Science.gov

Sample records for absorption band depth

  1. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  2. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  3. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  4. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  5. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  6. Constraints on the absorption band model of Q

    NASA Astrophysics Data System (ADS)

    Lundquist, Gary M.; Cormier, Vernon C.

    1980-10-01

    First order models for the combined depth and frequency dependence of Q are derived and tested using several independent constraints. (1) Using a microphysics approach, the adoption of an absorption band as a first-order model for the frequency dependence of Q is justified, and the expected depth behavior of relaxation times in the earth is derived. The significant new parameter in this model of Q is τ2, the period at the half-amplitude point of the high frequency end of the absorption band. (2) Using observed body-wave spectra, the existence of a frequency dependence in Q is proved, and the average location of that frequency dependence (i.e., τ2) is estimated to be in the range 1 to 2.5 Hz. (3) Under the constraints of Q model ratios, the depth dependence of τ2 is estimated by assuming that a free-oscillation and a body-wave Q model both measure Q from the same absorption band. The resulting τ2 is about 0.04 s in the upper 200 km and then increases exponentially with depth in the mantle to about 1.9 at the core mantle boundary. The Q model ratios are better satisfied if a second absorption band is hypothesized to operate in the depth range of the asthenosphere. In that case, τ2 for the mantle absorption band varies from about 0.09 s in the first 200 km to 4.0 s at 2886 km, and τ2 for the asthenosphere absorption band is about 0.005 s in the depth range 35-220 km. (4) Both classes of Q models are tested in the time domain using synthetic seismograms of Russian and American nuclear explosions. Although trade-offs between source and mantle transfer functions preclude further refinement of the models at this time, a compatibility is demonstrated between the double absorption band model and time domain constraints, including arrival time and pulse shape.

  7. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  8. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  9. Forage quantity estimation from MERIS using band depth parameters

    NASA Astrophysics Data System (ADS)

    Ullah, Saleem; Yali, Si; Schlerf, Martin

    Saleem Ullah1 , Si Yali1 , Martin Schlerf1 Forage quantity is an important factor influencing feeding pattern and distribution of wildlife. The main objective of this study was to evaluate the predictive performance of vegetation indices and band depth analysis parameters for estimation of green biomass using MERIS data. Green biomass was best predicted by NBDI (normalized band depth index) and yielded a calibration R2 of 0.73 and an accuracy (independent validation dataset, n=30) of 136.2 g/m2 (47 % of the measured mean) compared to a much lower accuracy obtained by soil adjusted vegetation index SAVI (444.6 g/m2, 154 % of the mean) and by other vegetation indices. This study will contribute to map and monitor foliar biomass over the year at regional scale which intern can aid the understanding of bird migration pattern. Keywords: Biomass, Nitrogen density, Nitrogen concentration, Vegetation indices, Band depth analysis parameters 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands

  10. Coherent Backscattering Effect in Saturnian vs. Uranian Satellites: Effects on Band Depths and Shapes

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Kolokolova, Ludmilla; Verbiscer, Anne J.; Gulotta, Charles; Joseph, Emily C. S.; Mackowski, Daniel W.; Buratti, Bonnie J.; Momary, Thomas W.

    2015-11-01

    In this work, we examine the changes in depth and shape of individual absorption bands as a function of solar phase angle that are caused by the coherent backscattering effect (CBE) in near-IR spectra of saturnian and uranian satellites. We have quantified band depths and shapes for real-world data (from Cassini Visual & Infrared Mapping Spectrometer (VIMS) and TripleSpec at Apache Point Observatory) and also modeled spectra of densely packed icy particulate surfaces with the MSTM (multisphere T-matrix) version 4.0 code specifically developed to model light scattering in regolith layers. MSTM4 allows us to calculate the brightness for thick fluffy layers on order of 20,000 particles (compared to 1000 with previous code versions). We have now obtained good matches between model and real-world data at specific bands for several higher albedo moons. We are finding that the normalized depth of the absorption band can increase or decrease with solar phase angle depending on the albedo at the wavelength of normalization; this is seen in all the data (VIMS, ground-based, and model spectra). We model the change in the phase-angle-dependent band depth in response to varying the size and packing of the constituent icy particles. Indeed, the coherent backscattering effect can be observed at some wavelengths and entirely disappear at others because CBE requires a specific range of size and packing (cf. Muinonen et al. 2014); we see this effect as well.This work is supported by NASA’s Outer Planets Research program (NNX12AM76G; PI Pitman), Planetary Astronomy program (NNX09AD06G; PI Verbiscer), and NASA’s Advanced Supercomputing Division. Calibrated Cassini VIMS data cubes appear courtesy of the Cassini VIMS team and the PDS.

  11. Absorption enhancement of a dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Han, Gui Ming; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2017-02-01

    In this paper, we propose and fabricate a dual-band metamaterial absorber in 6-24 THz region. Electric field distribution reveal that the first absorption band is obtained from localized surface plasmon (LSP) modes which are excited both on inside and outside edges of each circular-patterned metal-dielectric stack, while the second absorption band is excited by LSP modes on outside edges of each stack. Measured results indicate that the absorption band width can be tuned by increasing the radius of circular-patterned layers or reducing the thickness of dielectric spacing layers. Moreover, the designed dual-band metamaterial absorber is independent on circular-patterned dielectric layer combinations.

  12. Absorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  13. Interpretation of absorption bands in airborne hyperspectral radiance data.

    PubMed

    Szekielda, Karl H; Bowles, Jeffrey H; Gillis, David B; Miller, W David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments.

  14. Interpretation of Absorption Bands in Airborne Hyperspectral Radiance Data

    PubMed Central

    Szekielda, Karl H.; Bowles, Jeffrey H.; Gillis, David B.; Miller, W. David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments. PMID:22574053

  15. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  16. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    PubMed

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  17. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  18. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  19. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon.

    PubMed

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-05-27

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.

  20. Shape of impurity electronic absorption bands in nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1994-11-01

    The impurity-matrix anisotropic static intermolecular interactions, orientation-statistical properties, and electronic structure of uniaxial impurity molecules are shown to have a significant influence on spectral moments of the electronic absorption bands of impurities in the nematic liquid crystal. 14 refs., 3 figs.

  1. [Band depth analysis and partial least square regression based winter wheat biomass estimation using hyperspectral measurements].

    PubMed

    Fu, Yuan-Yuan; Wang, Ji-Hua; Yang, Gui-Jun; Song, Xiao-Yu; Xu, Xin-Gang; Feng, Hai-Kuan

    2013-05-01

    The major limitation of using existing vegetation indices for crop biomass estimation is that it approaches a saturation level asymptotically for a certain range of biomass. In order to resolve this problem, band depth analysis and partial least square regression (PLSR) were combined to establish winter wheat biomass estimation model in the present study. The models based on the combination of band depth analysis and PLSR were compared with the models based on common vegetation indexes from the point of view of estimation accuracy, subsequently. Band depth analysis was conducted in the visible spectral domain (550-750 nm). Band depth, band depth ratio (BDR), normalized band depth index, and band depth normalized to area were utilized to represent band depth information. Among the calibrated estimation models, the models based on the combination of band depth analysis and PLSR reached higher accuracy than those based on the vegetation indices. Among them, the combination of BDR and PLSR got the highest accuracy (R2 = 0.792, RMSE = 0.164 kg x m(-2)). The results indicated that the combination of band depth analysis and PLSR could well overcome the saturation problem and improve the biomass estimation accuracy when winter wheat biomass is large.

  2. Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    NASA Technical Reports Server (NTRS)

    Antonov, R. A.; Galkin, V. I.; Hein, L. A.; Ivanenko, I. P.; Kanevsky, B. L.; Kuzmin, V. A.

    1985-01-01

    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M.

  3. Concerning the Optical Absorption Band of the Hydrated Electron,

    DTIC Science & Technology

    methylene blue ) showed marked nonlinear absorption due to saturation of optical transitions, no such change was observed for hydrated electrons even though the light intensity was varied by > 10 to the 7th power up to 200 photons per hydrated electron per sq cm. Consequently the photoexcited state lifetime is estimated to be than 6 x 10 to the -12th power sec. This finding is discussed briefly in terms of three possible origins for the absorption band, namely that involving excitation to a bound excited state, as a photoionization efficiency profile or as a distribution

  4. PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION

    SciTech Connect

    Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le; Hardersen, P. S.; Nathues, A.

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  5. The power absorption and the penetration depth of electromagnetic radiation in lead telluride under cyclotron resonance conditions

    NASA Astrophysics Data System (ADS)

    Özalp, S.; Güngör, A.

    1999-10-01

    Cyclotron resonance absorption in n- and p-type PbTe was observed by Nii and was analysed under classical skin effect conditions. When the values of DC magnetic field corresponding to peaks are plotted against the field directions, a close fit is obtained between the calculated and observed results based on the assumption of a <1 1 1> ellipsoids of revolution model for the both conduction and valance band extrema. From the best fit mt=0.024 m0 and 0.03 m0 for the transverse effective masses and K= ml/ mt=9.8 and 12.2 for the anisotropic mass rations are obtained for the conduction and valance band, respectively. The observed absorption curve shows weak structures at low magnetic field. They are supposed to be due to second harmonics of Azbel'-Kaner cyclotron resonance. However, it turns out to be unnecessary to introduce other bands to explain the experimental results. The applicability of the classical magneto-optical theory is examined by calculating the power absorption coefficient and penetration depth as a function of DC magnetic field.

  6. INTERACTION OF LASER RADIATION WITH MATTER: Individual induced absorption bands in MgF2

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Sergeev, P. B.

    2008-03-01

    The absorption spectra of MgF2 samples exposed to an electron beam and laser radiation at 248, 308, and 372 nm are investigated. Fourteen individual absorption bands are separated in the spectra. The parameters of the eight spectra of them are obtained for the first time. The separated bands are assigned to the intrinsic defects of the MgF2 crystal.

  7. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  8. Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films

    SciTech Connect

    Bar, M.; Nishiwaki, S.; Weinhardt, L.; Pookpanratana, S.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J. D.; Shafarman, W.; Heske, C.

    2008-06-24

    The surface composition of Cu(In,Ga)(S,Se)2 (?CIGSSe?) thin films intrinsically deviates from the corresponding bulk composition, which also modifies the electronic structure and thus the optical properties.We have used a combination of photon and electron spectroscopies with different information depths to gain depth-resolved information on the band gap energy (Eg) in CIG(S)Se thin films. We find an increasing Eg with decreasing information depth, indicating the formation of a surface region with significantly higher Eg. This Eg-widened surface region extends further into the bulk of the sulfur-free CIGSe thin film compared to the CIGSSe thin film.

  9. Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films

    NASA Astrophysics Data System (ADS)

    Bär, M.; Nishiwaki, S.; Weinhardt, L.; Pookpanratana, S.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J. D.; Shafarman, W. N.; Heske, C.

    2008-12-01

    The surface composition of Cu(In,Ga)(S,Se)2 ("CIGSSe") thin films intrinsically deviates from the corresponding bulk composition, which also modifies the electronic structure and thus the optical properties. We used a combination of photon and electron spectroscopies with different information depths to gain depth-resolved information on the band gap energy (Eg) in CIG(S)Se thin films. We find an increasing Eg with decreasing information depth, indicating the formation of a surface region with significantly higher Eg. This Eg-widened surface region extends further into the bulk of the sulfur-free CIGSe thin film compared to the CIGSSe thin film.

  10. Estimating vegetation optical depth using L-band passive microwave airborne data in HiWATER

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Chai, Linna

    2014-11-01

    In this study, a relationship between polarization differences of soil emissivity at different incidence angles was constructed from a large quantity of simulated soil emissivity based on the Advanced Integrated Emission Model (AIEM) input parameters include: a frequency of 1.4 GHz (L-band), incident angles varying from 1°to 60° at a 1° interval, a wide range of soil moisture content and land surface roughness parameters. Then, we used this relationship and the ω-τ zero-order radiation transfer model to develop an inversion method of low vegetation optical depth at L-band, this work were under the assumption that there was no significant polarization difference between the vegetation signals. Based on this inversion method of low vegetation optical depth, we used the land surface passive microwave brightness temperature of Heihe Watershed obtained by airborne Polarimetric L-band Multibeam Radiometer (PLMR) in 2012 Heihe Watershed Allied Telemetry Experimental Research (HiWATER) to retrieve the corn optical depth in the flight areas, then the results were compared with the measured corn LAI. Results show that the retrieved corn optical depths were consisted with the measured LAI of corn. It proved that the corn optical depth inversion method proposed in this study was feasible. Moreover, the method was promising to apply to the satellite observations.

  11. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  12. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  13. e-beam irradiation effects on IR absorption bands in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ichida, Masao; Nagao, Katsunori; Ikemoto, Yuka; Okazaki, Toshiya; Miyata, Yasumitsu; Kawakami, Akira; Kataura, Hiromichi; Umezu, Ikurou; Ando, Hiroaki

    2017-01-01

    We have measured the absorption and Raman spectral change induced by the irradiation of e-beam. By the irradiation of e-beam on SWNTs thin films, the intensity of defect related Raman band increase, and the peak energy of IR absorption bands shift to the higher energy side. These results indicate that the origin of infrared band is due to the plasmon resonance of finite-length SWNT. We have estimated the effective tube length and defect density from IR absorption peak energy.

  14. Below-band-gap absorption in undoped GaAs at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wasiak, Michał; Walczak, Jarosław; Motyka, Marcin; Janiak, Filip; Trajnerowicz, Artur; Jasik, Agata

    2017-02-01

    This paper presents results of measurements of optical absorption in undoped epitaxial GaAs for photon energies below the band gap. Absorption spectra were determined from transmission spectra of a thin GaAs layer at several temperatures between 25 °C and 205 °C. We optimized our experiment to investigate the long-wavelength part of the spectrum, where the absorption is relatively low, but significant from the point of view of applications of GaAs in semiconductor lasers. Absorption of 100 cm-1 was observed over 30 nm below the band gap at high temperatures.

  15. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  16. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  17. Conformational statistics of molecules with inner rotation and shapes of their electronic absorption bands

    SciTech Connect

    Aver`yanov, E.M.

    1994-10-01

    The effect of conformational statistics of molecules with inner rotation of {pi}-conjugated fragments on the position, intensity, and electronic absorption band shapes is studied in isotropic molecular media. It is shown that the conformational disorder of molecules with one inner rotation degree of freedom exerts an appreciable effect on the shift, inhomogeneous broadening, and asymmetry of the electronic absorption bands. An interpretation of the available experimental data is give. 19 refs., 1 fig.

  18. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  19. Ozone absorption cross section measurements in the Wulf bands

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    A tandem dual-beam spectrometer has been developed to determine ozone absorption cross sections for 13 selected wavelengths between 750 and 975 nm at room temperature. The increasingly pronounced structure in this region may interfere with atmospheric trace gas transitions that are useful for remote sensing and complicate the measurement of aerosols. Ozone concentrations were determined by absorption at the common HeNe laser transition near 632.8 nm using the absolute cross section reported previously. The overall accuracy of these room temperature measurements is generally better than 2 percent. A synoptic near-IR spectrum scaled to these measurements is employed for comparison with results of previous studies.

  20. HAC: Band Gap, Photoluminescence, and Optical/Near-Infrared Absorption

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Ryutov, Dimitri; Furton, Douglas G.

    1996-01-01

    We report results of laboratory measurements which illustrate the wide range of physical properties found among hydrogenated amorphous carbon (HAC) solids. Within this range, HAC can match quantitatively the astronomical phenomena ascribed to carbonaceous coatings on interstellar grains. We find the optical band gap of HAC to be well correlated with other physical properties of HAC of astronomical interest, and conclude that interstellar HAC must be fairly hydrogen-rich with a band gap of E(sub g) is approx. greater than 2.0 eV.

  1. Temperature behavior of optical absorption bands in colored LiF crystals

    NASA Astrophysics Data System (ADS)

    Fastampa, Renato; Missori, Mauro; Braidotti, Maria Chiara; Conti, Claudio; Vincenti, Maria Aurora; Montereali, Rosa Maria

    We measured the optical absorption spectra of thermally treated, gamma irradiated LiF crystals, as a function of temperature in the range 16-300 K. The temperature dependence of intensity, peak position and bandwidth of F and M absorption bands were obtained.

  2. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  3. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  4. Investigation of locally resonant absorption and factors affecting the absorption band of a phononic glass

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Jiang, Heng; Feng, Yafei; Wang, Yuren

    2014-12-01

    We experimentally and theoretically investigated the mechanisms of acoustic absorption in phononic glass to optimize its properties. First, we experimentally studied its locally resonant absorption mechanism. From these results, we attributed its strong sound attenuation to its locally resonant units and its broadband absorption to its networked structure. These experiments also indicated that the porosity and thickness of the phononic glass must be tuned to achieve the best sound absorption at given frequencies. Then, using lumped-mass methods, we studied how the absorption bandgaps of the phononic glass were affected by various factors, including the porosity and the properties of the coating materials. These calculations gave optimal ranges for selecting the porosity, modulus of the coating material, and ratio of the compliant coating to the stiff matrix to achieve absorption bandgaps in the range of 6-30 kHz. This paper provides guidelines for designing phononic glasses with proper structures and component materials to work in specific frequency ranges.

  5. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge absorption bands of isotopic oxygen, (O-18)2, at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Friedman, R. S.; Parkinson, W. H.

    1988-01-01

    Cross-sections of (O-18)2 at 79 K have been obtained from photoabsorption measurements at various pressures throughout the wavelength region 177.8-197.8 nm with a 6.65 m photoelectric scanning spectrometer equipped with a 2400 lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross-sections of the Schumann-Runge bands (14,0) through (2,0) are, with the exception of the (12,0) band, independent of the instrumental width. The measured cross-sections are presented graphically here and are available at wavenumber intervals of about 0.1/cm as numerical compilations stored on magnetic tape. Band oscillator strengths of those bands have been determined by direct numerical integration of the measured absolute cross-sections and are in excellent agreement with these theoretically calculated values.

  6. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  7. Hot Bands in Overtone Absorption Transitions: High Temperature Spectra

    DTIC Science & Technology

    1993-03-17

    the overtone transition. ൖ WWIŝST3" 3 24 002 15.NUMBER ,OF ,,A Overtone Spectroscopy, Hot Bands 16. PRKI CODE 17. SECURITY CLASSIFICATION 18...Rev 2-89) aWVPOO AfeD $10 139-18’q wAPI .’ N o, lgi OFFICE OF NAVAL RESEARCH GRANT or CONTRACT N00014-88-K-4130 R&T Code 4131063 Technical Report No...Unannounced fJ Justification ................ Prepared for Publication By ................ Di•.t. ibution I in Availability Codes Avail and /or Dist Special

  8. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  9. Depth of anaesthesia assessment based on adult electroencephalograph beta frequency band.

    PubMed

    Li, Tianning; Wen, Peng

    2016-09-01

    This paper presents a new method to apply timing characteristics of electroencephalograph (EEG) beta frequency bands to assess the depth of anaesthesia (DoA). Firstly, the measured EEG signals are denoised and decomposed into 20 different frequency bands. The Mobility (M), permutation entropy (PE) and Lempel-Ziv complexity (LCZ) of each frequency band are calculated. The M, PE and LCZ values of beta frequency bands (21.5-30 Hz) are selected to derive a new index. The new index is evaluated and compared with measured bispectral (BIS). The results show that there is a very close correlation between the proposed index and the BIS during different anaesthetic states. The new index also shows a 25-264 s earlier time response than BIS during the transient period of anaesthetic states. In addition, the proposed index is able to continuously assess the DoA when the quality of signal is poor and the BIS does not have any valid outputs.

  10. Fe-substituted indium thiospinels: New intermediate band semiconductors with better absorption of solar energy

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Chen, Haijie; Qin, Mingsheng; Yang, Chongyin; Zhao, Wei; Liu, Yufeng; Zhang, Wenqing; Huang, Fuqiang

    2013-06-01

    The indium thiospinels In2S3 and MgIn2S4 are promising host for the intermediated band (IB) photovoltaic materials due to their ideal band gap value. Here, the optical properties and electronic structure of Fe-doped In2S3 and MgIn2S4 have been investigated. All the Fe-substituted semiconductors exhibit two additional absorption bands at about 0.7 and 1.25 eV, respectively. The results of first-principles calculations revealed that the Fe substituted at the octahedral In site would introduce a partially filled IB into the band gap. Thanks to the formation of IB, the Fe-substituted semiconductors have the ability to absorb the photons with energies below the band gap. With the wide-spectrum absorption of solar energy, these materials possess potential applications in photovoltaic domain.

  11. The effective air absorption coefficient for predicting reverberation time in full octave bands.

    PubMed

    Wenmaekers, R H C; Hak, C C J M; Hornikx, M C J

    2014-12-01

    A substantial amount of research has been devoted to producing a calculation model for air absorption for pure tones. However, most statistical and geometrical room acoustic prediction models calculate the reverberation time in full octave bands in accordance with ISO 3382-1 (International Organization for Standardization, 2009). So far, the available methods that allow calculation of air absorption in octave bands have not been investigated for room acoustic applications. In this paper, the effect of air absorption on octave band reverberation time calculations is investigated based on calculations. It is found that the approximation method, as described in the standard ANSI S1.26 (American National Standards Institute, 1995), fails to estimate accurate decay curves for full octave bands. In this paper, a method is used to calculate the energy decay curve in rooms based on a summation of pure tones within the band. From this decay curve, which is found to be slightly concave upwards, T20 and T30 can be determined. For different conditions, an effective intensity attenuation coefficient mB ;eff for the full octave bands has been calculated. This mB ;eff can be used for reverberation time calculations, if results are to be compared with T20 or T30 measurements. Also, guidelines are given for the air absorption correction of decay curves, measured in a scale model.

  12. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.; Allan, G. R.; Mao, J.; Hasselbrack, W.; Abshire, J. B.

    2013-12-01

    We report on an airborne demonstration of atmospheric oxygen (O2) optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate atmospheric temperature and pressure measurements are required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. Since O2 in uniformly mixed in the atmosphere, its absorption spectra can be used to estimate atmospheric pressure. In its airborne configuration, the IPDA lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at multiple discrete wavelengths in the oxygen A-band near 765 nm. This instrument has been deployed three times aboard NASA's DC-8 airborne laboratory as part of campaigns to measure CO2 mixing ratios over a wide range of topography and weather conditions from altitudes between 3 km and 13 km. The O2 IPDA lidar flew seven flights in 2011 and six flights in 2013 in the continental United States and British Columbia, Canada. Our results from 2011 showed good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km after a systematic bias correction of approximately 8% was applied. The random noise component was 2.5-3.0 %. The most recent data recorded in 2013 show better agreement between experimental optical depth measurements and theoretical predictions and much smaller systematic errors. The random error remained comparable with 2011 at 2-3%. The main source of random error is primarily the low energy (power) of the laser transmitter and the high solar background. We are in the process of addressing this issue with a new, higher energy amplifier that we anticipate will reduce the random noise component by a factor of 3-5 to less than 0.5%. The results from these flights show that the IPDA technique is a viable method

  13. Depth.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

  14. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  15. AKARI observations of ice absorption bands towards edge-on YSOs

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Noble, J. A.; Pontoppidan, K. M., Fraser, H. J.; Terada, H.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2011-05-01

    Circumstellar disks and envelopes of low-mass YSOs contain significant amounts of ice. Such icy material will evolve to volatile components of planetary systems, such as comets in our solar system. In order to investigate the composition and evolution of circumstellar ice around low-mass YSOs, we have observed ice absorption bands towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Slit-less spectroscopic observations are performed using the grism mode of Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO_2 band and the blue wing of the H_2O band, which are not accessible from the ground. We developed procedures to reduce the spectra of targets with nebulosity. The spectra are fitted with polynomial baselines to derive the absorption spectra. Then we fit the molecular absorption bands with the laboratory spectra from the database, considering the instrumental line profile and the spectral resolution of the dispersion element. Towards the Class 0-I sources, absorption bands of H_2O, CO_2, CO and XCN (OCN^-) are clearly detected. Weak features of 13CO_2, HDO, the C-H band, and gaseous CO are detected as well. OCS ice absorption is tentatively detected towards IRC-L1041-2. The detected features would mostly originate in the cold envelope, while CO gas and OCN^- could originate in the region close to the protostar. Towards class II stars, H_2O ice band is detected. We also detected H_2O ice, CO_2 ice and tentative CO gas features of the foreground component of class II stars.

  16. Full band structure calculation of two-photon indirect absorption in bulk silicon

    SciTech Connect

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-03-28

    Degenerate two-photon indirect absorption in silicon is an important limiting effect on the use of silicon structures for all-optical information processing at telecommunication wavelengths. We perform a full band structure calculation to investigate two-photon indirect absorption in bulk silicon, using a pseudopotential description of the energy bands and an adiabatic bond charge model to describe phonon dispersion and polarization. Our results agree well with some recent experimental results. The transverse acoustic/optical phonon-assisted processes dominate.

  17. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  18. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  19. A band model for melanin deducted from optical absorption and photoconductivity experiments.

    PubMed

    Crippa, P R; Cristofoletti, V; Romeo, N

    1978-01-03

    Natural and synthetic melanins have been studied by optical absorption and photoconductivity measurements in the range 200--700 nm. Both optical absorption and photoconductivity increase in the ultraviolet region, and a negative photoconductivity was observed with a maximum near 500 nm. This behaviour has been interpreted by the band model of amorphous materials and an "optical gap" of 3.4 eV has been determined.

  20. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  1. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  2. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  3. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  4. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  5. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge absorption bands of isotopic oxygen, (0-16)(0-18), at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Friedman, R. S.; Parkinson, W. H.

    1989-01-01

    Cross-sections of (0-16)(0-18) at 79 K have been obtained from photoabsorption measurements on mixtures of (0-16)2, (0-18)2, and (0-16)(0-18) at various pressures throughout the wavelength region 180.5-195.3 nm with a 6.65 m photoelectric scanning spectrometer equipped with a 2400 lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross-sections of the (0-16)(0-18) Schumann-Runge bands (11.0)-(3.0) are independent of the instrumental width. The measured cross-sections are presented graphically.

  6. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  7. Dual-Band Perfect Absorption by Breaking the Symmetry of Metamaterial Structure

    NASA Astrophysics Data System (ADS)

    Hai, Le Dinh; Qui, Vu Dinh; Dinh, Tiep Hong; Hai, Pham; Giang, Trinh Thị; Cuong, Tran Manh; Tung, Bui Son; Lam, Vu Dinh

    2017-02-01

    Since the first proposal of Landy et al. (Phys Rev Lett 100:207402, 2008), the metamaterial perfect absorber (MPA) has rapidly become one of the most crucial research trends. Recently, dual-band, multi-band and broadband MPA have been highly desirable in electronic applications. In this paper, we demonstrate and evaluate a MPA structure which can generate dual-band absorption operating at the microwave frequency by breaking the symmetry of structure. There is an agreement between simulation and experimental results. The results can be explained by using the equivalent LC circuit and the electric field distribution of this structure. In addition, various structures with different symmetry configurations were studied to gain greater insight into the absorption.

  8. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  9. Application of oxygen A-band equivalent width to disambiguate downwelling radiances for cloud optical depth measurement

    NASA Astrophysics Data System (ADS)

    Niple, Edward R.; Scott, Herman E.; Conant, John A.; Jones, Stephen H.; Iannarilli, Frank J.; Pereira, Wellesley E.

    2016-08-01

    This paper presents the three-waveband spectrally agile technique (TWST) for measuring cloud optical depth (COD). TWST is a portable field-proven sensor and retrieval method offering a unique combination of fast (1 Hz) cloud-resolving (0.5° field of view) real-time-reported COD measurements. It entails ground-based measurement of visible and near-infrared (VNIR) zenith spectral radiances much like the Aerosol Robotic Network (AERONET) cloud-mode sensors. What is novel in our approach is that we employ absorption in the oxygen A-band as a means of resolving the COD ambiguity inherent in using up-looking spectral radiances. We describe the TWST sensor and algorithm, and assess their merits by comparison to AERONET cloud-mode measurements collected during the US Department of Energy's Atmospheric Radiation Measurements (ARM) Two-Column Aerosol Project (TCAP). Spectral radiance agreement was better than 1 %, while a linear fit of COD yielded a slope of 0.905 (TWST reporting higher COD) and offset of -2.1.

  10. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-06-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

  11. AKARI observations of ice absorption bands towards edge-on young stellar objects

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2012-02-01

    Context. Circumstellar disks and envelopes of low-mass young stellar objects (YSOs) contain significant amounts of ice. Such icy material will evolve to become volatile components of planetary systems, such as comets in our solar system. Aims: To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Methods: We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Results: Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 μm is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μm provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN- could originate in the region close to the protostar

  12. [Light absorption by carotenoid peridinin in zooxanthellae cell and setting down of hermatypic coral to depth].

    PubMed

    Leletkin, V A; Popova, L I

    2005-01-01

    Carotenoid peridinin absorbs ocean light which could penetrate deep into the water. Absolute and relative contents of symbiotic dinoflagellatae zooxanthellae are increased with depth of habitat of germatypic corals. To estimate whether the presence of peridinin in corals is chromatic adaptation or not, the absorbance of solar radiation by different amounts of peridinin and chlorophyll in natice zooxanthellae cells was evaluated. Calculations have shown that at the great depths the peredinin absorbance corresponds to 42% of total cell absorbance and that the increase of light absorbance correlating with changes of its spectral characteristics is entirely determined by presence of this carotenoid. The increase of amount of peridinin in cell is as much important as important the increase of all other pigments taken together. However, at the same time selective and preferential accumulation of peridinin and the change of its native state in the limits naturally occurred in zooxanthellae cells have only low impact on the light absorbance. The presence of peridinin could be considered as manifestation of chromatic adaptation of organism. The comparison of light absorption by zooxanthellae with different content of peridinin (or without peridinin) reveals that this pigment expands the habitat of hermatypic corals in ocean waters at 8-17 meters into the deep.

  13. Is a pyrene-like molecular ion the cause of the 4,430-angstroms diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar bands (DIBs), ubiquitous absorption features in astronomical spectra, have been known since early this century and now number more than a hundred. Ranging from 4,400 angstroms to the near infrared, they differ markedly in depth, width and shape, making the concept of a single carrier unlikely. Whether they are due to gas or grains is not settled, but recent results suggest that the DIB carriers are quite separate from the grains that cause visual extinction. Among molecular candidates the polycyclic aromatic hydrocarbons (PAHs) have been proposed as the possible carriers of some of the DIBs, and we present here laboratory measurements of the optical spectrum of the pyrene cation C16H10+ in neon and argon matrices. The strongest absorption feature falls at 4,435 +/- 5 angstroms in the argon matrix and 4,395 +/- 5 angstroms in the neon matrix, both close to the strong 4,430-angstroms DIB. If this or a related pyrene-like species is responsible for this particular band, it must account for 0.2% of all cosmic carbon. The ion also shows an intense but puzzling broad continuum, extending from the ultraviolet to the visible, similar to what is seen in the naphthalene cation and perhaps therefore a common feature of all PAH cations. This may provide an explanation of how PAHs convert a large fraction of interstellar radiation from ultraviolet and visible wavelengths down to the infrared.

  14. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  15. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.

  16. The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions.

    PubMed

    Stockett, Mark H; Musbat, Lihi; Kjær, Christina; Houmøller, Jørgen; Toker, Yoni; Rubio, Angel; Milne, Bruce F; Brøndsted Nielsen, Steen

    2015-10-21

    We have performed gas-phase absorption spectroscopy in the Soret-band region of chlorophyll (Chl) a and b tagged by quaternary ammonium ions together with time-dependent density functional theory (TD-DFT) calculations. This band is the strongest in the visible region of metalloporphyrins and an important reporter on the microenvironment. The cationic charge tags were tetramethylammonium, tetrabutylammonium, and acetylcholine, and the dominant dissociation channel in all cases was breakage of the complex to give neutral Chl and the charge tag as determined by photoinduced dissociation mass spectroscopy. Two photons were required to induce fragmentation on the time scale of the experiment (microseconds). Action spectra were recorded where the yield of the tag as a function of excitation wavelength was sampled. These spectra are taken to represent the corresponding absorption spectra. In the case of Chl a we find that the tag hardly influences the band maximum which for all three tags is at 403 ± 5 nm. A smaller band with maximum at 365 ± 10 nm was also measured for all three complexes. The spectral quality is worse in the case of Chl b due to lower ion beam currents; however, there is clear evidence for the absorption being to the red of that of Chl a (most intense peak at 409 ± 5 nm) and also a more split band. Our results demonstrate that the change in the Soret-band spectrum when one peripheral substituent (CH3) is replaced by another (CHO) is an intrinsic effect. First principles TD-DFT calculations agree with our experiments, supporting the intrinsic nature of the difference between Chl a and b and also displaying minimal spectral changes when different charge tags are employed. The deviations between theory and experiment have allowed us to estimate that the Soret-band absorption maxima in vacuo for the neutral Chl a and Chl b should occur at 405 nm and 413 nm, respectively. Importantly, the Soret bands of the isolated species are significantly blueshifted

  17. PRINCIPAL INFRARED ABSORPTION BANDS OF SOME DERIVATIVES OF 1,3-DINITROBENZENE AND 1,3,5TRINITROBENZENE,

    DTIC Science & Technology

    The frequencies of the strong infrared absorption bands of 46 derivatives of di- and tri-nitrobenzene were measured and tabulated. The vibrational ... modes producing these absorptions were assigned in most cases. The effect of structure on the frequency of the absorption due to each of the modes is discussed, with emphasis on identifying unknowns. (Author)

  18. Solvatochromic Shifts on Absorption and Fluorescence Bands of N,N-Dimethylaniline.

    PubMed

    Fdez Galván, Ignacio; Elena Martín, M; Muñoz-Losa, Aurora; Aguilar, Manuel A

    2009-02-10

    A theoretical study of the absorption and fluorescence UV/vis spectra of N,N-dimethylaniline in different solvents has been performed, using a method combining quantum mechanics, molecular mechanics, and the mean field approximation. The transitions between the three lowest-lying states have been calculated in vacuum as well as in cyclohexane, tetrahydrofuran, and water. The apparent anomalies experimentally found in water (a blue shift in the absorption bands with respect to the trend in other solvents, and an abnormally high red shift for the fluorescence band) are well reproduced and explained in view of the electronic structure of the solute and the solvent distribution around it. Additional calculations were done with a mixture of cyclohexane and tetrahydrofuran as solvent, which displays a nonlinear solvatochromic shift. Results, although not conclusive, are consistent with experiment and provide a possible explanation for the nonlinear behavior in the solvent mixture.

  19. An alternative model for photodynamic therapy of cancers: Hot-band absorption

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chen, Jiyao

    2013-12-01

    The sulfonated aluminum phthalocyanine (AlPcS), a photosensitizer for photodynamic cancer therapy (PDT), has an absorption tail in the near-infrared region (700-900 nm) which is so-called hot band absorption (HBA). With the HBA of 800 nm, the up-conversion excitation of AlPcS was achieved followed by the anti-Stocks emission (688 nm band) and singlet oxygen production. The HBA PDT of AlPcS seriously damaged the KB and HeLa cancer cells, with a typical light dose dependent mode. Particularly, the in vitro experiments with the AlPcS shielding solutions further showed that the HBA PDT can overcome a self-shielding effect benefiting the PDT applications.

  20. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  1. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus.

  2. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy.

    PubMed

    Toulson, Benjamin W; Murray, Craig

    2016-09-01

    Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers.

  3. Optimal frequency selection of multi-channel O2-band different absorption barometric radar for air pressure measurements

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Min, Qilong

    2017-02-01

    Through theoretical analysis, optimal selection of frequencies for O2 differential absorption radar systems on air pressure field measurements is achieved. The required differential absorption optical depth between a radar frequency pair is 0.5. With this required value and other considerations on water vapor absorption and the contamination of radio wave transmission, frequency pairs of present considered radar system are obtained. Significant impacts on general design of differential absorption remote sensing systems are expected from current results.

  4. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  5. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  6. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  7. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  8. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

    PubMed

    Riris, Haris; Rodriguez, Michael; Allan, Graham R; Hasselbrack, William; Mao, Jianping; Stephen, Mark; Abshire, James

    2013-09-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km.

  9. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  10. Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode.

    PubMed

    Denzer, W; Hamilton, M L; Hancock, G; Islam, M; Langley, C E; Peverall, R; Ritchie, G A D

    2009-11-01

    A fibre coupled near-infrared superluminescent light emitting diode that emits approximately 10 mW of radiation between 1.62 and 1.7 microm is employed in combination with a broad-band cavity enhanced spectrometer consisting of a linear optical cavity with mirrors of reflectivity approximately 99.98% and either a dispersive near-infrared spectrometer or a Fourier transform interferometer. Results are presented on the absorption of 1,3-butadiene, and sensitivities are achieved of 6.1 x 10(-8) cm(-1) using the dispersive spectrometer in combination with phase-sensitive detection, and 1.5 x 10(-8) cm(-1) using the Fourier transform interferometer (expressed as a minimum detectable absorption coefficient) over several minutes of acquisition time.

  11. Doping-Induced Absorption Bands in P3HT: Polarons and Bipolarons.

    PubMed

    Enengl, Christina; Enengl, Sandra; Pluczyk, Sandra; Havlicek, Marek; Lapkowski, Mieczyslaw; Neugebauer, Helmut; Ehrenfreund, Eitan

    2016-12-05

    In this work, we focus on the formation of different kinds of charge carriers such as polarons and bipolarons upon p-type doping (oxidation) of the organic semiconductor poly(3- hexylthiophene-2,5-diyl) (P3HT). We elucidate the cyclic voltammogram during oxidation of this polymer and present spectroscopic changes upon doping in the UV/Vis/near-IR range as well as in the mid-IR range. In the low-oxidation regime, two absorption bands related to sub-gap transitions appear, one in the UV/Vis range and another one in the mid-IR range. The UV/Vis absorption gradually decreases upon further doping while the mid-IR absorption shifts to lower energy. Additionally, electron paramagnetic resonance (EPR) measurements are performed, showing an increase of the EPR signal up to a certain doping level, which significantly decreases upon further doping. Furthermore, the absorption spectra in the UV/Vis range are analyzed in relation to the morphology (crystalline vs. amorphous) by using theoretical models. Finally, the calculated charge carriers from cyclic voltammogram are linked together with optical transitions as well as with the EPR signals upon p-type doping. We stress that our results indicate the formation of polarons at low doping levels and the existence of bipolarons at high doping levels. The presented spectroscopic data are an experimental evidence of the formation of bipolarons in P3HT.

  12. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  13. Study of sub band gap absorption of Sn doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  14. Femtosecond supercontinuum generation in water in the vicinity of absorption bands.

    PubMed

    Dharmadhikari, J A; Steinmeyer, G; Gopakumar, G; Mathur, D; Dharmadhikari, A K

    2016-08-01

    We show that it is possible to overcome the perceived limitations caused by absorption bands in water so as to generate supercontinuum (SC) spectra in the anomalous dispersion regime that extend well beyond 2000 nm wavelength. By choosing a pump wavelength within a few hundred nanometers above the zero-dispersion wavelength of 1048 nm, initial spectral broadening extends into the normal dispersion regime and, in turn, the SC process in the visible strongly benefits from phase-matching and matching group velocities between dispersive radiation and light in the anomalous dispersion regime. Some of the SC spectra are shown to encompass two and a half octaves.

  15. Theoretical Modeling of Low Energy Electronic Absorption Bands in Reduced Cobaloximes

    PubMed Central

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2015-01-01

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task. PMID:25113847

  16. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes.

    PubMed

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L; Gray, Harry B; Fujita, Etsuko; Muckerman, James T; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M; Field, Martin J

    2014-10-06

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we analyze the low-energy electronic absorption bands of two cobaloxime systems experimentally and use a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  17. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    SciTech Connect

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  18. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; ...

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  19. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  20. The nature of splitting of fullerene C{sub 70} polarized absorption bands in liquid-crystal matrices

    SciTech Connect

    Aver`yanov, E.M.

    1994-06-01

    The recently discovered splitting of polarized electronic absorption bands of fullerene C{sub 70} in uniaxial liquid-crystal matrices is shown to result from the spectral dependence of the polarization of these bands relative to the molecular coordinate system. 9 refs.

  1. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  2. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  3. Band tail absorption saturation in CdWO4 with 100 fs laser pulses.

    PubMed

    Laasner, R; Fedorov, N; Grigonis, R; Guizard, S; Kirm, M; Makhov, V; Markov, S; Nagirnyi, V; Sirutkaitis, V; Vasil'ev, A; Vielhauer, S; Tupitsyna, I A

    2013-06-19

    The decay kinetics of the excitonic emission of CdWO4 scintillators was studied under excitation by powerful 100 fs laser pulses in the band tail (Urbach) absorption region. A special imaging technique possessing both spatial and temporal resolution provided a unique insight into the Förster dipole-dipole interaction of self-trapped excitons, which is the main cause of the nonlinear quenching of luminescence in this material. In addition, the saturation of phonon-assisted excitonic absorption due to extremely short excitation pulses was discovered. A model describing the evolution of electronic excitations in the conditions of absorption saturation was developed and an earlier model of decay kinetics based on the Förster interaction was extended to include the saturation effect. Compared to the previous studies, a more accurate calculation yields 3.7 nm as the Förster interaction radius. It was shown that exciton-exciton interaction is the main source of scintillation nonproportionality in CdWO4. A quantitative description using a new model of nonproportionality was presented, making use of the corrected value of the Förster radius.

  4. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  5. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  6. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  7. Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media.

    PubMed

    De Nicola, S; Esposito, R; Lepore, M; Indovina, P L

    2004-03-01

    The role of a spatially varying absorptive inhomogeneity located at different depths within a turbid material has been investigated. This inhomogeneity has been characterized by a spatially dependent Gaussian distribution of its absorption coefficient. The present study has been performed calculating the time-resolved contrast function in the framework of the first-order perturbative approach to the diffusion equation for a slab geometry and a coaxial measurement scheme. The model has allowed us to take into account different locations of the inclusion along the source-detector axis. The accuracy of time-resolved contrast predictions has been analyzed through comparisons with results of the finite element method that has been used to numerically solve the diffusion equation. Recovery of the absorption perturbation parameter of the inhomogeneity for different axial positions has also been investigated.

  8. Depth-Resolved X-ray Absorption Spectroscopy by Means of Grazing Emission X-ray Fluorescence.

    PubMed

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-11-03

    Grazing emission X-ray fluorescence (GEXRF) is well suited for nondestructive elemental-sensitive depth-profiling measurements on samples with nanometer-sized features. By varying the grazing emission angle under which the X-ray fluorescence signal is detected, the probed depth range can be tuned from a few to several hundred nanometers. The dependence of the XRF intensity on the grazing emission angle can be assessed in a sequence of measurements or in a scanning-free approach using a position-sensitive area detector. Hereafter, we will show that the combination of scanning-free GEXRF and fluorescence detected X-ray absorption spectroscopy (XAS) allows for depth-resolved chemical speciation measurements with nanometer-scale accuracy. While the conventional grazing emission geometry is advantageous to minimize self-absorption effects, the use of a scanning-free setup makes the sequential scanning of the grazing emission angles obsolete and paves the way toward time-resolved depth-sensitive XAS measurements. The presented experimental approach was applied to study the surface oxidation of an Fe layer on the top of bulk Si and of a Ge bulk sample. Thanks to the penetrating properties and the insensitivity toward the electric conduction properties of the incident and emitted X-rays, the presented experimental approach is well suited for in situ sample surface studies in the nanometer regime.

  9. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  10. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.

    2012-03-01

    , and Jupiter, as well as comparisons with 77 K lab measurements of McKellar (McKellar, A.R.W. [1989]. Can. J. Phys. 67, 1027-1035). At room temperatures and pressures band models and new line-by-line calculations generally agree within 1.6-3% RMS between 1800 cm-1 and 7919 cm-1, but disagree more significantly near 3200-3500 cm-1 and in the region where CH3D line data are missing between 5200 cm-1 and 5600 cm-1, and also at band edges near 3250 cm-1 and 5600 cm-1, where far wing line shapes may need improvement. For intermediate temperatures and methane paths, the Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006]. Icarus 181, 309-319) band model agrees best with the line-by-line calculations at wavenumbers less than 5000 cm-1. At low temperatures and long path lengths the band models diverge more seriously, with that of Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2010]. Icarus 205, 309-319) providing the best agreement with line-by-line calculations. Model spectra computed from the band and line-by-line models were also compared with a Keck/NIRC2 H-band spectrum of Uranus (Sromovsky, L.A., Fry, P.M. [2008]. Icarus 193, 252-266), which could be fit well with either of the two band models, but the main aerosol layer required an optical depth five times smaller using the Irwin et al. band model than for either line-by-line calculations or the Karkoschka and Tomasko band model. By far the best fit to the Uranus H-band spectrum was obtained using line-by-line absorption calculations with a far wing line shape intermediate between that of Hartmann et al. (Hartmann, J.-M., Boulet, C., Brodbeck, C., van Thanh, N., Fouchet, T., Drossart, P. [2002]. J. Quant. Spectrosc. Radiat. Trans. 72, 117-122) and that of de Bergh et al. (de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003).

  11. [Gastric cancer detection using kubelka-Munk spectral function of DNA and protein absorption bands].

    PubMed

    Li, Lan-quan; Wei, Hua-jiang; Guo, Zhou-yi; Yang, Hong-qin; Xie, Shu-sen; Chen, Xue-mei; Li, Li-bo; He, Bol-hua; Wu, Guo-yong; Lu, Jian-jun

    2009-09-01

    Differential diagnosis for epithelial tissues of normal human gastric, undifferentiation gastric adenocarcinoma, gastric squamous cell carcinomas, and poorly differentiated gastric adenocarcinoma were studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 250 to 650 nm, pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the DNA absorption bands at 260 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 68.5% (p < 0.05), 146.5% (p < 0.05), 282.4% (p < 0.05), 32.4% (p < 0.05), 56.00 (p < 0.05) and 83.0% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the protein absorption bands at 280 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 86.8% (p < 0.05), 262.9% (p < 0.05), 660.1% (p < 0.05) and 34% (p < 0.05), 72. 2% (p < 0.05), 113.5% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were

  12. Geometrical attenuation, frequency dependence of Q, and the absorption band problem

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.

    2008-10-01

    A geometrical attenuation model is proposed as an alternative to the conventional frequency-dependent attenuation law Q(f) = Q0(f/f0)η. The new model provides a straightforward differentiation between the geometrical and effective attenuation (Qe) which incorporates the intrinsic attenuation and small-scale scattering. Unlike the (Q0, η) description, the inversion procedure uses only the spectral amplitude data and does not rely on elaborate theoretical models or restrictive assumptions. Data from over 40 reported studies were transformed to the new parametrization. The levels of geometrical attenuation strongly correlate with crustal tectonic types and decrease with tectonic age. The corrected values of Qe are frequency-independent and generally significantly higher than Q0 and show no significant correlation with tectonic age. Several case studies were revisited in detail, with significant changes in the interpretations. The absorption-band and the `10-Hz transition' are not found in the corrected Qe data, and therefore, these phenomena are interpreted as related to geometrical attenuation. The absorption band could correspond to changes in the dominant mode content of the wavefield as the frequency changes from about 0.1 to 100 Hz. Alternatively, it could also be a pure artefact related to the power-law Q(f) paradigm above. The explicit separation of the geometrical and intrinsic attenuation achieves three goals: (1) it provides an unambiguous, assumption- and model-free description of attenuation, (2) it allows relating the observations to the basic physics and geology and (3) it simplifies the interpretation because of reduced emphasis on the apparent Q(f) dependence. The model also agrees remarkably well with the initial attempts for finite-difference short-period coda waveform modelling. Because of its consistency and direct link to the observations, the approach should also help in building robust and transportable coda magnitudes and in seismic

  13. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized.

  14. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2.

    PubMed

    de Lange, Arno; Dickenson, Gareth D; Salumbides, Edcel J; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-21

    An extensive survey of the D(2) absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90,000-119,000 cm(-1) covers the full depth of the potential wells of the B (1)Σ(u)(+), B' (1)Σ(u)(+), and C (1)Π(u) electronic states up to the D(1s) + D(2l) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm(-1). Extended calibration methods are employed to extract line positions of D(2) lines at absolute accuracies of 0.03 cm(-1). The D (1)Π(u) and B'' (1)Σ(u)(+) electronic states correlate with the D(1s) + D(3l]) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D(2). The observations are compared with previous studies, both experimental and theoretical.

  15. Band gap reduction in InNxSb1-x alloys: Optical absorption, k . P modeling, and density functional theory

    NASA Astrophysics Data System (ADS)

    Linhart, W. M.; Rajpalke, M. K.; Buckeridge, J.; Murgatroyd, P. A. E.; Bomphrey, J. J.; Alaria, J.; Catlow, C. R. A.; Scanlon, D. O.; Ashwin, M. J.; Veal, T. D.

    2016-09-01

    Using infrared absorption, the room temperature band gap of InSb is found to reduce from 174 (7.1 μm) to 85 meV (14.6 μm) upon incorporation of up to 1.13% N, a reduction of ˜79 meV/%N. The experimentally observed band gap reduction in molecular-beam epitaxial InNSb thin films is reproduced by a five band k . P band anticrossing model incorporating a nitrogen level, EN, 0.75 eV above the valence band maximum of the host InSb and an interaction coupling matrix element between the host conduction band and the N level of β = 1.80 eV. This observation is consistent with the presented results from hybrid density functional theory.

  16. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  17. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  18. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-05

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  19. Detection of shallow buried nonmetallic landmine and estimation of its depth at microwave X-band frequency

    NASA Astrophysics Data System (ADS)

    Tiwari, K. C.; Singh, D.; Arora, M.

    2009-05-01

    Current methods of demining are mostly ground or vehicle based and therefore extremely time consuming, risky and also do not produce low false alarm rates. Detection of landmines using airborne and satellite based sensors are a viable risk free alternative. However extracting mine like features from data captured using airborne and satellite based sensors using signal and image processing techniques with low false alarm rates is a subject of active research. Microwave remote sensing in X-band (10 GHz, 3 cm) frequency has the capability for both subsurface penetration and resolution of landmines as well as non-lethal targets. In the present study, a set of experiments under laboratory conditions have been carried out using dummy landmines without explosives buried to different depths up to 10 cm in dry smooth sand. The data generated through the experiments is processed through a series of image processing steps and a region of interest segmented using Otsu and Maximum Entropy based thresholding methods. The region of interest is masked and the average observed backscatter containing the mine further processed through an electromagnetic model developed and optimized using genetic algorithm for estimation of depth. The method does not have any requirement of separate training and test data set to train the optimizer and validate the results. The results under laboratory conditions indicate satisfactory results both for detection of shallow buried landmines and estimation of depth.

  20. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Hee; Ryu, Yo-Han; Kim, Sung-Soo

    2015-05-01

    This study investigated the dual-band absorption properties of metamaterial absorbers composed of a split ring resonator (SRR) on a grounded magnetic substrate. Polymer composites of carbonyl iron powders (CIP) of high permeability and magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials with the SRR structure. For perpendicular polarization with an electric field (E) perpendicular to the SRR gap, dualband absorption peaks are predicted in the simulation result of reflection loss. Magnetic resonance resulting from antiparallel currents between the SRR and the ground plane is observed at the frequencies of two absorption peaks. The first strong absorption peak at the lower frequency (3.3 GHz) is due to magnetic resonance at the wire part of the SRR. The second absorption peak at the higher frequency (7.2 GHz) is due to magnetic resonance at the SRR split gap. The decreased capacitance with increased gap spacing moves the second absorption frequency to higher frequencies, while the first absorption peak is invariant with gap spacing. In the case of dual gaps at the opposite sides of the SRR, a single absorption peak is predicted due to the elimination of low-frequency resonance. For parallel polarization with the E-field parallel to the SRR gap, a single absorption peak is predicted, corresponding to magnetic resonance at the SRR wire.[Figure not available: see fulltext.

  1. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Rieker, Gregory B.; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2006-02-01

    Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.

  2. Band gap shift and the optical nonlinear absorption of sputtered ZnO-TiO2 films.

    PubMed

    Han, Yi-Bo; Han, Jun-Bo; Hao, Zhong-Hua

    2011-06-01

    ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.

  3. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics.

    PubMed

    Manohara, S R; Hanagodimath, S M; Gerward, L

    2011-11-15

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Z(eff). These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues. With the proper knowledge of buildup factors of human organs and tissues, energy absorption in the human body can be carefully controlled. The present results will help in estimating safe dose levels for radiotherapy patients and also useful in diagnostics and dosimetry. The tissue-equivalent materials for skeletal muscle, adipose tissue, cortical bone, and lung tissue are also discussed. It is observed that water and MS20 are good tissue equivalent materials for skeletal muscle in the extended energy range.

  4. Stratospheric observations of the attenuated solar irradiance in the Schumann-Runge band absorption region of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Hudson, R. D.; Mentall, J. E.

    1981-01-01

    A spectrometer flown on the first Solar Absorption Balloon Experiment (SABE-1) observed the attenuated solar irradiance between 184 and 202 nm from an altitude near 40 km. These measurements provide a check on the absorption cross sections of molecular oxygen in the spectral region of the Schumann-Runge bands. Comparison of the measurements with calculations based on cross sections derived from laboratory data shows a general agreement although the irradiance measurements have large error bars near the centers of the absorption bands. The results imply that the 184-200 nm solar irradiance that penetrates to the stratosphere can be computed to an accuracy of + or - 30% or better by using presently available cross sections.

  5. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands.

    PubMed

    Siritanaratkul, Bhavin; Maeda, Kazuhiko; Hisatomi, Takashi; Domen, Kazunari

    2011-01-17

    Photocatalytic activities of perovskite-type niobium oxynitrides (CaNbO₂N, SrNbO₂N, BaNbO₂N, and LaNbON₂) were examined for hydrogen and oxygen evolution from water under visible-light irradiation. These niobium oxynitrides were prepared by heating the corresponding oxide precursors, which were synthesized using the polymerized complex method, for 15 h under a flow of ammonia. They possess visible-light absorption bands between 600-750 nm, depending on the A-site cations in the structures. The oxynitride CaNbO₂N, was found to be active for hydrogen and oxygen evolution from methanol and aqueous AgNO₃, respectively, even under irradiation by light at long wavelengths (λ<560 nm). The nitridation temperature dependence of CaNbO₂N was investigated and 1023 K was found to be the optimal temperature. At lower temperatures, the oxynitride phase is not adequately produced, whereas higher temperatures produce more reduced niobium species (e. g., Nb³(+) and Nb⁴(+)), which can act as electron-hole recombination centers, resulting in a decrease in activity.

  6. Microwave absorption behavior of a polyaniline magnetic composite in the X-band

    NASA Astrophysics Data System (ADS)

    Aphesteguy, J. C.; Damiani, A.; DiGiovanni, D.; Jacobo, S. E.

    2012-08-01

    The development of nanosized materials is a subject of considerable interest both for understanding of the fundamental properties of magnetic materials for new technological applications. Polyaniline, composites Fe3O4/(PANI) with conducting, magnetic and electromagnetic properties with different amounts of Fe3O4 were successfully prepared. The samples were structurally characterized by scanning electron microscopy (SEM), X-ray diffraction and transmission electron microscopy (TEM) and magnetically, with a superconducting quantum interference device (SQUID) magnetometer. In order to explore microwave-absorbing properties in X-band, the composite nanoparticles were mixed with an epoxy resin to be converted into a microwave-absorbing composite. Microwave behavior with different Fe3O4/(PANI)-epoxy resin ratio was studied using a microwave vector network analyzer (VNA) in the range 7.5 to 13 GHz. For a constant thickness of 1.5 mm, absorption increases with the magnetite contents in the composites and in the oriented samples by the application of a magnetic field.

  7. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge bands of oxygen at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1987-01-01

    Cross sections of O2 at 79 K have been obtained from photoabsorption measurements at various pressures throughout the wavelength region 179.3-198.0 nm with a 6.65-m photoelectric scanning spectrometer equipped with a 2400-lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross sections of the Schumann-Runge bands (12,0) through (2,0) are independent of the instrumental width. The measured cross-sections are presented graphically here and are available at wavenumber intervals of about 0.1/cm as numerical compilations stored on magnetic tape from the National Space Science Data Center, NASA/Goddard. Band oscillator strengths of these bands have been determined by direct numerical integration of the measured cross sections.

  8. Photonic band gap in an imperfect atomic diamond lattice: Penetration depth and effects of finite size and vacancies

    NASA Astrophysics Data System (ADS)

    Antezza, Mauro; Castin, Yvan

    2013-09-01

    We study the effects of finite size and of vacancies on the photonic band gap recently predicted for an atomic diamond lattice. Close to a Jg=0→Je=1 atomic transition, and for atomic lattices containing up to N≈3×104 atoms, we show how the density of states can be affected by both the shape of the system and the possible presence of a fraction of unoccupied lattice sites. We numerically predict and theoretically explain the presence of shape-induced border states and of vacancy-induced localized states appearing in the gap. We also investigate the penetration depth of the electromagnetic field which we compare to the case of an infinite system.

  9. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  10. Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams

    SciTech Connect

    Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J. )

    1990-09-01

    The technique of direct laser absorption spectroscopy in fast ion beams has been employed for the determination of absolute integrated band intensities ({ital S}{sup 0}{sub {ital v}}) for the {nu}{sub 3} fundamental bands of H{sub 3}O{sup +} and NH{sup +}{sub 4}. In addition, the absolute band intensities for the {nu}{sub 1} fundamental bands of HN{sup +}{sub 2} and HCO{sup +} have been remeasured. The values obtained in units of cm{sup {minus}2} atm{sup {minus}1} at STP are 1880(290) and 580(90) for the {nu}{sub 1} fundamentals of HN{sup +}{sub 2} and HCO{sup +}, respectively; and 4000(800) and 1220(190) for the {nu}{sub 3} fundamentals of H{sub 3}O{sup +} and NH{sup +}{sub 4}, respectively. Comparisons with {ital ab} {ital initio} results are presented.

  11. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  12. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  13. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  14. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  15. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  16. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  17. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  18. Asian Aerosols: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2007-12-01

    Atmospheric absorption by black carbon (BC) aerosol heats the atmosphere while simultaneously cooling the surface and reducing latent and sensible heat fluxes from the land. Recent studies have shown that absorbing BC aerosol can have a large impact on regional climates, including modification of the hydrological cycle. However, significant uncertainties remain with regards to (a) the total amount of all aerosol species and (b) the amount of aerosol absorption. Here we present a GCM sensitivity study focusing on the influences due to total aerosol amount and aerosol absorption in the south and east Asian regions. Six experiments are conducted to test the equilibrium response of the GFDL AM2 GCM (under conditions of prescribed, observed sea surface temperatures) to (i) changes in aerosol absorption caused by changes in BC aerosol amount, and (ii) aerosol extinction optical depth increases corresponding to the year 1990 relative to a control case of 1950. In order to systematically explore the uncertainties in aerosol loading and absorption, the sensitivity experiments are classified into four regimes: low extinction optical depth, low absorption; low extinction optical depth, high absorption; high extinction optical depth, low absorption; and high extinction optical depth, high absorption. Changes in surface temperature and changes in the hydrological cycle are generally insignificant when lower aerosol extinction optical depths are considered. For higher extinction optical depths, the change in the modeled regional circulation relative to the control circulation over south and east Asia is affected by the amount of aerosol absorption and contrasts sharply to the regional circulation change associated with increasing only scattering aerosols. When increasing absorbing aerosols over the region, low-level convergence and increases in vertical velocity overcome the stabilizing effects of the absorbing aerosol and enhance the monsoonal circulation and precipitation rate

  19. Theoretical study of electronic absorption spectroscopy of propadienylidene molecule vis-â-vis the observed diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Reddy, Samala Nagaprasad; Mahapatra, S.

    2012-07-01

    Observation of broad and diffuse interstellar bands (DIBs) at 4881 Å and 5440 Å assigned to the optical absorption spectrum of Y-shaped propadienylidene (H2Cdbnd Cdbnd C:) molecule is theoretically examined in this paper. This molecule apparently absorbs in the same wavelength region as the observed DIBs and was suggested to be a potential carrier of these DIBs. This assignment mostly relied on the experimental data from radioastronomy and laboratory measurements. Motivated by these available experimental data we attempt here a theoretical study and investigate the detailed electronic structure and nuclear dynamics underlying the electronic absorption bands of propadienylidene molecule. Our results show that this molecule indeed absorbs in the wavelength region of the recorded DIBs. Strong nonadiabatic coupling between its energetically low-lying electronic states plays major role, initiates ultrafast internal conversion and contributes to the spectral broadening. Theoretical findings are finally compared with the available experimental and theoretical data and discussed in connection with the recorded DIBs.

  20. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  1. [Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen].

    PubMed

    Gudkov, S V; Karp, O E; Garmash, S A; Ivanov, V E; Chernikov, A V; Manokhin, A A; Astashev, M E; Iaguzhinskiĭ, L S; Bruskov, V I

    2012-01-01

    It is found that in bidistilled water saturated with oxygen hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sourses, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

  2. Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field: Depth vs. Resolution

    NASA Astrophysics Data System (ADS)

    Ashcraft, Teresa; Windhorst, Rogier A.; Jansen, Rolf A.; Cohen, Seth H.; Grazian, Andrea; Boutsia, Konstantina; Fontana, Adriano; Giallongo, Emanuele; O'Connell, Robert W.; Paris, Diego; Rutkowski, Michael J.; Scarlata, Claudia; Testa, Vincenzo

    2017-01-01

    We present a study of the trade-off between depth and resolution using a large number of U-band images in the GOODS-North field obtained with the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hours of total exposure time (315 images, each 5-6 min), we generated multiple image mosaics, starting with the subset of images with the best (FWHM < 0."8) atmospheric seeing (~10% of the total data set). For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM < 1."8 (~94% of the total data set). For each mosaic, we created object catalogs to compare the optimal-resolution, yet shallower image to the low-resolution but deeper image and found the number counts for both images are ~90% complete to AB = 26 mag. In the optimal-resolution image, object counts start to drop-off dramatically, fainter than AB ~ 27 mag, while in the deepest image the drop is more gradual because of the better surface-brightness sensitivity ( SB ~ 32 mag arcsec-2). We conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. We also discuss how high-resolution F336W HST data complements our LBT mosaics.For 220 brighter galaxies with U < 24 mag, we find only marginal differences (< 0.07 mag in total integrated flux) between the optimal-resolution and low-resolution light-profiles to SB ~ 32 mag arcsec-2. This helps constrain how much flux can be missed in galaxy outskirts, which is important for studies of Extragalactic Background Light.In the future, we will expand our analysis of the GOODS-N field to ~26 hours of LBT/LBC R-band surface photometry to similar depths.

  3. a Theoretical Model for Wide-Band Infrared-Absorption Molecular Spectra at any Pressure: Fiction or Reality?

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Vander Auwera, Jean

    2014-06-01

    Various atmospheric applications require modeling of infrared absorption by the main atmospheric species in wide ranges of frequencies, pressures and temperatures. For different pressure regimes, different mechanisms are responsible for the observed intensities of vibration-rotation line manifolds, and the structure of the bands changes drastically when going from low to high densities. Therefore, no universal theoretical model exists presently to interpret simultaneously collapsed band-shapes observed at very high pressures and isolated-line shapes recorded in sub-atmospheric regimes. Using CO_2 absorption spectra as an example, we introduce some improvements in the non-Markovian Energy-Corrected Sudden model, developed for high-density spectra of arbitrary tensorial rank and generalized recently to parallel and perpendicular infrared absorption bands, and test the applicability of this approach for the case of nearly Doppler pressure regime via comparisons with recently recorded experimental intensities. J.V. Buldyreva and L. Bonamy, Phys. Rev. A 60(1), 370-376 (1999). J. Buldyreva and L. Daneshvar, J. Chem. Phys. 139, 164107 (2013). L. Daneshvar, T. Földes, J. Buldyreva, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 2014 (to be submitted).

  4. Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids.

    PubMed

    Dai, Weitao; Yap, Daniel; Chen, Gang

    2012-07-02

    Efficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material. A spectrally averaged absorptance of 83% is achieved compared to an average absorptance of 28% for the optimized multilayer structure that has the same amount of absorbing material. This enhancement is explained by the coupled-mode theory. Similar designs can also be applied to solar cells.

  5. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  6. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  7. The C2H, C2, and CN electronic absorption bands in the carbon star HD 19557

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Bregman, J. D.; Cooper, D. M.; Goorvitch, D.; Langhoff, S. R.; Witteborn, F. C.

    1983-01-01

    Infrared spectrophotometry of the R-type carbon star HD 19557 is presented. Two unusual spectroscopic features are seen: a 3.1 micron band is lacking and a 2.8 micron band is present. Identifications are proposed for three previously unreported stellar absorption bands with electronic sequences of C2, CN, and C2H. The latter is proposed to be responsible for the 2.8 micron feature. The atmospheric structure of the star is studied with synthetic spectra, and an effective temperature between 2600 K and 3000 K is suggested. No SiC emission is seen at 11.3 microns, indicating that grain formation is not a viable process around the star. The lack of dust in R stars may suggest a salient difference between R and N types.

  8. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  9. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  10. Sub-nanometer linewidth perfect absorption in visible band induced by Bloch surface wave

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Liu, Wenxing; Zhou, Zhiqiang; Ren, Naifei; Ding, Guilin; Chen, Mingyang; Yao, Hongbing

    2016-12-01

    We demonstrate the unity absorption of visible light with an ultra-narrow 0.1 nm linewidth. It arises from the Bloch surface wave resonance in alternating TiO2/SiO2 multilayers. The total absorption and narrow linewidth are explained from the radiative and absorptive damping, which are quantitatively determined by the temporal coupled mode theory. When a silver film with proper thickness is added to the absorber, the perfect absorption is achieved with only 3 structural bilayers, in contrast with 8 bilayers required without Ag. Furthermore, significant field enhancement and an ultrahigh 2600/RIU sensing figure-of-merit are simultaneously obtained at resonance, which might facilitate applications in nonlinear optical devices and high resolution refractive index sensing.

  11. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  12. Real-time monitoring of reactive species in downstream etch reactor by VUV broad-band absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Soriano, R.; Vallier, L.; Cunge, G.; Sadeghi, N.

    2016-09-01

    Plasma etching of nanometric size, high aspect-ratio structures is more challenging at each new technological node. Remote plasmas are beginning to find use when damages on nanostructures by ion bombardment become critical or when etching with high selectivity on different materials present on the wafer is necessary (i . e . tungsten oxide etching with fluorine and hydrogen containing plasmas in remote reactor from AMAT). Furthermore, it is expected that downstream plasma will replace many wet chemical etching processes to alleviate the issue of pattern collapses caused by capillary forces when nanometer size high aspect ratio structures are immersed in liquids. In these downstream plasmas, radicals are the main active species and a control of their density is of prime importance. Most of gases used and radicals produced in etching plasmas (HBr, BrCl, Br2, NF3, CH2F2,...) have strong absorption bands in the vacuum UV spectral region and we have shown that very low concentration of these species can be detected by VUV absorption. We have recently improved the technique by using a VUV CCD camera, instead of the PMT, which render possible the Broad-Band absorption spectroscopy in the 120-200 nm range, with a deuterium lamp, or a laser produced xenon arc lamp as light source. The multi-spectral detection ability of the CCD reduces the acquisition time to less than 1 second and can permit the real time control of the process control.

  13. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  14. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  15. Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands.

    PubMed

    Li, Jie; Qin, Yao; Jin, Chao; Li, Ying; Shi, Donglu; Schmidt-Mende, Lukas; Gan, Lihua; Yang, Jinhu

    2013-06-07

    Monolayer and bilayer TiO2 hollow hemisphere/sphere (THH/THS) films consisting of highly ordered hexagonal-patterned THHs/THSs with thin shells of ~10 nm and different diameters of ~170 and ~470 nm have been prepared by templating of two-dimensional polystyrene sphere (PS) assembly films coupled with TiO2 sputtering/wet coating approaches. Owing to their precisely adjustable structural parameters, such as THH/THS shape and diameter as well as film layer thickness, the prepared THH/THS films exhibit widely tunable visible-light reflection and absorption bands, i.e. from 380 to 850 nm for reflection and 390 to 520 nm for absorption, respectively. The mechanism of the novel optical behaviors of the THH/THS films has been discussed in depth, combined with some calculations according to Bragg's law. In addition, photocatalytic experiments of RhB degradation employing the THH/THS films as recyclable catalysts have been conducted. The THH/THS films with controlled structures and precisely tunable optical properties are attractive for a wide range of applications, such as recyclable catalysts for photocatalysis, efficient oxide electrodes or scattering layers for solar cells, gas-permeable electrode materials for high-performance sensors and so on.

  16. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  17. Absorption and emission line shapes in the O2 atmospheric bands - Theoretical model and limb viewing simulations

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Bucholtz, A.; Hays, P. B.; Ortland, D.; Skinner, W. R.

    1989-01-01

    A multiple scattering radiative transfer model has been developed to carry out a line-by-line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2 1Sigma(+)g - 3Sigma(-)g atmospheric bands (A,B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  18. Iron-absorption band analysis for the discrimination of iron-rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Analysis of ERTS-1 images of Nevada has followed two courses: comparative lineament mapping and spectral reflectance evaluation. The comparative lineament mapping was conducted by mapping lineaments on 9 x 9 inch prints of MSS bands 5 and 7, transferring the data to a base map, and comparing the results with existing geologic maps. The most significant results are that lineaments are more numerous on the band 7 images, and approximately 100 percent more were mapped than appear on existing maps. Geologic significance of these newly mapped lineaments will not be known until they are checked in the field: many are probably faults. Spectral analysis has been limited to visual comparison among the four MSS bands. In general, higher scene contrast is shown in the near infrared bands (6 and 7) than in the visible wavelength bands (4 and 5). The economic implications of these results derive chiefly from the greater efficiency that can be obtained by using near infrared as well as visible wavelength images.

  19. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  20. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  1. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band.

    PubMed

    Huang, Li; Chowdhury, Dibakar Roy; Ramani, Suchitra; Reiten, Matthew T; Luo, Sheng-Nian; Taylor, Antoinette J; Chen, Hou-Tong

    2012-01-15

    We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

  2. Theoretical study on the photofragment branching ratios and anisotropy parameters of ICl in the second absorption band

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Yabushita, Satoshi

    2014-01-01

    Potential energy curves, transition dipole moments, and non-adiabatic coupling terms of the excited states of ICl molecule have been obtained by the spin-orbit configuration interaction method to examine the branching ratios and the anisotropy parameters of the photodissociation process in the second absorption band. The calculation of the branching ratios with the time-dependent coupled Schrödinger equations, including the quantum interference effect between the 0+(III) and 0+(IV) states, shows good agreement with recent experiments, thus resolves the long standing disagreement. The contribution of the quantum interference effect to the photodissociation process is discussed based on a time-dependent perturbation treatment.

  3. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  4. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  5. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  6. Shape of impurity electronic absorption bands in a nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1995-02-01

    It is shown that the anisotropic intermolecular impurity-matrix interactions, statistical orientation properties, and the electronic structure of the uniaxial impurity molecules considerably affect the spectral moments of the impurity electronic adsorption bands in a nematic liquid crystal. 15 refs., 3 figs.

  7. A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring

    NASA Astrophysics Data System (ADS)

    Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón

    2017-02-01

    A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.

  8. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  9. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  10. Infrared, visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands

    SciTech Connect

    Zhang, J.H.; Ding, J.W.; Cao, J.X.; Zhang, Y.L.

    2011-03-15

    The formation energies, electronic structures and optical properties of TM:ZnS systems (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) are investigated by using the first principles method. It is found that the wurtzite and zinc-blende structures have about the same stability, and thus can coexist in the TM:ZnS system. From the wurtzite TM:ZnS, especially, a partially filled intermediate band (IB) is obtained at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}, while it is absent at TM=Mn{sup 2+} and Co{sup 2+}. The additional absorptions are obtained in infrared, visible and ultraviolet (UV) regions, due to the completely spin-polarized IB at Fermi level. The results are very helpful for both the designs and applications of TM:ZnS opto-electronics devices, such as solar-cell prototype. -- Graphical abstract: Absorption coefficients of w-TM{sub x}Zn{sub 1-x}S crystals (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) at x=0.028. The results may be helpful for the design and applications of TM:ZnS devices, especially for the new high efficiency solar-cell prototype, UV detector and UV LEDs. Display Omitted Research highlights: > It is found that the wurtzite and zinc-blende structures can coexist in TM:ZnS. > An intermediate band is obtained in TM:ZnS at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}. > The absorption coefficients are obtained in infrared, visible and ultraviolet regions.

  11. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  12. Broad Band Light Absorption and High Photocurrent of (In,Ga)N Nanowire Photoanodes Resulting from a Radial Stark Effect.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Corfdir, Pierre; Brandt, Oliver; Riechert, Henning; Geelhaar, Lutz

    2016-12-21

    The photoelectrochemical properties of (In,Ga)N nanowire photoanodes are investigated using H2O2 as a hole scavenger to prevent photocorrosion. Under simulated solar illumination, In0.16Ga0.84N nanowires grown by plasma-assisted molecular beam epitaxy show a high photocurrent of 2.7 mA/cm(2) at 1.2 V vs reversible hydrogen electrode. This value is almost the theoretical maximum expected from the corresponding band gap (2.8 eV) for homogeneous bulk material without taking into account surface effects. These nanowires exhibit a higher incident photon-to-current conversion efficiency over a broader wavelength range and a higher photocurrent than a compact layer with higher In content of 28%. These results are explained by the combination of built-in electric fields at the nanowire sidewall surfaces and compositional fluctuations in (In,Ga)N, which gives rise to a radial Stark effect. This effect enables spatially indirect transitions at energies much lower than the band gap. The resulting broad band light absorption leads to high photocurrents. This benefit of the radial Stark effect in (In,Ga)N nanowires for solar harvesting applications opens up the perspective to break the theoretical limit for photocurrents.

  13. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    NASA Technical Reports Server (NTRS)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; Mao, Yuhao

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are

  14. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    SciTech Connect

    Sudeep, P. M.; Vinayasree, S.; Mohanan, P.; Ajayan, P. M.; Narayanan, T. N.; Anantharaman, M. R.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methyl Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.

  15. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. I. Formation of the G-band in metal-poor dwarf stars

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2016-09-01

    Context. Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. Aims: A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 ≲ Teff [ K ] ≲ 6550, 4.0 ≤ log g ≤ 4.5, - 3.0 ≤ [Fe/H] ≤-1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Methods: Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Results: Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. Conclusions: The 3D corrections suggest that A(C) in carbon-enhanced metal-poor (CEMP) stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.

  16. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  17. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  18. On the Use of Difference Bands for Modeling SF_6 Absorption in the 10μm Atmospheric Window

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Manceron, Laurent; Roy, P.; Boudon, Vincent; Loete, Michel

    2016-06-01

    To model correctly the SF_6 atmospheric absorption requires the knowledge of the spectroscopic parameters of all states involved in the numerous hot bands in the 10,5μm atmospheric transparency window. However, due to their overlapping, a direct analysis of the hot bands near the 10,5μm absorption of SF_6 in the atmospheric window is not possible. It is necessary to use another strategy, gathering information in the far and mid infrared regions on initial and final states to compute the relevant total absorption. In this talk, we present new results from the analysis of spectra recorded at the AILES beamline at the SOLEIL Synchrotron facility. For these measurements, we used a IFS125HR interferometer combined with the synchrotron radiation in the 100-3200 wn range, coupled to a cryogenic multiple pass cell. The optical path length was varied from 45 to 141m with measuring temperatures between 223 and 153+/-5 K. The new information obtained on νb{2}+νb{4}-νb{5}, 2νb{5}-νb{6} and νb{3}+νb{6}-νb{4} allowed to derive improved parameters for νb{5}, 2νb{5} and νb{3}+νb{6}. In turn, they are used to model the more important νb{3}+νb{5}-νb{5} and νb{3}+νb{6}-νb{6} hot band contributions. By including these new parameters in the XTDS model, we substantially improved the SF_6 parameters used to model the atmosphere. F. Kwabia Tchana, F. Willaert, X. Landsheere, J. M. Flaud, L. Lago, M. Chapuis, P. Roy, L. Manceron. A new, low temperature long-pass cell for mid-IR to THz Spectroscopy and Synchrotron Radiation Use. Rev. Sci. Inst. 84, 093101, (2013) C. Wenger, V. Boudon, M. Rotger, M. Sanzharov, and J.-P. Champion,"XTDS and SPVIEW: Graphical tools for Analysis and Simulation of High Resolution Molecular Spectra", J. Mol. Spectrosc. 251, 102 (2008)

  19. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  20. A thermal broadening analysis of absorption spectra of the D1/D2/cytochrome b-559 complex in terms of Gaussian decomposition sub-bands.

    PubMed

    Cattaneo, R; Zucchelli, G; Garlaschi, F M; Finzi, L; Jennings, R C

    1995-11-21

    Absorption spectra of the isolated D1/D2/cytochrome b-559 complex have been measured in the temperature range 80-300 K. All spectra were analyzed in terms of a linear combination of Gaussian bands and the thermal broadening data interpreted in terms of a model in which the spectrum of each pigment site is broadened by (a) a homogeneous component due to linear electron-phonon coupling to a low-frequency protein vibration and (b) an inhomogeneous component associated with stochastic fluctuations at each pigment site. In order to obtain a numerically adequate description of the absorption spectra, a minimum number of five sub-bands is required. Further refinement of this sub-band description was achieved by taking into account published data from hole burning and absorption difference spectroscopy. In this way, both a six sub-band description and a seven sub-band description were generated. In arriving at the seven sub-band description, the original five sub-band wavelength positions were essentially unchanged. Thermal broadening analysis of the seven sub-band description yielded data which displayed the closest correspondence with the literature observations. The wavelength positions of the sub-bands were near 661, 667, 670, and 675 nm, with two bands near 680 and 684 nm. The two almost isoenergetic sub-bands near 680 nm, identified as P680 and pheophytin, have optical reorganization energies around 40 and 16 cm-1, respectively. All other sub-bands, identified as accessory pigments, have optical reorganization energies close to 16 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Europa's ultraviolet absorption band (260 to 320 nm) - Temporal and spatial evidence from IUE

    NASA Technical Reports Server (NTRS)

    Ockert, Maureen E.; Nelson, Robert M.; Lane, Arthur L.; Matson, Dennis L.

    1987-01-01

    An analysis of 33 IUE UV spectra of Europa, obtained from 1978 to 1982 for orbital phase angles of 21 to 343 deg, confirms that the Lane et al. (1981) absorption feature, centered at 280 nm, is most clearly revealed when 223-333 deg orbital phase angle spectra are ratioed to those nearest 90 deg. The feature's strength is noted to have persisted over the 5-year period studied, suggesting that no large endogenically or exogenically generated changes in surface sulfur dioxide concentration have occurred. These results further substantiate the Lane et al. hypothesis that the feature is due to the implantation of Io plasma torus-derived sulfur ions on the Europa trailing side's water-ice surface.

  2. Optimizing organic photovoltaics using tailored heterojunctions: A photoinduced absorption study of oligothiophenes with low band gaps

    NASA Astrophysics Data System (ADS)

    Schueppel, R.; Schmidt, K.; Uhrich, C.; Schulze, K.; Wynands, D.; Brédas, J. L.; Brier, E.; Reinold, E.; Bu, H.-B.; Baeuerle, P.; Maennig, B.; Pfeiffer, M.; Leo, K.

    2008-02-01

    A power conversion efficiency of 3.4% with an open-circuit voltage of 1V was recently demonstrated in a thin film solar cell utilizing fullerene C60 as acceptor and a new acceptor-substituted oligothiophene with an optical gap of 1.77eV as donor [K. Schulze , Adv. Mater. (Weinheim, Ger.) 18, 2872 (2006)]. This prompted us to systematically study the energy- and electron transfer processes at the oligothiophene:fullerene heterojunction for a homologous series of these oligothiophenes. Cyclic voltammetry and ultraviolet photoelectron spectroscopy data show that the heterojunction is modified due to tuning of the highest occupied molecular orbital energy for different oligothiophene chain lengths, while the lowest unoccupied molecular orbital energy remains essentially fixed due to the presence of electron-withdrawing end groups (dicyanovinyl) attached to the oligothiophene. Use of photoinduced absorption (PA) allows the study of the electron transfer process at the heterojunction to C60 . Quantum-chemical calculations performed at the density functional theory and/or time-dependent density functional theory level and cation absorption spectra of diluted DCVnT provide an unambiguous identification of the transitions observed in the PA spectra. Upon increasing the effective energy gap of the donor-acceptor pair by increasing the ionization energy of the donor, photoinduced electron transfer is eventually replaced with energy transfer, which alters the photovoltaic operation conditions. The optimum open-circuit voltage of a solar cell is thus a trade-off between efficient charge separation at the interface and maximized effective gap. It appears that the open-circuit voltages of 1.0-1.1V in our solar cell devices have reached an optimum since higher voltages result in a loss in charge separation efficiency.

  3. Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2008-11-01

    Forcing by absorbing atmospheric black carbon (BC) tends to heat the atmosphere, cool the surface, and reduce the surface latent and sensible heat fluxes. BC aerosol can have a large impact on regional climates and the hydrologic cycle. However, significant uncertainties remain concerning the increases in (1) the total amount of all aerosol species and (2) the amount of aerosol absorption that may have occurred over the 1950-1990 period. Focusing on south and east Asia, the sensitivity of a general circulation model's climate response (with prescribed sea surface temperatures and aerosol distributions) to such changes is investigated by considering a range of both aerosol absorption and aerosol extinction optical depth increases. We include direct and semidirect aerosol effects only. Precipitation changes are less sensitive to changes in aerosol absorption optical depth at lower aerosol loadings. At higher-extinction optical depths, low-level convergence and increases in vertical velocity overcome the stabilizing effects of absorbing aerosols and enhance the monsoonal circulation and precipitation in northwestern India. In contrast, the presence of increases in only scattering aerosols weakens the monsoonal circulation and inhibits precipitation here. Cloud amount changes can enhance or counteract surface solar flux reduction depending on the aerosol loading and absorption, with the changes also influencing the surface temperature and the surface energy balance. The results have implications for aerosol reduction strategies in the future that seek to mitigate air pollution concerns. At higher optical depths, if absorbing aerosol is present, reduction of scattering aerosol alone has a reduced effect on precipitation changes, implying that reductions in BC aerosols should be undertaken at the same time as reductions in sulfate aerosols.

  4. Energy conversion within infrared plasmonic absorption metamaterials for multi-band resonance

    NASA Astrophysics Data System (ADS)

    Li, Yongqian; Su, Lei; Xu, Xiaolun; Zhang, Chenglin; Wang, Binbin

    2015-05-01

    The energy conversion within the cross-shaped plasmonic absorber metamaterials (PAM) was investigated theoretically and numerically in the infrared range based on the Poynting's theorem of electromagnetic energy. From the microscopic details, the heat generation owing to the electric current accounts for the majority of the energy conversion, while the magnetic resonance plays a negligible role. The PAMs possess three distinct resonant peaks standing independently, which are attributed to the polarization sensitive excitation of plasmonic resonance. Field redistribution and enhancement associated with multiplex resonant electromagnetic wave passing through the PAM medium provided insight into the energy conversion processes inside the nanostructure. The research results will assist the design of novel plasmon enhanced infrared detectors with multiple-band detection.

  5. Thermodynamic consequence of the new attribution of bands in the electronic absorption spectrum of electron donor-iodine-solvent systems

    NASA Astrophysics Data System (ADS)

    Abramov, Sergey P.

    1999-06-01

    The subject review pays attention to the peculiarities in behaviour of bands in the electronic absorption spectra of electron donor-iodine-solvent systems, the appearance of which is associated with the intermolecular interaction of molecular iodine with electron donor organic molecules. The new concept of the bands’ attribution to the isomeric equilibrium molecular charge-transfer complexes (CTCs) of CTC-I and CTC-II types is considered. The features of possible phase transitions in the solid state are discussed on the basis of the thermodynamic properties and electronic structures of the CTC-I and CTC-II in electron donor-iodine-solvent systems. The stabilisation of the CTC-II structure with the temperature lowering coincided in many cases with the electrons’ localisation in the solid state structures having charge-transfer bonds.

  6. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    SciTech Connect

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B; Kochubey, V I; Gorokhovsky, A V; Tretyachenko, E V; Kunitsky, A I

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with the theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)

  7. Is a pyrene-like molecular ion the cause of the 4,430-A diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar band (DIB) absorption features of astronomical spectra are suggested by recent results to be separable from the grains that cause visual extinction. Attention is presently given to laboratory measurements of the optical spectrum of the pyrene cation C16H10(+), which is one of the polycyclic aromatic hydrocarbon (PAH) molecular candidates proposed as carriers for DIBs. This ion exhibits an intense but strangely broad continuum similar to that of the naphthalene cation, so that this may be a common feature of all PAH cations and the basis of an explanation for PAHs' converting of an interstellar radiation fraction as large as that from the UV and visible range down to the IR.

  8. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO.

    PubMed

    Vaughan, Stewart; Gherman, Titus; Ruth, Albert A; Orphal, Johannes

    2008-08-14

    The novel combination of incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and a discharge-flow tube for the study of three key atmospheric trace species, I(2), IO and OIO, is reported. Absorption measurements of I(2) and OIO at lambda=525-555 nm and IO at lambda=420-460 nm were made using a compact cavity-enhanced spectrometer employing a 150 W short-arc Xenon lamp. The use of a flow system allowed the monitoring of the chemically short-lived radical species IO and OIO to be conducted over timescales of several seconds. We report detection limits of approximately 26 pmol mol(-1) for I(2) (L=81 cm, acquisition time 60 s), approximately 45 pmol mol(-1) for OIO (L=42.5 cm, acquisition time 5 s) and approximately 210 pmol mol(-1) for IO (L=70 cm, acquisition time 60 s), demonstrating the usefulness of this approach for monitoring these important species in both laboratory studies and field campaigns.

  9. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-06-04

    Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloyed perovskite solid solutions of methylammonium tin iodide and its lead analogue (CH3NH3Sn(1-x)Pb(x)I3). We exploit the fact that, the energy band gaps of the mixed Pb/Sn compounds do not follow a linear trend (the Vegard's law) in between these two extremes of 1.55 and 1.35 eV, respectively, but have narrower bandgap (<1.3 eV), thus extending the light absorption into the near-infrared (~1,050 nm). A series of solution-processed solid-state photovoltaic devices using a mixture of organic spiro-OMeTAD/lithium bis(trifluoromethylsulfonyl)imide/pyridinium additives as hole transport layer were fabricated and studied as a function of Sn to Pb ratio. Our results show that CH3NH3Sn(0.5)Pb(0.5)I3 has the broadest light absorption and highest short-circuit photocurrent density ~20 mA cm(-2) (obtained under simulated full sunlight of 100 mW cm(-2)).

  10. The first UV absorption band for indole is not due to two simultaneous orthogonal electronic transitions differing in dipole moment.

    PubMed

    Catalán, Javier

    2015-05-21

    The currently accepted model for the photophysics of indole assumes that the first UV absorption band encompasses two orthogonal electronic transitions ((1)Lb and (1)La), leading to two electronic states with a markedly different dipole moment. However, there is a body of evidence not explained by this model, which led us to develop a new photophysical model for indole. Based on the new model, the polarity of the electronic ground state (S0) in indoles is very similar to that of the first electronic excited state (S1) producing this structured emission; however, this excited state can lead to a highly dipolar excited state (S1') with largely structureless emission under the influence of the polarity of the medium, and also, very likely, of its viscosity. The molecular structure of the new excited state can be reversibly converted into the normal structure of the compound. Previous observations were confirmed by the absorption, emission, and excitation spectra for indole, as well as by its polarized emission and excitation spectra in various media. Thus, the polarized emission spectra for indole in glycerol at 283 K and 223 K showed the transition dipole moments for the emission from the first two excited states in a polar medium, S1 and S1', to differ by less than 20°.

  11. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  12. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  13. Study of band inversion in the PbxSn1-xTe class of topological crystalline insulators using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Tominaga, J.; Uruga, T.

    2014-11-01

    PbxSn1-xTe and PbxSn1-xSe crystals belong to the class of topological crystalline insulators where topological protection is achieved due to crystal symmetry rather than time-reversal symmetry. In this work, we make use of selection rules in the x-ray absorption process to experimentally detect band inversion along the PbTe(Se)-SnTe(Se) tie-lines. The observed significant change in the ratio of intensities of L1 and L3 transitions along the tie-line demonstrates that x-ray absorption can be a useful tool to study band inversion in topological insulators.

  14. Three-pulse femtosecond spectroscopy of PbSe nanocrystals: 1S bleach nonlinearity and sub-band-edge excited-state absorption assignment.

    PubMed

    Gdor, Itay; Shapiro, Arthur; Yang, Chunfan; Yanover, Diana; Lifshitz, Efrat; Ruhman, Sanford

    2015-02-24

    Above band-edge photoexcitation of PbSe nanocrystals induces strong below band gap absorption as well as a multiphased buildup of bleaching in the 1Se1Sh transition. The amplitudes and kinetics of these features deviate from expectations based on biexciton shifts and state filling, which are the mechanisms usually evoked to explain them. To clarify these discrepancies, the same transitions are investigated here by double-pump-probe spectroscopy. Re-exciting in the below band gap induced absorption characteristic of hot excitons is shown to produce additional excitons with high probability. In addition, pump-probe experiments on a sample saturated with single relaxed excitons prove that the resulting 1Se1Sh bleach is not linear with the number of excitons per nanocrystal. This finding holds for two samples differing significantly in size, demonstrating its generality. Analysis of the results suggests that below band edge induced absorption in hot exciton states is due to excited-state absorption and not to shifted absorption of cold carriers and that 1Se1Sh bleach signals are not an accurate counter of sample excitons when their distribution includes multiexciton states.

  15. Noncontacting laser photocarrier radiometric depth profilometry of harmonically modulated band bending in the space-charge layer at doped SiO{sub 2}-Si interfaces

    SciTech Connect

    Mandelis, Andreas; Batista, Jerias; Gibkes, Juergen; Pawlak, Michael; Pelzl, Josef

    2005-04-15

    Laser infrared photocarrier radiometry (PCR) was used with a harmonically modulated low-power laser pump and a superposed dc superband-gap optical bias (a secondary laser beam) to control and monitor the space-charge-layer (SCL) width in oxidized p-Si-SiO{sub 2} and n-Si-SiO{sub 2} interfaces (wafers) exhibiting charged interface-state related band bending. Applying the theory of PCR-SCL dynamics [A. Mandelis, J. Appl. Phys. 97, 083508 (2005)] to the experiments yielded various transport parameters of the samples as well as depth profiles of the SCL exhibiting complete ( p-type Si) or partial (n-type Si) band flattening, to a degree controlled by widely different minority-carrier capture cross section at each interface. The uncompensated charge density at the interface was also calculated from the theory.

  16. Cloud top height retrieval using the imaging polarimeter (3MI) top-of-atmosphere reflectance measurements in the oxygen absorption band

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Munro, Rose

    2016-04-01

    The determination of cloud top height from a satellite has a number of applications both for climate studies and aviation safety. A great variety of methods are applied using both active and passive observation systems in the optical and microwave spectral regions. One of the most popular methods with good spatial coverage is based on the measurement of outgoing radiation in the spectral range where oxygen strongly absorbs incoming solar light. Clouds shield tropospheric oxygen reducing the depth of the corresponding absorption line as detected by a satellite instrument. Radiative transfer models are used to connect the solar light reflectance, e.g., in the oxygen A-band located around 761nm, and the cloud top height. The inverse problem is then solved e.g. using look-up tables, to determine the cloud top height. In this paper we propose a new fast and robust oxygen A-band method for the retrieval of cloud altitude using the Multi-viewing Multi-channel Multi-polarization Imaging instrument (3MI) on board the EUMETSAT Polar System Second Generation (EPS-SG). The 3MI measures the intensity at the wavelengths of 410, 443, 490, 555, 670, 763, 765, 865, 910, 1370, 1650, and 2130nm, and (for selected channels) the second and third Stokes vector components which allows the degree of linear polarization and the polarization orientation angle of reflected solar light to be derived at up to 14 observation angles. The instrument response function (to a first approximation) can be modelled by a Gaussian distribution with the full width at half maximum (FWHM) equal to 20nm for all channels except 765nm, 865nm, 1370nm, 1650nm, and 2130nm, where it is equal to 40nm. The FWHM at 763nm (the oxygen A-band location) is equal to 10nm. The following 3MI channels are used in the retrieval procedure: 670, 763, and 865nm. The channels at 670 and 865 nm are not affected by the oxygen absorption. The channel at 763nm is affected by the oxygen concentration vertical profile. The higher

  17. Improved Experimental Line Positions for the (1,1) Band of the b 1Σ+ - X 3Σ- Transition of O2 by Intracavity Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; O'Brien, Emily C.; O'Brien, James J.

    2012-06-01

    We report improved experimental line positions for the (1,1) band of the b 1Σ+ - X 3Σ- transition of O2. Results are comparised with previous experimental measurements and predicted values. Additionally, a new method of producing vibrationally hot molecules for use in absorption spectroscopy of stable gas phase molecules is described.

  18. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses

    NASA Astrophysics Data System (ADS)

    Sayyed, M. I.; Elhouichet, H.

    2017-01-01

    The gamma ray energy absorption (EABF) and exposure buildup factors (EBF) of (100-x)TeO2-xB2O3 glass systems (where x=5, 10, 15, 20, 22.5 and 25 mol%) have been calculated in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameters (G-P) fitting method has been used to estimate both EABF and EBF values. Variations of EABF and EBF with incident photon energy and penetration depth have been studied. It was found that EABF and EBF values were higher in the intermediate energy region, for all the glass systems. Furthermore, boro-tellurite glass with 5 mol% B2O3, was found to present the lowest EABF and EBF values, hence it is superior gamma-ray shielding material. The results indicate that the boro-tellurite glasses can be used as radiation shielding materials.

  19. Collision-Induced Absorption by H2 Pairs in the Second Overtone Band at 298 and 77.5 K: Comparison between Experimental and Theoretical Results

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; van-Thanh, Nguyen; Fu, Y.; Borysow, A.

    1999-01-01

    The collision-induced spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K and for gas densities ranging from 100 to 800 amagats. The spectral profile defined by the absorption coefficient per squared density varies significantly with the density, so that the binary absorption coefficient has been determined by extrapolations to zero density of the measured profiles. Our extrapolated measurements and our recent ab initio quantum calculation are in relatively good agreement with one another. Taking into account the very weak absorption of the second overtone band, the agreement is, however, not as good as it has become (our) standard for strong bands.

  20. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band

    NASA Astrophysics Data System (ADS)

    Zhu, Zetao; Sun, Xin; Li, Guoxian; Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen; He, Jianping

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide-nickel (RGO-Ni) composites. The phase and morphology of as-synthesized RGO-Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO-Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO-Ni-2 composite with the thickness of 2 mm can reaches -42 dB at 17.6 GHz. The RGO-Ni composite is an attractive candidate for the new type of high performance microwave absorbing material.

  1. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  2. Effect of thickness on microwave absorptive behavior of La-Na doped Co-Zr barium hexaferrites in 18.0-26.5 GHz band

    NASA Astrophysics Data System (ADS)

    Arora, Amit; Narang, Sukhleen Bindra; Pubby, Kunal

    2017-02-01

    In this research, the microwave properties of Lanthanum-Sodium doped Cobalt-Zirconium barium hexaferrites, intended as microwave absorbers, are analyzed on Vector Network Analyzer in K-band. The results indicate that the doping has resulted in lowering of real permittivity and enhancement of dielectric losses. Real permeability has shown increase while magnetic losses have shown decrease in value with doping. All these four properties have shown very small variation with frequency in the scanned frequency range which indicates the relaxation type of behavior. Microwave absorption characteristics of these compositions are analyzed with change in sample thickness. The results demonstrate that the matching frequency of the microwave absorber shifts towards lower side of frequency band with increase in thickness. The complete analysis of the prepared microwave absorbers shows a striking achievement with very low reflection loss and wide absorption bandwidth for all the six compositions in 18-26.5 GHz frequency band.

  3. Langley method applied in study of aerosol optical depth in the Brazilian semiarid region using 500, 670 and 870 nm bands for sun photometer calibration

    NASA Astrophysics Data System (ADS)

    Cerqueira, J. G.; Fernandez, J. H.; Hoelzemann, J. J.; Leme, N. M. P.; Sousa, C. T.

    2014-10-01

    Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.

  4. Influence of the nature of the absorption band on the potential performance of high molar extinction coefficient ruthenium(II) polypyridinic complexes as dyes for sensitized solar cells.

    PubMed

    Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara

    2011-07-04

    When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.

  5. Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques

    NASA Astrophysics Data System (ADS)

    Reyher, H.-J.; Schulz, R.; Thiemann, O.

    1994-08-01

    The magnetic circular dichroism (MCD) of the absorption of Nb4+Li and Ti3+Li centers in LiNbO3 has been selectively measured by applying optically detected magnetic resonance. The attribution of a well-known broad and unstructured absorption band peaking at 1.6 eV to the Nb4+Li bound small polaron is now unambiguously confirmed. In the MCD spectrum of the isoelectronic Ti3+Li center, bands show up, which closely resemble the MCD bands at 1.6 eV of this bound small polaron. This striking similarity is explained by a cluster model, representing both defects. Either TiLi or NbLi is at the center of this cluster. In both cases, the small polaron is bound to the cluster, and its MCD bands correspond to intervalence transfer transitions within the constituents of the cluster. A study of the spin-orbit coupling of the molecular orbitals of the cluster allows one to analyze the structure of the MCD bands at 2.9 eV of Ti3+Li have no counterpart in the Nb4+Li spectrum. These bands are assigned to transitions to excited states, which are specific to the impurity and are related to the 10Dq transitions known for the crystal field states of a d1 ion.

  6. Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence.

    PubMed

    Kurudirek, Murat; Özdemir, Yüksel

    2011-03-01

    The gamma ray energy absorption and exposure buildup factors have been calculated by using the five parameter geometric progression (GP) fitting formula for some polymers and tissue substitute materials in the energy region 0.015-15 MeV up to a penetration depth of 40 mean free paths. From the results, it is worth noting that significant variations occur in gamma ray buildup factors for the given polymers and tissue substitute materials depending on photon energy, penetration depth and chemical composition of the materials. Also, it was observed that there are significant variations between energy absorption (EABF) and exposure (EBF) buildup factors which may be due to the variations in chemical composition of the materials used. Finally, it is expected that the presented buildup factor data may be helpful in (a) estimating the effective dose to be given to patients in radiation therapy and diagnostics, hence allowing corrections to be made to the intensity of radiation, as it is somewhat problematic to evaluate the real absorbed dose in critical organs due to the probability of photon buildup somewhere inside the medium; (b) estimating the health hazards arising from the exposure of the human body to radiation, thus it will be helpful in controlling the exposure of the human body to radiation.

  7. Self-absorption theory applied to rocket measurements of the nitric oxide (1,0)[gamma] band in the daytime thermosphere

    SciTech Connect

    Eparvier, F.G.; Barth, C.A. )

    1992-09-01

    Sounding rocket observations of the ultraviolet fluorescent emissions of the nitric oxide molecule in the lower thermospheric dayglow are described and analyzed. The rocket experiment was an ultraviolet spectrometer which took limb-viewing spectra of the dayglow between 90- and 185- km altitude in the spectral region from 2120 to 2505 [angstrom] with a resolution of 2.0 [angstrom]. The flight occurred at local noon on March 7, 1989, from Poker Flat, Alaska. Several NO[gamma] bands were visible at all altitudes of the flight, along with emission features of N[sub 2], O[sup +], and N[sup +]. The data for the NO (1,0) and (0,1)[gamma] bands were modeled with optically thin synthetic spectra and used as diagnostics of nitric oxide concentrations. The resonant NO (1,0)[gamma] band emissions were shown to be attenuated at low altitudes relative to the expected emission rates predicted from comparison with the nonresonant (0,1)[gamma] band. Inversion of the optically thin data resulted in a peak nitric oxide concentration of 3.1x10[sup 8] cm[sup [minus]3] at an altitude of 100km. A self-absorption model using Holstein transmission functions was developed and applied to the (1,0) [gamma] band observation. The model results agree with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO. The success of the model also confirms the value adopted for the absorption oscillator strength of the (1,0)[gamma] band transition and the instrument calibration.

  8. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  9. Radiative analysis of global mean temperature trends in the middle atmosphere: Effects of non-locality and secondary absorption bands

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.

    2016-02-01

    In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.

  10. Origin of absorption peaks in reflection loss spectrum in Ku- frequency band of Co-Zr substituted strontium hexaferrites prepared using sucrose precursor

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Pubby, Kunal; Chawla, S. K.; Kaur, Prabhjyot

    2017-03-01

    This study presents the detailed explanation of the factors, contributing towards the absorption peaks in reflection loss spectrum of hexaferrites. Cobalt-Zirconium substituted strontium hexaferrites, synthesized using sucrose precursor sol-gel technique, were analyzed in 12.4-18 GHz frequency range. The concepts of impedance matching through quarter wavelength condition, complex thickness, dielectric phase angle and attenuation constant have been used to determine the location as well as intensity of absorption peaks. This study also demonstrates the potential application of three compositions of this series with doping content (x)==0.0, 0.6 and 0.8 as an effective microwave absorbers in Ku-frequency band.

  11. Direct evidence of flat band voltage shift for TiN/LaO or ZrO/SiO2 stack structure via work function depth profiling

    PubMed Central

    Heo, Sung; Park, Hyoungsun; Ko, Dong-Su; Kim, Yong Su; Kyoung, Yong Koo; Lee, Hyung-Ik; Cho, Eunae; Lee, Hyo Sug; Park, Gyung-Su; Shin, Jai Kwang; Lee, Dongjin; Lee, Jieun; Jung, Kyoungho; Jeong, Moonyoung; Yamada, Satoru; Kang, Hee Jae; Choi, Byoung-Deog

    2017-01-01

    We demonstrated that a flat band voltage (VFB) shift could be controlled in TiN/(LaO or ZrO)/SiO2 stack structures. The VFB shift described in term of metal diffusion into the TiN film and silicate formation in the inserted (LaO or ZrO)/SiO2 interface layer. The metal doping and silicate formation confirmed by using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) line profiling, respectively. The direct work function measurement technique allowed us to make direct estimate of a variety of flat band voltages (VFB). As a function of composition ratio of La or Zr to Ti in the region of a TiN/(LaO or ZrO)/SiO2/Si stack, direct work function modulation driven by La and Zr doping was confirmed with the work functions obtained from the cutoff value of secondary electron emission by auger electron spectroscopy (AES). We also suggested an analytical method to determine the interface dipole via work function depth profiling. PMID:28252013

  12. Polarization and field dependent two-photon absorption in GaAs/AlGaAs multiquantum well waveguides in the half-band gap spectral region

    NASA Astrophysics Data System (ADS)

    Tsang, H. K.; Penty, R. V.; White, I. H.; Grant, R. S.; Sibbett, W.; Soole, J. B. D.; LeBlanc, H. P.; Andreadakis, N. C.; Colas, E.; Kim, M. S.

    1991-12-01

    We report the observation of two photon absorption which is strongly dependent on the applied electric field and the optical polarization. At 1.55 μm wavelength, the two-photon absorption coefficient of the GaAs/AlGaAs multiquantum well (MQW) waveguides for transverse-magnetic light is about seven times lower than for transverse-electric polarized light and changes by a factor of approximately 4 for a change in applied direct-current electric field of ˜140 kV/cm. Ultrafast nonlinear refraction causing phase changes of over π radians without appreciable excess loss is observed. These measurements demonstrate that GaAs/AlGaAs MQW waveguides could be successfully used for subpicosecond all-optical switching near half-band gap, at wavelengths corresponding to the 1.55 μm optical communications band.

  13. Effects of surface texture and measurement geometry on the near infrared water-of-hydration absorption bands. Implications for the Martian regolith water content.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Schmitt, B.

    Near-IR reflectance spectroscopy is widely used to detect mineral hydration on Solar System surfaces by the observation of absorption bands at 1.9 and 3 µm. Recent studies established empirical relationships between the strength of the 3 µm band and the water content of the studied minerals (Milliken et al., 2005). These results have especially been applied to the OMEGA dataset to derive global maps of the Martian regolith water content (Jouglet et al., 2006 and Milliken et al., 2006). However, parameters such as surface texture and measurement geometry are known to have a strong effect on reflectance spectra but their influence on the hydration bands is poorly documented. The aim of this work is the determination of the quantitative effects of particle size, mixing between materials with different albedo and measurement geometry on the absorption bands at 1.9 and 3 µm. We used both an experimental and a modeling approach to study these effects. Bidirectional reflectance spectra were measured for series of well characterized samples (smectite, volcanic tuff and coals, pure and mixed) and modeled with optical constants of a smectite (Roush, 2005). Criteria commonly used to estimate the strength of the bands were then calculated on these spectra. We show that particle size has a strong effect on the 1.9 and 3 µm bands strength, especially for the finest particles (less than 200 µm). Mixing between a fine smectite powder and anthracite powders with various particle sizes (modeled by a synthetic neutral material) highlights the strong effect of the materials albedo on the hydration band estimation criteria. Measurement geometry has a significant effect on the bands strength for high phase angles. Furthermore, the relative variations of band strength with measurement geometry appear very dependent on the surface texture. We will present in details the relationships between these physical parameters and various criteria chosen to estimate the hydration bands

  14. Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band.

    PubMed

    Liu, Xiang; Wang, Lai-Sen; Ma, Yating; Zheng, Hongfei; Lin, Liang; Zhang, Qinfu; Chen, Yuanzhi; Qiu, Yulong; Peng, Dong-Liang

    2017-03-01

    Development of microwave absorption materials with tunable thickness and bandwidth is particularly urgent for practical applications but remains a great challenge. Here, two-dimensional nanocomposites consisting of perovskite oxides (LaFeO3) and amorphous carbon were successfully obtained through a one pot with heating treatment using sodium chloride as a hard template. The tunable absorption properties were realized by introducing A-site cation deficiency in LaFeO3 perovskite. Among the A-site cation-deficient perovskites, La0.62FeO3/C (L0.62FOC) has the best microwave absorption properties in which the maximum absorption is -26.6 dB at 9.8 GHz with a thickness of 2.94 mm and the bandwidth range almost covers all X-band. The main reason affecting the microwave absorption performance was derived from the A-site cation deficiency which induced more dipoles polarization loss. This work proposes a promising method to tune the microwave absorption performance via introducing deficiency in a crystal lattice.

  15. Quantitative photoluminescence of broad band absorbing melanins: a procedure to correct for inner filter and re-absorption effects

    NASA Astrophysics Data System (ADS)

    Riesz, Jennifer; Gilmore, Joel; Meredith, Paul

    2005-07-01

    We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant.

  16. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  17. Thickness and Composition Tailoring of K- and Ka-Band Microwave Absorption of BaCo x Ti x Fe(12-2 x)O19 Ferrites

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Pubby, Kunal; Singh, Charanjeet

    2017-02-01

    The goal of this research is to investigate the electromagnetic and microwave absorption properties of M-type barium hexaferrites with chemical formula BaCo x Ti x Fe(12-2 x)O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) in K and Ka band. Characterization techniques such as x-ray diffraction analysis and scanning electron microscopy were applied to confirm ferrite formation. The frequency dependence of the complex permittivity and complex permeability was studied for prepared ferrite samples in the frequency range from 18 GHz to 40 GHz. Factors such as the quarter-wavelength condition, impedance matching, high dielectric-magnetic losses, as well as ferromagnetic resonance were investigated to determine their contribution to the absorption characteristics. It was found that the quarter-wavelength ( λ/4) model could be successfully applied to predict and understand the position as well as number of reflection peaks in the microwave absorption spectrum. The origin of the reflection loss peaks is explained and verified based on calculations of input impedance, loss tangent, and ferromagnetic resonance. Reflection loss analysis revealed that all six compositions exhibited reflection loss peaks (absorption >90%) at their matching thicknesses and frequencies. Therefore, these ferrites are potential candidates for use in electromagnetic shielding applications requiring low reflectivity in K and Ka band.

  18. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  19. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  20. Endoscopic diagnosis of invasion depth for early colorectal carcinomas: a prospective comparative study of narrow-band imaging, acetic acid, and crystal violet.

    PubMed

    Zhang, Jing-Jing; Gu, Li-Yang; Chen, Xiao-Yu; Gao, Yun-Jie; Ge, Zhi-Zheng; Li, Xiao-Bo

    2015-02-01

    Several studies have validated the effectiveness of narrow-band imaging (NBI) in estimating invasion depth of early colorectal cancers. However, comparative diagnostic accuracy between NBI and chromoendoscopy remains unclear. Other than crystal violet, use of acetic acid as a new staining method to diagnose deep submucosal invasive (SM-d) carcinomas has not been extensively evaluated. We aimed to assess the diagnostic accuracy and interobserver agreement of NBI, acetic acid enhancement, and crystal violet staining in predicting invasion depth of early colorectal cancers. A total of 112 early colorectal cancers were prospectively observed by NBI, acetic acid, and crystal violet staining in sequence by 1 expert colonoscopist. All endoscopic images of each technique were stored and reassessed. Finally, 294 images of 98 lesions were selected for evaluation by 3 less experienced endoscopists. The accuracy of NBI, acetic acid, and crystal violet for real-time diagnosis was 85.7%, 86.6%, and 92.9%, respectively. For image evaluation by novices, NBI achieved the highest accuracy of 80.6%, compared with that of 72.4% by acetic acid, and 75.8% by crystal violet. The kappa values of NBI, acetic acid, and crystal violet among the 3 trainees were 0.74 (95% CI 0.65-0.83), 0.68 (95% CI 0.59-0.77), and 0.70 (95% CI 0.61-0.79), respectively. For diagnosis of SM-d carcinoma, NBI was slightly inferior to crystal violet staining, when performed by the expert endoscopist. However, NBI yielded higher accuracy than crystal violet staining, in terms of less experienced endoscopists. Acetic acid enhancement with pit pattern analysis was capable of predicting SM-d carcinoma, comparable to the traditional crystal violet staining.

  1. Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies

    SciTech Connect

    Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Hiraoka, Koichi; Kojima, Kenichi; Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji; Mimura, Kojiro; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Oguchi, Tamio; Taniguchi, Masaki

    2011-09-15

    We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

  2. Contribution of the transition moments, form of the absorption band, exciton, and the correlation effects in the linear and nonlinear optical properties of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Díaz-Ponce, Javier Alejandro

    2017-04-01

    This work compares the linear and nonlinear optical properties of polyenes and polyenynes. The simulation was made for finite and infinite conjugation of conjugated polymers, such as polyacetylene, β-carotene, bis (p-toluene sulfonate) (PTS) polyenyne, and a short conjugated polyenyne poly-2,6-decadyin-1,6-ylene azelate (PHDAz). The resonance energy and degree of conjugation are determined by fitting the linear absorption spectra. These parameters are then used for calculating the two photon and third-order nonlinear optical properties. The contribution of the transition moment, the form of the absorption band, the exciton, and phonons in the optical properties are determined. The difference of the experimental values is assigned to correlation effects. We found that the exciton, the correlation effects, and the conduction band are more important in the optical properties of polyenynes than of polyenes. In this way, the dependence of the optical properties of polyenynes on the conduction band makes it possible to increase their nonlinear optical properties by interaction with photons (θ ≈ 0). The dependence of the optical properties on the conduction band also produces that the finiteness of the conjugation strongly decreases the optical properties of polyenynes in relation to polyenes with similar conjugation. On the other hand, the phonons are more important in the optical properties of polyenes than of polyenynes. Consequently, the band is indirect for the studied polyenes and direct for the polyenynes. Therefore, the nonlinear optical properties in the resonance frequency of polyenyne PTS are higher than those for polyacetylene. We also found that asymmetric oscillations of χ(3) in the Brillouin zone increases the χ(3) final value in polyenynes. In addition, we found a change of sign of the wave function coefficients by the Peierls distortion of polyenes to become polyenynes, but this change of sign does not affect the optical properties. As a corollary

  3. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  4. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  5. Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan

    NASA Astrophysics Data System (ADS)

    Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh

    2017-03-01

    We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.

  6. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-02

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model.

  7. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  8. Gelled electrolytes for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under 100% depth of discharge conditions

    NASA Astrophysics Data System (ADS)

    Tantichanakul, Titiporn; Chailapakul, Orawon; Tantavichet, Nisit

    2011-10-01

    Gelled electrolytes prepared from fumed silica for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries and the effect of veratraldehyde addition on the electrochemical behavior and performance of AGM VRLA batteries are investigated. Cyclic voltammetry is used to investigate differences in the electrochemical behaviors of nongelled and gelled electrolytes and between gelled electrolytes with and without veratraldehyde. Battery performance is tested under 100% depth of discharge (100% DoD) conditions at both low- (0.1 C) and high- (1 C) rate discharges. The addition of silica or veratraldehyde does not affect the main reaction of the lead-acid batteries but tends to suppress the hydrogen evolution reaction. AGM VRLA batteries with gelled electrolytes have a higher discharge capacity and longer cycle life than the conventional nongel AGM VRLA batteries. The addition of 0.005% (w/v) veratraldehyde further improves battery performance, but higher (0.01%, w/v) veratraldehyde concentrations reduce it and correlate with the enhanced growth of lead sulfate crystals. The AGM VRLA battery prepared from a gelled electrolyte containing 0.005% (w/v) veratraldehyde provides the best battery performance in every operating temperature studied (0-60 °C).

  9. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.

    PubMed

    Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko

    2013-09-01

    Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.

  10. Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Creti, A.; Tasco, V.; Cola, A.; Montagna, G.; Tarantini, I.; Salhi, A.; Al-Muhanna, A.; Passaseo, A.; Lomascolo, M.

    2016-02-01

    In this work, we report on the competition between two-step two photon absorption, carrier recombination, and escape in the photocurrent generation mechanisms of high quality InAs/GaAs quantum dot intermediate band solar cells. In particular, the different role of holes and electrons is highlighted. Experiments of external quantum efficiency dependent on temperature and electrical or optical bias (two-step two photon absorption) highlight a relative increase as high as 38% at 10 K under infrared excitation. We interpret these results on the base of charge separation by phonon assisted tunneling of holes from quantum dots. We propose the charge separation as an effective mechanism which, reducing the recombination rate and competing with the other escape processes, enhances the infrared absorption contribution. Meanwhile, this model explains why thermal escape is found to predominate over two-step two photon absorption starting from 200 K, whereas it was expected to prevail at lower temperatures (≥70 K), solely on the basis of the relatively low electron barrier height in such a system.

  11. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  12. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  13. Calculating Effect of Point Defects on Optical Absorption Spectra of III-V Semiconductor Superlattices Based on (8x8) k-dot-p Band Structures

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey; Cardimona, David; Krishna, Sanjay

    For a superlattice which is composed of layered zinc-blende structure III-V semiconductor materials, its realistic anisotropic band structures around the Gamma-point are calculated by using the (8x8)k-dot-p method with the inclusion of the self-consistent Hartree potential and the spin-orbit coupling. By including the many-body screening effect, the obtained band structures are further employed to calculate the optical absorption coefficient which is associated with the interband electron transitions. As a result of a reduced quasiparticle lifetime due to scattering with point defects in the system, the self-consistent vertex correction to the optical response function is also calculated with the help of the second-order Born approximation.

  14. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  15. Predissociation linewidths of the (1,0)-(12,0) Schumann-Runge absorption bands of O2 in the wavelength region 179-202 nm

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Chiu, S. S.-L.; Freeman, D. E.

    1990-01-01

    A nonlinear least-squares method of retrieving predissociation linewidths from the experimental absolute absorption cross sections of Yoshino et al. (1983) has been applied to the (1,0)-(12,0) Schumann-Runge bands of oxygen. The predissociation linewidths deduced are larger than the theoretical predictions of Julienne (1976) and the latest measurements of Lewis et al. (1986). The larger linewidths found will have an impact on calculations of solar flux penetration into the earth atmosphere and of the photodissociation rates of trace species in the upper atmosphere.

  16. Sub-Band Gap Absorption in As-Deposited and Annealed nc-CdSe Thin Films Using Constant Photocurrent Method (CPM)

    NASA Astrophysics Data System (ADS)

    Sharma, Kriti; Al-Kabbi, A. S.; Singh, Baljinder; Saini, G. S. S.; Tripathi, S. K.

    2011-12-01

    Nanocrystalline CdSe thin films have been prepared by thermal vaccum evaporation technique using Inert Gas Condensation method using Argon as inert gas. XRD confirms the crystalline cubic nature of nc-CdSe thin films. The optical band gap is calculated for as deposited nc-CdSe and it comes out to be 2.1 eV. CPM has been used to measure sub-band gap absorption in nanocrystalline CdSe thin films. The thin films of nc-CdSe have been annealed at 80 °C for one hour and sub-bandgap absorption in annealed samples has also been calculated. Slope of Urbach tail which is a measure of disorder in both as deposited and annealed samples has been calculated. In the case of as deposited nc-CdSe thin films, Urbach slope is 354 meV. It decreases to the value 198 meV after annealing which shows structural disorder decreases after annealing.

  17. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band.

    PubMed

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 10(8) yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10(7) yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  18. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band

    PubMed Central

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2017-01-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds. PMID:28133388

  19. High-energy Electron Irradiation of Interstellar Carbonaceous Dust Analogs: Cosmic-ray Effects on the Carriers of the 3.4 μm Absorption Band

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  20. Microwave absorption properties of LiNb3O8 in X-band prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Goud, J. Pundareekam; Sindam, Bashaiah; Tumuluri, Anil; Raju, K. C. James

    2015-08-01

    Single phase LiNb3O8 powders were prepared using combustion synthesis technique. The powders were prepared by heat treating Li2CO3+Nb2O5/urea mixture in 1:3 ratio. Structural and morphological details have been done to confirm the presence of LiNb3O8. The S-parameters were measured using rectangular waveguide method in the X-band frequency (8.2GHz to 12.4GHz) by Vector Network Analyzer. The dielectric characteristics like dielectric constant (ɛ') and dielectric loss (ɛ″) were calculated using Nicolson-Ross-Weir algorithm. Complex permittivity of 28-0.2j and 26-1.0j at 8.2GHz and 12.4GHz respectively are observed. Reflection loss was derived with permittivity and permeability as input parameters. Microwave absorber thickness is optimized and the RL< -20dB is obtained in the X-band frequency.

  1. Uniform Supersonic Expansion for FTIR Absorption Spectroscopy: The nu(5) Band of (NO)(2) at 26 K.

    PubMed

    Benidar; Georges; Le Doucen R; Boissoles; Hamon; Canosa; Rowe

    2000-01-01

    A high-resolution Fourier transform interferometer (Bruker IFS 120 HR) was combined with a uniform supersonic expansion produced by means of axisymmetric Laval nozzles. The geometry profile of the nozzle enabled us to work under precise thermodynamic and kinetic conditions. The effect of the cooling rate of different nozzles on cluster nucleation is illustrated. The experimental sensitivity was tested by recording the nu(5) band of (NO)(2) at 26 K. Copyright 2000 Academic Press.

  2. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  3. Jupiter Clouds in Depth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nm

    Images from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.

    Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.

    The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.

    The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter

  4. Jupiter Clouds in Depth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nm

    Images from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.

    Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.

    The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.

    The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter

  5. Efficient tissue ablation using a laser tunable in the water absorption band at 3 microns with little collateral damage

    NASA Astrophysics Data System (ADS)

    Nierlich, Alexandra; Chuchumishev, Danail; Nagel, Elizabeth; Marinova, Kristiana; Philipov, Stanislav; Fiebig, Torsten; Buchvarov, Ivan; Richter, Claus-Peter

    2014-03-01

    Lasers can significantly advance medical diagnostics and treatment. At high power, they are typically used as cutting tools during surgery. For lasers that are used as knifes, radiation wavelengths in the far ultraviolet and in the near infrared spectral regions are favored because tissue has high contents of collagen and water. Collagen has an absorption peak around 190 nm, while water is in the near infrared around 3,000 nm. Changing the wavelength across the absorption peak will result in significant differences in laser tissue interactions. Tunable lasers in the infrared that could optimize the laser tissue interaction for ablation and/or coagulation are not available until now besides the Free Electron Laser (FEL). Here we demonstrate efficient tissue ablation using a table-top mid-IR laser tunable between 3,000 to 3,500 nm. A detailed study of the ablation has been conducted in different tissues. Little collateral thermal damage has been found at a distance above 10-20 microns from the ablated surface. Furthermore, little mechanical damage could be seen in conventional histology and by examination of birefringent activity of the samples using a pair of cross polarizing filters.

  6. Absolute Absorption Intensities in the Fundamental nu2 and nu5 Bands of 12CH3F.

    PubMed

    Lepère; Blanquet; Walrand; Tarrago

    1998-06-01

    The absolute strengths of 93 lines belonging to the nu2 and nu5 bands of methyl fluoride were measured in the range of 1416-1503 cm-1 using a tunable diode-laser (TDL) spectrometer. These experimental line intensities were obtained from the equivalent width method. The intensities were analyzed within a dyad system, required to account properly for the strong Coriolis coupling between nu2 and nu5. The fit to the experimental data led to the determination of the dipole moment derivatives partial differentialµ/ partial differentialq2 and partial differentialµ/ partial differentialq5, as well as the first-order Herman-Wallis correction in K to partial differentialµ/ partial differentialq5. The intensities were reproduced with an overall standard deviation of 1.44%, to be compared with a mean experimental uncertainty equal to 1.58%. The values derived for the vibrational band strengths of nu2 and nu5 are 2.124 (18) cm-2.atm-1 and 36.96 cm-2.atm-1 at 296 K, respectively. Copyright 1998 Academic Press.

  7. Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption band

    NASA Astrophysics Data System (ADS)

    Godard, M.; Féraud, G.; Chabot, M.; Carpentier, Y.; Pino, T.; Brunetto, R.; Duprat, J.; Engrand, C.; Bréchignac, P.; D'Hendecourt, L.; Dartois, E.

    2011-05-01

    Context. A 3.4 μm absorption band (around 2900 cm-1), assigned to aliphatic C-H stretching modes of hydrogenated amorphous carbons (a-C:H), is widely observed in the diffuse interstellar medium, but disappears or is modified in dense clouds. This spectral difference between different phases of the interstellar medium reflects the processing of dust in different environments. Cosmic ray bombardment is one of the interstellar processes that make carbonaceous dust evolve. Aims: We investigate the effects of cosmic rays on the interstellar 3.4 μm absorption band carriers. Methods: Samples of carbonaceous interstellar analogues (a-C:H and soot) were irradiated at room temperature by swift ions with energy in the MeV range (from 0.2 to 160 MeV). The dehydrogenation and chemical bonding modifications that occurred during irradiation were studied with IR spectroscopy. Results: For all samples and all ions/energies used, we observed a decrease of the aliphatic C-H absorption bands intensity with the ion fluence. This evolution agrees with a model that describes the hydrogen loss as caused by the molecular recombination of two free H atoms created by the breaking of C-H bonds by the impinging ions. The corresponding destruction cross section and asymptotic hydrogen content are obtained for each experiment and their behaviour over a large range of ion stopping powers are inferred. Using elemental abundances and energy distributions of galactic cosmic rays, we investigated the implications of these results in different astrophysical environments. The results are compared to the processing by UV photons and H atoms in different regions of the interstellar medium. Conclusions: The destruction of aliphatic C-H bonds by cosmic rays occurs in characteristic times of a few 108 years, and it appears that even at longer time scales, cosmic rays alone cannot explain the observed disappearance of this spectral signature in dense regions. In diffuse interstellar medium, the formation

  8. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  9. Confinement effect of laser ablation plume in liquids probed by self-absorption of C{sub 2} Swan band emission

    SciTech Connect

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C{sub 2} molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C{sub 2} molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids.

  10. Tentative identification of the 780/cm nu-4 band Q branch of chlorine nitrate in high-resolution solar absorption spectra of the stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.; Malathy Devi, V.

    1985-01-01

    According to models of the photochemistry of the stratosphere, chlorine nitrate (ClONO2) is an important temporary reservoir of stratospheric chlorine. At night, ClO is believed to combine in a three-body reaction with NO2 to form chlorine nitrate. During daylight, chlorine nitrate is destroyed by photolysis to form free chlorine and NO3. Infrared spectroscopy has the potential to provide a technique for conducting important quantitative measurements of stratospheric chlorine nitrate. The present paper reports a detailed study of spectra in the 780/cm region. This study has led to the tentative identification of the nu-4 band Q branch of ClONO2 as a significant contributor to the observed stratospheric absorption near 780.21 per cm.

  11. meso-meso linked porphyrin-[26]hexaphyrin-porphyrin hybrid arrays and their triply linked tapes exhibiting strong absorption bands in the NIR region.

    PubMed

    Mori, Hirotaka; Tanaka, Takayuki; Lee, Sangsu; Lim, Jong Min; Kim, Dongho; Osuka, Atsuhiro

    2015-02-11

    We describe the synthesis and characterization of directly meso-meso linked porphyrin-[26]hexaphyrin-porphyrin hybrid oligomers and their triply linked (completely fused) hybrid tapes. meso-meso Linked Ni(II) porphyrin-[26]hexaphyrin-Ni(II) porphyrin trimers were prepared by methanesulfonic acid-catalyzed cross-condensation of meso-formyl Ni(II) porphyrins with a 5,10-diaryltripyrrane followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The Ni(II) porphyrin moieties were converted to Zn(II) porphyrins via an indirect route involving reduction of the [26]hexaphyrin to its 28π congener, acid-induced denickelation, oxidation of the [28]hexaphyrin, and finally Zn(II) ion insertion. Over the course of these transformations, porphyrin-[28]hexaphyrin-porphyrin trimers have been revealed to take on a Möbius aromatic twisted structure for the [28]hexaphyrin segment. Oxidation of meso-meso linked hybrid trimer bearing 5,15-diaryl Zn(II) porphyrins with DDQ/Sc(OTf)3 under mild conditions resulted in meso-meso coupling oligomerization, affording the corresponding dimeric (hexamer), trimeric (nonamer), and tetrameric (dodecamer) oligomers. On the other hand, oxidation of a meso-meso linked hybrid trimer bearing 5,10,15-triaryl Zn(II) porphyrin terminals with DDQ/Sc(OTf)3 under harsher conditions afforded a meso-meso, β-β, β-β triply linked hybrid porphyrin tape, which displays a sharp and intense absorption band at 1912 nm. Comparison of this extremely red-shifted absorption band with those of Zn(II) porphyrin tapes suggests that the bathochromic-shifting capability of a [26]hexaphyrin unit is large, almost equivalent to that of four individual Zn(II) porphyrin units. As demonstrated, the fusion of porphyrins to [26]hexaphyrin offers an efficient means to expand their conjugation networks, significantly expanding the capabilities attainable for these chromophores.

  12. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  13. High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator.

    PubMed

    Tseng, Tzu-Fang; Wun, Jhih-Min; Chen, Wei; Peng, Sui-Wei; Shi, Jin-Wei; Sun, Chi-Kuang

    2013-06-17

    We demonstrate that a near-single-cycle photonic millimeter-wave short-pulse generator at W-band is capable to provide high spatial resolution three-dimensional (3-D) radar imaging. A preliminary study indicates that 3-D radar images with a state-of-the-art ranging resolution of around 1.2 cm at the W-band can be achieved.

  14. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.

    PubMed

    Sobuś, Jan; Ziółek, Marcin

    2014-07-21

    A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.

  15. Optimal design and loss mechanism analysis of microwave absorbing unidirectional SiC fiber composites with broad absorption band and good polarization stability

    NASA Astrophysics Data System (ADS)

    Wan, Guangchao; Jiang, Jianjun; He, Yun; Bie, Shaowei

    2016-04-01

    A microwave-absorbing unidirectional SiC fiber composite with wide absorption and good polarization stability was designed by genetic algorithm. The anisotropic nature of unidirectional fiber composites was considered in the design by characterizing tensor permittivity. This special composite is composed of two kinds of SiC fibers that separately exhibit relatively high conductivity and low conductivity. The electromagnetic loss mechanism of this composite was examined for polarizations that differ in the electric field of the incident wave, applied either in the direction of the fiber or in the transverse direction, perpendicular to the fibers. For both polarizations, the absorption band of our composite can reach 6 GHz and the lowest microwave reflectivity was about -20 dB over a range of 8-18 GHz. When the electric field is polarized parallel to fibers, strong coupling among the high-conductivity fibers can induce a strong current and thus efficiently dissipate the electromagnetic energy. When the electric field is polarized perpendicular to fibers, the electromagnetic loss mechanism in the composite resembles the electric energy loss in capacitors and currents in the transverse direction are obstructed by the fibers resulting in attenuation of the electromagnetic energy in the matrix.

  16. Iron-absorption band analysis for the discrimination of iron-rich zones. [infrared spectral reflectance of Nevada iron deposits

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most major rock units and unaltered and altered areas in the study area can be discriminated on the basis of visible and near-infrared spectral reflectivity differences recorded from satellite altitude. These subtle spectral differences are detectable by digital ratioing of the MSS bands and subsequent stretching to increase the contrast to enhance spectral differences. Hydrothermally altered areas appear as anomalous color patches within the volcanic-rock areas. A map has been prepared which can be regarded as an excellent reconnaissance exploration map, for use in targeting areas for more detailed geological, geochemical, and geophysical studies. Mafic and felsic rock types are easily discriminated on the color stretched-ratio composite. The ratioing process minimizes albedo effects, leaving only the recorded characteristic spectral response. The spectra of unaltered rocks appear different from those of altered rocks, which are typically dominated by limonite and clay minerals. It seems clear that differences in spectral shape can provide a basis for discrimination of geologic material, although the relations between visible and near-infrared spectral reflectivity and mineralogical composition are not yet entirely understood.

  17. Electromagnetic properties and microwave absorption properties of BaTiO 3-carbonyl iron composite in S and C bands

    NASA Astrophysics Data System (ADS)

    Rui-gang, Yang

    2011-07-01

    BaTiO3 powders are prepared by sol-gel method. The carbonyl iron powder is prepared via thermal decomposition of iron pentacarbonyl. Then BaTiO3-carbonyl iron composite with different mixture ratios was prepared using the as-prepared material. The structure, morphology, and properties of the composites are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), and a network analyzer. The complex permittivity and reflection loss of the composites have been measured at different microwave frequencies in S- and C-bands employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3/carbonyl iron on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiO3-carbonyl iron composite has been proposed. The BaTiO3-carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  18. Penetration depth and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} polycrystalline films by ferromagnetic resonance and spin pumping

    SciTech Connect

    Merodio, P.; Ghosh, A.; Lemonias, C.; Gautier, E.; Ebels, U.; Chshiev, M.; Béa, H. E-mail: helene.bea@cea.fr; Baltz, V. E-mail: helene.bea@cea.fr

    2014-01-20

    Spintronics relies on the spin dependent transport properties of ferromagnets (Fs). Although antiferromagnets (AFs) are used for their magnetic properties only, some fundamental F-spintronics phenomena like spin transfer torque, domain wall motion, and tunnel anisotropic magnetoresistance also occur with AFs, thus making AF-spintronics attractive. Here, room temperature critical depths and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} are determined by F-resonance and spin pumping. In particular, we find room temperature critical depths originating from different absorption mechanisms: dephasing for Ir{sub 20}Mn{sub 80} and spin flipping for Fe{sub 50}Mn{sub 50}.

  19. Cavity Ringdown Absorption Spectrum of the T_1(n,π*) ← S_0 Transition of Acrolein: Analysis of the 0^0_0 Band Rotational Contour

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2012-06-01

    Acrolein (propenal, CH_2=CH---CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the T_1(π,π*) state, which has a CH_2--twisted equilibrium structure. In solution, the T_1(π,π*) state is typically accessed via intersystem crossing from an intially prepared planar S_1(n,π*) state. An intermediate in this photophysical transformation is the lowest ^3 (n,π*) state, a planar species with adiabatic excitation energy below S_1 and above T_1(π,π*). The present work focuses on this ^3 (n,π*) intermediate state; it is designated T_1(n,π*) as the lowest-energy triplet state of acrolein having a planar equilibrium structure. The T_1(n,π*) ← S_0 band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm-1) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0^0_0 band, recorded using a pulsed dye laser with 0.1 cm-1 spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the T_1(n,π*) state. The determined values (cm-1) are A=1.662, B=0.1485, C=0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm-1 and ± 0.0004 cm-1, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0^0_0 band under jet-cooled conditions

  20. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    PubMed

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  1. Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra; Borysow, Jacek I.

    1998-01-01

    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature

  2. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  3. Resonance Raman intensity analysis of the excited state proton transfer dynamics of 2-nitrophenol in the charge-transfer band absorption

    SciTech Connect

    Wang Yaqiong; Wang Huigang; Zhang Shuqiang; Pei Kemei; Zheng Xuming; Lee Phillips, David

    2006-12-07

    Resonance Raman spectra were obtained for 2-nitrophenol in cyclohexane solution with excitation wavelengths in resonance with the charge-transfer (CT) proton transfer band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion along more than 15 normal modes: the nominal CCH bend+CC stretch {nu}{sub 12} (1326 cm{sup -1}), the nominal CCC bend {nu}{sub 23} (564 cm{sup -1}), the nominal CO stretch+NO stretch+CC stretch {nu}{sub 14} (1250 cm{sup -1}), the nominal CCH bend+CC stretch+COH bend {nu}{sub 15} (1190 cm{sup -1}); the nominal CCH bend+CC stretch {nu}{sub 17} (1134 cm{sup -1}), the nominal CCC bend+CC stretch {nu}{sub 22} (669 cm{sup -1}), the nominal CCN bend {nu}{sub 27} (290 cm{sup -1}), the nominal NO{sub 2} bend+CC stretch {nu}{sub 21} (820 cm{sup -1}), the nominal CCO bend+CNO bend {nu}{sub 25} (428 cm{sup -1}), the nominal CC stretch {nu}{sub 7} (1590 cm{sup -1}), the nominal NO stretch {nu}{sub 8} (1538 cm{sup -1}), the nominal CCC bend+NO{sub 2} bend {nu}{sub 20} (870 cm{sup -1}), the nominal CC stretch {nu}{sub 6} (1617 cm{sup -1}), the nominal COH bend+CC stretch {nu}{sub 11} (1382 cm{sup -1}), nominal CCH bend+CC stretch {nu}{sub 9} (1472 cm{sup -1}). A preliminary resonance Raman intensity analysis was done and the results for 2-nitrophenol were compared to previously reported results for nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone. The authors briefly discuss the differences and similarities in the CT-band absorption excitation of 2-nitrophenol relative to those of nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone.

  4. Application of surface pressure measurements of O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II - A quasi-observational study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.

  5. Modeling of collision-induced infrared absorption spectra of H2 pairs in the first overtone band at temperatures from 20 to 500 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    A simple formalism is presented that permits quick computations of the low-resolution, rotovibrational collision-induced absorption (RV CIA) spectra of H2 pairs in the first overtone band of hydrogen, at temperatures from 20 to 500 K. These spectra account for the free-free transitions. The sharp dimer features, originating from the bound-free, free-bound, and bound-bound transitions are ignored, though their integrated intensities are properly accounted for. The method employs spectral model line- shapes with parameters computed from the three lowest spectral moments. The moments are obtained from first principles expressed as analytical functions of temperature. Except for the sharp dimer features, which are absent in this model, the computed spectra reproduce closely the results of exact quantum mechanical lineshape computations. Comparisons of the computed spectra with existing experimental data also show good agreement. The work interest for the modeling of the atmospheres of the outer planets in the near-infrared region of the spectrum. The user-friendly Fortran program developed here is available on request from the authors.

  6. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO2

    NASA Astrophysics Data System (ADS)

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-01

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO2 (a-SiO2) exposed to 60Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a-SiO2, and the peak energy is larger for α-quartz than that for a-SiO2. The full width at half maximum for a-SiO2 is larger by ˜40-60% than that for α-quartz, and it increases with an increase in the disorder of the a-SiO2 network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a-SiO2.

  7. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band.

    PubMed

    Han, Meikang; Yin, Xiaowei; Wu, Heng; Hou, Zexin; Song, Changqing; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2016-08-17

    Electromagnetic (EM) absorbing and shielding composites with tunable absorbing behaviors based on Ti3C2 MXenes are fabricated via HF etching and annealing treatment. Localized sandwich structure without sacrificing the original layered morphology is realized, which is responsible for the enhancement of EM absorbing capability in the X-band. The composite with 50 wt % annealed MXenes exhibits a minimum reflection loss of -48.4 dB at 11.6 GHz, because of the formation of TiO2 nanocrystals and amorphous carbon. Moreover, superior shielding effectiveness with high absorption effectiveness is achieved. The total and absorbing shielding effectiveness of Ti3C2 MXenes in a wax matrix with a thickness of only 1 mm reach values of 76.1 and 67.3 dB, while those of annealed Ti3C2 MXenes/wax composites are 32 and 24.2 dB, respectively. Considering the promising performance of Ti3C2 MXenes with the modified surface, this work is expected to open the door for the expanded applications of MXenes family in EM absorbing and shielding fields.

  8. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO{sub 2} (a‐SiO{sub 2}) exposed to {sup 60}Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a‐SiO{sub 2}, and the peak energy is larger for α-quartz than that for a‐SiO{sub 2}. The full width at half maximum for a‐SiO{sub 2} is larger by ∼40-60% than that for α-quartz, and it increases with an increase in the disorder of the a‐SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a‐SiO{sub 2}.

  9. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    NASA Astrophysics Data System (ADS)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  10. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  11. Proposal of high efficiency solar cells with closely stacked InAs/In0.48Ga0.52P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate-band

    NASA Astrophysics Data System (ADS)

    Yoshikawa, H.; Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-01

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide-gap matrix material, InAs/In0.48Ga0.52P QDSLs, for realizing intermediate-band solar cells (IBSCs) with two-step photon-absorption. The plane-wave expanded Burt-Foreman operator ordered 8-band k . p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two-step photon-absorption can be shifted to higher energy region by using In0.48Ga0.52P, which is lattice-matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In0.48Ga0.52P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two-step photon-absorption by the sunlight occur efficiently. These results indicate that InAs/In0.48Ga0.52P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  12. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection.

    PubMed

    Leidel, Nils; Chernev, Petko; Havelius, Kajsa G V; Schwartz, Lennart; Ott, Sascha; Haumann, Michael

    2012-08-29

    High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe(2)(μ-adt)(CO)(4)(PMe(3))(2)] (1, adt = S-CH(2)-(NCH(2)Ph)-CH(2)-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,Ph), 1HHy(CO,Ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (Kß(2,5) emission) electronic transitions, and of Kα RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by ~1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of ~2.3 eV for 1(powder) and ~2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2)-y(2)) levels of ~0.5 eV for the nonhydride and ~0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,Ph). XAES-DFT thus enables verification of the effects of ligand

  13. Absorption intensity changes and frequency shifts of fundamental and first overtone bands for OH stretching vibration of methanol upon methanol-pyridine complex formation in CCl4: analysis by NIR/IR spectroscopy and DFT calculations.

    PubMed

    Futami, Yoshisuke; Ozaki, Yasushi; Ozaki, Yukihiro

    2016-02-21

    Infrared (IR) and near infrared (NIR) spectra were measured for methanol and the methanol-pyridine complex in carbon tetrachloride. Upon the formation of the methanol-pyridine complex, the frequencies of both the fundamental and first overtone bands of the OH stretching vibration shifted to lower frequencies, and the absorption intensity of the fundamental increased significantly, while that of the first overtone decreased markedly. By using quantum chemical calculations, we estimated the absorption intensities and frequencies of the fundamental and first overtone bands for the OH stretching vibration based on the one-dimensional Schrödinger equation. The calculated results well reproduced the experimental results. The molecular vibration potentials and dipole moment functions of the OH stretching vibration modes were compared between methanol and the methanol-pyridine complex in terms of absorption intensity changes and frequency shifts. The large change in the dipole moment function was found to be the main cause for the variations in absorption intensity for the fundamental and first overtone bands.

  14. Absorption Bands at 4300 and 6000-8000Å as Signs of Silicate and Organic Matter Separation and Formation of Hydrated Silicates in KBOs and Similar Bodies

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Dorofeeva, V. A.; Makalkin, A. B.

    2004-12-01

    Recent spectral observations of some Kuiper Belt Objects (KBOs) (Boehnhardt et al.: 2002, Proc. of ACM 2002, 47-50; Fornasier S. et al., 2004, Astron. Astrophys. 421, 353-363) discovered characteristic absorption bands at 4300 and 6000-8000Å in reflectance spectra of the bodies. Spectral positions and other parameters of the features are similar to those found in reflectance spectra of terrestrial phyllosilicates (e. g., Clark et al., 1990, J. Geophys. Res. 95, 12653-12680; Busarev et al., 2004, The new ROSETTA targets (L. Colangeli et al., eds.), 79-83), CI- and CM-carbonaceous chondrites (e. g., Busarev and Taran, 2002, Proc. of ACM 2002, 933-936), primitive C-, P-, D-, F- and G-class asteroids (Vilas and Gaffey, 1989, Science 246, 790-792) and hydrated M-, S- and E-class asteroids (Busarev and Taran, 2002, Proc. of ACM 2002, 933-936). Hence, these absorption bands may be considered as universal indicators of hydrated silicates on celestial solid bodies including KBOs. However, before phyllosilicates were formed, an aqueous media should spring up and exist a considerable time in the bodies. One more important factor for the spectral features of hydrated silicates to be observed, it is probably an aqueous separation of silicate and darkening CHON (PAH plus more light organic compounds) components in the bodies. To check the assumptions we have performed some calculations (Busarev et al., 2003, Earth, Moon, and Planets 92, 345-357) applicable to KBOs and analogous silicate-icy bodies existed for the first time in the formation zones of neighbouring giant planets. According to the calculations, the decay of the short-lived 26Al at the early stage of the bodies' evolution and their mutual collisions (at velocities >1.5 km s-1) at the subsequent stage were probably the main sources of heating sufficient for melting water ice in their interiors. Because of these processes, an internal ocean of liquid water covered with ˜10-km crust of dirty ice could originate in

  15. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. II. Carbon-enhanced metal-poor 3D model atmospheres

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Homeier, D.; Plez, B.

    2017-02-01

    Context. Tighter constraints on metal-poor stars we observe are needed to better understand the chemical processes of the early Universe. Computing a stellar spectrum in 3D allows one to model complex stellar behaviours, which cannot be replicated in 1D. Aims: We examine the effect that the intrinsic CNO abundances have on a 3D model structure and the resulting 3D spectrum synthesis. Methods: Model atmospheres were computed in 3D for three distinct CNO chemical compositions using the CO5BOLD model atmosphere code, and their internal structures were examined. Synthetic spectra were computed from these models using Linfor3D and they were compared. New 3D abundance corrections for the G-band and a selection of UV OH lines were also computed. Results: The varying CNO abundances change the metal content of the 3D models. This had an effect on the model structure and the resulting synthesis. However, it was found that the C/O ratio had a larger effect than the overall metal content of a model. Conclusions: Our results suggest that varying the C/O ratio has a substantial impact on the internal structure of the 3D model, even in the hot turn-off star models explored here. This suggests that bespoke 3D models, for specific CNO abundances should be sought. Such effects are not seen in 1D at these temperature regimes.

  16. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.

    PubMed

    Harb, Moussab; Masih, Dilshad; Takanabe, Kazuhiro

    2014-09-14

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta11O30. It is confirmed that the Cu(I)-based multi-metal oxides possess a strong contribution of filled Cu(I) states in the valence band and of empty d(0) metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications.

  17. A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS and MISR

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Zhang, J.; Reid, J. S.; Zhang, X.; Hyer, E. J.; Smirnov, A.

    2015-05-01

    Submerged oceanic bubbles, which have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite-based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine whether such bubbles are of sufficient magnitude to impact satellite aerosol optical depth (AOD) retrievals through perturbation of the lower boundary conditions. There has been significant discussion in the community regarding the high positive biases in retrieved AODs in many remote ocean regions. In this study, for the first time, the effects of oceanic bubbles on satellite retrievals of AOD are studied by using a linked Second Simulation of a Satellite Signal in the Solar Spectrum (6S) atmospheric and HydroLight oceanic radiative transfer models. The results suggest an insignificant impact on AOD retrievals in regions with near-surface wind speeds of less than 12 m s-1. However, the impact of bubbles on aerosol retrievals could be on the order of 0.02-0.04 for higher wind conditions within the scope of our simulations (e.g., winds < 20 m -1. This bias is propagated to global scales using 1 year of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data to investigate the possible impacts of oceanic bubbles on an enhanced AOD belt observed over the high-latitude southern oceans (also called the enhanced southern oceans anomaly, or ESOA) by some passive satellite sensors. Ultimately, this study is supportive of the null hypothesis: submerged bubbles are not the major contributor to the ESOA feature. This said, as retrievals progress to higher and higher resolutions, such as from airborne platforms, the uniform bubble correction in clean marine conditions should probably be separately accounted for against individual bright whitecaps and bubble rafts.

  18. Multi-frequency optical-depth maps and the case for free-free absorption in two compact symmetric radio sources: The CSO candidate J1324 + 4048 and the CSO J0029 + 3457

    SciTech Connect

    Marr, J. M.; Read, J.; Morris, A. O.; Perry, T. M.; Taylor, G. B.

    2014-01-10

    We obtained dual-polarization very long baseline interferometry observations at six frequencies of the compact symmetric object J0029 + 3457 and the compact symmetric object candidate J1324 + 4048. By comparing the three lower-frequency maps with extrapolations of the high-frequency maps, we produced maps of the optical depth as a function of frequency. The morphology of the optical-depth maps of J1324 + 4048 is strikingly smooth, suggestive of a foreground screen of absorbing gas. The spectra at the intensity peaks fit a simple free-free absorption (FFA) model, with χ{sub ν}{sup 2}≈2, better than a simple synchrotron self-absorption model, in which χ{sub ν}{sup 2}≈3.5--5.5. We conclude that the case for FFA in J1324 + 4048 is strong. The optical-depth maps of J0029 + 3457 exhibit structure, but the morphology does not correlate with that in the intensity maps. The fit of the spectra at the peaks to a simple FFA model yields χ{sub ν}{sup 2}≈1, but because the turnover is gradual, the fit is relatively insensitive to the input parameters. We find that FFA by a thin amount of gas in J0029 + 3457 is likely but not definitive. One compact feature in J0029 + 3457 has an inverted spectrum even at the highest frequencies. We infer this to be the location of the core and estimate an upper limit to the magnetic field of order 3 Gauss at a radius of order 1 pc. In comparison with maps from observations at earlier epochs, no apparent growth in either J1324 + 4048 or J0029 + 3457 is apparent, with upper limits of 0.03 and 0.02 mas yr{sup –1}, corresponding to maximum linear separation speeds of 0.6c and 0.4c.

  19. EL2 deep level defects and above-band gap two-photon absorption in high gain lateral semi-insulating GaAs photoconductive switch

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Wei; Niu, Hongjian; Zhang, Xianbin; Ji, Weili

    2005-01-01

    Experiments of a lateral semi-insulating GaAs photoconductive switch, both linear and nonlinear mode of the switch were observed when the switch was triggered by 1064 nm laser pulses, with energy of 1.9 mJ and the pulse width of 60 ns, and operated at biased electric field of 4.37 kV/cm. It"s wavelength is longer than 876nm, but the experiments indicate that the semi-insulating GaAs photoconductive switches can absorb 1064 nm laser obviously, which is out of the absorption range of the GaAs material. It is not possible to explain this behavior by using intrinsic absorption mechanism. We think that there are two mostly kinds of absorption mechanisms play a key part in absorption process, they are the two-steps-single-photon absorption that based on the EL2 energy level and two-photon absorption.

  20. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  1. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-03

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions.

  2. Nondestructive Speciation Depth Profiling of Complex TiOx Nanolayer Structures by Grazing Incidence X-ray Fluorescence Analysis and Near Edge X-ray Absorption Fine Structure Spectroscopy.

    PubMed

    Pollakowski, Beatrix; Beckhoff, Burkhard

    2015-08-04

    An important challenge of modern material science is the depth-sensitive and nondestructive analysis of the chemical binding state of complex structures consisting of multiple thin layers. In general, the correlation of the material functionality and underlying chemical and physical properties is the key question in view of directed device development, performance, and quality control. It has been shown that the combined method grazing incidence X-ray fluorescence analysis (GIXRF) and near edge X-ray absorption fine structure spectroscopy (NEXAFS) can significantly contribute to the nondestructive chemical analysis of buried thin films and interface structures regarding chemical speciation. Recently, we have enhanced the method to allow for a depth-resolved analysis of multilayered nanoscaled thin film structures. By means of appropriate model systems, the methodology has been developed and successfully validated. The model systems basically consist of a carbon cap layer, two titanium layers differing in their oxidation states and separated by a thin carbon layer, and a silicon substrate covered with molybdenum and a carbon layer. A differential approach has been developed to derive the chemical species of each of the titanium layers.

  3. Source Depths Utilizing Broad Band Data

    DTIC Science & Technology

    1987-03-19

    THIS PAGE UNCLASSIFIED SECURITY CLASSFICATION OF THIS PAGE 19. (continued) state filtered data into radial and transverse horizontal components and...30 Figure 14. Vertical, radial , and tran se components of motion for the August 31, 1982, Adirondack earthquake as recorded at station RSNY...kin) . ............................................................................ 34 Figure 17. Vertical, radial , and transverse components of

  4. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  5. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  6. Indirect optical absorption and origin of the emission from β-FeSi2 nanoparticles: Bound exciton (0.809 eV) and band to acceptor impurity (0.795 eV) transitions

    NASA Astrophysics Data System (ADS)

    Lang, R.; Amaral, L.; Meneses, E. A.

    2010-05-01

    We investigated the optical absorption of the fundamental band edge and the origin of the emission from β-FeSi2 nanoparticles synthesized by ion-beam-induced epitaxial crystallization of Fe+ implanted SiO2/Si(100) followed by thermal annealing. From micro-Raman scattering and transmission electron microscopy measurements it was possible to attest the formation of strained β-FeSi2 nanoparticles and its structural quality. The optical absorption near the fundamental gap edge of β-FeSi2 nanoparticles evaluated by spectroscopic ellipsometry showed a step structure characteristic of an indirect fundamental gap material. Photoluminescence spectroscopy measurements at each synthesis stage revealed complex emissions in the 0.7-0.9 eV spectral region, with different intensities and morphologies strongly dependent on thermal treatment temperature. Spectral deconvolution into four transition lines at 0.795, 0.809, 0.851, and 0.873 eV was performed. We concluded that the emission at 0.795 eV may be related to a radiative direct transition from the direct conduction band to an acceptor level and that the emission at 0.809 eV derives from a recombination of an indirect bound exciton to this acceptor level of β-FeSi2. Emissions 0.851 and 0.873 eV were confirmed to be typical dislocation-related photoluminescence centers in Si. From the energy balance we determined the fundamental indirect and direct band gap energies to be 0.856 and 0.867 eV, respectively. An illustrative energy band diagram derived from a proposed model to explain the possible transition processes involved is presented.

  7. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump-IR probe study.

    PubMed

    Linke, Martin; Yang, Yang; Zienicke, Benjamin; Hammam, Mostafa A S; von Haimberger, Theodore; Zacarias, Angelica; Inomata, Katsuhiko; Lamparter, Tilman; Heyne, Karsten

    2013-10-15

    Photoisomerization of biliverdin (BV) chromophore triggers the photoresponse in native Agp1 bacteriophytochrome. We discuss heterogeneity in phytochrome Pr form to account for the shape of the absorption profile. We investigated different regions of the absorption profile by angle balanced polarization resolved femtosecond VIS pump-IR probe spectroscopy. We studied the Pr form of Agp1 with its natural chromophore and with a sterically locked 18Et-BV (locked Agp1). We followed the dynamics and orientations of the carbonyl stretching vibrations of ring D and ring A in their ground and electronically excited states. Photoisomerization of ring D is reflected by strong signals of the ring D carbonyl vibration. In contrast, orientational data on ring A show no rotation of ring A upon photoexcitation. Orientational data allow excluding a ZZZasa geometry and corroborates a nontwisted ZZZssa geometry of the chromophore. We found no proof for heterogeneity but identified a new, to our knowledge, electronic transition in the absorption profile at 644 nm (S0→S2). Excitation of the S0→S2 transition will introduce a more complex photodynamics compared with S0→S1 transition. Our approach provides fundamental information on disentanglement of absorption profiles, identification of chromophore structures, and determination of molecular groups involved in the photoisomerization process of photoreceptors.

  8. Theory of graphene saturable absorption

    NASA Astrophysics Data System (ADS)

    Marini, A.; Cox, J. D.; García de Abajo, F. J.

    2017-03-01

    Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic devices, as well as for applications in mode-locking and random lasers.

  9. Atmospheric absorption cell characterization

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The measurement capability of the Avionics Laboratory IR Facility was used to evaluate an absorption cell that will be used to simulate atmospheric absorption over horizontal paths of 1 - 10 km in length. Band models were used to characterize the transmittance of carbon dioxide (CO2), nitrogen (N2), and nitrous oxide (N2O) in the cell. The measured transmittance was compared to the calculated values. Nitrous oxide is important in the 4 - 4.5 micron range in shaping the weak line absorption of carbon dioxide. The absorption cell is adequate for simulating atmospheric absorption over these paths.

  10. On the state of the emitter of the 3.3 micron unidentified infrared band - Absorption spectroscopy of polycyclic aromatic hydrocarbon species

    NASA Technical Reports Server (NTRS)

    Flickinger, Gregory C.; Wdowiak, Thomas J.; Gomez, Percy L.

    1991-01-01

    Results of absorption measurements indicate that the PAH species responsible for the UIR (unidentified infrared) emission probably exist in a condensed form rather than as isolated molecules. It is shown that the peak absorption of the C-H stretch feature of vapor-phase PAHs occurs at a higher frequency than that of the condensed-phase PAHs and does not match the 3.289-micron interstellar feature. The vapor-phase experiments duplicate the phenomenon of the 3.3-micron profile simplification of PAH in KBr at elevated temperature. This confirms that the change of the profile with temperature is an intrinsic molecular effect, and is not a consequence of matrix (KBr) or condensed state interactions.

  11. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    NASA Astrophysics Data System (ADS)

    Guo, Anran; Zhong, Hao; Li, Wei; Gu, Deen; Jiang, Xiangdong; Jiang, Yadong

    2016-10-01

    Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si1-xRux) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si1-xRux thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si1-xRux thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  12. Stratospheric infrared continuum absorptions observed by the ATMOS instrument

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Namkung, J. S.; Farmer, C. B.; Norton, R. H.

    1989-01-01

    A quantitative analysis of infrared continuum absorption features observed in ATMOS/Spacelab 3 (1985) spectra of the lower stratosphere is reported. Continuous absorption produced primarily by the collision-induced fundamental vibration-rotation band of O2 and to a lesser extent by the superposition of H2O far line wings has been observed in the 1400 to 1800/cm interval below tangent heights of about 25 km. Continuum optical depths measured in microwindows nearly free of atmospheric line absorption are 0.78 + or - 0.06 times those calculated with the O2 absorption coefficients of Timofeyev and Tonkov (1978). Transmittance measurements in microwindows between 2395 and 2535/cm have been used to study continuous absorption from the collision induced fundamental vibration-rotation band of N2 and the far wings of strong CO2 lines. The measured transmittances have been analyzed to derive best fit absorption coefficients for the N2 pressure-induced band at lower stratospheric temperatures (about 210 K).

  13. Application of surface pressure measurements from O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part I - An observing system simulation experiments study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    Sea level pressure (SLP) is an important variable in regulating hurricane motion. However, SLP generally cannot be measured in open oceans due to limited buoys. Because of the potential availability of an O2-band differential absorption radar for sea surface barometry, we investigate the value of assimilating various patterns of SLP from such a system on hurricane prediction using the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system (3DVAR) based on Observing System Simulation Experiments (OSSEs). An important objective of this series of study is to explore the potential to use space and airborne sea surface air pressure measurements from an O2-band differential absorption radar currently under development for server weather including hurricane forecasts. The surface pressure patterns include an area of SLP, and a band of SLP either through the center or tangent to the hurricane position; the latter two distributions are similar to what could be obtained from the differential absorption radar system, which could be installed on spaceborne satellites and/or mounted on reconnaissance aircraft. In the banded pressure cases, we propose a vortex reconstruction technique based on surface pressure field. Assimilating observations from the reconstructed surface pressure leads to a better representation of initial SLP and vertical cross-section of wind, relative to the control where no data is assimilated and to the assimilation without vortex reconstruction. In eight of the nine OSSEs simulations on three hurricanes with three leading times of integration, which cover a wide range of initial minimum SLP from 951 to 1011 hPa, substantial improvements are found not only in the hurricane track and position, but also in the hurricane intensity, in terms of the SLP and maximum surface wind. The only case without significant improvement is resulted from the very weak initial condition (SLP 1011 hPa), which had no clear indication of

  14. Relation of molecular structure to Franck-Condon bands in the visible-light absorption spectra of symmetric cationic cyanine dyes.

    PubMed

    Lin, Katrina Tao Hua; Silzel, John W

    2015-05-05

    A Franck-Condon (FC) model is used to study the solution-phase absorbance spectra of a series of seven symmetric cyanine dyes having between 22 and 77 atoms. Electronic transition energies were obtained from routine visible-light absorbance and fluorescence emission spectra. Harmonic normal modes were computed using density functional theory (DFT) and a polarizable continuum solvent model (PCM), with frequencies corrected using measured mid-infrared spectra. The model predicts the relative energies of the two major vibronic bands to within 5% and 11%, respectively, and also reproduces structure-specific differences in vibronic band shapes. The bands themselves result from excitation of two distinct subsets of normal modes, one with frequencies between 150 and 625cm(-1), and the other between 850 and 1480cm(-1). Vibronic transitions excite symmetric in-plane bending of the polymethine chain, in-plane bends of the polymethine and aromatic C-H bonds, torsions and deformations of N-alkyl substituents, and in the case of the indocyanines, in-plane deformations of the indole rings. For two dyes, the model predicts vibronic coupling into symmetry-breaking torsions associated with trans-cis photoisomerization.

  15. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  16. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  17. A study of the absorption features of Makemake

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J.; Duffard, R.; Carvano, J.; de Pra, M.

    2014-07-01

    Most transneptunian objects do not show prominent absorption features due to the size and location [1]. Nevertheless, absorption due to water ice and volatile ices do appear on a few large objects, particularly those that have good signal-to-noise-ratio spectra. In particular, methane appears in three dwarf planets (Pluto, Eris, and Makemake), as well as in some smaller objects, such as Quaoar and probably Sedna, and in Neptune's satellite Triton. Methane has such intense absorption features that even small amounts of methane on the surface dominate the reflectance spectra in the visible and near-infrared range, making it a great tool to probe surfaces, especially, considering that the depth of the bands could be used as a proxy for physical depths and that shifts in the bands with respect to laboratory measurements could point to possible dilutions (as seen in Pluto and Eris; for instance [3] and references therein). Aiming at gaining a deeper insight into Makemake's surface through its methane absorption bands, we have observed it with X-Shooter at the VLT with a medium spectral resolution in the range of 0.4--1.8 microns. In this work, we present the results of comparing these features with those of methane in the laboratory and the same features in Eris and Pluto, within the context of methane-dominated spectra of dwarf planets.

  18. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  19. Absorption in Extended Inhomogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick

    2008-01-01

    The launch of several different sensors, including CloudSat, into the A-train constellation of satellites allows us for the first time to compute absorption that can occur in realistic vertically inhomogeneous clouds including multiple cloud decks. CloudSat data show that these situations are common. Therefore, understanding vertically inhomogeneous clouds is important from both climate and satellite atmospheric composition remote sensing perspectives. Satellite passive sensors that operate from the near IR to the UV often rely on radiative cloud pressures derived from absorption in oxygen bands (A, B, gamma, or O2-O2 bands) or from rotational-Raman scattering in order to retrieve information about atmospheric trace gases. The radiative cloud pressure is distinct from the physical cloud top derived from thermal infrared measurements. Therefore, the combination of information from different passive sensors yields some information about the cloud vertical profile. When either or both the clouds or atmospheric absorbers (trace gases and aerosols) are vertically inhomogeneous, the use of an effective cloud pressure derived from these approaches may lead to errors. Here, we focus on several scenarios (deep convective clouds and distinct two layer clouds) based on realistic cloud optical depth vertical profiles derived from the CloudSatfMODIS combination. We focus on implications for trace-gas column amount retrievals (specifically ozone and NO2) and derived surface UV irradiance from the Ozone Monitoring Instrument (OMI) on the Atrain Aura platform.

  20. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the (1)B(2u) Absorption Band of Benzene, Including the Kekule Vibrational Modes ν(9) and ν(10).

    PubMed

    Willitsford, Adam H; Chadwick, C Todd; Kurtz, Stewart; Philbrick, C Russell; Hallen, Hans

    2016-02-04

    Resonance Raman spectroscopy provides much stronger Raman signal levels than its off-resonant counterpart and adds selectivity by excitation tuning. Raman preresonance of benzene has been well studied. On-resonance studies, especially at phonon-allowed absorptions, have received less attention. In this case, we observe resonance of many of the vibration modes associated motion of the carbons in the ring while tuning over the (1)B2u absorption, including the related ν9 (CC stretch Herzberg notation, ν14 Wilson notation) and ν10 (CH-parallel bend Herzberg notation, ν15 Wilson notation) vibrational modes along with the ν2 (CC-stretch or ring-breathing Herzberg notation, ν1 Wilson notation) mode and multiples of the ν18 (CCC-parallel bend Herzberg notation, ν6 Wilson notation) vibrational mode. The ring-breathing mode is found to mix with the b2u modes creating higher frequency composites. Through the use of an optical parametric oscillator (OPO) to tune through the (1)B2u absorption band of liquid benzene, a stiffening (increase in energy) of the vibrational modes is observed as the excitation wavelength nears the (1)B2u absorption peak of the isolated molecule (vapor) phase. The strongest resonance amplitude observed is in the 2 × ν18 (e2g) mode, with nearly twice the intensity of the ring-breathing mode, ν2. Several overtones and combination modes, especially with ν2 (a1g), are also observed to resonate. Raman resonances on phonon-allowed excitations are narrow and permit the measurement of vibrations not Raman-active in the ground state.

  1. Microwave absorption properties of planar-anisotropy Ce2Fe17N3-δ powders/Silicone composite in X-band

    NASA Astrophysics Data System (ADS)

    Gu, Xisheng; Tan, Guoguo; Chen, Shuwen; Man, Qikui; Chang, Chuntao; Wang, Xinmin; Li, Run-Wei; Che, Shenglei; Jiang, Liqiang

    2017-02-01

    The soft-magnetic properties of planar-anisotropy Ce2Fe17N3-δ powders were reported, and reflection loss (RL) of the powders/Silicone composites with various volume concentrations have been studied in 0.1-18 GHz frequency range. It was found that the optimal RL of this composite absorber with a thickness of 1.72 mm is -60.5 dB at 9.97 GHz and the RL is less than -10 dB in the whole X-band (8-12 GHz). The bandwidth with RL exceeding -10 dB and -20 dB are 5.24 GHz and 1.32 GHz, respectively. Furthermore, all the optimal RL value of the composite with the thickness less than 2.13 mm can reach -20 dB in the range of 8-17 GHz, which indicates that the Ce2Fe17N3-δ/Silicone composite absorber will be a promising candidate in higher gigahertz frequency especially in X-band.

  2. Estimates Of Magnetic Plage Filling Factors Using The Cn Band

    NASA Astrophysics Data System (ADS)

    Saar, Steven H.; Judge, Philip

    2016-12-01

    The 388nm CN band (like the better known "G band" of CH) is used in the Sun to locate strong magnetic concentrations. Magnetic network and plage are bright in these molecular bands, since the enhanced chromospheric heating there destroys the molecule, erasing its absorption and allowing the continuum to shine through. We take advantage of this to estimate the filling factor of strong fields in active dwarf stars. CN band depths in active stars can be compared with those of inactive stars of very similar temperature and metallicity, and after an adjustment for line-blanketing, used to estimate a magnetic plage filling factor. We estimate filling factors for a two stars, and compare them to direct Stokes I line-broadening measurements. Limitations, caveats, and future directions are briefly considered.

  3. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  4. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder

    NASA Astrophysics Data System (ADS)

    Li, J.; Feng, W. J.; Wang, J. S.; Zhao, X.; Zheng, W. Q.; Yang, H.

    2015-11-01

    Microwave absorption properties, especially the band width and depth of reflection loss are highlighted as key measurement in studies of microwave absorber. In order to improve the band width and depth of reflection loss of carbonyl iron powder (CIP), we prepared SiO2 layers on the surface of CIP by using tetraethyl orthosilicate (TEOS) as a SiO2 source and 3-aminopropyl triethoxysilane (APTES) as a surface modifier. SiO2 layer was formed by the hydrolysis of TEOS. The results show that after treatment the CIP is covered by a 5-10 nm coating layer. Contrast to uncoated samples, coated samples show improved absorption properties. The minimum of reflection loss is -38.8 dB at 11 GHz and the band width of reflection loss exceeding -10 dB is from 8 GHz to 14 GHz.

  5. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  6. Effect of Substitution of Mn, Cu, and Zr on the Structural, Magnetic, and Ku-Band Microwave-Absorption Properties of Strontium Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Moradi, Mahmood; Alam, Reza Shams; Mardani, Reza

    2016-08-01

    The ferrites with the compositions of SrMn x Cu x Zr2 x Fe(12-4 x)O19 ( x = 0.0, 0.2, 0.3, 0.4, and 0.5) are synthesized by the coprecipitation method. The formation of M-type hexaferrite is confirmed by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. The morphology of the samples is shown by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) microscopy. Vibrating sample magnetometer (VSM) analysis has been used for the investigation of the magnetic properties, and the reason for the changes in the magnetic properties as a result of doping, are expressed. The values of coercivity decrease by increasing the amount of substitution, which could be related to the modification of anisotropy form the c-axis toward the c-plane. Finally, we have used vector network analysis to investigate the microwave absorption properties. We find that the samples with the composition of SrMn0.4Cu0.4Zr0.8Fe10.4O19 have the largest reflection loss and the widest bandwidth among these samples.

  7. 13C(16)O(2): Global Treatment of Vibrational-Rotational Spectra and First Observation of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) Absorption Bands.

    PubMed

    Tashkun; Perevalov; Teffo; Lecoutre; Huet; Campargue; Bailly; Esplin

    2000-04-01

    The effective operator approach is applied to the calculation of both line positions and line intensities of the (13)C(16)O(2) molecule. About 11 000 observed line positions of (13)C(16)O(2) selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational-rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm(-1). The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the nu(2) and 3nu(2) regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm(-1), and most of them lie within the experimental accuracy (0.007 cm(-1)) once the observed line positions are included in the global fit. Copyright 2000 Academic Press.

  8. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  9. LINE ABSORPTION OSCILLATOR STRENGTHS FOR THE c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) BANDS IN N{sub 2}

    SciTech Connect

    Lavin, C.; Velasco, A. M.

    2011-09-20

    Theoretical absorption oscillator strengths and emission branching ratios for rotational lines of the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) bands of molecular nitrogen are reported. The calculations have been performed with the molecular quantum defect orbital method, which has proved to be reliable in previous studies of rovibronic transitions in diatomic molecules. The strong interaction between c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) and b' {sup 1}{Sigma}{sup +}{sub u}(10) states has been analyzed through an interaction matrix that includes rotational terms. Owing to the perturbation, the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0), c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(1), and c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(5) bands are not weak, in contrast to what would be expected on the basis of the Franck-Condon principle. Moreover, the intensity distribution of the rotational lines within each of the vibronic bands deviates from considerations based on Hoenl-London factors. In this work, we provide data that may be useful to interpret spectra from atmospheres of the Earth, Titan, and Triton, in which transitions from the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) level have been detected.

  10. Microwave absorption properties of pyrolytic carbon nanofilm

    PubMed Central

    2013-01-01

    We analyzed the electromagnetic (EM) shielding effectiveness in the Ka band (26 to 37 GHz) of highly amorphous nanometrically thin pyrolytic carbon (PyC) films with lateral dimensions of 7.2 × 3.4 mm2, which consists of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers. We discovered that the manufactured PyC films, whose thickness is thousand times less than the skin depth of conventional metals, provide a reasonably high EM attenuation. The latter is caused by absorption losses that can be as high as 38% to 20% in the microwave frequency range. Being semi-transparent in visible and infrared spectral ranges and highly conductive at room temperature, PyC films emerge as a promising material for manufacturing ultrathin microwave (e.g., Ka band) filters and shields. PMID:23388194

  11. Band models and correlations for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1975-01-01

    Absorption of infrared radiation by various line and band models are briefly reviewed. Narrow band model relations for absorptance are used to develop 'exact' formulations for total absorption by four wide band models. Application of a wide band model to a particular gas largely depends upon the spectroscopic characteristic of the absorbing-emitting molecule. Seven continuous correlations for the absorption of a wide band model are presented and each one of these is compared with the exact (numerical) solutions of the wide band models. Comparison of these results indicate the validity of a correlation for a particular radiative transfer application. In radiative transfer analyses, use of continuous correlations for total band absorptance provides flexibilities in various mathematical operations.

  12. Microwave absorption characteristics of the clouds of Venus from Mariner 10 radio occultation

    NASA Technical Reports Server (NTRS)

    Kliore, A. J.; Elachi, C.; Patel, I. R.; Way, J. B.

    1977-01-01

    Measurements of received signal strength at S-band (13 cm) and X-band (4.8 cm) wavelengths during the radio occultation of Mariner 10 by Venus on February 5, 1974, are examined in order to study the structure and composition of the absorbing medium. The frequency excursions of the signals are determined and used to obtain the structure of the refractive index in the lower atmosphere. Profiles of excess signal attenuation due to atmospheric scattering and absorption are presented which indicate that the X-band signal experienced much more absorption and was extinguished at about 50 km, while the S-band signal penetrated to about 42 km. The optical-depth data are inverted by means of a discrete inversion method to obtain the absorption coefficient for each band as a function of height, and the resulting absorption-coefficient profiles are compared with the attenuation at vertical incidence modeled from planetary radar and passive microwave observations of Venus. The absorption coefficients at the two wavelengths are employed to estimate the liquid content and composition of the microwave-absorbing cloud particles.

  13. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  14. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  15. Intensity-modulating graphene metamaterial for multiband terahertz absorption.

    PubMed

    Gao, Run-Mei; Xu, Zong-Cheng; Ding, Chun-Feng; Yao, Jian-Quan

    2016-03-10

    In this paper, we design a tunable strength multiband absorber consisting of a graphene metamaterial structure and a thick dielectric interlayer deposited on a metal ground plane. We investigate the tunable conductivity properties of the graphene metamaterial and demonstrate multiband absorbers with three absorption bands using a polyimide interlayer in the 0-2.25 THz range by numerical simulation. The results show that the mix absorptivity reached 99.8% at 1.99 THz, and the absorptive strength can be tuned with the modulation depth up to 84.2%. We present a theoretical interpretation based on a standing wave field, which shows that the field energy is localized inside the thicker spacer and then dissipated, effectively trapping the light in the metamaterial absorbers with negligible near-field interactions. The standing wave field theory developed here explains all the features of the multiband metamaterial absorbers and provides a profound understanding of the underlying physics.

  16. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  17. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide

    NASA Astrophysics Data System (ADS)

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-01

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system.

  18. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide.

    PubMed

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-05

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm(2) and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system.

  19. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide

    PubMed Central

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-01

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313

  20. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  1. Computing Composition/Depth Profiles From X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1986-01-01

    Diffraction-intensity bands deconvolved relatively quickly. TIBAC constructs composition/depth profiles from X-ray diffraction-intensity bands. Intensity band extremely sensitive to shape of composition/depth profile. TIBAC incorporates straightforward transformation of intensity band that retains accuracy of earlier simulation models, but is several orders of magnitude faster in total computational time. TIBAC written in FORTRAN 77 for batch execution.

  2. THE Ch-CLASS ASTEROIDS: CONNECTING A VISIBLE TAXONOMIC CLASS TO A 3 μm BAND SHAPE

    SciTech Connect

    Rivkin, Andrew S.; Thomas, Cristina A.; Howell, Ellen S.; Emery, Joshua P.

    2015-12-15

    Asteroids belonging to the Ch spectral taxonomic class are defined by the presence of an absorption near 0.7 μm, which is interpreted as due to Fe-bearing phyllosilicates. Phyllosilicates also cause strong absorptions in the 3 μm region, as do other hydrated and hydroxylated minerals and H{sub 2}O ice. Over the past decade, spectral observations have revealed different 3 μm band shapes in the asteroid population. Although a formal taxonomy is yet to be fully established, the “Pallas-type” spectral group is most consistent with the presence of phyllosilicates. If Ch class and Pallas type are both indicative of phyllosilicates, then all Ch-class asteroids should also be Pallas-type. In order to test this hypothesis, we obtained 42 observations of 36 Ch-class asteroids in the 2 to 4 μm spectral region. We found that 88% of the spectra have 3 μm band shapes most consistent with the Pallas-type group. This is the first asteroid class for which such a strong correlation has been found. Because the Ch class is defined by the presence of an absorption near 0.7 μm, this demonstrates that the 0.7 μm band serves not only as a proxy for the presence of a band in the 3 μm region, but specifically for the presence of Pallas-type bands. There is some evidence for a correlation between band depth at 2.95 μm and absolute magnitude and/or albedo. However, we find only weak correlations between 2.95 μm band depth and semimajor axis. The connection between band depths in the 0.7 and 3 μm regions is complex and in need of further investigation.

  3. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  4. Band heterotopia.

    PubMed

    Alam, M S; Naila, N

    2010-01-01

    Band heterotopias are one of the rarest groups of congenital disorder that result in variable degree of structural abnormality of brain parenchyma. Band of heterotopic neurons result from a congenital or acquired deficiency of the neuronal migration. MRI is the examination of choice for demonstrating these abnormalities because of the superb gray vs. white matter differentiation, detail of cortical anatomy and ease of multiplanar imaging. We report a case of band heterotopia that showed a bilateral band of gray matter in deep white matter best demonstrated on T2 Wt. and FLAIR images.

  5. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  6. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Astrophysics Data System (ADS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-12-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  7. Broad-band transmission spectrum and K-band thermal emission of WASP-43b as observed from the ground

    NASA Astrophysics Data System (ADS)

    Chen, G.; van Boekel, R.; Wang, H.; Nikolov, N.; Fortney, J. J.; Seemann, U.; Wang, W.; Mancini, L.; Henning, Th.

    2014-03-01

    Aims: WASP-43b is the closest-orbiting hot Jupiter, and it has high bulk density. It causes deep eclipse depths in the system's light curve in both transit and occultation that is attributed to the cool temperature and small radius of its host star. We aim to secure a broad-band transmission spectrum and to detect its near-infrared thermal emission in order to characterize its atmosphere. Methods: We observed one transit and one occultation event simultaneously in the g', r', i', z', J, H, K bands using the GROND instrument on the MPG/ESO 2.2-m telescope, where the telescope was heavily defocused in staring mode. After modeling the light curves, we derived wavelength-dependent transit depths and flux ratios and compared them to atmospheric models. Results: From the transit event, we have independently derived WASP-43's system parameters with high precision and improved the period to be 0.81347437(13) days based on all the available timings. No significant variation in transit depths is detected, with the largest deviations coming from the i'-, H-, and K-bands. Given the observational uncertainties, the broad-band transmission spectrum can be explained by either (i) a flat featureless straight line that indicates thick clouds; (ii) synthetic spectra with absorption signatures of atomic Na/K, or molecular TiO/VO that in turn indicate cloud-free atmosphere; or (iii) a Rayleigh scattering profile that indicates high-altitude hazes. From the occultation event, we detected planetary dayside thermal emission in the K-band with a flux ratio of 0.197 ± 0.042%, which confirms previous detections obtained in the 2.09 μm narrow band and KS-band. The K-band brightness temperature 1878+108-116 K favors an atmosphere with poor day- to nightside heat redistribution. We also have a marginal detection in the i'-band (0.037+0.023-0.021%), corresponding to TB = 2225+139-225 K, which is either a false positive, a signature of non-blackbody radiation at this wavelength, or an

  8. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  9. Relating water absorption features to soil moisture characteristics

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Philpot, William D.

    2015-09-01

    The spectral reflectance of a sample of quartz sand was monitored as the sample progressed from air-dry to fully saturated, and then back to air-dry. Wetting was accomplished by spraying small amounts of water on the surface of the sample, and collecting spectra whenever change occurred. Drying was passive, driven by evaporation from the sand surface, with spectra collected every 5 minutes until the sample was air dry. Water content was determined by monitoring the weight of the sample through both wetting and drying. There was a pronounced difference in the pattern of change in reflectance during wetting and drying, with the differences being apparent both in spectral details (i.e., the depth of absorption bands) and in the magnitude of the reflectance for a particular water content. The differences are attributable to the disposition of water in the sample. During wetting, water initially occurred only on the surface, primarily as water adsorbed onto sand particles. With increased wetting the water infiltrated deeper into the sample, gradually covering all particles and filling the pore spaces. During drying, water and air were distributed throughout the sample for most of the drying period. The differences in water distribution are assumed to be the cause of the differences in reflectance and to the differences in the depths of four strong water absorption bands.

  10. Water surface depth instrument

    NASA Technical Reports Server (NTRS)

    Davis, Q. C., IV

    1970-01-01

    Measurement gage provides instant visual indication of water depth based on capillary action and light diffraction in a group of solid, highly polished polymethyl methacrylate rods. Rod lengths are adjustable to measure various water depths in any desired increments.

  11. Depth cube display using depth map

    NASA Astrophysics Data System (ADS)

    Jung, Jung-Hun; Song, Byoung-Sub; Min, Sung-Wook

    2011-03-01

    We propose Depth Cube Display (DCD) method using depth map. The structure of the proposed method consists of two parts: A projection part composed of projector for generating image and a Twisted Nematic Liquid Crystal display (TNLCD) as polarization modulating device for adjusting the proper depth and a display part composed of air-spaced stack of selective scattering polarizers which make the incident light to scatter selectively as the polarization of light rays. The image from projector whose depth is determined as passing through the TN-LCD displaying depth map progresses into the stack of selective scattering polarizers and then three-dimensional image is generated. At that time, the polarization of each polarizer is set 0°, 45° and 90° sequentially, and then the incident light rays are scattered by different polarizer as the polarization of these rays. If the light ray has the polarization between those of polarizers, this light ray is scattered by multi polarizers and the image of this ray is generated on gap between polarizers. The proposed method is more simple structure and implemented easily than previous DCD method.

  12. Aerosol Absorption Retrieval at Ultraviolet Wavelengths in a Complex Environment

    NASA Technical Reports Server (NTRS)

    Kazadzis, Stelios; Raptis, Panagiotis; Kouremeti, Natalia; Amirdis, Vassilis; Arola, Antti; Gerasopoulos, Evangelos; Schuster, Gregory L.

    2016-01-01

    We have used total and diffuse UV irradiance measurements from a multi-filter rotating shadow-band radiometer (UVMFR) in order to investigate aerosol absorption in the UV range for a 5-year period in Athens, Greece. This dataset was used as input to a radiative transfer model and the single scattering albedo (SSA) at 368 and 332 nm was calculated. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products and study the absorption spectral behavior of retrieved SSA values. The UVMFR SSA, together with synchronous, CIMEL-derived retrievals of SSA at 440 nm, had a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) encountered at the shorter wavelengths. In addition, noticeable diurnal variation of the SSA in all wavelengths is shown, with amplitudes up to 0.05. Strong SSA wavelength dependence is revealed for cases of low Angstrom exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.

  13. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment

    NASA Astrophysics Data System (ADS)

    Kazadzis, Stelios; Raptis, Panagiotis; Kouremeti, Natalia; Amiridis, Vassilis; Arola, Antti; Gerasopoulos, Evangelos; Schuster, Gregory L.

    2016-12-01

    We have used total and diffuse UV irradiance measurements from a multi-filter rotating shadow-band radiometer (UVMFR) in order to investigate aerosol absorption in the UV range for a 5-year period in Athens, Greece. This dataset was used as input to a radiative transfer model and the single scattering albedo (SSA) at 368 and 332 nm was calculated. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products and study the absorption spectral behavior of retrieved SSA values. The UVMFR SSA, together with synchronous, CIMEL-derived retrievals of SSA at 440 nm, had a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) encountered at the shorter wavelengths. In addition, noticeable diurnal variation of the SSA in all wavelengths is shown, with amplitudes up to 0.05. Strong SSA wavelength dependence is revealed for cases of low Ångström exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.

  14. Electro-optical liquid depth sensor

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Atwood, S. O.

    1976-01-01

    Transducer utilizes absorptive properties of water to determine variations in depth without disturbing liquid. Instrument is inexpensive, simple, and small and thus can be used in lieu of direct graduated scale readout or capacitive, ultrasonic, resistive or inducive sensors when these are impractical because of complexity or cost.

  15. Optimal Band Ratio Analysis of WORLDVIEW-3 Imagery for Bathymetry of Shallow Rivers (case Study: Sarca River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, M.; Vitti, A.

    2016-06-01

    The Optimal Band Ratio Analysis (OBRA) could be considered as an efficient technique for bathymetry from optical imagery due to its robustness on substrate variability. This point receives more attention for very shallow rivers where different substrate types can contribute remarkably into total at-sensor radiance. The OBRA examines the total possible pairs of spectral bands in order to identify the optimal two-band ratio that its log transformation yields a strong linear relation with field measured water depths. This paper aims at investigating the effectiveness of additional spectral bands of newly launched WorldView-3 (WV-3) imagery in the visible and NIR spectrum through OBRA for retrieving water depths in shallow rivers. In this regard, the OBRA is performed on a WV-3 image as well as a GeoEye image of a small Alpine river in Italy. In-situ depths are gathered in two river reaches using a precise GPS device. In each testing scenario, 50% of the field data is used for calibration of the model and the remained as independent check points for accuracy assessment. In general, the effect of changes in water depth is highly pronounced in longer wavelengths (i.e. NIR) due to high and rapid absorption of light in this spectrum as long as it is not saturated. As the studied river is shallow, NIR portion of the spectrum has not been reduced so much not to reach the riverbed; making use of the observed radiance over this spectral range as denominator has shown a strong correlation through OBRA. More specifically, tightly focused channels of red-edge, NIR-1 and NIR-2 provide a wealth of choices for OBRA rather than a single NIR band of conventional 4-band images (e.g. GeoEye). This advantage of WV-3 images is outstanding as well for choosing the optimal numerator of the ratio model. Coastal-blue and yellow bands of WV-3 are identified as proper numerators while only green band of the GeoEye image contributed to a reliable correlation of image derived values and field

  16. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  17. Transition Energies and Absorption Oscillator Strengths for {{c}_{4}}^{\\prime 1}{{{\\rm{\\Sigma }}}_{u}}^{+}-{{\\rm{X}}}^{1}{{{\\rm{\\Sigma }}}_{g}}^{+}, {b}^{\\prime 1}{{{\\rm{\\Sigma }}}_{u}}^{+}-{{\\rm{X}}}^{1}{{{\\rm{\\Sigma }}}_{g}}^{+}, and {{c}_{5}}^{\\prime 1}{{{\\rm{\\Sigma }}}_{u}}^{+}-{{\\rm{X}}}^{1}{{{\\rm{\\Sigma }}}_{g}}^{+} Band Systems in N2

    NASA Astrophysics Data System (ADS)

    Lavín, C.; Velasco, A. M.

    2017-04-01

    Theoretical transition energies and absorption oscillator strengths for the {{c}4}\\prime 1{{{{Σ }}}u}+ (v‧ = 0–2, 5, 7, 8) ‑ {{{X}}}1{{{{Σ }}}g}+(v\\prime\\prime =0{--}14) and {{c}5}\\prime 1{{{{Σ }}}u}+ (v‧ = 0, 2) ‑ {{{X}}}1{{{{Σ }}}g}+ (v″ = 0–14) Rydberg bands, and {b}\\prime 1{{{{Σ }}}u}+ (v‧ = 0–9, 11, 12, 14–19, 21, 22) ‑ {{{X}}}1{{{{Σ }}}g}+ (v″ = 0–14) valence bands of molecular nitrogen are reported. The strong interaction between {}1{{{{Σ }}}u}+ states has been dealt with through a vibronic interaction matrix. As a consequence of the Rydberg-valence interaction, irregularities in the vibrational structure of the above band systems are observed. Good agreement is found with the scarce high-resolution data that are available for oscillator strengths. The new band oscillator strengths reported here may be useful for a reliable interpretation of the spectra from atmospheres of the Earth, Titan, and Triton, where {{{N}}}2 is the mayor constituent.

  18. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10‑15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm‑2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ∼200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  19. Molecular absorption features in translucent clouds

    NASA Astrophysics Data System (ADS)

    Krelowski, Jacek

    2007-12-01

    Interstellar clouds, composed of neutral hydrogen, consist about 90% of the total mass of interstellar medium. Their absorption spectra contain: continuous extinction, atomic lines, molecular features and the unidentified diffuse interstellar bands (DIBs). The latter are also believed to be carried by some, rather complex molecules. A vast majority of DIBs is characterized by small central depths. This is why they became observable only since the solid state detectors are widely applied in astrophysics. It is to be emphasized that interstellar absorptions, seen along the same line of sight, may be in fact originated in several, different environments (clouds). The extensive database of echelle spectra allowed to prove that the CaII column density evidently correlates with parallaxes of OB-3 stars in contrast to other interstellar species. Thus CaII is quite evenly distributed in the interstellar medium while other species (NaI, KI, CaI, CH, CN, DIB carriers) are not. This fact is of basic importance as the ob- served spectra cannot be physically interpreted if they mix features originated in different clouds, i.e. in different environments. The abundance ratios of interstellar molecules (identified and DIB carriers) differ from cloud to cloud due to different physical processes which govern their formation. High resolution, high S/N spectra, prove that also profiles of diffuse bands vary from cloud to cloud - this fact strongly supports a molecular origin of these, still nidentified, features and motivates investigation of their relations to other molecules; they can reveal physical conditions which facilitate formation of the DIB carriers and lead to their identification.

  20. Using Methane Absorption to Probe Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  1. Absorption of CO laser radiation by NO

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.; Monat, J. P.; Kruger, C. H.

    1976-01-01

    The paper describes absorption calculations and measurements at selected infrared CO laser wavelengths which are nearly coincident with absorption lines in the fundamental vibration-rotation band of NO near 5.3 microns. Initial work was directed towards establishing the optimal CO laser-NO absorption line coincidence for high temperature applications. Measurements of the absorption coefficient at this optimal laser wavelength were carried out, first using a room-temperature absorption cell for high-temperature calculations and then using a shock tube, for the temperature range 630-4000 K, to validate the high temperature calculations.

  2. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  3. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  4. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  5. Infrared laser absorption spectroscopy of the nu4 (sigma u) fundamental and associated nu11(pi u) hot band of C7 - Evidence for alternating rigidity in linear carbon clusters

    NASA Technical Reports Server (NTRS)

    Heath, J. R.; Saykally, R. J.

    1991-01-01

    The first characterization of the bending potential of the C7 cluster is reported via the observation of the v = 1(1) and v = 2 deg levels of the nu11 (pi u) bend as hot bands associated with the nu4 (sigma u) antisymmetric stretch fundamental. The lower state hot band rotational constants are measured to be 1004.4(1.3) and 1123.6(9.0) MHz, constituting a 9.3 and 22 percent increase over the ground state rotational constant, 918.89 (41) MHz. These large increases are strong quartic and sextic centrifugal distortion constants determined for the ground and nu 4 = 1 states are found to be anomalously large and negative, evidencing strong perturbations between stretching and bending modes.

  6. Stereoscopic depth constancy

    PubMed Central

    Guan, Phillip

    2016-01-01

    Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269596

  7. Exponential Gaussian approach for spectral modelling: The EGO algorithm II. Band asymmetry

    NASA Astrophysics Data System (ADS)

    Pompilio, Loredana; Pedrazzi, Giuseppe; Cloutis, Edward A.; Craig, Michael A.; Roush, Ted L.

    2010-08-01

    The present investigation is complementary to a previous paper which introduced the EGO approach to spectral modelling of reflectance measurements acquired in the visible and near-IR range (Pompilio, L., Pedrazzi, G., Sgavetti, M., Cloutis, E.A., Craig, M.A., Roush, T.L. [2009]. Icarus, 201 (2), 781-794). Here, we show the performances of the EGO model in attempting to account for temperature-induced variations in spectra, specifically band asymmetry. Our main goals are: (1) to recognize and model thermal-induced band asymmetry in reflectance spectra; (2) to develop a basic approach for decomposition of remotely acquired spectra from planetary surfaces, where effects due to temperature variations are most prevalent; (3) to reduce the uncertainty related to quantitative estimation of band position and depth when band asymmetry is occurring. In order to accomplish these objectives, we tested the EGO algorithm on a number of measurements acquired on powdered pyroxenes at sample temperature ranging from 80 up to 400 K. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of band asymmetry on reflectance spectra; (2) the returned set of EGO parameters can suggest the influence of some additional effect other than the electronic transition responsible for the absorption feature; (3) the returned set of EGO parameters can help in estimating the surface temperature of a planetary body; (4) the occurrence of absorptions which are less affected by temperature variations can be mapped for minerals and thus used for compositional estimates. Further work is still required in order to analyze the behaviour of the EGO algorithm with respect to temperature-induced band asymmetry using powdered pyroxene spanning a range of compositions and grain sizes and more complex band shapes.

  8. Skin hydration by spectroscopic imaging using multiple near-infrared bands

    NASA Astrophysics Data System (ADS)

    Attas, E. Michael; Sowa, Michael G.; Posthumus, Trevor B.; Schattka, Bernhard J.; Mantsch, Henry H.; Zhang, Shuliang L.

    2002-03-01

    Near-infrared spectroscopic methods have been developed to determine the degree of hydration of human skin in vivo. Reflectance spectroscopic imaging was used to investigate the distribution of skin moisture as a function of location. A human study in a clinical setting has generated quantitative data showing the effects of a drying agent and a moisturizer on delineated regions of the forearms of eight volunteers. Two digital imaging systems equipped with liquid-crystal tunable filters were used to collect stacks of monochromatic images at 10-nm intervals over the wavelength bands 650-1050 nm and 960-1700 nm. Images generated from measurements of water absorption-band areas at three different near-IR wavelengths (970, 1200, and 1450 nm) showed obvious differences in the apparent distribution of water in skin. Changes resulting from the skin treatments were much more evident in the 1200-nm and 1450-nm images than in the 970-nm ones. The variable sensitivity of the method at different wavelengths has been interpreted as being the result of different penetration depths of the infrared light used in the reflectance studies. Ex-vivo experiments with pigskin have provided evidence supporting the relationship between wavelength and penetration depth. Combining the hydration results from several near-IR water bands allows additional information on hydration depth to be obtained.

  9. Deep depth undex simulator

    SciTech Connect

    Higginbotham, R. R.; Malakhoff, A.

    1985-01-29

    A deep depth underwater simulator is illustrated for determining the dual effects of nuclear type underwater explosion shockwaves and hydrostatic pressures on a test vessel while simulating, hydrostatically, that the test vessel is located at deep depths. The test vessel is positioned within a specially designed pressure vessel followed by pressurizing a fluid contained between the test and pressure vessels. The pressure vessel, with the test vessel suspended therein, is then placed in a body of water at a relatively shallow depth, and an explosive charge is detonated at a predetermined distance from the pressure vessel. The resulting shockwave is transmitted through the pressure vessel wall so that the shockwave impinging on the test vessel is representative of nuclear type explosive shockwaves transmitted to an underwater structure at great depths.

  10. Motivation with Depth.

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  11. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  12. Depth Optimization Study

    DOE Data Explorer

    Kawase, Mitsuhiro

    2009-11-22

    The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu. Reference: Mitsuhiro Kawase, Patricia Beba, and Brian Fabien (2011), Finding an Optimal Placement Depth for a Tidal In-Stream Conversion Device in an Energetic, Baroclinic Tidal Channel, NNMREC Technical Report.

  13. Correlation analysis of hyperspectral absorption features with the water status of coast live oak leaves

    NASA Astrophysics Data System (ADS)

    Pu, Ruiliang; Ge, Shaokui; Kelly, Nina M.; Gong, Peng

    2002-01-01

    A total of 139 reflectance spectra (between 350 and 2500 nm) from coast live oak (Quercus Agrifolia) leaves were measured in the laboratory with a spectrometer FieldSpec½Pro FR. Correlation analysis was conducted between absorption features, three-band ratio indices derived from the spectra and corresponding relative water content (RWC, %) of oak leaves. The experimental results indicate that there exist linear relationships between the RWC of oak leaves and absorption feature parameters: wavelength position (WAVE), absorption feature depth (DEP), width (WID) and the multiplication of DEP and WID (AREA) at the 975 nm, 1200 nm and 1750 nm positions and two three-band ratio indices: RATIO975 and RATIO1200, derived at 975 nm and 1200 nm. AREA has a higher and more stable correlation with RWC compared to other features. It is worthy of noting that the two three-band ratio indices, RATIO975 and RATIO1200, may have potential application in assessing water status in vegetation.

  14. Predissociation linewidths of the (3,0)-(11,0) Schumann-Runge absorption bands of (O-18)2 and O-16O-18 in the wavelength region 180-196 nm

    NASA Technical Reports Server (NTRS)

    Chiu, S. S.-L.; Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Freeman, D. E.

    1990-01-01

    The Yoshino et al. (1988) measurements of absolute cross sections and those of Cheung et al. (1988) for spectroscopic constants are presently used to derive the predissociation linewidths of the (3,0)-(11,0) Schumman-Runge bands of (O-18)2 and O-16O-18, in the 180-196 nm wavelength region. Linewidths are determined as parameters in the nonlinear, least-squares fitting of calculated cross-sections to measured ones. The predissociation linewidths obtained are noted to often be greater than previously obtained experimental values for both isotopic molecules.

  15. Why is the librational water-ice band at 11.5μm so difficult to detect?

    NASA Astrophysics Data System (ADS)

    Robinson, G.; Maldoni, M. M.

    2010-11-01

    Radiative transfer models have been produced for stars surrounded by circumstellar dust shells in order to investigate the detectability of the 11.5-μm librational band due to water-ice (H2O-ice). The dust grains were assumed to be composed of a core material of either amorphous silicate of olivine composition (MgFeSiO4) or alumina (Al2O3), both grain species being coated with a water-ice mantle. The models may be divided into three classes: those with small, intermediate and large optical depths. It is found that in all three cases, even with only olivine present, the water-ice librational band feature is masked by radiative transfer effects and is therefore difficult to detect. For the librational band to display its characteristic shape requires far larger amounts of water-ice than are present in any known circumstellar dust shell, as indicated by the depth of the much stronger 3.1-μm water-ice band. The best prospect for finding some evidence of the librational band is likely to be via using a small beam centred on the cooler outer regions of the dust shell; in this case the line of sight may encounter only water-ice coated grains, thereby reducing the contaminating effect of bare grains. If a grain species such as alumina is present, with a broad absorption band in the vicinity of 11.5μm, the identification of the librational band may be possible, perhaps surprisingly, as result of the sharpening of the 11.5-μm feature. We have fitted the spectrum of IRAS 22036+5306 and find that, although water-ice is clearly present in this object, as evidenced by the presence of the strong 3.1-μm band, the librational band has no obvious effect on its 10-μm spectrum.

  16. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  17. High altitude diving depths.

    PubMed

    Paulev, Poul-Erik; Zubieta-Calleja, Gustavo

    2007-01-01

    In order to make any sea level dive table usable during high altitude diving, a new conversion factor is created. We introduce the standardized equivalent sea depth (SESD), which allows conversion of the actual lake diving depth (ALDD) to an equivalent sea dive depth. SESD is defined as the sea depth in meters or feet for a standardized sea dive, equivalent to a mountain lake dive at any altitude, such that [image omitted] [image omitted] [image omitted] Mountain lakes contain fresh water with a relative density that can be standardized to 1,000 kg m(-3), and sea water can likewise be standardized to a relative density of 1,033 kg m(-3), at the general gravity of 9.80665 m s(-2). The water density ratio (1,000/1,033) refers to the fresh lake water and the standardized sea water densities. Following calculation of the SESD factor, we recommend the use of our simplified diving table or any acceptable sea level dive table with two fundamental guidelines: 1. The classical decompression stages (30, 20, and 10 feet or 9, 6, and 3 m) are corrected to the altitude lake level, dividing the stage depth by the SESD factor. 2. Likewise, the lake ascent rate during diving is equal to the sea ascent rate divided by the SESD factor.

  18. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    NASA Astrophysics Data System (ADS)

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.

    2014-08-01

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al0.3Ga0.7As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  19. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  20. Near-infrared absorptions of monomethylhydrazine

    NASA Technical Reports Server (NTRS)

    Murray, Mark; Kurtz, Joe

    1993-01-01

    The peak absorption coefficients for two near-infrared absorptions of monomethylhydrazine, CH3-N2H3, (MMH) were measured. Absorption bands located at 1.524 micrometers (6560/cm), 1.557 micrometers (6423/cm), and 1.583 micrometers (6316/cm) are assigned to the Delta upsilon = 2 overtones of the infared N-H stretching fundamentals at 3317, 3245 and 3177/cm. An absorption band located at 1.04 micrometers (9620 +/- 100/cm) is assigned to the Delta upsilon = 3 overtone of one of these fundamentals. The peak absorption coefficients (alpha(sub 10)) at 1.524 micrometers (6560 +/- 20/cm) and 1.04 micrometers (9620 +/- 100/cm) are 31 x 10(exp -3) and 0.97 x 10(exp -3)/(cm atm), respectively. Uncertainties in these coefficients were estimated to be less than +/- 20% due primarily to uncertainties in the partial vapor pressure of MMH.

  1. Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey

    2013-01-01

    A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.

  2. Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory.

    PubMed

    Vasilyev, O B; Leyva, A; Muhila, A; Valdes, M; Peralta, R; Kovalenko, A P; Welch, R M; Berendes, T A; Isakov, V Y; Kulikovskiy, Y P; Sokolov, S S; Strepanov, N N; Gulidov, S S; von Hoyningen-Huene, W

    1995-07-20

    A spectroradiometer with wedge interference filters (SWIF) (the filters were produced by Carl Zeiss, Jena, Germany) and a CCD matrix (which was of Russian production) that functions as the sensor has been designed and built for use in ground-based optical sensing of the atmosphere and the Earth's surface in the spectral range of 0.35-1.15 µm. Absolute calibration of this instrument was performed through a series of observations of direct solar radiation at Mauna Loa Observatory (MLO) in Hawaii in May and June 1993. Spectral optical depth (SOD) measurements that were made during these field experiments provided detailed spectral information about both aerosol extinction (scattering plus absorption) and molecular absorption in the atmosphere above the site at MLO. The aerosol-SOD measurements were compared with narrow-band radiometer measurements at wavelengths of 380, 500, and 778 nm The SWIF and narrow-band radiometer measurements are in agreement to within the experimental error. At a wavelength of 500 nm, the aerosol SOD was found to be approximately 0.045. Adescription of the SWIF instrument, its absolute calibration, and the determination of atmospheric SOD's at MLO are presented.

  3. Band Structures of Plasmonic Polarons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Lambert, Henry; Giustino, Feliciano

    2015-03-01

    In angle-resolved photoemission spectroscopy (ARPES), the acceleration of a photo-electron upon photon absorption may trigger shake-up excitations in the sample, leading to the emission of phonons, electron-hole pairs, and plasmons, the latter being collective charge-density fluctuations. Using state-of-the-art many-body calculations based on the `GW plus cumulant' approach, we show that electron-plasmon interactions induce plasmonic polaron bands in group IV transition metal dichalcogenide monolayers (MoS2, MoSe2, WS2, WSe2). We find that the energy vs. momentum dispersion relations of these plasmonic structures closely follow the standard valence bands, although they appear broadened and blueshifted by the plasmon energy. Based on our results we identify general criteria for observing plasmonic polaron bands in the angle-resolved photoelectron spectra of solids.

  4. The Oxygen a Band

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Hodges, Joseph; Long, David A.; Sung, Keeyoon; Drouin, Brian; Okumura, Mitchio; Bui, Thinh Quoc; Rupasinghe, Priyanka

    2014-06-01

    The oxygen A band is used for numerous atmospheric experiments, but spectral line parameters that sufficiently describe the spectrum to the level required by OCO2 and other high precision/accuracy experiments are lacking. Fourier transform spectra from the Jet Propulsion Laboratory and cavity ring down spectra from the National Institute of Standards and Technology were fitted simultaneously using the William and Mary multispectrum nonlinear least squares fitting technique into a single solution including the entire band. In addition, photoacoustic spectra already available from the California Institute of Technology will be added to the solution. The three types of spectrometers are complementary allowing the strengths of each to fill in the weaknesses of the others. With this technique line positions, intensities, widths, shifts, line mixing, Dicke narrowing, temperature dependences and collision induced absorption have been obtained in a single physically consistent fit. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at The College of William and Mary, the, Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration and the Jet Propulsion Laboratory. Support for the National Institute of Standards and Technology was provided by the NIST Greenhouse Gas Measurements and Climate Research Program and a NIST Innovations in Measurement Science (IMS) award.

  5. Study of Evanescence Wave Absorption in Lindane

    NASA Astrophysics Data System (ADS)

    Marzuki, A.; Prasetyo, E.; Gitrin, M. P.; Suryanti, V.

    2017-02-01

    Evanescent wave field has been studied for the purpose of tailoring fiber sensor capable of detecting lindane concentration in a solution. The mounted fiber was optically polished such that part of the fiber clad is stripped off. To study the evanescent wave field absorption in lindane solution, the unclad fiber was immersed in the solution. Light coming out of the fiber was studied at different wavelength each for different lindane concentration. It was shown that evanescent wave field absorption is stronger at wavelength corresponding to lindane absorption band as has been shown from absorption studies lindane in UV-VIS-NIR spectrophotometer.

  6. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  7. Rattlesnake Mountain Observator (46.4{degrees}N, 119.6{degrees}W) multispectral optical depth measurements, 1979--1994

    SciTech Connect

    Daniels, R.C.

    1995-09-22

    Surface measurements of solar irradiance of the atmosphere were made by a multipurpose computer-controlled scanning photometer at the Rattlesnake Mountain Observatory. The observatory is located at 46.4{degrees}N, 119.6{degrees}W at an elevation of 1088 m above mean sea level. The photometer measures the attenuation of direct solar radiation for different wavelengths using 12 filters. Five of these filters (ie., at 428 nm, 486 nm, 535 nm, 785 nm, and 1010 nm, with respective half-power widths of 2, 2, 3, 18, and 28 nm) are suitable for monitoring variations in the total optical depth of the atmosphere. Total optical depths for the five wavelength bands were derived from solar irradiance measurements taken at the observatory from August 5, 1979, to September 2, 1994; these total optical depth data are distributed with this numeric data package (NDP). To determine the contribution of atmospheric aerosols to the total optical depths, the effects of Rayleigh scattering and ozone absorption were subtracted (other molecular scattering was minimal for the five filters) to obtain total column aerosol optical depths. The total aerosol optical depths were further decomposed into tropospheric and stratospheric components by calculating a robustly smoothed mean background optical depth (tropospheric component) for each wavelength using data obtained during periods of low stratospheric aerosol loading. By subtracting the smoothed background tropospheric aerosol optical depths from the total aerosol optical depths, residual aerosol optical depths were obtained. These residuals are good estimates of the stratospheric aerosol optical depth at each wavelength and may be used to monitor the long-term effects of volcanic eruptions on the atmosphere. These data are available as an NDP from the Carbon Dioxide Information Analysis Center (CDIAC), and the NDP consists of this document and a set of computerized data files.

  8. Ambiguity in pictorial depth.

    PubMed

    Battu, Balaraju; Kappers, Astrid M L; Koenderink, Jan J

    2007-01-01

    Pictorial space is the 3-D impression that one obtains when looking 'into' a 2-D picture. One is aware of 3-D 'opaque' objects. 'Pictorial reliefs' are the surfaces of such pictorial objects in 'pictorial space'. Photographs (or any pictures) do in no way fully specify physical scenes. Rather, any photograph is compatible with an infinite number of possible scenes that may be called 'metameric scenes'. If pictorial relief is one of these metameric scenes, the response may be considered 'veridical'. The conventional usage is more restrictive and is indeed inconsistent. Thus the observer has much freedom in arriving at such a 'veridical' response. To address this ambiguity, we determined the pictorial reliefs for eight observers, six pictures, and two psychophysical methods. We used 'methods of cross-sections' to operationalise pictorial reliefs. We find that linear regression of the depths of relief at corresponding locations in the picture for different observers often lead to very low (even insignificant) R2s. Thus the responses are idiosyncratic to a large degree. Perhaps surprisingly, we also observed that multiple regression of depth and picture coordinates at corresponding locations often lead to very high R2s. Often R2s increased from insignificant up to almost 1. Apparently, to a large extent 'depth' is irrelevant as a psychophysical variable, in the sense that it does not uniquely account for the relation of the response to the pictorial structure. This clearly runs counter to the bulk of the literature on pictorial 'depth perception'. The invariant core of interindividual perception proves to be of an 'affine' rather than a Euclidean nature; that is to say, 'pictorial space' is not simply the picture plane augmented with a depth dimension.

  9. Multi-band slow light metamaterial.

    PubMed

    Zhu, Lei; Meng, Fan-Yi; Fu, Jia-Hui; Wu, Qun; Hua, Jun

    2012-02-13

    In this paper, a multi-band slow light metamaterial is presented and investigated. The metamaterial unit cell is composed of three cut wires of different sizes and parallel to each other. Two transparency windows induced by two-two overlaps of absorption bands of three cut wires are observed. The multi-band transmission characteristics and the slow light properties of metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impacts of structure parameters on transparency windows are also investigated. Simulation results show the spectral properties can be tuned by adjusting structure parameters of metamaterial. The equivalent circuit model and the synthesis method of the multi-band slow light metamaterial are presented. It is seen from simulation results that the synthesis method accurately predicts the center frequency of the multi-band metamaterial, which opens a door to a quick and accurate construction for multi-band slow light metamaterial.

  10. AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods

    NASA Technical Reports Server (NTRS)

    Crowley, J. K.; Clark, R. N.

    1992-01-01

    Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.

  11. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  12. Reflective-tube absorption meter

    NASA Astrophysics Data System (ADS)

    Zaneveld, J. Ronald V.; Bartz, Robert; Kitchen, James C.

    1990-09-01

    The design and calibration of a proposed in situ spectral absorption meter is evaluated using a laboratory prototype. The design includes a silver coated (second-surface) glass tube, a tungsten light source (stabilized by means of optical feedback), a monochromator, and a solid state detector. The device measures the absorption coefficient plus a portion of the volume scattering function. Theoretical analyses and laboratory experiments which explore the magnitude and variation of the errors due to scattering and internal reflections are described. Similar analyses are performed on the Cary 1 18 Spectrophotometer to allow cross calibration. Algorithms to yield the abscrption coefficient and the zenith-sun diffuse attenuation coefficient are presented and evaluated. Simultaneous measurement of the beam attenuation or backscattering coefficient allows use of algoriThms with much narrower error bands. The various methods of obtaining absorption and diffuse attenuation values are compared. Procedures for using reverse osmosis filtration to produce a clean water calibration standard are described. An absorption spectrum for pure water is obtained. Development of the absorption meter is proceeding along two lines: 1) a two-wavelength side-by-side LED is being fabricated to allow an in situ chlorophyll a absorption meter to be constructed, and 2) scientific projects using a shipboard or laboratory flow.-through pumping system are being planned.

  13. Cathode depth sensing in CZT detectors

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Bellm, Eric C.; Grindlay, Jonathan E.; Narita, Tomohiko

    2004-02-01

    Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of intereaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode signals. We demonstrate how a simple empirical formula describing the event distributions in the cathode/anode signal space can dramatically improve the energy resolution. We also estimate the energy and depth resolution of the detector as a function of the energy and the interaction depth. We also show a depth-sensing prototype system currently under development for EXIST in which cathode signals from 8, 16 or 32 crystals can be read-out by a small multi-channel ASIC board that is vertically edge-mounted on the cathode electrode along every second CZT crystal boundary. This allows CZT crystals to be tiled contiguously with minimum impact on throughput of incoming photons. The robust packaging is crucial in EXIST, which will employ very large area imaging CZT detector arrays.

  14. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.

    PubMed

    Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi

    2014-05-01

    Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise.

  15. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications

  16. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the companyused technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  17. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  18. Variable depth core sampler

    DOEpatents

    Bourgeois, Peter M.; Reger, Robert J.

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  19. Variable depth core sampler

    SciTech Connect

    Bourgeois, P.M.; Reger, R.J.

    1994-12-31

    This invention relates to a sampling means, more particularly to a device to sample hard surfaces at varying depths. Often it is desirable to take samples of a hard surface wherein the samples are of the same diameter but of varying depths. Current practice requires that a full top-to-bottom sample of the material be taken, using a hole saw, and boring a hole from one end of the material to the other. The sample thus taken is removed from the hole saw and the middle of said sample is then subjected to further investigation. This paper describes a variable depth core sampler comprimising a circular hole saw member, having longitudinal sections that collapse to form a point and capture a sample, and a second saw member residing inside the first hole saw member to support the longitudinal sections of the first member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside the the first hole saw member.

  20. Laboratory evidence for highly unsaturated hydrocarbons as carriers of some of the diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Fulara, J.; Lessen, D.; Freivogel, P.; Maier, J. P.

    1993-12-01

    THERE are many absorption lines in the visible and near-infrared spectra of stars located on the far side of diffuse interstellar clouds. The origin of these 'diffuse interstellar bands' (DIBs) has remained an unanswered question since their discovery almost 70 years ago1,2. There are now over 100 known bands1,3-6 and it is clear from the range of line widths, depths and shapes that the lines are unlikely to come from a single 'carrier'. Many of the proposed carriers, such as gas-phase carbon chains7, fullerenes8 and dust grains9, fail in having ultraviolet absorption lines where none has yet been observed in the stellar spectra. Poly cyclic aromatic species such as Ci16H10+ (ref. 10) and C10H8 (ref. 11) were recently claimed to be good candidates for carriers of some of the DIBs. Here we present laboratory evidence that highly unsaturated hydrocarbons with carbon numbers 6-12 may be the carriers of some of the DIBs in the range 480-1,000 nm. We deposit mass-selected molecules in a neon matrix at 5 K and measure their near-infrared, visible and ultraviolet spectra. Not only do these species have visible and near-infrared lines corresponding to fifteen DIBs, but they also show no absorption lines in the ultraviolet, consistent with astronomical observations.

  1. Computer programs for absorption spectrophotometry.

    PubMed

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis.

  2. Atmospheric Airborne Pressure Measurements using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.

    2014-12-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at 765 nm. Our approach uses a sequence of laser pulses at increasing wavelengths that sample a pair of absorption lines in the Oxygen A-band at 764.7 nm. The O2 lines were selected after careful spectroscopic analysis to minimize the O2 line temperature dependence and the availability of the transmitter and receiver technology to maximize transmitter power, doubling efficiency, and detector sensitivity. We compare our 2013 and 2014 Oxygen IPDA lidar measurements and evaluate the impact of receiver dynamic range, transmitter stability and signal to noise ratio on the differential optical depth measurements.

  3. Metamaterial with electromagnetic transparency under multiband absorptions

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Qi, Limei

    2017-02-01

    We propose a metal-dielectric-metal (MDM) metamaterial that has an electromagnetic (EM) transparency spectrum under multiband absorptions in the C and the X bands. The ground continuous metal film used in the conventional metamaterial absorber (MA) is replaced by a structured ground plane (SGP) in our design. The band-pass properties of the front patterned metal film and the SGP determine the EM transparency spectrum, while the magnetic and the electric resonances in the MDM structure contribute to the multiband absorptions. Due to the symmetric structure of the unit cell, the absorption bands and the EM transparency spectrum of the metamaterial have the property of polarization independency. Despite the normal incidence, the metamaterial can also be used for non-normal incidence.

  4. Variation of the 3-μm absorption feature on Mars: observations over eastern Valles Marineris by the mariner 6 infrared spectrometer

    USGS Publications Warehouse

    Calvin, Wendy M.

    1997-01-01

    A new approach for calibration of the shortest wavelength channel (1.8 to 6.0 μm) of the Mariner 6 infrared spectrometer was derived. This calibration provides a new description of the instrument response function from 1.8 to 3.7 μm and accounts for the thermal contribution to the signal at longer wavelengths. This allows the two segments from 1.8 to 6 μm to be merged into a single spectrum. The broad water of hydration absorption spans these two segments and is examined in these merged spectra using a method of band integration. Unlike previous analyses which rely on ratios at two wavelengths, the integration method can assess the band strength independently from the albedo in the near infrared. Spectra taken over the eastern end of the Valles Marineris are examined for variations of the band-integrated value, and three distinct clusters are found. Within the estimated uncertainty, two clusters (both low and high albedo) have approximately the same integrated band depth. The third cluster (medium albedo) has an integrated band depth about 10% higher. This difference cannot be systematically attributed to either surface or atmospheric parameters and suggests variation in the amount of water either chemically or physically bound in surface materials. Approximately one-half of the high integrated band depth cluster is associated with chaotic terrain at the source of outflow channels, the other half occurs over lower inertia plains adjacent to chasmata. This suggests both surface physical properties and mineralogy as well as water in exchange with the atmosphere contribute to the 3-μm bound water absorption.

  5. High-Absorption-Efficiency Superlattice Solar Cells by Excitons

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Kawaharazuka, Atsushi; Onomitsu, Koji; Horikoshi, Yoshiji

    2013-11-01

    The effect of excitonic absorption on solar cell efficiency has been investigated using solar cells with AlGaAs/GaAs superlattice structures. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption of bulk GaAs. Excitonic absorption shows strong and sharp peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of the superlattice solar cells are quite similar to the calculated absorption spectra considering the excitonic effect. The superlattice solar cells are confirmed to have high absorption coefficient compared with the GaAs and AlGaAs bulk solar cells. These results suggest that the enhanced absorption by excitons can increase the quantum efficiency of solar cells. This effect is more prominent for the solar cells with small absorption layer thicknesses.

  6. Interpretation of the Minkowski bands in Grw + 70 deg 8247.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1972-01-01

    Demonstration on the basis of the spectral structure of circular polarization in Grw + 70 deg 8247, that the absorption bands are at least in part molecular in origin. The spectrum of molecular helium has strong bands coincident with several of the Minkowski bands and, in particular, at high temperature shows a strong band head at about 4125 A. Helium molecules could be formed in sufficient density to give the absorption features in the star if it has a pure helium atmosphere. The Zeeman effect in molecular helium can explain in general the observed spectral features in the polarization and also may be responsible for the continuum polarization.

  7. Atmospheric Absorption Parameters for Laser Propagation

    DTIC Science & Technology

    2007-11-02

    high-resolution, good photometric accuracy data for numerous bands in the 3-5 Am region, using the facility at Kitt Peak National Solar Observatory. The...L49-L52 (2001). 44. A. Castrillo, G. Gagliardi, G. Casa , and L. Gianfrani, "Combined interferometric and absorption-spectroscopic technique for...from FT visible solar absorption spectra and evaluation of spectroscopic databases," JQRST 82, 133-150 (2003). 53. D. Jacquemart, R.R. Gamache, and L.S

  8. Diffuse Interstellar Bands in Emission

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Sarre, P.; Marshall, C. C. M.; Spekkens, K.; de Naray, R. Kuzio

    Recent Fabry-Pérot observations towards the galaxy NGC 1325 with the Southern African Large Telescope (SALT) led to the serendipitous discovery of an emission feature centered at 661.3 nm arising from material in the interstellar medium (ISM) of our Galaxy; this emission feature lies at the wavelength of one of the sharper and stronger diffuse bands normally seen in absorption. The flux of the feature is 4.2 +/- 0.5 × 10-18 es-1 cm-2 arcsec-2. It appears that this is the first observation of emission from a diffuse band carrier in the ISM, excited in this case by the interstellar radiation field. We present the discovery spectra and describe follow-up measurements proposed for SALT.

  9. Short-range demonstrations of monocular passive ranging using O2 (X3Σg- → b1Σg+) absorption spectra.

    PubMed

    Hawks, Michael R; Vincent, R Anthony; Martin, Jacob; Perram, Glen P

    2013-05-01

    The depth of absorption bands in observed spectra of distant, bright sources can be used to estimate range to the source. Experimental results are presented based on observations of the O2 X(v" = 0) → b(v' = 0) absorption band centered around 762 nm and the O2 X(v" = 0) → b(v' = 1) band around 689 nm. Range is estimated by comparing observed values of band-average absorption against predicted curves derived from either historical data or model predictions. Accuracy of better than 0.5% was verified in short-range (up to 3 km), static experiments using a high-resolution (1 cm(-1)) spectroradiometer. This method was also tested against the exhaust plume of a Falcon 9 rocket launched from Cape Canaveral, Florida. The rocket was launched from an initial range of 13 km and tracked for 90 s after ignition. Range error was below 2% for the first 30 s and consistent with predicted error throughout the track.

  10. Absorption of surface acoustic waves by graphene

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Xu, W.

    2011-06-01

    We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs). We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  11. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  12. Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge bands

    NASA Technical Reports Server (NTRS)

    Allen, M.; Frederick, J. E.

    1982-01-01

    Accurate calculations of the atmospheric opacity and the photodissociation rate of molecular oxygen in the Schumann-Runge bands (175-205) are necessary for modeling chemistry in the terrestrial upper atmosphere. The present investigation is concerned with a single simple parameterization of effective cross sections which can be used to calculate both O2 opacity and dissociation rates. Use is made of a zenith angle dependent factor which accounts for variations shown in detailed calculations. The conducted analysis is based on the results of Frederick and Hudson (1980). Attention is given to molecular oxygen effective cross sections and nitric oxide effective cross sections. It is found that the depth of the atmosphere to which solar radiation in the 175-200 nm spectral region penetrates is a sensitive function of the rotational line widths in the Schumann-Runge bands. The oscillator strength for each band measures the cross section integrated over the band while the line width determine how the absorption is distributed in wavenumber.

  13. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  14. Indirect band gap in alpha-ZrO2

    SciTech Connect

    Kwok, C.K.; Aita, C.R.

    1990-08-01

    Measurements of the absorption coefficient on the fundamental optical absorption edge of alpha ZrO2 show that an indirect interband transition at 4.70 eV precedes two previously reported direct transitions. This result is in agreement with recent theoretical calculations of the alpha ZrO2 band structure. (JS)

  15. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms.

    PubMed

    Alkaladi, Ali; How, Martin J; Zeil, Jochen

    2013-02-01

    Polarisation sensitivity is based on the regular alignment of dichroic photopigment molecules within photoreceptor cells. In crustaceans, this is achieved by regularly stacking photopigment-rich microvilli in alternating orthogonal bands within fused rhabdoms. Despite being critical for the efficient detection of polarised light, very little research has focused on the detailed arrangement of these microvilli bands. We report here a number of hitherto undescribed, but functionally relevant changes in the organisation of microvilli banding patterns, both within receptors, and across the compound eye of fiddler crabs. In all ommatidia, microvilli bands increase in length from the distal to the proximal ends of the rhabdom. In equatorial rhabdoms, horizontal bands increase gradually from 3 rows of microvilli distally to 20 rows proximally. In contrast, vertical equatorial microvilli bands contain 15-20 rows of microvilli in the distal 30 µm of the rhabdom, shortening to 10 rows over the next 30 µm and then increase in length to 20 rows in parallel with horizontal bands. In the dorsal eye, horizontal microvilli occupy only half the cross-sectional area as vertical microvilli bands. Modelling absorption along the length of fiddler crab rhabdoms suggests that (1) increasing band length assures that photon absorption probability per band remains constant along the length of photoreceptors, indicating that individual bands may act as units of transduction or adaptation; (2) the different organisation of microvilli bands in equatorial and dorsal rhabdoms tune receptors to the degree and the information content of polarised light in the environment.

  16. Experimental study of wideband in-band full-duplex communication based on optical self-interference cancellation.

    PubMed

    Zhang, Yunhao; Xiao, Shilin; Yu, Yinghong; Chen, Cao; Bi, Meihua; Liu, Ling; Zhang, Lu; Hu, Weisheng

    2016-12-26

    In this paper, we experimentally demonstrate and study a wideband in-band full-duplex (IBFD) wireless communication system based on optical self-interference cancellation (SIC). The optical SIC performances based on antennas for broadband IBFD are firstly evaluated within high frequency bands (> 10GHz). In this system, two electro-absorption-modulated lasers (EMLs) and a balanced photo-detector (BPD) are employed to remove the wideband self-interference within received wireless signal. By theoretical derivation and experimental verification, the impact factors of SIC are analyzed, especially for non-flatness wireless channel case. Experimental results show more than 30-dB cancellation depth in 100-MHz bandwidth with employment of horn antennas. Besides, IBFD transmission performance based on OFDM signals for different bandwidth with 11.15-GHz center frequency is also demonstrated, and ~52.2- dB•Hz2/3 spurious-free dynamic range (SFDR) is obtained.

  17. Cloud Information Content Analysis for EPIC's Oxygen A- and B-band Channels

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Sanghavi, S.

    2011-12-01

    The Earth Polychromatic Imaging Camera (EPIC) instrument on the Deep Space Climate Observatory (DSCOVR) will have two molecular oxygen channels: one for the well-known ``A'' band at~764 nm and one for the weaker ``B'' band at 688~nm. In both cases, a channel-integrated relative measurement of absorption is possible using an ``in-band'' channel and a nearby ``reference'' channel. Together, these four observations enable a rudimentary differential optical absorption spectroscopy (DOAS) of O2 in the characteristic retro-reflection geometry of the L1 vantage point. A priori, we thus have at best two new pieces of cloud information to access. EPIC's pixels have 10x10 km2 footprints at nadir (center of the illuminated disk), more as the viewing angle increases away from local zenith. What new information can be learned about clouds from these data on a pixel-by-pixel basis? O2 A-band observations from space have been pioneered with CNES's POLDER, ESA's SCIAMACHY, and JAXA's GOSat. NASA's OCO-2, to be launched in early 2013, will also have A-band capability. POLDER has low spectral and spatial resolutions, but offers multiple viewing directions for every pixel; SCIAMACHY has higher spectral but worse spatial resolution and just one viewing angle. GOSat has very high spectral but rather low spatial resolutions, again with the possibility of dense angular sampling, but no imaging (just one pixel at a time). OCO-2, a narrow swath imager, will have similarly high spectral resolution and reasonably high ( ˜2~km) spatial resolution. Of these four LEO missions, two are focused on CO2 DOAS, with O2 being assayed operationally only to deliver it in ppm's. POLDER and SCIAMACHY however have official cloud products based on A-band measurements. They contain, at the least, an estimate of cloud top height and, at the most, that plus an estimate of cloud pressure thickness. Cloud optical depth and effective particle size are derived from other spectral data, including continuum values

  18. Picosecond laser induced electric field modulation of carotenoid absorption bands

    SciTech Connect

    Gosztola, D.; Yamada, Hiroko; Wasielewski, M.R.

    1994-04-01

    We present a new and unique way of forming an intense electric field near a molecule in order to induce electrochromism. We have done this by creating an electron-hole pair within close proximity to, but electronically isolated form, a polarizable molecule. The molecular system that we have utilized consists of a zinc porphyrin -- pyromellitic diimide light induced charge transfer complex held rigidly proximate to a {beta}-carotene using a calix[4]arene linkage. The formation of the charge separated state of the porphyrin-diimide results in a dipole formed by the 8.4 {Angstrom} separation of the electron-hole pair. The electric field from this dipole was found to induce electrochromism in the carotene.

  19. On the estimation of snow depth from microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Chang, Alfred T. C.; Sharma, Awdhesh K.

    1992-01-01

    Multiple-channel microwave radiometric measurements made over Alaska at aircraft (near 90 and 183 GHz) and satellite (at 37 and 85 GHz) altitudes are used to study the effect of atmospheric absorption on the estimation of snow depth. The estimation is based on the radiative transfer calculations using an early theoretical model of Mie scattering of single-size particles. It is shown that the radiometric correction for the effect of atmospheric absorption is important even at 37 GHz for a reliable estimation of snow depth. Under a dry atmosphere and based on single-frequency radiometric measurements, the underestimation of snow depth could amount to 50 percent at 85 GHz and 20-30 percent at 37 GHz if the effect of atmospheric absorption is not taken into account. The snow depths estimated from the 90-GHz aircraft and 85-GHz satellite measurements are found to be in reasonable agreement. However, there is a discrepancy in the snow depths estimated from the 37-GHz (at both vertical and horizontal polarizations) and 85-GHz satellite measurements.

  20. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].

    PubMed

    2005-01-01

    The infrared absorption spectra of reduced and chemically oxidized reaction center preparations from the purple bacterium Rhodobacter sphaeroides were investigated by means of high-order derivative spectroscopy. The model Gaussian band with a maximum at 810 nm and a half-band of 15 nm found in the absorption spectrum of the reduced reaction center preparation is eliminated after the oxidation of photoactive bacteriochlorophyll dimer (P). This band was related to the absorption of the P(+)y excitonic band of P. On the basis of experimental results, it was concluded that the bleaching of the P(+)y absorption band at 810 nm in the oxidized reaction center preparations gives the main contribution to the blue shift of the 800 nm absorption band of Rb. sphaeroides reaction centers.

  1. Dual band metamaterial perfect absorber based on Mie resonances

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Lan, Chuwen; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-08-01

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric "atom" with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric "atom" and copper plate. Mie resonances of dielectric "atom" provide a simple way to design metamaterial perfect absorbers with high symmetry.

  2. High Pressure Noble Gas Alkali Vapor Mixtures and Their Visible and Infrared Excimer Bands.

    DTIC Science & Technology

    1980-02-01

    Dense Alkali Vapors; Near Infrared Lasers; Infrared Absorption and Emission 20. ABSTRACT (Conrfinte on reverse -Ide If nece oeery ed Identify hr block...n,mber) " The infrared absorption of saturated alkali vapors has been measured for the first time. New absorption bands are tentatively assigned to...region of infrared absorption between lu and 2 i in the saturated vapors of sodium, potassium, rubidium and cesium. This new region of absorption appears

  3. Vibrational resonance enhanced broadband multiphoton absorption in a triphenylamine derivative

    SciTech Connect

    Lu Changgui; Cui Yiping; Huang Wei; Yun Binfeng; Wang Zhuyuan; Hu Guohua; Cui Jing; Lu Zhifeng; Qian Ying

    2007-09-17

    Multiphoton absorption of 2,5-bis[4-(2-N,N-diphenylaminostyryl)phenyl]-1,3,4-oxadiazole was experimentally studied by using femtosecond laser pulses. This material demonstrates a very broad multiphoton absorption band of around 300 nm width with two peaks of 1250 and 1475 nm. The first peak results from the three-photon absorption process while the second is attributed to the vibrational resonance enhanced four-photon absorption process. Combination of these two processes provides a much broader multiphoton absorption band. In this letter, the analytical solution to nonlinear transmission of a three-photon absorption process is also given when the incident beam has a Gaussian transverse spatial profile.

  4. Nucleation of shear bands in amorphous alloys

    PubMed Central

    Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio

    2014-01-01

    The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599

  5. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  6. Adjustable gastric banding (image)

    MedlinePlus

    ... normal digestive process. In this procedure, a hollow band made of special material is placed around the ... pouch and causes a feeling of fullness. The band can be tightened or loosened over time to ...

  7. New Laboratory Data on a Molecular Band at 4429 Å

    NASA Astrophysics Data System (ADS)

    Araki, M.; Linnartz, H.; Kolek, P.; Ding, H.; Boguslavskiy, A.; Denisov, A.; Schmidt, T. W.; Motylewski, T.; Cias, P.; Maier, J. P.

    2004-12-01

    New laboratory data are presented for the previously reported molecular absorption band at 4429 Å observed in a benzene plasma matching the strongest diffuse interstellar band (DIB) at 4428.9 Å. Gas-phase absorption spectra are presented for rotational temperatures of ~15 and 200 K. The observations indicate that it is unlikely that the laboratory band and the 4429 Å DIB are related. Eleven isomers of C5H5(+) and C6H5(+), both neutral and cationic, were considered as possible carriers of the laboratory band in view of the observed rotational profiles and deuterium isotope shifts. The experimental data and theoretical calculations (CASPT3, MRCI) indicate that the HCCHCHCHCH radical, a planar but nonlinear chain with one hydrogen on each carbon, is the most probable candidate causing the 4429 Å laboratory absorption.

  8. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect

    Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.

    2014-08-28

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  9. Low Power Band to Band Tunnel Transistors

    DTIC Science & Technology

    2010-12-15

    the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley

  10. Optimization of the depth resolution for deuterium depth profiling up to large depths

    NASA Astrophysics Data System (ADS)

    Wielunska, B.; Mayer, M.; Schwarz-Selinger, T.

    2016-11-01

    The depth resolution of deuterium depth profiling by the nuclear reaction D(3He,p)α is studied theoretically and experimentally. General kinematic considerations are presented which show that the depth resolution for deuterium depth profiling using the nuclear reaction D(3He,p)α is best at reaction angles of 0° and 180° at all incident energies below 9 MeV and for all depths and materials. In order to confirm this theoretical prediction the depth resolution was determined experimentally with a conventional detector at 135° and an annular detector at 175.9°. Deuterium containing thin films buried under different metal cover layers of aluminum, molybdenum and tungsten with thicknesses in the range of 0.5-11 μm served as samples. For all materials and depths an improvement of the depth resolution with the detector at 175.9° is achieved. For tungsten as cover layer a better depth resolution up to a factor of 18 was determined. Good agreement between the experimental results and the simulations for the depth resolution is demonstrated.

  11. Dual band metamaterial perfect absorber based on artificial dielectric “molecules”

    PubMed Central

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric “molecules” with high symmetry. The artificial dielectric “molecule” consists of four “atoms” of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  12. Removal of Mars atmospheric gas absorption from Phobos-2/ISM spectra

    NASA Astrophysics Data System (ADS)

    Castronuovo, M. M.; Ulivieri, C.

    Infrared imaging spectrometer (ISM) is an imaging spectrometer in the range of the near infrared that flew onboard of Soviet probe Phobos 2 in 1989. Its first objective was to obtain information about the mineralogic composition of the soil of Mars and its satellite Phobos, and about the spatial and temporal variability of the Martian atmosphere. In the spectral range of the instrument 0.76-3.16 microns, the radiation emerging from Mars' atmosphere is almost entirely due to the solar radiation reflected by the soil. Therefore, independent knowledge of the spectral transmittance of the atmosphere allows us to eliminate the atmospheric effect from the ISM data and so to obtain the spectral signature of the planet soil. In the present work the Martian atmospheric transmittance has been computed using FASCODE and the spectral lines atlas HITRAN of AFGL. The atmospheric profile has been defined on the basis of the work of Moroz et al. Then, the convolution of the computed transmittance with the response functions of ISM has been carried out to obtain the atmospheric absorption from the measurements it is necessary to renormalize the transmittance computed with FASCODE so that the depth of the absorption bands is the same as that of the bands measured by ISM. Finally, dividing the measured spectra by the computed ones we obtain the spectra signature of Martian soil from which it is possible to deduce the mineralogical composition of the observed zones.

  13. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  14. Absorption of light dark matter in semiconductors

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derive the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. With only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.

  15. Multilayered graphene in K(a)-band: nanoscale coating for aerospace applications.

    PubMed

    Kuzhir, P; Volynets, N; Maksimenko, S; Kaplas, T; Svirko, Yu

    2013-08-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in K(a)-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples was monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene, being only some thousandth of skin depth, provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multilayer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  16. Disparity Gradients and Depth Scaling

    DTIC Science & Technology

    1989-09-01

    points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian (continued on back)_ D D F~~ 14 73 EDTION 01 1NOV...stimuli than for points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian approach ’which allows to

  17. Metal detector depth estimation algorithms

    NASA Astrophysics Data System (ADS)

    Marble, Jay; McMichael, Ian

    2009-05-01

    This paper looks at depth estimation techniques using electromagnetic induction (EMI) metal detectors. Four algorithms are considered. The first utilizes a vertical gradient sensor configuration. The second is a dual frequency approach. The third makes use of dipole and quadrapole receiver configurations. The fourth looks at coils of different sizes. Each algorithm is described along with its associated sensor. Two figures of merit ultimately define algorithm/sensor performance. The first is the depth of penetration obtainable. (That is, the maximum detection depth obtainable.) This describes the performance of the method to achieve detection of deep targets. The second is the achievable statistical depth resolution. This resolution describes the precision with which depth can be estimated. In this paper depth of penetration and statistical depth resolution are qualitatively determined for each sensor/algorithm. A scientific method is used to make these assessments. A field test was conducted using 2 lanes with emplaced UXO. The first lane contains 155 shells at increasing depths from 0" to 48". The second is more realistic containing objects of varying size. The first lane is used for algorithm training purposes, while the second is used for testing. The metal detectors used in this study are the: Geonics EM61, Geophex GEM5, Minelab STMR II, and the Vallon VMV16.

  18. Stereo depth distortions in teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Vonsydow, Marika

    1988-01-01

    In teleoperation, a typical application of stereo vision is to view a work space located short distances (1 to 3m) in front of the cameras. The work presented here treats converged camera placement and studies the effects of intercamera distance, camera-to-object viewing distance, and focal length of the camera lenses on both stereo depth resolution and stereo depth distortion. While viewing the fronto-parallel plane 1.4 m in front of the cameras, depth errors are measured on the order of 2cm. A geometric analysis was made of the distortion of the fronto-parallel plane of divergence for stereo TV viewing. The results of the analysis were then verified experimentally. The objective was to determine the optimal camera configuration which gave high stereo depth resolution while minimizing stereo depth distortion. It is found that for converged cameras at a fixed camera-to-object viewing distance, larger intercamera distances allow higher depth resolutions, but cause greater depth distortions. Thus with larger intercamera distances, operators will make greater depth errors (because of the greater distortions), but will be more certain that they are not errors (because of the higher resolution).

  19. Perception of relative depth interval: systematic biases in perceived depth.

    PubMed

    Harris, Julie M; Chopin, Adrien; Zeiner, Katharina; Hibbard, Paul B

    2012-01-01

    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.

  20. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  1. Motion-Adaptive Depth Superresolution.

    PubMed

    Kamilov, Ulugbek S; Boufounos, Petros T

    2017-04-01

    Multi-modal sensing is increasingly becoming important in a number of applications, providing new capabilities and processing challenges. In this paper, we explore the benefit of combining a low-resolution depth sensor with a high-resolution optical video sensor, in order to provide a high-resolution depth map of the scene. We propose a new formulation that is able to incorporate temporal information and exploit the motion of objects in the video to significantly improve the results over existing methods. In particular, our approach exploits the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. We provide experiments to validate our approach and confirm that the quality of the estimated high-resolution depth is improved substantially. Our approach can be a first component in systems using vision techniques that rely on high-resolution depth information.

  2. Neural computations underlying depth perception

    PubMed Central

    Anzai, Akiyuki; DeAngelis, Gregory C.

    2010-01-01

    Summary Neural mechanisms underlying depth perception are reviewed with respect to three computational goals: determining surface depth order, gauging depth intervals, and representing 3D surface geometry and object shape. Accumulating evidence suggests that these three computational steps correspond to different stages of cortical processing. Early visual areas appear to be involved in depth ordering, while depth intervals, expressed in terms of relative disparities, are likely represented at intermediate stages. Finally, 3D surfaces appear to be processed in higher cortical areas, including an area in which individual neurons encode 3D surface geometry, and a population of these neurons may therefore represent 3D object shape. How these processes are integrated to form a coherent 3D percept of the world remains to be understood. PMID:20451369

  3. Influence of Anchoring on Burial Depth of Submarine Pipelines

    PubMed Central

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952

  4. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    PubMed

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  5. A new device for acquiring ground truth on the absorption of light by turbid waters

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.

    1974-01-01

    The author has identified the following significant results. A new device, called a Spectral Attenuation Board, has been designed and tested, which enables ERTS-1 sea truth collection teams to monitor the attenuation depths of three colors continuously, as the board is being towed behind a boat. The device consists of a 1.2 x 1.2 meter flat board held below the surface of the water at a fixed angle to the surface of the water. A camera mounted above the water takes photographs of the board. The resulting film image is analyzed by a micro-densitometer trace along the descending portion of the board. This yields information on the rate of attenuation of light penetrating the water column and the Secchi depth. Red and green stripes were painted on the white board to approximate band 4 and band 5 of the ERTS MSS so that information on the rate of light absorption by the water column of light in these regions of the visible spectrum could be concurrently measured. It was found that information from a red, green, and white stripe may serve to fingerprint the composition of the water mass. A number of these devices, when automated, could also be distributed over a large region to provide a cheap method of obtaining valuable satellite ground truth data at present time intervals.

  6. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    SciTech Connect

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  7. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  8. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  9. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  10. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  11. On evaluation of depth accuracy in consumer depth sensors

    NASA Astrophysics Data System (ADS)

    Abd Aziz, Azim Zaliha; Wei, Hong; Ferryman, James

    2015-12-01

    This paper presents an experimental study of different depth sensors. The aim is to answer the question, whether these sensors give accurate data for general depth image analysis. The study examines the depth accuracy between three popularly used depth sensors; ASUS Xtion Prolive, Kinect Xbox 360 and Kinect for Windows v2. The main attention is to study on the stability of pixels in the depth image captured at several different sensor-object distances by measuring the depth returned by the sensors within specified time intervals. The experimental results show that the fluctuation (mm) of the random selected pixels within the target area, increases with increasing distance to the sensor, especially on the Kinect for Xbox 360 and the Asus Xtion Prolive. Both of these sensors provide pixels fluctuation between 20mm and 30mm at a sensor-object distance beyond 1500mm. However, the pixel's stability of the Kinect for Windows v2 not affected much with the distance between the sensor and the object. The maximum fluctuation for all the selected pixels of Kinect for Windows v2 is approximately 5mm at sensor-object distance of between 800mm and 3000mm. Therefore, in the optimal distance, the best stability achieved.

  12. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  13. Wide Band to ''Double Band'' upgrade

    SciTech Connect

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs.

  14. Laboratory studies of infrared absorption by NO2 and HNO3

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Goldman, A.; Bonomo, F.

    1975-01-01

    Data concerning the quantitative absorption in the 11 and 22 micron region by HNO3 were obtained. Results are presented indicating the temperature dependence of these bands of HNO3 vapor. The 21.8 micron absorption bands of HNO3 vapor at 40 C are discussed along with the integrated intensity and line parameters for the 6.2 micron band of NO2.

  15. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  16. Perfect electromagnetic absorption at one-atom-thick scale

    SciTech Connect

    Li, Sucheng; Duan, Qian; Li, Shuo; Yin, Qiang; Lu, Weixin; Li, Liang; Hou, Bo; Gu, Bangming; Wen, Weijia

    2015-11-02

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  17. Sapphire fiber evanescent wave absorption in turbid media.

    PubMed

    Zhang, Jian; Xiong, Feibing; Djeu, Nicholas

    2009-08-01

    The influence of particulates on sapphire fiber evanescent wave absorption by water has been studied. Suspensions containing micro-sized graphite flakes and glassy carbon powder were used. Conventional free-space transmittance measurements of these samples showed strong absorption and scattering, which severely screened the absorption by water. However, the absorption on the water band determined from the evanescent wave interaction was unaffected by the presence of the graphite flakes. These results indicate that fiber-optic evanescent wave chemical sensors may be suitable for process control applications involving turbid reactor streams.

  18. Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.

    2012-01-01

    The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.

  19. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  20. Interpretation of broad-band seismograms from central Aleutian earthquakes.

    USGS Publications Warehouse

    Engdahl, E.R.; Kind, R.

    1986-01-01

    Broad-band Graefenberg (GRF) array data from 11 moderate-size shallow-depth earthquakes in the central Aleutians have been used to study the effects of focal depth and structure across the arc on observed waveforms. The theoretical results, primarily phase arrival times, suggest that arc structure is responsible for many of the complicated features seen on vertical-component summation seismograms simulated with different instrument responses from the broad-band array data. Except for one trench event, all the earthquakes studied occurred along the plate interface zone, had similar thrust focal mechanisms, and differed only in depth. As a result, the effects of depth phases on observed GRF waveforms across the arc were found to be systematically related to the increase in focal depth along the shallow-dipping seismic zone. -from Authors

  1. Depth perception of illusory surfaces.

    PubMed

    Kogo, Naoki; Drożdżewska, Anna; Zaenen, Peter; Alp, Nihan; Wagemans, Johan

    2014-03-01

    The perception of an illusory surface, a subjectively perceived surface that is not given in the image, is one of the most intriguing phenomena in vision. It strongly influences the perception of some fundamental properties, namely, depth, lightness and contours. Recently, we suggested (1) that the context-sensitive mechanism of depth computation plays a key role in creating the illusion, (2) that the illusory lightness perception can be explained by an influence of depth perception on the lightness computation, and (3) that the perception of variations of the Kanizsa figure can be well-reproduced by implementing these principles in a model (Kogo, Strecha, et al., 2010). However, depth perception, lightness perception, contour perception, and their interactions can be influenced by various factors. It is essential to measure the differences between the variation figures in these aspects separately to further understand the mechanisms. As a first step, we report here the results of a new experimental paradigm to compare the depth perception of the Kanizsa figure and its variations. One of the illusory figures was presented side-by-side with a non-illusory variation whose stereo disparities were varied. Participants had to decide in which of these two figures the central region appeared closer. The results indicate that the depth perception of the illusory surface was indeed different in the variation figures. Furthermore, there was a non-linear interaction between the occlusion cues and stereo disparity cues. Implications of the results for the neuro-computational mechanisms are discussed.

  2. Teleseismic depth estimation of the 2015 Gorkha-Nepal aftershocks

    NASA Astrophysics Data System (ADS)

    Letort, Jean; Bollinger, Laurent; Lyon-Caen, Helene; Guilhem, Aurélie; Cano, Yoann; Baillard, Christian; Adhikari, Lok Bijaya

    2016-12-01

    The depth of 61 aftershocks of the 2015 April 25 Gorkha, Nepal earthquake, that occurred within the first 20 d following the main shock, is constrained using time delays between teleseismic P phases and depth phases (pP and sP). The detection and identification of these phases are automatically processed using the cepstral method developed by Letort et al., and are validated with computed radiation patterns from the most probable focal mechanisms. The events are found to be relatively shallow (13.1 ± 3.9 km). Because depth estimations could potentially be biased by the method, velocity model or selected data, we also evaluate the depth resolution of the events from local catalogues by extracting 138 events with assumed well-constrained depth estimations. Comparison between the teleseismic depths and the depths from local and regional catalogues helps decrease epistemic uncertainties, and shows that the seismicity is clustered in a narrow band between 10 and 15 km depth. Given the geometry and depth of the major tectonic structures, most aftershocks are probably located in the immediate vicinity of the Main Himalayan Thrust (MHT) shear zone. The mid-crustal ramp of the flat/ramp MHT system is not resolved indicating that its height is moderate (less than 5-10 km) in the trace of the sections that ruptured on April 25. However, the seismicity depth range widens and deepens through an adjacent section to the east, a region that failed on 2015 May 12 during an Mw 7.3 earthquake. This deeper seismicity could reflect a step-down of the basal detachment of the MHT, a lateral structural variation which probably acted as a barrier to the dynamic rupture propagation.

  3. Singing with the Band

    ERIC Educational Resources Information Center

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  4. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  5. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  6. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  7. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  8. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  9. Electronic absorptions of the benzylium cation

    NASA Astrophysics Data System (ADS)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.

    2012-11-01

    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  10. Physicochemical patterns of ozone absorption by wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  11. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  12. Oxygen Isotope Variability within Nautilus Shell Growth Bands

    PubMed Central

    2016-01-01

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183

  13. Oxygen Isotope Variability within Nautilus Shell Growth Bands.

    PubMed

    Linzmeier, Benjamin J; Kozdon, Reinhard; Peters, Shanan E; Valley, John W

    2016-01-01

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.

  14. Iliotibial band friction syndrome

    PubMed Central

    2010-01-01

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy. PMID:21063495

  15. Calibrating river bathymetry via image to depth quantile transformation

    NASA Astrophysics Data System (ADS)

    Legleiter, C. J.

    2015-12-01

    Remote sensing has emerged as a powerful means of measuring river depths, but standard algorithms such as Optimal Band Ratio Analysis (OBRA) require field measurements to calibrate image-derived estimates. Such reliance upon field-based calibration undermines the advantages of remote sensing. This study introduces an alternative approach based on the probability distribution of depths dd within a reach. Provided a quantity XX related to dd can be derived from a remotely sensed data set, image-to-depth quantile transformation (IDQT) infers depths throughout the image by linking the cumulative distribution function (CDF) of XX to that of dd. The algorithm involves determining, for each pixel in the image, the CDF value for that particular value of X/bar{X} and then inferring the depth at that location from the inverse CDF of the scaled depths d/dbard/bar{d}, where the overbar denotes a reach mean. For X/bar{X}, an empirical CDF can be derived directly from pixel values or a probability distribution fitted. Similarly, the CDF of d/dbard/bar{d} can be obtained from field data or from a theoretical model of the frequency distribution of dd within a reach; gamma distributions have been used for this purpose. In essence, the probability distributions calibrate XX to dd while the image provides the spatial distribution of depths. IDQT offers a number of advantages: 1) direct field measurements of dd during image acquisition are not absolutely necessary; 2) because the XX vs. dd relation need not be linear, negative depth estimates along channel margins and shallow bias in pools are avoided; and 3) because individual pixels are not linked to specific depth measurements, accurate geo-referencing of field and image data sets is not critical. Application of OBRA and IDQT to a gravel-bed river indicated that the new, probabilistic algorithm was as accurate as the standard, regression-based approach and lead to more hydraulically reasonable bathymetric maps.

  16. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  17. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    PubMed

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis.

  18. High resolution absorption spectrum of dianilino in the vapor phase.

    PubMed

    Bayrakçeken, Fuat

    2009-01-01

    Photophysical and photochemical properties of diradical in the first excited state is recorded for the very first time with the IR, band structure for dianilino molecule at room temperature, in the vapor phase. In this experiment high resolution absorption spectra of anilino free radical, dianilino, aniline in the vapor phase and silicon dioxide in the solid state were recorded by flash photolysis technique photographically. Silicon dioxide absorption band between 250 and 255 nm were also observed for the reaction cell, because the cell and windows of the cell material were spectrosilica grade fused quartz. And this absorption band also used as wavelength calibration for all the photoproducts formed in the reaction cell during optical pumping.

  19. CSF oligoclonal banding

    MedlinePlus

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  20. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  1. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  2. Rectal absorption of propylthiouracil.

    PubMed

    Bartle, W R; Walker, S E; Silverberg, J D

    1988-06-01

    The rectal absorption of propylthiouracil (PTU) was studied and compared to oral absorption in normal volunteers. Plasma levels of PTU after administration of suppositories of PTU base and PTU diethanolamine were significantly lower compared to the oral route. Elevated plasma reverse T3 levels were demonstrated after each treatment, however, suggesting a desirable therapeutic effect at this dosage level for all preparations.

  3. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  4. Rotating drum variable depth sampler

    DOEpatents

    Nance, Thomas A.; Steeper, Timothy J.

    2008-07-01

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  5. Pursuing the Depths of Knowledge

    ERIC Educational Resources Information Center

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  6. Formaldehyde Absorption toward W51

    SciTech Connect

    Kogut, A.; Smoot, G.F.; Bennett, C.L.; Petuchowski, S.J.

    1988-04-01

    We have measured formaldehyde (H{sub 2}CO) absorption toward the HII region complex W51A (G49.5-0.4) in the 6 cm and 2 cm wavelength rotational transitions with angular resolution of approximately 4 inch. The continuum HII region shows a large, previously undetected shell structure 5.5 pc along the major axis. We observe no H{sub 2}CO emission in regions of low continuum intensity. The absorption, converted to optical depth, shows a higher degree of clumping than previous maps at lower resolution. The good S/N of the maps allows accurate estimation of the complicated line profiles, showing some of the absorbing clouds to be quite patchy. We list the properties of the opacity spectra for a number of positions both in the clumps and in the more diffuse regions of the absorbing clouds, and derive column densities for the 1{sub 11} and 2{sub 12} rotational levels of ortho-formaldehyde.

  7. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  8. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  9. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  10. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  11. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  12. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  13. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-08-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  14. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    clearing point of 51.5 "C and its melting point is lower than -10 °C due to super-cooling effect . We also measured its transmission spectrum in the...thickness (or effective optical path length) increases, then the absorption will increase exponentially, as Eq. (1) indicates. To improve transmittance... effective mass (m) as: (0 = -yjic/m. (3) As the effective mass increases the vibration frequency decreases, i.e., the absorption band shifts toward a

  15. Spectroscopy of Mars form 2.04 to 2.44 micron during the 1993 opposition: Absolute calibration and atmospheric vs mineralogic origin of narrow absorption features

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-01-01

    We present moderate-resolution (lambda/delta lambda = 300 to 370) reflectance spectral of Mars from 2.04 to 2.44 microns that were obtained at United Kingdom Infrared Telescope (UKIRT) during the 1993 opposition. Seven narrow absorption features were detected and found to have a Mars origin. By comparison with solar and Mars atmospheric spectra, five of these features were attributed all or in part to Mars atmospheric CO2 or CO (2.052 +/- 0.003, 2.114 +/- 0.002, 2.150 +/- 0.003, 2.331 +/- 0.001, and 2.357 +/- 0.002 microns). Two of the bands (2.331 +/- 0.001 and 2.357 +/- 0.002 micron) appear to have widths and depths that are consistent with additional, nonatmospheric absorptions, although a solar contribution cannot be entirely ruled out. Two other weak bands centered at 2.278 +/- 0.002 and 2.296 +/- 0.002 microns may be at least partially mineralogic in origin. The data provide no conclusive identification of the mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraries and previous mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraires and previous moderate spectral resolution mineral studies indicates that the most likely origin of these features is either (bi)carbonate or (bi)sulfate anions in framework silicates of (Fe, Mg)-OH bonds in sheet silicates. If the bands are caused by phyllosilicate minerals, then an explanation must be found for the extremely narrow widths of the cation-OH features in the Mars spectra as compared to terrestrial minerals.

  16. Spectroscopy of Mars form 2.04 to 2.44 micron during the 1993 opposition: Absolute calibration and atmospheric VS mineralogic origin of narrow absorption features

    NASA Astrophysics Data System (ADS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-09-01

    We present moderate-resolution (lambda/delta lambda = 300 to 370) reflectance spectral of Mars from 2.04 to 2.44 microns that were obtained at United Kingdom Infrared Telescope (UKIRT) during the 1993 opposition. Seven narrow absorption features were detected and found to have a Mars origin. By comparison with solar and Mars atmospheric spectra, five of these features were attributed all or in part to Mars atmospheric CO2 or CO (2.052 +/- 0.003, 2.114 +/- 0.002, 2.150 +/- 0.003, 2.331 +/- 0.001, and 2.357 +/- 0.002 microns). Two of the bands (2.331 +/- 0.001 and 2.357 +/- 0.002 micron) appear to have widths and depths that are consistent with additional, nonatmospheric absorptions, although a solar contribution cannot be entirely ruled out. Two other weak bands centered at 2.278 +/- 0.002 and 2.296 +/- 0.002 microns may be at least partially mineralogic in origin. The data provide no conclusive identification of the mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraries and previous mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraires and previous moderate spectral resolution mineral studies indicates that the most likely origin of these features is either (bi)carbonate or (bi)sulfate anions in framework silicates of (Fe, Mg)-OH bonds in sheet silicates. If the bands are caused by phyllosilicate minerals, then an explanation must be found for the extremely narrow widths of the cation-OH features in the Mars spectra as compared to terrestrial minerals.

  17. Development of gold induced surface plasmon enhanced CIGS absorption layer on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Park, Seong-Un; Sharma, Rahul; Sim, Jae-Kwan; Baek, Byung Joon; Ahn, Haeng-Kwun; Kim, Jin Soo; Lee, Cheul-Ro

    2013-09-01

    Localized surface plasmon resonance (LSPR) with metal nanoparticles is the promising phenomenon to increase light absorption by trapping light in thin film solar cells. In this study we demonstrate a successful LSPR effect with gold (Au) nanoparticles onto the Cu(In,Ga)Se2 (CIGS) absorption layer. First, the CIGS absorber layers is fabricated onto the Mo coated polyimide (PI) substrate by using two stage process as DC sputtering of CIG thin film followed by the selenization at 400 °C. Finally, the Au nanoparticles are deposited onto the CIGS layer with increasing particles size from 4-15 nm by using sputter coater for 10-120 s. The X-ray diffraction (XRD) patterns confirm the formation of CIGS/Au nanocomposite structure with prominent peak shift of CIGS reflections and increasing intensity for Au phase. The CIGS/Au nanocomposite morphologies with Au particle size distribution uniformity and surface coverage is examined under ultra-high resolution field effect scanning electron microscope (UHR-FESEM). A peak at 176 cm-1 in Raman spectra, associated with the “A1” mode of lattice vibration for the attributed to the pure chalcopyrite structure. The secondary ion mass spectroscopy (SIMS) showed ∼200 nm depth converge of Au nanoparticles into the CIGS absorption layer. The optical properties as transmittance, reflectance and absorbance of CIGS/Au layers were found to expand in the infrared region and the LSPR effect is the most prominent for Au particles (5-7 nm) deposited for 60 s. The absorption coefficient and band gap measurement also confirms that the LSPR effect for 5-7 nm Au particles with band gap improvement from 1.31 to 1.52 eV for CIGS/Au layer as the defect density decreases due to the deposition of Au nanoparticles onto the CIGS layer. Such LSPR effect in CIGS/Au nanocomposite absorption layer will be a key parameter to further improve performance of the solar cell.

  18. Temperature dependence of infrared bands produced by polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Mennella, V.; Bussoletti, E.

    1992-02-01

    The behavior of IR absorption bands with temperature has been examined systematically in the laboratory for three representative polycyclic aromatic hydrocarbon molecules: coronene, chrysene, and 1-methylcoronene. A careful description of both intensity and profile measured for most of the bands is reported. A tentative interpretation of the observed variations is given in terms of extra-molecular effects produced by the anharmonicity of the vibrational energy levels as a function of temperature. These new laboratory data provide an accurate description of the optical properties for representative molecules often used to account for the so-called unidentified infrared bands emitted by astronomical sources.

  19. Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    DelBianco, Samuele; Martelli, Fabrizio; Zaccanti, Giovanni

    2002-12-01

    The depth at which photons penetrate into a diffusive medium before being re-emitted has been investigated with reference to a semi-infinite homogeneous medium illuminated by a pencil beam. By using the diffusion equation analytical expressions have been obtained for the probability that photons penetrate at a certain depth before being detected, and for the mean path length they travel inside each layer of the medium. Expressions have been obtained both for the cw and the time domain, and simple approximate scaling relationships describing the dependence on the scattering properties of the medium have been found. For time-resolved measurements both the probability and the mean path length are expected to be independent of the distance from the light beam at which the detector is placed and of the absorption coefficient of the medium. The penetration depth increases as the time of flight increases. In contrast, for cw measurements both the probability and the mean path length strongly depend on the distance and absorption. The penetration depth increases as the distance increases or absorption decreases. The accuracy of the analytical expressions has been demonstrated by comparisons with cw experimental results. The penetration depth and the mean path length provide useful information, for instance, for measurements of tissue oxygenation and for functional imaging of muscle and brain. In particular, the depth reached by received photons provides overall information on the volume of the tissue actually investigated, while the mean path is strictly related to the sensitivity to local variations of absorption.

  20. Analysis of Oxygen Spectral Lines in the 1.27 Micron Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2011-01-01

    The ASCENDS mission requires simultaneous laser remote sensing of CO2 and O2 in order to convert CO2 column number densities to average column CO2 mixing ratios (XCO2). As such, the CO2 column number density and the O2 column number density will be utilized to derive the average XCO2 column. NASA Langley Research Center, working with its partners, is developing O2 lidar technology in the 1.26-1.27- m band for surface pressure measurements. The O2 model optical depth calculation is very sensitive to knowledge of the transmitted wavelengths and to the choice of Voigt input parameters. Modeling using the HITRAN database is being carried out to establish the evolution of candidate O2 absorption lines as a function of atmospheric parameters such as altitude, temperature, and pressure. Preliminary results indicate limitations of the Voigt profile and the need to utilize more advanced models which take into account line mixing, line narrowing, and speed dependence. In this paper, we evaluate alternative lineshape models to establish the optimum lineshapes which better account for the variability of individual O2 absorption lines at various atmospheric conditions. The combination of our modeling efforts with accurate laboratory measurements is anticipated to aid in achieving the desired CO2 mixing ratio measurement accuracy requirement of for the ASCENDS mission.

  1. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  2. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  3. Four-band Hamiltonian for fast calculations in intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Luque, Antonio; Panchak, Aleksandr; Vlasov, Alexey; Martí, Antonio; Andreev, Viacheslav

    2016-02-01

    The 8-dimensional Luttinger-Kohn-Pikus-Bir Hamiltonian matrix may be made up of four 4-dimensional blocks. A 4-band Hamiltonian is presented, obtained from making the non-diagonal blocks zero. The parameters of the new Hamiltonian are adjusted to fit the calculated effective masses and strained QD bandgap with the measured ones. The 4-dimensional Hamiltonian thus obtained agrees well with measured quantum efficiency of a quantum dot intermediate band solar cell and the full absorption spectrum can be calculated in about two hours using Mathematica© and a notebook. This is a hundred times faster than with the commonly-used 8-band Hamiltonian and is considered suitable for helping design engineers in the development of nanostructured solar cells.

  4. Polarimetric remote sensing in oxygen A and B bands: sensitivity study and information content analysis for vertical profile of aerosols

    NASA Astrophysics Data System (ADS)

    Ding, Shouguo; Wang, Jun; Xu, Xiaoguang

    2016-05-01

    Theoretical analysis is conducted to reveal the information content of aerosol vertical profile in space-borne measurements of the backscattered radiance and degree of linear polarization (DOLP) in oxygen (O2) A and B bands. Assuming a quasi-Gaussian shape for aerosol vertical profile characterized by peak height H and half width γ (at half maximum), the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to simulate the Stokes four-vector elements of upwelling radiation at the top of atmosphere (TOA) and their Jacobians with respect to H and γ. Calculations for different aerosol types and different combinations of H and γ values show that the wide range of gas absorption optical depth in O2 A and B band enables the sensitivity of backscattered DOLP and radiance at TOA to the aerosol layer at different altitudes. Quantitatively, DOLP in O2 A and B bands is found to be more sensitive to H and γ than radiance, especially over the bright surfaces (with large visible reflectance). In many O2 absorption wavelengths, the degree of freedom of signal (DFS) for retrieving H (or γ) generally increases with H (and γ) and can be close to unity in many cases, assuming that the composite uncertainty from surface and aerosol scattering properties as well as measurements is less than 5 %. Further analysis demonstrates that DFS needed for simultaneous retrieval of H and γ can be obtained from a combined use of DOLP measurements at ˜ 10-100 O2 A and B absorption wavelengths (or channels), depending on the specific values of H. The higher the aerosol layer, the fewer number of channels for DOLP measurements in O2 A and B bands are needed for characterizing H and γ. Future hyperspectral measurements of DOLP in O2 A and B bands are needed to continue studying their potential and their combination with radiance and DOLP in atmospheric window channels for retrieving the vertical profiles of aerosols, especially highly scattering aerosols, over land.

  5. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  6. The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Duan, Hou-Jian; Wang, Rui-Qiang

    2016-10-01

    We studied the electronic structure and optical absorption properties of phosphorene (a monolayer black phosphorus) under a normally applied electric field. The electric field enlarges the energy gap, weakens the effective mass anisotropy, and increases the effective mass component along the armchair direction (x-direction) for both conduction and valence bands but provides little change to the component along the zigzag direction (y-direction). The band edge optical absorption is completely polarized in the x-direction, and decreases when increasing the electric field. If the exciting frequency is beyond the energy gap, the absorption for the y-polarized light becomes nonzero, but the absorption is still highly polarized.

  7. Band gap effects of hexagonal boron nitride using oxygen plasma

    SciTech Connect

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  8. Photon counting compressive depth mapping.

    PubMed

    Howland, Gregory A; Lum, Daniel J; Ware, Matthew R; Howell, John C

    2013-10-07

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

  9. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  10. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  11. Underwater camera with depth measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  12. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    PubMed

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  13. Carrier Lifetimes in a I I I -V -N Intermediate-Band Semiconductor

    NASA Astrophysics Data System (ADS)

    Heyman, J. N.; Schwartzberg, A. M.; Yu, K. M.; Luce, A. V.; Dubon, O. D.; Kuang, Y. J.; Tu, C. W.; Walukiewicz, W.

    2017-01-01

    We use transient absorption spectroscopy to measure carrier lifetimes in the multiband semiconductor GaPyAs1 -x -yNx . These measurements probe the electron populations in the conduction band, intermediate band, and valence band as a function of time after an excitation pulse. Following photoexcitation of GaP0.32As0.67N0.01 , we find that the electron population in the conduction band decays exponentially with a time constant τCB=23 ps . The electron population in the intermediate band exhibits bimolecular recombination with recombination constant r =2 ×10-8 cm3/s . In our experiment, an optical pump pulse excites electrons from the valence band to the intermediate and conduction bands, and the change in interband absorption due to absorption saturation and induced absorption is probed with a delayed white-light pulse. We model the optical properties of our samples using the band anticrossing model to extract carrier densities as a function of time. These results not only identify the short minority-carrier lifetime as a key factor affecting the performance of GaPyAs1 -x -yNx -based intermediate-band solar cells but also provide guidance on ways to address this issue.

  14. Quantifying the Magnitude of Anomalous Solar Absorption

    SciTech Connect

    Ackerman, Thomas P.; Flynn, Donna M.; Marchand, Roger T.

    2003-05-16

    The data set from ARESE II, sponsored by the Atmospheric Radiation Measurement Program, provides a unique opportunity to understand solar absorption in the atmosphere because of the combination of three sets of broadband solar radiometers mounted on the Twin Otter aircraft and the ground based instruments at the ARM Southern Great Plains facility. In this study, we analyze the measurements taken on two clear sky days and three cloudy days and model the solar radiative transfer in each case with two different models. On the two clear days, the calculated and measured column absorptions agree to better than 10 Wm-2, which is about 10% of the total column absorption. Because both the model fluxes and the individual radiometer measurements are accurate to no better than 10 Wm-2, we conclude that the models and measurements are essentially in agreement. For the three cloudy days, the model calculations agree very well with each other and on two of the three days agree with the measurements to 20 Wm-2 or less out of a total column absorption of more than 200 Wm-2, which is again agreement at better than 10%. On the third day, the model and measurements agree to either 8% or 14% depending on which value of surface albedo is used. Differences exceeding 10% represent a significant absorption difference between model and observations. In addition to the uncertainty in absorption due to surface albedo, we show that including aerosol with an optical depth similar to that found on clear days can reduce the difference between model and measurement by 5% or more. Thus, we conclude that the ARESE II results are incompatible with previous studies reporting extreme anomalous absorption and can be modeled with our current understanding of radiative transfer.

  15. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  16. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  18. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  19. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  20. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.