Science.gov

Sample records for absorption band depths

  1. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  2. Depth and Shape of the 0.94-microm Water Vapor Absorption Band for Clear and Cloudy Skies.

    PubMed

    Volz, F E

    1969-11-01

    Sky radiation near zenith and solar radiation in the rhosigmatau band region were recorded by means of a rotating interference filter (lambda0.98-0.88 microm) and a silicon detector. Although the spectral resolution of the simple spectrometer was not high, the water vapor content of the cloud free atmosphere was obtained with reasonable accuracy. The band depth of the radiation from thin, bright clouds was only slightly greater than that of the cloud free atmosphere, but dense and dark clouds showed deep bands mainly caused by increased path length as a result of multiple scattering. Considerable distortion of the band due to absorption by liquid water is observed in the radiation from very dark and dense clouds, and sometimes during snowfall. Some laboratory measurements are also discussed.

  3. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  4. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  5. Clay composition and swelling potential estimation of soils using depth of absorption bands in the SWIR (1100-2500 nm) spectral domain

    NASA Astrophysics Data System (ADS)

    Dufréchou, Grégory; Granjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Presence of clay minerals is traditionally a good estimator of soils swelling and shrinking behavior. Montmorillonite (i.e. smectite group), illite, kaolinite are the most common minerals in soils and are usually associated to high, moderate, and low swelling potential when they are present in significant amount. Characterization of swelling potential and identification of clay minerals of soils using conventional analysis are slow, expensive, and does not permit integrated measurements. SWIR (1100-2500 nm) spectral domain are characterized by significant spectral absorption bands related to clay content that can be used to recognize main clay minerals. Hyperspectral laboratory using an ASD Fieldspec Pro spectrometer provides thus a rapid and less expensive field surface sensing that permits to measure soil spectral properties. This study presents a new laboratory reflectance spectroscopy method that used depth of clay diagnostic absorption bands (1400 nm, 1900 nm, and 2200 nm) to compare natural soils to synthetic montmorillonite-illite-kaolinite mixtures. We observe in mixtures that illite, montmorillonite, and kaolinite content respectively strongly influence the depth of absorption bands at 1400 nm (D1400), 1900 nm (D1900), and 2200 nm (D2200). To attenuate or removed effects of abundance and grain size, depth of absorption bands ratios were thus used to performed (i) 3D (using D1900/D2200, D1400/D1900, and D2200/D1400 as axis), and (ii) 2D (using D1400/D1900 and D1900/D2200 as axis) diagrams of synthetic mixtures. In this case we supposed that the overall reduction or growth of depth absorption bands should be similarly affected by the abundance and grain size of materials in soil. In 3D and 2D diagrams, the mixtures define a triangular shape formed by two clay minerals as external envelop and the three clay minerals mixtures

  6. Absorption bands in the spectrum of Io

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Jones, T. J.; Pilcher, C. B.

    1978-01-01

    Near-infrared spectra of Io in the region from 2.8 to 4.2 microns are reported which show distinct absorption features, the most notable at 4.1 microns. Frozen volatiles or atmospheric gases cannot account for these absorptions, nor do they resemble those seen in common silicate rocks. Several candidate substances, most notably nitrate and carbonate salts, show absorption features in this spectral region; the deepest band in the spectrum may be a nitrate absorption. The satellite surface is shown to be anhydrous, as indicated by the absence of the 3-micron bound water band.

  7. Forage quantity estimation from MERIS using band depth parameters

    NASA Astrophysics Data System (ADS)

    Ullah, Saleem; Yali, Si; Schlerf, Martin

    Saleem Ullah1 , Si Yali1 , Martin Schlerf1 Forage quantity is an important factor influencing feeding pattern and distribution of wildlife. The main objective of this study was to evaluate the predictive performance of vegetation indices and band depth analysis parameters for estimation of green biomass using MERIS data. Green biomass was best predicted by NBDI (normalized band depth index) and yielded a calibration R2 of 0.73 and an accuracy (independent validation dataset, n=30) of 136.2 g/m2 (47 % of the measured mean) compared to a much lower accuracy obtained by soil adjusted vegetation index SAVI (444.6 g/m2, 154 % of the mean) and by other vegetation indices. This study will contribute to map and monitor foliar biomass over the year at regional scale which intern can aid the understanding of bird migration pattern. Keywords: Biomass, Nitrogen density, Nitrogen concentration, Vegetation indices, Band depth analysis parameters 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands

  8. Coherent Backscattering Effect in Saturnian vs. Uranian Satellites: Effects on Band Depths and Shapes

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Kolokolova, Ludmilla; Verbiscer, Anne J.; Gulotta, Charles; Joseph, Emily C. S.; Mackowski, Daniel W.; Buratti, Bonnie J.; Momary, Thomas W.

    2015-11-01

    In this work, we examine the changes in depth and shape of individual absorption bands as a function of solar phase angle that are caused by the coherent backscattering effect (CBE) in near-IR spectra of saturnian and uranian satellites. We have quantified band depths and shapes for real-world data (from Cassini Visual & Infrared Mapping Spectrometer (VIMS) and TripleSpec at Apache Point Observatory) and also modeled spectra of densely packed icy particulate surfaces with the MSTM (multisphere T-matrix) version 4.0 code specifically developed to model light scattering in regolith layers. MSTM4 allows us to calculate the brightness for thick fluffy layers on order of 20,000 particles (compared to 1000 with previous code versions). We have now obtained good matches between model and real-world data at specific bands for several higher albedo moons. We are finding that the normalized depth of the absorption band can increase or decrease with solar phase angle depending on the albedo at the wavelength of normalization; this is seen in all the data (VIMS, ground-based, and model spectra). We model the change in the phase-angle-dependent band depth in response to varying the size and packing of the constituent icy particles. Indeed, the coherent backscattering effect can be observed at some wavelengths and entirely disappear at others because CBE requires a specific range of size and packing (cf. Muinonen et al. 2014); we see this effect as well.This work is supported by NASA’s Outer Planets Research program (NNX12AM76G; PI Pitman), Planetary Astronomy program (NNX09AD06G; PI Verbiscer), and NASA’s Advanced Supercomputing Division. Calibrated Cassini VIMS data cubes appear courtesy of the Cassini VIMS team and the PDS.

  9. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  10. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  11. Absorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  12. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  13. Temperature dependence of the band-band absorption coefficient in crystalline silicon from photoluminescence

    NASA Astrophysics Data System (ADS)

    Nguyen, Hieu T.; Rougieux, Fiacre E.; Mitchell, Bernhard; Macdonald, Daniel

    2014-01-01

    The band-band absorption coefficient in crystalline silicon has been determined using spectral photoluminescence measurements across the wavelength range of 990-1300 nm, and a parameterization of the temperature dependence has been established to allow interpolation of accurate values of the absorption coefficient for any temperature between 170 and 363 K. Band-band absorption coefficient measurements across a temperature range of 78-363 K are found to match well with previous results from MacFarlane et al. [Phys. Rev. 111, 1245 (1958)], and are extended to significantly longer wavelengths. In addition, we report the band-band absorption coefficient across the temperature range from 270-350 K with 10 K intervals, a range in which most practical silicon based devices operate, and for which there are only sparse data available at present. Moreover, the absorption coefficient is shown to vary by up to 50% for every 10 K increment around room temperature. Furthermore, the likely origins of the differences among the absorption coefficient of several commonly referenced works by Green [Sol. Energy Mater. Sol. Cells 92, 1305 (2008)], Daub and Würfel [Phys. Rev. Lett. 74, 1020 (1995)], and MacFarlane et al. [Phys. Rev. 111, 1245 (1958)] are discussed.

  14. [Band depth analysis and partial least square regression based winter wheat biomass estimation using hyperspectral measurements].

    PubMed

    Fu, Yuan-Yuan; Wang, Ji-Hua; Yang, Gui-Jun; Song, Xiao-Yu; Xu, Xin-Gang; Feng, Hai-Kuan

    2013-05-01

    The major limitation of using existing vegetation indices for crop biomass estimation is that it approaches a saturation level asymptotically for a certain range of biomass. In order to resolve this problem, band depth analysis and partial least square regression (PLSR) were combined to establish winter wheat biomass estimation model in the present study. The models based on the combination of band depth analysis and PLSR were compared with the models based on common vegetation indexes from the point of view of estimation accuracy, subsequently. Band depth analysis was conducted in the visible spectral domain (550-750 nm). Band depth, band depth ratio (BDR), normalized band depth index, and band depth normalized to area were utilized to represent band depth information. Among the calibrated estimation models, the models based on the combination of band depth analysis and PLSR reached higher accuracy than those based on the vegetation indices. Among them, the combination of BDR and PLSR got the highest accuracy (R2 = 0.792, RMSE = 0.164 kg x m(-2)). The results indicated that the combination of band depth analysis and PLSR could well overcome the saturation problem and improve the biomass estimation accuracy when winter wheat biomass is large.

  15. Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    NASA Technical Reports Server (NTRS)

    Antonov, R. A.; Galkin, V. I.; Hein, L. A.; Ivanenko, I. P.; Kanevsky, B. L.; Kuzmin, V. A.

    1985-01-01

    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M.

  16. PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION

    SciTech Connect

    Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le; Hardersen, P. S.; Nathues, A.

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  17. Phase Angle Effects on 3 μm Absorption Band on Ceres: Implications for Dawn Mission

    NASA Astrophysics Data System (ADS)

    Takir, D.; Reddy, V.; Sanchez, J. A.; Le Corre, L.; Hardersen, P. S.; Nathues, A.

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25-5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9-4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ˜20% from lower phase angles to higher phase angles, and the band area decreases by ˜25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  18. Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2008-10-10

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.

  19. Dual-band Fourier domain optical coherence tomography with depth-related compensations

    PubMed Central

    Zhang, Miao; Ma, Lixin; Yu, Ping

    2013-01-01

    Dual-band Fourier domain optical coherence tomography (FD-OCT) provides depth-resolved spectroscopic imaging that enhances tissue contrast and reduces image speckle. However, previous dual-band FD-OCT systems could not correctly give the tissue spectroscopic contrast due to depth-related discrepancy in the imaging method and attenuation in biological tissue samples. We designed a new dual-band full-range FD-OCT imaging system and developed an algorithm to compensate depth-related fall-off and light attenuation. In our imaging system, the images from two wavelength bands were intrinsically overlapped and their intensities were balanced. The processing time of dual-band OCT image reconstruction and depth-related compensations were minimized by using multiple threads that execute in parallel. Using the newly developed system, we studied tissue phantoms and human cancer xenografts and muscle tissues dissected from severely compromised immune deficient mice. Improved spectroscopic contrast and sensitivity were achieved, benefiting from the depth-related compensations. PMID:24466485

  20. Collision-induced absorption in the O2 B-band region near 670 nm.

    PubMed

    Spiering, Frans R; Kiseleva, Maria B; Filippov, Nikolay N; van Kesteren, Line; van der Zande, Wim J

    2011-05-28

    We have determined the collision-induced absorption (CIA) spectrum in the O(2) B-band in pure oxygen. We present absolute extinction coefficients of the minimums in between rotational lines using cavity ring-down spectroscopy. The measured extinction is corrected for the B-band magnetic dipole absorption using a model which includes line-mixing. The remaining extinction consists of collision-induced absorption and Rayleigh scattering. We retrieve the magnitude of the Rayleigh scattering and the CIA spectrum based on their individual different behavior with density. The CIA spectrum of the B-band resembles that of the oxygen A-band in shape but not in magnitude. The contribution of CIA to the total B-band absorption is 40% higher in comparison to that of the A-band.

  1. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  2. Assignment of infrared absorption bands in ZnGeP2

    NASA Astrophysics Data System (ADS)

    Giles, Nancy C.; Bai, Lihua; Garces, Nelson Y.; Pollak, Thomas M.; Schunemann, Peter G.

    2004-06-01

    Zinc germanium diphosphide (ZnGeP2) is a nonlinear optical material useful for frequency conversion applications in the midinfrared. A broad absorption band peaking near 1.2 microns and extending past 2 microns is often observed. To identify the defects responsible for these absorption losses, we have performed an optical absorption investigation from 10 to 296 K on bulk crystals of ZnGeP2 grown by the horizontal gradient-freeze method. Three broad absorption bands in the spectral range from 1 to 4 microns are observed that are due to native defects. Comparison of photoinduced changes in absorption with photoinduced changes in EPR spectra allowed specific defects to be associated with each of the three absorption bands. A band peaking near 1.2 microns and another band peaking near 2.2 microns involve transitions associated with singly ionized zinc vacancies. A third absorption band, peaking near 2.3 microns and extending from 1.5 microns to beyond 4 microns, involves neutral phosphorus vacancies. Absorption bands due to anion-site donor impurities Se and S have also been studied.

  3. Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films

    SciTech Connect

    Bar, M.; Nishiwaki, S.; Weinhardt, L.; Pookpanratana, S.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J. D.; Shafarman, W.; Heske, C.

    2008-06-24

    The surface composition of Cu(In,Ga)(S,Se)2 (?CIGSSe?) thin films intrinsically deviates from the corresponding bulk composition, which also modifies the electronic structure and thus the optical properties.We have used a combination of photon and electron spectroscopies with different information depths to gain depth-resolved information on the band gap energy (Eg) in CIG(S)Se thin films. We find an increasing Eg with decreasing information depth, indicating the formation of a surface region with significantly higher Eg. This Eg-widened surface region extends further into the bulk of the sulfur-free CIGSe thin film compared to the CIGSSe thin film.

  4. Estimating vegetation optical depth using L-band passive microwave airborne data in HiWATER

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Chai, Linna

    2014-11-01

    In this study, a relationship between polarization differences of soil emissivity at different incidence angles was constructed from a large quantity of simulated soil emissivity based on the Advanced Integrated Emission Model (AIEM) input parameters include: a frequency of 1.4 GHz (L-band), incident angles varying from 1°to 60° at a 1° interval, a wide range of soil moisture content and land surface roughness parameters. Then, we used this relationship and the ω-τ zero-order radiation transfer model to develop an inversion method of low vegetation optical depth at L-band, this work were under the assumption that there was no significant polarization difference between the vegetation signals. Based on this inversion method of low vegetation optical depth, we used the land surface passive microwave brightness temperature of Heihe Watershed obtained by airborne Polarimetric L-band Multibeam Radiometer (PLMR) in 2012 Heihe Watershed Allied Telemetry Experimental Research (HiWATER) to retrieve the corn optical depth in the flight areas, then the results were compared with the measured corn LAI. Results show that the retrieved corn optical depths were consisted with the measured LAI of corn. It proved that the corn optical depth inversion method proposed in this study was feasible. Moreover, the method was promising to apply to the satellite observations.

  5. Optical depth measurements by shadow-band radiometers and their uncertainties.

    PubMed

    Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A

    2007-11-20

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  6. Optical depth measurements by shadow-band radiometers and their uncertainties

    SciTech Connect

    Alexandrov, Mikhail; Kiedron, Peter; Michalsky, Joseph J.; Hodges, Gary; Flynn, Connor J.; Lacis, Andrew A.

    2007-11-20

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the U.S. include DOE Atmospheric Radiation Measurement (ARM) Program, USDA UV-B Monitoring and Research Program, NOAA Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). In this paper we discuss a number of technical issues specific for shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  7. Optical depth measurements by shadow-band radiometers and their uncertainties

    SciTech Connect

    Alexandrov, Mikhail; Kiedron, Peter; Michalsky, Joseph J.; Hodges, Gary; Flynn, Connor J.; Lacis, Andrew A.

    2007-11-15

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the U.S. include DOE Atmospheric Radiation Measurement (ARM) Program, USDA UV-B Monitoring and Research Program, NOAA Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). In this paper we discuss a number of technical issues specific for shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as somedata processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  8. Removal of OH Absorption Bands Due to Pyrohydrolysis Reactions in Fluoride-Containing Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keiji

    1997-05-01

    The purpose of this study is to decrease and to remove OH ions and H2O in borosilicate glasses. Fluoride-containing borosilicate glasses followed by dry-air-bubbling showed the significant decrease of OH absorption bands around 3500 cm-1. The decrease of OH absorption bands was elucidated by the use of pyrohydrolysis reactions in these glasses where fluoride ions react with OH ions or H2O during melting. The rates of the decrease of OH absorption bands substantially depend on high valence cations of fluorides. Particularly, the decrease rates of OH absorption coefficients were in the order of ZrF4-containing glass>AlF3-containing glass>ZnF2-containing glass. ZrF4-containing glass treated by dry-air-bubbling showed a good capability to remove OH absorption band. Fluoride-containing glasses showed the low flow point in comparison with fluoride-free glasses.

  9. Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Tian, Yiran; Wen, Guangjun; Zhu, Weiren

    2013-05-01

    In this paper, we systematically discuss a novel planar metamaterial absorber (PMA) based on asymmetrical snowflake-shaped resonators, which can exhibit two distinctly different absorption states, single- and dual-band absorptions, by controlling the branch lengths of the proposed resonators. Numerical simulations and experimental measurements are employed to investigate these two kinds of absorption characteristic in an X-band rectangular waveguide. Both results indicate that such a PMA exhibits a wide range of controllable operating frequencies for the single- and dual-band conditions. The proposed PMA is simple and easy to make, and it has wide applications in the fields of stealth technologies, thermal detectors, and imaging.

  10. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  11. Position and Confidence Limits of an Extremum: The Determination of the Absorption Maximum in Wide Bands.

    ERIC Educational Resources Information Center

    Heilbronner, Edgar

    1979-01-01

    Discusses the determination of the position of the absorption maximum in wide bands as well as the confidence limits for such calculations. A simple method, suited for pocket calculators, for the numerical evaluation of these calculations is presented. (BB)

  12. Observation of temperature dependence of the IR hydroxyl absorption bands in silica optical fiber

    NASA Astrophysics Data System (ADS)

    Yu, Li; Bonnell, Elizabeth; Homa, Daniel; Pickrell, Gary; Wang, Anbo; Ohodnicki, P. R.; Woodruff, Steven; Chorpening, Benjamin; Buric, Michael

    2016-07-01

    This study reports on the temperature dependent behavior of silica based optical fibers upon exposure to high temperatures in hydrogen and ambient air. The hydroxyl absorption bands in the wavelength range of 1000-2500 nm of commercially available multimode fibers with pure silica and germanium doped cores were examined in the temperature range of 20-800 °C. Two hydroxyl-related infrared absorption bands were observed: ∼2200 nm assigned to the combination of the vibration mode of Si-OH bending and the fundamental hydroxyl stretching mode, and ∼1390 nm assigned to the first overtone of the hydroxyl stretching. The absorption in the 2200 nm band decreased in intensity, while the 1390 nm absorption band shifted to longer wavelengths with an increase in temperature. The observed phenomena were reversible with temperature and suspected to be due, in part, to the conversion of the OH spectral components into each other and structural relaxation.

  13. Investigation of the ammonia absorption band near 6450 A in the spectrum of Saturn. I - Observations

    NASA Astrophysics Data System (ADS)

    Avramchuk, V. V.; Karmeliuk, A. I.

    Forty-three lines in the vibrational-rotational absorption band of ammonia near 6450 A were found in coudespectrograms of Saturn obtained with the 2-m telescope of the Shemakha Astrophysical Observatory during 1969-1971. Equivalent widths and half-widths were determined and the J and K quantum numbers were defined for some of these lines. The intensity of the integral absorption of the ammonia band was also measured.

  14. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  15. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  16. Taking Another Look at the 3-Micron Absorption Band on Asteroids

    NASA Technical Reports Server (NTRS)

    Howell, E. S.; Rivkin, A. S.; Cohen, B. A.

    2002-01-01

    Improved 3 micron spectra show that band depths have been underestimated. Using a revised continuum, the asteroid and meteorite spectra match better. Additional information is contained in the original extended abstract.

  17. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kolek, Andrzej

    2015-05-01

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  18. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  19. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  20. Identification of Li O absorption bands based on lithium isotope substitutions

    NASA Astrophysics Data System (ADS)

    Nocuń, Marek; Handke, Mirosław

    2001-09-01

    Isotope substitution method was used to identify the Li-O absorption bands in crystalline lithium silicates (2Li 2O 3·SiO 2, Li 2O·SiO 2, Li 2O·2SiO 2) and selected aluminosilicates (β-eucriptite and β-spodumene). Isotopic shift was established after mathematical decomposition of the IR spectra. Absorption bands connected directly with internal, LiO 4 tetrahedron vibrations are observed in the range 460-250 cm -1. Bending vibrations of Si-O-Li bridges give absorption bands in the range 500-600 cm -1. The exact position of the bands and their isotopic shifts are given.

  1. Spectroscopic investigation of amber color silicate glasses and factors affecting the amber related absorption bands.

    PubMed

    Morsi, Morsi M; El-Sherbiny, Samya I; Mohamed, Karam M

    2015-06-15

    The effects of carbon, Fe2O3 and Na2SO4 contents on the amber color of glass with composition (wt%) 64.3 SiO2, 25.7 CaO, 10 Na2O were studied. The effect of some additives that could be found in glass batch or cullets on the amber related absorption band(s) was also studied. An amber related absorption band due to the chromophore Fe(3+)O3S(2-) was recorded at 420 nm with shoulder at 440 nm. A second amber related band recorded at 474 nm with shoulder at 483 nm was assigned to FeS. Increasing melting time at 1400°C up to 6h caused fainting of the amber color, decreases the intensities of the amber related bands and shifted the first band to 406 nm. Addition of ZnO, Cu2O and NaNO3 to the glass produced decolorizing effect and vanishing of the amber related bands. The effects of melting time and these additives were explained on the bases of destruction the amber chromophore and its conversion into Fe(3+) in tetrahedral sites or ZnS. Addition of Se intensifies the amber related bands and may cause dark coloration due to the formation of Se° and polyselenide. Amber color can be monitored through measuring the absorption in the range 406-420 nm.

  2. Spectroscopic investigation of amber color silicate glasses and factors affecting the amber related absorption bands

    NASA Astrophysics Data System (ADS)

    Morsi, Morsi M.; El-sherbiny, Samya I.; Mohamed, Karam M.

    2015-06-01

    The effects of carbon, Fe2O3 and Na2SO4 contents on the amber color of glass with composition (wt%) 64.3 SiO2, 25.7 CaO, 10 Na2O were studied. The effect of some additives that could be found in glass batch or cullets on the amber related absorption band(s) was also studied. An amber related absorption band due to the chromophore Fe3+O3S2- was recorded at 420 nm with shoulder at 440 nm. A second amber related band recorded at 474 nm with shoulder at 483 nm was assigned to FeS. Increasing melting time at 1400 °C up to 6 h caused fainting of the amber color, decreases the intensities of the amber related bands and shifted the first band to 406 nm. Addition of ZnO, Cu2O and NaNO3 to the glass produced decolorizing effect and vanishing of the amber related bands. The effects of melting time and these additives were explained on the bases of destruction the amber chromophore and its conversion into Fe3+ in tetrahedral sites or ZnS. Addition of Se intensifies the amber related bands and may cause dark coloration due to the formation of Se° and polyselenide. Amber color can be monitored through measuring the absorption in the range 406-420 nm.

  3. A study of variations in the 787-nm ammonia absorption band in the Jupiter atmosphere

    NASA Astrophysics Data System (ADS)

    Bondarenko, N. N.

    2013-08-01

    During the last years the program of the spectrophotometric study of Jupiter included the measurements of the NH3 absorption band 787 nm. This band is overlapped by a broader absorption band of CH4. To detect the NH3 band we used the ratio of Jovian spectra to the spectrum of Saturn equatorial region. It was taken into account that the ammonia absorption on Saturn is significantly weaker than on Jupiter. The results of processing the spectrograms were analyzed for the years 2007-2010. Latitudinal variations of the NH3 band regularly show a depression of absorption at low and temperate latitudes of Jovian northern hemisphere. The equivalent width decreases approximately from 18-16 Å, to 14-12 Å. A more or less symmetric and steeper decrease of absorption from the disk center to limbs was obtained for the equatorial belt of Jupiter. It may be considered as evidence of the reality of that latitudinal depression but not the instrumental errors. It should be noted that the ammonia decrease in northern hemisphere was detected also from radio observations of Jupiter

  4. Depth of anaesthesia assessment based on adult electroencephalograph beta frequency band.

    PubMed

    Li, Tianning; Wen, Peng

    2016-09-01

    This paper presents a new method to apply timing characteristics of electroencephalograph (EEG) beta frequency bands to assess the depth of anaesthesia (DoA). Firstly, the measured EEG signals are denoised and decomposed into 20 different frequency bands. The Mobility (M), permutation entropy (PE) and Lempel-Ziv complexity (LCZ) of each frequency band are calculated. The M, PE and LCZ values of beta frequency bands (21.5-30 Hz) are selected to derive a new index. The new index is evaluated and compared with measured bispectral (BIS). The results show that there is a very close correlation between the proposed index and the BIS during different anaesthetic states. The new index also shows a 25-264 s earlier time response than BIS during the transient period of anaesthetic states. In addition, the proposed index is able to continuously assess the DoA when the quality of signal is poor and the BIS does not have any valid outputs. PMID:27323760

  5. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.; Allan, G. R.; Mao, J.; Hasselbrack, W.; Abshire, J. B.

    2013-12-01

    We report on an airborne demonstration of atmospheric oxygen (O2) optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate atmospheric temperature and pressure measurements are required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. Since O2 in uniformly mixed in the atmosphere, its absorption spectra can be used to estimate atmospheric pressure. In its airborne configuration, the IPDA lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at multiple discrete wavelengths in the oxygen A-band near 765 nm. This instrument has been deployed three times aboard NASA's DC-8 airborne laboratory as part of campaigns to measure CO2 mixing ratios over a wide range of topography and weather conditions from altitudes between 3 km and 13 km. The O2 IPDA lidar flew seven flights in 2011 and six flights in 2013 in the continental United States and British Columbia, Canada. Our results from 2011 showed good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km after a systematic bias correction of approximately 8% was applied. The random noise component was 2.5-3.0 %. The most recent data recorded in 2013 show better agreement between experimental optical depth measurements and theoretical predictions and much smaller systematic errors. The random error remained comparable with 2011 at 2-3%. The main source of random error is primarily the low energy (power) of the laser transmitter and the high solar background. We are in the process of addressing this issue with a new, higher energy amplifier that we anticipate will reduce the random noise component by a factor of 3-5 to less than 0.5%. The results from these flights show that the IPDA technique is a viable method

  6. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  7. Depth

    PubMed Central

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues. PMID:23145244

  8. Depth.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

  9. Broadening of absorption band by coupled gap plasmon resonances in a near-infrared metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Yao, Hongbing; Gong, Daolei; Chen, Mingyang; Tong, Yanqun; Fu, Yonghong; Ren, Naifei

    2016-07-01

    We propose a strategy to broaden the absorption band of the conventional metamaterial absorber by incorporating alternating metal/dielectric films. Up to 7-fold increase in bandwidth and ∼95% average absorption are achieved arising from the coupling of induced multiple gap plasmon resonances. The resonance coupling is analytically demonstrated using the coupled oscillator model, which reveals that both the optimal coupling strength and the resonance wavelength matching are required for the enhancement of absorption bandwidth. The presented multilayer design is easily fabricated and readily implanted to other absorber configurations, offering a practical avenue for applications in photovoltaic cells and thermal emitters.

  10. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-11-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  11. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-07-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  12. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  13. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  14. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  15. Absorption Band Modeling in Reflectance Spectra: Availability of the Modified Gaussian Model

    NASA Astrophysics Data System (ADS)

    Sunshine, J. M.; Pieters, C. M.; Pratt, S. F.; McNaron-Brown, K. S.

    1999-03-01

    The modified Gaussian model, a physically based description of absorption bands in spectra, has been updated to provide compatibility with most computer systems. These new versions, written in MATLAB and IDL, are available at the RELAB Website (www.planetary.brown.edu).

  16. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  17. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  18. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  19. Towards absorption enhancement and design optimization of Split-off band infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Shishodia, Manmohan; Unil Perera, A. G.

    2009-11-01

    Room temperature photodetectors operating in infrared (IR) region are important for astronomy, biomedical, defence and security related applications. Recently developed short wavelength infrared (2-5μm) detectors utilizing light absorption through split-off band transitions in mature GaAs/AlGaAs material system may offer an efficient alternative to the intrinsically slow present day microbolometer detectors. The total quantum efficiency of these detectors, defined as the product of absorption efficiency, internal quantum efficiency, and collection efficiency, usually limited by low absorption, can be improved through IR antenna induced surface plasmon enhanced absorption. The antenna induced absorption besides free carrier and split-off absorption should improve the total quantum efficiency (η) and hence the responsivity (R), two being related by R=qηλ/hc, of these detectors. The optimized detector designs capable of reinforcing absorption due to free carriers and the antenna in the split-off region, and the theoretical results on absorption enhancement and performance improvement will be presented.

  20. Vibration + libration absorption bands of OH centres in LiNbO3

    NASA Astrophysics Data System (ADS)

    Gröne, A.; Kapphan, S.

    1995-12-01

    Hydrogen centres in the bulk of stoichiometric (VTE) LiNbO3 exhibit a sharp absorption band of the OH(OD) stretching vibration near 3466 (2562) cm?1. In congruent LiNbO3 the OH band ( max = 3484cm?1) is rather broad (FWHM ?30 cm?1) and for the high proton concentration layers in proton exchanged LiNbO3:PE the broad absorption band (FWHM ?30 cm?1) is shifted to about 3507 cm?l. For all the above bands which are completely polarized perpendicular weak high energy sidebands have been found, shifted by about 950 cm?1 for OH and 700 cm?1 for OD with respect to the position of the stretching vibration. The intensity of these sidebands and their spectral form is found to be proportional to the stretching vibration, respectively to the concentration of the H(D) centres. These sidebands are identified as libration + vibration combination bands and display the polarization dependence (I?/I? ˜ 0.5 for OH with respect to ) of a three-dimensional oscillator. The libration + vibration combination bands have also been detected as sidebands to higher vibrational transitions in proton (deuteron) exchanged LiNbO3:PE(DE).

  1. Application of oxygen A-band equivalent width to disambiguate downwelling radiances for cloud optical depth measurement

    NASA Astrophysics Data System (ADS)

    Niple, Edward R.; Scott, Herman E.; Conant, John A.; Jones, Stephen H.; Iannarilli, Frank J.; Pereira, Wellesley E.

    2016-08-01

    This paper presents the three-waveband spectrally agile technique (TWST) for measuring cloud optical depth (COD). TWST is a portable field-proven sensor and retrieval method offering a unique combination of fast (1 Hz) cloud-resolving (0.5° field of view) real-time-reported COD measurements. It entails ground-based measurement of visible and near-infrared (VNIR) zenith spectral radiances much like the Aerosol Robotic Network (AERONET) cloud-mode sensors. What is novel in our approach is that we employ absorption in the oxygen A-band as a means of resolving the COD ambiguity inherent in using up-looking spectral radiances. We describe the TWST sensor and algorithm, and assess their merits by comparison to AERONET cloud-mode measurements collected during the US Department of Energy's Atmospheric Radiation Measurements (ARM) Two-Column Aerosol Project (TCAP). Spectral radiance agreement was better than 1 %, while a linear fit of COD yielded a slope of 0.905 (TWST reporting higher COD) and offset of -2.1.

  2. Absorption spectrum of NO in the {gamma}(O, O) band

    SciTech Connect

    Zobnin, A.V.; Korotkov, A.N.

    1995-05-01

    A promising technique for determining the concentration of nitrogen oxide in the air of an industrial zone and in process gases is the measurement of the absorption of UV radiation by this molecule in the {gamma}(O,O) band with the center of {lambda}{sub 0} = 226.5 nm. This band corresponds to the transition X{sup 2}{Pi}{yields}{Alpha}{sup 2}{Sigma} of the NO molecule and is characterized by a complex rotational structure consisting of about 400 lines. This structure cannot be resolved completely by most spectral instruments. However, if the width of the spread function of the device is perceptibly smaller than the width of the given absorption band ({approx_equal}2 nm), but larger than the characteristic space between rotational lines ({approx_equal}0.02 nm), then the recorded transmission spectra of NO are almost insensitive to a change in the form of this function. In the given case, to describe the transmission spectrum it is possible to use the absorption coefficient averaged over rotational lines. And even though the Bouger-Lambert-Beer law is not strictly applicable for this spectrum, the dependence of the transmission spectrum of NO on the optical thickness, temperature, and pressure of the broadening gas can be represented in the form of an empirical dependence that can be useful in practice, for example, when processing the absorption spectra recorded by dispersion gas analyzers. Thus, the need for complex and laborious calculations is avoided, and this simplifies considerably the instrumental implementation of this method of measuring the concentration of NO. The object of the present work is to determine the empirical dependence of the absorption spectrum of NO in the {gamma}(O, O) band on the optical thickness, temperature, and pressure of the broadening gas in the ranges most frequently encountered in operation of dispersion gas analyzers.

  3. Is a pyrene-like molecular ion the cause of the 4,430-angstroms diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar bands (DIBs), ubiquitous absorption features in astronomical spectra, have been known since early this century and now number more than a hundred. Ranging from 4,400 angstroms to the near infrared, they differ markedly in depth, width and shape, making the concept of a single carrier unlikely. Whether they are due to gas or grains is not settled, but recent results suggest that the DIB carriers are quite separate from the grains that cause visual extinction. Among molecular candidates the polycyclic aromatic hydrocarbons (PAHs) have been proposed as the possible carriers of some of the DIBs, and we present here laboratory measurements of the optical spectrum of the pyrene cation C16H10+ in neon and argon matrices. The strongest absorption feature falls at 4,435 +/- 5 angstroms in the argon matrix and 4,395 +/- 5 angstroms in the neon matrix, both close to the strong 4,430-angstroms DIB. If this or a related pyrene-like species is responsible for this particular band, it must account for 0.2% of all cosmic carbon. The ion also shows an intense but puzzling broad continuum, extending from the ultraviolet to the visible, similar to what is seen in the naphthalene cation and perhaps therefore a common feature of all PAH cations. This may provide an explanation of how PAHs convert a large fraction of interstellar radiation from ultraviolet and visible wavelengths down to the infrared.

  4. Is a pyrene-like molecular ion the cause of the 4,430-angstroms diffuse interstellar absorption band?

    PubMed

    Salama, F; Allamandola, L J

    1992-07-01

    The diffuse interstellar bands (DIBs), ubiquitous absorption features in astronomical spectra, have been known since early this century and now number more than a hundred. Ranging from 4,400 angstroms to the near infrared, they differ markedly in depth, width and shape, making the concept of a single carrier unlikely. Whether they are due to gas or grains is not settled, but recent results suggest that the DIB carriers are quite separate from the grains that cause visual extinction. Among molecular candidates the polycyclic aromatic hydrocarbons (PAHs) have been proposed as the possible carriers of some of the DIBs, and we present here laboratory measurements of the optical spectrum of the pyrene cation C16H10+ in neon and argon matrices. The strongest absorption feature falls at 4,435 +/- 5 angstroms in the argon matrix and 4,395 +/- 5 angstroms in the neon matrix, both close to the strong 4,430-angstroms DIB. If this or a related pyrene-like species is responsible for this particular band, it must account for 0.2% of all cosmic carbon. The ion also shows an intense but puzzling broad continuum, extending from the ultraviolet to the visible, similar to what is seen in the naphthalene cation and perhaps therefore a common feature of all PAH cations. This may provide an explanation of how PAHs convert a large fraction of interstellar radiation from ultraviolet and visible wavelengths down to the infrared.

  5. Theory of absorption bands in molecular dimers: Interpolating between optical asymmetries

    SciTech Connect

    Wagenknecht, Hans; Esser, Bernd

    2003-02-01

    Absorption band shapes of an asymmetric dimer system constituted by monomers with different excitation energies and optical transition matrix elements are considered in the semiclassical parameter region. Optical transition matrix elements originating from arbitrary initial vibrational states are analyzed on the basis of a spin representation of the eigenstates of an associated symmetry broken spin-boson Hamiltonian. Correlations between the spin-down and spin-up coefficients of these eigenstates are shown to exist and investigated in detail. Using these correlations, an asymmetry interpolation of the intensity of absorption lines between dimer configurations with different optical monomer transition matrix elements is proposed.

  6. The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions.

    PubMed

    Stockett, Mark H; Musbat, Lihi; Kjær, Christina; Houmøller, Jørgen; Toker, Yoni; Rubio, Angel; Milne, Bruce F; Brøndsted Nielsen, Steen

    2015-10-21

    We have performed gas-phase absorption spectroscopy in the Soret-band region of chlorophyll (Chl) a and b tagged by quaternary ammonium ions together with time-dependent density functional theory (TD-DFT) calculations. This band is the strongest in the visible region of metalloporphyrins and an important reporter on the microenvironment. The cationic charge tags were tetramethylammonium, tetrabutylammonium, and acetylcholine, and the dominant dissociation channel in all cases was breakage of the complex to give neutral Chl and the charge tag as determined by photoinduced dissociation mass spectroscopy. Two photons were required to induce fragmentation on the time scale of the experiment (microseconds). Action spectra were recorded where the yield of the tag as a function of excitation wavelength was sampled. These spectra are taken to represent the corresponding absorption spectra. In the case of Chl a we find that the tag hardly influences the band maximum which for all three tags is at 403 ± 5 nm. A smaller band with maximum at 365 ± 10 nm was also measured for all three complexes. The spectral quality is worse in the case of Chl b due to lower ion beam currents; however, there is clear evidence for the absorption being to the red of that of Chl a (most intense peak at 409 ± 5 nm) and also a more split band. Our results demonstrate that the change in the Soret-band spectrum when one peripheral substituent (CH3) is replaced by another (CHO) is an intrinsic effect. First principles TD-DFT calculations agree with our experiments, supporting the intrinsic nature of the difference between Chl a and b and also displaying minimal spectral changes when different charge tags are employed. The deviations between theory and experiment have allowed us to estimate that the Soret-band absorption maxima in vacuo for the neutral Chl a and Chl b should occur at 405 nm and 413 nm, respectively. Importantly, the Soret bands of the isolated species are significantly blueshifted

  7. Infrared laser absorption spectroscopy of the ν7 band of jet-cooled iron pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Loroño, M.; Cruse, H. A.; Davies, P. B.

    2000-02-01

    The ν7 parallel band of Fe(CO) 5 has been measured in the 620 cm -1 region using high-resolution diode laser absorption spectroscopy in a free jet expansion. A comparison with simulated band profiles indicated a rotational temperature of between 2 and 3 K in the jet. At these temperatures the K-structure of the Q-branch is partly resolved. The following molecular parameters were obtained: ν0=619.95747(12) cm -1, B7=0.026743(2) cm -1, A7=0.030721(1) cm -1. Approximate values of the quartic centrifugal distortion constants were also obtained from fitting the spectra.

  8. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  9. Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber

    SciTech Connect

    Saha, Kasturi; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2011-03-15

    We show that two-photon absorption (TPA) in rubidium atoms can be greatly enhanced by the use of a hollow-core photonic-band-gap fiber. We investigate off-resonant, degenerate Doppler-free TPA on the 5S{sub 1/2{yields}}5D{sub 5/2} transition and observe 1% absorption of a pump beam with a total power of only 1 mW in the fiber. These results are verified by measuring the amount of emitted blue fluorescence and are consistent with the theoretical predictions which indicate that transit-time effects play an important role in determining the two-photon absorption cross section in a confined geometry.

  10. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy.

    PubMed

    Toulson, Benjamin W; Murray, Craig

    2016-09-01

    Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers. PMID:27552402

  11. Two-Photon Absorption by H2 Molecules: Origin of the 2175A Astronomical Band?

    NASA Astrophysics Data System (ADS)

    Sorokin, Peter P.; Glownia, James H.

    2007-04-01

    The near UV spectra of OB stars are often dominated by a broad extinction band peaking at 2175A. Forty years after its discovery, the origin of this band remains unknown, although it is usually attributed to linear scattering or linear absorption by interstellar dust particles. Here we report that two-photon absorption by H2 molecules in gaseous clouds enveloping OB stars should lead to a strong band peaking near 2175A. We first show that if the product of the H2 density in the gaseous cloud times the emitted stellar VUV flux is sufficiently great, the threshold for stimulated Rayleigh scattering will be exceeded, resulting in the generation of intense, monochromatic VUV light at the rest frame frequencies of H2 B- and C-state resonance lines originating from levels J''=0 and J''=1 of X0. This coherently generated light must necessarily propagate radially inwards towards the photosphere of the illuminating OB star, and therefore cannot be detected externally. However, this same light effectively constitutes intense ``first step'' monochromatic radiation that should induce continuum photons emitted by the OB star near 2175A to be strongly absorbed as ``second steps'' in resonantly-enhanced H2 two-photon transitions to two well known doubly-excited dissociative states of H2. Archival UV and VUV spectra of 185 OB stars strongly support our nonlinear model for the 2175A band.

  12. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus.

  13. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus. PMID:27493545

  14. Evaluating the Impact of Smoke Particle Absorption on Passive Satellite Cloud Optical Depth Retrievals

    NASA Astrophysics Data System (ADS)

    Alfaro-Contreras, R.; Zhang, J.; Reid, J. S.; Campbell, J. R.

    2013-12-01

    Absorbing aerosol particles, when lifted above clouds, can perturb top-of-atmosphere radiation radiances measured by passive satellite sensors through the absorption of reflected solar energy. This scenario, if not properly screened, impacts cloud physical retrievals, like cloud optical depth (COD), conducted using radiances/channels in the visible spectrum. We describe observations of smoke particle presence above cloud off the southwest coast of Africa, using spatially and temporally collocated Aqua Moderate Resolution Imaging Spectroradiometer (AQUA MODIS), Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements. Results from this study indicate that above cloud aerosol episodes happen rather frequent in the smoke outflow region during the Northern Hemisphere summer where above cloud aerosol plumes introduce a significant bias to MODIS COD retrievals in the visible spectrum. This suggests that individual COD retrievals as well as COD climatology from MODIS can be affected over the smoke outflow region by above cloud aerosol contamination and thus showing the need to account for the presence of above cloud absorbing aerosols in the MODIS visible COD retrievals.

  15. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  16. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughness and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.

  17. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  18. Optical band-edge absorption of oxide compound SnO 2

    NASA Astrophysics Data System (ADS)

    Roman, L. S.; Valaski, R.; Canestraro, C. D.; Magalhães, E. C. S.; Persson, C.; Ahuja, R.; da Silva, E. F.; Pepe, I.; da Silva, A. Ferreira

    2006-05-01

    Tin oxide (SnO 2) is an important oxide for efficient dielectrics, catalysis, sensor devices, electrodes and transparent conducting coating oxide technologies. SnO 2 thin film is widely used in glass applications due to its low infra-red heat emissivity. In this work, the SnO 2 electronic band-edge structure and optical properties are studied employing a first-principle and fully relativistic full-potential linearized augmented plane wave (FPLAPW) method within the local density approximation (LDA). The optical band-edge absorption α( ω) of intrinsic SnO 2 is investigated experimentally by transmission spectroscopy measurements and their roughness in the light of the atomic force microscopy (AFM) measurements. The sample films were prepared by spray pyrolysis deposition method onto glass substrate considering different thickness layers. We found for SnO 2 qualitatively good agreement of the calculated optical band-gap energy as well as the optical absorption with the experimental results.

  19. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  20. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  1. Absorption spectrum and analysis of the ND 4 Schüler band

    NASA Astrophysics Data System (ADS)

    Alberti, F.; Huber, K. P.; Watson, J. K. G.

    1984-09-01

    A high-resolution absorption spectrum of the main Schüler band of ND 4, with heads at 6746 and 6749 Å ( ν00 = 14828 cm -1), has been obtained by the flash discharge method, using mixtures of ND 3 and D 2. The spectrum confirms and extends the recent observation of ND 4 absorption in laser frequency modulation spectroscopy by Hunziker and co-workers. The detailed rotational analysis establishes the electronic assignment as 3 p2F2 ← 3 s2A1, and results in molecular constants in moderate agreement with expectations based on ab initio calculations. The 30-μsec lifetime of the 3 s2A1 ground state of ND 4 is consistent with the 20-μsec lower limit estimated by Porter and co-workers on the basis of neutralized-ion-beam spectroscopy.

  2. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  3. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  4. Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin.

    PubMed

    Wójcik, Justyna; Ratuszna, Alicja; Peszke, Jerzy; Wrzalik, Roman

    2015-01-21

    The computational results of the features observed in the room-temperature Q-band absorption spectrum of free-base chlorin (H2Ch) are presented. The vibrational structures of the first and second excited singlet states were calculated based on a harmonic approximation using density functional theory and its time dependent extension within the Franck-Condon and Herzberg-Teller approaches. The outcome allowed to identify the experimental bands and to assign them to the specific vibrational transitions. A very good agreement between the simulated and measured wavelengths and their relative intensities provided the opportunity to predict the origin of the S0 → S2 transition which could not be determined experimentally.

  5. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  6. Femtosecond supercontinuum generation in water in the vicinity of absorption bands.

    PubMed

    Dharmadhikari, J A; Steinmeyer, G; Gopakumar, G; Mathur, D; Dharmadhikari, A K

    2016-08-01

    We show that it is possible to overcome the perceived limitations caused by absorption bands in water so as to generate supercontinuum (SC) spectra in the anomalous dispersion regime that extend well beyond 2000 nm wavelength. By choosing a pump wavelength within a few hundred nanometers above the zero-dispersion wavelength of 1048 nm, initial spectral broadening extends into the normal dispersion regime and, in turn, the SC process in the visible strongly benefits from phase-matching and matching group velocities between dispersive radiation and light in the anomalous dispersion regime. Some of the SC spectra are shown to encompass two and a half octaves. PMID:27472597

  7. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  8. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    SciTech Connect

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  9. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

    PubMed

    Riris, Haris; Rodriguez, Michael; Allan, Graham R; Hasselbrack, William; Mao, Jianping; Stephen, Mark; Abshire, James

    2013-09-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km.

  10. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  11. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  12. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  13. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  14. Microwave Absorption Properties of β-SiC-C Composites with Solid Phase Sintering at X Band

    NASA Astrophysics Data System (ADS)

    Zhou, Zehua; Tan, Shouhong; Jiang, Dongliang; Yi, Yu

    In this paper, by using β-SiC powder as a matrix and mixing different content of C, a series of SiC-C composites with solid phase sintering under different temperature were prepared. The relative density, electrical properties and microwave absorption properties at X band were measured systemically. The microwave absorption mechanisms of the composites were studied comprehensively by the test results, together with the microstructure and composition analysis. The main results show that the composites are good microwave absorption ceramics at X band because of the good interface's match of wave impedance by the control of properties and process, C content and sintering process influence effectively all test properties. For the SiC-3wt%C composites (which is the best microwave absorption one) under 2200° sintering, the biggest microwave attenuation is -40.5 dB and almost all attenuations are above -30 dB in the whole X band.

  15. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  16. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  17. The molecular absorption bands behavior on Jupiter before and at the Southern Equatorial Belt disappearance.

    NASA Astrophysics Data System (ADS)

    Tejfel, V.; Vdovichenko, V.; Bondarenko, N.; Karimov, A.; Kharitonova, G.; Kirienko, G.

    2011-10-01

    The disappearance of dark Southern Equatorial Belt (SEB) in 2010 is not exclusive but very rare event on Jupiter. Preceding cases of the SEB disappearance or very low contrast took place in 1989 and yet no less 8 times during the last century : in 1952, 1949, 1943, 1940-1941, 1936-1937, 1927-1928, 1926 according [1,2]. In 1904 the NEB disappeared, if the orientation of two pictures for that time in [1] is right. It is evident that these changes are connected with more or less intensive vertical atmospheric circulation at low latitudes. Now we have an opportunity to search probable changes in the cloud structure from the study of the molecular absorption bands measurements on Jupiter's disk and to compare them for SEB and NEB during "usual" and "unusual" state of the SEB region.

  18. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  19. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  20. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized. PMID:26531849

  1. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  2. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-01

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  3. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient.

  4. Depth profiling the optical absorption and thermal reflection coefficient via an analysis based on the method of images (abstract)

    NASA Astrophysics Data System (ADS)

    Power, J. F.

    2003-01-01

    The problem of depth profiling optical absorption in a thermally depth variable solid is a problem of direct interest for the analysis of complex structured materials. In this work, we introduce a new algorithm to solve this problem in a planar layered sample which is impulse irradiated. The sample is comprised of "N" model layers of thickness Δx, of constant diffusivity α, where the conductivity varies depth wise with each layer. This derivation extends to the general case of a depth variable thermal reflection coefficient with depth variable optical source density. In such a sample, at finite time, t, past excitation, thermal energy can only significantly penetrate NL model layers NL≈√4αt[-ln(ɛ)] /2Δx, where ɛ is a small error (ɛ⩽10-6) and a double transit through each layer is assumed. The depth profile of optical absorption in each layer, i, is approximated by δ(x-iΔx), weighted by the optical source density Si. The temperature at x=0- just inside a front medium contacting the sample is given by T(x=0,t)= ∑ i=12NL SiṡGR(x,x0=iΔx,t)]x=0, where GR(x,x0,t) represents an effective Green's function for optical absorption at the depth x0=iΔx in the sample. The method of images1 gives GR(x,x0=iΔx,t) in the following form: [GR(x,0Δx,t)GR(x,2Δx,t)…GR(x,2NLΔx,t)]=[A10A12 A14 A16 …..A1,2NL0A32A34 A36 …..A3,2NL….0……A2NL-1,2NL][G(x-0Δx,t)G(x-2Δx,t)……G(x-2NLΔx,t)]. The G(x-nΔx,t) are shifted image fields obtained from the infinite domain Green's function for one-dimensional heat conduction. They account for thermal wave reflection/transmission over the path length nΔx from the source (at interface i) to the surface (x=0). The Ain are lumped coefficients giving the efficiency of heat transmission from the ith source to the surface for each path order n. They are determined by a mapping procedure that identifies all propagation paths of each order, n, and computes the individual and lumped reflection coefficients. Equation (2) is

  5. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  6. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  7. Detection of shallow buried nonmetallic landmine and estimation of its depth at microwave X-band frequency

    NASA Astrophysics Data System (ADS)

    Tiwari, K. C.; Singh, D.; Arora, M.

    2009-05-01

    Current methods of demining are mostly ground or vehicle based and therefore extremely time consuming, risky and also do not produce low false alarm rates. Detection of landmines using airborne and satellite based sensors are a viable risk free alternative. However extracting mine like features from data captured using airborne and satellite based sensors using signal and image processing techniques with low false alarm rates is a subject of active research. Microwave remote sensing in X-band (10 GHz, 3 cm) frequency has the capability for both subsurface penetration and resolution of landmines as well as non-lethal targets. In the present study, a set of experiments under laboratory conditions have been carried out using dummy landmines without explosives buried to different depths up to 10 cm in dry smooth sand. The data generated through the experiments is processed through a series of image processing steps and a region of interest segmented using Otsu and Maximum Entropy based thresholding methods. The region of interest is masked and the average observed backscatter containing the mine further processed through an electromagnetic model developed and optimized using genetic algorithm for estimation of depth. The method does not have any requirement of separate training and test data set to train the optimizer and validate the results. The results under laboratory conditions indicate satisfactory results both for detection of shallow buried landmines and estimation of depth.

  8. Absorption in the Q-band region by isolated ferric heme+ and heme+(histidine) in vacuo.

    PubMed

    Wyer, Jean Ann; Brøndsted Nielsen, Steen

    2010-08-28

    Absorption by heme proteins is determined by the heme microenvironment that is often vacuumlike (hydrophobic pocket). Here we provide absorption spectra in the Q-band region of isolated ferric heme(+) and heme(+)(histidine) ions in vacuo to be used as references in protein biospectroscopy. Ions were photoexcited in an electrostatic storage ring and their decay monitored in time. Both ions display a triple band structure with maxima at 500, 518, and 530 nm. Previous attempts to study four-coordinate Fe(III)-heme(+) were hampered by the strong affinity of Fe(3+) for water and anions. Absorption at higher wavelengths is also measured, which is ascribed to charge-transfer transitions from the porphyrin to the iron. Finally, our data serve to benchmark theoretical calculations. PMID:20815568

  9. Two-photon absorption cross section measurement in the gamma band system of nitric oxide

    SciTech Connect

    Burris, J.F. Jr.

    1982-01-01

    A dye laser with a single longitudinal mode and very stable spatial mode structure has been constructed. With this laser system a four-wave mixing experiment was done in the gamma bands of nitric oxide using two photon resonance. Another four-wave mixing experiment was done in nitrogen using coherent anti-Stokes Raman scattering (CARS) and the two signals ratioed. Using accurately known values of the Raman scattering cross section, the third order susceptibility in NO was determined without needing to know the spatial and temporal properties of the dye lasers. From this susceptibility, the two photon absorption cross section was calculated with the explicit dependence of sigma/sup (2)/ upon X/sup (3)/ shown. For the R/sub 22/ + S/sub 12/(J'' = 9 1/2) (A/sup 2/..sigma..+(v' = 0) -- X/sup 2/..pi..(v'' = 0)) line, sigma/sup (2)/ = (1.0 +/- 0.6) x 10/sup -38/cm/sup 4/g(2/sub 1/-Vertical Barsub f/ is the normalized lineshape. Branching ratios for the A/sup 2/..sigma..+(v' = n) ..-->.. X/sup 2/..omega..(v'' = n)(n = o,...9) transitions of NO were also measured, Franck-Condon factors calculated and the lifetime of the A state determined.

  10. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands.

    PubMed

    Siritanaratkul, Bhavin; Maeda, Kazuhiko; Hisatomi, Takashi; Domen, Kazunari

    2011-01-17

    Photocatalytic activities of perovskite-type niobium oxynitrides (CaNbO₂N, SrNbO₂N, BaNbO₂N, and LaNbON₂) were examined for hydrogen and oxygen evolution from water under visible-light irradiation. These niobium oxynitrides were prepared by heating the corresponding oxide precursors, which were synthesized using the polymerized complex method, for 15 h under a flow of ammonia. They possess visible-light absorption bands between 600-750 nm, depending on the A-site cations in the structures. The oxynitride CaNbO₂N, was found to be active for hydrogen and oxygen evolution from methanol and aqueous AgNO₃, respectively, even under irradiation by light at long wavelengths (λ<560 nm). The nitridation temperature dependence of CaNbO₂N was investigated and 1023 K was found to be the optimal temperature. At lower temperatures, the oxynitride phase is not adequately produced, whereas higher temperatures produce more reduced niobium species (e. g., Nb³(+) and Nb⁴(+)), which can act as electron-hole recombination centers, resulting in a decrease in activity.

  11. Extraordinary terahertz absorption bands observed in micro/nanostructured Au/polystyrene sphere arrays

    PubMed Central

    2012-01-01

    Terahertz (THz) time-domain spectroscopy is carried out for micro/nanostructured periodic Au/dielectric sphere arrays on Si substrate. We find that the metal-insulator transition can be achieved in THz bandwidth via varying sample parameters such as the thickness of the Au shell and the diameter of the Au/dielectric sphere. The Au/polystyrene sphere arrays do not show metallic THz response when the Au shell thickness is larger than 10 nm and the sphere diameter is smaller than 500 nm. This effect is in sharp contrast to the observations in flat Au films on Si substrate. Interestingly, the Au/polystyrene sphere arrays with a 5-nm-thick Au shell show extraordinary THz absorption bands or metallic optical conductance when the diameter of the sphere is larger than 200 nm. This effect is related to the quantum confinement effect in which the electrons in the structure are trapped in the sphere potential well of the gold shell. PMID:23190688

  12. Optomechanical shutter modulated broad-band cavity-enhanced absorption spectroscopy of molecular transients of astrophysical interest.

    PubMed

    Walsh, Anton; Zhao, Dongfeng; Ubachs, Wim; Linnartz, Harold

    2013-10-01

    We describe a sensitive spectroscopic instrument capable of measuring broad-band absorption spectra through supersonically expanding planar plasma pulses. The instrument utilizes incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and incorporates an optomechanical shutter to modulate light from a continuous incoherent light source, enabling measurements of durations as low as ∼400 μs. The plasma expansion is used to mimic conditions in translucent interstellar clouds. The new setup is particularly applicable to test proposed carriers of the diffuse interstellar bands, as it permits swift measurements over a broad spectral range with a resolution comparable to astronomical observations. The sensitivity is estimated to be better than 10 ppm/pass, measured with an effective exposure time of only 1 s.

  13. Analysis of the influence of O(2) A-band absorption on atmospheric correction of ocean-color imagery.

    PubMed

    Ding, K; Gordon, H R

    1995-04-20

    Two satellite-borne ocean-color sensors scheduled for launch in the mid 1990's each have a spectral band (nominally 745-785 nm) that completely encompasses the O(2) A band at 762 nm. These spectral bands are to be used in atmospheric correction of the color imagery by assessment of the aerosol contribution to the total radiance at the sensor. The effect of the O(2) band on the radiance measured at the satellite is studied with a line-by-line backward Monte Carlo radiative transfer code. As expected, if the O(2) absorption is ignored, unacceptably large errors in the atmospheric correction result. The effects of the absorption depend on the vertical profile of the aerosol. By assuming an aerosol profile-the base profile-we show that it is possible to remove most of the O(2)-absorption effects from atmospheric correction in a simple manner. We also investigate the sensitivity of the results to the details of the assumed base profile and find that, with the exception of situations in which there are significant quantities of aerosol in the stratosphere, e.g., following volcanic eruptions or in the presence of thin cirrus clouds, the quality of the atmospheric correction depends only weakly on the base profile. Situations with high concentrations of stratospheric aerosol require additional information regarding vertical structure for this spectral band to be used in atmospheric correction; however, it should be possible to infer the presence of such aerosol by a failure of the atmospheric correction to produce acceptable water-leaving radiance in the red. An important feature of our method for removal of the O(2)-absorption effects is that it permits the use of lookup tables that can be prepared in the absence of O(2) absorption by the use of more efficient radiative transfer codes.

  14. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands Kṡp study

    NASA Astrophysics Data System (ADS)

    AbuEl-Rub, Khaled M.

    2012-09-01

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 Å InAs/24 Å GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, and are in good agreement with experimental data.

  15. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics.

    PubMed

    Manohara, S R; Hanagodimath, S M; Gerward, L

    2011-11-15

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Z(eff). These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues. With the proper knowledge of buildup factors of human organs and tissues, energy absorption in the human body can be carefully controlled. The present results will help in estimating safe dose levels for radiotherapy patients and also useful in diagnostics and dosimetry. The tissue-equivalent materials for skeletal muscle, adipose tissue, cortical bone, and lung tissue are also discussed. It is observed that water and MS20 are good tissue equivalent materials for skeletal muscle in the extended energy range.

  16. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea

    NASA Astrophysics Data System (ADS)

    Koike, M.; Moteki, N.; Khatri, P.; Takamura, T.; Takegawa, N.; Kondo, Y.; Hashioka, H.; Matsui, H.; Shimizu, A.; Sugimoto, N.

    2014-01-01

    aerosol optical depth (AAOD) measurements made by sun-sky photometers are currently the only constraint available for estimates of the global radiative forcing of black carbon (BC), but their validation studies are limited. In this paper, we report the first attempt to compare AAODs derived from single-particle soot photometer (SP2) and ground-based sun-sky photometer (sky radiometer, SKYNET) measurements. During the Aerosol Radiative Forcing in East Asia (A-FORCE) experiments, BC size distribution and mixing state vertical profiles were measured using an SP2 on board a research aircraft near the Fukue Observatory (32.8°N, 128.7°E) over the East China Sea in spring 2009 and late winter 2013. The aerosol extinction coefficients (bext) and single scattering albedo (SSA) at 500 nm were calculated based on aerosol size distribution and detailed BC mixing state information. The calculated aerosol optical depth (AOD) agreed well with the sky radiometer measurements (2 ± 6%) when dust loadings were low (lidar-derived nonspherical particle contribution to AOD less than 20%). However, under these low-dust conditions, the AAODs obtained from sky radiometer measurements were only half of the in situ estimates. When dust loadings were high, the sky radiometer measurements showed systematically higher AAODs even when all coarse particles were assumed to be dust for in situ measurements. These results indicate that there are considerable uncertainties in AAOD measurements. Uncertainties in the BC refractive index, optical calculations from in situ data, and sky radiometer retrieval analyses are discussed.

  17. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  18. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  19. Combining Gabor and Talbot bands techniques to enhance the sensitivity with depth in Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Marques, Manuel J.; Bouchal, Petr; Podoleanu, Adrian Gh.

    2013-03-01

    The purpose of this study was to show how to favorably mix two e_ects to improve the sensitivity with depth in Fourier domain optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by directing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By changing the lateral gap between the two beams in their path towards the spectrometer, the position for the maximum sensitivity versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a composite image is formed by edging together the parts of the five images that exhibited maximum brightness. The combined procedure, TB/GF is examined for four different values of the beam diameters of the two beams. Also we demonstrate volumetric FD-OCT images with mirror term attenuation and sensitivity profile shifted towards higher OPD values by applying a Talbot bands configuration.

  20. Evidence for strange stars from joint observation of harmonic absorption bands and of redshift

    NASA Astrophysics Data System (ADS)

    Bagchi, Manjari; Ray, Subharthi; Dey, Mira; Dey, Jishnu

    2006-05-01

    From recent reports on terrestrial heavy ion collision experiments it appears that one may not obtain information about the existence of asymptotic freedom (AF) and chiral symmetry restoration (CSR) for quarks of QCD at high density. This information may still be obtained from compact stars - if they are made up of strange quark matter (SQM). Very high gravitational redshift lines (GRL), seen from some compact stars, seem to suggest high ratios of mass and radius (M/R) for them. This is suggestive of strange stars (SS) and can in fact be fitted very well with SQM equation of state (EOS) deduced with built in AF and CSR. In some other stars broad absorption bands (BAB) appear at about ~0.3keV and multiples thereof, that may fit in very well with resonance with harmonic compressional breathing mode frequencies of these SS. Emission at these frequencies are also observed in six stars. If these two features of large GRL and BAB were observed together in a single star, it would strengthen the possibility for the existence of SS in nature and would vindicate the current dogma of AF and CSR that we believe in QCD. Recently, in 4U 1700 - 24, both features appear to be detected, which may well be interpreted as observation of SS - although the group that analyzed the data did not observe this possibility. We predict that if the shifted lines, that has been observed, are from neon with GRL shift z= 0.4- then the compact object emitting it is a SS of mass 1.2Msolar and radius 7km. In addition the fit to the spectrum leaves a residual with broad dips at 0.35keV and multiples thereof, as in 1E 1207 - 5209 which is again suggestive of SS.

  1. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  2. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  3. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  4. [Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen].

    PubMed

    Gudkov, S V; Karp, O E; Garmash, S A; Ivanov, V E; Chernikov, A V; Manokhin, A A; Astashev, M E; Iaguzhinskiĭ, L S; Bruskov, V I

    2012-01-01

    It is found that in bidistilled water saturated with oxygen hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sourses, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

  5. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  6. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  7. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν8 +ν10 band of 13C2H4

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Kashirina, N. V.; Maul, C.; Bauerecker, S.

    2015-10-01

    The high resolution spectra of the 13C2H4 molecule was recorded with a Bruker IFS 120 Fourier transform spectrometer and theoretically analyzed in the 1650 - 1800cm-1 region of the ν8 +ν10 band which is forbidden in absorption. About 1200 experimental transitions with the maximum values of quantum numbers Jmax. = 34 and Kamax. = 17 were assigned to the ν8 +ν10 band. On that basis the 516 high accuracy ro-vibrational energies of the (v8=v10=1) vibrational state, as well as energy levels with J ≤ 2 of the (v4 =v8 = 1) and (v7 =v8 = 1) vibrational states, were determined which then were used as input data in the weighted fit of spectroscopic parameters of the Hamiltonian (strong local resonance interactions of the ν8 +ν10 band with the bands ν4 +ν8 and ν7 +ν8 have been taken into account). A set of 34 vibrational, rotational, centrifugal distortion, and resonance interaction parameters was obtained from the fit. These parameters reproduce positions of about 1200 experimentally recorded and assigned transitions with the rms error drms = 0.00018cm-1 (blended and very weak transitions are not taken into account in that case).

  8. a Theoretical Model for Wide-Band Infrared-Absorption Molecular Spectra at any Pressure: Fiction or Reality?

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Vander Auwera, Jean

    2014-06-01

    Various atmospheric applications require modeling of infrared absorption by the main atmospheric species in wide ranges of frequencies, pressures and temperatures. For different pressure regimes, different mechanisms are responsible for the observed intensities of vibration-rotation line manifolds, and the structure of the bands changes drastically when going from low to high densities. Therefore, no universal theoretical model exists presently to interpret simultaneously collapsed band-shapes observed at very high pressures and isolated-line shapes recorded in sub-atmospheric regimes. Using CO_2 absorption spectra as an example, we introduce some improvements in the non-Markovian Energy-Corrected Sudden model, developed for high-density spectra of arbitrary tensorial rank and generalized recently to parallel and perpendicular infrared absorption bands, and test the applicability of this approach for the case of nearly Doppler pressure regime via comparisons with recently recorded experimental intensities. J.V. Buldyreva and L. Bonamy, Phys. Rev. A 60(1), 370-376 (1999). J. Buldyreva and L. Daneshvar, J. Chem. Phys. 139, 164107 (2013). L. Daneshvar, T. Földes, J. Buldyreva, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 2014 (to be submitted).

  9. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  10. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  11. Absolute Rovibrational Intensities of C-12O2-16 Absorption Bands in the 3090-3850/ CM Spectral Region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1998-01-01

    A multispectrum nonlinear least-squares fitting technique has been used to determine the absolute intensities for approximately 1500 spectral lines in 36 vibration - rotation bands Of C-12O2-16 between 3090 and 3850/ cm. A total of six absorption spectra of a high- purity (99.995% minimum) natural sample of carbon dioxide were used in the analysis. The spectral data (0.01/cm resolution) were recorded at room temperature and low pressure (1 to 10 Torr) using the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak. The absorption path lengths for these spectra varied between 24.86 and 385.76 m. The first experimental determination of the intensity of the theoretically predicted 2(nu)(sub 2, sup 2) + nu(sub 3) "forbidden" band has been made. The measured line intensities obtained for each band have been analyzed to determine the vibrational band intensity, S(sub nu), in /cm/( molecule/sq cm) at 296 K, square of the rotationless transition dipole moment |R|(exp 2) in Debye, as well as the nonrigid rotor coefficients. The results are compared to the values listed in the 1996 HITRAN database which are obtained using the direct numerical diagonalization (DND) technique as well as to other published values where available.

  12. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  13. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band

    NASA Astrophysics Data System (ADS)

    AL-Jalali, Muhammad A.; Aljghami, Issam F.; Mahzia, Yahia M.

    2016-03-01

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG- 1) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  14. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. PMID:26709019

  15. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  16. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  17. Band edge identification and carrier dynamics of CVD MoS2 monolayer measured by broadband Femtosecond Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleithan, Shrouq; Livshits, Maksim; Rack, Jeffrey; Kordesch, Martin; Stinaff, Eric

    Two-dimensional atomic crystals of transition metal dichalcogenides are considered promising candidates for optoelectronics, valleytronics, and energy harvesting devices. These materials exhibit excitonic features with high binding energy as a result of confinement effect and reduced screening when the material is thinned to monolayer. However, previous theoretical and experimental studies report different binding energy results. This work further examines the electronic structure and binding energy in this material using broadband Femtosecond Transient Absorption Spectroscopy. Samples of MoS2 were grown by chemical vapor deposition, pumped with femtosecond laser, and probed by femtosecond white light resulting in broadband differential absorption spectra with three distinct features related to the three dominant absorption peaks in the material: A, B, and C. The dependence of the transient absorption spectra on excitation wavelength and layer number provides evidence of a band gap located at C (2.9 eV) and therefore an excitonic binding energy of 1 eV. Additional features in the spectra identified as a broadening of the absorption features caused by carrier scattering, surface defects and trap states.

  18. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  19. Soft X-ray absorption spectroscopic studies with different probing depths: Effect of an electrolyte additive on electrode surfaces

    NASA Astrophysics Data System (ADS)

    Yogi, Chihiro; Takamatsu, Daiko; Yamanaka, Keisuke; Arai, Hajime; Uchimoto, Yoshiharu; Kojima, Kazuo; Watanabe, Iwao; Ohta, Toshiaki; Ogumi, Zenpachi

    2014-02-01

    A solid electrolyte interphase (SEI) formed on a model LiCoO2 electrode was analyzed by the ultra-soft X-ray absorption spectroscopy (XAS). The data of Li K-, B K-, C K-, O K-, and Co L-edges spectra for the SEI film on the electrode were collected using three detection methods with different probing depths. The electrode was prepared by a pulsed laser deposition method. All the spectral data consistently indicated that the SEI film containing lithium carbonate was instantly formed just after the soak of the electrode into the electrolyte solution and that it decomposed during the repeated charge-discharge reactions. The decomposition of the SEI film seems to cause the deterioration in lithium ion battery cycle performance. By adding lithium bis(oxalate) borate (LiBOB) to the electrolyte the decomposition could be suppressed leading to longer cycle life. It was found that some of the Co ions at the electrode surface were reduced to Co(II) during the charge-discharge reactions and this reaction could also be suppressed by the addition of LiBOB.

  20. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  1. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  2. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  3. Depth-resolved water column spectral absorption of sunlight by phytoplankon during the Southern Ocean Gas Exchange (SOGasEx) Lagrangian tracer experiments

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.

    2008-12-01

    Optical measurements made during gas exchange tracer experiments in the Southern Ocean, Atlantic sector near 51°S, 38°W from March-April 2008 (SOGasEx) were used to develop daily integrated depth- resolved PAR absorbed by phytoplankton. Particulate and phytoplankton pigment spectral absorption coefficients (ap and aph), and methanol-extracted chlorophyll-a concentrations (chl-a) from discrete samples within and below the upper mixed layer (40 stations) were combined with data from optical casts where chlorophyll-a and cdom fluorescence and PAR scalar irradiance were measured (11 stations), PAR Kd was measured from a buoy free of ship shadow for 0-5m (11 stations), and Wetlabs AC-9 whole water absorption coefficients to 150m were measured (14 stations, with 3 in common with fluorescence data) to estimate depth-resolved values for both total spectral absorption and spectral PAR irradiance. By combining depth-adjusted spectral absorption of phytoplankton pigments (aph) with depth-adjusted PAR spectral irradiance we estimated depth-resolved daily PAR irradiance absorbed by photosynthetic pigments. These data can be compared with time-integrated primary production measurements conducted on deck where solar exposure or lamp exposure was modified to simulate a range of depths. Such a synthesis should improve our estimates of depth-integrated daily primary production, and ultimately contribute to refining estimates of carbon export rates to be incorporated into a carbon budget and CO2 air-sea flux models for the SOGasEx experiments.

  4. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band.

    PubMed

    Huang, Li; Chowdhury, Dibakar Roy; Ramani, Suchitra; Reiten, Matthew T; Luo, Sheng-Nian; Taylor, Antoinette J; Chen, Hou-Tong

    2012-01-15

    We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

  5. The ÖX˜ absorption of vinoxy radical revisited: Normal and Herzberg-Teller bands observed via cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Phillip S.; Chhantyal-Pun, Rabi; Kline, Neal D.; Miller, Terry A.

    2010-03-01

    The ÖX˜ electronic absorption spectrum of vinoxy radical has been investigated using room temperature cavity ringdown spectroscopy. Analysis of the observed bands on the basis of computed vibrational frequencies and rotational envelopes reveals that two distinct types of features are present with comparable intensities. The first type corresponds to "normal" allowed electronic transitions to the origin and symmetric vibrations in the à state. The second type is interpreted in terms of excitations to asymmetric à state vibrations, which are only vibronically allowed by Herzberg-Teller coupling to the B˜ state. Results of electronic structure calculations indicate that the magnitude of the Herzberg-Teller coupling is appropriate to produce vibronically induced transitions with intensities comparable to those of the normal bands.

  6. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  7. Intelligent information extraction from reflectance spectra Absorption band positions. [application to laboratory and earth-based telescope spectra

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Jones, J. L.

    1986-01-01

    A multiple high-order derivative analysis algorithm has been developed which can automatically extract absorption band positions from low-quality reflectance spectra with little degredation of accuracy. Overlapping bands with comparable widths and intensities can be resolved whose centers are as close as 0.3-0.5 W, with safer resolution limits of 0.6-1.0 W band center separations suggested for overlapping bands that are dissimilar. The segment length for smoothing is continually adjusted to about 0.5 W to minimize signal distortion, and a spectral pattern recognition algorithm predicts the signal spectrum and calculates approximate W across the spectrum using its second derivative. A single-pass cubic spline is applied to the smoothed data, and a sliding segment sixth-order polynomial is fit to the spectrum, with the length of the segment being continuously locally adjusted to 1.0 W across the spectrum. Good reliability and consistency of the algorithm is demonstrated with application to laboratory and earth-based telescope spectra.

  8. On a vibronic origin for the diffuse band spectrum. [of interstellar absorption

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Donn, B.

    1983-01-01

    Duley (1982) has proposed that many of the diffuse interstellar bands in the wavelength interval 542-677 nm arise from vibronic transitions of Cr (3+) ions in MgO grains. No explanation has been offered for the fact that as many as 85 of the possible 108 transitions of this system have not been observed in the interstellar medium. Moreover, the relative intensities of the diffuse bands which are observed appear to be inconsistent with their assignment. It is therefore concluded that this model is not consistent with the observations.

  9. Ultrawide Band Microwave Absorption Properties of Ultrasound Processed CrO2-Paraffin Wax Composites

    NASA Astrophysics Data System (ADS)

    Xi, Li; Yang, Yikai

    2011-03-01

    The microwave absorption properties of ultrasound processed CrO2-paraffin wax composites are investigated in the frequency range of 0.1-18 GHz by the coaxial method. By analysis and comparison between ultrasound processed sample and the unprocessed sample, we discovered that the ultrasound treatment will induce a thin insulating Cr2O3 shell over the CrO2 rods to form a core/shell structure that performs excellent in microwave absorption. An optimum reflection loss of -50.9 dB was found at 5.2 GHz with a matching thickness of 3.4 mm for 70 wt % CrO2-paraffin wax composite. Moreover, the frequency range of which the reflection loss is less than -20 dB spreads from 4.0 to 8.7 GHz with the corresponding absorption thickness ranges from 2.3 to 4.0 mm. The comparison among our result and other reported ones indicates that, in addition to its common applications, the CrO2 after certain process may have potential in microwave absorption. More profoundly, the technique of ultrasound process employed in this report may suggest a new method to induce, according to different needs, crystalline phase transition for a various range of metastable chemicals.

  10. Large damage threshold and small electron escape depth in X-ray absorption spectroscopy of a conjugated polymer thin film.

    PubMed

    Chua, Lay-Lay; Dipankar, Mandal; Sivaramakrishnan, Sankaran; Gao, Xingyu; Qi, Dongchen; Wee, Andrew T S; Ho, Peter K H

    2006-09-26

    The information depth of near-edge X-ray absorption fine structure spectroscopy in the total electron yield mode (TEY-NEXAFS) is given by the escape depth of the TEY electrons z(TEY). This is determined by the effective ranges both of the inelastically scattered secondary electrons and of the primary excited electron before they thermalize below the vacuum level. For regioregular poly(3-hexylthiophene) (rreg-P3HT) thin films, we have measured the total electron emission efficiency to be 0.028 +/- 0.005 e/ph at an incident photon energy of 320 eV. The range of the primary electron was computed using optical dielectric-loss theory to be 7.5 nm. The range of the secondary electrons was then found by modeling to be 3.0 nm. This gives z(TEY) to be 2.5 nm, which is considerably less than the often-assumed value of 10 nm in the literature. It is also considerably smaller than the computed electron-electron scattering inelastic mean free path in the material, which suggests the predominance of electron-phonon scattering. Thus, TEY-NEXAFS has sufficient surface sensitivity to probe the frontier molecular layers of these organic conjugated polymers. In a second aspect of this report, the rreg-P3HT films have been characterized by in-situ core and valence photoemission spectroscopies and by ex-situ microattenuated total-reflection vibrational spectroscopy as a function of irradiation dose. No damage was observed in composition, bonding, orientation, and surface morphology under typical TEY-NEXAFS spectral acquisition conditions. For an integrated TEY that exceeds 2 x 10(-3) C cm(-2), however, the material degrades via alkyl side-chain dehydrogenation to unsaturated units, cross linking, ring opening of the backbone, and sulfur extrusion. Given that secondary electrons are the dominant cause of radiation damage, this exposure threshold measured by integrated TEY should also be valid at other X-ray energies.

  11. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  12. Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy.

    PubMed

    Koplow, J P; Kliner, D A; Goldberg, L

    1998-06-20

    A compact, lightweight, low-power-consumption source of tunable, narrow-bandwidth blue and UV radiation is described. In this source, a single-longitudinal-mode diode laser seeds a pulsed, GaAlAs tapered amplifier whose ~860-nm output is frequency quadrupled by two stages of single-pass frequency doubling. Performance of the laser system is characterized over a wide range of amplifier duty cycles (0.1-1.0), pulse durations (50 ns-1.0 mus), peak currents (absorption spectra of nitric oxide and sulfur dioxide near 215 nm; the SO(2) spectrum was found to have significantly more structure and higher peak absorption cross sections than previously reported. PMID:18273363

  13. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  14. On the Ammonia Absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; Karimov, A. M.; Lyssenko, P. G.; Kharitonova, G. A.

    2015-11-01

    The ammonia absorption bands centered at wavelengths of 645 and 787 nm in the visible spectrum of Saturn are very weak and overlapped with more strong absorption bands of methane. Therefore, the allocation of these bands is extremely difficult. In fact, the NH3 band 787 nm is completely masked by methane. The NH3 645 nm absorption band is superimposed on a relatively weak shortwave wing of CH4 band, in which the absorption maximum lies at the wavelength of 667 nm. In 2009, during the equinox on Saturn we have obtained the series of zonal spectrograms by scanning of the planet disk from the southern to the northern polar limb. Besides studies of latitudinal variation of the methane absorption bands we have done an attempt to trace the behavior of the absorption of ammonia in the band 645 nm. Simple selection of the pure NH3 profile of the band was not very reliable. Therefore, after normalizing to the ring spectrum and to the level of the continuous spectrum for entire band ranging from 630 to 680 nm in the equivalent widths were calculated for shortwave part of this band (630-652 nm), where the ammonia absorption is present, and a portion of the band CH4 652-680 nm. In any method of eliminating the weak part of the methane uptake in the short wing show an increased ammonia absorption in the northern hemisphere compared to the south. This same feature is observed also in the behavior of weak absorption bands of methane in contrast to the more powerful, such as CH4 725 and 787 nm. This is due to the conditions of absorption bands formation in the clouds at multiple scattering. Weak absorption bands of methane and ammonia are formed on the large effective optical depths and their behavior reflects the differences in the degree of uniformity of the aerosol component of the atmosphere of Saturn.

  15. Lunar and martian surfaces: petrologic significance of absorption bands in the near-infrared.

    PubMed

    Adams, J B

    1968-03-29

    A reflection minimum at 1 micron, reported for Moon and for Mars, indicates olivine or iron- and calcium-bearing clinopyroxene, or both-major constituents of many basaltic rocks. If the 1-micron absorption features are real, both chondritic and acidic rocks are ruled out as primary constituents of the surfaces of the bodies. The reflectance spectrum of Mars matches closely that of an oxidized basalt.

  16. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  17. Infrared, visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands

    SciTech Connect

    Zhang, J.H.; Ding, J.W.; Cao, J.X.; Zhang, Y.L.

    2011-03-15

    The formation energies, electronic structures and optical properties of TM:ZnS systems (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) are investigated by using the first principles method. It is found that the wurtzite and zinc-blende structures have about the same stability, and thus can coexist in the TM:ZnS system. From the wurtzite TM:ZnS, especially, a partially filled intermediate band (IB) is obtained at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}, while it is absent at TM=Mn{sup 2+} and Co{sup 2+}. The additional absorptions are obtained in infrared, visible and ultraviolet (UV) regions, due to the completely spin-polarized IB at Fermi level. The results are very helpful for both the designs and applications of TM:ZnS opto-electronics devices, such as solar-cell prototype. -- Graphical abstract: Absorption coefficients of w-TM{sub x}Zn{sub 1-x}S crystals (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) at x=0.028. The results may be helpful for the design and applications of TM:ZnS devices, especially for the new high efficiency solar-cell prototype, UV detector and UV LEDs. Display Omitted Research highlights: > It is found that the wurtzite and zinc-blende structures can coexist in TM:ZnS. > An intermediate band is obtained in TM:ZnS at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}. > The absorption coefficients are obtained in infrared, visible and ultraviolet regions.

  18. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  19. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  20. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    SciTech Connect

    Sudeep, P. M.; Vinayasree, S.; Mohanan, P.; Ajayan, P. M.; Narayanan, T. N.; Anantharaman, M. R.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methyl Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.

  1. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    NASA Technical Reports Server (NTRS)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; Mao, Yuhao

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are

  2. The nonlinear spectra of transneptunian objects: Evidence for organic absorption bands

    NASA Astrophysics Data System (ADS)

    Fraser, W.; Brown, M.; Emery, J.

    2014-07-01

    The reflectance spectra of small (D≲250 km) transneptunian objects (TNOs) are generally quite simple. Water-ice absorption is the only feature firmly detected on the majority of TNOs (Brown et al. 2012). Tentative detections of other materials have been presented (e.g., Barucci et al. 2011), but generally speaking, the spectra of small TNOs are nearly linear in the optical (0.5 < λ < 0.9 μ m; Fornasier et al. 2009) and NIR ranges (1.0 < λ < 1.5 μ m) with water-ice absorption apparent at longer wavelengths (Barkume et al. 2008). Each region is well described by a spectral slope, with the optical slope being typically redder than in the NIR (Hainaut and Delsanti, 2002, 2012). Here we present new spectral photometry of two TNOs which do not fit this simple prescription. We will present photometry of TNOs taken from HST during cycles 17 and 18. Unlike most objects, two TNOs do not exhibit linear optical spectra. Rather, they exhibit upward curvatures shortward of λ ˜ 1 μ m, with colors becoming redder with increasing wavelength. Previously published spectra and photometry exhibit similar optical shapes on a number of TNOs, including Borasisi, Pholus, Chariklo, Asbolus, and 2003 AZ_{84} (Romon-Martin et al. 2002, Alvarez-Candal et al. 2008, Fornasier 2009, Hainaut and Delsanti 2012). An interesting candidate for the upward curvature is complex C- and N-bearing hydrocarbons. These organic materials exhibit a broad absorption centered in the UV which is caused by a valence-conduction energy gap (see Moroz et al. 1998). The specific shape of the feature depends on the molecular structure of the organic material, with longer hydrocarbons generally producing wider absorptions. The assertion that the optical spectra of small TNOs are influenced by this hydrocarbon feature is reasonable as the feature is the general result of irradiation of simple organic H-, C-, and N-bearing materials, not dissimilar to that expected to occur on young TNOs (Brunetto et al. 2006

  3. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  4. On the Use of Difference Bands for Modeling SF_6 Absorption in the 10μm Atmospheric Window

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Manceron, Laurent; Roy, P.; Boudon, Vincent; Loete, Michel

    2016-06-01

    To model correctly the SF_6 atmospheric absorption requires the knowledge of the spectroscopic parameters of all states involved in the numerous hot bands in the 10,5μm atmospheric transparency window. However, due to their overlapping, a direct analysis of the hot bands near the 10,5μm absorption of SF_6 in the atmospheric window is not possible. It is necessary to use another strategy, gathering information in the far and mid infrared regions on initial and final states to compute the relevant total absorption. In this talk, we present new results from the analysis of spectra recorded at the AILES beamline at the SOLEIL Synchrotron facility. For these measurements, we used a IFS125HR interferometer combined with the synchrotron radiation in the 100-3200 wn range, coupled to a cryogenic multiple pass cell. The optical path length was varied from 45 to 141m with measuring temperatures between 223 and 153+/-5 K. The new information obtained on νb{2}+νb{4}-νb{5}, 2νb{5}-νb{6} and νb{3}+νb{6}-νb{4} allowed to derive improved parameters for νb{5}, 2νb{5} and νb{3}+νb{6}. In turn, they are used to model the more important νb{3}+νb{5}-νb{5} and νb{3}+νb{6}-νb{6} hot band contributions. By including these new parameters in the XTDS model, we substantially improved the SF_6 parameters used to model the atmosphere. F. Kwabia Tchana, F. Willaert, X. Landsheere, J. M. Flaud, L. Lago, M. Chapuis, P. Roy, L. Manceron. A new, low temperature long-pass cell for mid-IR to THz Spectroscopy and Synchrotron Radiation Use. Rev. Sci. Inst. 84, 093101, (2013) C. Wenger, V. Boudon, M. Rotger, M. Sanzharov, and J.-P. Champion,"XTDS and SPVIEW: Graphical tools for Analysis and Simulation of High Resolution Molecular Spectra", J. Mol. Spectrosc. 251, 102 (2008)

  5. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. I. Formation of the G-band in metal-poor dwarf stars

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2016-09-01

    Context. Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. Aims: A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 ≲ Teff [ K ] ≲ 6550, 4.0 ≤ log g ≤ 4.5, - 3.0 ≤ [Fe/H] ≤-1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Methods: Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Results: Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. Conclusions: The 3D corrections suggest that A(C) in carbon-enhanced metal-poor (CEMP) stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.

  6. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Qu, Dan; Zheng, Min; Du, Peng; Zhou, Yue; Zhang, Ligong; Li, Di; Tan, Huaqiao; Zhao, Zhao; Xie, Zhigang; Sun, Zaicheng

    2013-11-01

    A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively.A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively. Electronic supplementary information (ESI) available: More XPS and UV-Vis spectra. See DOI: 10.1039/c3nr04402e

  7. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  8. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    SciTech Connect

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B; Kochubey, V I; Gorokhovsky, A V; Tretyachenko, E V; Kunitsky, A I

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with the theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)

  9. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media.

    PubMed

    Zhang, Yiqi; Wu, Zhenkun; Yao, Xin; Zhang, Zhaoyang; Chen, Haixia; Zhang, Huaibin; Zhang, Yanpeng

    2013-12-01

    We experimentally demonstrate dressed multi-wave mixing (MWM) and the reflection of the probe beam due to electromagnetically induced absorption (EIA) grating can coexist in a five-level atomic ensemble. The reflection is derived from the photonic band gap (PBG) of EIA grating, which is much broader than the PBG of EIT grating. Therefore, EIA-type PBG can reflect more energy from probe than EIT-type PBG does, which can effectively affect the MWM signal. The EIA-type as well as EIT-type PBG can be controlled by multiple parameters including the frequency detunings, propagation angles and powers of the involved light fields. Also, the EIA-type PBG by considering both the linear and third-order nonlinear refractive indices is also investigated. The theoretical analysis agrees well with the experimental results. This investigation has potential applications in all-optical communication and information processing.

  10. Preparation of Ni-B Coating on Carbonyl Iron and Its Microwave Absorption Properties in the X Band

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhou, Wan-Cheng; Qing, Yu-Chang

    2014-09-01

    Ni-B coated carbonyl iron particles (CI@Ni-B) are prepared by the electroless plating technique. The structure, morphology, and antioxidant properties of the CI@Ni-B particles are analyzed. The results demonstrate that the CI particles have been coated with intact spherical-shell Ni-B coating, indicating the core-shell structure of CI@Ni-B particles, and the Ni-B coating can prevent the further oxidation of the CI particles. Compared with the raw CI particles/paraffin coatings with the same coating thickness of 2.0 mm and particles content of 70%, the CI@Ni-B particles/paraffin coatings possess higher microwave absorption (the RL exceeding -10 dB is obtained in the whole X band (8.2-12.4 GHz) with minimal RL of -35.0 dB at 9.2 GHz).

  11. Is a pyrene-like molecular ion the cause of the 4,430-A diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar band (DIB) absorption features of astronomical spectra are suggested by recent results to be separable from the grains that cause visual extinction. Attention is presently given to laboratory measurements of the optical spectrum of the pyrene cation C16H10(+), which is one of the polycyclic aromatic hydrocarbon (PAH) molecular candidates proposed as carriers for DIBs. This ion exhibits an intense but strangely broad continuum similar to that of the naphthalene cation, so that this may be a common feature of all PAH cations and the basis of an explanation for PAHs' converting of an interstellar radiation fraction as large as that from the UV and visible range down to the IR.

  12. Measurements of the absorption line strength of hydroperoxyl radical in the ν3 band using a continuous wave quantum cascade laser.

    PubMed

    Sakamoto, Yosuke; Tonokura, Kenichi

    2012-01-12

    Mid-infrared absorption spectroscopy has been applied to the detection of the hydroperoxyl (HO(2)) radical in pulsed laser photolysis combined with a laser absorption kinetics reactor. Transitions of the ν(3) vibrational band assigned to the O-O stretch mode were probed with a thermoelectrically cooled, continuous wave mid-infrared distributed feedback quantum cascade laser (QCL). The HO(2) radicals were generated with the photolysis of Cl(2)/CH(3)OH/O(2) mixtures at 355 nm. The absorption cross section at each pressure was determined by three methods at 1065.203 cm(-1) for the F(1), 13(1,13) ← 14(1,14) transition in the ν(3) band. From these values, the absolute absorption cross section at zero pressure was estimated. The relative line strengths of other absorptions in the feasible emitting frequency range of the QCL from 1061.17 to 1065.28 cm(-1) were also measured, and agreed with values reproduced from the HITRAN database. The ν(3) band absorption strength was estimated from the analytically obtained absolute absorption cross section and the calculated relative intensity by spectrum simulation, to be 21.4 ± 4.2 km mol(-1), which shows an agreement with results of quantum chemical calculations. PMID:22148191

  13. Measurements of the absorption line strength of hydroperoxyl radical in the ν3 band using a continuous wave quantum cascade laser.

    PubMed

    Sakamoto, Yosuke; Tonokura, Kenichi

    2012-01-12

    Mid-infrared absorption spectroscopy has been applied to the detection of the hydroperoxyl (HO(2)) radical in pulsed laser photolysis combined with a laser absorption kinetics reactor. Transitions of the ν(3) vibrational band assigned to the O-O stretch mode were probed with a thermoelectrically cooled, continuous wave mid-infrared distributed feedback quantum cascade laser (QCL). The HO(2) radicals were generated with the photolysis of Cl(2)/CH(3)OH/O(2) mixtures at 355 nm. The absorption cross section at each pressure was determined by three methods at 1065.203 cm(-1) for the F(1), 13(1,13) ← 14(1,14) transition in the ν(3) band. From these values, the absolute absorption cross section at zero pressure was estimated. The relative line strengths of other absorptions in the feasible emitting frequency range of the QCL from 1061.17 to 1065.28 cm(-1) were also measured, and agreed with values reproduced from the HITRAN database. The ν(3) band absorption strength was estimated from the analytically obtained absolute absorption cross section and the calculated relative intensity by spectrum simulation, to be 21.4 ± 4.2 km mol(-1), which shows an agreement with results of quantum chemical calculations.

  14. Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Kehayias, P.; Doherty, M. W.; English, D.; Fischer, R.; Jarmola, A.; Jensen, K.; Leefer, N.; Hemmer, P.; Manson, N. B.; Budker, D.

    2013-10-01

    Negatively charged nitrogen-vacancy (NV-) color centers in diamond have generated much interest for use in quantum technology. Despite the progress made in developing their applications, many questions about the basic properties of NV- centers remain unresolved. Understanding these properties can validate theoretical models of NV-, improve their use in applications, and support their development into competitive quantum devices. In particular, knowledge of the phonon modes of the 1A1 electronic state is key for understanding the optical pumping process. Using pump-probe spectroscopy, we measured the phonon sideband of the 1E→1A1 electronic transition in the NV- center. From this we calculated the 1E→1A1 one-phonon absorption spectrum and found it to differ from that of the 3E→3A2 transition, a result which is not anticipated by previous group-theoretical models of the NV- electronic states. We identified a high-energy 169-meV localized phonon mode of the 1A1 level.

  15. Temporal-frequency spectra for plane and spherical waves in a millimetric wave absorption band

    NASA Astrophysics Data System (ADS)

    Siqueira, Glaucio L.; Cole, Roy S.

    1991-02-01

    Complete analytical expressions for the temporal power spectral density functions in a millimetric wave absorption region for plane and spherical waves have been developed for both amplitude and phase fluctuations due to atmospheric turbulence. Asymptotic expressions for both high and low scintillation frequencies are derived. Theoretical expressions for the differential phase power spectrum (i.e., the phase difference between two frequencies) are also presented. Experimental results of amplitude and differential phase scintillations measured on a 4.1-km link across central London, are presented. Results show that the plane wave case gives the best agreement with theory for this particular link. It is also shown that neglecting the cross-spectral density term at the higher scintillation frequencies for the differential phase spectrum can lead to a large difference between the theoretical and experimental power spectra. In particular, for a small frequency separation and a large value of the outer scale of turbulence, the highest scintillation frequencies are too low to neglect the cross term.

  16. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-06-01

    Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloyed perovskite solid solutions of methylammonium tin iodide and its lead analogue (CH3NH3Sn(1-x)Pb(x)I3). We exploit the fact that, the energy band gaps of the mixed Pb/Sn compounds do not follow a linear trend (the Vegard's law) in between these two extremes of 1.55 and 1.35 eV, respectively, but have narrower bandgap (<1.3 eV), thus extending the light absorption into the near-infrared (~1,050 nm). A series of solution-processed solid-state photovoltaic devices using a mixture of organic spiro-OMeTAD/lithium bis(trifluoromethylsulfonyl)imide/pyridinium additives as hole transport layer were fabricated and studied as a function of Sn to Pb ratio. Our results show that CH3NH3Sn(0.5)Pb(0.5)I3 has the broadest light absorption and highest short-circuit photocurrent density ~20 mA cm(-2) (obtained under simulated full sunlight of 100 mW cm(-2)).

  17. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO.

    PubMed

    Vaughan, Stewart; Gherman, Titus; Ruth, Albert A; Orphal, Johannes

    2008-08-14

    The novel combination of incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and a discharge-flow tube for the study of three key atmospheric trace species, I(2), IO and OIO, is reported. Absorption measurements of I(2) and OIO at lambda=525-555 nm and IO at lambda=420-460 nm were made using a compact cavity-enhanced spectrometer employing a 150 W short-arc Xenon lamp. The use of a flow system allowed the monitoring of the chemically short-lived radical species IO and OIO to be conducted over timescales of several seconds. We report detection limits of approximately 26 pmol mol(-1) for I(2) (L=81 cm, acquisition time 60 s), approximately 45 pmol mol(-1) for OIO (L=42.5 cm, acquisition time 5 s) and approximately 210 pmol mol(-1) for IO (L=70 cm, acquisition time 60 s), demonstrating the usefulness of this approach for monitoring these important species in both laboratory studies and field campaigns.

  18. Genetic engineering of band-egde optical absorption in Si/Ge superlattices

    NASA Astrophysics Data System (ADS)

    D'Avezac, Mayeul; Luo, Jun-Wei; Chanier, Thomas; Zunger, Alex

    2012-02-01

    Integrating optoelectronic functionalities directly into the mature Silicon-Germanium technology base would prove invaluable for many applications. Unfortunately, both Si and Ge display indirect band-gaps unsuitable for optical applications. It was previously shown (Zachai et al. PRL 64 (1990)) that epitaxially grown [(Si)n(Ge)m]p (i. e. a single repeat unit) grown on Si can form direc-gap heterostructures with weak optical transitions as a result of zone folding and quantum confinement. The much richer space of multiple-period superlattices [(Si)n1(Ge)n2(Si)n3(Ge)n4GenN]p has not been considered. If M=∑ni is the total number of monolayers, then there are, roughly, 2^M different possible superlattices. To explore this large space, we combine a (i) genetic algorithm for effective configurational search with (ii) empirical pseudopotential designed to accurately reproduce the inter-valley and spin-orbit splittings, as well as hydrostatic and biaxial strains. We will present multiple-period SiGe superlattices with large electric dipole moments and direct gaps at γ yielded by this search. We show this pattern is robust against known difficulties during experimental synthesis.

  19. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  20. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  1. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  2. Transition state region in the A-Band photodissociation of allyl iodide--A femtosecond extreme ultraviolet transient absorption study.

    PubMed

    Bhattacherjee, Aditi; Attar, Andrew R; Leone, Stephen R

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C-I bond at this wavelength produces iodine atoms both in the ground ((2)P3/2, I) and spin-orbit excited ((2)P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ(∗) C-I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ(∗) states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ(∗)(C-I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark

  3. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aditi; Attar, Andrew R.; Leone, Stephen R.

    2016-03-01

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground (2P3/2, I) and spin-orbit excited (2P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ∗C—I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ∗ states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ∗(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for

  4. Study of band inversion in the PbxSn1-xTe class of topological crystalline insulators using x-ray absorption spectroscopy.

    PubMed

    Mitrofanov, K V; Kolobov, A V; Fons, P; Krbal, M; Tominaga, J; Uruga, T

    2014-11-26

    Pb(x)Sn(1-x)Te and Pb(x)Sn(1-x)Se crystals belong to the class of topological crystalline insulators where topological protection is achieved due to crystal symmetry rather than time-reversal symmetry. In this work, we make use of selection rules in the x-ray absorption process to experimentally detect band inversion along the PbTe(Se)-SnTe(Se) tie-lines. The observed significant change in the ratio of intensities of L1 and L3 transitions along the tie-line demonstrates that x-ray absorption can be a useful tool to study band inversion in topological insulators.

  5. Evidence for the presence of the 802.7/cm band Q branch of HO2NO2 in high resolution solar absorption spectra of the stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Zander, R.; Farmer, C. B.; Norton, R. H.; Brown, L. R.

    1986-01-01

    Stratospheric solar absorption spectra recorded at about 0.01/cm resolution by the ATMOS (Atmospheric Trace Molecule Spectroscopy) Fourier transform spectrometer during the Spacelab 3 Shuttle mission (4/30-5/6/85) show a weak absorption feature covering about 802.5-803.3/cm. This feature is identified as the unresolved Q branch of the 802.7/cm band of HO2NO2 and profiles for 31 deg N and 47 deg S are reported.

  6. Validation study of the SeaWiFS oxygen A-band absorption correction: comparing the retrieved cloud optical thicknesses from SeaWiFS measurements.

    PubMed

    Wang, M

    1999-02-20

    Atmospheric correction in ocean-color remote sensing corrects more than 90% of signals in the visible contributed from the atmosphere measured at satellite altitude. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) atmospheric correction uses radiances measured at two near-infrared wavelengths centered at 765 and 865 nm to estimate the atmospheric contribution and extrapolate it into the visible range. However, the SeaWiFS 765-nm band, which covers 745-785 nm, completely encompasses the oxygen A-band absorption. The O(2) A-band absorption usually reduces more than 10-15% of the measured radiance at the SeaWiFS 765-nm band. Ding and Gordon [Appl. Opt. 34, 2068-2080 (1995)] proposed a numerical scheme to remove the O(2) A-band absorption effects from the atmospheric correction. This scheme has been implemented in the SeaWiFS ocean-color imagery data-processing system. I present results that demonstrate a method to validate the SeaWiFS 765-nm O(2) A-band absorption correction by analyzing the sensor-measured radiances at 765 and 865 nm taken looking at the clouds over the oceans. SeaWiFS is usually not saturated with cloudy scenes because of its bilinear gain design. Because the optical and radiative properties of water clouds are nearly independent of the wavelengths ranging from 400 to 865 nm, the sensor-measured radiances above the cloud at the two near-infrared wavelengths are comparable. The retrieved cloud optical thicknesses from the SeaWiFS band 7 measurements are compared for cases with and without the O(2) A-band absorption corrections and from the band 8 measurements. The results show that, for air-mass values of 2-5, the current SeaWiFS O(2) A-band absorption correction works reasonably well. The validation method is potentially applicable for in-orbit relative calibration for SeaWiFS and other satellite sensors.

  7. Depth-resolved x-ray absorption fine structure study of Fe/Si interfaces using x-ray standing waves

    SciTech Connect

    Gupta, Ajay; Rajput, Parasmani; Meneghini, Carlo

    2007-11-15

    X-ray standing waves generated by total external reflection (TER) from an underlayer of Au have been used to perform depth resolved x-ray absorption fine structure (XAFS) studies on a Si/Fe/Si trilayer in which intermixing has been induced by irradiation with 100 MeV Au ions. It is demonstrated that the technique has a sufficient depth resolution so as to elucidate the depth distribution of various phases formed across the interfaces. Irradiation to a fluence of 1x10{sup 13} ions/cm{sup 2} results in complete mixing of the Fe layer. It is observed that in the center of the intermixed layer, the short-range order around Fe ions is similar to the FeSi phase. Moving away from the center, Si concentration increases and the local structure around Fe becomes similar to that of the FeSi{sub 2} phase. On the other hand, depth integrated XAFS data could have been interpreted in terms of a homogeneous FeSi{sub 2} type of short-range order in the system. Thus, the depth selectivity achieved using TER standing waves combined with the sensitivity of XAFS to local order around a specific element makes it a valuable tool for studying layered materials.

  8. Noncontacting laser photocarrier radiometric depth profilometry of harmonically modulated band bending in the space-charge layer at doped SiO{sub 2}-Si interfaces

    SciTech Connect

    Mandelis, Andreas; Batista, Jerias; Gibkes, Juergen; Pawlak, Michael; Pelzl, Josef

    2005-04-15

    Laser infrared photocarrier radiometry (PCR) was used with a harmonically modulated low-power laser pump and a superposed dc superband-gap optical bias (a secondary laser beam) to control and monitor the space-charge-layer (SCL) width in oxidized p-Si-SiO{sub 2} and n-Si-SiO{sub 2} interfaces (wafers) exhibiting charged interface-state related band bending. Applying the theory of PCR-SCL dynamics [A. Mandelis, J. Appl. Phys. 97, 083508 (2005)] to the experiments yielded various transport parameters of the samples as well as depth profiles of the SCL exhibiting complete ( p-type Si) or partial (n-type Si) band flattening, to a degree controlled by widely different minority-carrier capture cross section at each interface. The uncompensated charge density at the interface was also calculated from the theory.

  9. Study of the signal response of the MÖNCH 25μm pitch hybrid pixel detector at different photon absorption depths

    NASA Astrophysics Data System (ADS)

    Cartier, S.; Bergamaschi, A.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Shi, X.; Tinti, G.; Schmitt, B.; Stampanoni, M.

    2015-03-01

    MÖNCH is a 25 μm pitch hybrid silicon pixel detector with a charge integrating analog read-out front-end in each pixel. The small pixel size brings new challenges in bump-bonding, power consumption and chip design. The MÖNCH02 prototype ASIC, manufactured in UMC 110 nm technology with a field of view of 4×4 mm2 and 160×160 pixels, has been characterized in the single photon regime, i.e. with less than one photon acquired per frame on average on a 3×3 pixel cluster. The low noise and small pixel size allow spatial interpolation with high resolution. Understanding charge sharing as a function of the photon absorption depth and sensor bias is a key for optimal processing of single photon data for high resolution imaging. To characterize the charge collection of the detector, the sensor was illuminated with a 20 keV photon beam in edge-on configuration at the SYRMEP beamline of Elettra. By slicing the beam by means of a 5 μm slit and scanning through the 320 μm silicon sensor depth, the charge collection is characterized as a function of the photon absorption depth for different sensor bias voltages.

  10. Cloud top height retrieval using the imaging polarimeter (3MI) top-of-atmosphere reflectance measurements in the oxygen absorption band

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Munro, Rose

    2016-04-01

    The determination of cloud top height from a satellite has a number of applications both for climate studies and aviation safety. A great variety of methods are applied using both active and passive observation systems in the optical and microwave spectral regions. One of the most popular methods with good spatial coverage is based on the measurement of outgoing radiation in the spectral range where oxygen strongly absorbs incoming solar light. Clouds shield tropospheric oxygen reducing the depth of the corresponding absorption line as detected by a satellite instrument. Radiative transfer models are used to connect the solar light reflectance, e.g., in the oxygen A-band located around 761nm, and the cloud top height. The inverse problem is then solved e.g. using look-up tables, to determine the cloud top height. In this paper we propose a new fast and robust oxygen A-band method for the retrieval of cloud altitude using the Multi-viewing Multi-channel Multi-polarization Imaging instrument (3MI) on board the EUMETSAT Polar System Second Generation (EPS-SG). The 3MI measures the intensity at the wavelengths of 410, 443, 490, 555, 670, 763, 765, 865, 910, 1370, 1650, and 2130nm, and (for selected channels) the second and third Stokes vector components which allows the degree of linear polarization and the polarization orientation angle of reflected solar light to be derived at up to 14 observation angles. The instrument response function (to a first approximation) can be modelled by a Gaussian distribution with the full width at half maximum (FWHM) equal to 20nm for all channels except 765nm, 865nm, 1370nm, 1650nm, and 2130nm, where it is equal to 40nm. The FWHM at 763nm (the oxygen A-band location) is equal to 10nm. The following 3MI channels are used in the retrieval procedure: 670, 763, and 865nm. The channels at 670 and 865 nm are not affected by the oxygen absorption. The channel at 763nm is affected by the oxygen concentration vertical profile. The higher

  11. An in-depth analysis and modelling of the Shuttle to MILA S-band telemetry link

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Pellerano, Fernando A.; Shama, Dale D.

    1993-01-01

    The S-Band radio frequency (RF) link between the Merritt Island (MILA) Tracking Station and the Space Shuttle launch pads is a critical communication path for prelaunch and launch operations. The proposed siting of the Center for Space Education (CSE) at the Visitor Center required a study to avoid RF line-of-sight blockage and reflection paths. The study revealed the trees near MILA's 9-meter (9-M) antennas are obstructing the optical line-of-sight. The studies found diffraction is the main propagation mechanism. This paper describes a link model based on the Geometric Theory of Diffraction.

  12. Soil moisture, dielectric permittivity and emissivity of soil: effective depth of emission measured by the L-band radiometer ELBARA

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote

  13. Collision-Induced Absorption by H2 Pairs in the Second Overtone Band at 298 and 77.5 K: Comparison between Experimental and Theoretical Results

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; van-Thanh, Nguyen; Fu, Y.; Borysow, A.

    1999-01-01

    The collision-induced spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K and for gas densities ranging from 100 to 800 amagats. The spectral profile defined by the absorption coefficient per squared density varies significantly with the density, so that the binary absorption coefficient has been determined by extrapolations to zero density of the measured profiles. Our extrapolated measurements and our recent ab initio quantum calculation are in relatively good agreement with one another. Taking into account the very weak absorption of the second overtone band, the agreement is, however, not as good as it has become (our) standard for strong bands.

  14. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  15. Langley method applied in study of aerosol optical depth in the Brazilian semiarid region using 500, 670 and 870 nm bands for sun photometer calibration

    NASA Astrophysics Data System (ADS)

    Cerqueira, J. G.; Fernandez, J. H.; Hoelzemann, J. J.; Leme, N. M. P.; Sousa, C. T.

    2014-10-01

    Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.

  16. Radiative analysis of global mean temperature trends in the middle atmosphere: Effects of non-locality and secondary absorption bands

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.

    2016-02-01

    In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.

  17. Optical depth ratios and metal-line absorption around z≈2.3 star-forming galaxies: insights from observations and simulations

    NASA Astrophysics Data System (ADS)

    Turner, Monica; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison

    2015-01-01

    We study metal-line absorption around 854 z≈2.3 star-forming galaxies taken from the Keck Baryonic Structure Survey. The galaxies in this survey lie in the fields of 15 hyper-luminous background QSOs, with galaxy impact parameters ranging from 35 proper kpc (pkpc) to 2 proper Mpc (pMpc). Using the pixel optical depth technique, we present the first galaxy-centered 2-D maps of the median absorption by OVI, NV, CIV, CIII, and SiIV, as well as updated results for HI. At small galactocentric radii we detect a strong enhancement of the absorption relative to randomly located regions that extend out to at least 180 pkpc in the transverse direction, and ±240 km s-1 along the line-of-sight (LOS, ˜1 pMpc in the case of pure Hubble flow) for all ions except NV. Limiting the sample to the 340 galaxies with redshifts measured from nebular emission lines does not decrease the extent of the enhancement along the LOS compared to that in the transverse direction, which rules out redshift errors as the source of the observed redshift-space anisotropy and implies that we have detected the signature of gas peculiar velocities from infall, outflows, or virial motions. Looking next at optical depth ratios, we isolate pixel pairs at small galactocentric distances (within 180 pkpc in the transverse direction and 170 km s-1 along the LOS) and find that the optical depth of OVI at fixed HI is enhanced with respect to the full sample. Comparison with CLOUDY models, and assuming photoionisation, results in nearly solar metallicities at intergalactic overdensities, which we consider to be unphysical. Invoking collisional ionisation, we are able to place a lower limit on [O/H] of ˜1/100th solar, and conclude that we are likely probing collisionally ionised gas near galaxies. Finally, we turn to the EAGLE cosmological hydrodynamical simulations to interpret our results, and furthermore to study the evolution of the column density profiles as a function of impact parameter for different

  18. Effects of surface texture and measurement geometry on the near infrared water-of-hydration absorption bands. Implications for the Martian regolith water content.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Schmitt, B.

    Near-IR reflectance spectroscopy is widely used to detect mineral hydration on Solar System surfaces by the observation of absorption bands at 1.9 and 3 µm. Recent studies established empirical relationships between the strength of the 3 µm band and the water content of the studied minerals (Milliken et al., 2005). These results have especially been applied to the OMEGA dataset to derive global maps of the Martian regolith water content (Jouglet et al., 2006 and Milliken et al., 2006). However, parameters such as surface texture and measurement geometry are known to have a strong effect on reflectance spectra but their influence on the hydration bands is poorly documented. The aim of this work is the determination of the quantitative effects of particle size, mixing between materials with different albedo and measurement geometry on the absorption bands at 1.9 and 3 µm. We used both an experimental and a modeling approach to study these effects. Bidirectional reflectance spectra were measured for series of well characterized samples (smectite, volcanic tuff and coals, pure and mixed) and modeled with optical constants of a smectite (Roush, 2005). Criteria commonly used to estimate the strength of the bands were then calculated on these spectra. We show that particle size has a strong effect on the 1.9 and 3 µm bands strength, especially for the finest particles (less than 200 µm). Mixing between a fine smectite powder and anthracite powders with various particle sizes (modeled by a synthetic neutral material) highlights the strong effect of the materials albedo on the hydration band estimation criteria. Measurement geometry has a significant effect on the bands strength for high phase angles. Furthermore, the relative variations of band strength with measurement geometry appear very dependent on the surface texture. We will present in details the relationships between these physical parameters and various criteria chosen to estimate the hydration bands

  19. Une source de rayonnement développée pour des mesures optiques de spectroscopie d'absorption large bande

    NASA Astrophysics Data System (ADS)

    Hong, D.; Sandolache, G.; Capelle, T.; Bauchire, J. M.; Le Menn, E.; Fleurier, C.

    2003-06-01

    Afin d'étudier la période post-arc et les gaz entourant l'arc électrique dans les disjoncteurs, une source de rayonnement large bande a été développée pour effectuer des mesures de spectroscopie d'absorption. La source a été étudiée afin de déterminer les meilleures conditions produisant un spectre intense et continu de rayonnement dans le domaine ultra-violet et également dans le visible. Des essais d'absorption ont été réalisés dans un disjoncteur basse tension de type rail. L'absorption des raies de résonance de cuivre (324.7 et 327.4 nm) a permis de déterminer la densité d'atomes de cuivre dans la région à l'arrière de l'arc. En outre, l'absorption des bandes de Swan de C2 a permis de déterminer la concentration de carbone et également la température cinétique du gaz chaud.

  20. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  1. Annealing effects on InGaAsN/GaAs quantum wells analyzed using thermally detected optical absorption and ten band k -p calculations

    NASA Astrophysics Data System (ADS)

    Bouragba, T.; Mihailovic, M.; Reveret, F.; Disseix, P.; Leymarie, J.; Vasson, A.; Damilano, B.; Hugues, M.; Massies, J.; Duboz, J. Y.

    2007-04-01

    The effects of thermal annealing for In0.25Ga0.75As1-yNy/GaAs multiquantum wells (MQWs) have been investigated through thermally detected optical absorption. The QW transition energies have been calculated by using a ten-band k -p model including the band anticrossing model for the description of the InGaAsN band gap variation. The modification of the In concentration profile due to In-Ga interdiffusion during thermal annealing is taken into account through the Fick law. A good agreement is obtained between calculated and experimental energies of optical transitions. Our results show that the In-Ga interdiffusion phenomenon observed in a nitrogen free sample is moderately enhanced by the introduction of nitrogen. The blueshift of optical transitions induced by the annealing process is the result of both In-Ga interdiffusion and rearrangement of local nitrogen environment.

  2. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  3. 8-band k·p modelling of mid-infrared intersubband absorption in Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Paul, D. J.

    2016-07-01

    The 8-band k.p parameters which include the direct band coupling between the conduction and the valence bands are derived and used to model optical intersubband transitions in Ge quantum well heterostructure material grown on Si substrates. Whilst for Si rich quantum wells the coupling between the conduction bands and valence bands is not important for accurate modelling, the present work demonstrates that the inclusion of such coupling is essential to accurately determine intersubband transitions between hole states in Ge and Ge-rich Si1-xGex quantum wells. This is due to the direct bandgap being far smaller in energy in Ge compared to Si. Compositional bowing parameters for a range of the key modelling input parameters required for Ge/SiGe heterostructures, including the Kane matrix elements, the effective mass of the Γ 2 ' conduction band, and the Dresselhaus parameters for both 6- and 8-band k.p modelling, have been determined. These have been used to understand valence band intersubband transitions in a range of Ge quantum well intersubband photodetector devices in the mid-infrared wavelength range.

  4. Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies

    SciTech Connect

    Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Hiraoka, Koichi; Kojima, Kenichi; Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji; Mimura, Kojiro; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Oguchi, Tamio; Taniguchi, Masaki

    2011-09-15

    We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

  5. Temperature Dependence of Individual Absorptions Bands in Olivine: Implications for Inferring Compositions of Asteroid Surfaces from Spectra

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Hinrichs, J. L.; Lucey, P. G.

    2000-01-01

    The temperature variations of individual absorptions in olivine are modeled and found to narrow, move slightly in position, and change in relative strength as predicted by theory. These thermal changes may be confused with compositional differences.

  6. Endoscopic diagnosis of invasion depth for early colorectal carcinomas: a prospective comparative study of narrow-band imaging, acetic acid, and crystal violet.

    PubMed

    Zhang, Jing-Jing; Gu, Li-Yang; Chen, Xiao-Yu; Gao, Yun-Jie; Ge, Zhi-Zheng; Li, Xiao-Bo

    2015-02-01

    Several studies have validated the effectiveness of narrow-band imaging (NBI) in estimating invasion depth of early colorectal cancers. However, comparative diagnostic accuracy between NBI and chromoendoscopy remains unclear. Other than crystal violet, use of acetic acid as a new staining method to diagnose deep submucosal invasive (SM-d) carcinomas has not been extensively evaluated. We aimed to assess the diagnostic accuracy and interobserver agreement of NBI, acetic acid enhancement, and crystal violet staining in predicting invasion depth of early colorectal cancers. A total of 112 early colorectal cancers were prospectively observed by NBI, acetic acid, and crystal violet staining in sequence by 1 expert colonoscopist. All endoscopic images of each technique were stored and reassessed. Finally, 294 images of 98 lesions were selected for evaluation by 3 less experienced endoscopists. The accuracy of NBI, acetic acid, and crystal violet for real-time diagnosis was 85.7%, 86.6%, and 92.9%, respectively. For image evaluation by novices, NBI achieved the highest accuracy of 80.6%, compared with that of 72.4% by acetic acid, and 75.8% by crystal violet. The kappa values of NBI, acetic acid, and crystal violet among the 3 trainees were 0.74 (95% CI 0.65-0.83), 0.68 (95% CI 0.59-0.77), and 0.70 (95% CI 0.61-0.79), respectively. For diagnosis of SM-d carcinoma, NBI was slightly inferior to crystal violet staining, when performed by the expert endoscopist. However, NBI yielded higher accuracy than crystal violet staining, in terms of less experienced endoscopists. Acetic acid enhancement with pit pattern analysis was capable of predicting SM-d carcinoma, comparable to the traditional crystal violet staining.

  7. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  8. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-01

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model.

  9. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-01

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model. PMID:26087319

  10. Tentative Identification of the 780/cm nu(sub 4) Band Q Branch of Chlorine Nitrate in High-Resolution Solar Absorption Spectra of the Stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.; Bonomo, F. S.; Blatherwick, R. D.; Devi, V. Malathy; Smith, M. A. H.; Rinsland, P. L.

    1985-01-01

    Absorption by the Q branch of the nu(sub 4), band of ClONO2 at 780.2/cm has been tentatively identified in a series of 0.02/cm resolution balloon-borne solar absorption spectra of the stratosphere. The spectral data were recorded at sunset from a flot altitude of 33.5 km during a balloon flight from Holloman Air Force Base (32.8deg N, 106.0 deg W) near Alamogordo, New Mexico, on March 23 1998. A preliminary ClONO2 vertical profile has been determined from the stratospheric spectra by using the technique of nonlinear least squares spectral curve fitting and new spectroscopic parameters deduced from high-resolution laboratory spectra of ClONO2 and O3.

  11. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-01

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  12. Investigation of SO3 absorption line for in situ gas detection inside combustion plants using a 4-μm-band laser source.

    PubMed

    Tokura, A; Tadanaga, O; Nishimiya, T; Muta, K; Kamiyama, N; Yonemura, M; Fujii, S; Tsumura, Y; Abe, M; Takenouchi, H; Kenmotsu, K; Sakai, Y

    2016-09-01

    We have investigated 4-μm-band SO3 absorption lines for in situSO3 detection using a mid-infrared laser source based on difference frequency generation in a quasi-phase-matched LiNbO3 waveguide. In the wavelength range of 4.09400-4.10600 μm, there were strong SO3 absorption lines. The maximum absorption coefficient at a concentration of 170 ppmv was estimated to be about 3.2×10-5  cm-1 at a gas temperature of 190°C. In coexistence with H2O, the reduction of the SO3 absorption peak height was observed, which was caused by sulfuric acid formation. We discuss a method of using an SO3 equilibrium curve to derive the total SO3 molecule concentration. PMID:27607263

  13. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  14. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  15. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  16. Calculating Effect of Point Defects on Optical Absorption Spectra of III-V Semiconductor Superlattices Based on (8x8) k-dot-p Band Structures

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey; Cardimona, David; Krishna, Sanjay

    For a superlattice which is composed of layered zinc-blende structure III-V semiconductor materials, its realistic anisotropic band structures around the Gamma-point are calculated by using the (8x8)k-dot-p method with the inclusion of the self-consistent Hartree potential and the spin-orbit coupling. By including the many-body screening effect, the obtained band structures are further employed to calculate the optical absorption coefficient which is associated with the interband electron transitions. As a result of a reduced quasiparticle lifetime due to scattering with point defects in the system, the self-consistent vertex correction to the optical response function is also calculated with the help of the second-order Born approximation.

  17. High-resolution spectra and photoabsorption coefficients for carbon monoxide absorption bands between 94.0 nm and 100.4 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Stark, G.; Smith, P. L.; Parkinson, W. H.; Ito, K.

    1988-01-01

    Photoabsorption coefficients have been measured for the CO in interstellar clouds at a resolving power more than 20 times greater than previously obtainable. In order to facilitate comparisons, these data have been integrated over the same wavelength ranges as used in Letzelter et al. (1987). It is found that most of the results obtained for bands between 94.0 and 100.4 nm are larger than those of Letzelter; the discrepancy may be attributable to the difference between the resolving powers of the spectrometers used, because the saturation effects associated with low resolution can underestimate absorption coefficient values.

  18. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  19. Yb(3+)-doped GeS(2)-Ga2S(3)-CsCl glass with broad and adjustable absorption/excitation band for near-infrared luminescence.

    PubMed

    Fan, Bo; Xue, Bai; Zhang, Xianghua; Adam, Jean-Luc; Fan, Xianping

    2013-07-01

    The luminescent property of Yb(3+) ions in GeS(2)-Ga(2)S(3)-CsCl glasses with different CsCl contents has been studied. All the samples demonstrate a broad excitation band in the UV or/and visible range, depending on the composition, which is attributed to the charge transfer of the Yb(3+)-S(2-)/Cl(-) couple. The width of the excitation/absorption band can be as large as 150 nm. Moreover, with the increase of CsCl content, the peak position of the band can be continuously adjusted from 458 to 380 nm, due to the increase of the local average electronegativity around Yb(3+) ions. The broad and adjustable excitation band makes the Yb(3+)doped GeS(2)-Ga(2)S(3)-CsCl glass interesting for modifying the solar spectrum by absorbing strongly in the UV/blue region for emission around 1 μm. This kind of material is the key to adapting the solar spectrum to the response of silicon photovoltaic solar cells.

  20. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.

    PubMed

    Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko

    2013-09-01

    Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.

  1. Rovibrational Intensities of the (00 03) ← (10 00) Dyad Absorption Bands of 12C 16O 2

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Rohidas J.; Giver, Lawrence P.; Chackerian, Charles

    2000-02-01

    Absolute line intensities of 12C16O2 are experimentally measured for the first time for the (0003)I ← (1000)II band at 5687.17 cm-1 and the (0003)I ← (1000)I band at 5584.39 cm-1. The spectra were obtained using a Bomem DA8 Fourier transform spectrometer and a 25-m base-path White cell at NASA-Ames Research Center. The rotationless bandstrengths at a temperature of 296 K and the Herman-Wallis parameters are S0vib = 6.68(30) × 10-25 cm-1/(molecule/cm2); A1 = 1.4(9) × 10-4, and A2 = -1.1(5) × 10-5 for the (0003)I ← (1000)II band and S0vib = 6.07(22) × 10-25 cm-1/(molecule/cm2); A1 = 5.2(1.5) × 10-4 and A2 = -4.0(7) × 10-5 for the (0003)I ← (1000)I band.

  2. High-energy Electron Irradiation of Interstellar Carbonaceous Dust Analogs: Cosmic-ray Effects on the Carriers of the 3.4 μm Absorption Band

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  3. The fundamental quadrupole band of (N-14)2 - Line positions from high-resolution stratospheric solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Gunson, M. R.; Farmer, C. B.

    1991-01-01

    Accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen (N-14)2 are reported. Improved Dunham coefficients were derived from a simultaneous least squares analysis of these measurements and selected infrared and far infrared data. The new measurements were performed using stratospheric solar occultation spectra recorded with Fourier transform spectrometer instruments, operated at unapodized spectral resolutions of 0.002 and 0.01/cm.

  4. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  5. Two-dimensional correlation analysis to study variation of near-infrared water absorption bands in the presence of inorganic acids

    NASA Astrophysics Data System (ADS)

    Chang, Kyeol; Jung, Young Mee; Chung, Hoeil

    2014-07-01

    Two-dimensional (2D) correlation analysis has been utilized to investigate NIR water bands perturbed by the presence of four different inorganic acids individually: HCl, H2SO4, H3PO4, and HNO3. The observed spectral variation in the 9000-7700 cm-1 range was mainly due to interaction of dissociated H3O+ and corresponding anions with the vibration of water in a hydrogen bonding network. 2D correlation analysis of NIR spectra acquired from sample solutions (concentration range: 0.2-1.0 M) showed that individual acids differently influenced water vibration. In addition, unforeseen spectral variations under the water band that were difficult to identify with corresponding raw NIR spectra were clearly observed. Based on the asynchronous correlation analysis, three underlying individual variations occurred for HCl under the 8718 cm-1 band. Only two asynchronous correlations were observed for H2SO4 and H3PO4. The 2D correlation features of HNO3 were distinctly different from those of the other three acids due to an additional spectral feature caused by direct absorption by NO3-. The dissimilar influence of the selected acids on water vibration was confirmed by NIR spectroscopy combined with 2D correlation analysis. Partial least squares (PLS) loadings from each case were compared to examine the difference in weights that were constructed to follow the corresponding concentration changes.

  6. Nonlinear absorption mechanisms during femtosecond laser surface ablation of silica glass

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Startseva, E. D.; Khmelnitskii, R. A.

    2016-03-01

    Spatial profiles of single-shot microcraters produced by tightly focused femtosecond laser pulses with variable pulse energies are measured by means of a laser confocal microscope. Dependences of crater depth on laser intensity at different pulse energies appear as overlapping saturating curves with the same threshold, indicating the presence of nonlinear absorption and absence of nonlocal ablation effects. A monotonic twofold increase in absorption nonlinearity is related to the transition from minor defect-band absorption to fundamental band-to-band absorption.

  7. Efficient tissue ablation using a laser tunable in the water absorption band at 3 microns with little collateral damage

    NASA Astrophysics Data System (ADS)

    Nierlich, Alexandra; Chuchumishev, Danail; Nagel, Elizabeth; Marinova, Kristiana; Philipov, Stanislav; Fiebig, Torsten; Buchvarov, Ivan; Richter, Claus-Peter

    2014-03-01

    Lasers can significantly advance medical diagnostics and treatment. At high power, they are typically used as cutting tools during surgery. For lasers that are used as knifes, radiation wavelengths in the far ultraviolet and in the near infrared spectral regions are favored because tissue has high contents of collagen and water. Collagen has an absorption peak around 190 nm, while water is in the near infrared around 3,000 nm. Changing the wavelength across the absorption peak will result in significant differences in laser tissue interactions. Tunable lasers in the infrared that could optimize the laser tissue interaction for ablation and/or coagulation are not available until now besides the Free Electron Laser (FEL). Here we demonstrate efficient tissue ablation using a table-top mid-IR laser tunable between 3,000 to 3,500 nm. A detailed study of the ablation has been conducted in different tissues. Little collateral thermal damage has been found at a distance above 10-20 microns from the ablated surface. Furthermore, little mechanical damage could be seen in conventional histology and by examination of birefringent activity of the samples using a pair of cross polarizing filters.

  8. Jupiter Clouds in Depth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nm

    Images from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.

    Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.

    The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.

    The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter

  9. Tentative identification of the 780/cm nu-4 band Q branch of chlorine nitrate in high-resolution solar absorption spectra of the stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.; Malathy Devi, V.

    1985-01-01

    According to models of the photochemistry of the stratosphere, chlorine nitrate (ClONO2) is an important temporary reservoir of stratospheric chlorine. At night, ClO is believed to combine in a three-body reaction with NO2 to form chlorine nitrate. During daylight, chlorine nitrate is destroyed by photolysis to form free chlorine and NO3. Infrared spectroscopy has the potential to provide a technique for conducting important quantitative measurements of stratospheric chlorine nitrate. The present paper reports a detailed study of spectra in the 780/cm region. This study has led to the tentative identification of the nu-4 band Q branch of ClONO2 as a significant contributor to the observed stratospheric absorption near 780.21 per cm.

  10. Charge Transfer or J-Coupling? Assignment of an Unexpected Red-Shifted Absorption Band in a Naphthalenediimide-Based Metal-Organic Framework.

    PubMed

    McCarthy, Brian D; Hontz, Eric R; Yost, Shane R; Van Voorhis, Troy; Dincă, Mircea

    2013-02-01

    We investigate and assign a previously reported unexpected transition in the metal-organic framework Zn2(NDC)2(DPNI) (1; NDC = 2,6-naphthalenedicarboxylate, DPNI = dipyridyl-naphthalenediimide) that displays linear arrangements of naphthalenediimide ligands. Given the longitudinal transition dipole moment of the DPNI ligands, J-coupling seemed possible. Photophysical measurements revealed a broad, new transition in 1 between 400 and 500 nm. Comparison of the MOF absorption spectra with that of a charge transfer (CT) complex formed by manual grinding of DPNI and H2NDC led to the assignment of the new band in 1 as arising from an interligand CT. Constrained density functional theory utilizing a custom long-range-corrected hybrid functional was employed to determine which ligands were involved in the CT transition. On the basis of relative oscillator strengths, the interligand CT was assigned as principally arising from π-stacked DPNI/NDC dimers rather than the alternative orthogonal pairs within the MOF.

  11. Confinement effect of laser ablation plume in liquids probed by self-absorption of C{sub 2} Swan band emission

    SciTech Connect

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C{sub 2} molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C{sub 2} molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids.

  12. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  13. Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2ν3 band (5853-6201 cm-1)

    NASA Astrophysics Data System (ADS)

    Starikova, E.; Nikitin, A. V.; Rey, M.; Tashkun, S. A.; Mondelain, D.; Kassi, S.; Campargue, A.; Tyuterev, Vl. G.

    2016-07-01

    The absorption spectrum of the 13CH4 methane isotopologue has been recently recorded by Differential Absorption Spectroscopy (DAS) at 80 K in the 5853-6201 cm-1 spectral range. An empirical list of 3717 lines was constructed for this spectral range corresponding to the upper part of the Tetradecad dominated by the 2ν3 band near 5987 cm-1. In this work, we present rovibrational analyses of these spectra obtained via two theoretical approaches. Assignments of strong and medium lines were achieved with variational calculations using ab initio potential energy (PES) and dipole moment surfaces. For further analysis a non-empirical effective Hamiltonian (EH) of the methane polyads constructed by high-order Contact Transformations (CT) from an ab initio PES was employed. Initially predicted values of EH parameters were empirically optimized using 2898 assigned line positions fitted with an rms deviation of 5×10-3 cm-1. More than 1860 measured line intensities were modeled using the effective dipole transition moments approach with the rms deviation of about 10%. These new data were used for the simultaneous fit of the 13CH4 Hamiltonian parameters of the {Ground state/Dyad/Pentad/Octad/Tetradecad} system and the dipole moment parameters of the {Ground state-Tetradecad} system. Overall, 10 vibrational states and 28 vibration sublevels of the 13CH4 Tetradecad are determined. The comparison of their energy values with corresponding theoretical calculations is discussed.

  14. Annealing effects of in-depth profile and band discontinuity in TiN/LaO/HfSiO/SiO{sub 2}/Si gate stack structure studied by angle-resolved photoemission spectroscopy from backside

    SciTech Connect

    Toyoda, S.; Kumigashira, H.; Oshima, M.; Kamada, H.; Tanimura, T.; Ohtsuka, T.; Hata, Y.; Niwa, M.

    2010-01-25

    We have investigated annealing effects on in-depth profile and band discontinuity for a metal gate/high-k gate stack structure on a Si substrate using backside angle-resolved photoemission spectroscopy with synchrotron radiation. In-depth profiles analyzed from angle-resolved photoemission spectroscopy show that La atoms diffuse through the HfSiO layer and reach interfacial SiO{sub 2} layers by rapid thermal annealing. Chemical shift of Si 2p core-level spectra suggests that there are changes in the band discontinuity at the high-k/SiO{sub 2} interface, which is well related to the V{sub th} shift based on the interface dipole model.

  15. Impact of Mg concentration on energy-band-depth profile of Mg-doped InN epilayers analyzed by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Imura, M.; Tsuda, S.; Nagata, T.; Takeda, H.; Liao, M. Y.; Koide, Y.; Yang, A. L.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K.; Kaneko, M.; Uematsu, N.; Wang, K.; Araki, T.; Nanishi, Y.

    2013-10-14

    The electronic structures of Mg-doped InN (Mg-InN) epilayers with the Mg concentration, [Mg], ranging from 1 × 10{sup 19} to 5 × 10{sup 19} cm{sup −3} were systematically investigated by soft and hard X-ray photoelectron spectroscopies. The angle-resolved results on the core-level and valence band photoelectron spectra as a function of [Mg] revealed that the energy band of Mg-InN showed downward bending due to the n{sup +} surface electron accumulation and p type layers formed in the bulk. With an increase in [Mg], the energy-band changed from monotonic to two-step n{sup +}p homojunction structures. The oxygen concentration rapidly increased at the middle-bulk region (∼4.5 to ∼7.5 nm) from the surface, which was one of the reasons of the transformation of two-step energy band.

  16. Cavity Ringdown Absorption Spectrum of the T_1(n,π*) ← S_0 Transition of Acrolein: Analysis of the 0^0_0 Band Rotational Contour

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2012-06-01

    Acrolein (propenal, CH_2=CH---CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the T_1(π,π*) state, which has a CH_2--twisted equilibrium structure. In solution, the T_1(π,π*) state is typically accessed via intersystem crossing from an intially prepared planar S_1(n,π*) state. An intermediate in this photophysical transformation is the lowest ^3 (n,π*) state, a planar species with adiabatic excitation energy below S_1 and above T_1(π,π*). The present work focuses on this ^3 (n,π*) intermediate state; it is designated T_1(n,π*) as the lowest-energy triplet state of acrolein having a planar equilibrium structure. The T_1(n,π*) ← S_0 band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm-1) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0^0_0 band, recorded using a pulsed dye laser with 0.1 cm-1 spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the T_1(n,π*) state. The determined values (cm-1) are A=1.662, B=0.1485, C=0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm-1 and ± 0.0004 cm-1, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0^0_0 band under jet-cooled conditions

  17. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    PubMed

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  18. Charge-transfer character of the low-energy Chl a Q(y) absorption band in aggregated light harvesting complexes II.

    PubMed

    Kell, Adam; Feng, Ximao; Lin, Chen; Yang, Yiqun; Li, Jun; Reus, Michael; Holzwarth, Alfred R; Jankowiak, Ryszard

    2014-06-12

    One of the key functions of the major light harvesting complex II (LHCII) of higher plants is to protect Photosystem II from photodamage at excessive light conditions in a process called "non-photochemical quenching" (NPQ). Using hole-burning (HB) spectroscopy, we investigated the nature of the low-energy absorption band in aggregated LHCII complexes - which are highly quenched and have been established as a good in vitro model for NPQ. Nonresonant holes reveal that the lowest energy state (located near 683.3 nm) is red-shifted by ~4 nm and significantly broader (by a factor of 4) as compared to nonaggregated trimeric LHCII. Resonant holes burned in the low-energy wing of the absorption spectrum (685-710 nm) showed a high electron-phonon (el-ph) coupling strength with a Huang-Rhys factor S of 3-4. This finding combined with the very low HB efficiency in the long-wavelength absorption tail is consistent with a dominant charge-transfer (CT) character of the lowest energy transition(s) in aggregated LHCII. The value of S decreases at shorter wavelengths (<685 nm), in agreement with previous studies (J. Pieper et al., J. Phys. Chem. B 1999, 103, 2422-2428), proving that the low-energy excitonic state is strongly mixed with the CT states. Our findings support the mechanistic model in which Chl-Chl CT states formed in aggregated LHCII are intermediates in the efficient excited state quenching process (M. G. Müller et al., Chem. Phys. Chem. 2010, 11, 1289-1296; Y. Miloslavina et al., FEBS Lett. 2008, 582, 3625-3631).

  19. High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator.

    PubMed

    Tseng, Tzu-Fang; Wun, Jhih-Min; Chen, Wei; Peng, Sui-Wei; Shi, Jin-Wei; Sun, Chi-Kuang

    2013-06-17

    We demonstrate that a near-single-cycle photonic millimeter-wave short-pulse generator at W-band is capable to provide high spatial resolution three-dimensional (3-D) radar imaging. A preliminary study indicates that 3-D radar images with a state-of-the-art ranging resolution of around 1.2 cm at the W-band can be achieved.

  20. Penetration depth and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} polycrystalline films by ferromagnetic resonance and spin pumping

    SciTech Connect

    Merodio, P.; Ghosh, A.; Lemonias, C.; Gautier, E.; Ebels, U.; Chshiev, M.; Béa, H. E-mail: helene.bea@cea.fr; Baltz, V. E-mail: helene.bea@cea.fr

    2014-01-20

    Spintronics relies on the spin dependent transport properties of ferromagnets (Fs). Although antiferromagnets (AFs) are used for their magnetic properties only, some fundamental F-spintronics phenomena like spin transfer torque, domain wall motion, and tunnel anisotropic magnetoresistance also occur with AFs, thus making AF-spintronics attractive. Here, room temperature critical depths and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} are determined by F-resonance and spin pumping. In particular, we find room temperature critical depths originating from different absorption mechanisms: dephasing for Ir{sub 20}Mn{sub 80} and spin flipping for Fe{sub 50}Mn{sub 50}.

  1. Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra; Borysow, Jacek I.

    1998-01-01

    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature

  2. A Search for Formic Acid in the Upper Troposphere: A Tentative Identification of the 1105-cm(exp -1) nu(sub 6) Band Q Branch in High-Resolution Balloon-Borne Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02/cm resolution during a balloon flight from Alamogordo, N.M. (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105/ cm has been tentatively identified in upper tropospheric spectra as due to the nu(sub 6) band Q branch. A preliminary analysis indicates a concentration of approx. = 0.6 ppbv and approx. = 0.4 ppbv near 8 and 10 km, respectively.

  3. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-04-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  4. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  5. Modeled and Empirical Approaches for Retrieving Columnar Water Vapor from Solar Transmittance Measurements in the 0.72, 0.82, and 0.94 Micrometer Absorption Bands

    NASA Technical Reports Server (NTRS)

    Ingold, T.; Schmid, B.; Maetzler, C.; Demoulin, P.; Kaempfer, N.

    2000-01-01

    A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996-1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18-29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4. and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the ITS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the sun photometers (SPM) with the ITS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.

  6. Study of the H-F stretching band in the absorption spectrum of (CH3)2O...HF in the gas phase.

    PubMed

    Bulychev, V P; Gromova, E I; Tokhadze, K G

    2008-02-14

    The absorption spectra of the (CH3)2O...HF complex in the range of 4200-2800 cm(-1) were recorded in the gas phase at a resolutions of 0.1 cm(-1) at T = 190-340 K. The spectra obtained were used to analyze their structure and to determine the temperature dependencies of the first and second spectral moments. The band shape of the (CH3)2O...HF complex in the region of the nu1(HF) stretching mode was reconstructed nonempirically. The nu1 and nu3 stretching vibrations and four bending vibrations responsible for the formation of the band shape were considered. The equilibrium geometry and the 1D-4D potential energy surfaces were calculated at the MP2 6-311++G(2d,2p) level with the basis set superposition error taken into account. On the basis of these surfaces, a number of one- and multidimensional anharmonic vibrational problems were solved by the variational method. Solutions of auxiliary 1D and 2D vibrational problems showed the strong coupling between the modes. The energy levels, transition frequencies and intensities, and the rotational constants for the combining vibrational states necessary to reconstruct the spectrum were obtained from solutions of the 4D problem (nu1, nu3, nu5(B2), nu6(B2)) and the 2D problem (nu5(B1), nu6(B1)). The theoretical spectra reconstructed for different temperatures as a superposition of rovibrational bands associated with the fundamental, hot, sum, and difference transitions reproduce the shape and separate spectral features of the experimental spectra. The calculated value of the nu1 frequency is 3424 cm(-1). Along with the frequencies and absolute intensities, the calculation yields the vibrationally averaged values of the separation between the centers of mass of the monomers Rc.-of-m., R(O...F), and r(HF) for different states. In particular, upon excitation of the nu1 mode, Rc.-of-m. becomes shorter by 0.0861 A, and r(HF) becomes longer by 0.0474 A.

  7. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band.

    PubMed

    Han, Meikang; Yin, Xiaowei; Wu, Heng; Hou, Zexin; Song, Changqing; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2016-08-17

    Electromagnetic (EM) absorbing and shielding composites with tunable absorbing behaviors based on Ti3C2 MXenes are fabricated via HF etching and annealing treatment. Localized sandwich structure without sacrificing the original layered morphology is realized, which is responsible for the enhancement of EM absorbing capability in the X-band. The composite with 50 wt % annealed MXenes exhibits a minimum reflection loss of -48.4 dB at 11.6 GHz, because of the formation of TiO2 nanocrystals and amorphous carbon. Moreover, superior shielding effectiveness with high absorption effectiveness is achieved. The total and absorbing shielding effectiveness of Ti3C2 MXenes in a wax matrix with a thickness of only 1 mm reach values of 76.1 and 67.3 dB, while those of annealed Ti3C2 MXenes/wax composites are 32 and 24.2 dB, respectively. Considering the promising performance of Ti3C2 MXenes with the modified surface, this work is expected to open the door for the expanded applications of MXenes family in EM absorbing and shielding fields. PMID:27454148

  8. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band.

    PubMed

    Wainwright, P R

    2003-10-01

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.

  9. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO{sub 2} (a‐SiO{sub 2}) exposed to {sup 60}Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a‐SiO{sub 2}, and the peak energy is larger for α-quartz than that for a‐SiO{sub 2}. The full width at half maximum for a‐SiO{sub 2} is larger by ∼40-60% than that for α-quartz, and it increases with an increase in the disorder of the a‐SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a‐SiO{sub 2}.

  10. Modeling of collision-induced infrared absorption spectra of H2 pairs in the first overtone band at temperatures from 20 to 500 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    A simple formalism is presented that permits quick computations of the low-resolution, rotovibrational collision-induced absorption (RV CIA) spectra of H2 pairs in the first overtone band of hydrogen, at temperatures from 20 to 500 K. These spectra account for the free-free transitions. The sharp dimer features, originating from the bound-free, free-bound, and bound-bound transitions are ignored, though their integrated intensities are properly accounted for. The method employs spectral model line- shapes with parameters computed from the three lowest spectral moments. The moments are obtained from first principles expressed as analytical functions of temperature. Except for the sharp dimer features, which are absent in this model, the computed spectra reproduce closely the results of exact quantum mechanical lineshape computations. Comparisons of the computed spectra with existing experimental data also show good agreement. The work interest for the modeling of the atmospheres of the outer planets in the near-infrared region of the spectrum. The user-friendly Fortran program developed here is available on request from the authors.

  11. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  12. Absorption Bands at 4300 and 6000-8000Å as Signs of Silicate and Organic Matter Separation and Formation of Hydrated Silicates in KBOs and Similar Bodies

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Dorofeeva, V. A.; Makalkin, A. B.

    2004-12-01

    Recent spectral observations of some Kuiper Belt Objects (KBOs) (Boehnhardt et al.: 2002, Proc. of ACM 2002, 47-50; Fornasier S. et al., 2004, Astron. Astrophys. 421, 353-363) discovered characteristic absorption bands at 4300 and 6000-8000Å in reflectance spectra of the bodies. Spectral positions and other parameters of the features are similar to those found in reflectance spectra of terrestrial phyllosilicates (e. g., Clark et al., 1990, J. Geophys. Res. 95, 12653-12680; Busarev et al., 2004, The new ROSETTA targets (L. Colangeli et al., eds.), 79-83), CI- and CM-carbonaceous chondrites (e. g., Busarev and Taran, 2002, Proc. of ACM 2002, 933-936), primitive C-, P-, D-, F- and G-class asteroids (Vilas and Gaffey, 1989, Science 246, 790-792) and hydrated M-, S- and E-class asteroids (Busarev and Taran, 2002, Proc. of ACM 2002, 933-936). Hence, these absorption bands may be considered as universal indicators of hydrated silicates on celestial solid bodies including KBOs. However, before phyllosilicates were formed, an aqueous media should spring up and exist a considerable time in the bodies. One more important factor for the spectral features of hydrated silicates to be observed, it is probably an aqueous separation of silicate and darkening CHON (PAH plus more light organic compounds) components in the bodies. To check the assumptions we have performed some calculations (Busarev et al., 2003, Earth, Moon, and Planets 92, 345-357) applicable to KBOs and analogous silicate-icy bodies existed for the first time in the formation zones of neighbouring giant planets. According to the calculations, the decay of the short-lived 26Al at the early stage of the bodies' evolution and their mutual collisions (at velocities >1.5 km s-1) at the subsequent stage were probably the main sources of heating sufficient for melting water ice in their interiors. Because of these processes, an internal ocean of liquid water covered with ˜10-km crust of dirty ice could originate in

  13. Infrared absorption mechanisms of black silicon

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2014-09-01

    Black silicon has a wide spectrum of non-spectral characteristics high absorption from visible to long wave infrared band .Based on semi-empirical impurity band model, free carrier absorption, radiation transitions between the valence band and the impurity band, radiation transitions between the impurity band and the conduction band were calculated, and absorption coefficients for each process were got. The results showed that the transitions from valence band to the impurity band induced absorption in the near-infrared waveband, but it has a rapid decay with wavelength. In the shortwave mid-wave and long-wave IR bands, transitions from the impurity band to the conduction band caused a huge absorption, and the absorption coefficient was slowly decreased with increasing wavelength. The free carrier absorption dominates in long-wave band. The calculation results agreed well with the test results of plant black silicon in magnitude and trends.

  14. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.

    PubMed

    Harb, Moussab; Masih, Dilshad; Takanabe, Kazuhiro

    2014-09-14

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta11O30. It is confirmed that the Cu(I)-based multi-metal oxides possess a strong contribution of filled Cu(I) states in the valence band and of empty d(0) metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications.

  15. A Soret marker band for four-coordinate ferric heme proteins from absorption spectra of isolated Fe(III)-Heme+ and Fe(III)-Heme+(His) ions in vacuo.

    PubMed

    Lykkegaard, Morten Køcks; Ehlerding, Anneli; Hvelplund, Preben; Kadhane, Umesh; Kirketerp, Maj-Britt Suhr; Nielsen, Steen Brøndsted; Panja, Subhasis; Wyer, Jean Ann; Zettergren, Henning

    2008-09-10

    In this work, we report the absorption spectra in the Soret band region of isolated Fe(III)-heme+ and Fe(III)-heme+(His) ions in vacuo from action spectroscopy. Fe(III)-heme+ refers to iron(III) coordinated by the dianion of protoporphyrin IX. We find that the absorption of the five-coordinate complex is similar to that of pentacoordinate metmyoglobin variants with hydrophobic binding pockets except for an overall blueshift of about 16 nm. In the case of four-coordinate iron(III), the Soret band is similar to that of five-coordinate iron(III) but much narrower. These spectra serve as a benchmark for theoretical modeling and also serve to identify the coordination state of ferric heme proteins. To our knowledge this is the first unequivocal spectroscopic characterization of isolated 4c ferric heme in the gas phase. PMID:18700762

  16. A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Zhang, J.; Reid, J. S.; Zhang, X.; Hyer, E. J.; Smirnov, A.

    2014-12-01

    Submerged oceanic bubbles, which could have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine if such bubbles are of sufficient magnitude to impact satellite Aerosol Optical Depth (AOD) retrievals through perturbation of the lower boundary conditions. Indeed, there has been significant discussion in the community regarding the high positive biases in retrieved AODs in many remote ocean regions. In this study, for the first time, the effects of oceanic bubbles on satellite retrievals of AOD are studied by using a linked Second Simulation of a Satellite Signal in the Solar Spectrum (6S) atmospheric and HydroLight oceanic radiative transfer models. The results suggest an insignificant impact on AOD retrievals in regions with near-surface wind speeds of less than 12 m s-1. However, the impact of bubbles on aerosol retrievals could be on the order of 0.02-0.04 for higher wind conditions within the scope of our simulations (e.g., winds < 20 m s-1). This bias is propagated to global scales using one year of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - Earth (AMSR-E) data to investigate the possible impacts of oceanic bubbles on an enhanced AOD belt observed over the high latitude southern oceans (also called Enhanced Southern Oceans Anomaly, or ESOA) by some passive satellite sensors. Ultimately, this study is supportive of the null hypothesis: submerged bubbles are not the major contributor to the ESOA feature. This said, as retrievals progress to higher and higher resolutions, such as from airborne platforms, in clean marine conditions the uniform bubble correction should probably be separately accounted for against individual bright whitecaps and bubble rafts.

  17. A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS and MISR

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Zhang, J.; Reid, J. S.; Zhang, X.; Hyer, E. J.; Smirnov, A.

    2015-05-01

    Submerged oceanic bubbles, which have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite-based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine whether such bubbles are of sufficient magnitude to impact satellite aerosol optical depth (AOD) retrievals through perturbation of the lower boundary conditions. There has been significant discussion in the community regarding the high positive biases in retrieved AODs in many remote ocean regions. In this study, for the first time, the effects of oceanic bubbles on satellite retrievals of AOD are studied by using a linked Second Simulation of a Satellite Signal in the Solar Spectrum (6S) atmospheric and HydroLight oceanic radiative transfer models. The results suggest an insignificant impact on AOD retrievals in regions with near-surface wind speeds of less than 12 m s-1. However, the impact of bubbles on aerosol retrievals could be on the order of 0.02-0.04 for higher wind conditions within the scope of our simulations (e.g., winds < 20 m -1. This bias is propagated to global scales using 1 year of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data to investigate the possible impacts of oceanic bubbles on an enhanced AOD belt observed over the high-latitude southern oceans (also called the enhanced southern oceans anomaly, or ESOA) by some passive satellite sensors. Ultimately, this study is supportive of the null hypothesis: submerged bubbles are not the major contributor to the ESOA feature. This said, as retrievals progress to higher and higher resolutions, such as from airborne platforms, the uniform bubble correction in clean marine conditions should probably be separately accounted for against individual bright whitecaps and bubble rafts.

  18. Spectroscopic evidence for the formation of singlet molecular oxygen (/sup 1/. delta. /sub g/O/sub 2/) upon irradiation of a solvent-oxygen (/sup 3/Sigma/sub g//sup -/O/sub 2/) cooperative absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R.

    1988-01-20

    It is well-known that the presence of molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) in a variety of organic solvents causes an often substantial red shift in the solvent absorption spectrum. This extra, broad absorption feature is reversibly removed by purging the solvent with nitrogen gas. Mulliken and Tsubomura assigned the oxygen-dependent absorption band to a transition from a ground state solvent-oxygen complex to a solvent-oxygen charge transfer (CT) state (sol/sup .+/O/sub 2//sup .-/). In addition to the broad Mulliken CT band, there are, often in the same spectral region, distinct singlet-triplet transitions (T/sub 1/ reverse arrow S/sub 0/) which are enhanced by molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/). Since both of these solvent-oxygen cooperative transitions may result in the formation of reactive oxygenating species, singlet molecular oxygen (/sup 1/..delta../sub g/O/sub 2/) and/or the superoxide ion (O/sub 2//sup .-/), it follows that recent studies have focused on unsaturated hydrocarbon oxygenation subsequent to the irradiation of the oxygen-induced absorption bands in both the solution phase and cryogenic (10 K) glasses. In these particular experiments, oxygenated products characteristic of both /sup 1/..delta../sub g/O/sub 2/ and O/sub 2//sub .-/ were obtained, although the systems studied appeared to involve the participation of one intermediate at the exclusion of the other. In this communication, the authors provide, for the first time, direct spectroscopic evidence for the formation of /sup 1/..delta../sub g/O/sub 2/ following a solvent-oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) cooperative absorption. They have observed, in a time-resolved experiment, a near-IR luminescence subsequent to laser excitation of the oxygen-induced absorption bands of mesitylene, p-xylene, o-xylene, toluene, and benzene at 355 nm and 1,4-dioxane at 266 nm. They suggest that this signal is due to /sup 1/..delta../sub g/O/sub 2

  19. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  20. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-01

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions.

  1. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-01

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions. PMID:24128921

  2. pH-dependent absorption in the B and Q bands of oxyhemoglobin and chemically modified oxyhemoglobin (BME) at low Cl- concentrations.

    PubMed Central

    Brunzel, U; Dreybrodt, W; Schweitzer-Stenner, R

    1986-01-01

    We have measured the optical absorbance in the maxima of the Q and B bands for oxyhemoglobin and oxyhemoglobin (BME) in dependence on the pH value of the solution in the region between pH 4.4 and pH 10. From the absorbance data optical titration curves are derived for both bands. These yield for oxyhemoglobin pK values 4.3, 5.3, 6.8, 7.8, and 9.0, whereas for oxyhemoglobin (BME) only one pK value at 4.3 is observed. These data are in good agreement to those derived recently from resonance Raman spectroscopy. The changes of the oscillator strengths in the Q bands are interpreted in terms of Gouterman's four-orbital model to arise from A1g-distortions of the heme group, resulting from changes of the heme-apoprotein interactions due to protonation processes of amino acid-side groups in the beta-chains. The difference between the sets of pK values in oxyhemoglobin and oxyhemoglobin BME is explained from the fact that the bifunctional reagent BME blocks important pathways of heme-apoprotein interactions. The fact that in any case increase of the Q band absorbance is accompanied by a corresponding increase in the B band absorbance leads us to the conclusion that the electronic structure of the B bands has to be described in terms of a six-orbital model, taking into account configurational interaction with the L and N bands. PMID:3708091

  3. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  4. Apparent Depth.

    ERIC Educational Resources Information Center

    Nassar, Antonio B.

    1994-01-01

    Discusses a well-known optical refraction problem where the depth of an object in a liquid is determined. Proposes that many texts incorrectly solve the problem. Provides theory, equations, and diagrams. (MVL)

  5. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  6. High-resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, Peter L.; Ito, K.; Parkinson, W. H.

    1991-01-01

    Theoretical descriptions of the abundance and excitation of carbon monoxide in interstellar clouds require accurate data on the vacuum-ultraviolet absorption spectrum of the molecule. The 6.65 m spectrometer at the Photon Factory synchrotron light source was used to measure photoabsorption cross sections of CO features between 91.2 and 100.4 nm. These data were recorded at a resolving power of 170,000, more than 20 times greater than that used in previous work.

  7. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    NASA Astrophysics Data System (ADS)

    Guo, Anran; Zhong, Hao; Li, Wei; Gu, Deen; Jiang, Xiangdong; Jiang, Yadong

    2016-10-01

    Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si1-xRux) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si1-xRux thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si1-xRux thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  8. Evaluation of Air Pollution Applications of AERONET and MODIS Aerosol Column Optical Depth by Comparison with In Situ Measurements of Aerosol Light Scattering and Absorption for Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S.; Arnott, W. P.; Moosmuller, H.; Colucci, D.

    2012-12-01

    Reno, Nevada, USA is subject to typical urban aerosol, wind-blown dust, and occasional biomass burning smoke from anthropogenic and natural fires. Reno has complex air flow at levels relevant for aerosol transport. At times recirculating mountain and urban flow arrives from the Sierra Nevada, San Francisco, CA and Sacramento, CA. The urban plumes are further modified by biogenic forest emissions and secondary aerosol formation during transport over the Sierra Nevada Mountains to Reno. This complicates the use of MODIS aerosol optical depth (AOD) for air quality measurements in Reno. Our laboratory at the University of Nevada Reno has collocated multispectral photoacoustic instruments and reciprocal nephelometers to measure light absorption and light scattering coefficients as well as an AERONET operated CIMEL CE-318 ground-based sunphotometer. Preliminary measurements from August 2011 indicate substantially larger Cimel AOD than could be accounted for by use of the in situ aerosol extinction measurements combined with mixing height estimate. This poster presents new results comparing AERONET AOD and single scattering albedo and MODIS AOD with in situ measurements for summer and fall 2012, along with extensive back trajectory analysis, to evaluate conditions when satellite measurement may be useful for air pollution applications in Reno.

  9. Relation of molecular structure to Franck-Condon bands in the visible-light absorption spectra of symmetric cationic cyanine dyes.

    PubMed

    Lin, Katrina Tao Hua; Silzel, John W

    2015-05-01

    A Franck-Condon (FC) model is used to study the solution-phase absorbance spectra of a series of seven symmetric cyanine dyes having between 22 and 77 atoms. Electronic transition energies were obtained from routine visible-light absorbance and fluorescence emission spectra. Harmonic normal modes were computed using density functional theory (DFT) and a polarizable continuum solvent model (PCM), with frequencies corrected using measured mid-infrared spectra. The model predicts the relative energies of the two major vibronic bands to within 5% and 11%, respectively, and also reproduces structure-specific differences in vibronic band shapes. The bands themselves result from excitation of two distinct subsets of normal modes, one with frequencies between 150 and 625cm(-1), and the other between 850 and 1480cm(-1). Vibronic transitions excite symmetric in-plane bending of the polymethine chain, in-plane bends of the polymethine and aromatic C-H bonds, torsions and deformations of N-alkyl substituents, and in the case of the indocyanines, in-plane deformations of the indole rings. For two dyes, the model predicts vibronic coupling into symmetry-breaking torsions associated with trans-cis photoisomerization.

  10. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  11. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  12. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  13. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    NASA Astrophysics Data System (ADS)

    Albrecht, M.; Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-01

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In2O3 to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  14. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  15. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the (1)B(2u) Absorption Band of Benzene, Including the Kekule Vibrational Modes ν(9) and ν(10).

    PubMed

    Willitsford, Adam H; Chadwick, C Todd; Kurtz, Stewart; Philbrick, C Russell; Hallen, Hans

    2016-02-01

    Resonance Raman spectroscopy provides much stronger Raman signal levels than its off-resonant counterpart and adds selectivity by excitation tuning. Raman preresonance of benzene has been well studied. On-resonance studies, especially at phonon-allowed absorptions, have received less attention. In this case, we observe resonance of many of the vibration modes associated motion of the carbons in the ring while tuning over the (1)B2u absorption, including the related ν9 (CC stretch Herzberg notation, ν14 Wilson notation) and ν10 (CH-parallel bend Herzberg notation, ν15 Wilson notation) vibrational modes along with the ν2 (CC-stretch or ring-breathing Herzberg notation, ν1 Wilson notation) mode and multiples of the ν18 (CCC-parallel bend Herzberg notation, ν6 Wilson notation) vibrational mode. The ring-breathing mode is found to mix with the b2u modes creating higher frequency composites. Through the use of an optical parametric oscillator (OPO) to tune through the (1)B2u absorption band of liquid benzene, a stiffening (increase in energy) of the vibrational modes is observed as the excitation wavelength nears the (1)B2u absorption peak of the isolated molecule (vapor) phase. The strongest resonance amplitude observed is in the 2 × ν18 (e2g) mode, with nearly twice the intensity of the ring-breathing mode, ν2. Several overtones and combination modes, especially with ν2 (a1g), are also observed to resonate. Raman resonances on phonon-allowed excitations are narrow and permit the measurement of vibrations not Raman-active in the ground state. PMID:26731431

  16. Absorption of ultraviolet radiation by antarctic phytoplankton

    SciTech Connect

    Vernet, M.; Mitchell, B.G. )

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  17. The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm(-1).

    PubMed

    Campargue, Alain; Kassi, Samir; Pachucki, Krzysztof; Komasa, Jacek

    2012-01-14

    Five very weak transitions-O(2), O(3), O(4), O(5) and Q(5)-of the first overtone band of H(2) are measured by very high sensitivity CW-Cavity Ring Down Spectroscopy (CRDS) between 6900 and 7920 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min)≈ 5 × 10(-11) cm(-1) allowing for the detection of the O(5) transition with an intensity of 1.1 × 10(-30) cm per molecule, the smallest intensity value measured so far for an H(2) absorption line. A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift of the O(2) and O(3) lines was accurately determined from a series of recordings with pressure ranging between 10 and 700 Torr. From an exhaustive review of the literature data, the list of H(2) absorption lines detected so far has been constructed. It includes a total of 39 transitions ranging from the S(0) pure rotational line near 354 cm(-1) up to the S(1) transition of the (5-0) band near 18,908 cm(-1). These experimental values are compared to a highly accurate theoretical line list constructed for pure H(2) at 296 K (0-35,000 cm(-1), intensity cut off of 1 × 10(-34) cm per molecule). The energy levels and transition moments were computed from high level quantum mechanics calculations. The overall agreement between the theoretical and experimental values is found to be very good for the line positions. Some deviations for the intensities of the high overtone bands (V > 2) are discussed in relation with possible pressure effects affecting the retrieved intensity values. We conclude that the hydrogen molecule is probably a unique case in rovibrational spectroscopy for which first principles theory can provide accurate spectroscopic parameters at the level of the performances of the state of the art experimental techniques.

  18. Global Latitudinal Differences of Molecular Absorption on Jupiter

    NASA Astrophysics Data System (ADS)

    Tejfel, V. G.

    2002-09-01

    In the future planetary monitoring from the groundbased observatories or space telescopes the selection of a number of planetary state indices will be necessary to obtain homogeneous temporal series of numerical planetary characteristics. In 1999 special observations of latitude-longitudinal distribution of absorption in the methane bands on Jupiter were carried out. CCD-spectra of the central meridian of Jupiter were recorded in each 3 minutes that corresponded a turning of Jupiter by 1.8 degrees. All the longitudes of the planet were twice covered and full number of spectrograms was 388. A comparison of the latitudinal dependence of absorption in the different absorption bands has revealed some noticeable global, longitudinally independent differences in the character of latitudinal variations of absorption. So, equatorial depression of absorption is well expressed in the bands at 725 and 887 nm, but it is absent in the band at 619 nm. It is interesting that for the band 798 nm, which is a combination of the methane and ammonia absorption, the similar depression is displaced significantly northward from the equator (minimum of the absorption take place at the latitude about +15 deg) in contrast with the depression observed for the band CH4 887 nm. Very small northward displacement is noticeable also for the CH4 725 nm equatorial depression. There is no determined relationship between the value of molecular absorption and visible albedo of the cloud belts. Standard deviations calculated at the longitudinally averaging of the central meridian profiles of the band central depths R are small and no more than 1-2 per cent of mean value. Thus the latitudinal differences are more clearly expressed than longitudinal variations and the global, longitudinally averaged N-S profiles of the absorption variations may be considered as one of characteristics of the current state of Jupiter (as well as of Saturn). There may be not significant mistake if the individual profiles R

  19. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  20. Effect of Substitution of Mn, Cu, and Zr on the Structural, Magnetic, and Ku-Band Microwave-Absorption Properties of Strontium Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Moradi, Mahmood; Alam, Reza Shams; Mardani, Reza

    2016-08-01

    The ferrites with the compositions of SrMn x Cu x Zr2 x Fe(12-4 x)O19 ( x = 0.0, 0.2, 0.3, 0.4, and 0.5) are synthesized by the coprecipitation method. The formation of M-type hexaferrite is confirmed by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. The morphology of the samples is shown by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) microscopy. Vibrating sample magnetometer (VSM) analysis has been used for the investigation of the magnetic properties, and the reason for the changes in the magnetic properties as a result of doping, are expressed. The values of coercivity decrease by increasing the amount of substitution, which could be related to the modification of anisotropy form the c-axis toward the c-plane. Finally, we have used vector network analysis to investigate the microwave absorption properties. We find that the samples with the composition of SrMn0.4Cu0.4Zr0.8Fe10.4O19 have the largest reflection loss and the widest bandwidth among these samples.

  1. Singlet molecular oxygen ( sup 1. Delta. sub g O sub 2 ) formation upon irradiation of an oxygen ( sup 3. Sigma. sub g sup minus O sub 2 )-organic molecule charge-transfer absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R. )

    1989-07-13

    Singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) phosphorescence ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2} {l arrow} {sup 1}{Delta}{sub g}O{sub 2}: 1270 nm) has been observed in a time-resolved experiment subsequent to pulsed UV laser irradiation of the oxygen ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2})-organic molecule charge-transfer bands of liquid aromatic hydrocarbons (mesitylene, p-xylene, o-xylene, toluene, benzene), ethers (tetrahydrofuran, 1,4-dioxane, glyme, diglyme, triglyme), alcohols (methanol, propanol), and aliphatic hydrocarbons (cyclohexane, cyclooctane, decahydronaphthalene). Although {sup 1}{Delta}{sub g}O{sub 2} could originate from a variety of different processes in these oxygenated solvent systems, we have used the results of several independent experiments to indicate that an oxygen-solvent charge-transfer (CT) state is the {sup 1}{Delta}{sub g}O{sub 2} precursor. Other transient species have also been observed in time-resolved absorption experiments subsequent to pulsed UV irradiation of the oxygen-solvent CT bands. Some of these molecular transients, or species derived from these intermediates, may be responsible for an observed increase in the rate of {sup 1}{Delta}{sub g}O{sub 2} decay under certain conditions.

  2. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  3. LINE ABSORPTION OSCILLATOR STRENGTHS FOR THE c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) BANDS IN N{sub 2}

    SciTech Connect

    Lavin, C.; Velasco, A. M.

    2011-09-20

    Theoretical absorption oscillator strengths and emission branching ratios for rotational lines of the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) bands of molecular nitrogen are reported. The calculations have been performed with the molecular quantum defect orbital method, which has proved to be reliable in previous studies of rovibronic transitions in diatomic molecules. The strong interaction between c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) and b' {sup 1}{Sigma}{sup +}{sub u}(10) states has been analyzed through an interaction matrix that includes rotational terms. Owing to the perturbation, the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0), c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(1), and c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(5) bands are not weak, in contrast to what would be expected on the basis of the Franck-Condon principle. Moreover, the intensity distribution of the rotational lines within each of the vibronic bands deviates from considerations based on Hoenl-London factors. In this work, we provide data that may be useful to interpret spectra from atmospheres of the Earth, Titan, and Triton, in which transitions from the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) level have been detected.

  4. Band models and correlations for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1975-01-01

    Absorption of infrared radiation by various line and band models are briefly reviewed. Narrow band model relations for absorptance are used to develop 'exact' formulations for total absorption by four wide band models. Application of a wide band model to a particular gas largely depends upon the spectroscopic characteristic of the absorbing-emitting molecule. Seven continuous correlations for the absorption of a wide band model are presented and each one of these is compared with the exact (numerical) solutions of the wide band models. Comparison of these results indicate the validity of a correlation for a particular radiative transfer application. In radiative transfer analyses, use of continuous correlations for total band absorptance provides flexibilities in various mathematical operations.

  5. The absorption spectrum of D2: ultrasensitive cavity ring down spectroscopy of the (2-0) band near 1.7 μm and accurate ab initio line list up to 24,000 cm(-1).

    PubMed

    Kassi, Samir; Campargue, Alain; Pachucki, Krzysztof; Komasa, Jacek

    2012-05-14

    Eleven very weak electric quadrupole transitions Q(2), Q(1), S(0)-S(8) of the first overtone band of D(2) have been measured by very high sensitivity CW-cavity ring down spectroscopy (CRDS) between 5850 and 6720 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min) ≈ 3 × 10(-11) cm(-1). By averaging a high number of spectra, the noise level was lowered to α(min) ≈ 4 × 10(-12) cm(-1) in order to detect the S(8) transition which is among the weakest transitions ever detected in laboratory experiments (line intensity on the order of 1.8 × 10(-31) cm/molecule at 296 K). A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift and position at zero pressure limit were determined from recordings with pressures ranging between 10 and 750 Torr. A highly accurate theoretical line list was constructed for pure D(2) at 296 K. The intensity threshold was fixed to a value of 1 × 10(-34) cm/molecule at 296 K. The obtained line list is provided as supplementary material. It extends up to 24,000 cm(-1) and includes 201 transitions belonging to ten v-0 cold bands (v = 0-9) and three v-1 hot bands (v = 1-3). The energy levels include the relativistic and quantum electrodynamic corrections as well as the effects of the finite nuclear mass. The quadrupole transition moments are calculated using highly accurate adiabatic wave functions. The CRDS line positions and intensities of the first overtone band are compared to the corresponding calculated values and to previous measurements of the S(0)-S(3) lines. The agreement between the CRDS and theoretical results is found within the claimed experimental uncertainties (on the order of 1 × 10(-3) cm(-1) and 2% for the positions and intensities, respectively) while the previous S(0)-S(3) measurements showed important deviations for the line intensities.

  6. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  7. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  8. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  9. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  10. THE Ch-CLASS ASTEROIDS: CONNECTING A VISIBLE TAXONOMIC CLASS TO A 3 μm BAND SHAPE

    SciTech Connect

    Rivkin, Andrew S.; Thomas, Cristina A.; Howell, Ellen S.; Emery, Joshua P.

    2015-12-15

    Asteroids belonging to the Ch spectral taxonomic class are defined by the presence of an absorption near 0.7 μm, which is interpreted as due to Fe-bearing phyllosilicates. Phyllosilicates also cause strong absorptions in the 3 μm region, as do other hydrated and hydroxylated minerals and H{sub 2}O ice. Over the past decade, spectral observations have revealed different 3 μm band shapes in the asteroid population. Although a formal taxonomy is yet to be fully established, the “Pallas-type” spectral group is most consistent with the presence of phyllosilicates. If Ch class and Pallas type are both indicative of phyllosilicates, then all Ch-class asteroids should also be Pallas-type. In order to test this hypothesis, we obtained 42 observations of 36 Ch-class asteroids in the 2 to 4 μm spectral region. We found that 88% of the spectra have 3 μm band shapes most consistent with the Pallas-type group. This is the first asteroid class for which such a strong correlation has been found. Because the Ch class is defined by the presence of an absorption near 0.7 μm, this demonstrates that the 0.7 μm band serves not only as a proxy for the presence of a band in the 3 μm region, but specifically for the presence of Pallas-type bands. There is some evidence for a correlation between band depth at 2.95 μm and absolute magnitude and/or albedo. However, we find only weak correlations between 2.95 μm band depth and semimajor axis. The connection between band depths in the 0.7 and 3 μm regions is complex and in need of further investigation.

  11. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  12. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  13. Determination of agar tissue phantoms depth profiles with pulsed photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Majaron, Boris; Nelson, J. Stuart

    2007-07-01

    Pulsed photothermal radiometry (PPTR) can be used for non-invasive depth profiling of skin vascular lesions (e.g., port wine stain birthmarks), aimed towards optimizing laser therapy on an individual patient basis. Optimal configuration of the experimental setup must be found and its performance characterized on samples with well defined structure, before introducing the technique into clinical practice. The aim of our study is to determine how sample structure and width of spectruml acquisition band affect the accuracy of measured depth profiles. We have constructed tissue phantoms composed of multiple layers of agar and of thin absorbing layers between the agar layers. Three phantoms had a single absorber layer at various depths between 100 and 500 μm, and one phantom had two absorber layers. In each sample we induced a non-homogeneous temperature profile with a 585 nm pulsed laser and acquired the resulting radiometric signal with a fast InSb infrared camera. We tested two configurations of the acquisition system, one using the customary 3-5 um spectruml band and one with a custom 4.5 μm cut-on filter. The laser-induced temperature depth profiles were reconstructed from measured PPTR signals using a custom algorithm and compared with sample structure as determined by histology and optical coherent tomography (OCT). PPTR determined temperature profiles correlate well with sample structure in all samples. Determination of the absorbing layer depth shows good repeatability with spatial resolution decreasing with depth. Spectruml filtering improved the accuracy of reconstructed profiles for shallow absorption layers (100-200 μm). PPTR technique enables reliable determination of structure in tissue phantoms with thin absorbing layers. Narrowing of the spectruml acquisition band (to 4.5 - 5.3 μm) improves reconstruction of objects near the surface.

  14. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  15. Absorption of sunlight in the atmosphere of venus.

    PubMed

    Tomasko, M G; Doose, L R; Smith, P H

    1979-07-01

    In this report the fluxes measured by the solar flux radiometer (LSFR) of the Pioneer Venus large probe are compared with calculations for model atmospheres. If the large particles of the middle and lower clouds are assumed to be sulfur, strong, short-wavelength absorption results in a net flux profile significantly different from the LSFR net flux measurements. Models in which the smallest particles are assumed to be sulfur gave flux profiles consistent with the measurements if an additional source of absorption is included in the upper cloud. The narrowband data from 0.590 to 0.665 micrometer indicate an absorption optical depth of about 0.05 below the cloud bottom. The broadband data imply that either this absorption extends over a considerable wavelength interval (as might be the case for dust) or that a very strong absorption band lies on one side of the narrowband filter (as suggested by early Venera 11 and Venera 12 reports). Thermal balance calculations based on the measured visible fluxes indicate high surface temperature for reasonable assumptions of cloud opacity and water vapor abundance. The lapse rate becomes convective within the middle cloud. For water mixing ratios of 2.0 x 10(-4) below the clouds we find a subadiabatic region extending from the cloud bottom to altitudes near 35 kilometers.

  16. Gastric Banding

    MedlinePlus

    ... gastric banding before deciding to have the procedure. Advertisements for a device or procedure may not include ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  17. Microwave and optical saturable absorption in graphene.

    PubMed

    Zheng, Zhiwei; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun

    2012-10-01

    We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band.

  18. Comment on "Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber" in Appl. Phys. A (2016) 122:166

    NASA Astrophysics Data System (ADS)

    Li, Bo; Chen, Qiang; Fu, Yunqi; Yang, Chun; Chen, Qi

    2016-10-01

    In a recent paper, Agarwa et al. (Appl Phys A 122:166, 2016) proposed a structure of metamaterial unit cell, which could realize dual-band absorption in C-band, and by altering its design parameters, broadband absorption in X-band could also be easily achieved, and its peak absorptivity is over 99 %. However, we find that the peak absorptivity is 40 % in C-band and 32 % in X-band, since the ostensible good return loss performance is caused by the polarization rotation rather than the absorption.

  19. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  20. Optimal Band Ratio Analysis of WORLDVIEW-3 Imagery for Bathymetry of Shallow Rivers (case Study: Sarca River, Italy)

    NASA Astrophysics Data System (ADS)

    Niroumand-Jadidi, M.; Vitti, A.

    2016-06-01

    The Optimal Band Ratio Analysis (OBRA) could be considered as an efficient technique for bathymetry from optical imagery due to its robustness on substrate variability. This point receives more attention for very shallow rivers where different substrate types can contribute remarkably into total at-sensor radiance. The OBRA examines the total possible pairs of spectral bands in order to identify the optimal two-band ratio that its log transformation yields a strong linear relation with field measured water depths. This paper aims at investigating the effectiveness of additional spectral bands of newly launched WorldView-3 (WV-3) imagery in the visible and NIR spectrum through OBRA for retrieving water depths in shallow rivers. In this regard, the OBRA is performed on a WV-3 image as well as a GeoEye image of a small Alpine river in Italy. In-situ depths are gathered in two river reaches using a precise GPS device. In each testing scenario, 50% of the field data is used for calibration of the model and the remained as independent check points for accuracy assessment. In general, the effect of changes in water depth is highly pronounced in longer wavelengths (i.e. NIR) due to high and rapid absorption of light in this spectrum as long as it is not saturated. As the studied river is shallow, NIR portion of the spectrum has not been reduced so much not to reach the riverbed; making use of the observed radiance over this spectral range as denominator has shown a strong correlation through OBRA. More specifically, tightly focused channels of red-edge, NIR-1 and NIR-2 provide a wealth of choices for OBRA rather than a single NIR band of conventional 4-band images (e.g. GeoEye). This advantage of WV-3 images is outstanding as well for choosing the optimal numerator of the ratio model. Coastal-blue and yellow bands of WV-3 are identified as proper numerators while only green band of the GeoEye image contributed to a reliable correlation of image derived values and field

  1. An absorption line in the ultraviolet spectrum of 40 Eridani B

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.

    1980-01-01

    Two excellent low-resolution spectra show an absorption line of equivalent width 3 A, near 1391 A, in the typical DA (hydrogen atmosphere) white dwarf 40 Eri B. The line is confirmed by a high-resolution spectrum and is the first seen in any DA star. Ultraviolet fluxes and the profile of Lyman-alpha confirm an effective temperature near 17,000 K. If the line is Si IV, it requires a temperature near 40,000 K. Unattractive possibilities are a hot circumstellar absorbing envelope dependent on accretion from companions, or formation at large optical depth in a transparent atmosphere with high Si/H. A suggestion that H2 should be considered leads to the possible interpretation as the (0, 5) transition of the Lyman band, formed at small optical depth. The band should be stronger in cooler DAs.

  2. Neural network cloud screening algorithm Part II: global synthetic cases using high resolution spectra in O2 and CO2 near infrared absorption bands in nadir and sun glint

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; O'Brien, D. M.

    2010-03-01

    In Part I a set of two layer feed-forward neural networks, trained via back propagation of sensitivities, was applied to a synthetic set of radiances in micro-windows of the near-infrared to make predictions of cloud water (cw), cloud ice (ci), effective scattering heights of cloud water and ice, (pcw and pci, respectively) and the column water vapor (w). A threshold test, using 2 g/m-2 for cloud water and 10 g/m-2 for cloud ice, was applied to the retrieved values to distinguish clear from cloudy scenes. In that work the discussion was limited to the nadir viewing geometry, and was applied only to land surfaces, excluding desert and snow and ice fields. Part II describes the extension to a set of high resolution radiances, as might be measured by a grating spectrometer from space, in both nadir and sun glint viewing geometries. Furthermore, results are given for all land surface types as well as scenes over ocean. Prior to neural network training, a Principal Component Analysis (PCA) is applied to the high resolution spectra, which consist of three bands centered at 0.76μm (O2 A-band), 1.61μm (weak CO2 band) and 2.06μm (strong CO2 band), each with 1016 channels. Analysis shows that the five leading EOFs together capture 99.9% of the variance in each band, reducing the data size by more than two orders of magnitude. Application of the trained neural networks to an independent data set, generated using CloudSat and Calipso cloud and aerosol profiles, as well as carbon dioxide profiles from a chemical transport model, were used to quantify the skill in the retrieval. The results vary significantly with surface type, viewing mode and cloud properties. Accuracies range from 7% to 100% (typically close to 75%), with confidence levels almost always greater than 90%.

  3. Depth dependence of vascular fluorescence imaging

    PubMed Central

    Davis, Mitchell A.; Shams Kazmi, S. M.; Ponticorvo, Adrien; Dunn, Andrew K.

    2011-01-01

    In vivo surface imaging of fluorescently labeled vasculature has become a widely used tool for functional brain imaging studies. Techniques such as phosphorescence quenching for oxygen tension measurements and indocyanine green fluorescence for vessel perfusion monitoring rely on surface measurements of vascular fluorescence. However, the depth dependence of the measured fluorescence signals has not been modeled in great detail. In this paper, we investigate the depth dependence of the measured signals using a three-dimensional Monte Carlo model combined with high resolution vascular anatomy. We found that a bulk-vascularization assumption to modeling the depth dependence of the signal does not provide an accurate picture of penetration depth of the collected fluorescence signal in most cases. Instead the physical distribution of microvasculature, the degree of absorption difference between extravascular and intravascular space, and the overall difference in absorption at the excitation and emission wavelengths must be taken into account to determine the depth penetration of the fluorescence signal. Additionally, we found that using targeted illumination can provide for superior surface vessel sensitivity over wide-field illumination, with small area detection offering an even greater amount of sensitivity to surface vasculature. Depth sensitivity can be enhanced by either increasing the detector area or increasing the illumination area. Finally, we see that excitation wavelength and vessel size can affect intra-vessel sampling distribution, as well as the amount of signal that originates from inside the vessel under targeted illumination conditions. PMID:22162824

  4. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  5. The Ma_Miss instrument performance, II: Band parameters of rocks powders spectra by Martian VNIR spectrometer

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; De Sanctis, Maria Cristina; Ammannito, Eleonora; Carli, Cristian; Di Iorio, Tatiana; Altieri, Francesca

    2015-11-01

    The Ma_Miss instrument (Mars Multispectral Imager for Subsurface Studies, Coradini et al. (2001)) is a Visible and Near Infrared miniaturized spectrometer that will observe the Martian subsurface in the 0.4-2.2 μm spectral range. The instrument will be entirely hosted within the Drill of the ExoMars-2018 Pasteur Rover: it will allow analyzing the borehole wall excavated by the Drill, at different depths, down to 2 m. The aim will be to investigate and characterize the mineralogy and stratigraphy of the shallow Martian subsurface. A series of spectroscopic measurements have been performed in order to characterize the spectral performances of the laboratory model of the instrument (breadboard). A set of six samples have been analyzed. Each sample (four volcanic rocks, a micritic limestone and a calcite) has been reduced in particulate form, ground, sieved and divided into nine different grain sizes in the range d<0.02÷0.8 mm. Spectroscopic measurements have been performed on all samples using two distinct experimental setup: (a) the Ma_Miss breadboard, and (b) the Spectro-Goniometer setup, both in use in the laboratory at INAF - IAPS. In a previous paper spectral parameters such as the continuum slope and the reflectance level of the spectra have been discussed (De Angelis et al., 2014). In this work we focus our discussion on absorption band parameters (position, depth, area, band slope and asymmetry). We analyzed/investigated the absorption features at 1 μm for the volcanic samples and at 1.4, 1.9 and 2.2 μm for the two carbonate samples. Band parameters have been retrieved from spectra measured with both experimental setup and then compared. The comparison shows that band parameters are mutually consistent: band centers (for carbonate samples) are similar within few percent, and band depth and area values (for carbonates) show consistent trends vs. grain size (decreasing towards coarser grains) for most of samples.

  6. A new model for pressure-induced shifts of electronic absorption bands as applied to neat CS sub 2 and CS sub 2 in n-hexane and dichloromethane solutions

    SciTech Connect

    Agnew, S.F.; Swanson, B.I. )

    1990-01-25

    The authors propose a model for the pressure dependence of electronic absorption spectra and apply it to the authors data on CS{sub 2} both in neat phase and in hexane and dichloromethane solid solutions. They believe that their data represent a rather severe test of this model and argue that any model for the pressure dependence of electronic absorption spectra must include certain minimal effects - dispersive or dielectric and repulsive or volume effects - in order to adequately represent the data. They discuss previous models at some length in order to delineate the limits of their applicability. They further acknowledge and define the limits of the applicability of their model to solvent-induced shifts in general.

  7. Oxygen depth profiling with subnanometre depth resolution

    NASA Astrophysics Data System (ADS)

    Kosmata, Marcel; Munnik, Frans; Hanf, Daniel; Grötzschel, Rainer; Crocoll, Sonja; Möller, Wolfhard

    2014-10-01

    A High-depth Resolution Elastic Recoil Detection (HR-ERD) set-up using a magnetic spectrometer has been taken into operation at the Helmholtz-Zentrum Dresden-Rossendorf for the first time. This instrument allows the investigation of light elements in ultra-thin layers and their interfaces with a depth resolution of less than 1 nm near the surface. As the depth resolution is highly influenced by the experimental measurement parameters, sophisticated optimisation procedures have been implemented. Effects of surface roughness and sample damage caused by high fluences need to be quantified for each kind of material. Also corrections are essential for non-equilibrium charge state distributions that exist very close to the surface. Using the example of a high-k multilayer SiO2/Si3N4Ox/SiO2/Si it is demonstrated that oxygen in ultra-thin films of a few nanometres thickness can be investigated by HR-ERD.

  8. Infrared laser absorption spectroscopy of the nu4 (sigma u) fundamental and associated nu11(pi u) hot band of C7 - Evidence for alternating rigidity in linear carbon clusters

    NASA Technical Reports Server (NTRS)

    Heath, J. R.; Saykally, R. J.

    1991-01-01

    The first characterization of the bending potential of the C7 cluster is reported via the observation of the v = 1(1) and v = 2 deg levels of the nu11 (pi u) bend as hot bands associated with the nu4 (sigma u) antisymmetric stretch fundamental. The lower state hot band rotational constants are measured to be 1004.4(1.3) and 1123.6(9.0) MHz, constituting a 9.3 and 22 percent increase over the ground state rotational constant, 918.89 (41) MHz. These large increases are strong quartic and sextic centrifugal distortion constants determined for the ground and nu 4 = 1 states are found to be anomalously large and negative, evidencing strong perturbations between stretching and bending modes.

  9. NOTE: Spectra from 2.5-15 µm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin

    NASA Astrophysics Data System (ADS)

    Viator, John A.; Choi, Bernard; Peavy, George M.; Kimel, Sol; Nelson, J. Stuart

    2003-01-01

    Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 µm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, TopicareTM), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 µm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 µm. Dermis was similar to water, with collagen structure evident in the 6-10 µm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 µm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant μir is used. In such cases, overestimating μir will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth.

  10. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  11. Exponential Gaussian approach for spectral modelling: The EGO algorithm II. Band asymmetry

    NASA Astrophysics Data System (ADS)

    Pompilio, Loredana; Pedrazzi, Giuseppe; Cloutis, Edward A.; Craig, Michael A.; Roush, Ted L.

    2010-08-01

    The present investigation is complementary to a previous paper which introduced the EGO approach to spectral modelling of reflectance measurements acquired in the visible and near-IR range (Pompilio, L., Pedrazzi, G., Sgavetti, M., Cloutis, E.A., Craig, M.A., Roush, T.L. [2009]. Icarus, 201 (2), 781-794). Here, we show the performances of the EGO model in attempting to account for temperature-induced variations in spectra, specifically band asymmetry. Our main goals are: (1) to recognize and model thermal-induced band asymmetry in reflectance spectra; (2) to develop a basic approach for decomposition of remotely acquired spectra from planetary surfaces, where effects due to temperature variations are most prevalent; (3) to reduce the uncertainty related to quantitative estimation of band position and depth when band asymmetry is occurring. In order to accomplish these objectives, we tested the EGO algorithm on a number of measurements acquired on powdered pyroxenes at sample temperature ranging from 80 up to 400 K. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of band asymmetry on reflectance spectra; (2) the returned set of EGO parameters can suggest the influence of some additional effect other than the electronic transition responsible for the absorption feature; (3) the returned set of EGO parameters can help in estimating the surface temperature of a planetary body; (4) the occurrence of absorptions which are less affected by temperature variations can be mapped for minerals and thus used for compositional estimates. Further work is still required in order to analyze the behaviour of the EGO algorithm with respect to temperature-induced band asymmetry using powdered pyroxene spanning a range of compositions and grain sizes and more complex band shapes.

  12. Stereoscopic depth constancy

    PubMed Central

    Guan, Phillip

    2016-01-01

    Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269596

  13. Stereoscopic depth constancy.

    PubMed

    Guan, Phillip; Banks, Martin S

    2016-06-19

    Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content.This article is part of the themed issue 'Vision in our three-dimensional world'.

  14. Measurement of water depth by multispectral ratio techniques

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1970-01-01

    The technique for measuring the depth of water using a multispectral scanner is discussed. The procedure takes advantage of the absorption properties of different wavelengths of light. Making use of the property of the selected transmission of light at different wavelengths, an equation was developed relating the outputs of at least two channels of multispectral scanner to measure water depth.

  15. Skin hydration by spectroscopic imaging using multiple near-infrared bands

    NASA Astrophysics Data System (ADS)

    Attas, E. Michael; Sowa, Michael G.; Posthumus, Trevor B.; Schattka, Bernhard J.; Mantsch, Henry H.; Zhang, Shuliang L.

    2002-03-01

    Near-infrared spectroscopic methods have been developed to determine the degree of hydration of human skin in vivo. Reflectance spectroscopic imaging was used to investigate the distribution of skin moisture as a function of location. A human study in a clinical setting has generated quantitative data showing the effects of a drying agent and a moisturizer on delineated regions of the forearms of eight volunteers. Two digital imaging systems equipped with liquid-crystal tunable filters were used to collect stacks of monochromatic images at 10-nm intervals over the wavelength bands 650-1050 nm and 960-1700 nm. Images generated from measurements of water absorption-band areas at three different near-IR wavelengths (970, 1200, and 1450 nm) showed obvious differences in the apparent distribution of water in skin. Changes resulting from the skin treatments were much more evident in the 1200-nm and 1450-nm images than in the 970-nm ones. The variable sensitivity of the method at different wavelengths has been interpreted as being the result of different penetration depths of the infrared light used in the reflectance studies. Ex-vivo experiments with pigskin have provided evidence supporting the relationship between wavelength and penetration depth. Combining the hydration results from several near-IR water bands allows additional information on hydration depth to be obtained.

  16. Motivation with Depth.

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  17. Depth Optimization Study

    DOE Data Explorer

    Kawase, Mitsuhiro

    2009-11-22

    The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu. Reference: Mitsuhiro Kawase, Patricia Beba, and Brian Fabien (2011), Finding an Optimal Placement Depth for a Tidal In-Stream Conversion Device in an Energetic, Baroclinic Tidal Channel, NNMREC Technical Report.

  18. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  19. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    SciTech Connect

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.

    2014-08-14

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  20. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  1. Bernauer's bands.

    PubMed

    Shtukenberg, Alexander; Gunn, Erica; Gazzano, Massimo; Freudenthal, John; Camp, Eric; Sours, Ryan; Rosseeva, Elena; Kahr, Bart

    2011-06-01

    Ferdinand Bernauer proposed in his monograph, "Gedrillte" Kristalle (1929), that a great number of simple, crystalline substances grow from solution or from the melt as polycrystalline spherulites with helically twisting radii that give rise to distinct bull's-eye patterns of concentric optical bands between crossed polarizers. The idea that many common molecular crystals can be induced to grow as mesoscale helices is a remarkable proposition poorly grounded in theories of polycrystalline pattern formation. Recent reinvestigation of one of the systems Bernauer described revealed that rhythmic precipitation in the absence of helical twisting accounted for modulated optical properties [Gunn, E. et al. J. Am. Chem. Soc. 2006, 128, 14234-14235]. Herein, the Bernauer hypothesis is re-examined in detail for three substances described in "Gedrillte" Kristalle, potassium dichromate, hippuric acid, and tetraphenyl lead, using contemporary methods of analysis not available to Bernauer, including micro-focus X-ray diffraction, electron microscopy, and Mueller matrix imaging polarimetry. Potassium dichromate is shown to fall in the class of rhythmic precipitates of undistorted crystallites, while hippuric acid spherulites are well described as helical fibrils. Tetraphenyl lead spherulites grow by twisting and rhythmic precipitation. The behavior of tetraphenyl lead is likely typical of many substances in "Gedrillte" Kristalle. Rhythmic precipitation and helical twisting often coexist, complicating optical analyses and presenting Bernauer with difficulties in the characterization and classification of the objects of his interest.

  2. The Oxygen a Band

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Hodges, Joseph; Long, David A.; Sung, Keeyoon; Drouin, Brian; Okumura, Mitchio; Bui, Thinh Quoc; Rupasinghe, Priyanka

    2014-06-01

    The oxygen A band is used for numerous atmospheric experiments, but spectral line parameters that sufficiently describe the spectrum to the level required by OCO2 and other high precision/accuracy experiments are lacking. Fourier transform spectra from the Jet Propulsion Laboratory and cavity ring down spectra from the National Institute of Standards and Technology were fitted simultaneously using the William and Mary multispectrum nonlinear least squares fitting technique into a single solution including the entire band. In addition, photoacoustic spectra already available from the California Institute of Technology will be added to the solution. The three types of spectrometers are complementary allowing the strengths of each to fill in the weaknesses of the others. With this technique line positions, intensities, widths, shifts, line mixing, Dicke narrowing, temperature dependences and collision induced absorption have been obtained in a single physically consistent fit. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at The College of William and Mary, the, Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration and the Jet Propulsion Laboratory. Support for the National Institute of Standards and Technology was provided by the NIST Greenhouse Gas Measurements and Climate Research Program and a NIST Innovations in Measurement Science (IMS) award.

  3. Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey

    2013-01-01

    A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.

  4. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  5. A Diffraction System with an X-ray Beam of a Band of Wavelengths

    SciTech Connect

    Koganezawa, T.; Iwasaki, H.; Yoshimura, Y.; Nakamura, N.; Shoji, T.

    2004-05-12

    New diffraction system has been constructed at the Synchrotron Radiation Center at Ritsumeikan University, in which a parallel X-ray beam of a band of wavelengths is produced by reflection from a multilayer monochromator of depth-graded thicknesses. The band width is 0.013 nm and the useful wavelength range is from 0.16 nm to 0.20 nm. Diffraction patterns were taken from a single crystal of an enantiomorphous ferrocene-derivative compound employing an Imaging Plate as a detector. Bragg reflections are seen elongated with a characteristic intensity profile due to anomalous dispersion. Bijvoet pair of reflections show a clear difference in the profile on the short wavelength side of the absorption edge and distinction between the enantiomers can be made more easily than the classical method based on the comparison of integrated intensities.

  6. Absolutely calibrated CCD images of Saturn at methane band and continuum wavelengths during its 1991 opposition

    NASA Astrophysics Data System (ADS)

    Ortiz, J. L.; Moreno, F.; Molina, A.

    1993-02-01

    Ground-based charge-coupled device images of Saturn were obtained at the Cassegrain focus of the 1.52-m telescope at the Calar Alto Observatory (Andalucia, Spain) during the 1991 opposition. The images were obtained in and out of the absorption methane bands at 6190, 7250, and 8900A under very good seeing conditions. A Bayesian deconvolution technique was employed in the restoration procedure. The derived absolute reflectivities and band depths at some locations of the disk are provided in tables appropriate for analysis in terms of scattering models. Possible temporal variations between the reflectivities found here and those reported by West et al. (1982) are discussed. No longitudinal variations in reflectivity larger than a 4 percent level were found. Some images showed bright spot activity at the equatorial region.

  7. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  8. AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods

    NASA Technical Reports Server (NTRS)

    Crowley, J. K.; Clark, R. N.

    1992-01-01

    Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.

  9. Analysis of Kikuchi band contrast reversal in electron backscatter diffraction patterns of silicon.

    PubMed

    Winkelmann, Aimo; Nolze, Gert

    2010-02-01

    We analyze the contrast reversal of Kikuchi bands that can be seen in electron backscatter diffraction (EBSD) patterns under specific experimental conditions. The observed effect can be reproduced using dynamical electron diffraction calculations. Two crucial contributions are identified to be at work: First, the incident beam creates a depth distribution of incoherently backscattered electrons which depends on the incidence angle of the beam. Second, the localized inelastic scattering in the outgoing path leads to pronounced anomalous absorption effects for electrons at grazing emission angles, as these electrons have to go through the largest amount of material. We use simple model depth distributions to account for the incident beam effect, and we assume an exit angle dependent effective crystal thickness in the dynamical electron diffraction calculations. Very good agreement is obtained with experimental observations for silicon at 20keV primary beam energy.

  10. Rattlesnake Mountain Observator (46.4{degrees}N, 119.6{degrees}W) multispectral optical depth measurements, 1979--1994

    SciTech Connect

    Daniels, R.C.

    1995-09-22

    Surface measurements of solar irradiance of the atmosphere were made by a multipurpose computer-controlled scanning photometer at the Rattlesnake Mountain Observatory. The observatory is located at 46.4{degrees}N, 119.6{degrees}W at an elevation of 1088 m above mean sea level. The photometer measures the attenuation of direct solar radiation for different wavelengths using 12 filters. Five of these filters (ie., at 428 nm, 486 nm, 535 nm, 785 nm, and 1010 nm, with respective half-power widths of 2, 2, 3, 18, and 28 nm) are suitable for monitoring variations in the total optical depth of the atmosphere. Total optical depths for the five wavelength bands were derived from solar irradiance measurements taken at the observatory from August 5, 1979, to September 2, 1994; these total optical depth data are distributed with this numeric data package (NDP). To determine the contribution of atmospheric aerosols to the total optical depths, the effects of Rayleigh scattering and ozone absorption were subtracted (other molecular scattering was minimal for the five filters) to obtain total column aerosol optical depths. The total aerosol optical depths were further decomposed into tropospheric and stratospheric components by calculating a robustly smoothed mean background optical depth (tropospheric component) for each wavelength using data obtained during periods of low stratospheric aerosol loading. By subtracting the smoothed background tropospheric aerosol optical depths from the total aerosol optical depths, residual aerosol optical depths were obtained. These residuals are good estimates of the stratospheric aerosol optical depth at each wavelength and may be used to monitor the long-term effects of volcanic eruptions on the atmosphere. These data are available as an NDP from the Carbon Dioxide Information Analysis Center (CDIAC), and the NDP consists of this document and a set of computerized data files.

  11. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.

    PubMed

    Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi

    2014-05-01

    Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise.

  12. Computer programs for absorption spectrophotometry.

    PubMed

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis. PMID:20072266

  13. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators

    NASA Astrophysics Data System (ADS)

    Li, Liyang; Wang, Jun; Du, Hongliang; Wang, Jiafu; Qu, Shaobo; Xu, Zhuo

    2015-01-01

    In this paper, we propose a band enhanced metamaterial absorber in microwave band, which is composed of high-permittivity E-shaped dielectric resonators and metallic ground plate. The E-shaped all-dielectric structure is made of high-temperature microwave ceramics with high permittivity and low loss. An absorption band with 1 GHz bandwidth for both TE and TM polarizations are observed. Moreover, the absorption property is stable under different incident angles. The band enhanced absorption is caused by different resonant modes which lie closely in the absorption band. Due to the enhanced localized electric/magnetic fields at the resonant frequencies, strong absorptions are produced. Our work provides a new method of designing high-temperature and high-power microwave absorbers with band enhanced absorption.

  14. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the companyused technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  15. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications

  16. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  17. Variable depth core sampler

    DOEpatents

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  18. Variable depth core sampler

    DOEpatents

    Bourgeois, Peter M.; Reger, Robert J.

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  19. Variation of the 3-μm absorption feature on Mars: observations over eastern Valles Marineris by the mariner 6 infrared spectrometer

    USGS Publications Warehouse

    Calvin, Wendy M.

    1997-01-01

    A new approach for calibration of the shortest wavelength channel (1.8 to 6.0 μm) of the Mariner 6 infrared spectrometer was derived. This calibration provides a new description of the instrument response function from 1.8 to 3.7 μm and accounts for the thermal contribution to the signal at longer wavelengths. This allows the two segments from 1.8 to 6 μm to be merged into a single spectrum. The broad water of hydration absorption spans these two segments and is examined in these merged spectra using a method of band integration. Unlike previous analyses which rely on ratios at two wavelengths, the integration method can assess the band strength independently from the albedo in the near infrared. Spectra taken over the eastern end of the Valles Marineris are examined for variations of the band-integrated value, and three distinct clusters are found. Within the estimated uncertainty, two clusters (both low and high albedo) have approximately the same integrated band depth. The third cluster (medium albedo) has an integrated band depth about 10% higher. This difference cannot be systematically attributed to either surface or atmospheric parameters and suggests variation in the amount of water either chemically or physically bound in surface materials. Approximately one-half of the high integrated band depth cluster is associated with chaotic terrain at the source of outflow channels, the other half occurs over lower inertia plains adjacent to chasmata. This suggests both surface physical properties and mineralogy as well as water in exchange with the atmosphere contribute to the 3-μm bound water absorption.

  20. Variable depth core sampler

    SciTech Connect

    Bourgeois, P.M.; Reger, R.J.

    1994-12-31

    This invention relates to a sampling means, more particularly to a device to sample hard surfaces at varying depths. Often it is desirable to take samples of a hard surface wherein the samples are of the same diameter but of varying depths. Current practice requires that a full top-to-bottom sample of the material be taken, using a hole saw, and boring a hole from one end of the material to the other. The sample thus taken is removed from the hole saw and the middle of said sample is then subjected to further investigation. This paper describes a variable depth core sampler comprimising a circular hole saw member, having longitudinal sections that collapse to form a point and capture a sample, and a second saw member residing inside the first hole saw member to support the longitudinal sections of the first member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside the the first hole saw member.

  1. Interpretation of the Minkowski bands in Grw + 70 deg 8247.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1972-01-01

    Demonstration on the basis of the spectral structure of circular polarization in Grw + 70 deg 8247, that the absorption bands are at least in part molecular in origin. The spectrum of molecular helium has strong bands coincident with several of the Minkowski bands and, in particular, at high temperature shows a strong band head at about 4125 A. Helium molecules could be formed in sufficient density to give the absorption features in the star if it has a pure helium atmosphere. The Zeeman effect in molecular helium can explain in general the observed spectral features in the polarization and also may be responsible for the continuum polarization.

  2. Atmospheric Airborne Pressure Measurements using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.

    2014-12-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at 765 nm. Our approach uses a sequence of laser pulses at increasing wavelengths that sample a pair of absorption lines in the Oxygen A-band at 764.7 nm. The O2 lines were selected after careful spectroscopic analysis to minimize the O2 line temperature dependence and the availability of the transmitter and receiver technology to maximize transmitter power, doubling efficiency, and detector sensitivity. We compare our 2013 and 2014 Oxygen IPDA lidar measurements and evaluate the impact of receiver dynamic range, transmitter stability and signal to noise ratio on the differential optical depth measurements.

  3. Laparoscopic gastric banding - discharge

    MedlinePlus

    ... laparoscopic gastric banding - discharge; Obesity gastric banding discharge; Weight loss - gastric banding discharge ... as your body gets used to your weight loss and your weight becomes stable. Weight loss may be slower after ...

  4. Attosecond band-gap dynamics in silicon

    NASA Astrophysics Data System (ADS)

    Schultze, Martin; Ramasesha, Krupa; Pemmaraju, C. D.; Sato, S. A.; Whitmore, D.; Gandman, A.; Prell, James S.; Borja, L. J.; Prendergast, D.; Yabana, K.; Neumark, Daniel M.; Leone, Stephen R.

    2014-12-01

    Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ~450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field-induced electron tunneling.

  5. Electric modulation of optical absorption in nanowires

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-11-01

    We have calculated the effect of an external electric field on the intersubband optical absorption of a nanowire subjected to a perpendicular magnetic field and Rashba effect. The absorption peaks due to optical transitions that are forbidden in the absence of the intersubband coupling experience strong amplitude modulation. This effect is quadratic in electric fields applied along the direction of quantum confinement or perpendicularly to tune the Rashba parameter. The electric field also induces frequency modulation in the associated spectrum. On the other hand, transitions that are normally allowed show, to a large extent, a parallel band effect, and accordingly they are responsible for strong optical absorption.

  6. Short-range demonstrations of monocular passive ranging using O2 (X3Σg- → b1Σg+) absorption spectra.

    PubMed

    Hawks, Michael R; Vincent, R Anthony; Martin, Jacob; Perram, Glen P

    2013-05-01

    The depth of absorption bands in observed spectra of distant, bright sources can be used to estimate range to the source. Experimental results are presented based on observations of the O2 X(v" = 0) → b(v' = 0) absorption band centered around 762 nm and the O2 X(v" = 0) → b(v' = 1) band around 689 nm. Range is estimated by comparing observed values of band-average absorption against predicted curves derived from either historical data or model predictions. Accuracy of better than 0.5% was verified in short-range (up to 3 km), static experiments using a high-resolution (1 cm(-1)) spectroradiometer. This method was also tested against the exhaust plume of a Falcon 9 rocket launched from Cape Canaveral, Florida. The rocket was launched from an initial range of 13 km and tracked for 90 s after ignition. Range error was below 2% for the first 30 s and consistent with predicted error throughout the track.

  7. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  8. Efficient multiview depth video coding using depth synthesis prediction

    NASA Astrophysics Data System (ADS)

    Lee, Cheon; Choi, Byeongho; Ho, Yo-Sung

    2011-07-01

    The view synthesis prediction (VSP) method utilizes interview correlations between views by generating an additional reference frame in the multiview video coding. This paper describes a multiview depth video coding scheme that incorporates depth view synthesis and additional prediction modes. In the proposed scheme, we exploit the reconstructed neighboring depth frame to generate an additional reference depth image for the current viewpoint to be coded using the depth image-based-rendering technique. In order to generate high-quality reference depth images, we used pre-processing on depth, depth image warping, and two types of hole filling methods depending on the number of available reference views. After synthesizing the additional depth image, we encode the depth video using the proposed additional prediction modes named VSP modes; those additional modes refer to the synthesized depth image. In particular, the VSP_SKIP mode refers to the co-located block of the synthesized frame without the coding motion vectors and residual data, which gives most of the coding gains. Experimental results demonstrate that the proposed depth view synthesis method provides high-quality depth images for the current view and the proposed VSP modes provide high coding gains, especially on the anchor frames.

  9. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  10. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  11. Electronic structure and optic absorption of phosphorene under strain

    NASA Astrophysics Data System (ADS)

    Duan, Houjian; Yang, Mou; Wang, Ruiqiang

    2016-07-01

    We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.

  12. Natural fracturing, by depth

    NASA Astrophysics Data System (ADS)

    Hooker, John; Laubach, Stephen

    2013-04-01

    Natural opening-mode fractures commonly fall upon a spectrum whose end-members are veins, which have wide ranges of sizes and are mostly or thoroughly cemented, and joints, which have little opening displacement and little or no cement. The vein end-member is common in metamorphic rocks, whose high temperature and pressure of formation place them outside typical reservoir settings; conversely, many uncemented joints likely form near the surface and so too have limited relevance to subsurface exploration. Sampling of cores retrieved from tight-gas sandstone reservoirs suggest that it is intermediate fractures, not true joints or veins, that provide natural porosity and permeability. Such fractures have abundant pore space among fracture-bridging cements, which may hold fractures open despite varying states of stress through time. Thus the more sophisticated our understanding of the processes that form veins and joints, i.e., how natural fracturing varies by depth, the better our ability to predict intermediate fractures. Systematic differences between veins and joints, in terms of size-scaling and lateral and stratigraphic spatial arrangement, have been explained in the literature by the mechanical effects of sedimentary layering, which likely exert more control over fracture patterns at shallower depths. Thus stratabound joints commonly have narrow size ranges and regular spacing; non-stratabound veins have a wide range of sizes and spacings. However, new fieldwork and careful literature review suggest that the effects of mechanical layering are only half the story. Although atypical, veins may be highly stratabound and yet spatially clustered; non-stratabound fractures may nonetheless feature narrow size ranges. These anomalous fracture arrangements are better explained by the presence of precipitating cements during fracture opening than by mechanical layering. Cement is thought to be highly important for fracture permeability, but potential effects of

  13. Application of methane band-model parameters to the visible and near-infrared spectrum of Uranus

    NASA Technical Reports Server (NTRS)

    Benner, D. C.; Fink, U.

    1980-01-01

    Laboratory band-model absorption coefficients of CH4 were used to calculate the Uranus spectrum from 5400 to 10,400 A. A good fit for both strong and weak bands for the Uranus spectrum over the entire wavelength interval was achieved; three atmospheric models were employed: (1) a reflecting layer model; (2) a homogeneous scattering layer model; and (3) a clear atmosphere sandwiched between two scattering layers. The spectrum for the reflecting layer model shows serious discrepancies but indicates that large amounts of CH4 are necessary to reproduce the Uranus spectrum. Both scattering models gave reasonably good fits; the homogeneous model requires a particle scattering albedo of at least 0.998 and an abundance per scattering mean free path of about 1 km-am. For the sandwich model, a continuum single scattering albedo of 0.995 was derived for the upper scattering layer, and the scattering optical depth variable wavelength was consistent with Rayleigh scattering.

  14. Interstellar Reddening Determination Trough the 2200 Å Dust Absorption Band

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Cassatella, Angelo; Bañó, Gisela

    A comparison is carried out between two methods to evaluate the correction for interstellar reddening: the three ultraviolet points method, and the traditional model fitting method. The two methods have been applied to a large sample of well known stars of spectral types O, B and A to test their reliability and to asses their general applicability.

  15. [Transient UV absorption spectra of artemisinin reacting with sodium hydroxide].

    PubMed

    Gao, Yan-Jun; Ping, Li; Yang, Li-Jun; Wang, Qi-Ming; Xue, Jun-Peng; Wu, Da-Cheng; Li, Rui-Xia

    2009-03-01

    UV absorption spectrum of artemisinin and transient absorption spectra of various concentrations of artemisinin reacting with sodium hydroxide were measured by using an intensified spectroscopic detector ICCD. The exposure time of each spectrum was 0.1 ms. Results indicate that artemisinin has an obvious UV absorption band centered at 212.52 nm and can react with sodium hydroxide easily. All absorption spectra of different concentrations of artemisinin reacting with sodium hydroxide have the similar changes, but the moment at which the changes happened is different. After adding sodium hydroxide into artemisinin in ethanol solution, there was a new absorption band centered at 288 nm appearing firstly. As reaction went on, the intensity of another absorption band centered at 260 nm increased gradually. At the end of the reaction, a continuous absorption band from 200 to 350 nm with the peak at 245 nm formed finally. No other transient absorption spectral data are available on the reaction of artemisinin with sodium hydroxide currently. The new spectral information obtained in this experiment provides very important experimental basis for understanding the properties of artemisinin reacting with alkaline medium and is useful for correctly using of artemisinin as a potential anticancer drug.

  16. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  17. Task 1: Water Depth Management, 1388

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 MSS data taken on October 10, 1972, of the Little Bahama Bank are being used to demonstrate the use of ERTS-1 data for mapping of shallow water features for the purpose of upgrading world navigation charts. Marked reflectance differences occur for the shallow water areas in bands 4, 5, and 6. Digital processing of two adjacent data tapes within the ERTS-1 frame covering an area of about 40 by 40 miles has been completed. Correlation of depth measurements to 5 meters has been successful. A mathematical model for depth measurements using ratio of voltages in band 4 and 5 has been successfully developed and is being tested for accuracy. Additional studies for areas near Puerto Rico and in northern Lake Michigan will be undertaken. Satellite data will also provide geographical evidence for verifying existence or nonexistence of doubtful shoal waters now appearing on world charts and considered to be hazardous to shipping.

  18. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  19. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect

    Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.

    2014-08-28

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  20. VLT/ISAAC infrared spectroscopy of embedded high-mass YSOs in the Large Magellanic Cloud: Methanol and the 3.47 μm band

    NASA Astrophysics Data System (ADS)

    Shimonishi, T.; Dartois, E.; Onaka, T.; Boulanger, F.

    2016-01-01

    Aims: This study aims to elucidate a possible link between chemical properties of ices in star-forming regions and environmental characteristics (particularly metallicity) of the host galaxy. The Large Magellanic Cloud (LMC) is an excellent target to study properties of interstellar and circumstellar medium in a different galactic environment thanks to its proximity and low metallicity. Methods: We performed near-infrared, L-band spectroscopic observations toward embedded high-mass young stellar objects (YSOs) in the LMC with the Infrared Spectrometer And Array Camera (ISAAC) at the Very Large Telescope. The 3.2-3.7 μm spectral region, which is accessible from ground-based telescopes, is important for ice studies, since various C-H stretching vibrations of carbon bearing species fall in this region. Results: We obtained medium-resolution (R ~ 500) spectra in the 3-4 μm range for nine high-mass YSOs in the LMC. Additionally, we analyzed archival ISAAC data of two LMC YSOs. We detected absorption bands due to solid H2O and CH3OH as well as the 3.47 μm absorption band. The properties of these bands are investigated based on comparisons with Galactic embedded sources. The 3.53 μm CH3OH ice absorption band for the LMC YSOs is found to be absent or very weak compared to that seen toward Galactic sources. The absorption band is weakly detected for two out of eleven objects. We estimate the abundance of the CH3OH ice, which suggests that solid CH3OH is less abundant for high-mass YSOs in the LMC than those in our Galaxy. The 3.47 μm absorption band is detected toward six out of eleven LMC YSOs. We found that the 3.47 μm band and the H2O ice band correlate similarly between the LMC and Galactic samples, but the LMC sources seem to require a slightly higher H2O ice threshold for the appearance of the 3.47 μm band. For the LMC sources with relatively large H2O ice optical depths, we found that the strength ratio of the 3.47 μm band relative to the water ice band is

  1. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Riris, H.; Abshire, J. B.; Allan, G. R.; Stephen, M.; Hasselbrack, W.; Mao, J.

    2012-12-01

    We report on airborne atmospheric pressure measurements using fiber-based laser technology and the oxygen A-band at 765 nm. Remote atmospheric temperature and pressure measurements are needed for NASA's Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. ASCENDS will measure atmospheric CO2 dry mixing ratios on a global scale. Remote atmospheric pressure measurements are necessary to normalize ASCENDS CO2 measurements. Our work, funded by the ESTO IIP program, uses erbium doped fiber optic amplifiers and non-linear optics technology to tune laser radiation over the Oxygen A-band between 764.5 nm and 765 nm. Surface reflections are fiber-coupled from a receiver telescope to photon counting detectors. Our pulsed, time gated approach resolves ground reflections from cloud returns. This system successfully recorded O2 absorption spectra during two airborne campaigns aboard a NASA DC-8. Airborne data has been analyzed and fitted to HITRAN reference spectra based upon aircraft meteorological data. Our algorithm linearly scales the HITRAN reference until measurement errors are minimized. Atmospheric pressure changes are estimated by comparing the differential optical depth of the optimum scaled HITRAN spectra to the differential optical depth of the nominal HITRAN spectra. On flights over gradually sloping terrain, these results compare favorably with ground-based observations and predictions from computer models. Measurement uncertainty is commensurate with photon counting noise. We plan to reduce measurement uncertainty in future campaigns by improving transmitter pulse energy and increasing wavelength sweep frequency.

  2. Dual band metamaterial perfect absorber based on artificial dielectric “molecules”

    PubMed Central

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric “molecules” with high symmetry. The artificial dielectric “molecule” consists of four “atoms” of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  3. Removal of Mars atmospheric gas absorption from Phobos-2/ISM spectra

    NASA Astrophysics Data System (ADS)

    Castronuovo, M. M.; Ulivieri, C.

    Infrared imaging spectrometer (ISM) is an imaging spectrometer in the range of the near infrared that flew onboard of Soviet probe Phobos 2 in 1989. Its first objective was to obtain information about the mineralogic composition of the soil of Mars and its satellite Phobos, and about the spatial and temporal variability of the Martian atmosphere. In the spectral range of the instrument 0.76-3.16 microns, the radiation emerging from Mars' atmosphere is almost entirely due to the solar radiation reflected by the soil. Therefore, independent knowledge of the spectral transmittance of the atmosphere allows us to eliminate the atmospheric effect from the ISM data and so to obtain the spectral signature of the planet soil. In the present work the Martian atmospheric transmittance has been computed using FASCODE and the spectral lines atlas HITRAN of AFGL. The atmospheric profile has been defined on the basis of the work of Moroz et al. Then, the convolution of the computed transmittance with the response functions of ISM has been carried out to obtain the atmospheric absorption from the measurements it is necessary to renormalize the transmittance computed with FASCODE so that the depth of the absorption bands is the same as that of the bands measured by ISM. Finally, dividing the measured spectra by the computed ones we obtain the spectra signature of Martian soil from which it is possible to deduce the mineralogical composition of the observed zones.

  4. Experimental demonstration of a dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    He, Rong; He, Wei; Zhong, Min

    2016-10-01

    We present the design, simulation and fabrication of a dual-band metamaterial absorber. The designed structure consists of periodic composite metallic holes array and dielectric layer. The availability of absorption enhancement is verified by our measured results. Cavity and electrical resonances lead to these two absorption peaks at λ1 = 1.8 μm and λ2 = 4.3 μm . Effects of structural parameters on absorption and resonant wavelengths have been experimentally surveyed. The average absorption can be increased by optimizing the structural parameters of the designed metamaterial absorber.

  5. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage. PMID:17280325

  6. Multilayered graphene in K(a)-band: nanoscale coating for aerospace applications.

    PubMed

    Kuzhir, P; Volynets, N; Maksimenko, S; Kaplas, T; Svirko, Yu

    2013-08-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in K(a)-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples was monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene, being only some thousandth of skin depth, provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multilayer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  7. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  8. X-ray absorption spectroscopy of metalloproteins.

    PubMed

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  9. Sensitivity Studies on Cloud Measurement Using Oxygen A- and B-band for the Deep Space Climate Observatory

    NASA Astrophysics Data System (ADS)

    Mao, J.; Herman, J. R.; Marshak, A.; Yang, Y.

    2011-12-01

    The Earth Poly-Chromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory will have 10 channels with spectral resolutions from 1 to 3 nm to measure aerosols, clouds, ozone, SO2, vegetation and Earth's radiation budget on the dayside of Earth from the Earth's L1 Lagrangian point, a stable gravity-neutral point 1.5 million km away from Earth. EPIC is in refurbishing stage to optimize original design toward a future mission. Among the EPIC channels, one pair of O2 A-band channels (on-line and off-line) and one pair of O2 B-band channels have been chosen to measure cloud fraction and cloud top height at a nominal spatial resolution of approximately 10-km. A set of sensitivity studies has been performed for these two pairs of channels using the Line-by-Line Radiative Transfer Model, the HIgh-resolution TRANsmission molecular absorption database (HITRAN) 2008 and the up-to-date sensor specifications. This paper will present the sensitivity study results which include the measurement sensitivities to cloud top height, cloud fraction, optical depth and phase, the sensor filter center position and wavelength shift due to the Angles of Incidence, and the sensitivities to surface properties, atmospheric temperature and moisture profile. Given the sensor filter nominal spectral resolution and signal-to-noise ratio, O2 A-band provides greater sensitivity to cloud top height change than O2 B-band. However, over vegetation A-band has much higher surface returns and is much more sensitive to atmospheric temperature than B-band. Using the radiance ratio of on-line and off-line channels and combining information from both bands will lead to high-quality measurements of cloud top height and cloud fraction and will help the retrievals of aerosols, SO2, ozone, vegetation and Earth's radiation from other channels in high temporal resolution for weather and climate studies.

  10. A new device for acquiring ground truth on the absorption of light by turbid waters

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.

    1974-01-01

    The author has identified the following significant results. A new device, called a Spectral Attenuation Board, has been designed and tested, which enables ERTS-1 sea truth collection teams to monitor the attenuation depths of three colors continuously, as the board is being towed behind a boat. The device consists of a 1.2 x 1.2 meter flat board held below the surface of the water at a fixed angle to the surface of the water. A camera mounted above the water takes photographs of the board. The resulting film image is analyzed by a micro-densitometer trace along the descending portion of the board. This yields information on the rate of attenuation of light penetrating the water column and the Secchi depth. Red and green stripes were painted on the white board to approximate band 4 and band 5 of the ERTS MSS so that information on the rate of light absorption by the water column of light in these regions of the visible spectrum could be concurrently measured. It was found that information from a red, green, and white stripe may serve to fingerprint the composition of the water mass. A number of these devices, when automated, could also be distributed over a large region to provide a cheap method of obtaining valuable satellite ground truth data at present time intervals.

  11. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    SciTech Connect

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  12. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    NASA Astrophysics Data System (ADS)

    Kapilashrami, M.; Conti, G.; Zegkinoglou, I.; Nemšák, S.; Conlon, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Fadley, C. S.; Himpsel, F. J.

    2014-10-01

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se2 (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO = VBMCIGS - VBMdiamond = 0.3 eV ± 0.1 eV at the CIGS/Diamond interface and 0.0 eV ± 0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  13. Stereo depth distortions in teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Vonsydow, Marika

    1988-01-01

    In teleoperation, a typical application of stereo vision is to view a work space located short distances (1 to 3m) in front of the cameras. The work presented here treats converged camera placement and studies the effects of intercamera distance, camera-to-object viewing distance, and focal length of the camera lenses on both stereo depth resolution and stereo depth distortion. While viewing the fronto-parallel plane 1.4 m in front of the cameras, depth errors are measured on the order of 2cm. A geometric analysis was made of the distortion of the fronto-parallel plane of divergence for stereo TV viewing. The results of the analysis were then verified experimentally. The objective was to determine the optimal camera configuration which gave high stereo depth resolution while minimizing stereo depth distortion. It is found that for converged cameras at a fixed camera-to-object viewing distance, larger intercamera distances allow higher depth resolutions, but cause greater depth distortions. Thus with larger intercamera distances, operators will make greater depth errors (because of the greater distortions), but will be more certain that they are not errors (because of the higher resolution).

  14. Intervalence-band and band-to-band transitions in CuGaTe2 single crystal

    NASA Astrophysics Data System (ADS)

    Rincón, C.; Wasim, S. M.; Marín, G.

    2003-09-01

    A study of the temperature dependence of the heavy-hole-band-split-off-band Ehs and of the heavy-hole-band-conduction-band EGA transitions in single crystal of p-type CuGaTe2 was made from the analysis of optical absorption spectra. Ehs and EGA were found to vary from 0.72 to 0.70 eV and 1.36 to 1.25 eV, respectively, between 10 and 300 K. It is found that the variation of EGA with T is mainly governed by the contribution of optical phonons with a characteristic energy ɛeff≈14 meV. From the analysis of Ehs(T) and EGA(T), the temperature dependence of the split-off-band-conduction-band transition energy EGC is also determined. It was found to vary from 2.08 to 1.95 eV in the temperature range from 10 to 300 K. A relatively low value of the characteristic phonon energy, ɛeff≈11 meV, obtained in this case, indicates that the major contribution to the shift of EGC versus T originates from acoustic phonons.

  15. Perception of relative depth interval: systematic biases in perceived depth.

    PubMed

    Harris, Julie M; Chopin, Adrien; Zeiner, Katharina; Hibbard, Paul B

    2012-01-01

    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.

  16. Ultrathin flexible dual band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  17. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  18. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  19. Identification of More Interstellar C60+ Bands

    NASA Astrophysics Data System (ADS)

    Walker, G. A. H.; Bohlender, D. A.; Maier, J. P.; Campbell, E. K.

    2015-10-01

    Based on gas-phase laboratory spectra at 6 K, Campbell et al. confirmed that the diffuse interstellar bands (DIBs) at 9632.7 and 9577.5 Å are due to absorption by the fullerene ion {{{C}}}60+. They also reported the detection of two other, weaker bands at 9428.5 and 9365.9 Å. These lie in spectral regions heavily contaminated by telluric water vapor lines. We acquired CFHT ESPaDOnS spectra of HD 183143 close to the zenith and chopped with a nearby standard to correct for the telluric line absorption which enabled us to detect a DIB at 9365.9 Å of relative width and strength comparable to the laboratory absorption. There is a DIB of similar strength and FWHM at 9362.5 Å. A stellar emission feature at 9429 Å prevented detection of the 9428.5 Å band. However, a CFHT archival spectrum of HD 169454, where emission is absent at 9429 Å, clearly shows the 9428.5 Å DIB with the expected strength and width. These results further confirm {{{C}}}60+ as a DIB carrier. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  20. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    PubMed

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952

  1. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    PubMed

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  2. Influence of Anchoring on Burial Depth of Submarine Pipelines

    PubMed Central

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952

  3. Multistep joint bilateral depth upsampling

    NASA Astrophysics Data System (ADS)

    Riemens, A. K.; Gangwal, O. P.; Barenbrug, B.; Berretty, R.-P. M.

    2009-01-01

    Depth maps are used in many applications, e.g. 3D television, stereo matching, segmentation, etc. Often, depth maps are available at a lower resolution compared to the corresponding image data. For these applications, depth maps must be upsampled to the image resolution. Recently, joint bilateral filters are proposed to upsample depth maps in a single step. In this solution, a high-resolution output depth is computed as a weighted average of surrounding low-resolution depth values, where the weight calculation depends on spatial distance function and intensity range function on the related image data. Compared to that, we present two novel ideas. Firstly, we apply anti-alias prefiltering on the high-resolution image to derive an image at the same low resolution as the input depth map. The upsample filter uses samples from both the high-resolution and the low-resolution images in the range term of the bilateral filter. Secondly, we propose to perform the upsampling in multiple stages, refining the resolution by a factor of 2×2 at each stage. We show experimental results on the consequences of the aliasing issue, and we apply our method to two use cases: a high quality ground-truth depth map and a real-time generated depth map of lower quality. For the first use case a relatively small filter footprint is applied; the second use case benefits from a substantially larger footprint. These experiments show that the dual image resolution range function alleviates the aliasing artifacts and therefore improves the temporal stability of the output depth map. On both use cases, we achieved comparable or better image quality with respect to upsampling with the joint bilateral filter in a single step. On the former use case, we feature a reduction of a factor of 5 in computational cost, whereas on the latter use case, the cost saving is a factor of 50.

  4. Visualization of mucosal vasculature with narrow band imaging: a theoretical study

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Le, Du; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-03-01

    Narrow band imaging (NBI) is a spectrally-selective reflectance imaging technique that is used as an adjunctive approach to endoscopic detection of mucosal abnormalities such as neoplastic lesions. While numerous clinical studies in tissue sites such as the esophagus, oral cavity and lung indicate the efficacy of this approach, it is not well theoretically understood. In this study, we performed Monte Carlo simulations to elucidate the factors that affect NBI device performance. The model geometry involved a two-layer turbid medium based on mucosal tissue optical properties and embedded cylindrical, blood-filled vessels at varying diameters and depths. Specifically, we studied the effect of bandpass filters (415+/-15 nm, 540+/-10 nm versus white light), blood vessel diameter (20-400 μm) and depth (30 - 450 μm), wavelength, and bandwidth on vessel contrast. Our results provide a quantitative evaluation of the two mechanisms that are commonly believed to be the primary components of NBI: (i) the increased contrast provided by high hemoglobin absorption and (ii) increase in the penetration depth produced by the decrease in scattering with increasing wavelength. Our MC model can provide novel, quantitative insight into NBI, may lead to improvements in its performance.

  5. Strong mid-infrared optical absorption by supersaturated sulfur doping in silicon

    NASA Astrophysics Data System (ADS)

    Umezu, I.; Kohno, A.; Warrender, J. M.; Takatori, Y.; Hirao, Y.; Nakagawa, S.; Sugimura, A.; Charnvanichborikarn, S.; Williams, J. S.; Aziz, M. J.

    2011-12-01

    Single crystalline silicon supersaturated with sulfur was prepared by ion implantation followed by pulsed laser melting and rapid solidification. A strong and broad optical absorption band and free-carrier absorption appeared for this sample around 0.5 eV and below 0.2 eV, respectively. A possible candidate for the origin of the 0.5 eV band is the formation of an impurity band by supersaturated doping.

  6. Perfect electromagnetic absorption at one-atom-thick scale

    SciTech Connect

    Li, Sucheng; Duan, Qian; Li, Shuo; Yin, Qiang; Lu, Weixin; Li, Liang; Hou, Bo; Gu, Bangming; Wen, Weijia

    2015-11-02

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  7. Vascular contrast in narrow-band and white light imaging.

    PubMed

    Du Le, V N; Wang, Quanzeng; Gould, Taylor; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2014-06-20

    Narrow-band imaging (NBI) is a spectrally selective reflectance imaging technique that is used clinically for enhancing visualization of superficial vasculature and has shown promise for applications such as early endoscopic detection of gastrointestinal neoplasia. We have studied the effect of vessel geometry and illumination wavelength on vascular contrast using idealized geometries in order to more quantitatively understand NBI and broadband or white light imaging of mucosal tissue. Simulations were performed using a three-dimensional, voxel-based Monte Carlo model incorporating discrete vessels. In all cases, either 415 or 540 nm illumination produced higher contrast than white light, yet white light did not always produce the lowest contrast. White light produced the lowest contrast for small vessels and intermediate contrast for large vessels (diameter≥100  μm) at deep regions (vessel depth≥200  μm). The results show that 415 nm illuminations provided superior contrast for smaller vessels at shallow depths while 540 nm provided superior contrast for larger vessels in deep regions. Besides 540 nm, our studies also indicate the potential of other wavelengths to achieve high contrast of large vessels at deep regions. Simulation results indicate the importance of three key mechanisms in determining spectral variations in contrast: intravascular hemoglobin (Hb) absorption in the vessel of interest, diffuse Hb absorption from collateral vasculature, and bulk tissue scattering. Measurements of NBI contrast in turbid phantoms incorporating 0.1-mm-diameter hemoglobin-filled capillary tubes indicated good agreement with modeling results. These results provide quantitative insights into light-tissue interactions and the effect of device and tissue properties on NBI performance.

  8. The interstellar 4.62 micron band.

    PubMed

    Pendleton, Y J; Tielens, A G; Tokunaga, A T; Bernstein, M P

    1999-03-01

    We present new 4.5-5.1 micron (2210-1970 cm-1) spectra of embedded protostars, W33 A, AFGL 961 E, AFGL 2136, NGC 7538 IRS 9, and Mon R2 IRS 2, which contain a broad absorption feature located near 4.62 micron (2165 cm-1), commonly referred to in the literature as the "X-C triple bond N" band. The observed peak positions and widths of the interstellar band agree to within 2.5 cm-1 and 5 cm-1, respectively. The strengths of the interstellar 4.62 micrometers band and the ice absorption features in these spectra are not correlated, which suggests a diversity of environmental conditions for the ices we are observing. We explore several possible carriers of the interstellar band and review possible production pathways through far-ultraviolet photolysis (FUV), ion bombardment of interstellar ice analog mixtures, and acid-base reactions. Good fits to the interstellar spectra are obtained with an organic residue produced through ion bombardment of nitrogen-containing ices or with the OCN- ion produced either through acid-base reactions or FUV photolysis of NH3-containing ices.

  9. Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.

    2012-01-01

    The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.

  10. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  11. On evaluation of depth accuracy in consumer depth sensors

    NASA Astrophysics Data System (ADS)

    Abd Aziz, Azim Zaliha; Wei, Hong; Ferryman, James

    2015-12-01

    This paper presents an experimental study of different depth sensors. The aim is to answer the question, whether these sensors give accurate data for general depth image analysis. The study examines the depth accuracy between three popularly used depth sensors; ASUS Xtion Prolive, Kinect Xbox 360 and Kinect for Windows v2. The main attention is to study on the stability of pixels in the depth image captured at several different sensor-object distances by measuring the depth returned by the sensors within specified time intervals. The experimental results show that the fluctuation (mm) of the random selected pixels within the target area, increases with increasing distance to the sensor, especially on the Kinect for Xbox 360 and the Asus Xtion Prolive. Both of these sensors provide pixels fluctuation between 20mm and 30mm at a sensor-object distance beyond 1500mm. However, the pixel's stability of the Kinect for Windows v2 not affected much with the distance between the sensor and the object. The maximum fluctuation for all the selected pixels of Kinect for Windows v2 is approximately 5mm at sensor-object distance of between 800mm and 3000mm. Therefore, in the optimal distance, the best stability achieved.

  12. Atmospheric solar heating rate in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  13. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  14. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  15. Singing with the Band

    ERIC Educational Resources Information Center

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  16. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  17. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  18. Interpretation of broad-band seismograms from central Aleutian earthquakes.

    USGS Publications Warehouse

    Engdahl, E.R.; Kind, R.

    1986-01-01

    Broad-band Graefenberg (GRF) array data from 11 moderate-size shallow-depth earthquakes in the central Aleutians have been used to study the effects of focal depth and structure across the arc on observed waveforms. The theoretical results, primarily phase arrival times, suggest that arc structure is responsible for many of the complicated features seen on vertical-component summation seismograms simulated with different instrument responses from the broad-band array data. Except for one trench event, all the earthquakes studied occurred along the plate interface zone, had similar thrust focal mechanisms, and differed only in depth. As a result, the effects of depth phases on observed GRF waveforms across the arc were found to be systematically related to the increase in focal depth along the shallow-dipping seismic zone. -from Authors

  19. Medium-depth chemical peels.

    PubMed

    Monheit, G D

    2001-07-01

    The combination medium-depth chemical peel (Jessner's solution +35% TCA) has been accepted as a safe, reliable, and effective method for the treatment of moderate photoaging skin. This article discusses the procedure in detail, including postoperative considerations. PMID:11599398

  20. Teaching Depth of Field Concept

    ERIC Educational Resources Information Center

    Ross, Frederick C.; Smith, Rodney J.

    1978-01-01

    This activity utilizes an overhead projector, a wax pencil, and a petri-dish to demonstrate the depth of field concept to students learning the use of the microscope. Illustrations and directions are included. (MA)

  1. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  2. Depth perception of illusory surfaces.

    PubMed

    Kogo, Naoki; Drożdżewska, Anna; Zaenen, Peter; Alp, Nihan; Wagemans, Johan

    2014-03-01

    The perception of an illusory surface, a subjectively perceived surface that is not given in the image, is one of the most intriguing phenomena in vision. It strongly influences the perception of some fundamental properties, namely, depth, lightness and contours. Recently, we suggested (1) that the context-sensitive mechanism of depth computation plays a key role in creating the illusion, (2) that the illusory lightness perception can be explained by an influence of depth perception on the lightness computation, and (3) that the perception of variations of the Kanizsa figure can be well-reproduced by implementing these principles in a model (Kogo, Strecha, et al., 2010). However, depth perception, lightness perception, contour perception, and their interactions can be influenced by various factors. It is essential to measure the differences between the variation figures in these aspects separately to further understand the mechanisms. As a first step, we report here the results of a new experimental paradigm to compare the depth perception of the Kanizsa figure and its variations. One of the illusory figures was presented side-by-side with a non-illusory variation whose stereo disparities were varied. Participants had to decide in which of these two figures the central region appeared closer. The results indicate that the depth perception of the illusory surface was indeed different in the variation figures. Furthermore, there was a non-linear interaction between the occlusion cues and stereo disparity cues. Implications of the results for the neuro-computational mechanisms are discussed.

  3. nBn and pBp infrared detectors with graded barrier layer, graded absorption layer, or chirped strained layer super lattice absorption layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor)

    2010-01-01

    An nBn detector is described where for some embodiments the barrier layer has a concentration gradient, for some embodiments the absorption layer has a concentration gradient, and for some embodiments the absorption layer is a chirped strained layer super lattice. The use of a graded barrier or absorption layer, or the use of a chirped strained layer super lattice for the absorption layer, allows for design of the energy bands so that the valence band may be aligned across the device. Other embodiments are described and claimed.

  4. Absorption Changes in Bacterial Chromatophores

    PubMed Central

    Kuntz, Irwin D.; Loach, Paul A.; Calvin, Melvin

    1964-01-01

    The magnitude and kinetics of photo-induced absorption changes in bacterial chromatophores (R. rubrum, R. spheroides and Chromatium) have been studied as a function of potential, established by added redox couples. No photochanges can be observed above +0.55 v or below -0.15 v. The loss of signal at the higher potential is centered at +0.439 v and follows a one-electron change. The loss of signal at the lower potential is centered at -0.044 v and is also consistent with a one-electron change. Both losses are reversible. A quantitative relationship exists between light-minus-dark and oxidized-minus-reduced spectra in the near infrared from +0.30 to +0.55 v. Selective treatment of the chromatophores with strong oxidants irreversibly bleaches the bulk pigments but appears to leave intact those pigments responsible for the photo- and chemically-induced absorption changes. Kinetic studies of the photochanges in deaerated samples of R. rubrum chromatophores revealed the same rise time for bands at 433, 792, and 865 mμ (t½ = 50 msec.). However, these bands had different decay rates (t½ = 1.5, 0.5, 0.15 sec., respectively), indicating that they belong to different pigments. Analysis of the data indicates, as the simplest interpretation, a first-order (or pseudo first-order) forward reaction and two parallel first-order (or pseudo first-order) decay reactions at each wavelength. These results imply that all pigments whose kinetics are given are photooxidized and the decay processes are dark reductions. These experiments are viewed as supporting and extending the concept of a bacterial photosynthetic unit, with energy migration within it to specific sites of electron transfer. PMID:14185583

  5. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  6. Calculations of water depth from ERTS-MSS data

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Lyzenga, D. R.

    1973-01-01

    ERTS-1 MSS data taken on October 10, 1972 of the Little Bahama Bank are being used to demonstrate the use of ERTS-1 data for mapping of shallow water features for the purpose of upgrading world navigation charts. Marked reflectance differences occur for the shallow water areas in Bands 4, 5, and 6. Digital processing of two adjacent data tapes within the ERTS frame covering an area of about 40 by 40 miles has been completed. Correlation of depth measurements to 5 meters has been successful. A mathematical model for depth measurements using ratio of voltages in Band 4 and 5 has been successfully developed and is being tested for accuracy. Additional studies for areas near Puerto Rico and in Northern Lake Michigan will be undertaken. Satellite data will also provide geographical evidence for verifying existence or nonexistence of doubtful shoal waters now appearing on world charts and considered to be hazardous to shipping.

  7. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  8. Iliotibial band friction syndrome.

    PubMed

    Lavine, Ronald

    2010-07-20

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.

  9. Chiral Bands and Triaxiality

    SciTech Connect

    Petrache, C.M.

    2004-02-27

    The results obtained with the GASP array in the A=130 mass region are reviewed, emphasizing the discovery excited highly-deformed bands and their decay out, the study of the odd-odd Pr nuclei up to high spins, the discovery of stable triaxial bands in Nd nuclei close to the N=82 shell closure. The very recent studies of nuclei near the proton drip line are described. A discussion of the origin of the various doublet bands observed in odd-odd nuclei of the A=130 mass region is presented.

  10. Iliotibial band friction syndrome

    PubMed Central

    2010-01-01

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy. PMID:21063495

  11. Tremor bands sweep Cascadia

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Vidale, J. E.; Sweet, J. R.; Creager, K. C.; Wech, A.; Houston, H.

    2009-12-01

    In the last few years, the spatiotemporal distribution of non-volcanic tremor (NVT) activity has been watched with intense curiosity in Cascadia, Japan, and San Andreas Fault. During an episodic tremor and slip (ETS) event in the Cascadia Subduction Zone (CSZ), the dominant tremor migration pattern is characterized by along-strike marching of tremor at a rate of 10 km/day. Spatiotemporal evolution gives critical clues on the physical mechanism of NVT, and the evolving state of stress in the fault. However, tremor migration, its variations over different time-scales, and its underlying physics remain poorly understood. We recorded the May 2008 ETS event in Cascadia with a dense small-aperture seismic array, and beamformed to detect and locate tremor with unparalleled resolution [Ghosh et al., GRL, 2009]. The beams reveal that tremor occurs in elongated bands that extend ~50 km in the direction parallel to the convergence of CSZ and only 10-15 km in the along-strike direction. This is in contrast to the wider blobs of tremor locations seen using a conventional envelope cross-correlation method. The peak activities of the tremor bands are well separated in space and time. Each band remains active for a good part of a day, and fades away while the adjacent band is slowly peaking up. During the 2008 ETS event, these convergence-parallel tremor bands swept the Cascadia megathrust from SE to NW in the region most clearly imaged by our array, producing the long-term tremor migration. Embedded within the bands lie long streaks of tremor that show steady and rapid migration on time-scales of several minutes to an hour at velocities of several tens of km/hr. These tremor streaks also propagate mostly convergence-parallel, along a particular band, both up- and down-dip. The elongated shape of the tremor bands may cause by the tendency of the tremor streaks to align parallel to the direction of subduction. We propose that each tremor band is the result of failure of a section

  12. The evidences of latitudinal asymmetry of the ammonia absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, V. G.; Karimov, A. M.; Bondarenko, N. N.; Kharitonova, G. A.

    2015-10-01

    450 zonal CCD-spectrograms, recorded by scanning the disk of Saturn during its equinox at the beginning of 2009, were processed to find the variation of the absorption band of ammonia NH3 647 nm. This band overlaps with the short-wavelength wing of the absorption band of methane CH4 667 nm, therefore, to highlight the ammonia absorption spectra were used Uranus and laboratory spectra of methane. It was found that ammonia absorption is enhanced in the northern hemisphere of Saturn, as well as relatively weak bands of methane in contrast with stronger CH4 bands [1]. It may indicate on the North-South asymmetry in the density of the deeper parts of the ammonia cloud layer of Saturn.

  13. High resolution absorption spectrum of dianilino in the vapor phase.

    PubMed

    Bayrakçeken, Fuat

    2009-01-01

    Photophysical and photochemical properties of diradical in the first excited state is recorded for the very first time with the IR, band structure for dianilino molecule at room temperature, in the vapor phase. In this experiment high resolution absorption spectra of anilino free radical, dianilino, aniline in the vapor phase and silicon dioxide in the solid state were recorded by flash photolysis technique photographically. Silicon dioxide absorption band between 250 and 255 nm were also observed for the reaction cell, because the cell and windows of the cell material were spectrosilica grade fused quartz. And this absorption band also used as wavelength calibration for all the photoproducts formed in the reaction cell during optical pumping.

  14. Asymmetric band profile of the Soret band of deoxymyoglobin is caused by electronic and vibronic perturbations of the heme group rather than by a doming deformation

    NASA Astrophysics Data System (ADS)

    Schweitzer-Stenner, Reinhard; Gorden, John Paul; Hagarman, Andrew

    2007-10-01

    We measured the Soret band of deoxymyoglobin (deoxyMb), myoglobin cyanide (MbCN), and aquo-metmyoglobin (all from horse heart) with absorption and circular dichroism (CD) spectroscopies. A clear non-coincidence was observed between the absorption and CD profiles of deoxyMb and MbCN, with the CD profiles red- and blueshifted with respect to the absorption band position, respectively. On the contrary, the CD and absorption profiles of aquametMb were nearly identical. The observed noncoincidence indicates a splitting of the excited B state due to heme-protein interactions. CD and absorption profiles of deoxyMb and MbCN were self-consistently analyzed by employing a perturbation approach for weak vibronic coupling as well as the relative intensities and depolarization ratios of seven bands in the respective resonance Raman spectra measured with B-band excitation. The respective By component was found to dominate the observed Cotton effect of both myoglobin derivatives. The different signs of the noncoincidences between CD and absorption bands observed for deoxyMb and MbCN are due to different signs of the respective matrix elements of A1g electronic interstate coupling, which reflects an imbalance of Gouterman's 50:50 states. The splitting of the B band reflects contributions from electronic and vibronic perturbations of B1g symmetry. The results of our analysis suggest that the broad and asymmetric absorption band of deoxyMb results from this band splitting rather than from its dependence on heme doming. Thus, we are able to explain recent findings that the temperature dependences of CO rebinding to myoglobin and the Soret band profile are uncorrelated[Ormos et al., Proc. Natl. Acad. Sci U.S.A. 95, 6762 (1998)].

  15. Oxygen Isotope Variability within Nautilus Shell Growth Bands

    PubMed Central

    2016-01-01

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183

  16. Oxygen Isotope Variability within Nautilus Shell Growth Bands.

    PubMed

    Linzmeier, Benjamin J; Kozdon, Reinhard; Peters, Shanan E; Valley, John W

    2016-01-01

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183

  17. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  18. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  19. CSF oligoclonal banding

    MedlinePlus

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  20. Monitoring the Depth of Anaesthesia

    PubMed Central

    Musizza, Bojan; Ribaric, Samo

    2010-01-01

    One of the current challenges in medicine is monitoring the patients’ depth of general anaesthesia (DGA). Accurate assessment of the depth of anaesthesia contributes to tailoring drug administration to the individual patient, thus preventing awareness or excessive anaesthetic depth and improving patients’ outcomes. In the past decade, there has been a significant increase in the number of studies on the development, comparison and validation of commercial devices that estimate the DGA by analyzing electrical activity of the brain (i.e., evoked potentials or brain waves). In this paper we review the most frequently used sensors and mathematical methods for monitoring the DGA, their validation in clinical practice and discuss the central question of whether these approaches can, compared to other conventional methods, reduce the risk of patient awareness during surgical procedures. PMID:22163504

  1. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  2. Laparoscopic Gastric Banding

    PubMed Central

    Suter, Michel; Giusti, Vittorio; Worreth, Marc; Héraief, Eric; Calmes, Jean-Marie

    2005-01-01

    Objective: The objective of this study was to evaluate the results of laparoscopic gastric banding using 2 different bands (the Lapband [Bioenterics, Carpinteria, CA] and the SAGB [Swedish Adjustable Gastric Band; Obtech Medical, 6310 Zug, Switzerland]) in terms of weight loss and correction of comorbidities, short-and long-term complications, and improvement of quality of life in morbidly obese patients Summary Background Data: During the past 10 years, gastric banding has become 1 of the most common bariatric procedures, at least in Europe and Australia. Weight loss can be excellent, but it is not sufficient in a significant proportion of patients, and a number of long-term complications can develop. We hypothesized that the type of band could be of importance in the outcome. Methods: One hundred eighty morbidly obese patients were randomly assigned to receive the Lapband or the SAGB. All the procedures were performed by the same surgeon. The primary end point was weight loss, and secondary end points were correction of comorbidities, early- and long-term complications, importance of food restriction, and improvement of quality of life. Results: Initial weight loss was faster in the Lapband group, but weight loss was eventually identical in the 2 groups. There was a trend toward more early band-related complications and more band infections with the SAGB, but the study had limited power in that respect. Correction of comorbidities, food restriction, long-term complications, and improvement of quality of life were identical. Only 55% to 60% of the patients achieved an excess weight loss of at least 50% in both groups. There was no difference in the incidence of long-term complications. Conclusions: Gastric banding can be performed safely with the Lapband or the SAGB with similar short- and midterm results with respect to weight loss and morbidity. Only 50% to 60% of the patients will achieve sufficient weight loss, and close to 10% at least will develop severe

  3. Flexible depth of field photography.

    PubMed

    Kuthirummal, Sujit; Nagahara, Hajime; Zhou, Changyin; Nayar, Shree K

    2011-01-01

    The range of scene depths that appear focused in an image is known as the depth of field (DOF). Conventional cameras are limited by a fundamental trade-off between depth of field and signal-to-noise ratio (SNR). For a dark scene, the aperture of the lens must be opened up to maintain SNR, which causes the DOF to reduce. Also, today's cameras have DOFs that correspond to a single slab that is perpendicular to the optical axis. In this paper, we present an imaging system that enables one to control the DOF in new and powerful ways. Our approach is to vary the position and/or orientation of the image detector during the integration time of a single photograph. Even when the detector motion is very small (tens of microns), a large range of scene depths (several meters) is captured, both in and out of focus. Our prototype camera uses a micro-actuator to translate the detector along the optical axis during image integration. Using this device, we demonstrate four applications of flexible DOF. First, we describe extended DOF where a large depth range is captured with a very wide aperture (low noise) but with nearly depth-independent defocus blur. Deconvolving a captured image with a single blur kernel gives an image with extended DOF and high SNR. Next, we show the capture of images with discontinuous DOFs. For instance, near and far objects can be imaged with sharpness, while objects in between are severely blurred. Third, we show that our camera can capture images with tilted DOFs (Scheimpflug imaging) without tilting the image detector. Finally, we demonstrate how our camera can be used to realize nonplanar DOFs. We believe flexible DOF imaging can open a new creative dimension in photography and lead to new capabilities in scientific imaging, vision, and graphics. PMID:21088319

  4. Calibrating river bathymetry via image to depth quantile transformation

    NASA Astrophysics Data System (ADS)

    Legleiter, C. J.

    2015-12-01

    Remote sensing has emerged as a powerful means of measuring river depths, but standard algorithms such as Optimal Band Ratio Analysis (OBRA) require field measurements to calibrate image-derived estimates. Such reliance upon field-based calibration undermines the advantages of remote sensing. This study introduces an alternative approach based on the probability distribution of depths dd within a reach. Provided a quantity XX related to dd can be derived from a remotely sensed data set, image-to-depth quantile transformation (IDQT) infers depths throughout the image by linking the cumulative distribution function (CDF) of XX to that of dd. The algorithm involves determining, for each pixel in the image, the CDF value for that particular value of X/bar{X} and then inferring the depth at that location from the inverse CDF of the scaled depths d/dbard/bar{d}, where the overbar denotes a reach mean. For X/bar{X}, an empirical CDF can be derived directly from pixel values or a probability distribution fitted. Similarly, the CDF of d/dbard/bar{d} can be obtained from field data or from a theoretical model of the frequency distribution of dd within a reach; gamma distributions have been used for this purpose. In essence, the probability distributions calibrate XX to dd while the image provides the spatial distribution of depths. IDQT offers a number of advantages: 1) direct field measurements of dd during image acquisition are not absolutely necessary; 2) because the XX vs. dd relation need not be linear, negative depth estimates along channel margins and shallow bias in pools are avoided; and 3) because individual pixels are not linked to specific depth measurements, accurate geo-referencing of field and image data sets is not critical. Application of OBRA and IDQT to a gravel-bed river indicated that the new, probabilistic algorithm was as accurate as the standard, regression-based approach and lead to more hydraulically reasonable bathymetric maps.

  5. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  6. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  7. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    PubMed

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis. PMID:26883085

  8. Determination of the Electron Escape Depth for NEXAFS Spectropy

    SciTech Connect

    Sohn, K.; Dimitriou, M; Genzer, J; Fisher, D; Hawker, C; Kramer, E

    2009-01-01

    A novel method was developed to determine carbon atom density as a function of depth by analyzing the postedge signal in near-edge X-ray absorption fine structure (NEXAFS) spectra. We show that the common assumption in the analysis of NEXAFS data from polymer films, namely, that the carbon atom density is constant as a function of depth, is not valid. This analysis method is then used to calculate the electron escape depth (EED) for NEXAFS in a model bilayer system that contains a perfluorinated polyether (PFPE) on top of a highly oriented pyrolitic graphite (HOPG) sample. Because the carbon atom densitites of both layers are known, in addition to the PFPE surface layer thickness, the EED is determined to be 1.95 nm. This EED is then used to measure the thickness of the perfluorinated surface layer of poly(4-(1H,1H,2H,2H-perfluorodecyl)oxymethylstyrene) (PFPS).

  9. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  10. About the linewidth of cyclotron resonance in band-gap graphene

    NASA Astrophysics Data System (ADS)

    Kryuchkov, S. V.; Kukhar', E. I.

    2015-01-01

    The critical amplitude of circularly polarized electromagnetic wave when the hysteresis of cyclotron absorption takes place, was found for band-gap graphene. The dependence of critical amplitude on the gap value and on the relaxation time was investigated. The conditions of applicability of linear theory describing the electromagnetic response of band-gap graphene in a non-zero magnetic field were found. The power of the circularly polarized electromagnetic radiation absorbed by band-gap graphene in the presence of a magnetic field was calculated. The linewidth of cyclotron absorption was shown to be not zero even for pure band-gap graphene.

  11. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  12. Optical absorption spectra of pairs of small metal particles

    NASA Astrophysics Data System (ADS)

    Quinten, M.; Kreibig, U.; Schönauer, D.; Genzel, L.

    1985-06-01

    The influence of plasma resonance coupling in small Au particle pairs on their optical properties was calculated including retardation effects. The latter prove to be important for sizes above 15 nm. For pairs of smaller particles a Maxwell-Garnett formula is derived and absorption spectra are calculated explicitly. Comparison with optical absorption spectra measured on aggregated Au particle hydrosols, gives good agreement concerning the splitting up of the dipolar single-particle plasma resonance band.

  13. Improved quantitative analysis of Cu(In,Ga)Se2 thin films using MCs+-SIMS depth profiling

    NASA Astrophysics Data System (ADS)

    Lee, Jihye; Kim, Seon Hee; Lee, Kang-Bong; Min, Byoung Koun; Lee, Yeonhee

    2014-06-01

    The chalcopyrite semiconductor, Cu(InGa)Se2 (CIGS), is popular as an absorber material for incorporation in high-efficiency photovoltaic devices because it has an appropriate band gap and a high absorption coefficient. To improve the efficiency of solar cells, many research groups have studied the quantitative characterization of the CIGS absorber layers. In this study, a compositional analysis of a CIGS thin film was performed by depth profiling in secondary ion mass spectrometry (SIMS) with MCs+ (where M denotes an element from the CIGS sample) cluster ion detection, and the relative sensitivity factor of the cluster ion was calculated. The emission of MCs+ ions from CIGS absorber elements, such as Cu, In, Ga, and Se, under Cs+ ion bombardment was investigated using time-of-flight SIMS (TOF-SIMS) and magnetic sector SIMS. The detection of MCs+ ions suppressed the matrix effects of varying concentrations of constituent elements of the CIGS thin films. The atomic concentrations of the CIGS absorber layers from the MCs+-SIMS exhibited more accurate quantification compared to those of elemental SIMS and agreed with those of inductively coupled plasma atomic emission spectrometry. Both TOF-SIMS and magnetic sector SIMS depth profiles showed a similar MCs+ distribution for the CIGS thin films.

  14. Depth position recognition-related laser-induced damage test method based on initial transient damage features.

    PubMed

    Ma, Bin; Lu, Menglei; Wang, Ke; Zhang, Li; Jiao, Hongfei; Cheng, Xinbin; Wang, Zhanshan

    2016-08-01

    Even absorptive defects or inner cracks hiding several micrometers to a few dozen micrometers beneath the top surface can induce damage to transmission elements in the ultraviolet band. The extremely small size and disordered state of such defects or cracks hinder their detection using conventional methods. Therefore, the diagnosis of factors that limit damage resistance performance is a key technique for improving the fabrication technology of optical elements. With a focus on laser damage to third-harmonic transmission elements, this study establishes a micron space-resolved and nanosecond time-resolved imaging system on the basis of the pump-probe detection technique. The changes in the properties of defect-induced laser damage in the time domain are clarified. A diagnostic method for original damage depth in micron precision is proposed according to damage behaviors. This method can retrieve initial information on damage inducement and depth position. The recognition and diagnostic capabilities of such a technique are calibrated with artificial samples and then used to analyze real samples. PMID:27505738

  15. Development of gold induced surface plasmon enhanced CIGS absorption layer on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Park, Seong-Un; Sharma, Rahul; Sim, Jae-Kwan; Baek, Byung Joon; Ahn, Haeng-Kwun; Kim, Jin Soo; Lee, Cheul-Ro

    2013-09-01

    Localized surface plasmon resonance (LSPR) with metal nanoparticles is the promising phenomenon to increase light absorption by trapping light in thin film solar cells. In this study we demonstrate a successful LSPR effect with gold (Au) nanoparticles onto the Cu(In,Ga)Se2 (CIGS) absorption layer. First, the CIGS absorber layers is fabricated onto the Mo coated polyimide (PI) substrate by using two stage process as DC sputtering of CIG thin film followed by the selenization at 400 °C. Finally, the Au nanoparticles are deposited onto the CIGS layer with increasing particles size from 4-15 nm by using sputter coater for 10-120 s. The X-ray diffraction (XRD) patterns confirm the formation of CIGS/Au nanocomposite structure with prominent peak shift of CIGS reflections and increasing intensity for Au phase. The CIGS/Au nanocomposite morphologies with Au particle size distribution uniformity and surface coverage is examined under ultra-high resolution field effect scanning electron microscope (UHR-FESEM). A peak at 176 cm-1 in Raman spectra, associated with the “A1” mode of lattice vibration for the attributed to the pure chalcopyrite structure. The secondary ion mass spectroscopy (SIMS) showed ∼200 nm depth converge of Au nanoparticles into the CIGS absorption layer. The optical properties as transmittance, reflectance and absorbance of CIGS/Au layers were found to expand in the infrared region and the LSPR effect is the most prominent for Au particles (5-7 nm) deposited for 60 s. The absorption coefficient and band gap measurement also confirms that the LSPR effect for 5-7 nm Au particles with band gap improvement from 1.31 to 1.52 eV for CIGS/Au layer as the defect density decreases due to the deposition of Au nanoparticles onto the CIGS layer. Such LSPR effect in CIGS/Au nanocomposite absorption layer will be a key parameter to further improve performance of the solar cell.

  16. Depth dependent multiple logging system

    SciTech Connect

    Howells, A. P. S.; Angehrn, J. A.; Dienglewicz, A. M.; Viswanathan, R.

    1985-12-03

    An improved well logging technique is provided for more accurately deriving and correlating a plurality of measurements made during a single traversal of a logging instrument through subsurface formations. In one exemplary embodiment, methods and apparatus are provided for deriving a more accurate and precise measurement of depth at which real-time logging measurements are made, and in particular for correcting anomalies occurring in the depth indication from cable stretch, yo-yo of the sonde in the borehole and the like. The more accurate and precise depth measurement is then utilized for generating well logging measurements on a depth-dependent basis, deriving at least some of such measurements in digital form and alternately transmitting to the surface digital and analog representations of such measurements. Furthermore, methods and apparatus are provided for deriving measurements of subsurface earth formation from a plurality of logging instruments combined in a single tool, wherein such measurements are made during a single pass through a borehole with the resultant measurement data correlatively merged, recorded and displayed.

  17. Rotating drum variable depth sampler

    SciTech Connect

    Nance, Thomas A.; Steeper, Timothy J.

    2008-07-01

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  18. Perceived depth from shading boundaries.

    PubMed

    Kim, Juno; Anstis, Stuart

    2016-01-01

    Shading is well known to provide information the visual system uses to recover the three-dimensional shape of objects. We examined conditions under which patterns in shading promote the experience of a change in depth at contour boundaries, rather than a change in reflectance. In Experiment 1, we used image manipulation to illuminate different regions of a smooth surface from different directions. This manipulation imposed local differences in shading direction across edge contours (delta shading). We found that increasing the angle of delta shading, from 0° to 180°, monotonically increased perceived depth across the edge. Experiment 2 found that the perceptual splitting of shading into separate foreground and background surfaces depended on an assumed light source from above prior. Image regions perceived as foreground structures in upright images appeared farther in depth when the same images were inverted. We also found that the experienced break in surface continuity could promote the experience of amodal completion of colored contours that were ambiguous as to their depth order (Experiment 3). These findings suggest that the visual system can identify occlusion relationships based on monocular variations in local shading direction, but interprets this information according to a light source from above prior of midlevel visual processing.

  19. Pursuing the Depths of Knowledge

    ERIC Educational Resources Information Center

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  20. Perceived depth from shading boundaries.

    PubMed

    Kim, Juno; Anstis, Stuart

    2016-01-01

    Shading is well known to provide information the visual system uses to recover the three-dimensional shape of objects. We examined conditions under which patterns in shading promote the experience of a change in depth at contour boundaries, rather than a change in reflectance. In Experiment 1, we used image manipulation to illuminate different regions of a smooth surface from different directions. This manipulation imposed local differences in shading direction across edge contours (delta shading). We found that increasing the angle of delta shading, from 0° to 180°, monotonically increased perceived depth across the edge. Experiment 2 found that the perceptual splitting of shading into separate foreground and background surfaces depended on an assumed light source from above prior. Image regions perceived as foreground structures in upright images appeared farther in depth when the same images were inverted. We also found that the experienced break in surface continuity could promote the experience of amodal completion of colored contours that were ambiguous as to their depth order (Experiment 3). These findings suggest that the visual system can identify occlusion relationships based on monocular variations in local shading direction, but interprets this information according to a light source from above prior of midlevel visual processing. PMID:27271807

  1. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    PubMed

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  2. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  3. Tethys’ Mysterious Equatorial Band

    NASA Astrophysics Data System (ADS)

    Elder, Catherine; Helfenstein, P.; Thomas, P.; Veverka, J.; Burns, J. A.; Denk, T.; Porco, C.

    2007-10-01

    We investigate a conspicuous equatorial albedo band on Tethys by analyzing Cassini Imaging Science Subsystem (ISS) Narrow Angle Camera (NAC) images obtained in several wavelengths. The band, first seen in Voyager data by Stooke (1989;2002) is symmetric 15° on either side of the equator and extends from 0° to 160°W that is, almost centered on the leading part of Tethys. There is no evidence that the band is topographically-based; margins are gradational and there is no visible difference in underlying geology. Because of the otherwise broadly-uniform albedo of Tethys, subtle albedo and color variations are easily detected and we sampled them after correcting each image for wavelength-dependent limb darkening effects using Hapke's (2002) photometric model. In the ISS CL1-CL2 filter (611nm), the average albedo contrast of the band with adjacent cratered plains is only about 3%. Compared to its surroundings, the band is about 2-3% brighter in the NAC CL1-UV3 filter (338nm), 2-3% darker in the NAC CL1-GRN (568nm) and 8% darker in the NAC CL1-IR3 filter (930nm). This may indicate that the band exposes regolith composed of cleaner ice with a different grain-size distribution than surrounding materials. The average global photometric properties of Tethys are affected by the E-Ring (Verbiscer et al. 2007). However, dynamical explanations for the narrow albedo band that involve E-ring particles so far are unlikely given the broad nature of the E-ring and the inclination of Tethys. References: Hapke, B. 2002. Icarus 157, 523-534; Stooke, P.J. 1989. Lunar and Planet. Sci. Conf. 20th, 1071-1072; Stooke, P.J. 2002, Lunar and Planet. Sci. Conf, 33rd, #1553; Verbiscer et al. 2007. Science 315, pp.815.

  4. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  5. The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Duan, Hou-Jian; Wang, Rui-Qiang

    2016-10-01

    We studied the electronic structure and optical absorption properties of phosphorene (a monolayer black phosphorus) under a normally applied electric field. The electric field enlarges the energy gap, weakens the effective mass anisotropy, and increases the effective mass component along the armchair direction (x-direction) for both conduction and valence bands but provides little change to the component along the zigzag direction (y-direction). The band edge optical absorption is completely polarized in the x-direction, and decreases when increasing the electric field. If the exciting frequency is beyond the energy gap, the absorption for the y-polarized light becomes nonzero, but the absorption is still highly polarized.

  6. A novel dual-band terahertz metamaterial modulator

    NASA Astrophysics Data System (ADS)

    Min, Wenchao; Sun, Hao; Zhang, Qilian; Ding, Huifeng; Shen, Wei; Sun, Xiaowei

    2016-06-01

    This paper presents a novel terahertz (THz) dual-band metamaterial modulator on a gallium arsenide (GaAs) substrate with an n-type GaAs epitaxial layer. By adopting split strips of two different lengths in one cell of metamaterial structure, the metamaterial can resonate at 0.58 THz and 1.0 THz. The electric-controlled depletion region of Schottky contacts is numerically analyzed to explain the mechanism of modulator and estimate the modulation depths. The measurements show that the modulation depths at the resonant frequencies (0.61 THz and 1.03 THz) can reach 50% and 85% under an inverse bias of 17 V in good agreement with simulations. The surface plasmons are utilized to explain the difference of modulation depths at two bands, and the tri-band modulator is also discussed for the scalability of the metamaterial structure. The presented dual-band modulator can help to design THz modulators with multi-band modulations and high modulation depths.

  7. Photonic band gap materials

    NASA Astrophysics Data System (ADS)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  8. The ALFALFA HI Absorption Pilot Project

    NASA Astrophysics Data System (ADS)

    Macdonald, Erin; Darling, J.; ALFALFA Team

    2009-01-01

    We present the results of a pilot project to search for HI 21 cm absorption in the Arecibo Legacy Fast Arecibo L-Band Feed Array (ALFALFA) Survey. This project is the first to conduct a "blind" wide-area search for HI absorption in the local universe. The search covered 517.0 deg2 spanning 10.9h < α < 14.95h and +7.7o < δ < +16.3o. The ALFALFA survey covers -650 km s-1 < cz < 17,500 km s-1, for a Δz = 0.054 along each line of sight (11% of the cz span is lost to radio frequency interference and Galactic HI emission). There are 243 sources toward which all damped Lyα systems (N(HI) > 2x1020 cm-2) could be detected, and 3282 sources toward which N(HI) > 2x1021 cm-2 columns could be detected (assuming 100 K spin temperature, 30 km s-1 line width, and unity filling factor). We performed Green Bank Telescope follow-up observations of 13 possible absorption lines and the 250 strong sources (> 220 mJy) in our survey region. One previously known intrinsic HI absorption line in UGC 6081 was re-detected, but no additional lines were identified in the survey region. Nevertheless, this pilot project demonstrates the value and feasibility of large-area absorption line searches commensal with emission line surveys. An absorption line search of the entire 7000 deg2 ALFALFA Survey is a worthwhile undertaking, not only to identify HI absorption systems in the local universe, but to measure the fraction of HI gas not accounted for by emission line surveys. ALFALFA is a legacy survey at the Arecibo Observatory supported by NAIC and NSF.

  9. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2009-12-01

    The degree and depth of curing due to photopolymerization in a commercial dental resin have been studied using photothermal radiometry. The sample consisted of a thick layer of resin on which a thin metallic gold layer was deposited, thus guaranteeing full opacity. Purely thermal-wave inverse problem techniques without the interference of optical profiles were used. Thermal depth profiles were obtained by heating the gold coating with a modulated laser beam and by performing a frequency scan. Prior to each frequency scan, photopolymerization was induced using a high power blue light emitted diode (LED). Due to the highly light dispersive nature of dental resins, the polymerization process depends strongly on optical absorption of the blue light, thereby inducing a depth dependent thermal diffusivity profile in the sample. A robust depth profilometric method for reconstructing the thermal diffusivity depth dependence on degree and depth of polymerization has been developed. The thermal diffusivity depth profile was linked to the polymerization kinetics.

  10. Band gap effects of hexagonal boron nitride using oxygen plasma

    SciTech Connect

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  11. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  12. Combinatorial Broadening Mechanism of O-H Stretching Bands in H-Bonded Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Pitsevich, G. A.; Doroshenko, I. Yu.; Pogorelov, V. E.; Pettersson, L. G. M.; Sablinskas, V.; Sapeshko, V. V.; Balevicius, V.

    2016-07-01

    A new mechanism for combinatorial broadening of donor-OH stretching-vibration absorption bands in molecular clusters with H-bonds is proposed. It enables the experimentally observed increase of the O-H stretching-vibration bandwidth with increasing number of molecules in H-bonded clusters to be explained. Knowledge of the half-width of the OH stretching-vibration absorption band in the dimer and the number of H-bonds in the analyzed cluster is suffi cient in the zeroth-order approximation to estimate the O-H stretching-absorption bands in clusters containing several molecules. Good agreement between the calculated and published experimental half-widths of the OH stretching-vibration absorption bands in MeOH and PrOH clusters was obtained using this approach.

  13. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Wu, Jiang; Ashalley, Eric; Govorov, Alexander; Wang, Zhiming

    2016-09-01

    For most of the reported metamaterial absorbers, the peak absorption only occurs at one single wavelength. Here, we investigated a dual-band absorber which is based on simple gold nano-rings. Two absorption peaks can be readily achieved in 3-5 µm and 8-14 µm via tuning the width and radius of gold nano-rings and dielectric constant. The average maximum absorption of two bands can be as high as 95.1% (-0.22 dB). Based on the simulation results, the perfect absorber with nano-rings demonstrates great flexibility to create dual-band or triple-band absorption, and thus holds potential for further applications in thermophotovoltaics, multicolor infrared focal plane arrays, optical filters, and biological sensing applications.

  14. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Wu, Jiang; Ashalley, Eric; Govorov, Alexander; Wang, Zhiming

    2016-09-01

    For most of the reported metamaterial absorbers, the peak absorption only occurs at one single wavelength. Here, we investigated a dual-band absorber which is based on simple gold nano-rings. Two absorption peaks can be readily achieved in 3–5 µm and 8–14 µm via tuning the width and radius of gold nano-rings and dielectric constant. The average maximum absorption of two bands can be as high as 95.1% (‑0.22 dB). Based on the simulation results, the perfect absorber with nano-rings demonstrates great flexibility to create dual-band or triple-band absorption, and thus holds potential for further applications in thermophotovoltaics, multicolor infrared focal plane arrays, optical filters, and biological sensing applications.

  15. Ultrafast dynamics. Attosecond band-gap dynamics in silicon.

    PubMed

    Schultze, Martin; Ramasesha, Krupa; Pemmaraju, C D; Sato, S A; Whitmore, D; Gandman, A; Prell, James S; Borja, L J; Prendergast, D; Yabana, K; Neumark, Daniel M; Leone, Stephen R

    2014-12-12

    Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ~450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field-induced electron tunneling.

  16. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  19. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  20. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  3. Phase Modulation of Photonic Band Gap Signal

    PubMed Central

    Wang, Zhiguo; Gao, Mengqin; Mahesar, Abdul Rasheed; Zhang, Yanpeng

    2016-01-01

    We first investigate the probe transmission signal (PTS) and the four wave mixing band gap signal (FWM BGS) modulated simultaneously by the relative phase and the nonlinear phase shift in the photonic band gap (PBG) structure. The switch between the absorption enhancement of PTS and the transmission enhancement of PTS with the help of changing the relative phase and the nonlinear phase shift is obtained in inverted Y-type four level atomic system experimentally and theoretically. The corresponding switch in PTS can be used to realize all optical switches. On other hand, the relative phase and the nonlinear phase shift also play the vital role to modulate the intensity of FWM BGS reflected from the PBG structure. And it can be potentially used to realize the optical amplifier. PMID:27323849

  4. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  5. Explosion depths for phreatomagmatic eruptions

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; Graettinger, Alison H.; Sonder, Ingo

    2014-05-01

    Subsurface phreatomagmatic explosions can result from the interaction of ascending magma with groundwater. Experiments over a wide range of energies show that for a given energy there is a depth below which an explosion will be contained within the subsurface (not erupt), and there is a corresponding shallower depth that will optimize ejecta dispersal. We combine these relationships with constraints on the energies of phreatomagmatic explosions at maar-diatreme volcanoes and show that most eruptions are likely sourced by explosions in the uppermost ~200 m, and even shallower ones (<100 m) are likely to dominate deposition onto tephra rings. Most explosions below ~200 m will not erupt but contribute to formation of, and to the vertical mixing of materials within, a diatreme (vent structure), with only rare very high energy explosions between ~200 and 500 m erupting. Similar constraints likely apply at other volcanoes that experience phreatomagmatic explosions.

  6. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  7. Photon counting compressive depth mapping.

    PubMed

    Howland, Gregory A; Lum, Daniel J; Ware, Matthew R; Howell, John C

    2013-10-01

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second. PMID:24104293

  8. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  9. Absolute linestrengths in the H2O2 nu6 band

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  10. On the Theory of the Ballistic Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-07-01

    The ballistic contribution to the current of linear photovoltaic effect under two-photon absorption of light is calculated and theoretically analyzed for the semiconductors of a tetrahedral symmetry with a complex band structure consisting of two closely spaced subbands. The transitions between the branches of one band in cases of the simultaneous absorption of two photons and successive absorption of two single photons are taken into account.

  11. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ν3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ν6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman-inactive, and no reliable spectroscopic information could be obtained up to now and this has precluded a correct modeling of the hot bands. It has been suggested theoretically and experimentally that this band might be slightly activated through Coriolis interaction with infrared-active fundamentals and appears in high pressure measurements as a very faint, unresolved band. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 163 ± 2 K temperature, coupled to synchrotron radiation and a high resolution interferometer, the spectrum of the ν6 far-infrared region has been recorded. Low temperature was used to avoid the presence of hot bands. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution, is indeed ν6. The fully resolved spectrum has been analyzed, thanks to the XTDS software package. The band appears to be activated by faint Coriolis interactions with the strong ν3 and ν4 fundamental bands, resulting in the appearance of a small first-order dipole moment term, inducing unusual selection rules. The band center (ν6 = 347.736707(35) cm(-1)) and rovibrational parameters are now accurately determined for the v6 = 1 level. The ν6 perturbation-induced dipole moment is estimated to be 33 ± 3

  12. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ν3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ν6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman-inactive, and no reliable spectroscopic information could be obtained up to now and this has precluded a correct modeling of the hot bands. It has been suggested theoretically and experimentally that this band might be slightly activated through Coriolis interaction with infrared-active fundamentals and appears in high pressure measurements as a very faint, unresolved band. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 163 ± 2 K temperature, coupled to synchrotron radiation and a high resolution interferometer, the spectrum of the ν6 far-infrared region has been recorded. Low temperature was used to avoid the presence of hot bands. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution, is indeed ν6. The fully resolved spectrum has been analyzed, thanks to the XTDS software package. The band appears to be activated by faint Coriolis interactions with the strong ν3 and ν4 fundamental bands, resulting in the appearance of a small first-order dipole moment term, inducing unusual selection rules. The band center (ν6 = 347.736707(35) cm(-1)) and rovibrational parameters are now accurately determined for the v6 = 1 level. The ν6 perturbation-induced dipole moment is estimated to be 33 ± 3

  13. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    PubMed

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  14. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  15. Dual-band polarization-/angle-insensitive metamaterial absorber

    SciTech Connect

    Xiong, Han; Zhong, Lin-Lin; Luo, Chao-Ming; Hong, Jing-Song

    2015-06-15

    A dual-band metamaterial absorber (MA) based on triangular resonators is designed and investigated in this paper. It is composed of a two-dimensional periodic metal-dielectric-metal sandwiches array on a dielectric substrate. The simulation results clearly show that this absorber has two absorption peaks at 14.9 and 18.9 GHz, respectively, and experiments are conducted to verify the proposed designs effectively. For each polarization, the dual-band absorber is insensitive to the incident angle (up to 60°) and the absorption peaks remain high for both transverse electric (TE) and transverse magnetic (TM) radiation. To study the physical mechanism of power loss, the current distribution at the dual absorption peaks is given. The MA proposed in this paper has potential applications in many scientific and martial fields.

  16. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  17. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  18. Flexible metamaterial absorbers with multi-band infrared response

    NASA Astrophysics Data System (ADS)

    Dayal, Govind; Ramakrishna, S. Anantha

    2015-01-01

    A flexible metamaterial with a tri-layer metal-dielectric-metal structure is fabricated by combining Excimer laser micromachining of a polyimide sheet and oblique angle physical vapour deposition methods. Excimer laser micromachining is used to generate an array of micro-disks on the flexible polymer sheet followed by physical vapour deposition at normal incidence to produce continuous metal and dielectric layers while oblique angle deposition of metal vapour is used to finally form discrete oblate ellipsoids on top of the micro-disks. The fabricated metamaterial shows multi-band metamaterial absorption exceeding 90% simultaneously over infrared bands centred at 3 µm, 5 µm, and 13.85 µm. The multi-band absorption arises due to multipole resonances of the disk structure and is accurately modelled by electromagnetic simulation as well. A theoretical model of a perfect absorber as an array of optimally impedance matched antennas is also presented.

  19. Selenographic distribution of apparent crater depth

    NASA Astrophysics Data System (ADS)

    de Hon, R. A.

    If apparent crater depth is a function of crater diameter, then the frequencies of crater depth and diameter should be similar and the distribution of apparent depths of craters on the lunar surface should be random. Apparent depths of complex craters, which range from 0.2 to 4.3 km on the moon, exhibit little correlation with crater diameters. Crater frequency decreases at increasing diameters, but apparent crater depth displays a Gaussian distribution. The average crater depth for all young craters is 1.8 km. The mean depth of craters on the maria is 1.3 km, and the mean depth of craters on the highlands is 2.1 km. A contour map of apparent crater depths exhibits sufficient organization to suggest that the apparent crater depth is correlated to major lunar provinces. In general, regions of shallow craters are associated with basin interiors. Greater apparent depths are associated with highland terrains.

  20. Multi-Band-SWIFT

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curtis A.; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  1. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  2. Colloquium: Topological band theory

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Lin, Hsin; Das, Tanmoy

    2016-04-01

    The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.

  3. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  4. A simple method of obtaining concentration depth-profiles from X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1984-01-01

    The construction of composition profiles from X-ray intensity bands was investigated. The intensity band-to-composition profile transformation utilizes a solution which can be easily evaluated. The technique can be applied to thin films and thick speciments for which the variation of lattice parameters, linear absorption coefficient, and reflectivity with composition are known. A deconvolution scheme with corrections for the instrumental broadening and ak-alfadoublet is discussed.

  5. Influence of sonic noise on human stereoscopic depth perception.

    PubMed

    Hermann, E R; Hesse, C S; Hoyle, E R; Leopold, A C; Standard, J J

    1979-05-01

    Scientific establishment of the no-effect response to finite levels of exposure to a physical or chemical agent is indeed a rigorous exercise and is frequently controversial. In earlier research by Slutsky under direction of the senior author, a statistically significant increase in stereoscopic depth perception error was noted among 24 test subjects exposed to high intensity noise. Additional extensive research reported in this paper indicates that error in stereoscopic depth perception is not significantly altered by exposure to continuous white noise of short duration at levels ranging from 70 to 115 dBA. Furthernore, exposure of humans for periods of a few minutes to white noise in octave bands centered on 250 Hz, 1000 Hz, 4 kHz and 16 kHz at 115 dB does not affect their depth perception measured by the Howard-Dolman test. A comprehensive analysis of depth perception errors measured under noise exposure conditions (n = 4040) in comparison with those obtained under control conditions (n = 1430) produced a mean change in error of -0.38 mm, a statistically insignificant difference (p = 0.17). Even if such an error were attributable to high level noise, it should be noted that minus sign designates an improvement of depth perception in noise and that it is difficult to imagine visual tasks in which change in error of +/-0.38 mm at a distance of 6.0 meters is meaningful. PMID:463754

  6. Random Walks and Effective Optical Depth in Relativistic Flow

    NASA Astrophysics Data System (ADS)

    Shibata, Sanshiro; Tominaga, Nozomu; Tanaka, Masaomi

    2014-05-01

    We investigate the random walk process in relativistic flow. In the relativistic flow, photon propagation is concentrated in the direction of the flow velocity due to the relativistic beaming effect. We show that in the pure scattering case, the number of scatterings is proportional to the size parameter ξ ≡ L/l 0 if the flow velocity β ≡ v/c satisfies β/Γ Gt ξ-1, while it is proportional to ξ2 if β/Γ Lt ξ-1, where L and l 0 are the size of the system in the observer frame and the mean free path in the comoving frame, respectively. We also examine the photon propagation in the scattering and absorptive medium. We find that if the optical depth for absorption τa is considerably smaller than the optical depth for scattering τs (τa/τs Lt 1) and the flow velocity satisfies \\beta \\gg \\sqrt{2\\tau _a/\\tau _s}, then the effective optical depth is approximated by τ* ~= τa(1 + β)/β. Furthermore, we perform Monte Carlo simulations of radiative transfer and compare the results with the analytic expression for the number of scatterings. The analytic expression is consistent with the results of the numerical simulations. The expression derived in this study can be used to estimate the photon production site in relativistic phenomena, e.g., gamma-ray burst and active galactic nuclei.

  7. Decorrelation of L-band and C-band interferometry to volcanic risk prevention

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Sandwell, D.; Tassetti, A. N.; Cappelletti, L.

    2013-10-01

    SAR has several strong key features: fine spatial resolution/precision and high temporal pass frequency. Moreover, the InSAR technique allows the accurate detection of ground deformations. This high potential technology can be invaluable to study volcanoes: it provides important information on pre-eruption surface deformation, improving the understanding of volcanic processes and the ability to predict eruptions. As a downside, SAR measurements are influenced by artifacts such as atmospheric effects or bad topographic data. Correlation gives a measure of these interferences, quantifying the similarity of the phase of two SAR images. Different approaches exists to reduce these errors but the main concern remain the possibility to correlate images with different acquisition times: snow-covered or heavily-vegetated areas produce seasonal changes on the surface. Minimizing the time between passes partly limits decorrelation. Though, images with a short temporal baseline aren't always available and some artifacts affecting correlation are timeindependent. This work studies correlation of pairs of SAR images focusing on the influence of surface and climate conditions, especially snow coverage and temperature. Furthermore, the effects of the acquisition band on correlation are taken into account, comparing L-band and C-band images. All the chosen images cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated. To isolate temporal decorrelation, pairs of images with the shortest baseline are chosen. Correlation maps are analyzed in relation to snow depth and temperature. Results obtained with ENVISAT and ERS satellites (C-band) are compared with the ones from ALOS (L-band). Results show a good performance during winter and a bad attitude towards wet snow (spring and fall). During summer both L-band and C-band maintain a good coherence with L-band performing better over vegetation.

  8. A single-source precursor approach to solution processed indium arsenide thin films† †Electronic supplementary information (ESI) available: Table listing selected bond lengths and angles for InAs precursor complex. Cross-sectional SEM of InAs thin film. XPS depth profile spectra of InAs thin film. Valence band XPS of InAs thin film and standard. CCDC 1477895. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6tc02293f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Marchand, Peter; Sathasivam, Sanjayan; Williamson, Benjamin A. D.; Pugh, David; Bawaked, Salem M.; Basahel, Sulaiman N.; Obaid, Abdullah Y.; Scanlon, David O.; Parkin, Ivan P.

    2016-01-01

    This paper reports the synthesis of the novel single-source precursor, [{(MeInAstBu)3}2(Me2InAs(tBu)H)2] and the subsequent first report of aerosol-assisted chemical vapour deposition of InAs thin films. Owing to the use of the single-source precursor, highly crystalline and stoichiometric films were grown at a relatively low deposition temperature of 450 °C. Core level XPS depth profiling studies showed some partial oxidation of the film surface, however this was self-limiting and disappeared on etch profiles. Valence band XPS analysis matched well with the simulated density of state spectrum. Hall effect measurements performed on the films showed that the films were n-type with promising resistivity (3.6 × 10–3 Ω cm) and carrier mobility (410 cm2 V–1 s–1) values despite growth on amorphous glass substrates. PMID:27774150

  9. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  10. Optical absorption of Ni2+ and Ni3+ ions in gadolinium gallium garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vasileva, N. V.; Gerus, P. A.; Sokolov, V. O.; Plotnichenko, V. G.

    2012-12-01

    Single-crystal Ni-doped gadolinium gallium garnet films were grown for the first time from supercooled Bi2O3-B2O3-based melt solutions by liquid-phase epitaxy. Optical absorption bands due to Ni2+, Ni3+ and Bi3+ ions were observed in those films. Interpretation and tabulation of all absorption bands of nickel ions occupying octahedral and tetrahedral sites in the garnet lattice are presented.

  11. Optical absorption of dilute nitride alloys using self-consistent Green’s function method

    PubMed Central

    2014-01-01

    We have calculated the optical absorption for InGaNAs and GaNSb using the band anticrossing (BAC) model and a self-consistent Green’s function (SCGF) method. In the BAC model, we include the interaction of isolated and pair N levels with the host matrix conduction and valence bands. In the SCGF approach, we include a full distribution of N states, with non-parabolic conduction and light-hole bands, and parabolic heavy-hole and spin-split-off bands. The comparison with experiments shows that the first model accounts for many features of the absorption spectrum in InGaNAs; including the full distribution of N states improves this agreement. Our calculated absorption spectra for GaNSb alloys predict the band edges correctly but show more features than are seen experimentally. This suggests the presence of more disorder in GaNSb alloys in comparison with InGaNAs. PMID:24475947

  12. Internal Absorption and the Luminosity of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Boqi; Heckman, Timothy M.

    1996-02-01

    We investigate the correlation of the optical depth of dust in galactic disks with galaxy luminosity. We examine normal late-type (spiral and irregular) galaxies with measured far-ultraviolet (UV, λ ˜ 2000 Å) fluxes and compile the corresponding fluxes in the far-infrared (FIR, λ ˜ 40-120 μm) as measured by IRA S. The UV-to-FIR flux ratio is found to decrease rapidly with increasing FIR and FIR + UV luminosities. Since both the UV and FIR radiation originate mostly from the young stellar population in late-type galaxies, the UV-to-FIR flux ratio is a measure of the fraction of the light produced by young stars escaping from galaxy disks. Thus, the strong correlations above imply that the dust opacity increases with the luminosity of the young stellar population. We also find that the ratio of the UV-to-FIR flux decreases with increasing galaxy blue luminosity (a tracer of the intermediate-age stellar population) and with galaxy rotation speed (an indicator of galaxy mass). We supplement the UV sample of galaxies with an optically selected sample and find that the blue-to-FIR flux ratio declines with both FIR luminosity and galaxy rotation speed. We also examine a sample of galaxies for which the Hβ/Hα flux ratios can be obtained and find that the Hβ/Hα ratio, which also measures the extinction, decreases with the increasing FIR luminosity. We model the absorption and emission of radiation by dust to normal galactic disks with a simple model of a uniform plane-parallel slab in which the dust that radiates in the IRAS band is heated exclusively by UV light from relatively nearby hot stars. We then find that the relation between the UV-to-FIR flux ratio and the observed luminosities can be explained by the face-on extinction optical depth τ varying with the intrinsic luminosity as a power law in the intrinsic UV luminosity: τ = τ1(L/L1)β. The same scaling law may also account for the various correlations found between the blue-to-FIR flux ratio and

  13. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  14. Lunar Far Side Regolith Depth

    NASA Astrophysics Data System (ADS)

    Bart, G. D.; Melosh, H. J.

    2005-08-01

    The lunar far side contains the South Pole Aitken Basin, which is the largest known impact basin in the solar system, and is enhanced in titanium and iron compared to the rest of the lunar highlands. Although we have known of this enigmatic basin since the 60's, most lunar photography and science covered the equatorial near side where the Apollo spacecraft landed. With NASA's renewed interest in the Moon, the South Pole Aitken Basin is a likely target for future exploration. The regolith depth is a crucial measurement for understanding the source of the surface material in the Basin. On the southern far side of the Moon (20 S, 180 W), near the north edge of the Basin, we determined the regolith depth by examining 11 flat-floored craters about 200 m in diameter. We measured the ratio of the diameter of the flat floor to the diameter of the crater, and used it to calculate the regolith thickness using the method of Quaide and Oberbeck (1968). We used Apollo 15 panoramic images --- still the highest resolution images available for this region of the Moon. We found the regolith depth at that location to be about 40 m. This value is significantly greater than values for the lunar near side: 3 m (Oceanus Procellarum), 16 m (Hipparchus), and 1-10 m at the Surveyor landing sites. The thicker value obtained for the far side regolith is consistent with the older age of the far side. It also suggests that samples returned from the far side may have originated from deeper beneath the surface than their near side counterparts.

  15. Band Structure Controlled by Chiral Imprinting

    NASA Astrophysics Data System (ADS)

    Reyes Cervantes, Adrian; Castro-Garay, P.; Ramos-Garcia, Ruben

    2008-03-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, we find the solution of the boundary--value problem for the reflection and transmission of incident optical waves due to the elastomer. We show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested bandgaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  16. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  17. Static stereo vision depth distortions in teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, D. B.; Von Sydow, M.

    1988-01-01

    A major problem in high-precision teleoperation is the high-resolution presentation of depth information. Stereo television has so far proved to be only a partial solution, due to an inherent trade-off among depth resolution, depth distortion and the alignment of the stereo image pair. Converged cameras can guarantee image alignment but suffer significant depth distortion when configured for high depth resolution. Moving the stereo camera rig to scan the work space further distorts depth. The 'dynamic' (camera-motion induced) depth distortion problem was solved by Diner and Von Sydow (1987), who have quantified the 'static' (camera-configuration induced) depth distortion. In this paper, a stereo image presentation technique which yields aligned images, high depth resolution and low depth distortion is demonstrated, thus solving the trade-off problem.

  18. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    NASA Technical Reports Server (NTRS)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  19. Stochastic Approach to Phonon-Assisted Optical Absorption

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-10-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon using an importance sampling Monte Carlo scheme, and we obtain temperature-dependent line shapes and band gaps in good agreement with experiment. The present approach opens the way to predictive calculations of the optical properties of solids at finite temperature.

  20. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.