis patients. PMID:27067216

  15. Comparison of Body Adiposity Index (BAI) and Body Mass Index (BMI) with Estimations of % Body Fat in Clinically Severe Obese Women

    PubMed Central

    Geliebter, Allan; Atalayer, Deniz; Flancbaum, Louis; Gibson, Charlisa D.

    2012-01-01

    Body Adiposity Index (BAI), a new surrogate measure of body fat (hip circumference/[height1.5 -18]), has been proposed as an alternative to BMI. We compared BAI with BMI, and each of them with laboratory measures of body fat-derived from bioimpedance analysis (BIA), air displacement (ADP), and dual-energy x-ray absorptiometry (DXA) in clinically severe obese (CSO) participants. Nineteen pre-bariatric surgery CSO, non-diabetic women were recruited (age=32.6±7.7 SD; BMI=46.5±9.0 kg/m2). Anthropometrics and body fat percentage (% fat) were determined from BIA, ADP, and DXA. Scatter plots with lines of equality and Bland-Altman plots were used to compare BAI and BMI with % fat derived from BIA, ADP, and DXA. BAI and BMI correlated highly with each other (r=0.90, p<0.001). Both BAI and BMI correlated significantly with % fat from BIA and ADP. BAI, however, did not correlate significantly with % fat from DXA (r=0.42, p=0.08) whereas BMI did (r=0.65, p=0.003). BMI was also the single best predictor of % fat from both BIA (r2=0.80, p<0.001) and ADP (r2=0.65, p<0.001). The regression analysis showed that the standard error of the estimate (SEE) or residual error around the regression lines was greater for BAI comparisons than for BMI comparisons with BIA, ADP, and DXA. Consistent with this, the Bland and Altman plots indicated wider 95% confidence intervals for BAI difference comparisons than for BMI difference comparisons with their respective means with BIA, ADP, and DXA. Thus, BAI does not appear to be an appropriate proxy for BMI in clinically severe obese (CSO) women. PMID:23592658

  16. Body composition assessment in overweight women: validation of air displacement plethysmography

    PubMed Central

    Wingfield, Hailee L.; Smith-Ryan, Abbie E.; Woessner, Mary N.; Melvin, Malia N.; Fultz, Sarah N.; Graff, Rachel M.

    2015-01-01

    Summary Purpose The purpose of this study was to evaluate the validity and reliability of air displacement plethysmography (ADP) compared to a dual energy x-ray absorptiometry (DXA) criterion for body composition measurement in overweight and obese women (BMI ≥ 25.0 kg m2). Subjects/Methods Twenty-four overweight and obese women (Mean ± SD; Age: 36.6 ± 12.0 years; Height: 166.4 ± 5.8 cm; Weight: 86.5 ± 14.2 kg; Body Fat: 38.5 ± 3.7%; BMI: 31.3 ± 5.5 kg m2) were tested after an 8-h fast. Fat mass (FM), fat-free mass (FFM) and percent body fat (%BF) were measured by ADP and compared to values determined by the DXA criterion. FFM from DXA was calculated as lean mass plus bone mineral content. A paired samples t-test was used to test for significant differences in the body composition variables between methods. A one-way ANOVA along with intraclass correlation coefficient (ICC), SEM,%SEM and MD was used to represent reliability. Results Validity data comparing ADP and DXA demonstrated no significant difference in FM (ADP-DXA FM = 0.99 kg; P = 0.113), FFM (0.98 kg; P = 0.115) and %BF (1.56%; P = 0.540). Reliability data for ADP between the first and second trials showed no significant difference in FM (P = 0.168; ICC = 0.994; SEM = 0.668), FFM (P = 0.058; ICC = 0.973; SEM = 0.892) or %BF (P = 0.121; ICC = 0.971; SEM = 0.813). Conclusions For overweight and obese women, ADP was found to be a valid measure of FM, FFM and %BF when compared with DXA. The reliability of ADP was supported for all body composition variables. PMID:23855413

  17. Use of prediction equations to determine the accuracy of whole-body fat and fat-free mass and appendicular skeletal muscle mass measurements from a single abdominal image using computed tomography in advanced cancer patients.

    PubMed

    Kilgour, Robert D; Cardiff, Katrina; Rosenthall, Leonard; Lucar, Enriqueta; Trutschnigg, Barbara; Vigano, Antonio

    2016-01-01

    Measurements of body composition using dual-energy X-ray absorptiometry (DXA) and single abdominal images from computed tomography (CT) in advanced cancer patients (ACP) have important diagnostic and prognostic value. The question arises as to whether CT scans can serve as surrogates for DXA in terms of whole-body fat-free mass (FFM), whole-body fat mass (FM), and appendicular skeletal muscle (ASM) mass. Predictive equations to estimate body composition for ACP from CT images have been proposed (Mourtzakis et al. 2008; Appl. Physiol. Nutr. Metabol. 33(5): 997-1006); however, these equations have yet to be validated in an independent cohort of ACP. Thus, this study evaluated the accuracy of these equations in estimating FFM, FM, and ASM mass using CT images at the level of the third lumbar vertebrae and compared these values with DXA measurements. FFM, FM, and ASM mass were estimated from the prediction equations proposed by Mourtzakis and colleagues (2008) using single abdominal CT images from 43 ACP and were compared with whole-body DXA scans using Spearman correlations and Bland-Altman analyses. Despite a moderate to high correlation between the actual (DXA) and predicted (CT) values for FM (rho = 0.93; p ≤ 0.001), FFM (rho = 0.78; p ≤ 0.001), and ASM mass (rho = 0.70; p ≤ 0.001), Bland-Altman analyses revealed large range-of-agreement differences between the 2 methods (29.39 kg for FFM, 15.47 kg for FM, and 3.99 kg for ASM mass). Based on the magnitude of these differences, we concluded that prediction equations using single abdominal CT images have poor accuracy, cannot be considered as surrogates for DXA, and may have limited clinical utility. PMID:26695688

  18. Systemic administration of lithium improves distracted bone regeneration in rats.

    PubMed

    Wang, Xuemei; Zhu, Songsong; Jiang, Xiaowen; Li, Yunfeng; Song, Donghui; Hu, Jing

    2015-06-01

    Lithium, popular in psychology field, has been recognized as an activator component of the canonical Wnt signaling pathway. The effect of lithium on osteogenesis or on the human fracture risk has been widely reported. However, little is known on its role in distraction osteogenesis to date. In this study, the effect of systematic administrated lithium on distraction osteogenesis in a rat model was investigated. The osteotomy was performed on the right tibia in 40 adult male Sprague-Dawley rats. Then they were randomly assigned into two equal groups (n = 20/group), which underwent Lithium or saline treatment through gastric gavage until the day they were killed. One week after the osteotomy, the tibias were distracted for 14 days (rate 0.6 mm/day). Following 8 weeks consolidation period, the distracted tibias in both groups were harvested and examined by X-ray plain radiography, histology, dual-energy X-ray absorptiometry, Micro-CT, and biomechanical tests. The results showed that lithium group possessed higher bone mineral density, more mature new bone tissue, and better regenerated bone mass continuity in the distraction gaps without any local or systemic adverse effects was encountered. This study suggested lithium could increase bony callus ossification volume and accelerate distracted tissue mineralization to facilitate bone regeneration in distraction gap.

  19. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study.

    PubMed

    Hans, Didier; Goertzen, Andrew L; Krieg, Marc-Antoine; Leslie, William D

    2011-11-01

    The measurement of BMD by dual-energy X-ray absorptiometry (DXA) is the "gold standard" for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel gray-level texture measurement that can be extracted from DXA images, correlates with 3D parameters of bone microarchitecture. Our aim was to evaluate the ability of lumbar spine TBS to predict future clinical osteoporotic fractures. A total of 29,407 women 50 years of age or older at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Health service records were assessed for the incidence of nontraumatic osteoporotic fracture codes subsequent to BMD testing (mean follow-up 4.7 years). Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Osteoporotic fractures were identified in 1668 (5.7%) women, including 439 (1.5%) spine and 293 (1.0%) hip fractures. Significantly lower spine TBS and BMD were identified in women with major osteoporotic, spine, and hip fractures (all p < 0.0001). Spine TBS and BMD predicted fractures equally well, and the combination was superior to either measurement alone (p < 0.001). Spine TBS predicts osteoporotic fractures and provides information that is independent of spine and hip BMD. Combining the TBS trabecular texture index with BMD incrementally improves fracture prediction in postmenopausal women.

  20. Body Fat and Breast Cancer Risk in Postmenopausal Women: A Longitudinal Study

    PubMed Central

    Rohan, Thomas E.; Heo, Moonseong; Choi, Lydia; Freudenheim, Jo L.; Kamensky, Victor; Ochs-Balcom, Heather M.; Thomson, Cynthia A.; Vitolins, Mara Z.; Wassertheil-Smoller, Sylvia; Kabat, Geoffrey C.

    2013-01-01

    Associations between anthropometric indices of obesity and breast cancer risk may fail to capture the true relationship between excess body fat and risk. We used dual-energy-X-ray-absorptiometry- (DXA-) derived measures of body fat obtained in the Women's Health Initiative to examine the association between body fat and breast cancer risk; we compared these risk estimates with those for conventional anthropometric measurements. The study included 10,960 postmenopausal women aged 50–79 years at recruitment, with baseline DXA measurements and no history of breast cancer. During followup (median: 12.9 years), 503 incident breast cancer cases were diagnosed. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazards models. All baseline DXA-derived body fat measures showed strong positive associations with breast cancer risk. The multivariable-adjusted HR for the uppermost quintile level (versus lowest) ranged from 1.53 (95% CI 1.14–2.07) for fat mass of the right leg to 2.05 (1.50–2.79) for fat mass of the trunk. Anthropometric indices (categorized by quintiles) of obesity (BMI (1.97, 1.45–2.68), waist circumference (1.97, 1.46–2.65), and waist : hip ratio (1.91, 1.41–2.58)) were all strongly, positively associated with risk and did not differ from DXA-derived measures in prediction of risk. PMID:23690776

  1. Usefulness of bone density measurement in fallers.

    PubMed

    Blain, Hubert; Rolland, Yves; Beauchet, Olivier; Annweiler, Cedric; Benhamou, Claude-Laurent; Benetos, Athanase; Berrut, Gilles; Audran, Maurice; Bendavid, Sauveur; Bousson, Valérie; Briot, Karine; Brazier, Michel; Breuil, Véronique; Chapuis, Laure; Chapurlat, Roland; Cohen-Solal, Martine; Cortet, Bernard; Dargent, Patricia; Fardellone, Patrice; Feron, Jean-Marc; Gauvain, Jean-Bernard; Guggenbuhl, Pascal; Hanon, Olivier; Laroche, Michel; Kolta, Sami; Lespessailles, Eric; Letombe, Brigitte; Mallet, Eric; Marcelli, Christian; Orcel, Philippe; Puisieux, François; Seret, Patrick; Souberbielle, Jean-Claude; Sutter, Bruno; Trémollières, Florence; Weryha, Georges; Roux, Christian; Thomas, Thierry

    2014-10-01

    The objective of this systematic literature review is to discuss the latest French recommendation issued in 2012 that a fall within the past year should lead to bone mineral density (BMD) measurement using dual-energy X-ray absorptiometry (DXA). This recommendation rests on four facts. First, osteoporosis and fall risk are the two leading risk factors for nonvertebral fractures in postmenopausal women. Second, BMD measurement using DXA supplies significant information on the fracture risk independently from the fall risk. Thus, when a fall occurs, the fracture risk increases as BMD decreases. Third, osteoporosis drugs have been proven effective in preventing fractures only in populations with osteoporosis defined based on BMD criteria. Finally, the prevalence of osteoporosis is high in patients who fall and increases in the presence of markers for frailty (e.g., recurrent falls, sarcopenia [low muscle mass and strength], limited mobility, and weight loss), which are risk factors for both osteoporosis and falls. Nevertheless, life expectancy should be taken into account when assessing the appropriateness of DXA in fallers, as osteoporosis treatments require at least 12months to decrease the fracture risk. Another relevant factor is the availability of DXA, which may be limited due to geographic factors, patient dependency, or severe cognitive impairments, for instance. Studies are needed to better determine how the fall risk and frailty should be incorporated into the fracture risk evaluation based on BMD and the FRAX® tool. PMID:24703626

  2. Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy.

    PubMed

    Jaworski, Maciej; Pludowski, Pawel

    2013-01-01

    Dual-energy X-ray absorptiometry (DXA) method is widely used in pediatrics in the study of bone density and body composition. However, there is a limit to how precise DXA can estimate bone and body composition measures in children. The study was aimed to (1) evaluate precision errors for bone mineral density, bone mass and bone area, body composition, and mechanostat parameters, (2) assess the relationships between precision errors and anthropometric parameters, and (3) calculate a "least significant change" and "monitoring time interval" values for DXA measures in children of wide age range (5-18yr) using GE Lunar Prodigy densitometer. It is observed that absolute precision error values were different for thin and standard technical modes of DXA measures and depended on age, body weight, and height. In contrast, relative precision error values expressed in percentages were similar for thin and standard modes (except total body bone mineral density [TBBMD]) and were not related to anthropometric variables (except TBBMD). Concluding, due to stability of percentage coefficient of variation values in wide range of age, the use of precision error expressed in percentages, instead of absolute error, appeared as convenient in pediatric population.

  3. Accuracy of plantar electrodes compared with hand and foot electrodes in fat-free-mass measurement.

    PubMed

    Jaffrin, Michel Y; Bousbiat, Sana

    2014-01-01

    This paper investigates the measurement of fat-free mass (FFM) by bioimpedance using foot-to-foot impedancemeters (FFI) with plantar electrodes measuring the foot-to-foot resistance R34 and hand-to-foot medical impedancemeters. FFM measurements were compared with corresponding data using Dual X-ray absorptiometry (DXA). Equations giving FFM were established using linear multiple regression on DXA data in a first group of 170 subjects. For validation, these equations were used on a second group of 86 subjects, and FFM were compared with DXA data; no significant difference was observed. The same protocol was repeated, but using electrodes on the right hand and foot in standing position to measure the hand to-foot resistance R13. Mean differences with DXA were higher for R13 than for R34. Effect of electrode size and feet position on resistance was also investigated. R34 decreased when electrode area increased or if feet were moved forward. It decreased if feet were moved backward. A proper configuration of contact electrodes can improve measurement accuracy and reproducibility of FFI.

  4. Body fat and breast cancer risk in postmenopausal women: a longitudinal study.

    PubMed

    Rohan, Thomas E; Heo, Moonseong; Choi, Lydia; Datta, Mridul; Freudenheim, Jo L; Kamensky, Victor; Ochs-Balcom, Heather M; Qi, Lihong; Thomson, Cynthia A; Vitolins, Mara Z; Wassertheil-Smoller, Sylvia; Kabat, Geoffrey C

    2013-01-01

    Associations between anthropometric indices of obesity and breast cancer risk may fail to capture the true relationship between excess body fat and risk. We used dual-energy-X-ray-absorptiometry- (DXA-) derived measures of body fat obtained in the Women's Health Initiative to examine the association between body fat and breast cancer risk; we compared these risk estimates with those for conventional anthropometric measurements. The study included 10,960 postmenopausal women aged 50-79 years at recruitment, with baseline DXA measurements and no history of breast cancer. During followup (median: 12.9 years), 503 incident breast cancer cases were diagnosed. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazards models. All baseline DXA-derived body fat measures showed strong positive associations with breast cancer risk. The multivariable-adjusted HR for the uppermost quintile level (versus lowest) ranged from 1.53 (95% CI 1.14-2.07) for fat mass of the right leg to 2.05 (1.50-2.79) for fat mass of the trunk. Anthropometric indices (categorized by quintiles) of obesity (BMI (1.97, 1.45-2.68), waist circumference (1.97, 1.46-2.65), and waist : hip ratio (1.91, 1.41-2.58)) were all strongly, positively associated with risk and did not differ from DXA-derived measures in prediction of risk. PMID:23690776

  5. A systematic quality assurance study in bone densitometry devices

    NASA Astrophysics Data System (ADS)

    Tuncman, Duygu; Kovan, Hatice; Kovan, Bilal; Demir, Bayram; Turkmen, Cuneyt

    2015-07-01

    Osteoporosis is the most common metabolic bone disease and can result in devastating physical, psychosocial, and economic consequences. It occurs in women after menopause and affects most elderly. Dual-energy x-ray absorptiometry (DXA) is currently the most widely used method for the measurement of areal Bone Mineral Density (BMD) (g/cm2) .DXA is based on the variable absorption of X-ray by the different body components and uses high and low energy X-ray photons. There are two important values in the assessment of the DXA. These values are T-score and Z-score. The T-score is calculated by taking the difference between a patient's measured BMD with the mean BMD of the young normal population, matched for gender and ethnicity, and then by dividing the difference with the standard deviation (SD) of the BMD of the young normal population. T-score and also Z-score are directly depends on the Bone Mineral Density (BMD). BMD measurements should be made periodically in a patient life. But mostly, it is not possible with the same device. Therefore, in this study, for the quality assurance of bone densitometry devices, we evaluated the BMD results measured in the different Bone Densitometry (DXA) devices using a spine phantom.

  6. Validity of deuterium oxide dilution for the measurement of body fat among Singaporeans.

    PubMed

    Deurenberg-Yap, Mabel; Deurenberg, Paul

    2002-09-01

    Body fat percent (BF%) was measured in 108 adult Chinese, 76 Malays, and 107 Indians in Singapore by densitometry, deuterium oxide dilution (hydrometry), dual energy x-ray absorptiometry (DXA) and a chemical four-compartment model (BF%4c). The hydration of the fat-free mass (FFM) was calculated. Subjects ranged in age from 18 to 69 years and their body mass index ranged from 16 to 40 kg/m2. BF%4c for the various subgroups were: Chinese females (33.5 +/- 7.5%), Chinese males (24.4 +/- 6.1%), Malay females (37.8 +/- 6.3%), Malay males (26.0 +/- 7.6%), Indian females (38.2 +/- 7.0%) and Indian males (28.1 +/- 5.5%). Biases were found between BF%4c and BF% measured by 2-compartment models (hydrometry, densitometry, DXA), with systematic underestimation by DXA and densitometry. On a group level hydrometry had the lowest bias while DXA gave the highest bias. When validated against BF%4c, 2-compartment models were found to be unsuitable for accurate measures of body fat due to high biases at the individual level and the violation of assumptions of constant hydration of FFM and density FFM among the ethnic groups. On a group level the best 2-compartment model for measuring body fat was found to be hydrometry. PMID:12362808

  7. Accuracy of Body Mass Index Cutoffs for Classifying Obesity in Chilean Children and Adolescents

    PubMed Central

    Gómez-Campos, Rossana; David Langer, Raquel; de Fátima Guimarães, Roseane; Contiero San Martini, Mariana; Cossio-Bolaños, Marco; de Arruda, Miguel; Guerra-Júnior, Gil; Moreira Gonçalves, Ezequiel

    2016-01-01

    Objective: To determine the accuracy of two international Body Mass Index (BMI) cut-offs for classifying obesity compared to the percentage of fat mass (%FM) assessed by Dual-Energy X-ray Absorptiometry (DXA) in a Chilean sample of children and adolescents; Material and Methods: The subjects studied included 280 children and adolescents (125 girls and 155 boys) aged 8 to 17 years. Weight and height were measured. The BMI was calculated. Two international references (IOFT and WHO) were used as cut-off points. The %FM was assessed by DXA. The receiver operating characteristic (ROC) curve was used to assess the performance of BMI in detecting obesity on the basis of %FM; Results: A high correlation was observed between the %FM measured by the DXA and the Z-scores of IOTF and WHO scores in the Chilean adolescents separated by sex (r = 0.78–0.80). Differences occurred in both references (IOFT and WHO) in relation to the criteria (p < 0.001). Both references demonstrated a good ability to predict sensitivity (between 84% and 93%) and specificity (between 83% and 88%) in both sexes of children and adolescents; Conclusions: A high correlation was observed between the Z-score of the BMI with the percentage of fat determined by the DXA. Despite this, the classifications using the different BMI cut-off points showed discrepancies. This suggests that the cut-off points selected to predict obesity in this sample should be viewed with caution. PMID:27164119

  8. A Comparison of Methods for the Estimation of Body Composition in Highly Trained Wheelchair Games Players.

    PubMed

    Goosey-Tolfrey, V; Keil, M; Brooke-Wavell, K; de Groot, S

    2016-09-01

    The purpose of this study was to assess the agreement in body composition measurements of wheelchair athletes using skinfolds, bio-impedance analysis (BIA) and air displacement plethysmography (ADP) relative to dual-energy X-ray absorptiometry (DXA). A secondary objective was to develop new skinfold prediction equations to estimate %fat for this sample. 30 wheelchair games players were recruited and the body composition outcomes of BIA, ADP, and skinfolds were compared to the DXA outcomes by a paired-samples t-test (systematic bias), intraclass correlation (ICC, relative agreement) and Bland-Altman plots (absolute agreement). Regression models to predict the %fat as measured by DXA by the sum of skinfolds or BIA were calculated. Results showed that the predictions of %fat when using BIA, ADP or skinfolds systematically underestimated the %fat mass as measured by the DXA. All ICC values, except for the measurement of fat (kg) by ADP (ICC=0.702), were below 0.7. New prediction models found the ∑7 skinfolds and calf circumference as the best model to predict %fat (R(2)=0.84). In conclusion, BIA, ADP and existing skinfolds equations should be used with caution when estimating %fat of wheelchair athletes with substantial body asymmetry, lower body muscular atrophy and upper body muscular development. PMID:27176890

  9. New reference data on bone mineral density and the prevalence of osteoporosis in Korean adults aged 50 years or older: the Korea National Health and Nutrition Examination Survey 2008-2010.

    PubMed

    Lee, Kyung-Shik; Bae, Su-Hyun; Lee, Seung Hwa; Lee, Jungun; Lee, Dong Ryul

    2014-11-01

    This cross-sectional study was performed to investigate the reference values for bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) and the prevalence of osteoporosis in the Korean population by applying domestic reference data. In total, 25,043 Korean adults ≥20 yr of age (11,792 men and 13,251 women) participated in the study. The BMDs of the total hip, femoral neck, and lumbar spine were measured by DXA (Discovery-W, Hologic Inc.), and subjects with a BMD - 2.5 standard deviations or lower than the mean BMD for young adults (20-29 yr old) were considered to have osteoporosis. When applying the new reference values determined in this study from Korean subjects, the overall prevalence of osteoporosis increased in men aged ≥50 yr compared with that provided by the DXA manufacturer from Japanese subjects (12.2% vs. 7.8%, P<0.001) and decreased in postmenopausal women aged ≥50 yr (32.9% vs. 38.7%, P<0.001). According to the findings of this study, use of the reference values provided by the DXA manufacturer has resulted in the underdiagnosis of osteoporosis in Korean men and the overdiagnosis of osteoporosis in Korean women. Our data will serve as valuable reference standards for the diagnosis and management for osteoporosis in the Korean population.

  10. Accuracy of field methods in assessing body fat in collegiate baseball players.

    PubMed

    Loenneke, Jeremy P; Wray, Mandy E; Wilson, Jacob M; Barnes, Jeremy T; Kearney, Monica L; Pujol, Thomas J

    2013-01-01

    When assessing the fitness levels of athletes, body composition is usually estimated, as it may play a role in athletic performance. Therefore, the purpose of this study was to determine the validity of bioelectrical impedance analysis (BIA) and skinfold (SKF) methods compared with dual-energy X-ray absorptiometry (DXA) for estimating percent body fat (%BF) in Division 1 collegiate baseball players (n = 35). The results of this study indicate that the field methods investigated were not valid compared with DXA for estimating %BF. In conclusion, this study does not support the use of the TBF-350, HBF-306, HBF-500, or SKF thickness for estimating %BF in collegiate baseball players. The reliability of these BIA devices remains unknown; therefore, it is currently uncertain if they may be used to track changes over time.

  11. Bone and Celiac Disease.

    PubMed

    Zanchetta, María Belén; Longobardi, Vanesa; Bai, Julio César

    2016-04-01

    More than 50% of untreated patients with celiac disease (CD) have bone loss detected by bone densitometry (dual-energy X-ray absorptiometry:DXA). Moreover, patients with CD are more likely to have osteoporosis and fragility fractures, especially of the distal radius. Although still controversial, we recommend DXA screening in all celiac disease patients, particularly in those with symptomatic CD at diagnosis and in those who present risk factors for fracture such as older age, menopausal status, previous fracture history, and familial hip fracture history. Bone microarchitecture, especially the trabecular network, may be deteriorated, explaining the higher fracture risk in these patients. Adequate calcium and vitamin D supplementation are also recommended to optimize bone recovery, especially during the first years of gluten free diet (GFD). If higher fracture risk persists after 1 or 2 years of GFD, specific osteoactive treatment may be necessary to improve bone health.

  12. Spontaneous supracondylar femoral fracture in an HIV patient in lotus position.

    PubMed

    Pinto Neto, Lauro F S; Eis, Sergio Ragi; Miranda, Angelica Espinosa

    2011-01-01

    Bone disorders have been described in patients chronically infected with human immunodeficiency virus (HIV). A case of spontaneous supracondylar femoral fracture that occurred in a 58-year-old monk during meditation is reported. His AIDS disease was controlled with combination antiretroviral therapy. Vitamin D and calcium had been added 3yr before since osteoporosis was detected by dual-energy X-ray absorptiometry (DXA). At the time of the fracture, the patient was on treatment with 35mg every week of sodium risedronate, 1000mg of calcium, and 400IU of Vitamin D every day. Clinical use of DXA for HIV patients should be considered as a routine measure to help reducing risk for fractures. PMID:21295744

  13. How prevalent and costly are Choosing Wisely low-value services? Evidence from Medicare beneficiaries.

    PubMed

    Collado, Megan

    2014-10-01

    (1) Through the Choosing Wisely initiative, medical specialty societies identified non-indicated cardiac testing in low-risk patients and short-interval dual-energy X-ray absorptiometry (DXA) or bone density testing as low-value care. (2) Nationally, 13 percent of low-risk Medicare beneficiaries received non-indicated cardiac tests, and 10 percent of DXAs reimbursed by Medicare were administered at inappropriately short intervals. There is significant geographic variation in the provision of these services. (2) Carefully designed policy and payment changes will likely prove most effective in reducing low-value care.

  14. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  15. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children.

    PubMed

    Kasvis, Popi; Cohen, Tamara R; Loiselle, Sarah-Ève; Kim, Nicolas; Hazell, Tom J; Vanstone, Catherine A; Rodd, Celia; Plourde, Hugues; Weiler, Hope A

    2015-03-01

    Body composition measurements are valuable when evaluating pediatric obesity interventions. We hypothesized that foot-to-foot bioelectrical impedance analysis (BIA) will accurately track the direction of adiposity change, but not magnitude, in part due to differences in fat patterning. The purposes of this study were to examine the accuracy of body composition measurements of overweight and obese children over time using dual-energy x-ray absorptiometry (DXA) and BIA and to determine if BIA accuracy was affected by fat patterning. Eighty-nine overweight or obese children (48 girls, 41 boys, age 7-13 years) participating in a randomized controlled trial providing a family-centered, lifestyle intervention, underwent DXA and BIA measurements every 3 months. Bland-Altman plots showed a poor level of agreement between devices for baseline percent body fat (%BF; mean, 0.398%; +2SD, 8.685%; -2SD, -7.889%). There was overall agreement between DXA and BIA in the direction of change over time for %BF (difference between visits 3 and 1: DXA -0.8 ± 0.5%, BIA -0.7 ± 0.5%; P = 1.000) and fat mass (FM; difference between visits 3 and 1: DXA 0.7 ± 0.5 kg, BIA 0.6 ± 0.5 kg; P = 1.000). Bioelectrical impedance analysis measurements of %BF and FM at baseline were significantly different in those with android and gynoid fat (%BF: 35.9% ± 1.4%, 32.2% ± 1.4%, P < .003; FM: 20.1 ± 0.8 kg, 18.4 ± 0.8, P < .013). Bioelectrical impedance analysis accurately reports the direction of change in FM and FFM in overweight and obese children; inaccuracy in the magnitude of BIA measurements may be a result of fat patterning differences.

  16. Heel ultrasound can assess maintenance of bone mass in women with breast cancer.

    PubMed

    Langmann, Gabrielle A; Vujevich, Karen T; Medich, Donna; Miller, Megan E; Perera, Subashan; Greenspan, Susan L

    2012-01-01

    Postmenopausal women with early stage breast cancer are at increased risk for bone loss and fractures. Bisphosphonates can prevent bone loss, but little data are available on changes in bone mass assessed by heel quantitative ultrasound (QUS). Our objectives were to determine if (1) heel QUS would provide a reliable and accessible method for evaluation of changes in bone mass in women with breast cancer when compared with the current standard of bone mass measurement, dual-energy X-ray absorptiometry (DXA) and (2) oral risedronate could affect these changes. Eighty-six newly postmenopausal (up to 8 yr) women with nonmetastatic breast cancer were randomized to risedronate, 35 mg once weekly or placebo. Outcomes were changes in heel QUS bone mass measurements and conventional DXA-derived bone mineral density (BMD). Over 2 yr, bone mass assessed by heel QUS remained stable in women on risedronate, whereas women on placebo had a 5.2% decrease (p ≤ 0.05) in heel QUS bone mass. Both total hip BMD and femoral neck BMD assessed by DXA decreased by 1.6% (p ≤ 0.05) in the placebo group and remained stable with risedronate. Spine BMD remained stable in both groups. Heel QUS was moderately associated with BMD measured by DXA at the total hip (r=0.50), femoral neck (r=0.40), and spine (r=0.46) at baseline (all p ≤ 0.001). In conclusion, risedronate helps to maintain skeletal integrity as assessed by heel QUS for women with early stage breast cancer. Heel QUS is associated with DXA-derived BMD at other major axial sites and may be used to follow skeletal health and bone mass changes in these women.

  17. Validation of Simple Epidemiological or Clinical Methods for the Measurement of Body Composition in Young Children

    PubMed Central

    Jackson, Diane M; Donaghy, Zoe; Djafarian, Kurosh; Reilly, John J

    2014-01-01

    Objective: The present study aimed to determine the validity of simple epidemiological and clinical methods for the assessment of body fatness in preschool children. Methods: In 89 children (42 boys, 47 girls; mean age 4.1 SD 1.3y) measures of body fatness were made using total body water (TBW), dual energy x-ray absorptiometry (DXA), air displacement plethysmography (BODPOD) and skinfold thickness. Methods were compared by Bland–Altman analysis using TBW as the reference method, and by paired comparisons and rank order correlations. Findings: Bias for DXA was +1.8% body fat percentage units (limits of agreement +15.5% to −11.9%), bias for BODPOD was −3.5% (limits of agreement +18.9% to −5.9%) and bias for skinfolds using the Slaughter equations was −6.5% (limits of agreement +10.0% to −23.1%). Significant rank order correlations with TBW measures of fatness were obtained for DXA estimates of fatness (r=0.54, P=0.01), but not for estimates of fat by skinfold thickness (r=0.20, P=0.2) or BODPOD (r=0.25, P=0.1). Differences between both DXA and BODPOD and the reference TBW estimates of body fatness were not significant (P=0.06 and P=0.1 respectively); however, the difference in estimated body fatness between skinfold thickness and TBW was significant (P<0.001). Conclusion: Estimates of body fatness in preschool children were inaccurate at the level of the individual child using all the methods, but DXA might provide unbiased estimates and a means of making relative assessments of body fatness. PMID:26019772

  18. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children.

    PubMed

    Kasvis, Popi; Cohen, Tamara R; Loiselle, Sarah-Ève; Kim, Nicolas; Hazell, Tom J; Vanstone, Catherine A; Rodd, Celia; Plourde, Hugues; Weiler, Hope A

    2015-03-01

    Body composition measurements are valuable when evaluating pediatric obesity interventions. We hypothesized that foot-to-foot bioelectrical impedance analysis (BIA) will accurately track the direction of adiposity change, but not magnitude, in part due to differences in fat patterning. The purposes of this study were to examine the accuracy of body composition measurements of overweight and obese children over time using dual-energy x-ray absorptiometry (DXA) and BIA and to determine if BIA accuracy was affected by fat patterning. Eighty-nine overweight or obese children (48 girls, 41 boys, age 7-13 years) participating in a randomized controlled trial providing a family-centered, lifestyle intervention, underwent DXA and BIA measurements every 3 months. Bland-Altman plots showed a poor level of agreement between devices for baseline percent body fat (%BF; mean, 0.398%; +2SD, 8.685%; -2SD, -7.889%). There was overall agreement between DXA and BIA in the direction of change over time for %BF (difference between visits 3 and 1: DXA -0.8 ± 0.5%, BIA -0.7 ± 0.5%; P = 1.000) and fat mass (FM; difference between visits 3 and 1: DXA 0.7 ± 0.5 kg, BIA 0.6 ± 0.5 kg; P = 1.000). Bioelectrical impedance analysis measurements of %BF and FM at baseline were significantly different in those with android and gynoid fat (%BF: 35.9% ± 1.4%, 32.2% ± 1.4%, P < .003; FM: 20.1 ± 0.8 kg, 18.4 ± 0.8, P < .013). Bioelectrical impedance analysis accurately reports the direction of change in FM and FFM in overweight and obese children; inaccuracy in the magnitude of BIA measurements may be a result of fat patterning differences. PMID:25697463

  19. Texture analysis of clinical radiographs using radon transform on a local scale for differentiation between post-menopausal women with and without hip fracture

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Körner, Markus; Baumert, Bernhard; Linsenmaier, Ulrich; Reiser, Maximilian

    2011-03-01

    Osteoporosis is a chronic condition characterized by demineralization and destruction of bone tissue. Fractures associated with the disease are becoming an increasingly relevant issue for public health institutions. Prediction of fracture risk is a major focus research and, over the years, has been approched by various methods. Still, bone mineral density (BMD) obtained by dual-energy X-ray absorptiometry (DXA) remains the clinical gold-standard for diagnosis and follow-up of osteoporosis. However, DXA is restricted to specialized diagnostic centers and there exists considerable overlap in BMD results between populations of individuals with and without fractures. Clinically far more available than DXA is conventional x-ray imaging depicting trabecular bone structure in great detail. In this paper, we demonstrate that bone structure depicted by clinical radiographs can be analysed quantitatively by parameters obtained from the Radon Transform (RT). RT is a global analysis-tool for detection of predefined, parameterized patterns, e.g. straight lines or struts, representing suitable approximations of trabecular bone texture. The proposed algorithm differentiates between patients with and without fractures of the hip by application of various texture-metrics based on the Radon-Transform to standard x-ray images of the proximal femur. We consider three different regions-of-interest in the proximal femur (femoral head, neck, and inter-trochanteric area), and conduct an analysis with respect to correct classification of the fracture status. Performance of the novel approach is compared to DXA. We draw the conclusion that performance of RT is comparable to DXA and may become a useful supplement to densitometry for the prediction of fracture risk.

  20. Near infrared reactance for the estimation of body fatness in regularly exercising individuals.

    PubMed

    Evans, J; Lambert, M I; Micklesfield, L K; Goedecke, J H; Jennings, C L; Savides, L; Claassen, A; Lambert, E V

    2013-07-01

    Near infrared reactance (NIR) is used to measure body fat percentage (BF%), but there is little data on its use in non-obese, regularly exercising individuals. Therefore, this study aimed to examine the limits of agreement between NIR compared to dual x-ray absorptiometry (DXA) for the measurement of BF% in 2 cohorts of regularly exercising individuals. BF% was measured using DXA and NIR in a regular exercising (≥3 sessions/week), healthy active cohort (HA; n=57), and in a regularly exercising and resistance trained (≥2 sessions/week) cohort (RT; n=59). The RT cohort had lower BF% than the HA cohort (15.3±5.5% and 25.8±7.1%, P<0.001). In the HA and RT cohorts, NIR BF% was associated with DXA BF% (R2=0.72, SEE=3.7, p<0.001 and R2=0.50, SEE=4.1 p<0.001, respectively). In the HA cohort, NIR tended to under-predict BF% (mean difference: - 1.3%; 95% limits of agreement (LOA); - 8.8 to 6.2%) whereas in the RT cohort, NIR tended to over-predict BF% compared to DXA (mean difference: 1.1; 95% LOA; - 8.1 to 10.3%). In conclusion, NIR and DXA yield similar average BF% measurements in 2 cohorts of non-obese regularly exercising individuals. However, the rather broad LOA of NIR need to be considered when using NIR to screen for overweight and obesity, or measure and track changes in body composition.

  1. Bone imaging and fracture risk assessment in kidney disease.

    PubMed

    Jamal, Sophie A; Nickolas, Thomas L

    2015-06-01

    Fractures are more common and are associated with greater morbidity and morality in patients with kidney disease than in members of the general population. Thus, it is troubling that in chronic kidney disease (CKD) patients there has been a paradoxical increase in fracture rates over the past 20 years compared to the general population. Increased fracture incidence in CKD patients may be driven in part by the lack of screening for fracture risk. In the general population, dual energy X-ray absorptiometry (DXA) is the clinical standard to stratify fracture risk, and its use has contributed to decreases in fracture incidence. In contrast, in CKD, fracture risk screening with DXA has been uncommon due to its unclear efficacy in predicting fracture and its inability to predict type of renal osteodystrophy. Recently, several prospective studies conducted in patients across the spectrum of kidney disease have demonstrated that bone mineral density measured by DXA predicts future fracture risk and that clinically relevant information regarding fracture risk is provided by application of the World Health Organization cutoffs for osteopenia and osteoporosis to DXA measures. Furthermore, novel high-resolution imaging tools, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have been used to elucidate the effects of kidney disease on cortical and trabecular microarchitecture and bone strength and to identify potential targets for strategies that protect against fractures. This review will discuss the updated epidemiology of fractures in CKD, fracture risk screening by DXA, and the utility of state-of-the art imaging methods to uncover the effects of kidney disease on the skeleton. PMID:25744703

  2. A mechanical model for predicting the probability of osteoporotic hip fractures based in DXA measurements and finite element simulation

    PubMed Central

    2012-01-01

    Background Osteoporotic hip fractures represent major cause of disability, loss of quality of life and even mortality among the elderly population. Decisions on drug therapy are based on the assessment of risk factors for fracture, from BMD measurements. The combination of biomechanical models with clinical studies could better estimate bone strength and supporting the specialists in their decision. Methods A model to assess the probability of fracture, based on the Damage and Fracture Mechanics has been developed, evaluating the mechanical magnitudes involved in the fracture process from clinical BMD measurements. The model is intended for simulating the degenerative process in the skeleton, with the consequent lost of bone mass and hence the decrease of its mechanical resistance which enables the fracture due to different traumatisms. Clinical studies were chosen, both in non-treatment conditions and receiving drug therapy, and fitted to specific patients according their actual BMD measures. The predictive model is applied in a FE simulation of the proximal femur. The fracture zone would be determined according loading scenario (sideway fall, impact, accidental loads, etc.), using the mechanical properties of bone obtained from the evolutionary model corresponding to the considered time. Results BMD evolution in untreated patients and in those under different treatments was analyzed. Evolutionary curves of fracture probability were obtained from the evolution of mechanical damage. The evolutionary curve of the untreated group of patients presented a marked increase of the fracture probability, while the curves of patients under drug treatment showed variable decreased risks, depending on the therapy type. Conclusion The FE model allowed to obtain detailed maps of damage and fracture probability, identifying high-risk local zones at femoral neck and intertrochanteric and subtrochanteric areas, which are the typical locations of osteoporotic hip fractures. The developed model is suitable for being used in individualized cases. The model might better identify at-risk individuals in early stages of osteoporosis and might be helpful for treatment decisions. PMID:23151049

  3. In search of an animal model for postmenopausal diseases.

    PubMed

    Thorndike, E A; Turner, A S

    1998-04-16

    The purpose of this review is to discuss the use of the aged ovariectomized ewe as a cost-effective large animal model to study coronary artery disease (CAD), osteoporosis, osteoarthritis (OA), and oral bone loss--conditions seen after menopause. Earlier studies from our laboratory showed a significant decline in the bone mineral density (BMD) of the iliac crest following ovariectomy in sheep, while subsequent studies demonstrated decreased bone loss (measured by dual energy X-ray absorptiometry (DXA)) in the lumbar vertebrae following ovariectomy. We examined the effects of estrogen deficiency and estrogen therapy on the terminal aorta of the aged ovariectomized (OVX) ewes and demonstrated subintimal thickening in the distal aorta of animals that were estrogen deficient when compared to the control groups. A popular model to study OA is the knee joint of sheep following medial or lateral meniscus removal combined with exercise, but there is a need for an estrogen-deficient large animal model of OA to study articular cartilage changes occurring after menopause. We saw an effect of ovariectomy on the biomechanical properties (aggregate modulus and shear modulus) of articular cartilage. Estrogen deficiency had a detrimental effect on the articular cartilage of the knee even though the cartilage of the OVX animals appeared grossly normal. In another study, 13.5 months following ovariectomy, we found an increase in estrogen receptor binding capacity of the articular cartilage suggesting that articular cartilage is a sex-hormone sensitive tissue. There is intense interest in the correlation between systemic osteoporosis and bone loss of the mandible and maxilla. We studied mandibular bone loss in OVX sheep using DXA. The mean BMD of the OVX group versus sham and estradiol-treated animals was lower, indicating that systemic bone loss in OVX ewes may be accompanied by oral bone loss. Coronary artery disease, osteoporosis, osteoarthritis (OA) and oral bone loss all have a

  4. Analysis of sprint cross-country skiing using a differential global navigation satellite system.

    PubMed

    Andersson, Erik; Supej, Matej; Sandbakk, Øyvind; Sperlich, Billy; Stöggl, Thomas; Holmberg, Hans-Christer

    2010-10-01

    The purpose was to examine skiing velocities, gear choice (G2-7) and cycle rates during a skating sprint time trial (STT) and their relationships to performance, as well as to examine relationships between aerobic power, body composition and maximal skiing velocity versus STT performance. Nine male elite cross-country skiers performed three tests on snow: (1) Maximum velocity test (V (max)) performed using G3 skating, (2) V (max) test performed using double poling (DP) technique and (3) a STT over 1,425 m. Additional measurements of VO(2max) during roller skiing and body composition using iDXA were made. Differential global navigation satellite system data were used for position and velocity and synchronized with video during STT. The STT encompassed a large velocity range (2.9-12.9 m s(-1)) and multiple transitions (21-34) between skiing gears. Skiing velocity in the uphill sections was related to gear selection between G2 and G3. STT performance was most strongly correlated to uphill time (r = 0.92, P < 0.05), the percentage use of G2 (r = -0.72, P < 0.05), and DP V (max) (r = -0.71, P < 0.05). The velocity decrease in the uphills from lap 1 to lap 2 was correlated with VO(2max) (r = -0.78, P < 0.05). V (max) in DP and G3 were related to percent of racing time using G3. In conclusion, the sprint skiing performance was mainly related to uphill performance, greater use of the G3 technique, and higher DP and G3 maximum velocities. Additionally, VO(2max) was related to the ability to maintain racing velocity in the uphills and lean body mass was related to starting velocity and DP maximal speed.

  5. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    PubMed Central

    Lambert, Laura J.; Challa, Anil K.; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S.; Nagy, Tim R.; Eberhardt, Alan W.; Estep, Patrick N.; Kesterson, Robert A.

    2016-01-01

    ABSTRACT Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. PMID:27483347

  6. An Advanced Quantitative Echosound Methodology for Femoral Neck Densitometry.

    PubMed

    Casciaro, Sergio; Peccarisi, Marco; Pisani, Paola; Franchini, Roberto; Greco, Antonio; De Marco, Tommaso; Grimaldi, Antonella; Quarta, Laura; Quarta, Eugenio; Muratore, Maruizio; Conversano, Francesco

    2016-06-01

    The aim of this paper was to investigate the clinical feasibility and the accuracy in femoral neck densitometry of the Osteoporosis Score (O.S.), an ultrasound (US) parameter for osteoporosis diagnosis that has been recently introduced for lumbar spine applications. A total of 377 female patients (aged 61-70 y) underwent both a femoral dual X-ray absorptiometry (DXA) and an echographic scan of the proximal femur. Recruited patients were sub-divided into a reference database used for ultrasound spectral model construction and a study population for repeatability assessments and accuracy evaluations. Echographic images and radiofrequency signals were analyzed through a fully automatic algorithm that performed a series of combined spectral and statistical analyses, providing as a final output the O.S. value of the femoral neck. Assuming DXA as a gold standard reference, the accuracy of O.S.-based diagnoses resulted 94.7%, with k = 0.898 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral density and corresponding DXA values, with r(2) up to 0.79 and root mean square error = 5.9-7.4%. The reported accuracy levels, combined with the proven ease of use and very good measurement repeatability, provide the adopted method with a potential for clinical routine application in osteoporosis diagnosis.

  7. Validity of Bioelectrical Impedance Analysis to Estimation Fat-Free Mass in the Army Cadets

    PubMed Central

    Langer, Raquel D.; Borges, Juliano H.; Pascoa, Mauro A.; Cirolini, Vagner X.; Guerra-Júnior, Gil; Gonçalves, Ezequiel M.

    2016-01-01

    Background: Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. Methods: A total of 396 males, Brazilian Army cadets, aged 17–24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student’s t-test (for paired sample), linear regression analysis, and Bland–Altman method were used to test the validity of the BIA equations. Results: Predictive BIA equations showed significant differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland–Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Conclusion: Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM. PMID:26978397

  8. Body Composition, Muscle Quality and Scoliosis in Female Collegiate Gymnasts: A Pilot Study.

    PubMed

    Trexler, E T; Smith-Ryan, A E; Roelofs, E J; Hirsch, K R

    2015-11-01

    Research has demonstrated an elevated prevalence of body weight concerns and scoliosis among female gymnasts. The purpose of the current pilot study was to evaluate the utility of ultrasonography and dual-energy X-ray absorptiometry (DXA) as practical imaging modalities to measure body composition and spinal curvature variables that may correlate with performance in female collegiate gymnasts (n=15). DXA was used to evaluate body composition and lateral spinal curvature, utilizing a modified Ferguson method. Echo intensity (EI) and cross-sectional area (CSA) of the vastus lateralis were determined from a panoramic cross-sectional ultrasound image. For returning athletes (n=9), performance scores from the previous season were averaged to quantify performance. The average performance score was correlated with lean mass of the arms (R=0.714; P=0.03) and right leg (R=0.680; P=0.04). Performance was not correlated with total mass, fat mass or body fat percentage (P>0.10). Scoliosis was identified in 3 of 15 scans (20%). Echo intensity and CSA of the vastus lateralis were inversely correlated with each other (R=-0.637, P=0.01), but not with other measures of body composition or performance. Results suggest that limb LBM may be a determinant of gymnastics performance, and DXA may provide important health and performance-related information for female collegiate gymnasts. PMID:26332905

  9. Recommendations for evaluation and management of bone disease in HIV.

    PubMed

    Brown, Todd T; Hoy, Jennifer; Borderi, Marco; Guaraldi, Giovanni; Renjifo, Boris; Vescini, Fabio; Yin, Michael T; Powderly, William G

    2015-04-15

    Thirty-four human immunodeficiency virus (HIV) specialists from 16 countries contributed to this project, whose primary aim was to provide guidance on the screening, diagnosis, and monitoring of bone disease in HIV-infected patients. Four clinically important questions in bone disease management were identified, and recommendations, based on literature review and expert opinion, were agreed upon. Risk of fragility fracture should be assessed primarily using the Fracture Risk Assessment Tool (FRAX), without dual-energy X-ray absorptiometry (DXA), in all HIV-infected men aged 40-49 years and HIV-infected premenopausal women aged ≥40 years. DXA should be performed in men aged ≥50 years, postmenopausal women, patients with a history of fragility fracture, patients receiving chronic glucocorticoid treatment, and patients at high risk of falls. In resource-limited settings, FRAX without bone mineral density can be substituted for DXA. Guidelines for antiretroviral therapy should be followed; adjustment should avoid tenofovir disoproxil fumarate or boosted protease inhibitors in at-risk patients. Dietary and lifestyle management strategies for high-risk patients should be employed and antiosteoporosis treatment initiated.

  10. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R2=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R2=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  11. Body fat and risk of colorectal cancer among postmenopausal women.

    PubMed

    Kabat, Geoffrey C; Heo, Moonseong; Wactawski-Wende, Jean; Messina, Catherine; Thomson, Cynthia A; Wassertheil-Smoller, Sylvia; Rohan, Thomas E

    2013-06-01

    Studies of the relationship between anthropometric indices of obesity and colorectal cancer risk in women have shown only weak and inconsistent associations. Given the limitations of such indices, we used dual-energy X-ray absorptiometry (DXA)-derived measures of body fat obtained in the Women's Health Initiative to examine the association between body fat and risk of incident colorectal cancer. We compared these risk estimates with those obtained using conventional anthropometric measurements (body mass index and waist circumference). After exclusions, the study population consisted of 11,124 postmenopausal women with DXA measurements at baseline and no history of colorectal cancer. After a median follow-up period of 12.9 years, 169 incident colorectal cancer cases were ascertained. Cox's proportional hazards models were used to estimate hazard ratios and 95 % confidence intervals for the exposures of interest. Neither DXA-derived body fat measures nor anthropometric measures showed significant associations with risk. In view of the limited number of cases, we cannot rule out the existence of weak associations of these measures with risk of colorectal cancer. PMID:23546610

  12. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography.

    PubMed

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R(2)=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R(2)=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  13. Prospective cohort study of spinal muscular atrophy types 2 and 3

    PubMed Central

    Kaufmann, Petra; McDermott, Michael P.; Darras, Basil T.; Finkel, Richard S.; Sproule, Douglas M.; Kang, Peter B.; Oskoui, Maryam; Constantinescu, Andrei; Gooch, Clifton L.; Foley, A. Reghan; Yang, Michele L.; Tawil, Rabi; Chung, Wendy K.; Martens, William B.; Montes, Jacqueline; Battista, Vanessa; O'Hagen, Jessica; Dunaway, Sally; Flickinger, Jean; Quigley, Janet; Riley, Susan; Glanzman, Allan M.; Benton, Maryjane; Ryan, Patricia A.; Punyanitya, Mark; Montgomery, Megan J.; Marra, Jonathan; Koo, Benjamin

    2012-01-01

    Objective: To characterize the natural history of spinal muscular atrophy type 2 and type 3 (SMA 2/3) beyond 1 year and to report data on clinical and biological outcomes for use in trial planning. Methods: We conducted a prospective observational cohort study of 79 children and young adults with SMA 2/3 who participated in evaluations for up to 48 months. Clinically, we evaluated motor and pulmonary function, quality of life, and muscle strength. We also measured SMN2 copy number, hematologic and biochemical profiles, muscle mass by dual x-ray absorptiometry (DXA), and the compound motor action potential (CMAP) in a hand muscle. Data were analyzed for associations between clinical and biological/laboratory characteristics cross-sectionally, and for change over time in outcomes using all available data. Results: In cross-sectional analyses, certain biological measures (specifically, CMAP, DXA fat-free mass index, and SMN2 copy number) and muscle strength measures were associated with motor function. Motor and pulmonary function declined over time, particularly at time points beyond 12 months of follow-up. Conclusion: The intermediate and mild phenotypes of SMA show slow functional declines when observation periods exceed 1 year. Whole body muscle mass, hand muscle compound motor action potentials, and muscle strength are associated with clinical measures of motor function. The data from this study will be useful for clinical trial planning and suggest that CMAP and DXA warrant further evaluation as potential biomarkers. PMID:23077013

  14. How to Estimate Fat Mass in Overweight and Obese Subjects

    PubMed Central

    Donini, Lorenzo Maria; Poggiogalle, Eleonora; del Balzo, Valeria; Lubrano, Carla; Faliva, Milena; Opizzi, Annalisa; Perna, Simone; Pinto, Alessandro; Rondanelli, Mariangela

    2013-01-01

    Background. The prevalence of overweight and obesity is increasing and represents a primary health concern. Body composition evaluation is rarely performed in overweight/obese subjects, and the diagnosis is almost always achieved just considering body mass index (BMI). In fact, whereas BMI can be considered an important tool in epidemiological surveys, different papers stated the limitations of the use of BMI in single individuals. Aim. To assess the determinants of body composition in overweight and obese subjects. Methods. In 103 overweight or obese subjects (74 women, aged 41.5 ± 10 years, and 29 men, aged 43.8 ± 8 years), a multidimensional evaluation was performed including the assessment of body composition using Dual Energy X-Ray Absorptiometry (DXA), anthropometry, bioimpedance analysis (BIA), and biochemical parameters (total cholesterol, triacylglycerol, HDL- and LDL-cholesterol, free fatty acids and glycerol, glucose, insulin, C-reactive protein, plasma acylated and unacylated ghrelin, adiponectin, and leptin serum levels). Results. BMI does not represent the main predictor of FM estimated by DXA; FM from BIA and hip circumference showed a better association with FM from DXA. Moreover, models omitting BMI explained a greater part of variance. These data are confirmed by the predictive value analysis where BMI showed a performance similar to a “coin flip.” PMID:23662101

  15. The prediction of lean body mass and fat mass from arm anthropometry at diagnosis in children with cancer.

    PubMed

    Webber, Colin; Halton, Jacqueline; Walker, Scott; Young, Andrea; Barr, Ronald D

    2013-10-01

    Maintenance of adequate nutrition is important in the care of children with cancer. In clinical practice, determination of nutritional status can be accomplished with measurement of body composition by dual-energy x-ray absorptiometry (DXA). However, DXA is seldom available in low-income countries where most children with cancer live. This study sought to provide predictive equations for lean body mass and fat mass, measured by DXA, on the basis of simple arm anthropometry providing measures of mid-upper arm circumference and triceps skin-fold thickness in a population (N=99) of children diagnosed with cancer. Such equations were derived successfully with the inclusion of absolute body weight, the body weight Z-score, and the predicted whole-body bone mineral content on the basis of age and sex. Attempted validation in a small sample (N=7) of children who completed therapy for acute lymphoblastic leukemia revealed disparities reflective of the prevalence of obesity in such survivors. Further validation must be undertaken in large samples of children with a variety of malignant diseases to assess the robustness of the equations predictive of body composition.

  16. Three-dimensional parametric mapping in quantitative micro-CT imaging of post-surgery femoral head-neck samples: preliminary results

    PubMed Central

    Giannotti, Stefano; Bottai, Vanna; Panetta, Daniele; De Paola, Gaia; Tripodi, Maria; Citarelli, Carmine; Dell’Osso, Giacomo; Lazzerini, Ilaria; Salvadori, Piero Antonio; Guido, Giulio

    2015-01-01

    Summary Osteoporosis and pathological increased occurrence of fractures are an important public health problem. They may affect patients’ quality of life and even increase mortality of osteoporotic patients, and consequently represent a heavy economic burden for national healthcare systems. The adoption of simple and inexpensive methods for mass screening of population at risk may be the key for an effective prevention. The current clinical standards of diagnosing osteoporosis and assessing the risk of an osteoporotic bone fracture include dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) for the measurement of bone mineral density (BMD). Micro-computed tomography (micro-CT) is a tomographic imaging technique with very high resolution allowing direct quantification of cancellous bone microarchitecture. The Authors performed micro-CT analysis of the femoral heads harvested from 8 patients who have undergone surgery for hip replacement for primary and secondary degenerative disease to identify possible new morphometric parameters based on the analysis of the distribution of intra-subject microarchitectural parameters through the creation of parametric images. Our results show that the micro-architectural metrics commonly used may not be sufficient for the realistic assessment of bone microarchitecture of the femoral head in patients with hip osteoarthritis. The innovative micro-CT approach considers the entire femoral head in its physiological shape with all its components like cartilage, cortical layer and trabecular region. The future use of these methods for a more detailed study of the reaction of trabecular bone for the internal fixation or prostheses would be desirable. PMID:26811703

  17. Three-dimensional parametric mapping in quantitative micro-CT imaging of post-surgery femoral head-neck samples: preliminary results.

    PubMed

    Giannotti, Stefano; Bottai, Vanna; Panetta, Daniele; De Paola, Gaia; Tripodi, Maria; Citarelli, Carmine; Dell'Osso, Giacomo; Lazzerini, Ilaria; Salvadori, Piero Antonio; Guido, Giulio

    2015-01-01

    Osteoporosis and pathological increased occurrence of fractures are an important public health problem. They may affect patients' quality of life and even increase mortality of osteoporotic patients, and consequently represent a heavy economic burden for national healthcare systems. The adoption of simple and inexpensive methods for mass screening of population at risk may be the key for an effective prevention. The current clinical standards of diagnosing osteoporosis and assessing the risk of an osteoporotic bone fracture include dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) for the measurement of bone mineral density (BMD). Micro-computed tomography (micro-CT) is a tomographic imaging technique with very high resolution allowing direct quantification of cancellous bone microarchitecture. The Authors performed micro-CT analysis of the femoral heads harvested from 8 patients who have undergone surgery for hip replacement for primary and secondary degenerative disease to identify possible new morphometric parameters based on the analysis of the distribution of intra-subject microarchitectural parameters through the creation of parametric images. Our results show that the micro-architectural metrics commonly used may not be sufficient for the realistic assessment of bone microarchitecture of the femoral head in patients with hip osteoarthritis. The innovative micro-CT approach considers the entire femoral head in its physiological shape with all its components like cartilage, cortical layer and trabecular region. The future use of these methods for a more detailed study of the reaction of trabecular bone for the internal fixation or prostheses would be desirable. PMID:26811703

  18. The impact of insulin resistance and inflammation on the association between sarcopenic obesity and physical functioning.

    PubMed

    Levine, Morgan E; Crimmins, Eileen M

    2012-10-01

    Age associated increases in visceral adiposity and decreases in muscle mass (sarcopenia) have been shown to contribute to disability in late life. Furthermore, there is evidence that obesity-related physiological states, such as insulin resistance and systemic inflammation, may exacerbate physical functioning problems. Both conditions have been shown to prompt hypercatabolism and impair the anabolic effect of muscles, ultimately stimulating protein breakdown and suppressing muscle synthesis. This cross-sectional study investigates whether insulin resistance and inflammation partially account for the associations between decreased physical functioning and sarcopenic obesity. Subjects include 2,287 males and females aged 60 and older without diagnosed diabetes from the National Health and Nutrition Examination Survey (NHANES 1999-2004). Body composition measurements indicating waist circumference and appendicular skeletal muscle mass, measured by dual-energy X-ray absorptiometry (DXA), were used to construct four body composition categories--healthy, sarcopenic nonobese, nonsarcopenic obese, and sarcopenic obese. Physical functioning was measured using self-reports of difficulty performing six activities. The homeostasis model assessment (IR(HOMA)) was used to measure insulin resistance, while inflammatory state was assessed through measurement of serum C-reactive protein (CRP). Modified Poisson regression models were used to examine the association between physical functioning and body composition, and to evaluate whether differences in insulin resistance or inflammation partially explained this relationship. In the analysis, we controlled for possible confounders such as age, education, sex, height, and race/ethnicity. Findings suggest that physical functioning problems are increased in those with sarcopenic obesity, sarcopenic nonobesity and nonsarcopenic obesity. Furthermore, these associations may be influenced by differences in insulin resistance among

  19. Reference Values of Skeletal Muscle Mass for Korean Children and Adolescents Using Data from the Korean National Health and Nutrition Examination Survey 2009-2011

    PubMed Central

    Kim, Eun Young

    2016-01-01

    Background Skeletal muscle mass (SMM) plays a crucial role in systemic glucose metabolism. Objective To obtain reference data on absolute and relative values of SMM for Korean children and adolescents. Methods Cross-sectional results from 1919 children and adolescents (1024 boys) aged 10–18 years that underwent dual-energy X-ray absorptiometry (DXA) during the Korean National Health and Nutrition Examination Survey 2009–2011 were analyzed. SMMs were evaluated as follows; absolute SMM (appendicular skeletal muscle mass [ASM]) and relative SMMs, namely, height-adjusted skeletal muscle index (SMI; ASM/height2), %SMM (ASM/weight x 100), and skeletal muscle-to-body fat ratio (MFR; ASM/body fat mass). Results Percentile curves illustrated the developmental patterns of the SMMs of Korean children and adolescents. ASM and SMI increased with age in both genders, and increased from age 10 throughout adolescence in boys, whereas in girls, they increased until age 13 and then stabilized. In boys, %SMM and MFR were highest at age 15 and then slowly stabilized or decreased, whereas in girls, they peaked at age 10 to 11 and then decreased through adolescence. Cut-off values for low MFR were identified and a significant association was found between a low MFR and high risk of metabolic syndrome. However, this association was found to be dependent on gender and the level of BMI. Conclusion This study provides reference values of absolute and relative SMM for Korean children and adolescents. Detailed body composition analyses including skeletal muscle and fat mass might provide improved measures of metabolic risk. PMID:27073844

  20. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  1. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and

  2. Safety and efficacy of a multiphase dietetic protocol with meal replacements including a step with very low calorie diet.

    PubMed

    Basciani, Sabrina; Costantini, Daniela; Contini, Savina; Persichetti, Agnese; Watanabe, Mikiko; Mariani, Stefania; Lubrano, Carla; Spera, Giovanni; Lenzi, Andrea; Gnessi, Lucio

    2015-04-01

    To investigate safety, compliance, and efficacy, on weight loss and cardiovascular risk factors of a multiphasic dietary intervention based on meal replacements, including a period of very low calorie diet (VLCD) in a population of obese patients. Anthropometric parameters, blood tests (including insulin), dual-energy-X-ray absorptiometry (DXA), and questionnaires for the assessment of safety and compliance before and after (phase I) a 30-day VLCD, 700 kcal/day, normoproteic, 50 g/day carbohydrate, four meal replacements; (phase II) a 30-day low calorie diet (LCD), 820 kcal/day, three meal replacements plus a protein plate; (phase III) 60-day LCD, 1,100 kcal/day, two meal replacements plus two protein plates and reintroduction of small amounts of carbohydrates; (phase IV) 60-day hypocaloric balanced diet (HBD), 1,200 kcal/day, one meal replacement, two protein plates and the reintroduction of carbohydrates. 24 patients (17 females, 7 males, mean BMI 33.8±3.2 kg/m2, mean age 35.1±10.2 years) completed the study. The average weight loss was 15.4±6.7%, with a significant reduction of fat mass (from 32.8±4.7 to 26.1±6.3% p<0.05) and a relative increase of lean mass (from 61.9±4.8 to 67.1±5.9% p<0.05). An improvement of metabolic parameters and no variations of the liver and kidney functions were found. A high safety profile and an excellent dietary compliance were seen. The VLCD dietary program and the replacement dietary system described here is an effective, safe, and well-tolerated treatment for weight control.

  3. Varying protein source and quantity does not significantly improve weight loss, fat loss, or satiety in reduced energy diets amongmidlife adults.1

    PubMed Central

    Aldrich, Noel D; Reicks, Marla M; Sibley, Shalamar D; Redmon, J Bruce; Thomas, William; Raatz, Susan K

    2011-01-01

    We hypothesized that a whey protein diet would result in greater weight loss and improved body compositioncompared to standard weight loss diets. Weight change, body composition, and renin angiotensin aldosterone system activity in midlife adults was compared between diet groups. Eighteen subjects enrolled ina5 month study of8 weeks controlled food intake followed by 12 weeks ad libitum intake. Subjects were randomized to one of three treatment groups: control diet (CD) (55% carbohydrate: 15% protein: 30% fat), mixed protein (MP) (40% carbohydrate: 30% protein: 30% fat), or whey protein (WP) (40% carbohydrate: 15% mixed protein: 15% whey protein: 30% fat). Measurements included weight, metabolic measures, body composition by dual energy x-ray absorptiometry (DXA), and resting energy expenditure. No statistically significant differences in total weight loss or total fat loss were observed between treatments, however, a trend toward greater total weight loss (p = 0.08) and total fat loss (p=0.09) was observed in the WP group compared to the CD group. Fat loss in the leg and gynoid regions was greater (p < 0.05) in the WP group than the CD group. No RAAS mediated response was observed, but a decrease in systolic blood pressure was significantly greater (p <0.05) in the WP group compared to the CD group. In summary, increased whey protein intake did not result in statistically significant differences in weight loss or in total fat loss, but significant differences in regional fat loss and in decreased blood pressure were observed in the WP group. PMID:21419314

  4. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    PubMed Central

    Gallo, Sina; Vanstone, Catherine A.; Weiler, Hope A.

    2012-01-01

    For over 2 decades, dual-energy X-ray absorptiometry (DXA) has been the gold standard for estimating bone mineral density (BMD) and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation), weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada). Whole body (WB) as well as regional sites of the lumbar spine (LS 1–4) and femur was measured using DXA (QDR 4500A, Hologic Inc.) providing bone mineral content (BMC) for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0 ± 14.2 versus 227.0 ± 29.7 g), spine BMC by 130% (2.35 ± 0.42 versus 5.37 ± 1.02 g), and femur BMC by 190% (2.94 ± 0.54 versus 8.50 ± 1.84 g). Spine BMD increased by 14% (0.266 ± 0.044 versus 0.304 ± 0.044 g/cm2) during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals. PMID:23091773

  5. Body-composition assessment via air-displacement plethysmography in adults and children: a review.

    PubMed

    Fields, David A; Goran, Michael I; McCrory, Megan A

    2002-03-01

    Laboratory-based body-composition techniques include hydrostatic weighing (HW), dual-energy X-ray absorptiometry (DXA), measurement of total body water (TBW) by isotope dilution, measurement of total body potassium, and multicompartment models. Although these reference methods are used routinely, each has inherent practical limitations. Whole-body air-displacement plethysmography is a new practical alternative to these more traditional body-composition methods. We reviewed the principal findings from studies published between December 1995 and August 2001 that compared the BOD POD method (Life Measurement, Inc, Concord, CA) with reference methods and summarized factors contributing to the different study findings. The average of the study means indicates that the BOD POD and HW agree within 1% body fat (BF) for adults and children, whereas the BOD POD and DXA agree within 1% BF for adults and 2% BF for children. Few studies have compared the BOD POD with multicompartment models; those that have suggest a similar average underestimation of approximate 2-3% BF by both the BOD POD and HW. Individual variations between 2-compartment models compared with DXA and 4 -compartment models are partly attributable to deviations from the assumed chemical composition of the body. Wide variations among study means, -4.0% to 1.9% BF for BOD POD - HW and -3.0% to 1.7% BF for BOD POD - DXA, are likely due in part to differences in laboratory equipment, study design, and subject characteristics and in some cases to failure to follow the manufacturer's recommended protocol. Wide intersubject variations between methods are partly attributed to technical precision and biological error but to a large extent remain unexplained. On the basis of this review, future research goals are suggested.

  6. Prevalent Morphometric Vertebral Fractures in Professional Male Rugby Players

    PubMed Central

    Hind, Karen; Birrell, Fraser; Beck, Belinda

    2014-01-01

    There is an ongoing concern about the risk of injury to the spine in professional rugby players. The objective of this study was to investigate the prevalence of vertebral fracture using vertebral fracture assessment (VFA) dual energy X-ray absorptiometry (DXA) imaging in professional male rugby players. Ninety five professional rugby league (n = 52) and union (n = 43) players (n = 95; age 25.9 (SD 4.3) years; BMI: 29.5 (SD 2.9) kg.m2) participated in the research. Each participant received one VFA, and one total body and lumbar spine DXA scan (GE Lunar iDXA). One hundred and twenty vertebral fractures were identified in over half of the sample by VFA. Seventy four were graded mild (grade 1), 40 moderate (grade 2) and 6 severe (grade 3). Multiple vertebral fractures (≥2) were found in 37 players (39%). There were no differences in prevalence between codes, or between forwards and backs (both 1.2 v 1.4; p>0.05). The most common sites of fracture were T8 (n = 23), T9 (n = 18) and T10 (n = 21). The mean (SD) lumbar spine bone mineral density Z-score was 2.7 (1.3) indicating high player bone mass in comparison with age- and sex-matched norms. We observed a high number of vertebral fractures using DXA VFA in professional rugby players of both codes. The incidence, aetiology and consequences of vertebral fractures in professional rugby players are unclear, and warrant timely, prospective investigation. PMID:24846310

  7. Disparities in Osteoporosis Screening Between At-Risk African-American and White Women

    PubMed Central

    Miller, Redonda G; Ashar, Bimal H; Cohen, Jennifer; Camp, Melissa; Coombs, Carmen; Johnson, Elizabeth; Schneyer, Christine R

    2005-01-01

    Background Despite a lower prevalence of osteoporosis in African-American women, they remain at risk and experience a greater mortality than white women after sustaining a hip fracture. Lack of recognition of risk factors may occur in African-American women, raising the possibility that disparities in screening practices may exist. Objective To determine whether there is a difference in physician screening for osteoporosis in postmenopausal, at-risk African-American and white women. Methods We conducted a retrospective chart review at an urban academic hospital and a suburban community hospital. Subjects included 205 African-American and white women, age ≥65 years and weight ≤127 pounds, who were seen in Internal Medicine clinics. The main outcome was dual-energy x-ray absorptiometry (DXA) scan referral. We investigated physician and patient factors associated with referral. Secondary outcomes included evidence of discussion of osteoporosis and prescription of medications to prevent osteoporosis. Results Significantly fewer African-American than white women were referred for a DXA scan (OR 0.39%, 95% confidence interval (CI): 0.22 to 0.68). Physicians were also less likely to mention consideration of osteoporosis in medical records (0.27, 0.15 to 0.48) and to recommend calcium and vitamin D supplementation for this population (0.21, 0.11 to 0.37). If referred, African-American women had comparable DXA completion rates when compared with white women. No physician characteristics were significantly associated with DXA referral patterns. Conclusions Our study found a significant disparity in the recommendation for osteoporosis screening for African-American versus white women of similar risk, as well as evidence of disparate osteoporosis prevention and treatment, confirming results of other studies. Future educational and research initiatives should target this inequality. PMID:16117754

  8. Bone mineral density in systemic lupus erythematosus women one year after rituximab therapy.

    PubMed

    Mendoza Pinto, C; García Carrasco, M; Etchegaray Morales, I; Jiménez Hernández, M; Méndez Martínez, S; Jiménez Hernández, C; Briones Rojas, R; Ramos Alvarez, G; Rodríguez Gallegos, A; Montiel Jarquín, A; López Colombo, A; Cervera, R

    2013-10-01

    The objective of this study was to assess the effects of rituximab on bone mineral density (BMD) in women with systemic lupus erythematosus (SLE) 1 year after treatment. Thirty active female SLE patients treated with rituximab were compared with 43 SLE women not treated with rituximab. BMD was measured using dual energy X-ray absorptiometry (DEXA) before initiating biologic therapy and after 1 year. The mean age was 38.5 ± 2.1 years; median disease duration was 7 years. In the rituximab group, after 1 year of follow-up, BMD at the femoral neck (FN) decreased from 0.980 ± 0.130 g/cm(2) to 0.809 ± 0.139 g/cm(2) (-17.4%; p=0.001). Similarly, BMD at the lumbar spine (LS) decreased from 1.062 ± 0.137 g/cm(2) to 0.893 ± 0.194 g/cm(2) (-15.8%; p=0.001). In control subjects, BMD at the FN decreased from 0.914 ± 0.193 g/cm(2) to 0.890 ± 0.135 g/cm(2) (-2.6%; p=0.001), and BMD at the LS decreased from 0.926 ± 0.128 g/cm(2) to 0.867 ± 0.139 g/cm(2) (-6.2%; p=0.09). After 1 year, SLE patients had lower BMD at both the FN and LS, but the loss was greater in postmenopausal patients who had received rituximab therapy.

  9. Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects.

    PubMed

    Bellia, Alfonso; Garcovich, Caterina; D'Adamo, Monica; Lombardo, Mauro; Tesauro, Manfredi; Donadel, Giulia; Gentileschi, Paolo; Lauro, Davide; Federici, Massimo; Lauro, Renato; Sbraccia, Paolo

    2013-02-01

    Obesity is frequently characterized by a reduced vitamin D bioavailability, as well as insulin-resistance and a chronic inflammatory response. We tested the hypothesis of an independent relationship between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and several circulating inflammatory markers in a cohort of severely obese individuals. Cross-sectional study was carried out among obese patients undergoing a clinical evaluation before bariatric surgery in our University Hospital. Serum 25(OH)D, fasting and post load glucose and insulin, high-sensitive C-reactive protein (hs CRP), fibrinogen, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), leptin, adiponectin and lipid profile were collected. Insulin-resistance was assessed by insulin sensitivity index (ISI). Total body fat (FAT kg), total percent body fat (FAT%) and truncal fat mass (TrFAT) were assessed with dual-energy X-ray absorptiometry. A total of 147 obese subjects (89 women, 37.8 ± 7.1 years) with mean body mass index (BMI) of 43.6 ± 4.3 kg/m(2) were enrolled. Patients in the lowest tertile of 25(OH)D were significantly more obese with a higher amount of TrFAT, more insulin-resistant, and had higher levels of fasting and post-challenge glucose (p < 0.05 for all). In a multivariate regression analysis, serum 25(OH)D was inversely related to significant levels of hs CRP, IL-6 and TNF-α after accounting for age, gender, season of recruitment, BMI, FAT kg and TrFAT (p < 0.01 for all). In extremely obese subjects, 25(OH)D serum concentrations are inversely associated with several biomarkers of systemic inflammation, regardless of the total quantity of fat mass. PMID:21437585

  10. Dietary calcium and bone mineral density in premenopausal women with systemic lupus erythematosus.

    PubMed

    Chong, H C; Chee, S S; Goh, E M L; Chow, S K; Yeap, S S

    2007-02-01

    The primary objective of this study was to determine the relationship between dietary calcium intake and bone mineral density (BMD) in premenopausal women with systemic lupus erythematosus (SLE) on corticosteroids (CS). The secondary aim was to identify other risk factors for osteoporosis in these patients. A cross-sectional sample of patients attending the SLE Clinic at a teaching hospital was recruited. BMD was measured using dual-energy X-ray absorptiometry. Daily dietary calcium intake was assessed using a structured validated food frequency questionnaire, in which patients were asked to estimate their food intake based on their recent 2-month dietary habits. Sixty subjects were recruited with a mean age of 33.70+/-8.46 years. The median duration of CS use was 5.5 years (range 0.08-24). The median cumulative dose of steroids was 17.21 g (range 0.16-91.37). The median daily dietary calcium intake was 483 mg (range 78-2101). There was no significant correlation between calcium intake and BMD, even after correcting for CS use. There were also no correlations between BMD and the duration of SLE, cumulative CS use, duration of CS use, smoking, alcohol intake, and SLE disease activity index score. Twenty-eight (46.7%) patients had normal BMD, 28 (46.7%) had osteopenia, and four (6.6%) had osteoporosis. Duration of SLE significantly correlated with cumulative CS dosage. In conclusion, 6.7% of these Asian premenopausal SLE women had osteoporosis and only 46.7% had normal BMD. Daily dietary calcium intake did not correlate with BMD. PMID:16565892

  11. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT).

    PubMed

    Pottecher, Pierre; Engelke, Klaus; Duchemin, Laure; Museyko, Oleg; Moser, Thomas; Mitton, David; Vicaut, Eric; Adams, Judith; Skalli, Wafa; Laredo, Jean Denis; Bousson, Valérie

    2016-09-01

    Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations

  12. Solar system positioning system

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Chui, Talso

    2006-01-01

    Power-rich spacecraft envisioned in Prometheus initiative open up possibilities for long-range high-rate communication. A constellation of spacecraft on orbits several A.U. from the Sun, equipped with laser transponders and precise clocks can be configured to measure their mutual distances to within few cm. High on-board power can create substantial non-inertial contribution to the spacecraft trajectory. We propose to alleviate this contribution by employing secondary ranging to a passive daughter spacecraft. Such constellation can form the basis of it navigation system capable of providing position information anywhere in the soIar system with similar accuracy. Apart from obvious Solar System exploration implications, this system can provide robust reference for GPS and its successors.

  13. Clinical application of dual photon absorptiometry (DPA) at the lumbar spine (LS) in the diagnosis of osteoporosis

    SciTech Connect

    Wahner, H.W.; Dunn, W.L.; Riggs, B.L.

    1984-01-01

    This study evaluates the effectiveness of DPA to separate patients with osteoporosis (greater than 2 spinal fractures, normal Ca, P, absence of drugs, and metabolic bone disease) from a normal population. Performance criteria for the instrument have been described previously. Data was obtained from a prospective study of 105 normal women, 75 patients with osteoporosis and a retrospective study of 300 patients with osteoporosis seen in 1982/83. The results were as follows: (1) Area density (gm/cm/sup 2/) was found superior to mass (gm) due to the occasional problem to clearly identify the boundaries of L1-4. (2) Separation of the two populations was best when L1-L4,L2-L4, L3 alone or 10 paths over the mid lumbar area were used. One pass was not acceptable. (3) Compression fractures (CF) in the LS showed an increase in area density initially but area density may be undistinguishable from intact vertebrae later. To correct for this loss of bone area a factor predicting the area of lumbar vertebrae and based on patients actual height and weight was introduced and tested. (4) In the retrospective study a negative correlation was found between number of thoracic spine CF and bone mineral values in the LS. (5) A fracture threshold value of BM defined as the level below which 95% of all patients with CF were found was determined to be 0.98 g/cm2. Sixty-five percent of patients with two or more spinal CF could be separated from the normal population (outside 2SD). By using a correction factor for height loss this could be further increased to about 70%. CF in the LS may falsely elevate bone mineral values.

  14. Demographic and socioeconomic correlates of adiposity assessed with dual-energy X-ray absorptiometry in US children and adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Associations between demographic-socioeconomic characteristics and childhood obesity are complex in the United States. We examined associations between demographic-socioeconomic characteristics (age, sex, race-ethnicity, family income, household size, and birthplace) and adiposity measured by dual-e...

  15. Skeletal status and soft tissue composition in astronauts. Tissue and fluid changes by radionuclide absorptiometry in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Mazess, R. B.; Wilson, C. R.

    1974-01-01

    Research on the measurement of bone mineral content and body composition ranges from isotopic tracer methods and the adoption of clinical standards to osteoporosis therapy and the effects of nutritional factors on bone loss.

  16. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis.

    PubMed

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  17. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis

    PubMed Central

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  18. Limited Effects of Endurance or Interval Training on Visceral Adipose Tissue and Systemic Inflammation in Sedentary Middle-Aged Men

    PubMed Central

    Cooper, Joshua H. F.; Collins, Blake E. G.; Adams, David R.; Robergs, Robert A.

    2016-01-01

    Purpose. Limited data exists for the effects of sprint-interval training (SIT) and endurance training (ET) on total body composition, abdominal visceral adipose tissue, and plasma inflammation. Moreover, whether “active” or “passive” recovery in SIT provides a differential effect on these measures remains uncertain. Methods. Sedentary middle-aged men (n = 62; 49.5 ± 5.8 y; 29.7 ± 3.7 kg·m2) underwent abdominal computed tomography, dual-energy X-ray absorptiometry, venepuncture, and exercise testing before and after the interventions, which included the following: 12 wks 3 d·wk−1 ET (n = 15; 50–60 min cycling; 80% HRmax), SIT (4–10 × 30 s sprint efforts) with passive (P-SIT; n = 15) or active recovery (A-SIT; n = 15); or nonexercise control condition (CON; n = 14). Changes in cardiorespiratory fitness, whole-body and visceral fat mass, and plasma systemic inflammation were examined. Results. Compared to CON, significant increases in interpolated power output (P-SIT, P < 0.001; ET, P = 0.012; A-SIT, P = 0.041) and test duration (P-SIT, P = 0.001; ET, P = 0.012; A-SIT, P = 0.046) occurred after training. Final VO2 consumption was increased after P-SIT only (P < 0.001). Despite >90% exercise compliance, there was no change in whole-body or visceral fat mass or plasma inflammation (P > 0.05). Conclusion. In sedentary middle-aged men, SIT was a time-effective alternative to ET in facilitating conditioning responses yet was ineffective in altering body composition and plasma inflammation, and compared to passive recovery, evidenced diminished conditioning responses when employing active recovery. PMID:27777795

  19. Immune System

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immune System KidsHealth > For Teens > Immune System Print A A ... could put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  20. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics.

    PubMed

    Bonkowski, Michael S; Pamenter, Richard W; Rocha, Juliana S; Masternak, Michal M; Panici, Jacob A; Bartke, Andrzej

    2006-06-01

    There is conflicting information on the physiological role of growth hormone (GH) in the control of aging. This study reports dual-energy x-ray absorptiometry (DXA) measurements of body composition and bone characteristics in young, adult, and aged long-lived GH receptor knockout (GHR-KO) and normal mice to determine the effects of GH resistance during aging. Compared to controls, GHR-KO mice showed an increased percentage of body fat. GHR-KO mice have reduced total-body bone mineral density (BMD), bone mineral content, and bone area, but these parameters increased with age. In addition, GHR-KO mice have decreased femur length, femur BMD, and lower lumbar BMD compared to controls in all age groups. These parameters also continued to increase with age. Our results indicate that GH resistance alters body composition, bone growth, and bone maintenance during aging in GHR-KO mice.

  1. Osteoporosis management in patient with renal function impairment.

    PubMed

    Lima, Guilherme Alcantara Cunha; Paranhos Neto, Francisco de Paula; Pereira, Giselly Rosa Modesto; Gomes, Carlos Perez; Farias, Maria Lucia Fleiuss

    2014-07-01

    Aging is associated with decreases in bone quality and in glomerular filtration. Consequently, osteoporosis and chronic kidney disease (CKD) are common comorbid conditions in the elderly, and often coexist. Biochemical abnormalities in the homeostasis of calcium and phosphorus begin early in CKD, leading to an increase in fracture risk and cardiovascular complications since early stages of the disease. The ability of DXA (dual energy X-ray absorptiometry) to diagnose osteoporosis and to predict fractures in this population remains unclear. The management of the disease is also controversial: calcium and vitamin D, although recommended, must be prescribed with caution, considering vascular calcification risk and the development of adynamic bone disease. Furthermore, safety and effectiveness of osteoporosis drugs are not established in patients with CKD. Thus, risks and benefits of antiosteoporosis treatment must be considered individually. PMID:25166044

  2. Vertebral shape: automatic measurement with dynamically sequenced active appearance models.

    PubMed

    Roberts, M G; Cootes, T F; Adams, J E

    2005-01-01

    The shape and appearance of vertebrae on lateral dual x-ray absorptiometry (DXA) scans were statistically modelled. The spine was modelled by a sequence of overlapping triplets of vertebrae, using Active Appearance Models (AAMs). To automate vertebral morphometry, the sequence of trained models was matched to previously unseen scans. The dataset includes a significant number of pathologies. A new dynamic ordering algorithm was assessed for the model fitting sequence, using the best quality of fit achieved by multiple sub-model candidates. The accuracy of the search was improved by dynamically imposing the best quality candidate first. The results confirm the feasibility of substantially automating vertebral morphometry measurements even with fractures or noisy images.

  3. Position statement: introduction, methods, and participants. The Writing Group for the International Society for Clinical Densitometry (ISCD) Position Development Conference.

    PubMed

    2004-01-01

    Following publication of the proceedings from the first Position Development Conference (PDC) of the International Society for Clinical Densitometry (ISCD), members of the ISCD Scientific Advisory Committee (SAC) addressed additional topics of interest in the field of bone densitometry. These topics were addressed at a subsequent PDC, which was held in Cincinnati, Ohio, July 25-27, 2003. Five topics were chosen for discussion: (1) the diagnosis of osteoporosis in men, premenopausal women, and children; (2) technical standardization for dual-energy X-ray absorptiometry (DXA); (3) indications for bone densitometry; (4) reporting of bone density results; and (5) nomenclature and decimal places for bone densitometry. This report describes the methodology used for the development, presentation, and finalization of PDC positions. These positions are discussed in the following papers. PMID:14742883

  4. Metacarpal Index Estimated by Digital X-ray Radiogrammetry as a Tool for Differentiating Rheumatoid Arthritis Related Periarticular Osteopenia

    PubMed Central

    Böttcher, Joachim; Pfeil, Alexander; Petrovitch, Alexander; Schmidt, Mirco; Kramer, Anika; Schäfer, Max Ludwig; Gajda, Mieczyslaw; Hein, Gert; Wolf, Gunter; Kaiser, Werner A.

    2006-01-01

    To investigate Metacarpal Index (MCI) and Bone Mineral Density (BMD) estimated by Digital X-ray Radiogrammetry (DXR) with respect to its ability to quantify severity-dependent variations of bone mineralisation in patients with early rheumatoid arthritis compared to Dual Energy X-ray Absorptiometry (DXA), 122 patients underwent a prospective analysis of BMD and MCI by DXR, whereas both DXR-parameters were estimated from plain radiographs of the non-dominant hand. In comparison DXA measured BMD on total femur and lumbar spine (L2-L4). Additionally Steinbrocker Stage was assessed to differentiate the severity of rheumatoid arthritis (RA). Disease activity of RA was estimated by C-reactive Protein (CRP; in mg/l), Erythrocyte Sedimentation Rate (ESR in mm/1st hour) and by the disease activity score with 28-joint count (DAS 28). In consequence, The DXR-parameters, in particular DXR-MCI, revealed significant associations to age, Body Mass Index, CRP, DAS 28 and Steinbrocker graduation; no significant associations could be verified between DXA-parameters and all characteristics of disease activity and severity of RA. The highest correlation was found between DXR-MCI and DXR-BMD with R=0.89 (independent from severity of RA). In all patients DXR-MCI significantly decreased (-14.3%) from 0.42 ± 0.09 (stage 1) to 0.36 ± 0.07 (stage 2) dependent on severity of RA. The comparable relative reduction of DXR-BMD was -11.1%. The group of patients with minor disease activity (DAS 28>5.1) showed a significant flattened reduction (-11.4%) for DXR-MCI from 0.44 ± 0.08 (stage 1) to 0.39 ± 0.08 (stage 2). For accentuated disease activity (DAS 28>5.1) the DXR-MCI revealed a pronounced reduction (-23.1 %). No significant declines were observed for DXA-BMD of the lumbar spine and total femur in all patients as well as dependent on disease activity. Conclusion: DXR can exactly quantify cortical thinning of the metacarpal bones and can identify cortical demineralisation in patients

  5. Vitamin D status is associated with bone mineral density and bone mineral content in preschool-aged children.

    PubMed

    Hazell, Tom J; Pham, Thu Trang; Jean-Philippe, Sonia; Finch, Sarah L; El Hayek, Jessy; Vanstone, Catherine A; Agellon, Sherry; Rodd, Celia J; Weiler, Hope A

    2015-01-01

    This study examined the associations between vitamin D status, bone mineral content (BMC), areal bone mineral density (aBMD), and markers of calcium homeostasis in preschool-aged children. Children (n=488; age range: 1.8-6.0 y) were randomly recruited from Montreal. The distal forearm was scanned using a peripheral dual-energy X-ray absorptiometry scanner (Lunar PIXI; GE Healthcare, Fairfield, CT). A subset (n=81) had clinical dual-energy X-ray absorptiometry (cDXA) scans (Hologic 4500A Discovery Series) of lumbar spine (LS) 1-4, whole body, and ultradistal forearm. All were assessed for plasma 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone concentrations (Liaison; Diasorin), ionized calcium (ABL80 FLEX; Radiometer Medical A/S), and dietary vitamin D and calcium intakes by survey. Age (p<0.001) and weight-for-age Z-score (p<0.001) were positively associated with BMC and aBMD in all regression models, whereas male sex contributed positively to forearm BMC and aBMD. Having a 25(OH)D concentration of >75 nmol/L positively associated with forearm and whole body BMC and aBMD (p<0.036). Sun index related to (p<0.029) cDXA forearm and LS 1-4 BMC and whole-body aBMD. Nutrient intakes did not relate to BMC or aBMD. In conclusion, higher vitamin D status is linked to higher BMC and aBMD of forearm and whole body in preschool-aged children.

  6. Operating Systems.

    ERIC Educational Resources Information Center

    Denning, Peter J.; Brown, Robert L.

    1984-01-01

    A computer operating system spans multiple layers of complexity, from commands entered at a keyboard to the details of electronic switching. In addition, the system is organized as a hierarchy of abstractions. Various parts of such a system and system dynamics (using the Unix operating system as an example) are described. (JN)

  7. Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent girls.

    PubMed

    El Hage, Rawad; El Hage, Zaher; Moussa, Elie; Jacob, Christophe; Zunquin, Gautier; Theunynck, Denis

    2013-01-01

    The aim of this study was to compare hip bone strength indices in obese, overweight, and normal-weight adolescent girls using hip structure analysis (HSA). This study included 64 postmenarcheal adolescent girls (14 obese, 21 overweight, and 29 normal weight). The 3 groups (obese, overweight, and normal weight) were matched for maturity (years since menarche). Body composition and bone mineral density (BMD) of whole body, lumbar spine, and proximal femur were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate hip bone strength, DXA scans were analyzed at the femoral neck (FN) at its narrow neck (NN) region, the intertrochanteric (IT), and the femoral shaft (FS) by the HSA program. Cross-sectional area and section modulus were measured from hip BMD profiles. Total hip BMD and FN BMD were significantly higher in obese and overweight girls in comparison with normal-weight girls (p < 0.05). However, after adjusting for weight, using a one-way analysis of covariance, there were no significant differences among the 3 groups regarding HSA variables. This study suggests that in obese and overweight adolescent girls, axial strength and bending strength indices of the NN, IT, and FS are adapted to the increased body weight.

  8. Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.

    PubMed

    Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J

    2016-08-01

    Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.

  9. Whole body bone tissue and cardiovascular risk in rheumatoid arthritis.

    PubMed

    Popescu, Claudiu; Bojincă, Violeta; Opriş, Daniela; Ionescu, Ruxandra

    2014-01-01

    Introduction. Atherosclerosis and osteoporosis share an age-independent bidirectional correlation. Rheumatoid arthritis (RA) represents a risk factor for both conditions. Objectives. The study aims to evaluate the connection between the estimated cardiovascular risk (CVR) and the loss of bone tissue in RA patients. Methods. The study has a prospective cross-sectional design and it includes female in-patients with RA or without autoimmune diseases; bone tissue was measured using whole body dual X-ray absorptiometry (wbDXA); CVR was estimated using SCORE charts and PROCAM applications. Results. There were 75 RA women and 66 normal women of similar age. The wbDXA bone indices correlate significantly, negatively, and age-independently with the estimated CVR. The whole body bone percent (wbBP) was a significant predictor of estimated CVR, explaining 26% of SCORE variation along with low density lipoprotein (P < 0.001) and 49.7% of PROCAM variation along with glycemia and menopause duration (P < 0.001). Although obese patients had less bone relative to body composition (wbBP), in terms of quantity their bone content was significantly higher than that of nonobese patients. Conclusions. Female patients with RA and female patients with cardiovascular morbidity have a lower whole body bone percent. Obese female individuals have higher whole body bone mass than nonobese patients.

  10. Body fat composition and occurrence of kidney stones in hypercalciuric children.

    PubMed

    Ayoob, Rose; Wang, Wei; Schwaderer, Andrew

    2011-12-01

    In the last 10 years, the incidence of kidney stones has increased in the pediatric population, and this rise has been paralleled by a significant increase in pediatric obesity rates in the USA. The purpose of this study was to evaluate percentage body fat (%BF) measured by dual energy X-ray absorptiometry (DXA) in hypercalciuric children with and without kidney stones. A retrospective chart review was performed on children with idiopathic hypercalciuria based on a 24-h urine calcium excretion of >4 mg/kg/day or >200 mg/day who had undergone DXA scanning. Patients were then classified by sex and by %BF (3 categories; normal: <27% girls, <21% boys; at risk for obesity: 27-36% girls, 21-30% boys; obese: >36% girls, >30% boys). The 2003-2004 NHANES data were used as a control. Fifty patients (24 males) were analyzed, of whom 26% were assessed as having a normal %BF, 44% as being at risk for obesity, and 30% as being obese. Children with an increased %BF had a significantly higher occurrence of kidney stones (p = 0.03) than those with a normal %BF. No significant differences were noted in 24-h urine chemistries between the groups. In conclusion, an increased %BF was associated with an increased occurrence of kidney stones in children with idiopathic hypercalciuria. PMID:21660645

  11. Utility of the trabecular bone score (TBS) in secondary osteoporosis.

    PubMed

    Ulivieri, Fabio M; Silva, Barbara C; Sardanelli, Francesco; Hans, Didier; Bilezikian, John P; Caudarella, Renata

    2014-11-01

    Altered bone micro-architecture is an important factor in accounting for fragility fractures. Until recently, it has not been possible to gain information about skeletal microstructure in a way that is clinically feasible. Bone biopsy is essentially a research tool. High-resolution peripheral Quantitative Computed Tomography, while non-invasive, is available only sparsely throughout the world. The trabecular bone score (TBS) is an imaging technology adapted directly from the Dual Energy X-Ray Absorptiometry (DXA) image of the lumbar spine. Thus, it is potentially readily and widely available. In recent years, a large number of studies have demonstrated that TBS is significantly associated with direct measurements of bone micro-architecture, predicts current and future fragility fractures in primary osteoporosis, and may be a useful adjunct to BMD for fracture detection and prediction. In this review, we summarize its potential utility in secondary causes of osteoporosis. In some situations, like glucocorticoid-induced osteoporosis and in diabetes mellitus, the TBS appears to out-perform DXA. It also has apparent value in numerous other disorders associated with diminished bone health, including primary hyperparathyroidism, androgen-deficiency, hormone-receptor positive breast cancer treatment, chronic kidney disease, hemochromatosis, and autoimmune disorders like rheumatoid arthritis. Further research is both needed and warranted to more clearly establish the role of TBS in these and other disorders that adversely affect bone.

  12. Body composition analyses by air displacement plethysmography in adults ranging from normal weight to extremely obese

    PubMed Central

    Hames, Kazanna C.; Anthony, Steven J.; Thornton, John C.; Gallagher, Dympna; Goodpaster, Bret H.

    2014-01-01

    Objective To compare body composition parameters estimated by air displacement plethysmography (ADP) to dual x-ray absorptiometry (DXA) in body mass index (BMI) classifications that include extremely obese (BMI≥40.0kg/m2), and to examine if differences between analyses were influenced by BMI. Design and Methods Fat free mass (FFM,kg), fat mass (FM,kg) and body fat (BF,%) were analyzed with both technologies. Results All outcome measures of ADP and DXA were highly correlated (r≥0.95,P<0.001 for FFM, FM and BF), but Bland-Altman analyses revealed significant bias (P<0.01 for all). ADP estimated greater FFM and lower FM and BF (P<0.01 for all). BMI explained 27% of the variance in differences between FFM measurements (P<0.001), and 37% and 33% of the variances in differences between FM and BF measurements, respectively (P<0.001 for both). Within normal weight and overweight classifications, ADP estimated greater FFM and lower FM and BF (P<0.001 for all), but the opposite occurred within the extremely obese classification; ADP estimated lower FFM and greater FM and BF (P<0.05 for all). Conclusions Body composition analyses by the two technologies were strongly congruent, but systematically different and influenced by BMI. Caution should be taken when utilizing ADP to estimate body composition parameters over a wide range of BMI classifications that include extremely obese. PMID:24170704

  13. Bone mineral density, adiposity, and cognitive functions.

    PubMed

    Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  14. Trends in Bone Mineral Density in Young Adults with Cystic Fibrosis over a 15 Year Period

    PubMed Central

    Putman, Melissa S.; Baker, Joshua F.; Uluer, Ahmet; Herlyn, Karen; Lapey, Allen; Sicilian, Leonard; Tillotson, Angela Pizzo; Gordon, Catherine M.; Merkel, Peter A.; Finkelstein, Joel S.

    2015-01-01

    Background Improvements in clinical care have led to increased life expectancy in patients with cystic fibrosis (CF) over the past several decades. Whether these improvements have had significant effects on bone health in patients with CF is unclear. Methods This is a cross-sectional study comparing clinical characteristics and bone mineral density (BMD) measured by dual energy X-ray absorptiometry (DXA) in adults with CF evaluated in 1995–1999 to age-, race-, and gender matched patients with CF evaluated in 2011–2013 at the same center on calibrated DXA machines. Results The cohorts were similar in terms of age, BMI, pancreatic insufficiency, presence of F508del mutation, and reproductive history. In the most recent cohort, pulmonary function was superior, and fewer patients had vitamin D deficiency or secondary hyperparathyroidism. Areal BMD measures of the PA spine, lateral spine, and distal radius were similarly low in the two cohorts. Conclusions Although pulmonary function and vitamin D status were better in patients in the present-day cohort, areal BMD of the spine was reduced in a significant number of patients and was no different in patients with CF today than in the late 1990s. Further attention to optimizing bone health may be necessary to prevent CF-related bone disease. PMID:25698451

  15. Effects of lorcaserin on fat and lean mass loss in obese and overweight patients without and with type 2 diabetes mellitus: the BLOSSOM and BLOOM-DM studies.

    PubMed

    Apovian, C; Palmer, K; Fain, R; Perdomo, C; Rubino, D

    2016-09-01

    Body composition was determined using dual-energy X-ray absorptiometry (DXA) in a subset of patients without (BLOSSOM) and with (BLOOM-DM) type 2 diabetes who received diet and exercise counselling along with either lorcaserin 10 mg twice daily or placebo. DXA scans were performed on study day 1 (baseline), week 24 and week 52. Baseline demographics of the subpopulations (without diabetes, n = 189; with diabetes, n = 63) were similar between studies and representative of their study populations. At week 52, patients without diabetes on lorcaserin lost significantly more fat mass relative to those on placebo (-12.06% vs -5.93%; p = 0.008). In patients with diabetes, fat mass was also decreased with lorcaserin relative to placebo (-9.87% vs -1.65%; p < 0.05). More fat mass was lost in the trunk region with lorcaserin compared with placebo (without diabetes: -3.31% vs -2.05%; with diabetes: -3.65% vs -0.36%). Weight loss with lorcaserin was associated with a greater degree of fat mass loss than lean mass loss, and most of the fat mass lost for patients without and with diabetes was from the central region of the body. PMID:27173586

  16. The prevalence of disordered eating and possible health consequences in adolescent female tennis players from Rio de Janeiro, Brazil.

    PubMed

    Coelho, Gabriela Morgado de Oliveira; de Farias, Maria Lucia Fleiuss; de Mendonça, Laura Maria Carvalho; de Mello, Danielli Braga; Lanzillotti, Haydée Serrão; Ribeiro, Beatriz Gonçalves; Soares, Eliane de Abreu

    2013-05-01

    The aim of this study was to estimate the prevalence of disordered eating and possible health consequences in adolescent female tennis players. This cross-sectional controlled study investigated the pubertal development (Tanner stages); body composition (dual energy X-ray absorptiometry-DXA); dietary intake (food record); presence of disordered eating (EAT-26, BITE and BSQ); menstrual status (questionnaire) and bone mineral density (DXA). The Female Athlete Triad (FAT) was divided into two severity stages. The study included 45 adolescents (24 athletes and 21 controls) at some pubertal developmental stage. The athletes exhibited better body composition profiles. We found that 91.7%, 33.3% and 25% of athletes and 71.4%, 9.5% and 33.3% of controls met criteria for disordered eating and/or low energy availability, menstrual irregularities and low bone mass, respectively. A greater percentage of athletes than controls presented with 1 and 2 FAT components (stage I), and 4.2% presented with the full syndrome. In conclusion, tennis players appear to present with more severe disorders than controls and should be monitored to avoid damage to their performance and health.

  17. Hutchinson-Gilford progeria is a skeletal dysplasia.

    PubMed

    Gordon, Catherine M; Gordon, Leslie B; Snyder, Brian D; Nazarian, Ara; Quinn, Nicolle; Huh, Susanna; Giobbie-Hurder, Anita; Neuberg, Donna; Cleveland, Robert; Kleinman, Monica; Miller, David T; Kieran, Mark W

    2011-07-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that affects bone and body composition, among other tissues. We sought to determine whether bone density and structural geometry are altered in children with HGPS and whether relationships exist among these parameters and measures of skeletal anthropometry, body composition, and nutrition. We prospectively enrolled 26 children with HGPS (ages 3.1 to 16.2 years). Outcomes included anthropometric data; bone age; areal bone mineral density (aBMD) and body composition by dual-energy X-ray absorptiometry (DXA); volumetric bone mineral density (vBMD), strength-strain index (SSI), and bone structural rigidity calculated from radial transaxial peripheral quantitative computed tomographic (pQCT) images; serum bone biomarkers and hormonal measures; and nutrition assessments. Children with HGPS had low axial aBMD Z-scores by DXA, which improved after adjustment for height age, whereas differences in radial vBMD by pQCT were less striking. However, pQCT revealed distinct abnormalities in both novel measures of bone structural geometry and skeletal strength at the radius compared with healthy controls. Dietary intake was adequate, confirming that HGPS does not represent a model of malnutrition-induced bone loss. Taken together, these findings suggest that the phenotype of HGPS represents a unique skeletal dysplasia.

  18. Frequency-effect of playing screen golf on body composition and golf performance in middle-aged men.

    PubMed

    Jang, Jung-Hoon; Jee, Yong-Seok; Oh, Hye-Won

    2014-10-01

    There are many studies showing that physical training improves body composition including bone mineral density (BMD) in almost all subjects. However, the frequency-dependent effect of playing golf on body composition is still not clearly comprehended. Moreover, the effect of screen golf in relations with exercise-frequency on body composition and golf performance has not been documented. Forty year old men participated and were classified into 4 groups: Control group (n= 10), BMD1 group (n= 10) played screen golf less than 1 day per a week, BMD2-3 group (n= 10) played screen golf 2-3 days per a week, and BMD5 group (n= 10) played screen golf 5 days per week. Dual-energy X-ray absorptiometry (DXA) was performed on 30 male recreational golfers and 10 sedentary individuals. The data gained through DXA were fat mass, lean mass, regional (head, rib, arm, leg, pelvis, spine and trunk) BMD level, and total BMD level summed by regional scores. The club speeds were measured using the Golfzon Vision machine and the handicap points were measured using a simple questionnaire. The present results suggest that the long-frequency of playing screen golf does not improve bone mineral density, lean mass, and handicap point yet improves fat mass and club speed in the middle-aged men.

  19. Use of fast neutrons for assessing sarcopenia by measuring body phosphorus: relevance to health and quality of life of the elderly

    NASA Astrophysics Data System (ADS)

    Kehayias, Joseph J.; Zhuang, Hong; Doherty, Patricia L.

    1997-02-01

    Sarcopenia, defined as the loss of skeletal muscle with age, may lead to frailty, fractures due to falls, and reduced immunity to disease. By understanding the causes of muscle loss with age we will be able to develop ways of maintaining functional capacity and quality of life for the elderly. Elemental Partition Analysis (EPA) is a new approach to body composition assessment. A major element of the body is measured and then, by means of other measurements, is partitioned to the contributing body compartments. We developed a model for measuring total body muscle by applying the EPA method to total body phosphorus (TBP). We measure TBP by in vivo fast neutron activation analysis using the reaction 31P(n,(alpha) )28Al. The main contributors to TBP are bone and skeletal muscle. Adipose tissue and the liver contribute less than 3 percent. We use dual-energy x-ray absorptiometry (DXA) to evaluate the contribution of bone to TBP. COrrections are applied for the small contributions of the liver and adipose tissue to TBP to derive muscle phosphorus. The technique requires high precision measurements for both TBP and DXA. The total body radiation exposure for measuring human subjects is 0.30 mSv.

  20. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates.

  1. Dietary long-chain inulin reduces abdominal fat but has no effect on bone density in growing female rats.

    PubMed

    Jamieson, Jennifer A; Ryz, Natasha R; Taylor, Carla G; Weiler, Hope A

    2008-08-01

    New strategies to improve Ca absorption and bone health are needed to address the current state of osteoporosis prevention and management. Inulin-type fructans have shown great promise as a dietary intervention strategy, but have not yet been tested in a young female model. Our objective was to investigate the effect of long chain (LC) inulin on bone mineralization and density in growing, female rats, as well as the quality of growth. Weanling Sprague-Dawley rats were assigned to inulin or cellulose treatments for either 4 or 8 weeks. Growth was measured weekly and quality of growth assessed using fat pad weights and dual-energy X-ray absorptiometry (DXA). Whole body (WB) and selected regions were analysed for bone mineral density (BMD) and body composition by DXA. Serum markers of bone turnover were assessed by enzyme-linked immunosorbent assays. Ca and P concentrations were determined in excised femurs by inductively coupled plasma spectrometry. Feeding inulin resulted in 4 % higher femoral weight (adjusted for body weight) and 6 % less feed intake. Inulin did not affect WB or regional BMD, but was associated with a 28 % lower parametrial fat pad mass, 21 % less WB fat mass and 5 % less WB mass. In summary, LC-inulin lowered body fat mass, without consequence to bone density in growing female rats.

  2. Frequency-effect of playing screen golf on body composition and golf performance in middle-aged men

    PubMed Central

    Jang, Jung-Hoon; Jee, Yong-Seok; Oh, Hye-Won

    2014-01-01

    There are many studies showing that physical training improves body composition including bone mineral density (BMD) in almost all subjects. However, the frequency-dependent effect of playing golf on body composition is still not clearly comprehended. Moreover, the effect of screen golf in relations with exercise-frequency on body composition and golf performance has not been documented. Forty year old men participated and were classified into 4 groups: Control group (n= 10), BMD1 group (n= 10) played screen golf less than 1 day per a week, BMD2–3 group (n= 10) played screen golf 2–3 days per a week, and BMD5 group (n= 10) played screen golf 5 days per week. Dual-energy X-ray absorptiometry (DXA) was performed on 30 male recreational golfers and 10 sedentary individuals. The data gained through DXA were fat mass, lean mass, regional (head, rib, arm, leg, pelvis, spine and trunk) BMD level, and total BMD level summed by regional scores. The club speeds were measured using the Golfzon Vision machine and the handicap points were measured using a simple questionnaire. The present results suggest that the long-frequency of playing screen golf does not improve bone mineral density, lean mass, and handicap point yet improves fat mass and club speed in the middle-aged men. PMID:25426463

  3. The effects of once-weekly teriparatide on hip geometry assessed by hip structural analysis in postmenopausal osteoporotic women with high fracture risk.

    PubMed

    Sone, Teruki; Ito, Masako; Fukunaga, Masao; Tomomitsu, Tatsushi; Sugimoto, Toshitsugu; Shiraki, Masataka; Yoshimura, Takeshi; Nakamura, Toshitaka

    2014-07-01

    Weekly administration of teriparatide has been shown to reduce the risk of vertebral and non-vertebral fractures in patients with osteoporosis at higher fracture risk in Japan. However, its efficacy for hip fracture has not been established. To gain insight into the effect of weekly teriparatide on the hip, hip structural analysis (HSA) based on dual-energy X-ray absorptiometry (DXA) was performed using the data of 209 postmenopausal osteoporotic women who had participated in the original randomized, multicenter, double-blind, placebo-controlled trial assessing the effects of once-weekly 56.5 μg teriparatide for 72 weeks. The DXA scans, obtained at baseline, 48 weeks and 72 weeks, were analyzed to extract bone mineral density (BMD) and cross-sectional geometrical indices at the narrowest point on the neck (NN), the intertrochanteric region (IT), and the proximal shaft. Compared with placebo after 72 weeks, the teriparatide group showed significantly higher BMD, average cortical thickness, bone cross-sectional area, and section modulus, and lower buckling ratio at both the NN and IT regions. No significant expansion of periosteal diameter was observed at these regions. There were no significant differences in BMD and HSA indices at the shaft region. The results indicate that overall structural strength in the proximal femur increased compared to placebo, suggesting that once-weekly teriparatide effectively reverses changes in hip geometry and strength with aging. PMID:24727160

  4. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    PubMed

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  5. The prevalence of disordered eating and possible health consequences in adolescent female tennis players from Rio de Janeiro, Brazil.

    PubMed

    Coelho, Gabriela Morgado de Oliveira; de Farias, Maria Lucia Fleiuss; de Mendonça, Laura Maria Carvalho; de Mello, Danielli Braga; Lanzillotti, Haydée Serrão; Ribeiro, Beatriz Gonçalves; Soares, Eliane de Abreu

    2013-05-01

    The aim of this study was to estimate the prevalence of disordered eating and possible health consequences in adolescent female tennis players. This cross-sectional controlled study investigated the pubertal development (Tanner stages); body composition (dual energy X-ray absorptiometry-DXA); dietary intake (food record); presence of disordered eating (EAT-26, BITE and BSQ); menstrual status (questionnaire) and bone mineral density (DXA). The Female Athlete Triad (FAT) was divided into two severity stages. The study included 45 adolescents (24 athletes and 21 controls) at some pubertal developmental stage. The athletes exhibited better body composition profiles. We found that 91.7%, 33.3% and 25% of athletes and 71.4%, 9.5% and 33.3% of controls met criteria for disordered eating and/or low energy availability, menstrual irregularities and low bone mass, respectively. A greater percentage of athletes than controls presented with 1 and 2 FAT components (stage I), and 4.2% presented with the full syndrome. In conclusion, tennis players appear to present with more severe disorders than controls and should be monitored to avoid damage to their performance and health. PMID:23318655

  6. Visceral Fat Mass Has Stronger Associations with Diabetes and Prediabetes than Other Anthropometric Obesity Indicators among Korean Adults

    PubMed Central

    Jung, Suk Hwa; Ha, Kyoung Hwa

    2016-01-01

    Purpose This study determined which obesity measurement correlates the best with diabetes and prediabetes. Materials and Methods This cross-sectional study enrolled 1603 subjects (611 men, 992 women; age 30–64 years) at the Cardiovascular and Metabolic Diseases Etiology Research Center. Body mass index, waist circumference, waist-height ratio, waist-hip ratio, waist-thigh ratio, and visceral fat were used as measures of obesity. Visceral fat was acquired using dual-energy X-ray absorptiometry (DXA). The prevalences of diabetes and prediabetes were defined using the criteria in the American Diabetes Association 2015 guidelines. Results After adjusting for age and other potential confounding factors, participants with a visceral fat mass in the upper 10th percentile had a higher odds ratio (OR) for diabetes and prediabetes than the upper 10th percentile of other adiposity indices [men, OR=15.9, 95% confidence interval (CI)=6.4–39.2; women, OR=6.9, 95% CI=3.5–13.7]. Visceral fat mass also had the highest area under the curve with diabetes and prediabetes in both men (0.69, 95% CI=0.64–0.73) and women (0.70, 95% CI=0.67–0.74) compared to other anthropometric measurements of obesity. Conclusion Visceral fat mass measured using DXA is an indicator of diabetes or prediabetes, due to its ability to differentiate between abdominal visceral and subcutaneous fat. PMID:26996568

  7. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    PubMed

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions.

  8. Impact of creatine supplementation in combination with resistance training on lean mass in the elderly

    PubMed Central

    Pinto, Camila Lemos; Botelho, Patrícia Borges; Carneiro, Juliana Alves

    2016-01-01

    Abstract Background Human ageing is a process characterized by loss of muscle mass, strength, and bone mass. We aimed to examine the efficacy of low‐dose creatine supplementation associated with resistance training on lean mass, strength, and bone mass in the elderly. Methods This was a 12‐week, parallel‐group, double‐blind, randomized, placebo‐controlled trial. The individuals were randomly allocated into one of the following groups: placebo plus resistance training (PL + RT) and creatine supplementation plus resistance training (CR + RT) . The participants were assessed at baseline and after 12 weeks. The primary outcomes were lean mass and strength, assessed by dual energy X‐ray absorptiometry (DXA) and ten‐repetition maximal tests (10 RM), respectively. Secondary outcomes included the lumbar spine, right and left femoral neck, both femur and whole body bone mineral density (BMD), and whole body bone mineral content (BMC), assessed by DXA. Results The CR + RT group had superior gains in lean mass when compared with the PL + RT group (P = 0.02). Changes in the 10 RM tests in bench press and leg press exercises, body composition, BMD, and BMC of all assessed sites did not significantly differ between the groups (P > 0.05). Conclusions Twelve weeks of low‐dose creatine supplementation associated with resistance training resulted in increases in lean mass in the elderly. PMID:27239423

  9. Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.

    PubMed

    Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J

    2016-08-01

    Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment. PMID:26863670

  10. Optimizing Bone Health in Duchenne Muscular Dystrophy

    PubMed Central

    Buckner, Jason L.; Bowden, Sasigarn A.; Mahan, John D.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA. PMID:26124831

  11. A New Equation to Estimate Muscle Mass from Creatinine and Cystatin C

    PubMed Central

    Kim, Cheol-Ho; Kim, Kwang-il; Chin, Ho Jun; Lee, Hajeong

    2016-01-01

    Background With evaluation for physical performance, measuring muscle mass is an important step in detecting sarcopenia. However, there are no methods to estimate muscle mass from blood sampling. Methods To develop a new equation to estimate total-body muscle mass with serum creatinine and cystatin C level, we designed a cross-sectional study with separate derivation and validation cohorts. Total body muscle mass and fat mass were measured using dual-energy x-ray absorptiometry (DXA) in 214 adults aged 25 to 84 years who underwent physical checkups from 2010 to 2013 in a single tertiary hospital. Serum creatinine and cystatin C levels were also examined. Results Serum creatinine was correlated with muscle mass (P < .001), and serum cystatin C was correlated with body fat mass (P < .001) after adjusting glomerular filtration rate (GFR). After eliminating GFR, an equation to estimate total-body muscle mass was generated and coefficients were calculated in the derivation cohort. There was an agreement between muscle mass calculated by the novel equation and measured by DXA in both the derivation and validation cohort (P < .001, adjusted R2 = 0.829, β = 0.95, P < .001, adjusted R2 = 0.856, β = 1.03, respectively). Conclusion The new equation based on serum creatinine and cystatin C levels can be used to estimate total-body muscle mass. PMID:26849842

  12. Intake at a single, palatable buffet test meal is associated with total body fat and regional fat distribution in children.

    PubMed

    Fearnbach, S Nicole; Thivel, David; Meyermann, Karol; Keller, Kathleen L

    2015-09-01

    Previous studies testing the relationship between short-term, ad libitum test-meal intake and body composition in children have shown inconsistent relationships. The objective of this study was to determine whether children's intake at a palatable, buffet meal was associated with body composition, assessed by dual-energy X-ray absorptiometry (DXA). A sample of 71 children (4-6 years) participated in 4 sessions where ad libitum food intake was measured. Children's intake at two of the test-meals was retained for the present analysis: a baseline meal consisting of moderately palatable foods and a highly palatable buffet including sweets, sweet-fats, and savory-fats. On the last visit, anthropometrics and DXA were assessed to determine child body composition. Children consumed significantly more calories at the palatable buffet compared to the baseline test-meal. Children's total fat-free mass was positively associated with intake at both the baseline meal and the palatable buffet meal. Total energy intake at both meals and intake of savory-fats at the palatable buffet were positively associated with children's total fat mass, total percent body fat, and percent android fat. Intake of sweet-fats was associated with child fat-free mass index. Intake of sweets was not correlated with body composition. Children's intake at a palatable test-meal, particularly of savory-fat foods, was associated with measures of total and regional body fat.

  13. Characterization of genetic and lifestyle factors for determining variation in body mass index, fat mass, percentage of fat mass, and lean mass.

    PubMed

    Deng, H W; Lai, D B; Conway, T; Li, J; Xu, F H; Davies, K M; Recker, R R

    2001-01-01

    In this study, we simultaneously characterized genetic and lifestyle factors (exercise, smoking, and alcohol consumption) in determining variation in body mass index (BMI), fat mass, percentage of fat mass (PFM), and lean mass while adjusting for the effects of age and sex. Six hundred fifty-eight Caucasian individuals from 48 pedigrees were studied for BMI. Among these individuals, 289 from 38 pedigrees were studied for fat mass, PFM, and lean mass measured by dual X-ray absorptiometry (DXA). After adjusting for age, sex, and lifestyle factors, the heritabilities (h(2)) of BMI, fat mass, PFM, and lean mass ranged from 0.52 to 0.57 with associated standard errors ranging from 0.09 to 0.14. After accounting for significant sex and age effects, exercise had significant effects for all the phenotypes studied, and the effects of smoking and alcohol consumption were not significant. Therefore, significant proportions of variation in BMI, fat mass, PFM, and lean mass were under genetic control, and exercise had a significant effect in reducing BMI, fat mass, and PFM and in increasing lean mass. This study warrants further genetic linkage analyses to search for genes for the obesity-related phenotypes measured by DXA in our population.

  14. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  15. [Comparative analysis of cosmonauts skeleton changes after space flights on orbital station Mir and international space station and possibilities of prognosis for interplanetary missions].

    PubMed

    Oganov, V S; Bogomolov, V V; Bakulin, A V; Novikov, V E; Kabitskaia, O E; Murashko, L M; Morgun, V V; Kasparskiĭ, R R

    2010-01-01

    A summary of investigations results of human bone tissue changes in space flight on the orbital station (OS) Mir and international space station (ISS) using dual energy X-ray absorptiometry (DXA) is given. Results comparative analysis revealed an absence of significant differences in bone mass (BM) changes on the both OS. Theoretically expected BM loss was observed in bone trabecular structure of skeleton low part after space flight lasting 5-7 month. The BM losses are qualified in some cases as quicly developed but reversible osteopenia and generally interpreted as evidence of bone functional adaptation to the alterating mechanical loading. It was demonstrated the high individual variability BM loss amplitudes. Simultaneously was observed the individual pattern of BM loss distribution across different segments of skeleton after repetitive flights independently upon type of OS. In according with the above mentioned individual peculiarities it was impossible to establish the dependence of BM changes upon duration of space missions. Therefore we have not sufficiently data for calculation of probability to achive the critical demineralization level by the augmentation the space mission duration till 1.5-2 years. It is more less possibility of the bone quality changes prognosis, which in the aggregate with BM losses determines the bone fracture risk. It become clearly that DXA technology is unsuffitiently for this purpose. It is considered the main direction which may optimized the elaboration of the interplanetary project meaning the perfectly safe of skeleton mechanical function.

  16. Factors that influence bone mass of healthy children and adolescents measured by quantitative ultrasound at the hand phalanges: a systematic review☆

    PubMed Central

    Krahenbühl, Tathyane; Gonçalves, Ezequiel Moreira; Costa, Eduardo Tavares; Barros, Antonio de Azevedo

    2014-01-01

    Objective: To analyze the main factors that influence bone mass in children and teenagers assessed by quantitative ultrasound (QUS) of the phalanges. Data source: A systematic literature review was performed according to the PRISMA method with searches in databases Pubmed/Medline, SciELO and Bireme for the period 2001-2012, in English and Portuguese languages, using the keywords: children, teenagers, adolescent, ultrasound finger phalanges, quantitative ultrasound of phalanges, phalangeal quantitative ultrasound. Data synthesis: 21 articles were included. Girls had, in QUS, Amplitude Dependent Speed of Sound (AD-SoS) values higher than boys during pubertal development. The values of the parameters of QUS of the phalanges and dual-energy X-ray Absorptiometry (DXA) increased with the increase of the maturational stage. Anthropometric variables such as age, weight, height, body mass index (BMI), lean mass showed positive correlations with the values of QUS of the phalanges. Physical activity has also been shown to be positively associated with increased bone mass. Factors such as ethnicity, genetics, caloric intake and socioeconomic profile have not yet shown a conclusive relationship and need a larger number of studies. Conclusions: QUS of the phalanges is a method used to evaluate the progressive acquisition of bone mass during growth and maturation of individuals in school phase, by monitoring changes that occur with increasing age and pubertal stage. There were mainly positive influences variables of sex, maturity, height, weight and BMI, with similar data when compared to the gold standard method, the DXA. PMID:25479860

  17. Osteoporosis Self-Assessment Tool Performance in a Large Sample of Postmenopausal Women of Mendoza, Argentina

    PubMed Central

    Saraví, Fernando D.

    2013-01-01

    The Osteoporosis Self-assessment Tool (OST) is a clinical instrument designed to select patients at risk of osteoporosis, who would benefit from a bone mineral density measurement. The OST only takes into account the age and weight of the subject. It was developed for Asian women and later validated for European and North American white women. The performance of the OST in a sample of 4343 women from Greater Mendoza, a large metropolitan area of Argentina, was assessed. Dual X-ray absorptiometry (DXA) scans of lumbar spine and hip were obtained. Patients were classified as either osteoporotic (N = 1830) or nonosteoporotic (n = 2513) according to their lowest T-score at any site. Osteoporotic patients had lower OST scores (P < 0.0001). A receiver operating characteristic (ROC) curve showed an area under the curve of 71% (P < 0.0001), with a sensitivity of 83.7% and a specificity of 44% for a cut-off value of 2. Positive predictive value was 52% and negative predictive value was 79%. The odds ratio for the diagnosis of osteoporosis was 4.06 (CI95 3.51 to 4.71; P < 0.0001). It is concluded that the OST is useful for selecting postmenopausal women for DXA testing in the studied population. PMID:23533947

  18. Position statement : executive summary. The Writing Group for the International Society for Clinical Densitometry (ISCD) Position Development Conference.

    PubMed

    2004-01-01

    The International Society for Clinical Densitometry (ISCD) held a Position Development Conference in July 2003, at which time positions developed and researched by the organization's Scientific Advisory Committee were presented to a panel of international experts in the field of bone density testing. This panel reached agreement on a series of positions that were subsequently approved by the Board of Directors of the ISCD and are now official policy of the ISCD. These positions, which are outlined in this article and discussed in greater detail in subsequent articles in this journal, include (1) affirmation of the use of the World Health Organization classification for the diagnosis of osteoporosis in postmenopausal women; (2) the diagnosis of osteoporosis in men; (3) the diagnosis of osteoporosis in premenopausal women; (4) the diagnosis of osteoporosis in children; (5) technical standards for skeletal regions of interest by dual-energy X-ray absorptiometry (DXA); (6) the use of new technologies, such as vertebral fracture assessment; (7) technical standards for quality assurance, including phantom scanning and calibration; (8) technical standards for the performance of precision assessment at bone density testing centers, and for cross-calibration of DXA devices; (9) indications for bone density testing; (10) appropriate information for a bone density report; and (11) nomenclature and decimal places for bone density reporting. PMID:14742882

  19. Fat distribution in children and adolescents with myelomeningocele

    PubMed Central

    Mueske, Nicole M; Ryan, Deirdre D; Van Speybroeck, Alexander L; Chan, Linda S; Al Wren, Tishya

    2014-01-01

    AIM To evaluate quantitatively fat distribution in children and adolescents with myelomeningocele using dual-energy X-ray absorptiometry (DXA). METHOD Cross-sectional DXA measurements of the percentage of fat in the trunk, arms, legs, and whole body were compared between 82 children with myelomeningocele (45 males, 37 females; mean age 9y 8mo, SD 2y 7mo; 22 sacral, 13 low lumbar, 47 mid lumbar and above) and 119 comparison children (65 males, 54 females; mean age 10y 4mo, SD 2y 4mo). Differences in fat distribution between groups were evaluated using univariate and multivariate analyses. RESULTS Children with myelomeningocele had higher total body fat (34% vs 31%, p=0.02) and leg fat (42% vs 35%, p<0.001than comparison children, but no differences in trunk or arm fat after adjustment for anthropometric measures. INTERPRETATION Children with myelomeningocele have higher than normal total body and leg fat, but only children with higher level lesions have increased trunk fat, which may be caused by greater obesity in this group. Quantifying segmental fat distribution may aid in better assessment of excess weight and, potentially, the associated health risks. PMID:25251828

  20. The effects of once-weekly teriparatide on hip geometry assessed by hip structural analysis in postmenopausal osteoporotic women with high fracture risk.

    PubMed

    Sone, Teruki; Ito, Masako; Fukunaga, Masao; Tomomitsu, Tatsushi; Sugimoto, Toshitsugu; Shiraki, Masataka; Yoshimura, Takeshi; Nakamura, Toshitaka

    2014-07-01

    Weekly administration of teriparatide has been shown to reduce the risk of vertebral and non-vertebral fractures in patients with osteoporosis at higher fracture risk in Japan. However, its efficacy for hip fracture has not been established. To gain insight into the effect of weekly teriparatide on the hip, hip structural analysis (HSA) based on dual-energy X-ray absorptiometry (DXA) was performed using the data of 209 postmenopausal osteoporotic women who had participated in the original randomized, multicenter, double-blind, placebo-controlled trial assessing the effects of once-weekly 56.5 μg teriparatide for 72 weeks. The DXA scans, obtained at baseline, 48 weeks and 72 weeks, were analyzed to extract bone mineral density (BMD) and cross-sectional geometrical indices at the narrowest point on the neck (NN), the intertrochanteric region (IT), and the proximal shaft. Compared with placebo after 72 weeks, the teriparatide group showed significantly higher BMD, average cortical thickness, bone cross-sectional area, and section modulus, and lower buckling ratio at both the NN and IT regions. No significant expansion of periosteal diameter was observed at these regions. There were no significant differences in BMD and HSA indices at the shaft region. The results indicate that overall structural strength in the proximal femur increased compared to placebo, suggesting that once-weekly teriparatide effectively reverses changes in hip geometry and strength with aging.

  1. Effect of a family-based intervention on electronic media use and body composition among boys aged 8--11 years: a pilot study.

    PubMed

    Todd, M Kent; Reis-Bergan, Monica J; Sidman, Cara L; Flohr, Judith A; Jameson-Walker, Kelly; Spicer-Bartolau, Tara; Wildeman, Kelly

    2008-12-01

    This study measured the effect of a 20-week, family-centered electronic media intervention on electronic media use, body composition (dual-energy X-ray absorptiometry; DXA), physical activity and dietary behaviors in boys. Twenty-two boys were assigned and 21 were analyzed in an experimental or control group. Boys in the experimental group set electronic media use goals and used TV Allowance device and ENUFF software to reduce electronic media use. Data were collected at baseline, 10 weeks and 20 weeks. Interactions were found in daily electronic media use and DXA. At 10 weeks, step counts increased by 543 steps per day in the experimental group and decreased by 340 steps per day in the controls. Steps in both groups were higher at 20 weeks. Meals or snacks eaten while using electronic media decreased in the experimental group only. In conclusion, a family-centered electronic media intervention may reduce electronic media use and contribute to desirable changes in body composition. PMID:19052191

  2. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    PubMed

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. PMID:23553962

  3. An Unbalanced Rearrangement of Chromosomes 4:20 is Associated with Childhood Osteoporosis and Reduced Caspase-3 Levels.

    PubMed

    Kinning, Esther; McMillan, Martin; Shepherd, Sheila; Helfrich, Miep; Hof, Rob Vant; Adams, Christopher; Read, Heather; Wall, Daniel M; Ahmed, S Faisal

    2016-09-01

    The purpose of this study was to investigate the association of a chromosome 4:20 imbalance with osteoporosis in three related children. Bone biochemistry, bone turnover markers, and dual-energy X-ray absorptiometry (DXA) scanning were performed in all three cases and bone biopsy and histomorphometry in one. The chromosome imbalance was delineated by array comparative genomic hybridization (aCGH) and analyzed for candidate genes. A potential candidate gene within the deleted region is caspase-3, previously linked to low bone mineral density (BMD) in heterozygous mice thus caspase-3 activity was measured in cases and controls. Routine bone biochemistry and markers of bone turnover did not reveal any abnormality. DXA showed reduced total and lumbar spine bone mineral content. aCGH showed an 8 megabase (Mb) deletion of terminal chromosome 4q incorporating a region previously linked to low BMD and a 15 Mb duplication of terminal chromosome 20p. Bone biopsy showed a high bone turnover state, trabecularisation of cortical bone and numerous small osteoclasts coupled with normal bone formation. Basal serum caspase-3 activity was lower in cases compared with controls. We conclude that the early-onset osteoporosis with low basal levels of caspase-3 and abnormal osteoclasts is a feature of this chromosomal translocation. Further investigation of the role of the deleted and duplicated genes and especially caspase-3 is required. PMID:27617159

  4. Bridging the osteoporosis treatment gap: performance and cost-effectiveness of a fracture liaison service.

    PubMed

    Yates, Christopher J; Chauchard, Marie-Anne; Liew, Danny; Bucknill, Andrew; Wark, John D

    2015-01-01

    Individuals who sustain fragility fractures are at high risk of refracture. However, osteoporosis treatment rates remain low for these patients. Therefore, we aimed to assess the performance and cost-effectiveness of introducing a fracture liaison service (FLS) into a tertiary hospital. In "nonhospitalized" ambulatory patients who had sustained fragility fractures, we assessed baseline osteoporosis investigation and treatment rates, and subsequently, the impact of introducing an orthopedic osteoporosis policy and an FLS. Outcomes measured were uptake of osteoporosis intervention, patient satisfaction, and quality-adjusted life years (QALYs) gained. QALYs were calculated over 5 years using predicted fracture risks without intervention and estimated fracture risk reduction with intervention. At baseline (n = 49), 2% of ambulatory patients who had sustained fragility fractures underwent dual-energy X-ray absorptiometry (DXA) and 6% received osteoporosis-specific medication. After introduction of an osteoporosis policy (n = 58), 28% were investigated with DXA (p < 0.0001). However, treatment rates were unchanged. An FLS was introduced, reviewing 203 new patients over the inaugural 2 years (mean age [standard deviation], 67 (11) years; 77% female). All underwent DXA, and criteria for osteoporosis and osteopenia were identified in 44% and 40%, respectively. Osteoporosis medications were prescribed to 61% patients (risedronate: 22%, alendronate: 16%, strontium ranelate: 13%, zoledronic acid: 8%, other: 2%). Eighty-five of 90 questionnaire respondents were very satisfied or satisfied with the FLS. With the treatment prescribed over 5 years, we conservatively estimated that this FLS would reduce nonvertebral refractures from 59 to 50, improving QALYs by 0.054 and costing $1716 per patient (incremental cost-effectiveness ratio: $31749). This FLS model improves uptake of osteoporosis intervention guidelines, is popular among patients, and improves cost-effectiveness. Thus, it

  5. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens.

  6. The Lichfield bone study: the skeletal response to exercise in healthy young men

    PubMed Central

    Eleftheriou, Kyriacos I.; Kehoe, Anthony; James, Laurence E.; Payne, John R.; Skipworth, James R.; Puthucheary, Zudin A.; Drenos, Fotios; Pennell, Dudley J.; Loosemore, Mike; World, Michael; Humphries, Steve E.; Haddad, Fares S.; Montgomery, Hugh E.

    2012-01-01

    The skeletal response to short-term exercise training remains poorly described. We thus studied the lower limb skeletal response of 723 Caucasian male army recruits to a 12-wk training regime. Femoral bone volume was assessed using magnetic resonance imaging, bone ultrastructure by quantitative ultrasound (QUS), and bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA) of the hip. Left hip BMD increased with training (mean ± SD: 0.85 ± 3.24, 2.93 ± 4.85, and 1.89 ± 2.85% for femoral neck, Ward's area, and total hip, respectively; all P < 0.001). Left calcaneal broadband ultrasound attenuation rose 3.57 ± 0.5% (P < 0.001), and left and right femoral cortical volume by 1.09 ± 4.05 and 0.71 ± 4.05%, respectively (P = 0.0001 and 0.003), largely through the rise in periosteal volume (0.78 ± 3.14 and 0.59 ± 2.58% for right and left, respectively, P < 0.001) with endosteal volumes unchanged. Before training, DXA and QUS measures were independent of limb dominance. However, the dominant femur had higher periosteal (25,991.49 vs. 2,5572 mm3, P < 0.001), endosteal (6,063.33 vs. 5,983.12 mm3, P = 0.001), and cortical volumes (19,928 vs. 19,589.56 mm3, P = 0.001). Changes in DXA, QUS, and magnetic resonance imaging measures were independent of limb dominance. We show, for the first time, that short-term exercise training in young men is associated not only with a rise in human femoral BMD, but also in femoral bone volume, the latter largely through a periosteal response. PMID:22114178

  7. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans.

    PubMed

    Clark, Richard V; Walker, Ann C; O'Connor-Semmes, Robin L; Leonard, Michael S; Miller, Ram R; Stimpson, Stephen A; Turner, Scott M; Ravussin, Eric; Cefalu, William T; Hellerstein, Marc K; Evans, William J

    2014-06-15

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19-30 yr, 70-84 yr), 15 postmenopausal women (51-62 yr, 70-84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA.

  8. Effect of intense military training on body composition.

    PubMed

    Malavolti, Marcella; Battistini, Nino C; Dugoni, Manfredo; Bagni, Bruno; Bagni, Ilaria; Pietrobelli, Angelo

    2008-03-01

    Individuals in a structural physical training program can show beneficial changes in body composition, such as body fat reduction and muscle mass increase. This study measured body composition changes by using 3 different techniques-skinfold thickness (SF) measurements, air displacement plethysmography (BOD-POD), and dual-energy x-ray absorptiometry (DXA)-during 9 months of intense training in healthy young men engaged in military training. Twenty-seven young men were recruited from a special faction of the Italian Navy. The program previewed three phases: ground combat, sea combat, and amphibious combat. Body composition was estimated at the beginning, in the middle, and at the end of the training. After the subjects performed the ground combat phase, body composition variables significantly decreased: body weight (P < 0.05), fat-free mass (FFM) (P < 0.001), and fat mass (FM) (P < 0.03). During the amphibious combat phase, body weight increased significantly (P < 0.01), mainly because of an increase in FFM (P < 0.001) and a smaller mean decrease in FM. There was a significant difference (P < 0.05) in circumferences and SF at various sites after starting the training course. Bland-Altman analysis did not show any systematic difference between FM and FFM measured with the 3 different techniques on any occasion. On any visit, FFM and FM correlation measured by BOD-POD (P = 0.90) and DXA was significantly greater than measured by SF. A significant difference was found in body mass index (BMI) measured during the study. BOD-POD and SF, compared with DXA, provide valid and reliable measurement of changes in body composition in healthy young men engaged in military training. In conclusion, the findings suggest that for young men of normal weight, changes in body weight alone and in BMI are not a good measure to assess the effectiveness of intense physical training programs, because lean mass gain can masquerade fat weight loss.

  9. Correlates of Use of Antifracture Therapy in Older Women with Low Bone Mineral Density

    PubMed Central

    Ryder, Kathryn M; Shorr, Ronald I; Tylavsky, Frances A; Bush, Andrew J; Bauer, Douglas C; Simonsick, Eleanor M; Strotmeyer, Elsa S; Harris, Tamara B

    2006-01-01

    BACKGROUND Guidelines exist for treatment of low bone mineral density (BMD). Little is known about patient characteristics associated with use of treatment. OBJECTIVES To determine patient-related correlates of medication use following screening dual x-ray absorptiometry (DXA) of older adults. DESIGN Secondary analysis of a prospective cohort study. SETTING Pittsburgh, PA and Memphis, TN. PARTICIPANTS Community-dwelling women between the ages 70 and 79 years enrolled in the Health, Aging, and Body Composition (Health ABC) Study. MEASUREMENTS Risk factors for fracture and BMD of the hip were assessed at baseline. Patients and their community physicians were supplied the results of the DXA scan. Prescription and over-the-counter medication use was collected at annual exams for 2 years. RESULTS Of 1,584 women enrolled in Health ABC, 378 had an indication for antifracture therapy and were not receiving such treatment at baseline. By the second annual follow-up examination, prescription antiresorptive medication was reported in 49 (13.0%), whereas 65 (17.2%) received calcium and/or vitamin D supplementation. In adjusted models, the strongest predictor for use of any antifracture medicine was presence of osteoporosis [vs osteopenia, odds ratio (OR), 2.9 (1.7 to 4.7)], white race [OR, 2.6 (1.5 to 4.8)], and receipt of the flu shot [OR, 2.2 (1.3 to 3.8)]. Neither a history of falls nor prior fracture was associated with use of antifracture medications. CONCLUSION Even when physicians of study participants were provided with DXA scan results, 70% of older high-functioning women with an indication for therapy did not start or remain on an antifracture therapy. Substantial room for improvement exists in fracture prevention following a diagnosis of low BMD—especially among women with a history of falls, prior fractures, and among black women. PMID:16808749

  10. Trunk Fat is Associated with Increased Serum Levels of Alanine Aminotransferase in the US

    PubMed Central

    Ruhl, Constance E.; Everhart, James E.

    2010-01-01

    Background & Aims Liver injury is associated with obesity and related measures such as body mass index (BMI) and waist circumference. The relationship between liver injury and body composition has not been evaluated in a population-based study. Methods Using data from a US population-based survey, we examined the contributions of body composition, measured by dual-energy x-ray absorptiometry (DXA), to increased serum alanine aminotransferase (ALT) activity among 11,821 adults without viral hepatitis. Trunk fat, extremity fat, trunk lean, and extremity lean mass were divided by height squared and used to categorize subjects into quintiles; logistic regression odds ratios (OR) were calculated for increased ALT. Results Increased ALT was associated with higher measures of fat and lean mass (p<0.001) after adjustment for alcohol consumption and other liver injury risk factors in separate models for each DXA measure. Trunk fat was associated with increased ALT (p≤0.001) in models also including any 1 of the other 3 measures. Extremity fat was independently inversely associated among women (p<0.001). Trunk and extremity lean mass were not independently related to increased ALT. In models that contained all 4 DXA measures, the OR (95% confidence interval) for increased ALT for the highest, relative to lowest, quintile of trunk fat/height squared was 13.8 (5.4-35.3) for men and 7.8 (3.9-15.8) for women. When BMI, waist circumference, and trunk fat were considered together, only trunk fat remained independently associated with increased ALT. Conclusions Trunk fat is a major body composition determinant of increased ALT, supporting the hypothesis that liver injury can be induced by metabolically active intra-abdominal fat. PMID:20060831

  11. Association between Bone Mass and Dental Hypomineralization.

    PubMed

    van der Tas, J T; Elfrink, M E C; Vucic, S; Heppe, D H M; Veerkamp, J S J; Jaddoe, V W V; Rivadeneira, F; Hofman, A; Moll, H A; Wolvius, E B

    2016-04-01

    The aim of this study was to examine the association between the bone mass (bone mineral content [BMC]) and hypomineralized second primary molars (HSPMs)/molar incisor hypomineralization (MIH) in 6-y-old children. This cross-sectional study was embedded in the Generation R Study, a population-based prospective cohort study, starting from fetal life until adulthood in Rotterdam, Netherlands. The European Academy of Pediatric Dentistry criteria were used to score the intraoral photographs on the presence or absence of HSPMs and MIH. Bone mass was measured with a dual-energy x-ray absorptiometry (DXA) scan. Intraoral photographs and DXA scans were available in 6,510 6-y-old children. Binary logistic regression models were used to study the association between the bone mass and HSPMs/MIH. In total, 5,586 children had their second primary molars assessed and a DXA scan made; 507 children were diagnosed with HSPM. Of 2,370 children with data on their permanent first molars, 203 were diagnosed with MIH. In the fully adjusted model, children with lower BMC (corrected for bone area) were more likely to have HSPMs (odds ratio, 1.13; 95% confidence interval, 1.02 to 1.26 per 1-standard deviation decrease). A lower BMC (corrected for bone area) was not associated with MIH (odds ratio, 1.02; 95% confidence interval, 0.87 to 1.20 per 1-standard deviation decrease). We observed a negative association between BMC (corrected for bone area) and HSPMs. No association was found between BMC (corrected for bone area) and MIH. Future research should focus on investigating the mechanism underlying the negative association between the bone mass and HSPMs. Our study, in a large population of 6-y-old children, adds the finding that BMC (corrected for bone size) is associated with HSPMs but not with MIH in childhood. PMID:26747420

  12. Vertebral fracture assessment in acromegaly.

    PubMed

    Madeira, Miguel; Neto, Leonardo Vieira; Torres, Carolina Hammes; de Mendonça, Laura Maria Carvalho; Gadelha, Mônica Roberto; de Farias, Maria Lúcia Fleiuss

    2013-01-01

    Most vertebral fractures (VFs) are asymptomatic and incidentally found on X-rays. The effects of acromegaly on bone mineral density (BMD) are still controversial, and the prevalence of VFs in this specific population remains uncertain. The objective of this study was to assess VFs in acromegaly through vertebral fracture assessment (VFA) by dual-energy X-ray absorptiometry (DXA). Seventy-five acromegalic patients from the same center (53 female; age: 48.9±14.5yr) were enrolled in this study. None of them referred previous fragility fracture. They were divided according to the presence or absence of moderate or severe VFs on VFA, a densitometric spine imaging. Age, gender, estimated duration of disease, insulin-like growth factor I levels, disease control and gonadal status, as well as BMD and body composition (analyzed by DXA) were compared between these 2 groups. A prevalence of 10.6% of clinically unapparent VFs was observed. Eight patients had 13 moderate or severe VFs, and only one of them had osteoporosis at densitometry. There was a trend to longer duration of acromegaly before diagnosis, higher prevalence of hypogonadism, and higher BMD Z-score at lumbar spine and femoral neck in fractured patients, without reaching statistical significance. There is a significant prevalence of moderate and severe VFs in acromegalic patients, independently of BMD. More longitudinal and controlled studies are needed to recommend the use of VFA in all acromegalic patients submitted to DXA scan. VFA is simple, practical, uses low radiation, and may provide important information in the management of acromegaly.

  13. Sarcopenia and Sarcopenic Obesity in Patients with Muscular Dystrophy

    PubMed Central

    Merlini, Luciano; Vagheggini, Alessandro; Cocchi, Daniela

    2014-01-01

    Aging sarcopenia and muscular dystrophy (MD) are two conditions characterized by lower skeletal muscle quantity, lower muscle strength, and lower physical performance. Aging is associated with a peculiar alteration in body composition called “sarcopenic obesity” characterized by a decrease in lean body mass and increase in fat mass. To evaluate the presence of sarcopenia and obesity in a cohort of adult patients with MD, we have used the measurement techniques considered golden standard for sarcopenia that is for muscle mass dual-energy X-ray absorptiometry (DXA), for muscle strength hand-held dynamometry (HHD), and for physical performance gait speed. The study involved 14 adult patients with different types of MD. We were able to demonstrate that all patients were sarcopenic obese. We showed, in fact, that all were sarcopenic based on appendicular lean, fat and bone free, mass index (ALMI). In addition, all resulted obese according to the percentage of body fat determined by DXA in contrast to their body mass index ranging from underweight to obese. Skeletal muscle mass determined by DXA was markedly reduced in all patients and correlated with residual muscle strength determined by HHD, and physical performances determined by gait speed and respiratory function. Finally, we showed that ALMI was the best linear explicator of muscle strength and physical function. Altogether, our study suggests the relevance of a proper evaluation of body composition in MD and we propose to use, both in research and practice, the measurement techniques that has already been demonstrated effective in aging sarcopenia. PMID:25339901

  14. The Role of Body Fat and Fat Distribution in Hypertension Risk in Urban Black South African Women

    PubMed Central

    Crowther, Nigel J.; Jaff, Nicole G.; Kengne, Andre P.; Norris, Shane A.

    2016-01-01

    Developing countries are disproportionately affected by hypertension, with Black women being at greater risk, possibly due to differences in body fat distribution. The objectives of this study were: (1) To examine how different measures of body composition are associated with blood pressure (BP) and incident hypertension; (2) to determine the association between baseline or change in body composition, and hypertension; and (3) to determine which body composition measure best predicts hypertension in Black South African women. The sample comprised 478 non-hypertensive women, aged 29–53 years. Body fat and BP were assessed at baseline and 8.3 years later. Body composition was assessed using dual-energy X-ray absorptiometry (DXA) (n = 273) and anthropometry. Hypertension was diagnosed based on a systolic/diastolic BP ≥140/90 mmHg, or medication use at follow-up. All body composition measures increased (p<0.0001) between baseline and follow-up. SBP and DBP increased by ≥20%, resulting in a 57.1% cumulative incidence of hypertension. Both DXA- and anthropometric-derived measures of body composition were significantly associated with BP, explaining 3–5% of the variance. Baseline BP was the most important predictor of hypertension (adjusted OR: 98–123%). Measures of central adiposity were associated with greater odds (50–65%) of hypertension than total adiposity (44–45%). Only change in anthropometric-derived central fat mass predicted hypertension (adjusted OR: 32–40%). This study highlights that body composition is not a major determinant of hypertension in the sample of black African women. DXA measures of body composition do not add to hypertension prediction beyond anthropometry, which is especially relevant for African populations globally, taking into account the severely resource limited setting found in these communities. PMID:27171011

  15. Body composition in human infants at birth and postnatally.

    PubMed

    Koo, W W; Walters, J C; Hockman, E M

    2000-09-01

    The predictive values of anthropometric measurements, race, gender, gestational and postnatal ages, and season at birth and at study for the total body dual energy X-ray absorptiometry (DXA)-derived lean mass (LM), fat mass (FM) and fat mass as a percentage of body weight (%FM) were determined in 214 singleton appropriate birth weight for gestational age infants [101 Caucasian (60 boys, 41 girls) and 113 African American (55 boys, 58 girls)]. Gestational ages were 27-42 wk and the infants were studied between birth and 391 d, weighing between 851 and 13446 g. In addition, predictive value of body weight, LM and FM for DXA bone measurements was also determined. Scan acquisition used Hologic QDR 1000/W densitometer and infant platform and scans without significant movement artifacts were analyzed using software 5.64p. Body weight, length, gender and postnatal age were significant predictors of LM (adjusted R:(2) >0. 94) and FM (adjusted R:(2) >0.85). Physiologic variables had little predictive value for %FM except in the newborns (adjusted R:(2) 0. 69). Body weight was the dominant predictor of LM and FM, although length had similar predictive value for LM with increasing postnatal age. Female infants had less LM and more FM throughout infancy (P: < 0.01). LM or FM offered no advantage over body weight in the prediction of bone mass measurements. DXA is a useful means with which to determine body composition, and our data are important in the design and assessment of nutritional intervention studies.

  16. Use of Strontium Chloride for the Treatment of Osteoporosis: A Case Report.

    PubMed

    Westberg, Sarah M; Awker, Amy; Torkelson, Carolyn J

    2016-03-01

    Context • Strontium ranelate is an approved prescription medication for the treatment of osteoporosis in Europe. In the United States, the only available forms of strontium are those that are nonprescription, dietary supplements. Some patients with osteoporosis use those products because they prefer an alternate treatment to conventional therapy. Currently, no controlled trials have been conducted on the effectiveness of the supplements for treating osteoporosis. Objective • The study intended to examine how one woman responded to the use of strontium chloride. Design • This was a retrospective case study. Setting • The woman in the case study was a patient in an academic urban women's health clinic in Minneapolis, MN, USA. Participant • The participant was a postmenopausal woman with a history of vertebral fracture. Intervention • The participant took 680 mg daily of strontium chloride for 2.5 y. Outcome Measures • The patient had begun receiving dual-energy X-ray absorptiometry (DXA) scans in 2004 and continued to receive follow-up scans every 2 y. After beginning strontium therapy in December 2011, she received DXA scans in March 2012 and May 2014. Results • During the study, the analysis of the patient's DXA scans showed a positive increase in the bone mineral density (BMD) of her vertebrae and her right hip and maintenance of her BMD in her left hip. Conclusions • Although the current case report does not provide enough evidence to conclude that US dietary supplements of strontium are effective in preventing fractures, it demonstrates a positive experience for one patient. PMID:27228273

  17. Treatment with growth hormone and IGF-I in growing rats increases bone mineral content but not bone mineral density.

    PubMed

    Rosen, H N; Chen, V; Cittadini, A; Greenspan, S L; Douglas, P S; Moses, A C; Beamer, W G

    1995-09-01

    Human growth hormone (hGH) and insulin-like growth factor I (IGF-I) both stimulate bone formation and have been proposed as therapeutic agents for osteoporosis. We examined the effect of hGH and IGF-I alone and in combination on bone size, bone mineral content (BMC), and bone mineral density (BMD) in 10- to 12-week old growing female Sprague-Dawley rats. Sixty rats were assigned to treatment with either placebo, hGH, IGF-I, or both for 4 weeks. After 4 weeks, the right femurs and tibias were excised, and ex vivo BMC and the area of the tibia and femur were measured by dual-energy X-ray absorptiometry (DXA); volume of these bones was measured by Archimedes' principle. In addition, proximal tibial bone density was measured directly by peripheral quantitative computerized tomography (pQCT). Bone length, area, and volume in all treated groups was greater than controls. Areal bone density by DXA (BMC/area) was higher in IGF-treated rats and lower in GH-treated rats than in controls. Volumetric bone density (BMC/volume) was lower in treated groups than in controls. Measurements by pQCT confirmed that true bone density was lower in all treated groups than in controls. We conclude that treatment with hGH or IGF-I increased bone size and mineral content but decreased bone density in growing rats. Because areal correction of BMC did not adequately correct for the increased bone volume in IGF-treated rats, results of areal bone density by DXA should be interpreted with caution when treatment causes a disparity in bone size between groups. PMID:7502707

  18. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens. PMID:18212376

  19. Recent progress in bone imaging for osteoporosis research.

    PubMed

    Ito, Masako

    2011-03-01

    Advances in bone imaging techniques have provided tools for analyzing bone structure at the macro-, micro- and nano-level. Quantitative assessment of macrostructure can be achieved using dual X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), particularly volumetric quantitative CT (vQCT). In vivo quantitative techniques for assessing the microstructure of trabecular bone non-invasively and non-destructively include high-resolution CT (HR-CT) and high-resolution magnetic resonance (HR-MR). Compared with MR imaging, CT-based techniques have the advantage of directly visualizing the bone in the axial skeleton, with high spatial resolution, but the disadvantage of delivering a considerable radiation dose. Micro-CT (μCT), which provides a higher resolution of the microstructure and is principally applicable in vitro, has undergone technological advances such that it is now able to elucidate the physiological skeletal change mechanisms associated with aging and determine the effects of therapeutic intervention on the bone microstructure. In particular, synchrotron μCT (SR-CT) provides a more detailed view of trabecular structure at the nano-level. For the assessment of hip geometry, DXA-based hip structure analysis (HSA) and CT-based HSA have been developed. DXA-based HSA is a convenient tool for analyzing biomechanical properties and for assuming cross-sectional hip geometry based on two-dimensional (2D) data, whereas CT-based HSA provides these parameters three-dimensionally in robust relationship with biomechanical properties, at the cost of greater radiation exposure and the lengthy time required for the analytical procedure. Further progress in bone imaging technology is promising to bring new aspects of bone structure in relation to bone strength to light, and to establish a means for analyzing bone structural properties in the everyday clinical setting.

  20. Impact of Growth Hormone on Adult Bone Quality in Turner Syndrome: A HR-pQCT Study.

    PubMed

    Nour, Munier A; Burt, Lauren A; Perry, Rebecca J; Stephure, David K; Hanley, David A; Boyd, Steven K

    2016-01-01

    Women with Turner syndrome (TS) are known to be at risk of osteoporosis. While childhood growth hormone (GH) treatment is common in TS, the impact of this therapy on bone health has been poorly understood. The objective of this study was to determine the influence of childhood GH treatment on adult bone quality in women with TS. 28 women aged 17-45 with confirmed TS (12 GH-treated) agreed to participate in this cross-sectional study. Dual X-ray absorptiometry (DXA) of lumbar spine, hip, and radius and high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the radius and tibia were used to determine standard morphological and micro-architectural parameters of bone health. Finite element (FE) analysis and polar moment of inertia (pMOI) were used to estimate bone strength. GH-treated subjects were +7.4 cm taller (95% CI 2.5-12.3 cm, p = 0.005). DXA-determined areal BMD of hip, spine, and radius was similar between treatment groups. Both tibial and radial total bone areas were greater among GH-treated subjects (+20.4 and +21.2% respectively, p < 0.05), while other micro-architectural results were not different between groups. pMOI was significantly greater among GH-treated subjects (radius +35.0%, tibia +34.0%, p < 0.05). Childhood GH treatment compared to no treatment in TS was associated with an increased height, larger bones, and greater pMOI, while no significant difference in DXA-derived BMD, HR-pQCT micro-architectural parameters, or FE-estimated bone strength was detected. The higher pMOI and greater bone size may confer benefit for fracture reduction in these GH-treated patients.

  1. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  2. Systems Engineering

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  3. Delivery Systems.

    ERIC Educational Resources Information Center

    Hutchison, Betty

    This paper on delivery systems for preparing and training early childhood educators focuses on three main topics: (1) adequacy of delivery systems and access; (2) market influences on delivery systems; and (3) linking preparation and professional development components. Questions addressed include the following: Would the current preparation and…

  4. System Effectiveness

    SciTech Connect

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. It is critical that a nuclear facility conduct a thorough self-assessment of the material protection, control, and accountability (MPC&A) system to evaluate system effectiveness. Self-assessment involves vulnerability analysis and performance testing of the MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. Analysis of the MPC&A system is necessary to understand the limits and vulnerabilities of the system to internal threats. Self-assessment helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. MSET is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's MPC&A system. MSET analyzes the effectiveness of an MPC&A system based on defined performance metrics for MPC&A functions based on U.S. and international best practices and regulations. A facility's MC&A system can be evaluated at a point in time and reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential performance improvement or system upgrade can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance. The analyses reveal where performance degradation has the greatest detrimental impact on total system risk and where performance improvements have the greatest reduction in system risk

  5. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men

    PubMed Central

    Morton, Robert W.; Oikawa, Sara Y.; Wavell, Christopher G.; Mazara, Nicole; McGlory, Chris; Quadrilatero, Joe; Baechler, Brittany L.; Baker, Steven K.

    2016-01-01

    We reported, using a unilateral resistance training (RT) model, that training with high or low loads (mass per repetition) resulted in similar muscle hypertrophy and strength improvements in RT-naïve subjects. Here we aimed to determine whether the same was true in men with previous RT experience using a whole-body RT program and whether postexercise systemic hormone concentrations were related to changes in hypertrophy and strength. Forty-nine resistance-trained men (23 ± 1 yr, mean ± SE) performed 12 wk of whole-body RT. Subjects were randomly allocated into a higher-repetition (HR) group who lifted loads of ∼30-50% of their maximal strength (1RM) for 20–25 repetitions/set (n = 24) or a lower-repetition (LR) group (∼75–90% 1RM, 8–12 repetitions/set, n = 25), with all sets being performed to volitional failure. Skeletal muscle biopsies, strength testing, dual-energy X-ray absorptiometry scans, and acute changes in systemic hormone concentrations were examined pretraining and posttraining. In response to RT, 1RM strength increased for all exercises in both groups (P < 0.01), with only the change in bench press being significantly different between groups (HR, 9 ± 1, vs. LR, 14 ± 1 kg, P = 0.012). Fat- and bone-free (lean) body mass and type I and type II muscle fiber cross-sectional area increased following training (P < 0.01) with no significant differences between groups. No significant correlations between the acute postexercise rise in any purported anabolic hormone and the change in strength or hypertrophy were found. In congruence with our previous work, acute postexercise systemic hormonal rises are not related to or in any way indicative of RT-mediated gains in muscle mass or strength. Our data show that in resistance-trained individuals, load, when exercises are performed to volitional failure, does not dictate hypertrophy or, for the most part, strength gains. PMID:27174923

  6. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels.

    PubMed

    Pennisi, P; Signorelli, S S; Riccobene, S; Celotta, G; Di Pino, L; La Malfa, T; Fiore, C E

    2004-05-01

    Patients with vascular calcifications often have low bone mineral density (BMD), but it is still uncertain if osteoporosis and peripheral vascular disease (VD) are interrelated and linked by a common pathomechanism. Moreover, data on bone turnover in patients with advanced atherosclerosis are lacking. We measured BMD by dual-energy X-ray absorptiometry (DXA) and quantitative bone ultrasound (QUS), as well as the serum levels of osteocalcin (OC), bone-specific alkaline phosphatase (BAP), osteoprotegerin (OPG) and its ligand RANKL, and the urinary concentration of the C-terminal telopeptides of type I collagen (CrossLaps), in 36 patient (20 male and 16 female) with serious atherosclerotic involvement of the carotid and/or femoral artery to investigate the underlying mechanism of vascular and osseous disorders. Thirty age-matched and gender matched healthy individuals served as controls. After adjustment for age, BMD was significantly reduced at the lumbar spine in 23/36 (63%) patients (mean T score -1.71+/-1.42) and at the proximal femur in 34/36 (93%) patients (neck mean T score -2.5+/-0.88). Ten patients (27%) had abnormal QUS parameters. Gender and diabetes had no effect on the relationship between vascular calcification and bone density at any site measured. VD subjects had OC and BAP serum levels lower than controls (13.3+/-3.1 vs 27.7+/-3.3 ng/ml, P<0.01, and 8.4+/-2.3 vs 12.5+/-1.4 microg/l, P<0.01, respectively). Urinary CrossLaps excretion was not significantly different in patients with VD and in controls (257.9+/-138.9 vs 272.2+/-79.4 micro g/mmol Cr, respectively). Serum OPG and RANKL levels were similar in patients and in controls (3.5+/-1.07 vs 3.4+/-1.05 pmol/l, and 0.37+/-0.07 vs 0.36+/-0.06 pmol/l, respectively). We proved high occurrence of osteoporosis in VD, with evidence of age and gender independence. Negative bone remodelling balance would be a consequence of reduced bone formation, with no apparent increased activation of the OPG-RANKL system

  7. Short-term changes in bone and mineral metabolism following gastrectomy in gastric cancer patients.

    PubMed

    Baek, Ki Hyun; Jeon, Hae Myung; Lee, Seong Su; Lim, Dong Jun; Oh, Ki Won; Lee, Won Young; Rhee, Eun Jung; Han, Je Ho; Cha, Bong Yun; Lee, Kwang Woo; Son, Ho Young; Kang, Sung Koo; Kang, Moo Il

    2008-01-01

    Changes in bone and mineral metabolism that occur after gastrectomy have long been recognized. Gastrectomy has been identified as a risk factor for decreased bone mass and the increased fracture incidence. Previous investigations concerning postgastrectomy bone disease have been observational studies. No prospective studies have been reported that quantify the amount of bone loss after gastrectomy within the same patients. This study investigated 46 patients undergoing gastrectomy for gastric adenocarcinoma and analyzed 36 patients (58.1+/-10.8 years, 24 men and 12 women) who had dual energy X-ray absorptiometry (DXA) performed before and 1 year after gastrectomy. Systemic adjuvant chemotherapy was administered to 14 patients. Blood was sampled from all patients to determine serum calcium, phosphorous, and bone turnover marker levels before gastrectomy and at 1, 3, 6 and 12 months after surgery and for serum parathyroid hormone (PTH) and 25-hydroxyvitamin D levels before and 12 months after surgery. The mean bone loss in the lumbar spine, total hip, femoral neck, and trochanter, which was calculated as the percentage change from the baseline to the level measured at 12 months, was 5.7% (P<0.01), 5.4% (P<0.01), 6.6% (P<0.01) and 8.7% (P<0.01), respectively. Bone loss was generally greater in the group receiving chemotherapy. The serum calcium and phosphorous levels were not changed significantly and remained within the normal range throughout the observation period. After gastrectomy, the level of ICTP increased and reached a peak at 1 and 3 months, and progressively declined to baseline by 12 months. The osteocalcin levels were not coupled to an increase before 6 months. The level of 25-hydroxyvitamin D at 12 months postgastrectomy was not significantly changed compared to the baseline, however, the PTH levels increased by a mean of 63.6% at 12 months compared to the baseline (P<0.01). Significant correlations were found between the percent change in the BMD at the

  8. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers.

    PubMed

    Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L; Rodriguez, Ferran A; Jürimäe, Toivo

    2010-01-01

    The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key pointsThis study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys.Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90

  9. Daily feeding regimen impacts pig growth and behavior.

    PubMed

    Colpoys, Jessica D; Johnson, Anna K; Gabler, Nicholas K

    2016-05-15

    A primary swine production goal is to increase efficiency of lean tissue gains. While many swine production systems currently utilize ad libitum feeding, recent research suggests that altering feeding patterns may impact feed efficiency. Therefore, the objective of this study was to compare two feeding patterns and evaluate their impact on whole body tissue accretion, feeding behavior and activity in growing pigs. Forty eight individually housed gilts (55.9±5.2kg on test BW) were assigned into one of two feeding treatments: 1) Free access to the feeder (Free Access) or 2) twice daily access where gilts were allowed to eat ad libitum between 08:00-09:00h and again from 17:00-18:00h (2×). Pig performance was recorded weekly for 55days and average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F) was calculated. Body composition was assessed in 12 gilts per treatment using dual X-ray absorptiometry (DXA) at day -3 and 55 of treatment, and tissue accretion rates were calculated. Gilt behaviors were assessed via video analysis during week 7 and included time spent eating, feeding rate, enrichment interaction, postural changes, standing, sitting, and lying behaviors. Gilts fed 2× had lower ADG and ADFI compared to Free Access gilts (P≤0.01); however, no treatment difference in G:F was observed (P=0.83). At day 55 gilts fed 2× had a lower fat:protein compared to Free Access gilts (P=0.05). Fat, lean, and protein accretion rates were lower in gilts fed 2× compared to those fed Free Access (P=0.01). Gilts fed 2× ate less frequently and for a shorter duration of time, interacted with enrichment more frequently (P≤0.005), and tended to have less frequent postural changes compared to Free Access gilts (P=0.08). No treatment differences were observed in duration of time spent standing, sitting, or lying (P≥0.39). Although feed regimen did not alter feed efficiency, these data indicate that twice daily feeding reduced gilt adiposity and growth

  10. Physiological, Biomechanical and Anthropometrical Predictors of Sprint Swimming Performance in Adolescent Swimmers

    PubMed Central

    Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L.; Rodriguez, Ferran A.; Jürimäe, Toivo

    2010-01-01

    The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key points This study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys. Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90

  11. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  12. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  13. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  14. [Information systems].

    PubMed

    Rodríguez Maniega, José Antonio; Trío Maseda, Reyes

    2005-03-01

    The arrival of victims of the terrorist attacks of 11 March at the hospital put the efficiency of its information systems to the test. To be most efficient, these systems should be simple and directed, above all, to the follow-up of victims and to providing the necessary information to patients and families. A specific and easy to use system is advisable. PMID:15771852

  15. CALUTRON SYSTEM

    DOEpatents

    Lawrence, E.O.

    1958-08-12

    A calutron system capable of functioning with only a portion of the separation tanks in the system operating is described. The invention is a calutron system comprssing a closed series of alternated tanks and electromagnets having a mid-yoke connecting intermediate positions of the series. dividing the series into twv-o portions, and thereby providing a closed magnetic path through either of the portions.

  16. Systemic darwinism.

    PubMed

    Winther, Rasmus Grønfeldt

    2008-08-19

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a "compositional paradigm" according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality. PMID:18697926

  17. Systemic darwinism.

    PubMed

    Winther, Rasmus Grønfeldt

    2008-08-19

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a "compositional paradigm" according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality.

  18. Power system

    DOEpatents

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  19. Recommended Methods for Monitoring Skeletal Health in Astronauts to Distinguish Specific Effects of Prolonged Spaceflight

    NASA Technical Reports Server (NTRS)

    Vasadi, Lukas J.; Spector, Elizabeth R.; Smith, Scott A.; Yardley, Gregory L.; Evans, Harlan J.; Sibonga, Jean D.

    2016-01-01

    NASA uses areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) to monitor skeletal health in astronauts after typical 180-day spaceflights. The osteoporosis field and NASA, however, recognize the insufficiency of DXA aBMD as a sole surrogate for fracture risk. This is an even greater concern for NASA as it attempts to expand fracture risk assessment in astronauts, given the complicated nature of spaceflight-induced bone changes and the fact that multiple 1-year missions are planned. In the past decade, emerging analyses for additional surrogates have been tested in clinical trials; the potential use of these technologies to monitor the biomechanical integrity of the astronaut skeleton will be presented. OVERVIEW: An advisory panel of osteoporosis policy-makers provided NASA with an evidence-based assessment of astronaut biomedical and research data. The panel concluded that spaceflight and terrestrial bone loss have significant differences and certain factors may predispose astronauts to premature fractures. Based on these concerns, a proposed surveillance program is presented which a) uses Quantitative Computed Tomography (QCT) scans of the hip to monitor the recovery of spaceflight-induced deficits in trabecular BMD by 2 years after return, b) develops Finite Element Models [FEM] of QCT data to evaluate spaceflight effect on calculated hip bone strength and c) generates Trabecular Bone Score [TBS] from serial DXA scans of the lumbar spine to evaluate the effect of age, spaceflight and countermeasures on this novel index of bone microarchitecture. SIGNIFICANCE: DXA aBMD is a widely-applied, evidence-based predictor for fractures but not applicable as a fracture surrogate for premenopausal females and males <50 years. Its inability to detect structural parameters is a limitation for assessing changes in bone integrity with and without countermeasures. Collective use of aBMD, TBS, QCT, and FEM analysis for astronaut surveillance could

  20. BFH-OST, a new predictive screening tool for identifying osteoporosis in postmenopausal Han Chinese women

    PubMed Central

    Ma, Zhao; Yang, Yong; Lin, JiSheng; Zhang, XiaoDong; Meng, Qian; Wang, BingQiang; Fei, Qi

    2016-01-01

    Purpose To develop a simple new clinical screening tool to identify primary osteoporosis by dual-energy X-ray absorptiometry (DXA) in postmenopausal women and to compare its validity with the Osteoporosis Self-Assessment Tool for Asians (OSTA) in a Han Chinese population. Methods A cross-sectional study was conducted, enrolling 1,721 community-dwelling postmenopausal Han Chinese women. All the subjects completed a structured questionnaire and had their bone mineral density measured using DXA. Using logistic regression analysis, we assessed the ability of numerous potential risk factors examined in the questionnaire to identify women with osteoporosis. Based on this analysis, we build a new predictive model, the Beijing Friendship Hospital Osteoporosis Self-Assessment Tool (BFH-OST). Receiver operating characteristic curves were generated to compare the validity of the new model and OSTA in identifying postmenopausal women at increased risk of primary osteoporosis as defined according to the World Health Organization criteria. Results At screening, it was found that of the 1,721 subjects with DXA, 22.66% had osteoporosis and a further 47.36% had osteopenia. Of the items screened in the questionnaire, it was found that age, weight, height, body mass index, personal history of fracture after the age of 45 years, history of fragility fracture in either parent, current smoking, and consumption of three of more alcoholic drinks per day were all predictive of osteoporosis. However, age at menarche and menopause, years since menopause, and number of pregnancies and live births were irrelevant in this study. The logistic regression analysis and item reduction yielded a final tool (BFH-OST) based on age, body weight, height, and history of fracture after the age of 45 years. The BFH-OST index (cutoff =9.1), which performed better than OSTA, had a sensitivity of 73.6% and a specificity of 72.7% for identifying osteoporosis, with an area under the receiver operating

  1. Effect of Low-Magnitude Mechanical Stimuli on Bone Density and Structure in Pediatric Crohn's Disease: A Randomized Placebo-Controlled Trial.

    PubMed

    Leonard, Mary B; Shults, Justine; Long, Jin; Baldassano, Robert N; Brown, J Keenan; Hommel, Kevin; Zemel, Babette S; Mahboubi, Soroosh; Howard Whitehead, Krista; Herskovitz, Rita; Lee, Dale; Rausch, Joseph; Rubin, Clinton T

    2016-06-01

    Pediatric Crohn's Disease (CD) is associated with low trabecular bone mineral density (BMD), cortical area, and muscle mass. Low-magnitude mechanical stimulation (LMMS) may be anabolic. We conducted a 12-month randomized double-blind placebo-controlled trial of 10 minutes daily exposure to LMMS (30 Hz frequency, 0.3 g peak-to-peak acceleration). The primary outcomes were tibia trabecular BMD and cortical area by peripheral quantitative CT (pQCT) and vertebral trabecular BMD by QCT; additional outcomes included dual-energy X-ray absorptiometry (DXA) whole body, hip and spine BMD, and leg lean mass. Results were expressed as sex-specific Z-scores relative to age. CD participants, ages 8 to 21 years with tibia trabecular BMD <25th percentile for age, were eligible and received daily cholecalciferol (800 IU) and calcium (1000 mg). In total, 138 enrolled (48% male), and 121 (61 active, 60 placebo) completed the 12-month trial. Median adherence measured with an electronic monitor was 79% and did not differ between arms. By intention-to-treat analysis, LMMS had no significant effect on pQCT or DXA outcomes. The mean change in spine QCT trabecular BMD Z-score was +0.22 in the active arm and -0.02 in the placebo arm (difference in change 0.24 [95% CI 0.04, 0.44]; p = 0.02). Among those with >50% adherence, the effect was 0.38 (95% CI 0.17, 0.58, p < 0.0005). Within the active arm, each 10% greater adherence was associated with a 0.06 (95% CI 0.01, 1.17, p = 0.03) greater increase in spine QCT BMD Z-score. Treatment response did not vary according to baseline body mass index (BMI) Z-score, pubertal status, CD severity, or concurrent glucocorticoid or biologic medications. In all participants combined, height, pQCT trabecular BMD, and cortical area and DXA outcomes improved significantly. In conclusion, LMMS was associated with increases in vertebral trabecular BMD by QCT; however, no effects were observed at DXA or pQCT sites. © 2016 American Society for Bone

  2. The Effects of Hypergravity and Adrenalectomy on Bone Mineral Content, Urine Calcium and Body Mass in Rats

    NASA Technical Reports Server (NTRS)

    Lau, A.; Ramirez, J.; Melson, E.; Moran, M.; Baer, L.; Arnaud, S.; Wade, C.; Girten, B.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The effects of 14 days of increased gravitational load, and the absence of adrenal stress hormones on total body bone mineral content (BMC) were examined in male Sprague-Dawley rats. Centrifugation at 2 Gs (2G) was used to increase the gravitational load, and bilateral adrenalectomy (ADX) was used to eliminate the production of adrenal stress hormones. Stationary groups at 1 G (1G) and sham operated (SHAM) animals served as controls. Thirty rats (n=6 or 8) made up the four experimental groups (1G SHAM, 1G ADX, 2G SHAM and 2G ADX). BMC was assessed by dual energy x-ray absorptiometry (DXA) which was performed to determine the total body bone mineral content, and also through bone ashing of the left femur and the left humerus. Activity was determined through biotelemetry, also body mass and food intake were measured. Multi-factorial analysis of variance (MANCOVA) and Newman Keuls post hoc tests were used to analyze significant effects (p is less than 0.05) for the primary variables. Results from both DXA and the ashed femur indicated that BMC decreased significantly with increased G for both the SHAM and ADX groups. The BMC determined by DXA for the 1G ADX group was also significantly lower than the 1G SHAM group, however the 2G SHAM and 2G ADX groups were not significantly different. However, the bone ashing results showed the femur differed significantly only between the rates of centrifugation and not between the ADX and SHAM. The humerus showed no significant difference between any of the groups. There was a significant decrease in body mass with increased G and there was no ADX effect on body mass. When DXA BMC was normalized for body mass changes, there were no significant group differences. However, with bone ashing, the femur BMC/BW still showed significant difference between rates of centrifugation, with the 2G group being lower. Activity level decreased with body mass, and food intake data showed there was significant hypophagia during the first few days of

  3. Saturn Systems.

    PubMed

    U Rehman, Habib; McKee, Nida A; McKee, Michael L

    2016-01-15

    Several ring systems (Saturn systems) have been studied using DFT methods that include dispersion effects. Comparison with X-ray structures are made with three systems, and the agreement is quite good. Binding enthalpies and binding free energies in dichloromethane and toluene have been computed. The effect of an encapsulated lithium cation is accessed by comparing C60 @(C6 H4 )10 and [Li@C60 @(C6 H4 )10 ](+). The [Li@C60 ](+) cation is a much better acceptor than C60 which leads to greater donor-acceptor interactions and larger charge transfer from the ring to [Li@C60 ](+).

  4. Saturn Systems.

    PubMed

    U Rehman, Habib; McKee, Nida A; McKee, Michael L

    2016-01-15

    Several ring systems (Saturn systems) have been studied using DFT methods that include dispersion effects. Comparison with X-ray structures are made with three systems, and the agreement is quite good. Binding enthalpies and binding free energies in dichloromethane and toluene have been computed. The effect of an encapsulated lithium cation is accessed by comparing C60 @(C6 H4 )10 and [Li@C60 @(C6 H4 )10 ](+). The [Li@C60 ](+) cation is a much better acceptor than C60 which leads to greater donor-acceptor interactions and larger charge transfer from the ring to [Li@C60 ](+). PMID:26096724

  5. Electronic system

    DOEpatents

    Robison, G H; Dickson, J F

    1960-11-15

    An electronic system is designed for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. The system comprises separate input means electrically associated with the events under observation an electronic channel associated with each input means, including control means and indicating means; timing means adapted to apply a signal from the input means after a predetermined time to the control means to deactivate each of the channels; and means for resetting the system to its initial condition after the observation of each group of events. (D.L.C.)

  6. SAMPLING SYSTEM

    DOEpatents

    Hannaford, B.A.; Rosenberg, R.; Segaser, C.L.; Terry, C.L.

    1961-01-17

    An apparatus is given for the batch sampling of radioactive liquids such as slurries from a system by remote control, while providing shielding for protection of operating personnel from the harmful effects of radiation.

  7. Systems Analysis.

    ERIC Educational Resources Information Center

    Loucks, D. P.; Bell, J. M.

    1978-01-01

    Presents a literature review of the analysis of the administrative systems of various environmental programs related to water quality and pollution policy. A list of 70 references published in 1976 and 1977 is also presented. (HM)

  8. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  9. Recommender systems

    NASA Astrophysics Data System (ADS)

    Lü, Linyuan; Medo, Matúš; Yeung, Chi Ho; Zhang, Yi-Cheng; Zhang, Zi-Ke; Zhou, Tao

    2012-10-01

    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers.

  10. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  11. Laser Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tunable diode lasers are employed as radiation sources in high resolution infrared spectroscopy to determine spectral characteristics of gaseous compounds. With other laser systems, they are produced by Spectra-Physics, and used to monitor chemical processes, monitor production of quantity halogen lamps, etc. The Laser Analytics Division of Spectra-Physics credits the system's reliability to a program funded by Langley in the 1970s. Company no longer U.S.-owned. 5/22/97

  12. Systems and Components Fuel Delivery System, Water Delivery System, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  13. Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Myasishchev, Denis; Bixler, David

    2009-04-01

    Chaos theory is a current topic in physics research and is of great scientific and applied interest. Chaotic systems include weather patterns, genetic evolution and free market economics. Modeling chaotic phenomena using electronic circuits is a convenient way to analyze nonlinear systems. We have built various types of circuits and examined the conditions under which chaos occurs. Chua's circuit and analog computing circuits (ones that directly model systems of differential equations) were in the spotlight during the fall semester. An R-C phase space diagram for the Chua's circuit was constructed and the phase transitions were examined. Different analog computing circuits were built and the resulting attractors, attractor phases, and bifurcations were recorded. A mechanical system, the two block train model, is the current focus of study. The goal is to examine attractors produced by a mechanical system, a computer simulation, and a corresponding circuit in order to prove that the same experimental results can be obtained from different sources. This way if a mechanical system is too complicated to build, it can be substituted by a suitable circuit.

  14. Systems Studies

    SciTech Connect

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  15. Systemic fluoride.

    PubMed

    Sampaio, Fábio Correia; Levy, Steven Marc

    2011-01-01

    There is substantial evidence that fluoride, through different applications and formulas, works to control caries development. The first observations of fluoride's effects on dental caries were linked to fluoride naturally present in the drinking water, and then from controlled water fluoridation programs. Other systemic methods to deliver fluoride were later suggested, including dietary fluoride supplements such as salt and milk. These systemic methods are now being questioned due to the fact that many studies have indicated that fluoride's action relies mainly on its post-eruptive effect from topical contact with the tooth structure. It is known that even the methods of delivering fluoride known as 'systemic' act mainly through a topical effect when they are in contact with the teeth. The effectiveness of water fluoridation in many geographic areas is lower than in previous eras due to the widespread use of other fluoride modalities. Nevertheless, this evidence should not be interpreted as an indication that systemic methods are no longer relevant ways to deliver fluoride on an individual basis or for collective health programs. Caution must be taken to avoid excess ingestion of fluoride when prescribing dietary fluoride supplements for children in order to minimize the risk of dental fluorosis, particularly if there are other relevant sources of fluoride intake - such as drinking water, salt or milk and/or dentifrice. Safe and effective doses of fluoride can be achieved when combining topical and systemic methods.

  16. Systemic trauma.

    PubMed

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke

    2014-01-01

    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering.

  17. Systemic trauma.

    PubMed

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke

    2014-01-01

    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering. PMID:24617751

  18. Systemic fluoride.

    PubMed

    Sampaio, Fábio Correia; Levy, Steven Marc

    2011-01-01

    There is substantial evidence that fluoride, through different applications and formulas, works to control caries development. The first observations of fluoride's effects on dental caries were linked to fluoride naturally present in the drinking water, and then from controlled water fluoridation programs. Other systemic methods to deliver fluoride were later suggested, including dietary fluoride supplements such as salt and milk. These systemic methods are now being questioned due to the fact that many studies have indicated that fluoride's action relies mainly on its post-eruptive effect from topical contact with the tooth structure. It is known that even the methods of delivering fluoride known as 'systemic' act mainly through a topical effect when they are in contact with the teeth. The effectiveness of water fluoridation in many geographic areas is lower than in previous eras due to the widespread use of other fluoride modalities. Nevertheless, this evidence should not be interpreted as an indication that systemic methods are no longer relevant ways to deliver fluoride on an individual basis or for collective health programs. Caution must be taken to avoid excess ingestion of fluoride when prescribing dietary fluoride supplements for children in order to minimize the risk of dental fluorosis, particularly if there are other relevant sources of fluoride intake - such as drinking water, salt or milk and/or dentifrice. Safe and effective doses of fluoride can be achieved when combining topical and systemic methods. PMID:21701196

  19. Turbine system

    DOEpatents

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  20. Microbiology System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Technology originating in a NASA-sponsored study of the measurement of microbial growth in zero gravity led to the development of Biomerieux Vitek, Inc.'s VITEK system. VITEK provides a physician with accurate diagnostic information and identifies the most effective medication. Test cards are employed to identify organisms and determine susceptibility to antibiotics. A photo-optical scanner scans the card and monitors changes in the growth of cells contained within the card. There are two configurations - VITEK and VITEK JR as well as VIDAS, a companion system that detects bacteria, viruses, etc. from patient specimens. The company was originally created by McDonnell Douglas, the NASA contractor.

  1. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  2. ELECTRONIC SYSTEM

    DOEpatents

    Robison, G.H. et al.

    1960-11-15

    An electronic system is described for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. It is comprised of separate input means electrically associated with the events under observation: an electronic channel associated with each input means including control means and indicating means; timing means associated with each of the input means and the control means and adapted to derive a signal from the input means and apply it after a predetermined time to the control means to effect deactivation of each of the channels; and means for resetting the system to its initial condition after observation of each group of events.

  3. Computer systems

    NASA Technical Reports Server (NTRS)

    Olsen, Lola

    1992-01-01

    In addition to the discussions, Ocean Climate Data Workshop hosts gave participants an opportunity to hear about, see, and test for themselves some of the latest computer tools now available for those studying climate change and the oceans. Six speakers described computer systems and their functions. The introductory talks were followed by demonstrations to small groups of participants and some opportunities for participants to get hands-on experience. After this familiarization period, attendees were invited to return during the course of the Workshop and have one-on-one discussions and further hands-on experience with these systems. Brief summaries or abstracts of introductory presentations are addressed.

  4. System Dynamics

    NASA Astrophysics Data System (ADS)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  5. Systems Biology

    SciTech Connect

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  6. Irrigation System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  7. STAR System.

    ERIC Educational Resources Information Center

    Doverspike, James E.

    The STAR System is a developmental guidance approach to be used with elementary school children in the 5th or 6th grades. Two basic purposes underlie STAR: to increase learning potential and to enhance personal growth and development. STAR refers to 4 basic skills: sensory, thinking, adapting, and revising. Major components of the 4 skills are:…

  8. Bioconversion systems

    SciTech Connect

    Wise, D.L.

    1983-01-01

    The production of higher valued products from biomass is the focus of this reference and planning guide for those who deal with the demands of energy recovery. International experts explain the processes and potentials for genetic engineering to bioenergy systems, utilizing biomass lignin and producing chemicals from biomass using wet oxidation. They present studies of possible liquid fuel production in developing countries as well as information on new research and development such as an aquatic biomass growth system integrated with an anaerobic digestion system for producing fuel gas. Several chapters describe the use of forage crops as chemical feedstocks, production of chemicals from microalgae, and the technology and economics of chemicals from wood. CONTENTS: Fuels and Chemicals from Biomass: a Role for GeneSplicing Technology. Lactic Acid Production by Pure and Mixed Bacterial Cultures. Conversion of Lignin to Useful Chemical Products. Chemicals from Microalgae. Forage Crops as Chemical Feedstocks. Biomass Conversion into Chemicals Using Wet Oxidation. Technology and Economics of Chemicals from Wood. An Integrated Anaerobic Digestion System for the Production of Energy and Livestock Fleed Based on Aquatic Biomass Production on Sand Using Seawater Spray. Liquid Fuel Production from Biomass in the Developing Countries--an Agricultural and Economic Perspective, Part I--Introduction and Background. Part II--the Tropical Environment and the Availability of Suitable Land. Part III--Agricultural Properties of Energy Crops. Part IV--Economic Analysis of Liquid Fuel Options and Summary and Conclusions. Index.

  9. Systems Science

    ERIC Educational Resources Information Center

    Christakis, Alexander; Hammond, Debora; Jackson, Michael; Laszlo, Alexander; Mitroff, Ian; Snowden, Dave; Troncale, Len; Carr-Chellman, Alison; Spector, J. Michael; Wilson, Brent

    2013-01-01

    Scholars representing the field of systems science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Alexander Christakis, Debora Hammond, Michael Jackson, Alexander Laszlo, Ian Mitroff, Dave…

  10. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  11. Manufacturing Systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Advanced Process Systems designed a portable purge unit for NASA use. The unit is designed to protect flight and ground crews from toxic fumes and to provide a post-landing controlled environment for sensitive electronic equipment. Although the work has future spinoff potential, it has also led to a research and development program in conjunction with several universities.

  12. Systems overview

    NASA Technical Reports Server (NTRS)

    Corban, Robert

    1993-01-01

    Charts and accompanying text are presented that provide a brief synopsis of the contracted efforts for FY-92 in assessing nuclear thermal propulsion requirements, concepts, and associated issues. The objective of the effort is to provide NASA LeRC with assistance in space nuclear propulsion system requirements management and public acceptance planning.

  13. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  14. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  15. Burner systems

    DOEpatents

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  16. Surveying System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sunrise Geodetic Surveys are setting up their equipment for a town survey. Their equipment differs from conventional surveying systems that employ transit rod and chain to measure angles and distances. They are using ISTAC Inc.'s Model 2002 positioning system, which offers fast accurate surveying with exceptional signals from orbiting satellites. The special utility of the ISTAC Model 2002 is that it can provide positioning of the highest accuracy from Navstar PPS signals because it requires no knowledge of secret codes. It operates by comparing the frequency and time phase of a Navstar signal arriving at one ISTAC receiver with the reception of the same set of signals by another receiver. Data is computer processed and translated into three dimensional position data - latitude, longitude and elevation.

  17. [Systemic sclerosis].

    PubMed

    Schinke, Susanne; Riemekasten, Gabriela

    2016-04-01

    Systemic sclerosis is a challenging and heterogeneous disease due to the involvement of multiple organs and the high impact on morbidity and quality of life. Lung fibrosis, pulmonary arterial hypertension, and cardiac manifestations are main causes of systemic sclerosis-related deaths. In addition, patients suffer from a various range of co-morbidities such as malnutrition, depression, osteoporosis, malignancies, which are increased in these patients and have to be identified and treated. Early assessment of organ damage is a key to therapeutic success. The discovery of pathogenic autoantibodies combined with increased evidence of effective immunosuppressive and vasoactive treatment strategies are major developments in the therapy of the disease. At present, several clinical studies are ongoing and some of the biological therapies are promising.

  18. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  19. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  20. Tychonic System

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The world system proposed in 1583 by the Danish astronomer Tycho Brahe (1546-1601). Unable to accept the Copernican doctrine that the Earth moves around the Sun, he put forward the view, later disproved by Kepler (1571-1630), that the planets move around the Sun, but the Sun and Moon move around the Earth. The theory explained the observed variations of the phases of Venus, for which the Ptolemai...

  1. CONTROL SYSTEM

    DOEpatents

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  2. Security system

    DOEpatents

    Baumann, Mark J.; Kuca, Michal; Aragon, Mona L.

    2016-02-02

    A security system includes a structure having a structural surface. The structure is sized to contain an asset therein and configured to provide a forceful breaching delay. The structure has an opening formed therein to permit predetermined access to the asset contained within the structure. The structure includes intrusion detection features within or associated with the structure that are activated in response to at least a partial breach of the structure.

  3. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  4. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  5. Copernican System

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The heliocentric (i.e. `Sun-centered') theory proposed by the Polish astronomer Nicolaus Copernicus (1473-1543), and published by him in 1543 in his book, De Revolutionibus Orbium Coelestium. In this system Copernicus placed the Sun at the center of the universe and regarded the Earth and the planets as moving around it in circular orbits. Because of his retention of the notion of circular motion...

  6. Memory systems.

    PubMed

    Eichenbaum, Howard

    2010-07-01

    The idea that there are multiple memory systems can be traced to early philosophical considerations and introspection. However, the early experimental work considered memory a unitary phenomenon and focused on finding the mechanism upon which memory is based. A full reconciliation of debates about that mechanism, and a coincidental rediscovery of the idea of multiple memory systems, emerged from studies in the cognitive neuroscience of memory. This research has identified three major forms of memory that have distinct operating principles and are supported by different brain systems. These include: (1) a cortical-hippocampal circuit that mediates declarative memory, our capacity to recollect facts and events; (2) procedural memory subsystems involving a cortical-striatal circuit that mediates habit formation and a brainstem-cerebellar circuit that mediates sensorimotor adaptations; and (3) a circuit involving subcortical and cortical pathways through the amygdala that mediates the attachment of affective status and emotional responses to previously neutral stimuli. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  7. Braking system

    DOEpatents

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  8. Videobasierte Systeme

    NASA Astrophysics Data System (ADS)

    Knoll, Peter

    Videosensoren spielen für Fahrerassistenz systeme eine zentrale Rolle, da sie die Interpretation visueller Informationen (Objektklassifikation) gezielt unterstützen. Im Heckbereich kann die Video sensorik in der einfachsten Variante die ultraschallbasierte Einparkhilfe bei Einpark- und Rangiervorgängen unterstützen. Beim Nachtsichtsystem NightVision wird das mit Infrarotlicht angestrahlte Umfeld vor dem Fahrzeug mit einer Frontkamera aufgenommen und im Fahrzeugcockpit auf einem Display dem Fahrer angezeigt (s. Nachtsichtsysteme). Andere Fahrerassistenzsysteme verarbeiten die Videosignale und generieren daraus gezielt Informationen, die für eigenständige Funktionen (z. B. Spurverlassenswarner) oder aber als Zusatzinformation für andere Funktionen ausgewertet werden (Sensordatenfusion).

  9. Balance System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  10. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  11. Sterilization System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  12. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  13. Purification system

    NASA Technical Reports Server (NTRS)

    Flanagan, David T. (Inventor); Gibbons, Randall E. (Inventor)

    1992-01-01

    A system for prolonging the life of a granulated activated charcoal (GAC) water treatment device is disclosed in which an ultraviolet light transparent material is used to constrain water to flow over carbon surfaces. It is configured to receive maximum flux from a UV radiation source for the purpose of preventing microbial proliferation on the carbon surfaces; oxidizing organic contaminants adsorbed from the water onto the carbon surfaces and from biodegradation of adsorbed microbial forms; disinfecting water; and oxidizing organic contaminants in the water.

  14. The use of dual-energy X-ray absorptiometry (DEXA) to assess the impact of Eimeria infections in broiler chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of parameters have been used to assess the impact of coccidosis on chickens in both clinical settings as well as in experimental studies. However a rapid way to determine body composition would be useful to evaluate or compare responses to coccidia and could give further insight into the m...

  15. Preoperative bone quality as a factor in dual-energy X-ray absorptiometry analysis comparing bone remodelling between two implant types

    PubMed Central

    Rahmy, Ali; Grimm, Bernd; Heyligers, Ide; Tonino, Alphons

    2006-01-01

    Recently it was shown that the design changes from the ABG-I to ABG-II hip stem resulted in a better, although not significant, proximal bone preservation. Our hypothesis was that by matching patients for preoperative bone quality, statistical power would increase and that the trend of better proximal bone preservation in ABG-II might become significant. Twenty-four ABG-II patients were compared to two different ABG-I groups: (1) 25 patients from our earlier prospective study and (2) a group of 24 patients selected to perfectly match the ABG-II group regarding gender, age and preoperative bone quality. Postoperative changes in periprosthetic bone mineral density (BMD) were quantified at 2 years postoperatively using DEXA scanning. Bone preservation (less BMD loss) was better for the ABG-II than the ABG-I (all two groups) in the proximal zones 1 and 7. In Gruen zone 7, a statistically significant difference was found for group B (p = 0.03). By matching patients for preoperative bone quality and gender, a statistical significant difference was found in proximal bone preservation in favour of ABG-II. In future comparative bone remodelling studies using DEXA, patients should be matched for preoperative bone quality and gender. PMID:17086429

  16. Air displacement plethysmography, dual-energy x-ray absorptiometry, and total body water to evaluate body composition in preschool-age children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthropometrics and body mass index are only proxies in the evaluation of adiposity in the pediatric population. Air displacement plethysmography technology was not available for children aged 6 months to 9 years until recently. Our study was designed to test the precision of air displacement plethy...

  17. Comparison of Gross Body Fat-Water Magnetic Resonance Imaging at 3 Tesla to Dual Energy X-Ray Absorptiometry in Obese Women

    PubMed Central

    Silver, HJ; Niswender, KD; Kullberg, J; Berglund, J; Johansson, L; Bruvold, M; Avison, MJ; Welch, EB.

    2012-01-01

    Improved understanding of how depot-specific adipose tissue mass predisposes to obesity-related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three-dimensional contiguous “fat-water” MR imaging (FWMRI) covering the majority of a whole-body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type and distribution of adipose and lean soft tissue would show great promise in body composition methodology. Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to DEXA. Anthropometric, FWMRI and DEXA measurements were obtained in twelve women with BMI 30–39.9 kg/m2. Test-retest results found coefficients of variation for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DEXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST and TTLST, respectively. While Bland Altman plots demonstrated agreement between FWMRI and DEXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DEXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully-automated segmentation is fast (<30 minutes total scan and post-processing time), noninvasive, repeatable and cost effective. PMID:23712980

  18. Gastrointestinal system

    PubMed Central

    Cheng, Leo K.; O’Grady, Gregory; Du, Peng; Egbuji, John U.; Windsor, John A.; Pullan, Andrew J.

    2014-01-01

    The functions of the gastrointestinal (GI) tract include digestion, absorption, excretion, and protection. In this review, we focus on the electrical activity of the stomach and small intestine, which underlies the motility of these organs, and where the most detailed systems descriptions and computational models have been based to date. Much of this discussion is also applicable to the rest of the GI tract. This review covers four major spatial scales: cell, tissue, organ, and torso, and discusses the methods of investigation and the challenges associated with each. We begin by describing the origin of the electrical activity in the interstitial cells of Cajal, and its spread to smooth muscle cells. The spread of electrical activity through the stomach and small intestine is then described, followed by the resultant electrical and magnetic activity that may be recorded on the body surface. A number of common and highly symptomatic GI conditions involve abnormal electrical and/or motor activity, which are often termed functional disorders. In the last section of this review we address approaches being used to characterize and diagnose abnormalities in the electrical activity and how these might be applied in the clinical setting. The understanding of electrophysiology and motility of the GI system remains a challenging field, and the review discusses how biophysically based mathematical models can help to bridge gaps in our current knowledge, through integration of otherwise separate concepts. PMID:20836011

  19. Expert Systems: What Is an Expert System?

    ERIC Educational Resources Information Center

    Duval, Beverly K.; Main, Linda

    1994-01-01

    Describes expert systems and discusses their use in libraries. Highlights include parts of an expert system; expert system shells; an example of how to build an expert system; a bibliography of 34 sources of information on expert systems in libraries; and a list of 10 expert system shells used in libraries. (Contains five references.) (LRW)

  20. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  1. Systems toxicology.

    PubMed

    Hartung, Thomas; van Vliet, Erwin; Jaworska, Joanna; Bonilla, Leo; Skinner, Nigel; Thomas, Russell

    2012-01-01

    The need for a more mechanistic understanding of the ways in which chemicals modulate biological pathways is urgent if we are to identify and better assess safety issues relating to a wide range of substances developed by the pharmaceutical, chemical, agri-bio, and cosmetic industries. Omics technologies provide a valuable opportunity to refine existing methods and provide information for so-called integrated testing strategies via the creation of signatures of toxicity. By mapping these signatures to underlying pathways of toxicity, some of which have been identified by toxicologists over the last few decades, and bringing them together with pathway information determined from biochemistry and molecular biology, a "systems toxicology" approach will enable virtual experiments to be conducted that can improve the prediction of hazard and the assessment of compound toxicity. PMID:22562485

  2. Transfer system

    DOEpatents

    Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  3. New ultrasound system for bone assessment

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan J.; Luo, Gangming; Conroy, David; Johnson, William A.; Altman, Ronald L.; Siffert, Robert S.

    2004-04-01

    This paper reports on a new ultrasound device for noninvasive assessment of bone. The device, known as the QRT 2000 -for Quantitative Real-Time-is entirely self-contained, portable, and handheld. The QRT 2000 is powered by 4 "AA" rechargeable batteries and permits near real-time evaluation of a novel set of ultrasound parameters and their on-line display to the user. The parameters have been studied both in vitro and clinically with a laboratory unit that measured the calcaneus in through transmission and computed the ultrasound features off-line. The data related the ultrasound parameters to the bone mineral density (BMD) of the calcaneus, spine and hip, as determined by x-ray absorptiometry, and demonstrated that the parameters were superior to the standard ones known as BUA and SOS (broadband ultrasound attenuation and speed-of-sound, respectively). The QRT 2000 was then constructed to compute the same parameters; however as noted about it does this in near real-time and provides visual feedback to the user while the measurements are being made. The compactness and portability of the unit make it also ideal for spaceflight applications. Finally, the QRT 2000 was designed to be manufactured at relatively low cost, and therefore should enable the significant expansion of quantitative ultrasound measurements to, for example, primary care physicians in this country and abroad, and including for use in the developing world.

  4. Intelligent Engine Systems: Bearing System

    NASA Technical Reports Server (NTRS)

    Singh, Arnant P.

    2008-01-01

    The overall requirements necessary for sensing bearing distress and the related criteria to select a particular rotating sensor were established during the phase I. The current phase II efforts performed studies to evaluate the Robustness and Durability Enhancement of the rotating sensors, and to design, and develop the Built-in Telemetry System concepts for an aircraft engine differential sump. A generic test vehicle that can test the proposed bearing diagnostic system was designed, developed, and built. The Timken Company, who also assisted with testing the GE concept of using rotating sensors for the differential bearing diagnostics during previous phase, was selected as a subcontractor to assist General Electric (GE) for the design, and procurement of the test vehicle. A purchase order was prepared to define the different sub-tasks, and deliverables for this task. The University of Akron was selected to provide the necessary support for installing, and integrating the test vehicle with their newly designed test facility capable of simulating the operating environment for the planned testing. The planned testing with good and damaged bearings will be on hold pending further continuation of this effort during next phase.

  5. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  6. Incinerator system

    SciTech Connect

    Rathmell, R.K.

    1986-10-07

    An incineration system is described which consists of: combustion chamber structure having an inlet, an outlet, and burner structure in the combustion chamber, heat exchanger structure defining a chamber, divider structure between the heat exchanger chamber and the combustion chamber, an array of tubes extending through the heat exchanger chamber to the inlet of the combustion chamber at the divider structure. The heat exchanger chamber has an inlet coupled to the outlet of the combustion chamber for flow of the combustion products discharged from the combustion chamber through the heat exchanger chamber over the tubes in heat exchange relation, and an outlet for discharge of products from the heat exchanger chamber, aspirator sleeve structure secured to the divider structure between the heat exchanger chamber and the combustion chamber. Each aspirator sleeve receives the outlet end of a heat exchanger tube in slip fit relation so that the heat exchanger tubes are free to thermally expand longitudinally within the aspirator sleeves, and means for flowing vapor through the heat exchanger tubes into the combustion chamber at sufficiently high velocity to produce a reduced pressure effect in the aspirator sleeves in the heat exchanger chamber to draw a minor fraction of combustion products through the aspirator sleeves into the combustion chamber for reincineration.

  7. Systems approach to space plasma systems

    NASA Astrophysics Data System (ADS)

    Boynton, Richard; Walker, Simon

    The application of nonlinear system identification methodology was used to review complex space plasma systems. It is shown how the nonlinear system identification approach can lead to a comprehensive description of dynamical processes in developed space plasma turbulences. It is also explained how nonlinear system identification can access the analytical approach to complex dynamical systems such as the magnetosphere.

  8. New Systems Produced by Systemic Change