Science.gov

Sample records for absorption band detected

  1. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  2. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  3. [Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].

    PubMed

    Polnikov, I G; Putvinskiĭ, A V

    1988-01-01

    Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.

  4. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  5. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  6. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  7. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  8. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  9. Glucose Absorption by the Bacillary Band of Trichuris muris.

    PubMed

    Hansen, Tina V A; Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M

    2016-09-01

    A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development.

  10. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  11. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  12. A sextuple-band ultra-thin metamaterial absorber with perfect absorption

    NASA Astrophysics Data System (ADS)

    Yu, Dingwang; Liu, Peiguo; Dong, Yanfei; Zhou, Dongming; Zhou, Qihui

    2017-08-01

    This paper presents the design, simulation and measurement of a sextuple-band ultra-thin metamaterial absorber (MA). The unit cell of this proposed structure is composed of triangular spiral-shaped complementary structures imprinted on the dielectric substrate backed by a metal ground. The measured results are in good agreement with simulations with high absorptivities of more than 90% at all six absorption frequencies. In addition, this proposed absorber has good performances of ultra-thin, polarization insensitivity and a wide-angle oblique incidence, which can easily be used in many potential applications such as detection, imaging and sensing.

  13. Home-use cancer detecting band aid

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Rudnitsky, Arkady; Sheinman, Victor; Tzoy, Andrey; Toktosunov, Aitmamat; Adashov, Arkady

    2016-03-01

    In this paper we present a novel concept in which special band aid is developed for early detection of cancer. The band aid contains an array of micro needles with small detection array connected to each needle which inspects the color of the surface of the skin versus time after being pinched with the needles. We were able to show in pre-clinical trials that the color varies differently if the skin is close to tumor tissue.

  14. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.

    PubMed

    Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang

    2018-04-02

    Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

  15. Detection of bacterial growth by gas absorption.

    PubMed

    Waters, J R

    1992-05-01

    When 24 different aerobic organisms were grown in a shaken culture, all were found to first absorb gas from the headspace. In a rudimentary medium, such as tryptic soy broth, 16 of the 24 organisms did not produce gas following the initial gas absorption. We have developed a simple, noninvasive method for detecting both gas absorption and production in multiple culture vials. The time to positivity was compared with that obtained by the BACTEC 460 blood culture system. For nearly all of these organisms, there was no difference. For some of those organisms that did not produce gas, e.g. Staphylococcus epidermidis, Moraxella osloensis, and Neisseria meningitidis, detection by gas absorption was a few hours faster. Gas absorption appears to be a promising technique for a new automated blood culture system because of its simplicity and because medium without special additives can be used to detect organisms that do not produce gas.

  16. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  17. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  18. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  19. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  20. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    PubMed

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  1. Precise Determination of the Absorption Maximum in Wide Bands

    ERIC Educational Resources Information Center

    Eriksson, Karl-Hugo; And Others

    1977-01-01

    A precise method of determining absorption maxima where Gaussian functions occur is described. The method is based on a logarithmic transformation of the Gaussian equation and is suited for a mini-computer. (MR)

  2. Two-Band Pyrometers Detect Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.

    1993-01-01

    Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.

  3. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  4. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  5. Multitemporal spectroscopy for crop stress detection using band selection methods

    NASA Astrophysics Data System (ADS)

    Mewes, Thorsten; Franke, Jonas; Menz, Gunter

    2008-08-01

    A fast and precise sensor-based identification of pathogen infestations in wheat stands is essential for the implementation of site-specific fungicide applications. Several works have shown possibilities and limitations for the detection of plant stress using spectral sensor data. Hyperspectral data provide the opportunity to collect spectral reflectance in contiguous bands over a broad range of the electromagnetic spectrum. Individual phenomena like the light absorption of leaf pigments can be examined in detail. The precise knowledge of stress-dependent shifting in certain spectral wavelengths provides great advantages in detecting fungal infections. This study focuses on band selection techniques for hyperspectral data to identify relevant and redundant information in spectra regarding a detection of plant stress caused by pathogens. In a laboratory experiment, five 1 sqm boxes with wheat were multitemporarily measured by a ASD Fieldspec® 3 FR spectroradiometer. Two stands were inoculated with Blumeria graminis - the pathogen causing powdery mildew - and one stand was used to simulate the effect of water deficiency. Two stands were kept healthy as control stands. Daily measurements of the spectral reflectance were taken over a 14-day period. Three ASD Pro Lamps were used to illuminate the plots with constant light. By applying band selection techniques, the three types of different wheat vitality could be accurately differentiated at certain stages. Hyperspectral data can provide precise information about pathogen infestations. The reduction of the spectral dimension of sensor data by means of band selection procedures is an appropriate method to speed up the data supply for precision agriculture.

  6. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  7. Broad band solar EUV absorption in the earth's upper atmosphere.

    NASA Technical Reports Server (NTRS)

    Allen, K. H.; Rense, W. A.

    1973-01-01

    Observation data on solar radiation intensity, based on measurements performed as a function of time for three broad wavelength bands between 280 and 1030 A by a wheel spectrometer on Oso 5 during sunrise and sunset, are compared with predicted intensity variations based on Cira models. The differences between sunrise and sunset data, as well as those between observed and predicted data are discussed.

  8. Permeation absorption sampler with multiple detection

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.

  9. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  10. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  11. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  12. ASSIGNMENT OF 5069 A DIFFUSE INTERSTELLAR BAND TO HC{sub 4}H{sup +}: DISAGREEMENT WITH LABORATORY ABSORPTION BAND

    SciTech Connect

    Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.

    2011-03-10

    Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less

  13. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  14. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    DOE PAGES

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    2017-05-23

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  15. Multijunction solar cell design revisited: disruption of current matching by atmospheric absorption bands: Disruption of current matching by atmospheric absorption bands

    SciTech Connect

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less

  16. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  17. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study.

    PubMed

    Marggi Poullain, Sonia; Chicharro, David V; Navarro, Eduardo; Rubio-Lago, Luis; González-Vázquez, Jesús; Bañares, Luis

    2018-01-31

    The photodissociation dynamics of bromoiodomethane (CH 2 BrI) have been investigated at the maximum of the first A and second A' absorption bands, at 266 and 210 nm excitation wavelengths, respectively, using velocity map and slice imaging techniques in combination with a probe detection of both iodine and bromine fragments, I( 2 P 3/2 ), I*( 2 P 1/2 ), Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) via (2 + 1) resonance enhanced multiphoton ionization. Experimental results, i.e. translational energy and angular distributions, are reported and discussed in conjunction with high level ab initio calculations of potential energy curves and absorption spectra. The results indicate that in the A-band, direct dissociation through the 5A' excited state leads to the I( 2 P 3/2 ) channel while I*( 2 P 1/2 ) atoms are produced via the 5A' → 4A'/4A'' nonadiabatic crossing. The presence of Br and Br* fragments upon excitation to the A-band is attributed to indirect dissociation via a curve crossing between the 5A' with upper excited states such as the 9A'. The A'-band is characterized by a strong photoselectivity leading exclusively to the Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) channels, which are likely produced by dissociation through the 9A' excited state. Avoided crossings between several excited states from both the A and A' bands entangle however the possible reaction pathways.

  18. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  19. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  20. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    PubMed

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  1. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  2. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  3. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  4. Effect of Atmospheric Absorption Bands on the Optimal Design of Multijunction Solar Cells

    SciTech Connect

    McMahon, William E.; Friedman, Daniel J.; Geisz, John F.

    Designing terrestrial multijunction (MJ) cells with 5+ junctions is challenging, in part because the presence of atmospheric absorption bands creates a design space with numerous local maxima. Here we introduce a new taxonomical structure which facilitates both numerical convergence and the visualization of the resulting designs.

  5. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  6. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  7. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  8. Anisotropy of band gap absorption in TlGaSe2 semiconductor by ferroelectric phase transformation

    NASA Astrophysics Data System (ADS)

    Gulbinas, Karolis; Grivickas, Vytautas; Gavryushin, Vladimir

    2014-12-01

    The depth-resolved free-carrier absorption and the photo-acoustic response are used to examine the band-gap absorption in 2D-TlGaSe2 layered semiconductor after its transformation into the ferroelectric F-phase below 107 K. The absorption exhibits unusual behavior with a biaxial character in respect to the light polarization on the layer plane. A spectral analysis shows that the anisotropy is associated to the lowest Γ-direct optical transition. The Γ-absorption and the localized exciton at 2.11 eV are dipole-prohibited or partially allowed in two nearly perpendicular polarization directions. The shift of anisotropy axis in respect to crystallographic a- and b-directions demonstrates the non-equivalent zigzag rearrangement of the interlayer connecting Tl+ ions, which is responsible for occurrence of the F-phase.

  9. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  10. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  11. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  12. Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.

    2001-01-01

    Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.

  13. Improved target detection by IR dual-band image fusion

    NASA Astrophysics Data System (ADS)

    Adomeit, U.; Ebert, R.

    2009-09-01

    Dual-band thermal imagers acquire information simultaneously in both the 8-12 μm (long-wave infrared, LWIR) and the 3-5 μm (mid-wave infrared, MWIR) spectral range. Compared to single-band thermal imagers they are expected to have several advantages in military applications. These advantages include the opportunity to use the best band for given atmospheric conditions (e. g. cold climate: LWIR, hot and humid climate: MWIR), the potential to better detect camouflaged targets and an improved discrimination between targets and decoys. Most of these advantages have not yet been verified and/or quantified. It is expected that image fusion allows better exploitation of the information content available with dual-band imagers especially with respect to detection of targets. We have developed a method for dual-band image fusion based on the apparent temperature differences in the two bands. This method showed promising results in laboratory tests. In order to evaluate its performance under operational conditions we conducted a field trial in an area with high thermal clutter. In such areas, targets are hardly to detect in single-band images because they vanish in the clutter structure. The image data collected in this field trial was used for a perception experiment. This perception experiment showed an enhanced target detection range and reduced false alarm rate for the fused images compared to the single-band images.

  14. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    PubMed

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  15. Wide-band gas leak imaging detection system using UFPA

    NASA Astrophysics Data System (ADS)

    Jin, Wei-qi; Li, Jia-kun; Dun, Xiong; Jin, Minglei; Wang, Xia

    2014-11-01

    The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people's lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. However, the gas leak imaging detection systems currently existing are generally limited to a narrow-band in Medium Wavelength Infrared (MWIR) or Long Wavelength Infrared (LWIR) cooled focal plane imaging, which is difficult to detect the common kinds of the leaking gases. Besides the costly cooled focal plane array is utilized, the application promotion is severely limited. To address this issue, a wide-band gas leak IR imaging detection system using Uncooled Focal Plane Array (UFPA) detector is proposed, which is composed of wide-band IR optical lens, sub-band filters and switching device, wide-band UFPA detector, video processing and system control circuit. A wide-band (3µm~12µm) UFPA detector is obtained by replacing the protection window and optimizing the structural parameters of the detector. A large relative aperture (F#=0.75) wide-band (3μm~12μm) multispectral IR lens is developed by using the focus compensation method, which combining the thickness of the narrow-band filters. The gas leak IR image quality and the detection sensitivity are improved by using the IR image Non-Uniformity Correction (NUC) technology and Digital Detail Enhancement (DDE) technology. The wide-band gas leak IR imaging detection system using UFPA detector takes full advantage of the wide-band (MWIR&LWIR) response characteristic of the UFPA detector and the digital image processing technology to provide the resulting gas leak video easy to be observed for the human eyes. Many kinds of gases, which are not visible to the naked eyes, can be sensitively detected and visualized. The designed system has many commendable advantages, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas

  16. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  17. Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars

    2008-01-01

    We present the first ground-based detection of sodium absorption in the transmission spectrum of an extrasolar planet. Absorption due to the atmosphere of the extrasolar planet HD 189733b is detected in both lines of the Na I doublet. High spectral resolution observations were taken of 11 transits with the High Resolution Spectrograph (HRS) on the 9.2 m Hobby-Eberly Telescope (HET). The Na I absorption in the transmission spectrum due to HD 189733b is (- 67.2 +/- 20.7) × 10-5 deeper in the "narrow" spectral band that encompasses both lines relative to adjacent bands. The 1 σ error includes both random and systematic errors, and the detection is >3 σ. This amount of relative absorption in Na I for HD 189733b is ~3 times larger than that detected for HD 209458b by Charbonneau et al. (2002) and indicates that these two hot Jupiters may have significantly different atmospheric properties. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  18. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  19. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughnessmore » and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.« less

  20. Optical absorption and emission bands of Tm 3+ ions in calcium niobium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Tanigawa, Masayuki; Shimamura, Kiyoshi

    2000-12-01

    Absorption spectra of Tm 3+ ions in Ca 3Nb 1.6875Ga 3.1875O 12 (CNGG) crystal have been investigated at various temperatures between 15 and 296 K. Luminescence spectra in a spectral region of 400-1750 nm are investigated under excitation into various excited states of Tm 3+ and the conduction band of CNGG at room temperature. The absorption and emission bands of Tm 3+ in CNGG are observed to be broader than those observed in other Tm 3+-doped crystals such as LiNbO 3. This is due to the disordered structure of CNGG. From the temperature dependence of absorption spectra, five Stark levels are derived for the 3H 6 ground state. The highest Stark level is found to be 351 cm -1 above the ground level. It is suggested that the low efficiency of the 2.02 μm lasing at room temperature is due to the narrow splitting of the Stark levels.

  1. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments.

  2. The EDIBLES survey II. The detectability of C60+ bands

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Cox, N. L. J.; Cami, J.; Smoker, J.; Fahrang, A.; Elyajouri, M.; Cordiner, M. A.; Linnartz, H.; Smith, K. T.; Ehrenfreund, P.; Foing, B. H.

    2018-06-01

    Gas phase spectroscopic laboratory experiments for the buckminsterfullerene cation C60+ have resulted in accurate rest wavelengths for five C60+ transitions that have been compared with diffuse interstellar bands (DIBs) in the near infra-red. Detecting these in astronomical spectra is difficult because of the strong contamination of ground-based spectra by atmospheric water vapor, to the presence of weak and shallow stellar lines and/or blending with other weak DIBs. The detection of the two strong bands has been claimed by several teams, and the three additional and weaker bands have been detected in a few sources. Certain recent papers have argued against the identification of C60+ based on spectral analyses claiming (i) a large variation in the ratio of the equivalent widths of the 9632 and 9577 Å bands, (ii) a large redshift of the 9632 Å band for the Orion star HD 37022, and (iii) the non-detection of the weaker 9428 Å DIB. Here we address these three points: (i) We show that the model stellar line correction for the 9632 Å DIB overestimates the difference between the strengths of the lines in giant and dwarf star spectra, casting doubts on the conclusions about the ratio variability. (ii) Using high quality stellar spectra from the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES), recorded with the ESO/Paranal Ultraviolet Echelle Spectrograph (UVES) in about the same atmospheric conditions, we find no wavelength shift in the 9632 Å band toward HD 37022. (iii) Using EDIBLES spectra and data from the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at CFHT we show that the presence of a weak 9428 Å band cannot be ruled out, even in the same observations that a previous study claimed it was not present.

  3. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  4. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands.

  5. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  6. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; ...

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  7. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster

    NASA Astrophysics Data System (ADS)

    Monshi, M. M.; Aghaei, S. M.; Calizo, I.

    2018-05-01

    Electronic, optical and transport properties of the graphene/ZnO heterostructure have been explored using first-principles density functional theory. The results show that Zn12O12 can open a band gap of 14.5 meV in graphene, increase its optical absorption by 1.67 times covering the visible spectrum which extends to the infra-red (IR) range, and exhibits a slight non-linear I-V characteristic depending on the applied bias. These findings envisage that a graphene/Zn12O12 heterostructure can be appropriate for energy harvesting, photodetection, and photochemical devices.

  8. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  9. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands

    NASA Astrophysics Data System (ADS)

    Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.

    2017-05-01

    Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.

  10. Wavelength band selection method for multispectral target detection.

    PubMed

    Karlholm, Jörgen; Renhorn, Ingmar

    2002-11-10

    A framework is proposed for the selection of wavelength bands for multispectral sensors by use of hyperspectral reference data. Using the results from the detection theory we derive a cost function that is minimized by a set of spectral bands optimal in terms of detection performance for discrimination between a class of small rare targets and clutter with known spectral distribution. The method may be used, e.g., in the design of multispectral infrared search and track and electro-optical missile warning sensors, where a low false-alarm rate and a high-detection probability for detection of small targets against a clutter background are of critical importance, but the required high frame rate prevents the use of hyperspectral sensors.

  11. During air cool process aerosol absorption detection with photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  12. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  13. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  14. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser.

    PubMed

    Sonnenfroh, D M; Allen, M G

    1997-10-20

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 mum, which probes isolated transitions in the second overtone (3, 0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10(6) by volume for a meter path (ppmv-m), assuming a minimum measurable absorbance of 10(-5). Initial H(2) -air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv-m could be achieved with optimum baseline correction.

  15. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8- m room-temperature diode laser

    NASA Astrophysics Data System (ADS)

    Sonnenfroh, David M.; Allen, Mark G.

    1997-10-01

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 m, which probes isolated transitions in the second overtone (3,0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10 6 by volume for a meter path (ppmv m), assuming a minimum measurable absorbance of 10 5 . Initial H 2 air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv m could be achieved with optimum baseline correction.

  16. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  17. Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band

    NASA Astrophysics Data System (ADS)

    Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.

    2018-02-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.

  18. Measurement of Oxygen A Band Line Parameters by Using Modulation Spectroscopy with Higher Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin

    1999-01-01

    Wavelength modulation spectroscopy is used to demonstrate that extremely weak absorption lines can be measured even when these lines suffer from interference from the wings of adjacent stronger lines. It is shown that the use of detection at several harmonics allows such interference to be examined clearly and conveniently. The results of experimental measurements on a weak magnetic dipole driven, spin-forbidden line in the oxygen A band, which experiences interference from the wings of a pair of adjacent lines towards the blue and red regions of line center, are presented. A comparison of the experimental results to theory is given.

  19. Contrast based band selection for optimized weathered oil detection in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier

    2012-09-01

    Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore

  20. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  1. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  2. Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.

    PubMed

    Nail, I; Oster, L; Horowitz, Y S; Biderman, S; Belaish, Y

    2006-01-01

    The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti.

  3. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  4. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  5. Continuum definition for Ceres absorption bands at 3.1, 3.4 and 4.0 μm

    NASA Astrophysics Data System (ADS)

    Galiano, A.; Palomba, E.; Longobardo, A.; Zinzi, A.; De Sanctis, M. C.; Raponi, A.; Carrozzo, F. G.; Ciarniello, M.; Dirri, F.

    2017-09-01

    The images and hyperspectral data acquired during various Dawn mission phases (e.g. Survey, HAMO and LAMO) allowed identifying regions of different albedo on Ceres surface, where absorption bands located at 3.4 and 4.0 μm can assume different shapes. The 3.1 μm feature is observed on the entire Ceres surface except on Cerealia Facula, the brightest spot located on the dome of Occator crater. To perform a mineralogical investigation, absorption bands in reflectance spectra should be properly isolated by removing spectral continuum; hence, parameters as band centers and band depths must be estimated. The problem in the defining the continuum is in the VIR spectral range, which ends at 5.1 μm even though the reliable data, where the thermal contribution is properly removed, stops at 4.2 μm. Band shoulders located at longer wavelengths cannot be estimated. We defined different continua, with the aim to find the most appropriate to isolate the three spectral bands, whatever the region and the spatial resolution of hyperspectral images. The linear continuum seems to be the most suitable definition for our goals. Then, we performed an error evaluation on band depths and band centers introduced by this continuum definition.

  6. Design of an ultra-thin absorption layer with magnetic materials based on genetic algorithm at the S band

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Yang, Xiaoning; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Jian, Yabin

    2018-04-01

    In this work, we design an ultra-thin absorption coating at the S band, and the total thickness is less than 2 mm. For incident angle less than 30 degree and the whole S band, the reflection is less than -5 dB. The coating is constructed with 4/3 layers of magnetic material with different thicknesses, which are optimized by using genetic algorithm. Analytic and simulation results confirm the correctness of the design.

  7. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  8. Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Klunder, Gregory L.; Russo, Richard E.

    1995-03-01

    A core-based intrinsic fiber-optic absorption sensor has been developed and tested for the detection of volatile organic compounds. The distal ends of transmitting and receiving fibers are connected by a small cylindrical section of an optically clear silicone rubber. The silicone rubber acts both as a light pipe and as a selective membrane into which the analyte molecules can diffuse. The sensor has been used to detect volatile organics (trichloroethylene, 1,1-dichloroethylene, and benzene) in both aqueous solutions and in the vapor phase or headspace. Absorption spectra obtained in the near-infrared (near-IR) provide qualitative and quantitative information about the analyte. Water, which has strong broad-band absorption in the near-IR, is excluded from the spectra because of the hydrophobic properties of the silicone rubber. The rate-limiting step is shown to be the diffusion through the Nernstian boundary layer surrounding the sensor and not the diffusion through the silicone polymer. The rate of analyte diffusion into the sensor, as measured by the t(sub 90) values (the time required for the sensor to reach 90% of the equilibrium value), is 30 min for measurements in aqueous solutions and approximately 3 min for measurements made in the headspace. The limit of detection obtained with this sensor is approximately 1.1 ppm for trichloroethylene in an aqueous solution.

  9. [Application of atomic absorption spectrometry in the engine knock detection].

    PubMed

    Chen, Li-Dan

    2013-02-01

    Because existing human experience diagnosis method and apparatus for auxiliary diagnosis method are difficult to diagnose quickly engine knock. Atomic absorption spectrometry was used to detect the automobile engine knock in in innovative way. After having determined Fe, Al, Cu, Cr and Pb content in the 35 groups of Audi A6 engine oil whose travel course is 2 000 -70 000 kilometers and whose sampling interval is 2 000 kilometers by atomic absorption spectrometry, the database of primary metal content in the same automobile engine at different mileage was established. The research shows that the main metal content fluctuates within a certain range. In practical engineering applications, after the determination of engine oil main metal content and comparison with its database value, it can not only help to diagnose the type and location of engine knock without the disintegration and reduce vehicle maintenance costs and improve the accuracy of engine knock fault diagnosis.

  10. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands

    NASA Astrophysics Data System (ADS)

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-01

    Special electric and magnetic characteristics make Fe3O4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe3O4, it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe3O4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe3O4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe3O4 could acquire targeted EM wave absorption capacity in the X band (8–12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of ‑49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below ‑10 dB is 4.32 (7.52–11.84) GHz, which is almost equivalent to the whole X band (8–12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4–12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  11. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands.

    PubMed

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-20

    Special electric and magnetic characteristics make Fe 3 O 4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe 3 O 4 , it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe 3 O 4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe 3 O 4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe 3 O 4 could acquire targeted EM wave absorption capacity in the X band (8-12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of -49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below -10 dB is 4.32 (7.52-11.84) GHz, which is almost equivalent to the whole X band (8-12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4-12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  12. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands K Dot-Operator p study

    SciTech Connect

    AbuEl-Rub, Khaled M.

    2012-09-06

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, andmore » are in good agreement with experimental data.« less

  13. Detecting ultralight bosonic dark matter via absorption in superconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2016-07-18

    Superconducting targets have recently been proposed for the direct detection of dark matter as light as a keV, via elastic scattering off conduction electrons in Cooper pairs. Detecting such light dark matter requires sensitivity to energies as small as the superconducting gap of O(meV). Here we show that these same superconducting devices can detect much lighter DM, of meV to eV mass, via dark matter absorption on a conduction electron, followed by emission of an athermal phonon. Lastly, we demonstrate the power of this setup for relic kinetically mixed hidden photons, pseudoscalars, and scalars, showing that the reach can exceedmore » current astrophysical and terrestrial constraints with only a moderate exposure.« less

  14. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  15. Searching for dark absorption with direct detection experiments

    SciTech Connect

    Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less

  16. Searching for dark absorption with direct detection experiments

    DOE PAGES

    Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...

    2017-06-16

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less

  17. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.

    PubMed

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-07

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). © 2011 American Institute of Physics.

  18. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  19. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    NASA Astrophysics Data System (ADS)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  20. Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. I.

    2018-03-01

    The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.

  1. Ammonium detection by formation of colored zebra-bands in a detecting tube.

    PubMed

    Hori, Tatsuaki; Niki, Keizou; Kiso, Yoshiaki; Oguchi, Tatsuo; Kamimoto, Yuki; Yamada, Toshiro; Nagai, Masahiro

    2010-06-15

    Ammonium ion was colorized by means of a diazo coupling reaction with 2-phenylphenol, where the color development reaction was conducted within 3min by using boric acid as a catalyst. The resulting colored solution (0.5ml) was supplied by suction to a detecting tube consisting of a nonwoven fabric test strip (2mm wide, 1mm thick, 150mm long) impregnated with benzylcetyldimethylammonium chloride in a stripe pattern and enclosed in a heat-shrinkable tube. When the colored solution was supplied to the detecting tube, blue zebra-bands formed, and the ammonium concentration was determined by counting the number of zebra-bands. The detection range was 1-20mg-Nl(-1). Ammonium ion in actual domestic wastewater samples was successfully detected by means of this method.

  2. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν8 +ν10 band of the 12C2H4 molecule

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Kashirina, N. V.; Bauerecker, S.; Horneman, V.-M.

    2015-07-01

    The highly accurate (experimental accuracy in line positions ∼ (1 - 2) ×10-4 cm-1) ro-vibrational spectrum of the ν8 +ν10 band of the 12C2H4 molecule was recorded for the first time with high resolution Fourier transform spectrometry and analyzed in the region of 1650-1950 cm-1 using the Hamiltonian model which takes into account Coriolis resonance interactions between the studied ν8 +ν10 band, which is forbidden in absorption, and the bands ν4 +ν8 and ν7 +ν8 . About 1570 transitions belonging to the ν8 +ν10 band were assigned in the experimental spectra with the maximum values of quantum numbers Jmax. = 35 and Kamax . = 18 . On that basis, a set of 38 vibrational, rotational, centrifugal distortion, and resonance interaction parameters was obtained from the fit. They reproduce values of 598 initial "experimental" ro-vibrational energy levels (positions of about 1570 experimentally recorded and assigned transitions) with the rms error drms = 0.00045 cm-1 (drms = 0.00028 cm-1 when upper ro-vibrational energies obtained from blended and very weak transitions were deleted from the fit).

  3. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    NASA Astrophysics Data System (ADS)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  4. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  5. Detection of the 2165 Inverse Centimeter (4.619 Micron) XCN Band in the Spectrum of L1551 IRS 5

    NASA Technical Reports Server (NTRS)

    Tegler, Stephen C.; Weintraub, David A.; Allamandola, Louis J.; Sandford, Scott A.; Rettig, Terrence W.; Campins, Humberto

    1993-01-01

    We report the detection of a broad absorption band at 2165 cm (4.619 microns) in the spectrum of L1551 IRS 5. New laboratory results over the 2200-2100 /cm wavenumber interval (4.55-4.76 microns), performed with realistic interstellar ice analogs, suggest that this feature is due to a CN-containing compound. We will refer to this compound as XCN. We also confirm the presence of frozen CO (both in nonpolar and polar matrices) through absorption bands at 2140 /cm (4.67 microns) and 2135 /cm (4.68 microns). The relative abundance of solid-state CO to frozen H2O is approx. 0.13 while the abundance of XCN seems comparable to that of frozen CO.

  6. High-resolution spectroscopy and global analysis of CF4 rovibrational bands to model its atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.

    2017-11-01

    CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.

  7. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  8. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  9. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  10. Band-edge absorption coefficients from photoluminescence in semiconductor multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kost, Alan; Zou, Yao; Dapkus, P. D.; Garmire, Elsa; Lee, H. C.

    1989-01-01

    A novel approach to determining absorption coefficients in thin films using luminescence is described. The technique avoids many of the difficulties typically encountered in measurements of thin samples, Fabry-Perot effects, for example, and can be applied to a variety of materials. The absorption edge for GaAs/AlGaAs multiple quantum well structures, with quantum well widths ranging from 54 to 193 A is examined. Urbach (1953) parameters and excitonic linewidths are tabulated.

  11. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  12. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  13. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less

  15. The ÖX˜ absorption of vinoxy radical revisited: Normal and Herzberg-Teller bands observed via cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Phillip S.; Chhantyal-Pun, Rabi; Kline, Neal D.; Miller, Terry A.

    2010-03-01

    The ÖX˜ electronic absorption spectrum of vinoxy radical has been investigated using room temperature cavity ringdown spectroscopy. Analysis of the observed bands on the basis of computed vibrational frequencies and rotational envelopes reveals that two distinct types of features are present with comparable intensities. The first type corresponds to "normal" allowed electronic transitions to the origin and symmetric vibrations in the à state. The second type is interpreted in terms of excitations to asymmetric à state vibrations, which are only vibronically allowed by Herzberg-Teller coupling to the B˜ state. Results of electronic structure calculations indicate that the magnitude of the Herzberg-Teller coupling is appropriate to produce vibronically induced transitions with intensities comparable to those of the normal bands.

  16. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    SciTech Connect

    Ollefs, K.; European Synchrotron Radiation Facility; Meckenstock, R.

    2015-06-14

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and thereforemore » does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.« less

  17. Hypothesis testing for band size detection of high-dimensional banded precision matrices.

    PubMed

    An, Baiguo; Guo, Jianhua; Liu, Yufeng

    2014-06-01

    Many statistical analysis procedures require a good estimator for a high-dimensional covariance matrix or its inverse, the precision matrix. When the precision matrix is banded, the Cholesky-based method often yields a good estimator of the precision matrix. One important aspect of this method is determination of the band size of the precision matrix. In practice, crossvalidation is commonly used; however, we show that crossvalidation not only is computationally intensive but can be very unstable. In this paper, we propose a new hypothesis testing procedure to determine the band size in high dimensions. Our proposed test statistic is shown to be asymptotically normal under the null hypothesis, and its theoretical power is studied. Numerical examples demonstrate the effectiveness of our testing procedure.

  18. Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development.

    PubMed

    Behnke, Thomas; Mathejczyk, Julia E; Brehm, Robert; Würth, Christian; Gomes, Fernanda Ramos; Dullin, Christian; Napp, Joanna; Alves, Frauke; Resch-Genger, Ute

    2013-01-01

    Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Decomposition of mineral absorption bands using nonlinear least squares curve fitting: Application to Martian meteorites and CRISM data

    NASA Astrophysics Data System (ADS)

    Parente, Mario; Makarewicz, Heather D.; Bishop, Janice L.

    2011-04-01

    This study advances curve-fitting modeling of absorption bands of reflectance spectra and applies this new model to spectra of Martian meteorites ALH 84001 and EETA 79001 and data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). This study also details a recently introduced automated parameter initialization technique. We assess the performance of this automated procedure by comparing it to the currently available initialization method and perform a sensitivity analysis of the fit results to variation in initial guesses. We explore the issues related to the removal of the continuum, offer guidelines for continuum removal when modeling the absorptions and explore different continuum-removal techniques. We further evaluate the suitability of curve fitting techniques using Gaussians/Modified Gaussians to decompose spectra into individual end-member bands. We show that nonlinear least squares techniques such as the Levenberg-Marquardt algorithm achieve comparable results to the MGM model ( Sunshine and Pieters, 1993; Sunshine et al., 1990) for meteorite spectra. Finally we use Gaussian modeling to fit CRISM spectra of pyroxene and olivine-rich terrains on Mars. Analysis of CRISM spectra of two regions show that the pyroxene-dominated rock spectra measured at Juventae Chasma were modeled well with low Ca pyroxene, while the pyroxene-rich spectra acquired at Libya Montes required both low-Ca and high-Ca pyroxene for a good fit.

  20. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection.

    PubMed

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A

    2018-02-06

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume-that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.

  1. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection

    PubMed Central

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A.

    2018-01-01

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration. PMID:29415468

  2. The infrared bands Pechan prism axis parallel detection method

    NASA Astrophysics Data System (ADS)

    Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li

    2017-02-01

    In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.

  3. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  4. Optical path switching based differential absorption radiometry for substance detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2005-01-01

    An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  5. Optical path switching based differential absorption radiometry for substance detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2003-01-01

    An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  6. The nu sub 9 fundamental of ethane - Integrated intensity and band absorption measurements with application to the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Cess, R. D.; Bangaru, B. R. P.

    1974-01-01

    Measurements of the absolute intensity and integrated band absorption have been performed for the nu sub 9 fundamental band of ethane. The intensity is found to be about 34 per sq cm per atm at STP, and this is significantly higher than previous estimates. It is shown that a Gaussian profile provides an empirical representation of the apparent spectral absorption coefficient. Employing this empirical profile, a simple expression is derived for the integrated band absorption, which is in excellent agreement with experimental values. The band model is then employed to investigate the possible role of ethane as a source of thermal infrared opacity within the atmospheres of Jupiter and Saturn, and to interpret qualitatively observed brightness temperatures for Saturn.

  7. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  8. The Effects of Atmospheric Water Vapor Absorption on Infrared Laser Propagation in the 5 Micrometer Band.

    DTIC Science & Technology

    1983-05-01

    which allows for thermal linedr expansion of the structure. 32 1 I 2. Second Harmonic Generation The second harmonic generation was achieved by mounting a...filter unit and then to the reference channel lock-in amplifier. C. TESTS 1 . DC Amplifier and A/D Calibration The Ectron DC amplifiers and the Altair A/D...AD-A130 788 THE EFFECTS OF ATMOSPHERIC WATER VAPOR ABSORPTION ON 1 / INFRARED LASER PRUPA..(U) OHIO STATE UNIV COLUMBUS ELECTROSCIENCE LAB L G WALTER

  9. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    SciTech Connect

    Sudeep, P. M.; TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075; Vinayasree, S.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methylmore » Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.« less

  10. Interferometric Control of Dual-Band Terahertz Perfect Absorption Using a Designed Metasurface

    NASA Astrophysics Data System (ADS)

    Kang, Ming; Zhang, Huifang; Zhang, Xueqian; Yang, Quanlong; Zhang, Weili; Han, Jiaguang

    2018-05-01

    The coherent perfect absorber (CPA), a time-reversed counterpart to the laser emission, could cause all energy fed to the system to be absorbed. It can also be used as an absorptive interferometer, which could provide applications in controllable optical energy transfer. Here, in order to achieve a terahertz CPA, we propose a designed metasurface and experimentally demonstrate that it can serve as a polarization-insensitive CPA at a one-frequency channel under normal symmetric excitation, while a transverse-electric CPA at two-frequency channels around oblique 40° symmetric incidence. Such phenomena in this system can be attributed to Fano resonance consisting of interacting one bright and one dark mode under normal incidence and an additional operative dark mode under oblique symmetric excitation. The experimental results find good agreement with the fitted coupled-mode theory. Moreover, we show that the output amplitude can be effectively tuned from 0 to 1 only by varying the relative phase between the two input waves. The designed CPA could find potential application in effectively controlling absorption for terahertz imaging and terahertz switches.

  11. Very high S-band microwave absorption of carbon nanotube buckypapers with Mn nanoparticle interlayers

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Bai, Yaoyao; Wang, Jijie; Zhang, Lu; Tian, Caijiao; Ma, Keming; Wang, Xiaoqiang

    2018-03-01

    Flexible and high-performance electromagnetic absorbing materials of multi-walled carbon nanotube (MWCNT) buckypapers with Mn nanoparticles (NPSs) interlayer were fabricated via monodisperse solutions through layer by layer vacuum filtration method. The morphology and element composition of buckypapers were characterized by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The formation of flexible MWCNT buckypapers with Mn NPS (0-30 wt. %) interlayer was attributed to nanostructure and morphology of the samples. When the blended Mn NPS content in buckypapers is 20 wt. %, there are evidently two larger absorption peaks (-13.2 dB at 3.41 GHz, -15.6 dB at 3.52 GHz) of the buckypaper with an absorbing thickness of 0.1 mm. The fundamental microwave absorption mechanism of the buckypapers is discussed. This work opens a new pathway towards tuning microwave absorbers performance and this method can be extended to exploit other excellent microwave absorbers with interlayer.

  12. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2

    NASA Astrophysics Data System (ADS)

    de Lange, Arno; Dickenson, Gareth D.; Salumbides, Edcel J.; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-01

    An extensive survey of the D2 absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90 000-119 000 cm-1 covers the full depth of the potential wells of the B sideset{^1}{+u}{Σ}, B^' } sideset{^1}{+u}{Σ}, and C 1Πu electronic states up to the D(1s) + D(2ℓ) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm-1. Extended calibration methods are employed to extract line positions of D2 lines at absolute accuracies of 0.03 cm-1. The D 1Πu and B^' ' } sideset{^1}{+u}{Σ} electronic states correlate with the D(1s) + D(3ℓ) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D2. The observations are compared with previous studies, both experimental and theoretical.

  13. Abnormal Circulation Changes in the Winter Stratosphere, Detected Through Variations of D Region Ionospheric Absorption

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.

    1984-01-01

    A method to detect stratospheric warmings using ionospheric absorption records obtained by an Absorption Meter (method A3) is introduced. The activity of the stratospheric circulation and the D region ionospheric absorption as well as other atmospheric parameters during the winter anomaly experience an abnormal variation. A simultaneity was found in the beginning of abnormal variation in the mentioned parameters, using the absorption records for detecting the initiation of the stratospheric warming. Results of this scientific experience of forecasting in the El Arenosillo Range, are presented.

  14. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    SciTech Connect

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratorymore » three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.« less

  15. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  16. Detection of dual-band infrared small target based on joint dynamic sparse representation

    NASA Astrophysics Data System (ADS)

    Zhou, Jinwei; Li, Jicheng; Shi, Zhiguang; Lu, Xiaowei; Ren, Dongwei

    2015-10-01

    Infrared small target detection is a crucial and yet still is a difficult issue in aeronautic and astronautic applications. Sparse representation is an important mathematic tool and has been used extensively in image processing in recent years. Joint sparse representation is applied in dual-band infrared dim target detection in this paper. Firstly, according to the characters of dim targets in dual-band infrared images, 2-dimension Gaussian intensity model was used to construct target dictionary, then the dictionary was classified into different sub-classes according to different positions of Gaussian function's center point in image block; The fact that dual-band small targets detection can use the same dictionary and the sparsity doesn't lie in atom-level but in sub-class level was utilized, hence the detection of targets in dual-band infrared images was converted to be a joint dynamic sparse representation problem. And the dynamic active sets were used to describe the sparse constraint of coefficients. Two modified sparsity concentration index (SCI) criteria was proposed to evaluate whether targets exist in the images. In experiments, it shows that the proposed algorithm can achieve better detecting performance and dual-band detection is much more robust to noise compared with single-band detection. Moreover, the proposed method can be expanded to multi-spectrum small target detection.

  17. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    SciTech Connect

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with themore » theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)« less

  19. Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft Imprint Lithography for Broad Band Absorption Enhancement

    SciTech Connect

    Shir, Daniel J.; Yoon, Jongseung; Chanda, Debashis

    2010-08-11

    Recently developed classes of monocrystalline silicon solar microcells can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. This paper presents experimental and computational studies of the optics of light absorption in ultrathin microcells that include nanoscale features of relief on their surfaces, formed by soft imprint lithography. Measurements on working devices with designs optimized for broad band trapping of incident light indicate good efficiencies in energy production even at thicknesses of just a few micrometers. These outcomes are relevant not only tomore » the microcell technology described here but also to other photovoltaic systems that benefit from thin construction and efficient materials utilization.« less

  20. Electromagnetic and Microwave Absorption Properties of the Flake-Shaped Pr-Ho-Fe Alloys in the C-Band

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Pan, Shunkang; Qiao, Ziqiang; Cheng, Lichun; Wang, Zhenzhong; Lin, Peihao; Chang, Junqing

    2018-01-01

    The polycrystalline samples Pr x Ho2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) were prepared by arc melting and high-energy ball milling method. The influences of Pr substitution on phase structure, morphology, saturation magnetization and electromagnetic parameters were investigated by x-ray diffraction, scanning electron microscopy, vibrating-sample magnetometry and vector network analyzer, respectively. The results show that the particle size increased and the saturation magnetization decreased with increasing Pr content. The minimum absorption peak frequency shifted towards a lower-frequency region with increasing Pr concentration. The minimum RL of Pr0.3Ho1.7Fe17 powder was -41.03 dB at 6.88 GHz with a coating thickness of 2.0 mm. With different thickness of 1.8-2.8 mm, the minimum reflection loss (RL) of Pr0.3Ho1.7Fe17 powder was less than -20 dB in the whole C-band (4-8 GHz). The microwave-absorbing properties of the composite with different weight ratios of Pr0.3Ho1.7Fe17/Co were researched. The microwave-absorbing peaks of the composites shifted to a lower frequency with increasing Co content. The minimum RL of Pr0.3Ho1.7Fe17/Co(10%) was -42.51 dB at 4.72 GHz with a coating thickness of 2.6 mm. This suggests that the Pr-Ho-Fe will be a promising microwave absorption material in higher-gigahertz frequency, especially in the C-band.

  1. Reduction of cross-polarized reflection to enhance dual-band absorption

    NASA Astrophysics Data System (ADS)

    Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay

    2016-11-01

    In this paper, cross-polarized reflection from a periodic array of metal-dielectric-metal resonator units is reduced to improve its absorbing performance. Through this simple and typical example, it is shown that some reported absorbers are actually poor absorbers but efficient polarization converters, when the cross-polarized reflection is considered. Using a frequency selective surface, sandwiched between the top layer and the ground plane, the cross-polarized reflection is reduced by 7.2 dB at 5.672 GHz and 8.5 dB at 9.56 GHz, while negligibly affecting the co-polarized reflection reduction performance. The polarization conversion ratio is reduced from 90. 74% to 34.12% and 98.51% to 27.2% and total absorption is improved up to 80% from 26% and 21% around the two resonant frequencies. The reflection characteristics of the proposed absorber are quantitatively analyzed using interference theory, where the near field coupling of the resonant geometries and ground is taken into account. Measurement results show good agreement with both the numerically simulated and theoretical results.

  2. Hydrothermal Synthesis of Reduced Graphene Oxide Using Urea as Reduction Agent: Excellent X-band Electromagnetic Absorption Properties

    NASA Astrophysics Data System (ADS)

    Agusu, L.; Ahmad, L. O.; Alimin; Nurdin, M.; Herdianto; Mitsudo, S.; Kikuchi, H.

    2018-05-01

    We report a strong absorption of microwave energy at X-band (8 GHz to 12 GHz) by N-doped graphene. Attachment of nitrogen on the layered structure of GO improves the reflection loss of GO slab (2.0 mm, thickness) from –10 dB to –25.0 dB with a sharp bandwidth ∼0.3 GHz. As for the broader bandwidth of about 1.4 GHz, reflection loss is –10.5 dB. This significant absorption may take place by improvement of magnetic property of NG through high magnetic coupling of localized spins induced by a defect on the surface of graphene. N atoms play as the electron trapper, easily influenced by self-magnetic moments and incoming electromagnetic fields to produce electric and/or magnetic losses. Here, urea acts as the reducing agent and N atoms donor for graphene oxide in hydrothermal process at a temperature of 190 °C.

  3. Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2004-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.

  4. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  5. Microwave Detection With Single-Band Metamaterials For High Power Microwave Weapons

    DTIC Science & Technology

    2017-12-01

    DETECTION WITH SINGLE-BAND METAMATERIALS FOR HIGH POWER MICROWAVE WEAPONS by Edward V. Wulff December 2017 Thesis Advisor: Dragoslav Grbovic...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MICROWAVE DETECTION WITH SINGLE-BAND METAMATERIALS FOR HIGH POWER...IRB number ____N/A____. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION

  6. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    SciTech Connect

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence

  7. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  8. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  9. Characterizing Protein Complexes with UV absorption, Light Scattering, and Refractive Index Detection.

    NASA Astrophysics Data System (ADS)

    Trainoff, Steven

    2009-03-01

    Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.

  10. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    PubMed

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  11. Ion-absorption band analysis for the discrimination of iron-rich zones. [Nevada

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator); Wetlaufer, P. H.

    1974-01-01

    The author has identified the following significant results. A technique which combines digital computer processing and color composition was devised for detecting hydrothermally altered areas and for discriminating among many rock types in an area in south-central Nevada. Subtle spectral reflectance differences among the rock types are enhanced by ratioing and contrast-stretching MSS radiance values for form ratio images which subsequently are displayed in color-ratio composites. Landform analysis of Nevada shows that linear features compiled without respect to length results in approximately 25 percent coincidence with mapped faults. About 80 percent of the major lineaments coincides with mapped faults, and substantial extension of locally mapped faults is commonly indicated. Seven major lineament systems appear to be old zones of crustal weakness which have provided preferred conduits for rising magma through periodic reactivation.

  12. Archeological treasures protection based on early forest wildfire multi-band imaging detection system

    NASA Astrophysics Data System (ADS)

    Gouverneur, B.; Verstockt, S.; Pauwels, E.; Han, J.; de Zeeuw, P. M.; Vermeiren, J.

    2012-10-01

    Various visible and infrared cameras have been tested for the early detection of wildfires to protect archeological treasures. This analysis was possible thanks to the EU Firesense project (FP7-244088). Although visible cameras are low cost and give good results during daytime for smoke detection, they fall short under bad visibility conditions. In order to improve the fire detection probability and reduce the false alarms, several infrared bands are tested ranging from the NIR to the LWIR. The SWIR and the LWIR band are helpful to locate the fire through smoke if there is a direct Line Of Sight. The Emphasis is also put on the physical and the electro-optical system modeling for forest fire detection at short and longer ranges. The fusion in three bands (Visible, SWIR, LWIR) is discussed at the pixel level for image enhancement and for fire detection.

  13. Spectral Textile Detection in the VNIR/SWIR Band

    DTIC Science & Technology

    2015-03-01

    swath (a red cotton shirt). The spectrum collected using a contact probe is shown in blue (solid line), while the spectrum collected with a remote...contact probe and the Fieldspec® 3 spectroradiometer. Curves corresponding to textiles ( cotton , polyester, nylon, acrylic, and wool) are shown in blue...can be used to detect dismounts. Composition. Commonly used plant fibers are cotton , rayon, flax, and hemp. Cotton and rayon are composed of cellulose

  14. Oil detection in the coastal marshes of Louisiana using MESMA applied to band subsets of AVIRIS data

    USGS Publications Warehouse

    Peterson, Seth H.; Roberts, Dar A.; Beland, Michael; Kokaly, Raymond F.; Ustin, Susan L.

    2015-01-01

    We mapped oil presence in the marshes of Barataria Bay, Louisiana following the Deepwater Horizon oil spill using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data. Oil and non-photosynthetic vegetation (NPV) have very similar spectra, differing only in two narrow hydrocarbon absorption regions around 1700 and 2300 nm. Confusion between NPV and oil is expressed as an increase in oil fraction error with increasing NPV, as shown by Multiple Endmember Spectral Mixture Analysis (MESMA) applied to synthetic spectra generated with known endmember fractions. Significantly, the magnitude of error varied depending upon the type of NPV in the mixture. To reduce error, we used stable zone unmixing to identify a nine band subset that emphasized the hydrocarbon absorption regions, allowing for more accurate detection of oil presence using MESMA. When this band subset was applied to post-spill AVIRIS data acquired over Barataria Bay on several dates following the 2010 oil spill, accuracies ranged from 87.5% to 93.3%. Oil presence extended 10.5 m into the marsh for oiled shorelines, showing a reduced oil fraction with increasing distance from the shoreline.

  15. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  16. O2 A Band Studies for Cloud Detection and Algorithm Improvement

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    1996-01-01

    Detection of cloud parameters from space-based spectrometers can employ the vibrational bands of O2 in the (sup b1)Sigma(sub +)(sub g) yields X(sub 3) Sigma(sup -)(sub g) spin-forbidden electronic transition manifold, particularly the Delta nu = 0 A band. The GOME instrument uses the A band in the Initial Cloud Fitting Algorithm (ICFA). The work reported here consists of making substantial improvements in the line-by-line spectral database for the A band, testing whether an additional correction to the line shape function is necessary in order to correctly model the atmospheric transmission in this band, and calculating prototype cloud and ground template spectra for comparison with satellite measurements.

  17. Electrically detected magnetic resonance in a W-band microwave cavity

    NASA Astrophysics Data System (ADS)

    Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.

    2011-03-01

    We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.

  18. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  19. Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite.

    PubMed

    Yang, Jia-Yue; Hu, Ming

    2017-08-17

    The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.

  20. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  1. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption

    DOE PAGES

    Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...

    2017-03-29

    In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX 3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs 2AgBiBr 6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyedmore » perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH 3NH 3)PbI 3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX 3 absorbers.« less

  2. Gas trace detection with cavity enhanced absorption spectroscopy: a review of its process in the field

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu

    2016-11-01

    Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.

  3. Interstellar molecules. [detection from Copernicus satellite UV absorption data

    NASA Technical Reports Server (NTRS)

    Drake, J. F.

    1974-01-01

    The Princeton equipment on the Copernicus satellite provides the means to study interstellar molecules between the satellite and stars from 20 to 1000 pc distant. The study is limited to stars relatively unobscured by dust which strongly attenuates the ultraviolet continuum flux used as a source to probe the interstellar medium. Of the 14 molecules searched for only three have been detected including molecular hydrogen, molecular HD, and carbon monoxide.

  4. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.

    PubMed

    Colton, J S; Erickson, S D; Smith, T J; Watt, R K

    2014-04-04

    Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

  5. Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG.

    PubMed

    Hashimoto, Hiroaki; Hasegawa, Yuka; Araki, Toshihiko; Sugata, Hisato; Yanagisawa, Takufumi; Yorifuji, Shiro; Hirata, Masayuki

    2017-10-27

    High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity.

  6. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  7. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  8. Nondestructive detection of pork quality based on dual-band VIS/NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Wenxiu; Peng, Yankun; Li, Yongyu; Tang, Xiuying; Liu, Yuanyuan

    2015-05-01

    With the continuous development of living standards and the relative change of dietary structure, consumers' rising and persistent demand for better quality of meat is emphasized. Colour, pH value, and cooking loss are important quality attributes when evaluating meat. To realize nondestructive detection of multi-parameter of meat quality simultaneously is popular in production and processing of meat and meat products. The objectives of this research were to compare the effectiveness of two bands for rapid nondestructive and simultaneous detection of pork quality attributes. Reflectance spectra of 60 chilled pork samples were collected from a dual-band visible/near-infrared spectroscopy system which covered 350-1100 nm and 1000-2600 nm. Then colour, pH value and cooking loss were determined by standard methods as reference values. Standard normal variables transform (SNVT) was employed to eliminate the spectral noise. A spectrum connection method was put forward for effective integration of the dual-band spectrum to make full use of the whole efficient information. Partial least squares regression (PLSR) and Principal component analysis (PCA) were applied to establish prediction models using based on single-band spectrum and dual-band spectrum, respectively. The experimental results showed that the PLSR model based on dual-band spectral information was superior to the models based on single band spectral information with lower root means quare error (RMSE) and higher accuracy. The PLSR model based on dual-band (use the overlapping part of first band) yielded the best prediction result with correlation coefficient of validation (Rv) of 0.9469, 0.9495, 0.9180, 0.9054 and 0.8789 for L*, a*, b*, pH value and cooking loss, respectively. This mainly because dual-band spectrum can provide sufficient and comprehensive information which reflected the quality attributes. Data fusion from dual-band spectrum could significantly improve pork quality parameters prediction

  9. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.

    PubMed

    Nie, Kui-Ying; Li, Jing; Chen, Xuanhu; Xu, Yang; Tu, Xuecou; Ren, Fang-Fang; Du, Qingguo; Fu, Lan; Kang, Lin; Tang, Kun; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2017-08-08

    Intermediate band solar cells (IBSCs) are conceptual and promising for next generation high efficiency photovoltaic devices, whereas, IB impact on the cell performance is still marginal due to the weak absorption of IB states. Here a rational design of a hybrid structure composed of ZnTe:O/ZnO core-shell nanowires (NWs) with Al bowtie nanoantennas is demonstrated to exhibit strong ability in tuning and enhancing broadband light response. The optimized nanowire dimensions enable absorption enhancement by engineering leaky-mode dielectric resonances. It maximizes the overlap of the absorption spectrum and the optical transitions in ZnTe:O intermediate-band (IB) photovoltaic materials, as verified by the enhanced photoresponse especially for IB states in an individual nanowire device. Furthermore, by integrating Al bowtie antennas, the enhanced exciton-plasmon coupling enables the notable improvement in the absorption of ZnTe:O/ZnO core-shell single NW, which was demonstrated by the profound enhancement of photoluminescence and resonant Raman scattering. The marriage of dielectric and metallic resonance effects in subwavelength-scale nanowires opens up new avenues for overcoming the poor absorption of sub-gap photons by IB states in ZnTe:O to achieve high-efficiency IBSCs.

  10. Modulating the band structure and sub-bandgap absorption of Co-hyperdoped silicon by co-doping with shallow-level elements

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Fang, Xiuxiu; Wang, Yongyong; Song, Xiaohui; Lu, Zhansheng

    2018-06-01

    Hyperdoped group-III elements can lower the Fermi energy in the band structures of Co-hyperdoped silicon. When the Co-to-X (X = B, Al, Ga) ratio is 2:1, the intermediate band (IB) in the bandgap includes the Fermi energy and is partially filled by electrons, which is in accordance with the requirement of an IB material. The hyperdoped X atoms can cause the blueshift of the sub-bandgap absorption of the compound compared with the material with no shallow-level elements, which is due to the enlargement of the electronic excitation energy of the Co,X-co-doped silicon.

  11. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    NASA Astrophysics Data System (ADS)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  12. An enhanced narrow-band imaging method for the microvessel detection

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  13. Wide field-of-view dual-band multispectral muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.

    2013-06-01

    Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.

  14. Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, John A.; Pilewskie, Peter A.; Scott-Fleming, Ian C.; Herman, Benjamin M.; Ben-David, Avishai

    1987-01-01

    Techniques for extrapolating earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  15. Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Pilewskie, P. A.; Scott-Fleming, I. C.; Hermann, B. M.

    1986-01-01

    Techniques for extrapolating Earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor system being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  16. Detection of the Galactic Warm Neutral Medium in HI 21cm absorption

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Kanekar, Nissim; Chengalur, Jayaram N.; Roy, Nirupam

    2018-05-01

    We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic HI 21cm absorption towards the quasar B0438-436, yielding the detection of wide, weak HI 21cm absorption, with a velocity-integrated HI 21cm optical depth of 0.0188 ± 0.0036 km s-1. Comparing this with the HI column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of 3760 ± 365 K, one of the highest measured in the Galaxy. This is consistent with most of the HI along the sightline arising in the stable warm neutral medium (WNM). The low peak HI 21cm optical depth towards B0438-436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the HI 21cm absorption and emission spectra. This yields a gas kinetic temperature of T_k ≤ (4910 ± 1900) K, and a spin temperature of T_s = (1000 ± 345) K for the gas that gives rise to the HI 21cm absorption. Our data are consistent with the HI 21cm absorption arising from either the stable WNM, with T_s ≪ T_k, T_k ≈ 5000 K, and little penetration of the background Lyman-α radiation field into the neutral hydrogen, or from the unstable neutral medium, with T_s ≈ T_k ≈ 1000K.

  17. Probability of detecting band-tailed pigeons during call-broadcast versus auditory surveys

    USGS Publications Warehouse

    Kirkpatrick, C.; Conway, C.J.; Hughes, K.M.; Devos, J.C.

    2007-01-01

    Estimates of population trend for the interior subspecies of band-tailed pigeon (Patagioenas fasciata fasciata) are not available because no standardized survey method exists for monitoring the interior subspecies. We evaluated 2 potential band-tailed pigeon survey methods (auditory and call-broadcast surveys) from 2002 to 2004 in 5 mountain ranges in southern Arizona, USA, and in mixed-conifer forest throughout the state. Both auditory and call-broadcast surveys produced low numbers of cooing pigeons detected per survey route (x?? ??? 0.67) and had relatively high temporal variance in average number of cooing pigeons detected during replicate surveys (CV ??? 161%). However, compared to auditory surveys, use of call-broadcast increased 1) the percentage of replicate surveys on which ???1 cooing pigeon was detected by an average of 16%, and 2) the number of cooing pigeons detected per survey route by an average of 29%, with this difference being greatest during the first 45 minutes of the morning survey period. Moreover, probability of detecting a cooing pigeon was 27% greater during call-broadcast (0.80) versus auditory (0.63) surveys. We found that cooing pigeons were most common in mixed-conifer forest in southern Arizona and density of male pigeons in mixed-conifer forest throughout the state averaged 0.004 (SE = 0.001) pigeons/ha. Our results are the first to show that call-broadcast increases the probability of detecting band-tailed pigeons (or any species of Columbidae) during surveys. Call-broadcast surveys may provide a useful method for monitoring populations of the interior subspecies of band-tailed pigeon in areas where other survey methods are inappropriate.

  18. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally

  19. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  20. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  1. Simultaneous Multi-band Detection of Low Surface Brightness Galaxies with Markovian Modeling

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; van Driel, W.; Bonnarel, F.; Louys, M.; Sabatini, S.; MacArthur, L. A.

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached

  2. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  3. Fusion of thermal- and visible-band video for abandoned object detection

    NASA Astrophysics Data System (ADS)

    Beyan, Cigdem; Yigit, Ahmet; Temizel, Alptekin

    2011-07-01

    Timely detection of packages that are left unattended in public spaces is a security concern, and rapid detection is important for prevention of potential threats. Because constant surveillance of such places is challenging and labor intensive, automated abandoned-object-detection systems aiding operators have started to be widely used. In many studies, stationary objects, such as people sitting on a bench, are also detected as suspicious objects due to abandoned items being defined as items newly added to the scene and remained stationary for a predefined time. Therefore, any stationary object results in an alarm causing a high number of false alarms. These false alarms could be prevented by classifying suspicious items as living and nonliving objects. In this study, a system for abandoned object detection that aids operators surveilling indoor environments such as airports, railway or metro stations, is proposed. By analysis of information from a thermal- and visible-band camera, people and the objects left behind can be detected and discriminated as living and nonliving, reducing the false-alarm rate. Experiments demonstrate that using data obtained from a thermal camera in addition to a visible-band camera also increases the true detection rate of abandoned objects.

  4. Detection of Ne VIII in an Intervening Multiphase Absorption System Toward 3C 263

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Wakker, Bart P.; Savage, Blair D.

    2009-09-01

    We report the detection of Ne VIII in an intervening multiphase absorption line system at z = 0.32566 in the Far Ultraviolet Spectroscopic Explorer spectrum of the quasar 3C 263 (zem = 0.646). The Ne VIII λ770 Å detection has a 3.9σ significance. At the same velocity, we also find absorption lines from C IV, O III, O IV, and N IV. The line parameter measurements yield log [N(Ne VIII) cm-2] = 13.98+0.10 -0.13 and b = 49.8 ± 5.5 km s-1. We find that the ionization mechanism in the gas phase giving rise to the Ne VIII absorption is inconsistent with photoionization. The absorber has a multiphase structure, with the intermediate ions produced in cool photoionized gas and the Ne VIII most likely in a warm collisionally ionized medium in the temperature range (0.5-1.0) × 106 K. This is the second ever detection of an intervening Ne VIII absorption system. Its properties resemble the previous Ne VIII absorber reported by Savage and colleagues. Direct observations of H I and O VI are needed to better constrain the physical conditions in the collisionally ionized gas phase of this absorber. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer operated by Johns Hopkins University, supported by NASA contract NAS5-32985.

  5. A light-emitting diode- (LED-) based absorption sensor for simultaneous detection of carbon monoxide and carbon dioxide

    DOE PAGES

    Thurmond, Kyle; Loparo, Zachary; Partridge, Jr., William P.; ...

    2016-04-18

    Here, a sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO 2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3–5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics ofmore » the LED emissions. Measurements of CO and CO 2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO 2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring.« less

  6. Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System

    SciTech Connect

    Mourant, J.R.; Boyer, J.; Johnson, T.M.

    1995-03-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.« less

  7. A new photometric ozone reference in the Huggins bands: the absolute ozone absorption cross section at the 325 nm HeCd laser wavelength

    NASA Astrophysics Data System (ADS)

    Janssen, Christof; Elandaloussi, Hadj; Gröbner, Julian

    2018-03-01

    The room temperature (294.09 K) absorption cross section of ozone at the 325 nm HeCd wavelength has been determined under careful consideration of possible biases. At the vacuum wavelength of 325.126 nm, thus in a region used by a variety of ozone remote sensing techniques, an absorption cross-section value of σ = 16.470×10-21 cm2 was measured. The measurement provides the currently most accurate direct photometric absorption value of ozone in the UV with an expanded (coverage factor k = 2) standard uncertainty u(σ) = 31×10-24 cm2, corresponding to a relative level of 2 ‰. The measurements are most compatible with a relative temperature coefficient cT = σ-1 ∂ Tσ = 0.0031 K-1 at 294 K. The cross section and its uncertainty value were obtained using generalised linear regression with correlated uncertainties. It will serve as a reference for ozone absorption spectra required for the long-term remote sensing of atmospheric ozone in the Huggins bands. The comparison with commonly used absorption cross-section data sets for remote sensing reveals a possible bias of about 2 %. This could partly explain a 4 % discrepancy between UV and IR remote sensing data and indicates that further studies will be required to reach the accuracy goal of 1 % in atmospheric reference spectra.

  8. Type-II GaSb/GaAs quantum-dot intermediate band with extended optical absorption range for efficient solar cells

    NASA Astrophysics Data System (ADS)

    Boustanji, Hela; Jaziri, Sihem

    2018-02-01

    GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.

  9. Detection of buried objects by fusing dual-band infrared images

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-11-01

    We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating radar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the visible wavelength and GPR data are currently incomplete. This paper focuses on the fusion of two-band infrared images. We use feature-level fusion and supervised learning with the probabilistic neural network (PNN) to evaluate detection performance. The novelty of the work lies in the application of advanced target recognition algorithms, the fusion of dual-band infraredmore » images and evaluation of the techniques using two real data sets.« less

  10. The effect of narrow-band noise maskers on increment detection1

    PubMed Central

    Messersmith, Jessica J.; Patra, Harisadhan; Jesteadt, Walt

    2010-01-01

    It is often assumed that listeners detect an increment in the intensity of a pure tone by detecting an increase in the energy falling within the critical band centered on the signal frequency. A noise masker can be used to limit the use of signal energy falling outside of the critical band, but facets of the noise may impact increment detection beyond this intended purpose. The current study evaluated the impact of envelope fluctuation in a noise masker on thresholds for detection of an increment. Thresholds were obtained for detection of an increment in the intensity of a 0.25- or 4-kHz pedestal in quiet and in the presence of noise of varying bandwidth. Results indicate that thresholds for detection of an increment in the intensity of a pure tone increase with increasing bandwidth for an on-frequency noise masker, but are unchanged by an off-frequency noise masker. Neither a model that includes a modulation-filter-bank analysis of envelope modulation nor a model based on discrimination of spectral patterns can account for all aspects of the observed data. PMID:21110593

  11. [Study on the early detection of Sclerotinia of Brassica napus based on combinational-stimulated bands].

    PubMed

    Liu, Fei; Feng, Lei; Lou, Bing-gan; Sun, Guang-ming; Wang, Lian-ping; He, Yong

    2010-07-01

    The combinational-stimulated bands were used to develop linear and nonlinear calibrations for the early detection of sclerotinia of oilseed rape (Brassica napus L.). Eighty healthy and 100 Sclerotinia leaf samples were scanned, and different preprocessing methods combined with successive projections algorithm (SPA) were applied to develop partial least squares (PLS) discriminant models, multiple linear regression (MLR) and least squares-support vector machine (LS-SVM) models. The results indicated that the optimal full-spectrum PLS model was achieved by direct orthogonal signal correction (DOSC), then De-trending and Raw spectra with correct recognition ratio of 100%, 95.7% and 95.7%, respectively. When using combinational-stimulated bands, the optimal linear models were SPA-MLR (DOSC) and SPA-PLS (DOSC) with correct recognition ratio of 100%. All SPA-LSSVM models using DOSC, De-trending and Raw spectra achieved perfect results with recognition of 100%. The overall results demonstrated that it was feasible to use combinational-stimulated bands for the early detection of Sclerotinia of oilseed rape, and DOSC-SPA was a powerful way for informative wavelength selection. This method supplied a new approach to the early detection and portable monitoring instrument of sclerotinia.

  12. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  13. Ground-based K-band detection of thermal emission from the exoplanet TrES-3b

    NASA Astrophysics Data System (ADS)

    de Mooij, E. J. W.; Snellen, I. A. G.

    2009-01-01

    Context: Secondary eclipse measurements of transiting extrasolar planets with the Spitzer Space Telescope have yielded several direct detections of thermal exoplanet light. Since Spitzer operates at wavelengths longward of 3.6 μm, arguably one of the most interesting parts of the planet spectrum (from 1 to 3 μm) is inaccessible with this satellite. This region is at the peak of the planet's spectral energy distribution and is also the regime where molecular absorption bands can significantly influence the measured emission. Aims: So far, 2.2 μm K-band secondary eclipse measurements, which are possible from the ground, have not yet lead to secure detections. The aim of this paper is to measure the secondary eclipse of the very hot Jupiter TrES-3b in K-band, and in addition to observe its transit, to obtain an accurate planet radius in the near infrared. Methods: We have used the william herschell telescope (WHT) to observe the secondary eclipse, and the united kingdom infrared telescope (UKIRT) to observe the transit of TrES-3b. Both observations involved significant defocusing of the telescope, aimed to produce high-cadence time series of several thousand frames at high efficiency, with the starlight spread out over many pixels. Results: We detect the secondary eclipse of TrES-3b with a depth of -0.241 ± 0.043% (~6σ). This corresponds to a day-side brightness temperature of TB(2.2 μm) = 2040 ± 185 K, which is consistent with current models of the physical properties of this planet's upper atmosphere. The centre of the eclipse seems slightly offset from phase φ=0.5 by Δφ = -0.0042 ± 0.0027, which could indicate that the orbit of TrES-3b is non-circular. Analysis of the transit data shows that TrES-3b has a near-infrared radius of 1.338 ± 0.016 R_Jup, showing no significant deviation from optical measurements.

  14. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  15. Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.

    PubMed

    Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T

    2018-02-01

    Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  17. Application of backscatter absorption gas imaging to the detection of chemicals related to drug production

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas J.; Garvis, Darrel G.; Kennedy, Randall B.; McRae, Thomas G.

    1991-08-01

    The application of backscatter absorption gas imaging (BAGI) to the detection of gaseous chemical species associated with the production of illegal drugs is considered. BAGI is a gas visualization technique that allows the imaging of over 70 organic vapors at minimum concentrations of a few to several hundred ppm-m. Present BAGI capabilities at Lawrence Livermore National Laboratory and Laser Imaging Systems are discussed. Eighteen different species of interest in drug-law enforcement are identified as being detectable by BAGI. The chemical remote sensing needs of law enforcement officials are described, and the use of BAGI in meeting some of these needs is outlined.

  18. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    PubMed

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  19. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  20. Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan

    NASA Astrophysics Data System (ADS)

    Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh

    2017-03-01

    We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.

  1. Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less

  2. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  3. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  4. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  5. Re-investigation of the (3, 0) band in the b4Σ- - a4Π system for nitric oxide by laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chuanliang; Shao, Ligang; Wang, Hailing; Zhou, Qinghong; Qiu, Xuanbing; Wei, Jilin; Deng, Lunhua; Chen, Yangqin

    2018-04-01

    Nitric oxide (NO) radicals in the a4Π state were produced by discharging the mixture of NO gas and helium at the audio frequency. In the near infrared region, the spectra of the b4Σ- - a4Π system of the NO radical were studied by optical heterodyne - concentration modulation laser absorption spectroscopy. More than one hundred and thirty lines and eleven branches were recorded for the first time and assigned to the (3, 0) band. A global fitting was carried out to extract the molecular constants. In particular, the parameters D, p, γ and AD were precisely determined.

  6. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    SciTech Connect

    Burton, J. R.; Watson, C. A.; Pollacco, D.

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurementmore » of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.« less

  7. Low-cost detection of RC-IED activation signals in VHF band

    NASA Astrophysics Data System (ADS)

    Camargo Suarez, Victor Hugo; Marulanda B., Jose Ignacio

    2014-05-01

    The proliferation of Radio Controlled Improvised Explosive Devices (RC-IED) is a growing threat around the world. The ease of construction and low cost of these devices are transforming common things in lethal tramps. The fight against this threats normally involves the use of sophisticated and expensive equipment of Electronic Warfare based on high speed DSP systems, just to detect the presence of detonation signals. In this work is showed how to find activation signals based on the characteristic of the power in a specific band and the previous knowledge about the detonation signals. As proof of concept we have taken the information about the RC-IEDs used in the Colombian conflict and develop an algorithm to find detonation signals based on the measured power in frequencies between 136 MHz and 174 MHz (2 meter civil band)

  8. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    PubMed

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  9. Laser Radar Study Using Resonance Absorption for Remote Detection Of Air Pollutants

    NASA Technical Reports Server (NTRS)

    Igarashi, Takashi

    1973-01-01

    A laser radar using resonance absorption has an advantage of increased detection range and sensitivity compared with that achieved by Raman or resonance back scattering. In this paper, new laser radar system using resonance absorption is proposed and results obtained from this laser radar system are discussed. NO2, SO2 gas has an absorption spectrum at 4500 A and 3000 A respectively as shown in Fig. 1. A laser light including at least a set of an absorption peak (lambda)1 and a valley (lambda)2 is emitted into a pollutant atmosphere. The light reflected with a topographical reflector or an atmospheric Mie scattering as distributed reflectors is received and divided into two wavelength components (lambda)1 and (lambda)2. The laser radar system used in the investigation is shown in Fig', 2 and consists of a dye laser transmitter, an optical receiver with a special monochrometer and a digital processer. Table 1 shows the molecular constants of NO2, and SO2 and the dye laser used in this experiment. In this system, the absolute concentration of the pollutant gas can be measured in comparison with a standard gas cell. The concentration of NO2, SO2 as low as 0.1 ppm have been measured at 100 m depth resolution. For a 1 mJ laser output, the observable range of this system achieved up to 300 m using the distributed Mie reflector. The capability and technical limitation of the system will be discussed in detail.

  10. Detection of H I absorption in the dwarf galaxy Haro 11

    NASA Astrophysics Data System (ADS)

    MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C.; Cormier, Diane; Rémy-Ruyer, Aurélie

    2014-02-01

    We present the results of an analysis of archival 21 cm (H I) data of the blue compact dwarf galaxy Haro 11 (ESO 350-IG038). Observations were obtained at the Very Large Array, and the presence of a compact absorption feature near the optical centre of the galaxy has been detected. The central location of the absorption feature coincides with the centre of the continuum background of the galaxy, as well as with the location of knot B. The absorption feature yields an H I mass in the range of 3-10 × 108 M⊙, corresponding to spin temperatures from 91 K to 200 K, respectively. The absence of H I seen in emission places an upper limit of 1.7 × 109 M⊙ on the mass. To our knowledge this is the first example of a dwarf galaxy that shows H I absorption from its own background continuum. The continuum emission from the galaxy is also used to determine star formation rates, namely 6.85 ± 0.05 M⊙ yr-1 (for a stellar mass range of 5 M⊙ < M < 100 M⊙), or 32.8 ± 0.2 M⊙ yr-1 (for an extended range of 0.1 M⊙ < M < 100 M⊙).

  11. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    PubMed

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    PubMed

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and

  13. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  14. Multispectral Detection with Metal-Dielectric Filters: An Investigation in Several Wavelength Bands with Temporal Coupled-Mode Theory

    NASA Astrophysics Data System (ADS)

    Lesmanne, Emeline; Espiau de Lamaestre, Roch; Boutami, Salim; Durantin, Cédric; Dussopt, Laurent; Badano, Giacomo

    2016-09-01

    Multispectral infrared (IR) detection is of great interest to enhance our ability to gather information from a scene. Filtering is a low-cost alternative to the complex multispectral device architectures to which the IR community has devoted much attention. Multilayer dielectric filters are standard in industry, but they require changing the thickness of at least one layer to tune the wavelength. Here, we pursue an approach based on apertures in a metallic layer of fixed thickness, in which the filtered wavelengths are selected by varying the aperture geometry. In particular, we study filters made of at least one sheet of resonating apertures in metal embedded in dielectrics. We will discuss two interesting problems that arise when one attempts to design such filters. First, metallic absorption must be taken into account. Second, the form and size of the pattern is limited by lithography. We will present some design examples and an attempt at explaining the filtering behavior based on the temporal coupled mode theory. That theory models the filter as a resonator interacting with the environment via loss channels. The transmission is solely determined by the loss rates associated with those channels. This model allows us to give a general picture of the filtering performance and compare their characteristics at different wavelength bands.

  15. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  16. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  17. HIGH-ENERGY ELECTRON IRRADIATION OF INTERSTELLAR CARBONACEOUS DUST ANALOGS: COSMIC-RAY EFFECTS ON THE CARRIERS OF THE 3.4 μ m ABSORPTION BAND

    SciTech Connect

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less

  18. Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Crewell, Susanne; Löhnert, Ulrich; Simmer, Clemens; Miao, Jungang

    2015-06-01

    This study analyzes the effects of atmospheric absorption and emission on the polarization difference (PD) and brightness temperature (TB) generated by horizontally oriented snow particles. A three-layer plane-parallel atmosphere model is used in conjunction with a simplified radiative transfer (RT) scheme to illustrate the combined effects of dichroic and nondichroic media on microwave signatures observed by ground-based and spaceborne sensors. Based on idealized scenarios which encompass a dichroic snow layer and adjacent nondichroic layers composed of supercooled liquid water (SCLW) droplets and water vapor, we demonstrate that the presence of atmospheric absorption/emission enhances TB and damps PD when observed from the ground. From a spaceborne perspective, however, TB can be reduced or enhanced by an absorbing/emitting layer above the snow layer, while a strong absorbing/emitting layer below the dichroic snow layer may even enhance PD. The induced PD and TB, which rely on snow microphysical assumptions, can vary up to 2 K and 10 K, respectively, due to the temperature-dependent absorption of SCLW. RT calculations based on 223 snowfall profiles selected from European Centre for Medium-Range Weather Forecasts data sets indicate that the existence of SCLW has a noticeable impact on PD and TB at three window frequencies (150 GHz, 243 GHz, and 664 GHz) during snowfall. Our results imply that while polarimetric channels at the three window channels have the potential for snowfall characterization, accurate information on liquid water is required to correctly interpret the polarimetric observations.

  19. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide.

    PubMed

    Thurmond, Kyle; Loparo, Zachary; Partridge, William; Vasu, Subith S

    2016-06-01

    A sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3-5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics of the LED emissions. Measurements of CO and CO2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring. © The Author(s) 2016.

  20. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  1. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  2. Early Breast Cancer Detection by Ultrawide Band Imaging with Dispersion Consideration

    NASA Astrophysics Data System (ADS)

    Xiao, Xia; Kikkawa, Takamaro

    2008-04-01

    Ultrawide band (UWB) microwave imaging is a promising method for early-stage breast cancer detection based on the large contrast of electric parameters between the tumor and the normal breast tissue. The tumor can be detected by analyzing the reflection and scattering behavior of the UWB microwave propagating in the breast. In this study, the tumor location is determined by comparing the waveforms resulted from the tumor-containing and tumor-free breasts. The frequency dispersive characteristics of the fatty breast tissue, skin and tumor are considered in the study to approach the actual electrical properties of the breast. The correct location and size are visualized for an early-stage tumor embedded in the breast using the principle of a confocal microwave imaging technique.

  3. Reflectance-based skin detection in the short wave infrared band and its application to video

    NASA Astrophysics Data System (ADS)

    Langston, Tye

    2016-10-01

    Robust reflectance-based skin detection is a potentially powerful tool for security and search and rescue applications, especially when applied to video. However, to be useful it must be able to account for the variations of human skin, as well as other items in the environment that could cause false detections. This effort focused on identifying a robust skin detection scheme that is appropriate for video application. Skin reflectance was modeled to identify unique skin features and compare them to potential false positive materials. Based on these comparisons, specific wavelength bands were selected and different combinations of two and three optical filters were used for actively identifying skin, as well as identifying and removing potential false positive materials. One wavelength combination (1072/1250 nm) was applied to video using both single- and dual-camera configurations based on its still image performance, as well as its appropriateness for video application. There are several important factors regarding the extension of still image skin detection to video, including light available for detection (solar irradiance and reflectance intensity), overall intensity differences between different optical filters, optical component light loss, frame rate, time lag when switching between filters, image coregistration, and camera auto gain behavior.

  4. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions.

    PubMed

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Michaelian, Kirk H

    2017-04-01

    The determination of small absorption coefficients of trace gases in the atmosphere constitutes a challenge for analytical air contaminant measurements, especially in the presence of strongly absorbing backgrounds. A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) method was developed to suppress the coherent external noise and spurious photoacoustic (PA) signals caused by strongly absorbing backgrounds. The infrared absorption spectra of acetylene (C2H2) and local air were used to verify the performance of the step-scan DFTIR-PAS method. A linear amplitude response to C2H2 concentrations from 100 to 5000 ppmv was observed, leading to a theoretical detection limit of 5 ppmv. The differential mode was capable of eliminating the coherent noise and dominant background gas signals, thereby revealing the presence of the otherwise hidden C2H2 weak absorption. Thus, the step-scan DFTIR-PAS modality was demonstrated to be an effective approach for monitoring weakly absorbing gases with absorption bands overlapped by strongly absorbing background species.

  5. [Value of narrow band imaging endoscopy in detection of early laryngeal squamous cell carcinoma].

    PubMed

    Staníková, L; Kučová, H; Walderová, R; Zeleník, K; Šatanková, J; Komínek, P

    2015-01-01

    Narrow band imaging (NBI) is an endoscopic method using filtered wavelengths in detection of microvascular abnormalities associated with preneoplastic and neoplastic changes of the mucosa. The aim of the study is to evaluate the value of NBI endoscopy in the dia-gnosis of laryngeal precancerous and early stages of cancerous lesions and to investigate impact of NBI method in prehistological diagnostics in vivo. One hundred patients were enrolled in the study and their larynx was investigated using white light HD endoscopy and narrow band imaging between 6/ 2013- 10/ 2014. Indication criteria included chronic laryngitis, hoarseness for more than three weeks or macroscopic laryngeal lesion. Features of mucosal lesions were evaluated by white light endoscopy and afterwards were compared with intra-epithelial papillary capillary loop changes, viewed using NBI endoscopy. Suspicious lesions (leukoplakia, exophytic tumors, recurrent respiratory papillomatosis and/ or malignant type of vascular network by NBI endoscopy) were evaluated by histological analysis, results were compared with prehistological NBI dia-gnosis. Using NBI endoscopy, larger demarcation of pathological mucosal features than in white light visualization were recorded in 32/ 100 (32.0%) lesions, in 4/ 100 (4.0%) cases even new lesions were detected only by NBI endoscopy. 63/ 100 (63.0%) suspected lesions were evaluated histologically -  malign changes (carcinoma in situ or invasive carcinoma) were observed in 25/ 63 (39.7%). Prehistological diagnostics of malignant lesions using NBI endoscopy were in agreement with results of histological examination in 23/ 25 (92.0%) cases. The sensitivity of NBI in detecting malignant lesions was 89.3%, specificity of this method was 94.9%. NBI endoscopy is a promising optical technique enabling in vivo differentiation of superficial neoplastic lesions. These results suggest endoscopic NBI may be useful in the early detection of laryngeal cancer and precancerous

  6. Temporal intracavity detection of parasitic infrared absorption in Ti:Sapphire lasers

    NASA Astrophysics Data System (ADS)

    Deleva, A. D.; Peshev, Z. Y.; Aneva, Z. I.

    1993-12-01

    An intracavity technique with temporal sensitivity to optical losses is used to detect parasitic infrared absorption (PIRA) in Ti:sapphire crystals with high active-center concentrations. By means of comparative analysis, re-emission is established of part of the parasitically absorbed energy back into the laser action channel. A method is proposed for approximate quantitative determination of the relative part of re-emitting PIRA-centers with respect to their total number; for the highly-doped crystal described, it is estimated at about 11%.

  7. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence.

    PubMed

    Exline, David L; Wallace, Christie; Roux, Claude; Lennard, Chris; Nelson, Matthew P; Treado, Patrick J

    2003-09-01

    Chemical imaging technology is a rapid examination technique that combines molecular spectroscopy and digital imaging, providing information on morphology, composition, structure, and concentration of a material. Among many other applications, chemical imaging offers an array of novel analytical testing methods, which limits sample preparation and provides high-quality imaging data essential in the detection of latent fingerprints. Luminescence chemical imaging and visible absorbance chemical imaging have been successfully applied to ninhydrin, DFO, cyanoacrylate, and luminescent dye-treated latent fingerprints, demonstrating the potential of this technology to aid forensic investigations. In addition, visible absorption chemical imaging has been applied successfully to visualize untreated latent fingerprints.

  8. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application.

  9. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  10. Next-generation narrow band imaging system for colonic polyp detection: a prospective multicenter randomized trial.

    PubMed

    Horimatsu, Takahiro; Sano, Yasushi; Tanaka, Shinji; Kawamura, Takuji; Saito, Shoichi; Iwatate, Mineo; Oka, Shiro; Uno, Koji; Yoshimura, Kenichi; Ishikawa, Hideki; Muto, Manabu; Tajiri, Hisao

    2015-07-01

    Previous studies have yielded conflicting results on the colonic polyp detection rate with narrow-band imaging (NBI) compared with white-light imaging (WLI). We compared the mean number of colonic polyps detected per patient for NBI versus WLI using a next-generation NBI system (EVIS LUCERA ELITE; Olympus Medical Systems) used with standard-definition (SD) colonoscopy and wide-angle (WA) colonoscopy. this study is a 2 × 2 factorial, prospective, multicenter randomized controlled trial. this study was conducted at five academic centers in Japan. patients were allocated to one of four groups: (1) WLI with SD colonoscopy (H260AZI), (2) NBI with SD colonoscopy (H260AZI), (3) WLI with WA colonoscopy (CF-HQ290), and (4) NBI with WA colonoscopy (CF-HQ290). the mean numbers of polyps detected per patient were compared between the four groups: WLI with/without WA colonoscopy and NBI with/without WA colonoscopy. Of the 454 patients recruited, 431 patients were enrolled. The total numbers of polyps detected by WLI with SD, NBI with SD, WLI with WA, and NBI with WA were 164, 176, 188, and 241, respectively. The mean number of polyps detected per patient was significantly higher in the NBI group than in the WLI group (2.01 vs 1.56; P = 0.032). The rate was not higher in the WA group than in the SD group (1.97 vs 1.61; P = 0.089). Although WA colonoscopy did not improve the polyp detection, next-generation NBI colonoscopy represents a significant improvement in the detection of colonic polyps.

  11. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    PubMed

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  12. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting

    NASA Astrophysics Data System (ADS)

    Li, Kexue; Liu, Lei; Yu, Peter Y.; Chen, Xiaobo; Shen, D. Z.

    2016-05-01

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  13. Use of narrow-band imaging bronchoscopy in detection of lung cancer.

    PubMed

    Zaric, Bojan; Perin, Branislav

    2010-05-01

    Narrow-band imaging (NBI) is a new endoscopic technique designed for detection of pathologically altered submucosal and mucosal microvascular patterns. The combination of magnification videobronchoscopy and NBI showed great potential in the detection of precancerous and cancerous lesions of the bronchial mucosa. The preliminary studies confirmed supremacy of NBI over white-light videobronchoscopy in the detection of premalignant and malignant lesions. Pathological patterns of capillaries in bronchial mucosa are known as Shibuya's descriptors (dotted, tortuous and abrupt-ending blood vessels). Where respiratory endoscopy is concerned, the NBI is still a 'technology in search of proper indication'. More randomized trials are necessary to confirm the place of NBI in the diagnostic algorithm, and more trials are needed to evaluate the relation of NBI to autofluorescence videobronchoscopy and to white-light magnification videobronchoscopy. Considering the fact that NBI examination of the tracheo-bronchial tree is easy, reproducible and clear to interpret, it is certain that NBI videobronchoscopy will play a significant role in the future of lung cancer detection and staging.

  14. Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band

    NASA Astrophysics Data System (ADS)

    Humphries, Seth David

    Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.

  15. Multi-species detection using multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.

    2013-06-01

    The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.

  16. Differences in Error Detection Skills by Band and Choral Preservice Teachers

    ERIC Educational Resources Information Center

    Stambaugh, Laura A.

    2016-01-01

    Band and choral preservice teachers (N = 44) studied band and choral scores, listened to recordings of school ensembles, and identified errors in the recordings. Results indicated that preservice teachers identified significantly more errors when listening to recordings of their primary area (band majors listening to band, p = 0.045; choral majors…

  17. Improving Nocturnal Fire Detection with the VIIRS Day-Night Band

    NASA Technical Reports Server (NTRS)

    Polivka, Thomas N.; Wang, Jun; Ellison, Luke T.; Hyer, Edward J.; Ichoku, Charles M.

    2016-01-01

    Building on existing techniques for satellite remote sensing of fires, this paper takes advantage of the day-night band (DNB) aboard the Visible Infrared Imaging Radiometer Suite (VIIRS) to develop the Firelight Detection Algorithm (FILDA), which characterizes fire pixels based on both visible-light and infrared (IR) signatures at night. By adjusting fire pixel selection criteria to include visible-light signatures, FILDA allows for significantly improved detection of pixels with smaller and/or cooler subpixel hotspots than the operational Interface Data Processing System (IDPS) algorithm. VIIRS scenes with near-coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined after applying the operational VIIRS fire product algorithm and including a modified "candidate fire pixel selection" approach from FILDA that lowers the 4-µm brightness temperature (BT) threshold but includes a minimum DNB radiance. FILDA is shown to be effective in detecting gas flares and characterizing fire lines during large forest fires (such as the Rim Fire in California and High Park fire in Colorado). Compared with the operational VIIRS fire algorithm for the study period, FILDA shows a large increase (up to 90%) in the number of detected fire pixels that can be verified with the finer resolution ASTER data (90 m). Part (30%) of this increase is likely due to a combined use of DNB and lower 4-µm BT thresholds for fire detection in FILDA. Although further studies are needed, quantitative use of the DNB to improve fire detection could lead to reduced response times to wildfires and better estimate of fire characteristics (smoldering and flaming) at night.

  18. Shadow Detection from Very High Resoluton Satellite Image Using Grabcut Segmentation and Ratio-Band Algorithms

    NASA Astrophysics Data System (ADS)

    Kadhim, N. M. S. M.; Mourshed, M.; Bray, M. T.

    2015-03-01

    Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of

  19. Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection

    NASA Astrophysics Data System (ADS)

    Erener, A.

    2013-04-01

    Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all

  20. Detection of blueshifted emission and absorption and a relativistic iron line in the X-ray spectrum of ESO323-G077

    NASA Astrophysics Data System (ADS)

    Jiménez-Bailón, E.; Krongold, Y.; Bianchi, S.; Matt, G.; Santos-Lleó, M.; Piconcelli, E.; Schartel, N.

    2008-12-01

    We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 × 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at ~6.7 and ~7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of ~25°. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and

  1. Polyp detection rates using magnification with narrow band imaging and white light.

    PubMed

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-05-16

    To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other's findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ(2) test and means were compared using the Student's t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for adenomas). Miss rate of

  2. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  3. Automatic detection of aflatoxin contaminated corn kernels using dual-band imagery

    NASA Astrophysics Data System (ADS)

    Ononye, Ambrose E.; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Cleveland, Thomas E.

    2009-05-01

    Aflatoxin is a mycotoxin predominantly produced by Aspergillus flavus and Aspergillus parasitiucus fungi that grow naturally in corn, peanuts and in a wide variety of other grain products. Corn, like other grains is used as food for human and feed for animal consumption. It is known that aflatoxin is carcinogenic; therefore, ingestion of corn infected with the toxin can lead to very serious health problems such as liver damage if the level of the contamination is high. The US Food and Drug Administration (FDA) has strict guidelines for permissible levels in the grain products for both humans and animals. The conventional approach used to determine these contamination levels is one of the destructive and invasive methods that require corn kernels to be ground and then chemically analyzed. Unfortunately, each of the analytical methods can take several hours depending on the quantity, to yield a result. The development of high spectral and spatial resolution imaging sensors has created an opportunity for hyperspectral image analysis to be employed for aflatoxin detection. However, this brings about a high dimensionality problem as a setback. In this paper, we propose a technique that automatically detects aflatoxin contaminated corn kernels by using dual-band imagery. The method exploits the fluorescence emission spectra from corn kernels captured under 365 nm ultra-violet light excitation. Our approach could lead to a non-destructive and non-invasive way of quantifying the levels of aflatoxin contamination. The preliminary results shown here, demonstrate the potential of our technique for aflatoxin detection.

  4. Adaptive Enhancement of X-Band Marine Radar Imagery to Detect Oil Spill Segments

    PubMed Central

    Liu, Peng; Li, Ying; Xu, Jin; Zhu, Xueyuan

    2017-01-01

    Oil spills generate a large cost in environmental and economic terms. Their identification plays an important role in oil-spill response. We propose an oil spill detection method with improved adaptive enhancement on X-band marine radar systems. The radar images used in this paper were acquired on 21 July 2010, from the teaching-training ship “YUKUN” of the Dalian Maritime University. According to the shape characteristic of co-channel interference, two convolutional filters are used to detect the location of the interference, followed by a mean filter to erase the interference. Small objects, such as bright speckles, are taken as a mask in the radar image and improved by the Fields-of-Experts model. The region marked by strong reflected signals from the sea’s surface is selected to identify oil spills. The selected region is subject to improved adaptive enhancement designed based on features of radar images. With the proposed adaptive enhancement technique, calculated oil spill detection is comparable to visual interpretation in accuracy. PMID:29036892

  5. Dust and Diffuse Interstellar Bands in the za = 0.524 Absorption System toward AO 0235+164

    NASA Astrophysics Data System (ADS)

    Junkkarinen, V. T.; Cohen, Ross D.; Beaver, E. A.; Burbidge, E. M.; Lyons, R. W.; Madejski, G.

    2004-10-01

    We present new Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) NUV-MAMA and STIS CCD observations of the BL Lac object AO 0235+164 and the intervening damped Lyα (DLA) line at za=0.524. The line profile gives N(HI)=(5+/-1)×1021 cm-2 and, combined with the H I 21 cm absorption data, leads to a spin temperature of Ts=220+/-60 K. Those spectra also show a strong, broad feature at the expected position of the 2175 Å graphitic dust feature at za=0.524. Assuming a Galactic-type dust extinction curve at za=0.524 gives a dust-to-gas ratio of 0.19 times the Galactic value, but the fit, assuming that the underlying, unreddened spectrum is a single power law, is poor in the far-UV. A dust-to-gas ratio of 0.19 times the Galactic value is similar to the LMC, but the AO 0235+164 spectrum does not fit either the LMC extinction curve or the SMC extinction curve (which has practically no 2175 Å feature). A possible interpretation includes dust similar to that in the Galaxy, but with fewer of the small particles that produce the far-UV extinction. The metallicity of the za=0.524 absorber, estimated from the observed N(HI) and excess X-ray absorption (beyond Galactic) derived from contemporaneous and archival ASCA and ROSAT X-ray data, is Z=0.72+/-0.28 Zsolar, implying in turn a dust-to-metals ratio of 0.27 times the Galactic value. If the dust mass density is the same in the za=0.524 DLA system as in our Galaxy, only 14% (+/-6%) of the metals (by mass) are in dust, compared to 51%, 36%, and 46% for the Galaxy, LMC, and SMC, respectively. Such a dusty za=0.524 AO 0235+164 absorption system is a good example of the kind of DLA system that will be missed because of selection effects, which in turn can bias the measurement of the comoving density of interstellar gas (in units of the closure density), Ωg, as a function of z. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by

  6. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection.

    PubMed

    Maier, Irene; Morgan, Michael R A; Lindner, Wolfgang; Pittner, Fritz

    2008-04-15

    An optical immunochip biosensor has been developed as a rapid method for allergen detection in complex food matrixes, and its application evaluated for the detection of the egg white allergens, ovalbumin and ovomucoid. The optical near-field phenomenon underlying the basic principle of the sensor design is called resonance-enhanced absorption (REA), which utilizes gold nanoparticles (Au NPs) as signal transducers in a highly sensitive interferometric setup. Using this approach, a novel, simple, and rapid colorimetric solid-phase immunoassay on a planar chip substrate was realized in direct and sandwich assay formats, with a detection system that does not require any instrumentation for readout. Semiquantitative immunochemical responses are directly visible to the naked eye of the analyst. The biosensor shows concentration-dependent color development by capturing antibody-functionalized Au NPs on allergen-coated chips and has a detection limit of 1 ng/mL. To establish a rapid method, we took advantage of the physicochemical microenvironment of the Au NP-antibody bioconjugate to be bound directly over an interacting poly(styrene-methyl methacrylate) interlayer by an immobilized antigen. In the direct assay format, a coating time with allergen of only 5 min under "soft" nondenaturing conditions was sufficient for accurate reproducibility and sensitivity. In conclusion, the REA-based immunochip sensor is easy to fabricate, is reproducible and selective in its performance, has minimal technical requirements, and will enable high-throughput screening of affinity binding interactions in technological and medical applications.

  7. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.

    PubMed

    Sobuś, Jan; Ziółek, Marcin

    2014-07-21

    A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.

  8. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices.

    PubMed

    Wang, Wenyan; Hao, Yuying; Cui, Yanxia; Tian, Ximin; Zhang, Ye; Wang, Hua; Shi, Fang; Wei, Bin; Huang, Wei

    2014-03-10

    Metal nanogratings as one of the promising architectures for effective light trapping in organic photovoltaics (OPVs) have been actively studied over the past decade. Here we designed a novel metal nanowall grating with ultra-small period and ultra-high aspect-ratio as the back electrode of the OPV device. Such grating results in the strong hot spot effect in-between the neighboring nanowalls and the localized surface plasmon effect at the corners of nanowalls. These combined effects make the integrated absorption efficiency of light over the wavelength range from 400 to 650 nm in the active layer for the proposed structure, with respect to the equivalent planar structure, increases by 102% at TM polarization and by 36.5% at the TM/TE hybrid polarization, respectively. Moreover, it is noted that the hot spot effect in the proposed structure is more effective for ultra-thin active layers, which is very favorable for the exciton dissociation and charge collection. Therefore such a nanowall grating is expected to improve the overall performance of OPV devices.

  9. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    NASA Astrophysics Data System (ADS)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  10. CHANDRA Detects Relativistic Broad Absorption Lines from APM 08279+5255

    NASA Astrophysics Data System (ADS)

    Chartas, G.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.

    2002-11-01

    We report the discovery of X-ray broad absorption lines (BALs) from the BAL quasar APM 08279+5255 originating from material moving at relativistic velocities with respect to the central source. The large flux magnification by a factor of ~100 provided by the gravitational lens effect combined with the large redshift (z=3.91) of the quasar have facilitated the acquisition of the first high signal-to-noise X-ray spectrum of a quasar containing X-ray BALs. Our analysis of the X-ray spectrum of APM 08279+5255 places the rest-frame energies of the two observed absorption lines at 8.1 and 9.8 keV. The detection of each of these lines is significant at a greater than 99.9% confidence level based on the F-test. Assuming that the absorption lines are from Fe XXV Kα, the implied bulk velocities of the X-ray BALs are ~0.2c and ~0.4c, respectively. The observed high bulk velocities of the X-ray BALs combined with the relatively short recombination timescales of the X-ray-absorbing gas imply that the absorbers responsible for the X-ray BALs are located at radii of <~2×1017 cm, within the expected location of the UV absorber. With this implied geometry, the X-ray gas could provide the necessary shielding to prevent the UV absorber from being completely ionized by the central X-ray source, consistent with hydrodynamical simulations of line-driven disk winds. Estimated mass-outflow rates for the gas creating the X-ray BALs are typically less than a solar mass per year. Our spectral analysis also indicates that the continuum X-ray emission of APM 08279+5255 is consistent with that of a typical radio-quiet quasar with a spectral slope of Γ=1.72+0.06-0.05.

  11. Detection of absorption lines in the spectra of X-ray bursts from X1608-52

    NASA Astrophysics Data System (ADS)

    Nakamura, Norio; Inoue, Hajime; Tanaka, Yasuo

    X-ray bursts from X 1608-52 were observed with the gas scintillation proportional counters on the Tenma satellite. Absorption features were detected in the spectra of three bursts among 17 bursts observed. These absorption features are consistent with a common absorption line at 4.1 keV. The energy and the properties of the absorption lines of the X 1608-52 bursts are very similar to those observed from the X 1636-53 bursts by Waki et al. (1984). Near equality of the absorption-line energies for X 1636-53 and X 1608-52 would imply that mass and radius of the neutron stars in these two systems are very similar to each other.

  12. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

    SciTech Connect

    Acosta, V. M.; Bauch, E.; Jarmola, A.

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 {mu}m{sup 3}, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nT{sub rms} at {approx}110 Hzmore » in one second of acquisition.« less

  14. Detection of a deep 3-microm absorption feature in the spectrum of Amalthea (JV).

    PubMed

    Takato, Naruhisa; Bus, Schelte J; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-24

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.

  15. Method of analyzing multiple sample simultaneously by detecting absorption and systems for use in such a method

    DOEpatents

    Yeung, Edward S.; Gong, Xiaoyi

    2004-09-07

    The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.

  16. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  17. Early stage breast cancer detection by means of time-domain ultra-wide band sensing

    NASA Astrophysics Data System (ADS)

    Zanoon, T. F.; Abdullah, M. Z.

    2011-11-01

    The interest in the use of ultra-wide band (UWB) impulses for medical imaging, particularly early stage breast cancer detection, is driven by safety advantage, super resolution capability, significant dielectric contrast between tumours and their surrounding tissues, patient convenience and low operating costs. However, inversion algorithms leading to recovery of the dielectric profile are complex in their nature, and vulnerable to noisy experimental conditions and environment. In this paper, we present a simplified yet robust gradient-based iterative image reconstruction technique to solve the nonlinear inverse scattering problem. The calculation is based on the Polak-Ribière's approach while the Broyden's formula is used to update the gradient in an iterative scheme. To validate this approach, both numerical and experimental results are presented. Animal derived biological targets in the form of chicken skin, beef and salted butter are used to construct an experimental breast phantom, while vegetable oil is used as a background media. UWB transceivers in the form of biconical antennas contour the breast forming a full view scanning geometry at a frequency range of 0-5 GHz. Results indicate the feasibility of experimental detection of millimetre scaled targets.

  18. LINE ABSORPTION OSCILLATOR STRENGTHS FOR THE c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) BANDS IN N{sub 2}

    SciTech Connect

    Lavin, C.; Velasco, A. M., E-mail: clavin@qf.uva.es

    Theoretical absorption oscillator strengths and emission branching ratios for rotational lines of the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) bands of molecular nitrogen are reported. The calculations have been performed with the molecular quantum defect orbital method, which has proved to be reliable in previous studies of rovibronic transitions in diatomic molecules. The strong interaction between c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) and b' {sup 1}{Sigma}{sup +}{sub u}(10) states has been analyzed through an interaction matrix that includes rotational terms. Owing to the perturbation, the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0), c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{supmore » +}{sub g}(1), and c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(5) bands are not weak, in contrast to what would be expected on the basis of the Franck-Condon principle. Moreover, the intensity distribution of the rotational lines within each of the vibronic bands deviates from considerations based on Hoenl-London factors. In this work, we provide data that may be useful to interpret spectra from atmospheres of the Earth, Titan, and Triton, in which transitions from the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) level have been detected.« less

  19. Narrow Band Imaging Enhances the Detection Rate of Penetration and Aspiration in FEES.

    PubMed

    Nienstedt, Julie C; Müller, Frank; Nießen, Almut; Fleischer, Susanne; Koseki, Jana-Christiane; Flügel, Till; Pflug, Christina

    2017-06-01

    Narrow band imaging (NBI) is widely used in gastrointestinal, laryngeal, and urological endoscopy. Its original purpose was to visualize vessels and epithelial irregularities. Based on our observation that adding NBI to common white light (WL) improves the contrast of the test bolus in fiberoptic endoscopic evaluation of swallowing (FEES), we now investigated the potential value of NBI in swallowing disorders. 148 FEES images were analyzed from 74 consecutive patients with swallowing disorders, including 74 with and 74 without NBI. All images were evaluated by four dysphagia specialists. Findings were classified according to Rosenbek's penetration-aspiration scale modified for evaluating these FEES images. Intra- and inter-rater reliability was determined as well as observer confidence. A better visualization of the bolus is the main advantage of NBI in FEES. This generally leads to sharper optical contrasts and better detection of small bolus quantities. Accordingly, NBI enhances the detection rate of penetration and aspiration. On average, identification of laryngeal penetration increased from 40 to 73% and of aspiration from 13 to 24% (each p < 0.01) of patients. In contrast to WL alone, the use of NBI also markedly increased the inter- and intra-rater reliability (p < 0.01) and the rating confidence of all experts (p < 0.05). NBI is an easy and cost-effective tool simplifying dysphagia evaluation and shortening FEES evaluation time. It leads to a markedly higher detection rate of pathological findings. The significantly better intra- and inter-rater reliability argues further for a better overall reproducibly of FEES interpretation.

  20. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 μm quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying

    2017-10-01

    Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution

  1. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    PubMed

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  2. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  4. An approach to detect afterslips in giant earthquakes in the normal-mode frequency band

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Ji, Chen; Igarashi, Mitsutsugu

    2012-08-01

    An approach to detect afterslips in the source process of giant earthquakes is presented in the normal-mode frequency band (0.3-2.0 mHz). The method is designed to avoid a potential systematic bias problem in the determination of earthquake moment by a typical normal-mode approach. The source of bias is the uncertainties in Q (modal attenuation parameter) which varies by up to about ±10 per cent among published studies. A choice of Q values within this range affects amplitudes in synthetic seismograms significantly if a long time-series of about 5-7 d is used for analysis. We present an alternative time-domain approach that can reduce this problem by focusing on a shorter time span with a length of about 1 d. Application of this technique to four recent giant earthquakes is presented: (1) the Tohoku, Japan, earthquake of 2011 March 11, (2) the 2010 Maule, Chile earthquake, (3) the 2004 Sumatra-Andaman earthquake and (4) the Solomon earthquake of 2007 April 1. The Global Centroid Moment Tensor (GCMT) solution for the Tohoku earthquake explains the normal-mode frequency band quite well. The analysis for the 2010 Chile earthquake indicates that the moment is about 7-10 per cent higher than the moment determined by its GCMT solution but further analysis shows that there is little evidence of afterslip; the deviation in moment can be explained by an increase of the dip angle from 18° in the GCMT solution to 19°. This may be a simple trade-off problem between the moment and dip angle but it may also be due to a deeper centroid in the normal-mode frequency band data, as a deeper source could have steeper dip angle due to changes in geometry of the Benioff zone. For the 2004 Sumatra-Andaman earthquake, the five point-source solution by Tsai et al. explains most of the signals but a sixth point-source with long duration improves the fit to the normal-mode frequency band data. The 2007 Solomon earthquake shows that the high-frequency part of our analysis (above 1 mHz) is

  5. First Results of Exoplanet Observations with the Gran Telescopio Canarias: Narrow-Band Transit Photometry Capable of Detecting Super-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.

    2010-01-01

    We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  6. Vibrational Spectrum of Matrix-isolated Propargyl Radical HCCCH2: Detection of nu8 and Overtone Bands

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Sander, S. P.; Ellison, G. B.; Stanton, J. F.

    2010-04-01

    Infrared (IR) absorption spectra of matrix-isolated propargyl radical have been measured. The CH2CCH ˜X 2B1 out-of-plane bending mode (ν8) at 378 (±2) cm-1, along with several overtone and combination modes have been detected for the first time.

  7. Modeled and Empirical Approaches for Retrieving Columnar Water Vapor from Solar Transmittance Measurements in the 0.72, 0.82, and 0.94 Micrometer Absorption Bands

    NASA Technical Reports Server (NTRS)

    Ingold, T.; Schmid, B.; Maetzler, C.; Demoulin, P.; Kaempfer, N.

    2000-01-01

    A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996-1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18-29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4. and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the ITS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the sun photometers (SPM) with the ITS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.

  8. Band-Moment Compression of AVIRIS Hyperspectral Data and its Use in the Detection of Vegetation Stress

    NASA Technical Reports Server (NTRS)

    Estep, L.; Davis, B.

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test farm at Shelton, Nebraska. An experimental field was set off in plots that were differentially treated with anhydrous ammonia. Four replicates of 0-kg/ha to 200-kg/ha plots, in 50-kg/ha increments, were set out in a random block design. Low-altitude (GSD of 3 m) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data were collected over the site in 224 bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to reduce data load while maintaining or enhancing algorithm performance for vegetation stress detection, band-moment compression and analysis was applied to the AVIRIS image cube. The results indicated that band-moment techniques compress the AVIRIS dataset significantly while retaining the capability of detecting environmentally induced vegetation stress.

  9. Detection of hail signatures from single-polarization C-band radar reflectivity

    NASA Astrophysics Data System (ADS)

    Kunz, Michael; Kugel, Petra I. S.

    2015-02-01

    Five different criteria that estimate hail signatures from single-polarization radar data are statistically evaluated over a 15-year period by categorical verification against loss data provided by a building insurance company. The criteria consider different levels or thresholds of radar reflectivity, some of them complemented by estimates of the 0 °C level or cloud top temperature. Applied to reflectivity data from a single C-band radar in southwest Germany, it is found that all criteria are able to reproduce most of the past damage-causing hail events. However, the criteria substantially overestimate hail occurrence by up to 80%, mainly due to the verification process using damage data. Best results in terms of highest Heidke Skill Score HSS or Critical Success Index CSI are obtained for the Hail Detection Algorithm (HDA) and the Probability of Severe Hail (POSH). Radar-derived hail probability shows a high spatial variability with a maximum on the lee side of the Black Forest mountains and a minimum in the broad Rhine valley.

  10. A W-Band MMIC Radar System for Remote Detection of Vital Signs

    NASA Astrophysics Data System (ADS)

    Diebold, Sebastian; Ayhan, Serdal; Scherr, Steffen; Massler, Hermann; Tessmann, Axel; Leuther, Arnulf; Ambacher, Oliver; Zwick, Thomas; Kallfass, Ingmar

    2012-12-01

    In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75-110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.

  11. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III

    1983-01-01

    The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.

  12. Verification and Enhancement of VIIRS Day-Night Band Power Outage Detection Product

    NASA Astrophysics Data System (ADS)

    Burke, A.; Schultz, L. A.; Omitaomu, O.; Molthan, A.; Cole, T.; Griffin, R.

    2017-12-01

    The NASA SPoRT (Short-term Prediction Research and Transition) Center has collaborated with scientists at NASA Goddard Space Flight Center to create a power outage detection product from radiance data obtained by the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor aboard the Suomi-NPP satellite. This product uses a composite of pre-event radiance values from the VIIRS Day-Night Band to establish a baseline of "normal" nighttime lights for a study area. Then, after a severe weather event or other disaster, post-event images are compared to the composite to generate a percent-of-normal radiance product to identify areas that are experiencing outages and to aid in disaster response and monitor recovery. This project will use ground-truth county-level outage data provided by Oak Ridge National Laboratory (ORNL) in order validate the product and to establish a percent-of-normal threshold for identifying power outages. Once a threshold is found, ORNL's LandScan Global population data will be combined with the product to estimate how many electrical customers are being affected by power outages after a disaster. Two case studies will be explored to examine power outage recovery after severe weather events, including Hurricane Matthew from 2016 and the Washington D.C. Derecho event of 2012.

  13. Sleep Apnea Detection Based on Thoracic and Abdominal Movement Signals of Wearable Piezo-Electric Bands.

    PubMed

    Lin, Yin-Yan; Wu, Hau-Tieng; Hsu, Chi-An; Huang, Po-Chiun; Huang, Yuan-Hao; Lo, Yu-Lun

    2016-12-07

    Physiologically, the thoracic (THO) and abdominal (ABD) movement signals, captured using wearable piezo-electric bands, provide information about various types of apnea, including central sleep apnea (CSA) and obstructive sleep apnea (OSA). However, the use of piezo-electric wearables in detecting sleep apnea events has been seldom explored in the literature. This study explored the possibility of identifying sleep apnea events, including OSA and CSA, by solely analyzing one or both the THO and ABD signals. An adaptive non-harmonic model was introduced to model the THO and ABD signals, which allows us to design features for sleep apnea events. To confirm the suitability of the extracted features, a support vector machine was applied to classify three categories - normal and hypopnea, OSA, and CSA. According to a database of 34 subjects, the overall classification accuracies were on average 75.9%±11.7% and 73.8%±4.4%, respectively, based on the cross validation. When the features determined from the THO and ABD signals were combined, the overall classification accuracy became 81.8%±9.4%. These features were applied for designing a state machine for online apnea event detection. Two event-byevent accuracy indices, S and I, were proposed for evaluating the performance of the state machine. For the same database, the S index was 84.01%±9.06%, and the I index was 77.21%±19.01%. The results indicate the considerable potential of applying the proposed algorithm to clinical examinations for both screening and homecare purposes.

  14. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    NASA Astrophysics Data System (ADS)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  15. Is actinometry reliable for monitoring Si and silicone halides produced in silicon etching plasmas? A comparison with their absolute densities measured by UV broad band absorption

    NASA Astrophysics Data System (ADS)

    Kogelschatz, M.; Cunge, G.; Sadeghi, N.

    2006-03-01

    SiCl{x} radicals, the silicon etching by-products, are playing a major role in silicon gate etching processes because their redeposition on the wafer leads to the formation of a SiOCl{x} passivation layer on the feature sidewalls, which controls the final shape of the etching profile. These radicals are also the precursors to the formation of a similar layer on the reactor walls, leading to process drifts. As a result, the understanding and modelling of these processes rely on the knowledge of their densities in the plasma. Actinometry technique, based on optical emission, is often used to measure relative variations of the density of the above mentioned radicals, even if it is well known that the results obtained with this technique might not always be reliable. To determine the validity domain of actinometry in industrial silicon-etching high density plasmas, we measure the RF source power and pressure dependences of the absolute densities of SiCl{x} (x=0{-}2), SiF and SiBr radicals, deduced from UV broad band absorption spectroscopy. These results are compared to the evolution of the corresponding actinometry signals from these radicals. It is shown that actinometry predicts the global trends of the species density variations when the RF power is changed at constant pressure (that is to say when only the electron density changes) but it completely fails if the gas pressure, hence the electron temperature, changes.

  16. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band.

    PubMed

    Wainwright, P R

    2003-10-07

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.

  17. Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications

    SciTech Connect

    Terracciano, Anthony; Thurmond, Kyle; Villar, Michael

    As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less

  18. Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications

    DOE PAGES

    Terracciano, Anthony; Thurmond, Kyle; Villar, Michael; ...

    2018-03-12

    As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less

  19. Attosecond transient absorption probing of electronic superpositions of bound states in neon. Detection of quantum beats

    DOE PAGES

    Beck, Annelise R; Bernhardt, Birgitta; Warrick, Erika R.; ...

    2014-11-07

    Electronic wavepackets composed of multiple bound excited states of atomic neon lying between 19.6 and 21.5 eV are launched using an isolated attosecond pulse. Individual quantum beats of the wavepacket are detected by perturbing the induced polarization of the medium with a time-delayed few-femtosecond near-infrared (NIR) pulse via coupling the individual states to multiple neighboring levels. All of the initially excited states are monitored simultaneously in the attosecond transient absorption spectrum, revealing Lorentzian to Fano lineshape spectral changes as well as quantum beats. The most prominent beating of the several that were observed was in the spin–orbit split 3d absorptionmore » features, which has a 40 femtosecond period that corresponds to the spin–orbit splitting of 0.1 eV. The few-level models and multilevel calculations confirm that the observed magnitude of oscillation depends strongly on the spectral bandwidth and tuning of the NIR pulse and on the location of possible coupling states.« less

  20. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  1. Application of tunable diode laser absorption spectroscopy in the detection of oxygen

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jin, Xing

    2015-10-01

    Most aircrafts is driven by chemic energy which is released in the combustion process. For improving the capability of engine and controlling the running on-time, the processes of fuel physics and chemistry need to be analysis by kinds of high quality sensor. In the research of designing and improving the processes of fuel physics and chemistry, the concentration, temperature and velocity of kinds of gas in the combustor need to be detected and measured. In addition, these engines and research equipments are always in the harsh environment of high temperature, high pressure and high speed. The harsh environment needs the sensor to be high reliability, well repetition, no cross- sensitivity between gases, and the traditional measurement system can't satisfy the metrical requirement well. Tunable diode laser absorption spectroscopy (TDLAS) analytic measurement technology can well satisfy the measurement in the harsh environment, which can support the whole measurement plan and high quality measurement system. Because the TDLAS sensor has the excellence of small bulk, light weight, high reliability and well specifically measurement, the TDLAS measurement technology has wide prospects. Different from most measurements, only a beam of laser can be pass through the measured environment by TDLAS, and the measurement equipment needn't be set in the harsh environment. So, the TDLAS equipment can't be interrupted by the measured equipment. The ability of subsistence in the harsh environment is very valuable, especially in the measurement on the subject of aerospace with environment of high speed, combustion and plasma. This paper focuses on the collecting the articles on the subject of oxygen detection of TDLAS. By analyzing the research and results of the articles, we conclude the central issues, difficulties and results. And we can get some instructive conclusions.

  2. X- and Q-band EPR studies on fine powders of irradiated plants. New approach for detection of their radiation history by using Q-band EPR spectrometry

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Aleksieva, Katerina

    2004-01-01

    X- and Q-band EPR studies after γ-irradiation of some dry spices and aromatic herbs are reported. Before irradiation all samples show only one singlet line in X-band EPR, whereas the Q-band EPR spectrum of the same samples is a superposition of two individual spectra—one corresponding to the above EPR signal, with an anisotropic spectrum, and a second one consisting of six lines due to the Mn 2+ naturally present in plants. The radiation induced EPR signal due to cellulose free radicals was not detected after γ-irradiation, but only the increase of the natural signal present before the irradiation. The fading kinetic of this EPR signal was monitored in three cases—when samples were kept in plastic bags without any special conditioning after irradiation, when samples were covered with paraffin before irradiation and when samples were dried at 60°C for 1 h before irradiation. The studies show that stability of radiation induced EPR signals decreases in the order of: paraffin covered > heated before irradiation > kept at room conditions. The two EPR spectra in the Q-band—one with radiation dependent intensity and a second due to Mn 2+, which is radiation independent allow identification of previous radiation treatment based on the fact that Mn 2+ quantity in the sample is constant whereas the quantity of radiation-induced free radicals is temperature dependent. It was found that for irradiated samples the ratio between EPR intensity of the free radicals and that of Mn 2+ before and after heating decreases with 50-60% whereas for non-irradiated samples it is ca. 10-15%.

  3. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry

    USGS Publications Warehouse

    Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R.

    2008-01-01

    Interferometric processing of JERS-1 L-band Synthetic Aperture Radar (SAR) data acquired over south Florida during 1993-1996 reveals detectable surface changes in the Everglades wetlands. Although our study is limited to south Florida it has implication for other large-scale wetlands, because south Florida wetlands have diverse vegetation types and both managed and natural flow environments. Our analysis reveals that interferometric coherence level is sensitive to wetland vegetation type and to the interferogram time span. Interferograms with time spans less than six months maintain phase observations for all wetland types, allowing characterization of water level changes in different wetland environments. The most noticeable changes occur between the managed and the natural flow wetlands. In the managed wetlands, fringes are organized, follow patterns related to some of the managed water control structures and have high fringe-rate. In the natural flow areas, fringes are irregular and have a low fringe-rate. The high fringe rate in managed areas reflects dynamic water topography caused by high flow rate due to gate operation. Although this organized fringe pattern is not characteristic of most large-scale wetlands, the high level of water level change enables accurate estimation of the wetland InSAR technique, which lies in the range of 5-10??cm. The irregular and low rate fringe pattern in the natural flow area reflects uninterrupted flow that diffuses water efficiently and evenly. Most of the interferograms in the natural flow area show an elongated fringe located along the transitional zone between salt- and fresh-water wetlands, reflecting water level changes due to ocean tides. ?? 2007 Elsevier Inc. All rights reserved.

  4. Absorption and emission spectra of Li atoms trapped in rare gas matrices

    NASA Astrophysics Data System (ADS)

    Wright, J. J.; Balling, L. C.

    1980-10-01

    Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.

  5. The physics of heterodyne detection in the far-infrared: Transition from electric-field to photon-absorption detection in a simple system

    NASA Technical Reports Server (NTRS)

    Teich, M. C.

    1980-01-01

    The history of heterodyne detection is reviewed from the radiowave to the optical regions of the electromagnetic spectrum with emphasion the submillimeter/far infrared. The transition from electric field to photon absorption detection in a simple system is investigated. The response of an isolated two level detector to a coherent source of incident radiation is calculated for both heterodyne and video detection. When the processes of photon absorption and photon emission cannot be distinguished, the relative detected power at double- and sum-frequencies is found to be multiplied by a coefficient, which is less than or equal to unity, and which depends on the incident photon energy and on the effective temperature of the system.

  6. IUE's View of Callisto: Detection of an SO2 Absorption Correlated to Possible Torus Neutral Wind Alterations

    NASA Technical Reports Server (NTRS)

    Lane, Arthur L.; Domingue, Deborah L.

    1997-01-01

    Observations taken with the International Ultraviolet Explorer (IUE) detected a 0.28 micron absorption feature on Callisto's leading and Jupiter-facing hemispheres. This feature is similar to Europa's 0.28 micron feature, however it shows no correlation with magnetospheric ion bombardment. The strongest 0.28 micron signature is seen in the region containing the Valhalla impact. This absorption feature also shows some spatial correlation to possible neutral wind interactions, suggestive of S implantation (rather than S(sub x)) into Callisto's water ice surface, Indications of possible temporal variations (on the 10% level) are seen at other wavelengths between the 1984-1986 and the 1996 observations.

  7. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  8. Nonlinearity-aware 200  Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser.

    PubMed

    Zhang, Lu; Hong, Xuezhi; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Schatz, Richard; Guo, Changjian; Zhang, Junwei; Nordwall, Fredrik; Engenhardt, Klaus M; Westergren, Urban; Popov, Sergei; Jacobsen, Gunnar; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia

    2018-01-15

    We experimentally demonstrate the transmission of a 200 Gbit/s discrete multitone (DMT) at the soft forward error correction limit in an intensity-modulation direct-detection system with a single C-band packaged distributed feedback laser and traveling-wave electro absorption modulator (DFB-TWEAM), digital-to-analog converter and photodiode. The bit-power loaded DMT signal is transmitted over 1.6 km standard single-mode fiber with a net rate of 166.7 Gbit/s, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz. Meanwhile, net rates of 174.2 Gbit/s and 179.5 Gbit/s are also demonstrated over 0.8 km SSMF and in an optical back-to-back case, respectively. The feature of the packaged DFB-TWEAM is presented. The nonlinearity-aware digital signal processing algorithm for channel equalization is mathematically described, which improves the signal-to-noise ratio up to 3.5 dB.

  9. Excitation/Detection Strategies for OH Planar Laser-Induced Fluorescence Measurements in the Presence of Interfering Fuel Signal and Absorption Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.

    2011-01-01

    Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.

  10. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  11. Above-Cloud Precipitable Water Retrievals using the MODIS 0.94 micron Band with Applications for Multi-Layer Cloud Detection

    NASA Technical Reports Server (NTRS)

    Platnick, S.; Wind, G.

    2004-01-01

    In order to perform satellite retrievals of cloud properties, it is important to account for the effect of the above-cloud atmosphere on the observations. The solar bands used in the operational MODIS Terra and Aqua cloud optical and microphysical algorithms (visible, NIR, and SWIR spectral windows) are primarily affected by water vapor, and to a lesser extent by well-mixed gases. For water vapor, the above-cloud column amount, or precipitable water, provides adequate information for an atmospheric correction; details of the vertical vapor distribution are not typically necessary for the level of correction required. Cloud-top pressure has a secondary effect due to pressure broadening influences. For well- mixed gases, cloud-top pressure is also required for estimates of above-cloud abundances. We present a method for obtaining above-cloud precipitable water over dark Ocean surfaces using the MODIS 0.94 pm vapor absorption band. The retrieval includes an iterative procedure for establishing cloud-top temperature and pressure, and is useful for both single layer water and ice clouds. Knowledge of cloud thermodynamic phase is fundamental in retrieving cloud optical and microphysical properties. However, in cases of optically thin cirrus overlapping lower water clouds, the concept of a single unique phase is ill- defined and depends, at least, on the spectral region of interest. We will present a method for multi-layer and multi-phase cloud detection which uses above-cloud precipitable water retrievals along with several existing MODIS operational cloud products (cloud-top pressure derived from a C02 slicing algorithm, IR and SWIR phase retrievals). Results are catagorized by whether the radiative signature in the MODIS solar bands is primarily that of a water cloud with ice cloud contamination, or visa-versa. Examples in polar and mid-latitude regions will be shown.

  12. Detection of Mycobacterium leprae DNA in nine-banded armadillos (Dasypus novemcinctus) from the Andean region of Colombia.

    PubMed

    Cardona-Castro, N; Beltrán, J C; Ortiz-Bernal, A; Vissa, V

    2009-12-01

    To use DNA detection methodologies to test for M. leprae in nine-banded armadillos inhabiting forested regions located around the cities and towns where leprosy patients have been identified. Ear lobe biopsies of 22 nine-banded armadillos were studied during a 2 year period. The biopsies were processed for DNA extraction and amplification by nested polymerase chain reaction (N-PCR) of a fragment of the high copy DNA locus of M. leprae known as R-LEP. Nine of the 22 (40.9%) armadillos evaluated showed positive signals for M. leprae. Sequencing confirmed that PCR products were identical to the corresponding region of M. leprae DNA. In Colombia, South America, the consumption of and contact with the nine-banded armadillo (Dasypus novemcinctus) are common, ignoring the fact that this animal can host and be a possible zoonotic reservoir of Mycobacterium leprae, the causal agent of leprosy. This is the first study demonstrating that M. leprae is present in nine-banded armadillos in a region of Colombia using specific DNA detection. The possibility of leprosy transmission due to contact and consumption of armadillo meat or use of blood for therapeutic purposes should be further investigated.

  13. Solar absorption Fourier Transform Infrared spectroscopy applied to detect SO2 plumes above Mexico City

    NASA Astrophysics Data System (ADS)

    Aldana-Vazquez, A.; Stremme, W.; Grutter, M.

    2010-12-01

    There are sources of emissions of sulfur dioxide (SO2) that disperse to the Metropolitan Area of Mexico City (MCMA). The sources can be divided into three categories: a) The active Popocatepetl volcano located 70 km SE from the center of Mexico City, b) the industrial area located approximately 70 km to the and c) other local sources located in the surroundings from the measurement.. Solar absorption infrared spectra are being recorded since 2007 above the campus of the Universidad Nacional Autónoma de México (UNAM, 19.33 N, 99.18 W, 2260 m.a.s.l.). The column of SO2 was retrieved from all the spectra recorded in 2008 with the retrieval code SFIT2. Enhancement of the SO2 column could be identified in different time periods. The origin of the detected SO2 is determined by correlating the SO2 column with a) its surface concentration measured in the surroundings by the monitoring stations from the city’s monitoring network of (RAMA), b) the height of the mixing layer measured at UNAM, and c) meteorological wind data (REDMET, NCEP-NARR, and SMN). The result shows that the extraordinary events are correlated with the mentioned sources, and the analysis confirms prior studies that the plume travels at different altitudes. The plume of the Popocatepetl volcano is transported according to the wind at 5000 m.a.s.l. while emissions from the industrial area northwest of the MCMA are dispersed at lower altitudes within the mixing layer.

  14. The fast detection of rare auditory feature conjunctions in the human brain as revealed by cortical gamma-band electroencephalogram.

    PubMed

    Ruusuvirta, T; Huotilainen, M

    2005-01-01

    Natural environments typically contain temporal scatters of sounds emitted from multiple sources. The sounds may often physically stand out from one another in their conjoined rather than simple features. This poses a particular challenge for the brain to detect which of these sounds are rare and, therefore, potentially important for survival. We recorded gamma-band (32-40 Hz) electroencephalographic (EEG) oscillations from the scalp of adult humans who passively listened to a repeated tone carrying frequent and rare conjunctions of its frequency and intensity. EEG oscillations that this tone induced, rather than evoked, differed in amplitude between the two conjunction types within the 56-ms analysis window from tone onset. Our finding suggests that, perhaps with the support of its non-phase-locked synchrony in the gamma band, the human brain is able to detect rare sounds as feature conjunctions very rapidly.

  15. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    SciTech Connect

    Li, Wei; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871; Zhang, Qin

    2014-11-24

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom ofmore » the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.« less

  16. Near-infrared incoherent broadband cavity enhanced absorption spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas components.

    PubMed

    Prakash, Neeraj; Ramachandran, Arun; Varma, Ravi; Chen, Jun; Mazzoleni, Claudio; Du, Ke

    2018-06-28

    The principle of near-infrared incoherent broadband cavity enhanced absorption spectroscopy was employed to develop a novel instrument for detecting natural gas leaks as well as for testing the quality of natural gas mixtures. The instrument utilizes the absorption features of methane, butane, ethane, and propane in the wavelength region of 1100 nm to 1250 nm. The absorption cross-section spectrum in this region for methane was adopted from the HITRAN database, and those for the other three gases were measured in the laboratory. A singular-value decomposition (SVD) based analysis scheme was employed for quantifying methane, butane, ethane, and propane by performing a linear least-square fit. The developed instrument achieved a detection limit of 460 ppm, 141 ppm, 175 ppm and 173 ppm for methane, butane, ethane, and propane, respectively, with a measurement time of 1 second and a cavity length of 0.59 m. These detection limits are less than 1% of the Lower Explosive Limit (LEL) for each gas. The sensitivity can be further enhanced by changing the experimental parameters (such as cavity length, lamp power etc.) and using longer averaging intervals. The detection system is a low-cost and portable instrument suitable for performing field monitorings. The results obtained on the gas mixture emphasize the instrument's potential for deployment at industrial facilities dealing with natural gas, where potential leaks pose a threat to public safety.

  17. A novel multi-band SAR data technique for fully automatic oil spill detection in the ocean

    NASA Astrophysics Data System (ADS)

    Del Frate, Fabio; Latini, Daniele; Taravat, Alireza; Jones, Cathleen E.

    2013-10-01

    With the launch of the Italian constellation of small satellites for the Mediterranean basin observation COSMO-SkyMed and the German TerraSAR-X missions, the delivery of very high-resolution SAR data to observe the Earth day or night has remarkably increased. In particular, also taking into account other ongoing missions such as Radarsat or those no longer working such as ALOS PALSAR, ERS-SAR and ENVISAT the amount of information, at different bands, available for users interested in oil spill analysis has become highly massive. Moreover, future SAR missions such as Sentinel-1 are scheduled for launch in the very next years while additional support can be provided by Uninhabited Aerial Vehicle (UAV) SAR systems. Considering the opportunity represented by all these missions, the challenge is to find suitable and adequate image processing multi-band procedures able to fully exploit the huge amount of data available. In this paper we present a new fast, robust and effective automated approach for oil-spill monitoring starting from data collected at different bands, polarizations and spatial resolutions. A combination of Weibull Multiplicative Model (WMM), Pulse Coupled Neural Network (PCNN) and Multi-Layer Perceptron (MLP) techniques is proposed for achieving the aforementioned goals. One of the most innovative ideas is to separate the dark spot detection process into two main steps, WMM enhancement and PCNN segmentation. The complete processing chain has been applied to a data set containing C-band (ERS-SAR, ENVISAT ASAR), X-band images (Cosmo-SkyMed and TerraSAR-X) and L-band images (UAVSAR) for an overall number of more than 200 images considered.

  18. The Rovibrational Intensities of the (40 deg 1) and (00 deg 0) Pentad Absorption Bands of 12C16O2 Between 7284 and 7921 cm(exp-1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Chackerian, C., Jr.; Spencer, N.; Brown, L. R.; Wattson, R. B.; Gore, Warren J. (Technical Monitor)

    1995-01-01

    Carbon dioxide is the major constituent of the atmospheres of both Mars and Venus. Correct interpretations of spectra of these atmospheres require accurate knowledge of a substantial number of absorption bands of this gas. This is especially true for Venus; many weak CO2 bands that are insignificant in the earth's atmosphere are prominent absorbers in Venus' hot, dense lower atmosphere. Yet, recent near-infrared spectra of Venus' nightside have discovered emission windows, which occur between CO2 absorption bands, at 4040-4550 cm(exp-1), 5700-5900 cm(exp-1), and several smaller ones between 7500 and 9400 cm(exp-1). This radiation is due to thermal emission from Venus' lower atmosphere, diminished by scattering and absorption within the sulfuric acid clouds on its way to space. Simulations of these data with radiative transfer models can provide improved information on the abundances of a number of constituents of the lower atmosphere (e.g. H2O, CO, HDO, HCl, HF, and OCS) and the optical properties of the clouds, whose spatial variation modulates the brightness of the emissions. However, the accuracy of these retrievals has been limited by insufficient knowledge of the opacity of some of the gas species, including CO2, at the large pathlengths and high temperatures and pressures that exist on Venus. In particular, modeling the emission spectrum did not produce a good fit for the emission window centered at 7830 cm(exp-1). In an ongoing effort to assist analyses of these Venus spectra, we have been making laboratory intensity measurements of several weak bands of CO2 which are significant absorbers in these Venus emission windows. The CO2 bands that are prominent in the 7830 cm(exp-1) region belong to the vibrational sequence 4v1+v3 and associated hot bands. Only 2 of the 5 bands of this sequence have been previously measured. Modeling Venus' emission spectrum in the 7830 cm(exp-1) region had to rely on calculated intensity values for the weak ground state band at

  19. AlGaN Ultraviolet Detectors for Dual-Band UV Detection

    NASA Technical Reports Server (NTRS)

    Miko, Laddawan; Franz, David; Stahle, Carl M.; Yan, Feng; Guan, Bing

    2010-01-01

    This innovation comprises technology that has the ability to measure at least two ultraviolet (UV) bands using one detector without relying on any external optical filters. This allows users to build a miniature UVA and UVB monitor, as well as to develop compact, multicolor imaging technologies for flame temperature sensing, air-quality control, and terrestrial/counter-camouflage/biosensing applications.

  20. Specification of Butyltins and Methyltins in Seawater and Marine Sediments by Hydride Derivatization and Atomic Absorption Detection.

    DTIC Science & Technology

    1985-07-01

    Corporation . - P.F. Seligman . . Naval Ocean Systems Center fTW G. Vafa University of Hawaii Research Corporation P.M. Stang DEC 0 4 198 1: San Diego State...NAVFAC 032) under the Marine Environmental Quality Assessment Program. Released by Under authority of P. F. Seligman , Head S. Yamamoto, Head Marine...SEDIMENTS BY HYDRIDE DERIVATIZATION AND ATOMIC ABSORPTION DETECTION 12 PERSONAL AUJTHORWS) A. 0. Valkirs, P. F. Seligman , G. Vafa, P. M. Stang, V. Homner

  1. Performing target specific band reduction using artificial neural networks and assessment of its efficacy using various target detection algorithms

    NASA Astrophysics Data System (ADS)

    Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.

    2016-04-01

    Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.

  2. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    NASA Technical Reports Server (NTRS)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  3. A real time index of geomagnetic background noise for the MAD (Magnetic Anomaly Detection) frequency band

    NASA Astrophysics Data System (ADS)

    Bernardi, A.; Fraser-Smith, A. C.; Villard, O. G.

    1985-02-01

    An index of geomagnetic activity in the upper part of the ultra low frequency (ULF) range (less than 4.55 Hz) has been developed. This index will be referred to as the MA index (magnetic activity index). The MA index is prepared every half hour and is a measure of the strength of the geomagnetic activity in the Pc1-Pc3 pulsation frequency range during that half hour period. Activity in the individual Pc pulsation ranges can also be measured, if desired. The index is calculated from the running average of the full-wave rectified values of the band pass filtered geomagnetic signals and thus it provides a better indication of the magnitude of these band pass filtered magnetic pulsations than does the ap index, for example. Daily variations of the band pass filtered magnetic signals are also better captured by the MA index. To test this system we used analog tape recordings of wide-band geomagnetic signals. The indices for these tapes are presented in the form of plots, together with a comparison with the ap indices of the same time intervals. The MA index shows the daily variation of the geometric signals quite clearly during times when there is strong activity, i.e., when the ap index values are large. Because impulsive signals, such as lightning discharges, tend to be suppressed in the averaging process, the MA index is insensitive to impulsive noise. It is found that the time variation of the MA index is in general markedly different from the variation of the ap index for the same time intervals.

  4. Optically detected cyclotron resonance investigations on 4H and 6H SiC: Band-structure and transport properties

    NASA Astrophysics Data System (ADS)

    Meyer, B. K.; Hofmann, D. M.; Volm, D.; Chen, W. M.; Son, N. T.; Janzén, E.

    2000-02-01

    We present experimental data on the band-structure and high-mobility transport properties of 6H and 4H-SiC epitaxial films based on optically detected cyclotron resonance investigations. From the orientational dependence of the electron effective mass in 6H-SiC we obtain direct evidence for the camels back nature of the conduction band between the M and L points. The broadening of the resonance signal in 4H-SiC as a function of temperature is used to extract information on electron mobilities and to conclude on the role of the different scattering mechanisms. Under high microwave powers an enhancement of the electron effective mass is found which is explained by a coupling of the electrons with longitudinal optical phonons.

  5. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less

  6. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  7. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  8. Anomalous Signal Detection in ELF Band Electromagnetic Wave using Multi-layer Neural Network with Wavelet Decomposition

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi; Takumi, Ichi; Hata, Masayasu

    It is well known that electromagnetic waves radiated from the earth's crust are useful for predicting earthquakes. We analyze the electromagnetic waves received at the extremely low frequency band of 223Hz. These observed signals contain the seismic radiation from the earth's crust, but also include several undesired signals. Our research focuses on the signal detection technique to identify an anomalous signal corresponding to the seismic radiation in the observed signal. Conventional anomalous signal detections lack a wide applicability due to their assumptions, e.g. the digital data have to be observed at the same time or the same sensor. In order to overcome the limitation related to the observed signal, we proposed the anomalous signals detection based on a multi-layer neural network which is trained by digital data observed during a span of a day. In the neural network approach, training data do not need to be recorded at the same place or the same time. However, some noises, which have a large amplitude, are detected as the anomalous signal. This paper develops a multi-layer neural network to decrease the false detection of the anomalous signal from the electromagnetic wave. The training data for the proposed network is the decomposed signal of the observed signal during several days, since the seismic radiations are often recorded from several days to a couple of weeks. Results show that the proposed neural network is useful to achieve the accurate detection of the anomalous signal that indicates seismic activity.

  9. Absorption spectrum and absorption cross sections of the 2ν1 band of HO2 between 20 and 760 Torr air in the range 6636 and 6639 cm-1

    NASA Astrophysics Data System (ADS)

    Assaf, Emmanuel; Liu, Lu; Schoemaecker, Coralie; Fittschen, Christa

    2018-05-01

    The absorption spectrum of HO2 radicals has been measured in the range 6636-6639 cm-1 at several pressures between 20 and 760 Torr of air. Absolute absorption cross sections of the strongest line at around 6638.2 cm-1 have been determined from kinetic measurements, taking advantage of the well known rate constant of the self-reaction. Peak absorption cross sections of 22.6, 19.5, 14.4, 7.88, 5.12 and 3.23 × 10-20 cm2 were obtained at 20, 50, 100, 200, 400 and 760 Torr, respectively. By fitting these data, an empirical expression has been obtained for the absorption cross section of HO2 in the range 20-760 Torr air: σ6638.2cm-1 = 1.18 × 10-20 + (2.64 × 10-19 × (1-exp (-63.1/p (Torr))) cm2.

  10. Improving the automated detection of refugee/IDP dwellings using the multispectral bands of the WorldView-2 satellite

    NASA Astrophysics Data System (ADS)

    Kemper, Thomas; Gueguen, Lionel; Soille, Pierre

    2012-06-01

    The enumeration of the population remains a critical task in the management of refugee/IDP camps. Analysis of very high spatial resolution satellite data proofed to be an efficient and secure approach for the estimation of dwellings and the monitoring of the camp over time. In this paper we propose a new methodology for the automated extraction of features based on differential morphological decomposition segmentation for feature extraction and interactive training sample selection from the max-tree and min-tree structures. This feature extraction methodology is tested on a WorldView-2 scene of an IDP camp in Darfur Sudan. Special emphasis is given to the additional available bands of the WorldView-2 sensor. The results obtained show that the interactive image information tool is performing very well by tuning the feature extraction to the local conditions. The analysis of different spectral subsets shows that it is possible to obtain good results already with an RGB combination, but by increasing the number of spectral bands the detection of dwellings becomes more accurate. Best results were obtained using all eight bands of WorldView-2 satellite.

  11. Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection.

    PubMed

    Zhu, Mingyue; Zhang, Jing; Yi, Xingwen; Ying, Hao; Li, Xiang; Luo, Ming; Song, Yingxiong; Huang, Xiatao; Qiu, Kun

    2018-03-19

    We present the design and optimization of the optical single side-band (SSB) Nyquist four-level pulse amplitude modulation (PAM-4) transmission using dual-drive Mach-Zehnder modulator (DDMZM)modulation and direct detection (DD), aiming at the C-band cost-effective, high-speed and long-distance transmission. At the transmitter, the laser line width should be small to avoid the phase noise to amplitude noise conversion and equalization-enhanced phase noise due to the large chromatic dispersion (CD). The optical SSB signal is generated after optimizing the optical modulation index (OMI) and hence the minimum phase condition which is required by the Kramers-Kronig (KK) receiver can also be satisfied. At the receiver, a simple AC-coupled photodiode (PD) is used and a virtual carrier is added for the KK operation to alleviate the signal-to-signal beating interference (SSBI).A Volterra filter (VF) is cascaded for remaining nonlinearities mitigation. When the fiber nonlinearity becomes significant, we elect to use an optical band-pass filter with offset filtering. It can suppress the simulated Brillouin scattering and the conjugated distortion by filtering out the imaging frequency components. With our design and optimization, we achieve single-channel, single polarization 102.4-Gb/s Nyquist PAM-4 over 800-km standard single-mode fiber (SSMF).

  12. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    PubMed

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  13. TOWARD DETECTING THE 2175 A DUST FEATURE ASSOCIATED WITH STRONG HIGH-REDSHIFT Mg II ABSORPTION LINES

    SciTech Connect

    Jiang Peng; Zhou Hongyan; Wang Junxian

    2011-05-10

    We report detections of 39 2175 A dust extinction bump candidates associated with strong Mg II absorption lines at z{approx} 1-1.8 on quasar spectra in Sloan Digital Sky Survey (SDSS) DR3. These strong Mg II absorption line systems are detected among 2951 strong Mg II absorbers with a rest equivalent width W{sub r} {lambda}2796> 1.0 A at 1.0 < z < 1.86, which is part of a full sample of 7421 strong Mg II absorbers compiled by Prochter et al. The redshift range of the absorbers is chosen to allow the 2175 A extinction features to be completely covered withinmore » the SDSS spectrograph operation wavelength range. An upper limit of the background quasar emission redshift at z = 2.1 is set to prevent the Ly{alpha} forest lines from contaminating the sensitive spectral region for the 2175 A bump measurements. The FM90 parameterization is applied to model the optical/UV extinction curve in the rest frame of Mg II absorbers of the 2175 A bump candidates. The simulation technique developed by Jiang et al. is used to derive the statistical significance of the candidate 2175 A bumps. A total of 12 absorbers are detected with 2175 A bumps at a 5{sigma} level of statistical significance, 10 are detected at a 4{sigma} level, and 17 are detected at a 3{sigma} level. Most of the candidate bumps in this work are similar to the relatively weak 2175 A bumps observed in the Large Magellanic Cloud LMC2 supershell rather than the strong ones observed in the Milky Way. This sample has greatly increased the total number of 2175 A extinction bumps measured on SDSS quasar spectra. Follow-up observations may rule out some of the possible false detections and reveal the physical and chemical natures of 2175 A quasar absorbers.« less

  14. Toward Detecting the 2175 Å Dust Feature Associated with Strong High-redshift Mg II Absorption Lines

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Zhou, Hongyan; Wang, Junxian; Wang, Tinggui

    2011-05-01

    We report detections of 39 2175 Å dust extinction bump candidates associated with strong Mg II absorption lines at z~ 1-1.8 on quasar spectra in Sloan Digital Sky Survey (SDSS) DR3. These strong Mg II absorption line systems are detected among 2951 strong Mg II absorbers with a rest equivalent width Wr λ2796> 1.0 Å at 1.0 < z < 1.86, which is part of a full sample of 7421 strong Mg II absorbers compiled by Prochter et al. The redshift range of the absorbers is chosen to allow the 2175 Å extinction features to be completely covered within the SDSS spectrograph operation wavelength range. An upper limit of the background quasar emission redshift at z = 2.1 is set to prevent the Lyα forest lines from contaminating the sensitive spectral region for the 2175 Å bump measurements. The FM90 parameterization is applied to model the optical/UV extinction curve in the rest frame of Mg II absorbers of the 2175 Å bump candidates. The simulation technique developed by Jiang et al. is used to derive the statistical significance of the candidate 2175 Å bumps. A total of 12 absorbers are detected with 2175 Å bumps at a 5σ level of statistical significance, 10 are detected at a 4σ level, and 17 are detected at a 3σ level. Most of the candidate bumps in this work are similar to the relatively weak 2175 Å bumps observed in the Large Magellanic Cloud LMC2 supershell rather than the strong ones observed in the Milky Way. This sample has greatly increased the total number of 2175 Å extinction bumps measured on SDSS quasar spectra. Follow-up observations may rule out some of the possible false detections and reveal the physical and chemical natures of 2175 Å quasar absorbers.

  15. First Time Rapid and Accurate Detection of Massive Number of Metal Absorption Lines in the Early Universe Using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Zhao, Yinan; Ge, Jian; Yuan, Xiaoyong; Li, Xiaolin; Zhao, Tiffany; Wang, Cindy

    2018-01-01

    Metal absorption line systems in the distant quasar spectra have been used as one of the most powerful tools to probe gas content in the early Universe. The MgII λλ 2796, 2803 doublet is one of the most popular metal absorption lines and has been used to trace gas and global star formation at redshifts between ~0.5 to 2.5. In the past, machine learning algorithms have been used to detect absorption lines systems in the large sky survey, such as Principle Component Analysis, Gaussian Process and decision tree, but the overall detection process is not only complicated, but also time consuming. It usually takes a few months to go through the entire quasar spectral dataset from each of the Sloan Digital Sky Survey (SDSS) data release. In this work, we applied the deep neural network, or “ deep learning” algorithms, in the most recently SDSS DR14 quasar spectra and were able to randomly search 20000 quasar spectra and detect 2887 strong Mg II absorption features in just 9 seconds. Our detection algorithms were verified with previously released DR12 and DR7 data and published Mg II catalog and the detection accuracy is 90%. This is the first time that deep neural network has demonstrated its promising power in both speed and accuracy in replacing tedious, repetitive human work in searching for narrow absorption patterns in a big dataset. We will present our detection algorithms and also statistical results of the newly detected Mg II absorption lines.

  16. LUGOL'S IODINE CHROMOENDOSCOPY VERSUS NARROW BAND IMAGE ENHANCED ENDOSCOPY FOR THE DETECTION OF ESOPHAGEAL CANCER IN PATIENTS WITH STENOSIS SECONDARY TO CAUSTIC/CORROSIVE AGENT INGESTION.

    PubMed

    Pennachi, Caterina Maria Pia Simoni; Moura, Diogo Turiani Hourneaux de; Amorim, Renato Bastos Pimenta; Guedes, Hugo Gonçalo; Kumbhari, Vivek; Moura, Eduardo Guimarães Hourneaux de

    2017-01-01

    The diagnosis of corrosion cancer should be suspected in patients with corrosive ingestion if after a latent period of negligible symptoms there is development of dysphagia, or poor response to dilatation, or if respiratory symptoms develop in an otherwise stable patient of esophageal stenosis. Narrow Band Imaging detects superficial squamous cell carcinoma more frequently than white-light imaging, and has significantly higher sensitivity and accuracy compared with white-light. To determinate the clinical applicability of Narrow Band Imaging versus Lugol´s solution chromendoscopy for detection of early esophageal cancer in patients with caustic/corrosive agent stenosis. Thirty-eight patients, aged between 28-84 were enrolled and examined by both Narrow Band Imaging and Lugol´s solution chromendoscopy. A 4.9mm diameter endoscope was used facilitating examination of a stenotic area without dilation. Narrow Band Imaging was performed and any lesion detected was marked for later biopsy. Then, Lugol´s solution chromoendoscopy was performed and biopsies were taken at suspicious areas. Patients who had abnormal findings at the routine, Narrow Band Imaging or Lugol´s solution chromoscopy exam had their stenotic ring biopsied. We detected nine suspicious lesions with Narrow Band Imaging and 14 with Lugol´s solution chromendoscopy. The sensitivity and specificity of the Narrow Band Imaging was 100% and 80.6%, and with Lugol´s chromoscopy 100% and 66.67%, respectively. Five (13%) suspicious lesions were detected both with Narrow Band Imaging and Lugol's chromoscopy, two (40%) of these lesions were confirmed carcinoma on histopathological examination. Narrow Band Imaging is an applicable option to detect and evaluate cancer in patients with caustic /corrosive stenosis compared to the Lugol´s solution chromoscopy.

  17. Ultra-wide-band 3D microwave imaging scanner for the detection of concealed weapons

    NASA Astrophysics Data System (ADS)

    Rezgui, Nacer-Ddine; Andrews, David A.; Bowring, Nicholas J.

    2015-10-01

    The threat of concealed weapons, explosives and contraband in footwear, bags and suitcases has led to the development of new devices, which can be deployed for security screening. To address known deficiencies of metal detectors and x-rays, an UWB 3D microwave imaging scanning apparatus using FMCW stepped frequency working in the K and Q bands and with a planar scanning geometry based on an x y stage, has been developed to screen suspicious luggage and footwear. To obtain microwave images of the concealed weapons, the targets are placed above the platform and the single transceiver horn antenna attached to the x y stage is moved mechanically to perform a raster scan to create a 2D synthetic aperture array. The S11 reflection signal of the transmitted sweep frequency from the target is acquired by a VNA in synchronism with each position step. To enhance and filter from clutter and noise the raw data and to obtain the 2D and 3D microwave images of the concealed weapons or explosives, data processing techniques are applied to the acquired signals. These techniques include background subtraction, Inverse Fast Fourier Transform (IFFT), thresholding, filtering by gating and windowing and deconvolving with the transfer function of the system using a reference target. To focus the 3D reconstructed microwave image of the target in range and across the x y aperture without using focusing elements, 3D Synthetic Aperture Radar (SAR) techniques are applied to the post-processed data. The K and Q bands, between 15 to 40 GHz, show good transmission through clothing and dielectric materials found in luggage and footwear. A description of the system, algorithms and some results with replica guns and a comparison of microwave images obtained by IFFT, 2D and 3D SAR techniques are presented.

  18. Detection of the secondary eclipse of Qatar-1b in the Ks band

    NASA Astrophysics Data System (ADS)

    Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; Birkby, Jayne; López-Morales, Mercedes; Fortney, Jonathan J.

    2016-10-01

    Aims: Qatar-1b is a close-orbiting hot Jupiter (Rp ≃ 1.18 RJ, Mp ≃ 1.33 MJ) around a metal-rich K-dwarf, with orbital separation and period of 0.023 AU and 1.42 days. We have observed the secondary eclipse of this exoplanet in the Ks band with the objective of deriving a brightness temperature for the planet and providing further constraints to the orbital configuration of the system. Methods: We obtained near-infrared photometric data from the ground by using the OMEGA2000 instrument at the 3.5 m telescope at Calar Alto (Spain) in staring mode, with the telescope defocused. We have used principal component analysis (PCA) to identify correlated systematic trends in the data. A Markov chain Monte Carlo analysis was performed to model the correlated systematics and fit for the secondary eclipse of Qatar-1b using a previously developed occultation model. We adopted the prayer bead method to assess the effect of red noise on the derived parameters. Results: We measured a secondary eclipse depth of 0.196%+ 0.071%-0.051%, which indicates a brightness temperature in the Ks band for the planet of 1885+ 212-168 K. We also measured a small deviation in the central phase of the secondary eclipse of -0.0079+ 0.0162-0.0043, which leads to a value for ecosω of -0.0123+ 0.0252-0.0067. However, this last result needs to be confirmed with more data. Based on observations collected at the Calar Alto Observatory, Almería, Spain.Lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A61

  19. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features.

    PubMed

    Tripathy, Rajesh Kumar; Dandapat, Samarendra

    2017-04-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques.

  20. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features

    PubMed Central

    Dandapat, Samarendra

    2017-01-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques. PMID:28894589

  1. Airborne spectroradiometry: The application of AIS data to detecting subtle mineral absorption features

    NASA Technical Reports Server (NTRS)

    Cocks, T. D.; Green, A. A.

    1986-01-01

    Analysis of Airborne Imaging Spectrometer (AIS) data acquired in Australia has revealed a number of operational problems. Horizontal striping in AIS imagery and spectral distortions due to order overlap were investigated. Horizontal striping, caused by grating position errors can be removed with little or no effect on spectral details. Order overlap remains a problem that seriously compromises identification of subtle mineral absorption features within AIS spectra. A spectrometric model of the AIS was developed to assist in identifying spurious spectral features, and will be used in efforts to restore the spectral integrity of the data.

  2. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    PubMed Central

    Dong, Ming; Ren, Ming; Ye, Rixin

    2017-01-01

    Sulfur hexafluoride (SF6) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations. PMID:29140268

  3. Demonstration of a portable near-infrared CH4 detection sensor based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Chuan-Tao; Huang, Jian-Qiang; Ye, Wei-Lin; Lv, Mo; Dang, Jing-Min; Cao, Tian-Shu; Chen, Chen; Wang, Yi-Ding

    2013-11-01

    A portable near-infrared (NIR) CH4 detection sensor based on a distributed feedback (DFB) laser modulated at 1.654 μm is experimentally demonstrated. Intelligent temperature controller with an accuracy of -0.07 to +0.09 °C as well as a scan and modulation module generating saw-wave and cosine-wave signals are developed to drive the DFB laser, and a cost effective lock-in amplifier used to extract the second harmonic signal is integrated. Thorough experiments are carried out to obtain detection performances, including detection range, accuracy, stability and the minimum detection limit (MDL). Measurement results show that the absolute detection error relative to the standard value is less than 7% within the range of 0-100%, and the MDL is estimated to be about 11 ppm under an absorption length of 0.2 m and a noise level of 2 mVpp. Twenty-four hours monitoring on two gas samples (0.1% and 20%) indicates that the absolute errors are less than 7% and 2.5%, respectively, suggesting good long term stability. The sensor reveals competitive characteristics compared with other reported portable or handheld sensors. The developed sensor can also be used for the detection of other gases by adopting other DFB lasers with different center-wavelength using the same hardware and slightly modified software.

  4. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    SciTech Connect

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J., E-mail: stacy.h.teng@nasa.gov

    2013-03-10

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%)more » in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.« less

  5. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no

  6. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption.

    PubMed

    Gardiner, T D; Coleman, M; Browning, H; Tallis, L; Ptashnik, I V; Shine, K P

    2012-06-13

    Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the 'Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance' (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm(-1) with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.

  7. Development of gas fire detection system using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Y. L.; Li, G.; Yang, T.; Wang, J. J.

    2017-01-01

    The conventional fire detection methods mainly produce an alarm through detecting the changes in smoke concentration, flame radiation, heat and other physical parameters in the environment, but are unable to provide an early warning of a fire emergency. We have designed a gas fire detection system with a high detection sensitivity and high selectivity using the tunable semiconductor diode laser as a light source and combining wavelength modulation and harmonic detection technology. This system can invert the second harmonic signal obtained to obtain the concentration of carbon monoxide gas (a fire characteristic gas) so as to provide an early warning of fire. We reduce the system offset noise and the background noise generated due to the laser interference by deducting the system background spectrum lines from the second harmonic signal. This can also eliminate the interference of other gas spectral lines to a large extent. We detected the concentration of the carbon monoxide gas generated in smoldering sandalwood fire and open beech wood fire with the homemade fire simulator, and tested the lowest detectable limit of system. The test results show that the lowest detectable limit can reach 5×10-6 the system can maintain stable operation for a long period of time and can automatically trigger a water mist fire extinguishing system, which can fully meet the needs of early fire warning.

  8. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  9. Airborne Detection of Southern Pine Beetle Damage Using Key Spectral Bands

    Treesearch

    Gregory A. Carter; Michael R. Seal; Tim Haley

    1998-01-01

    Damage by the southern pine beetle(SPB) (Dendroctonus frontalis Zimm.) occurs frequently in the southeastern United States and can result in tree death over large areas. A new technique for detection of SPB activity was tested for shortleaf pine (Pinus echinata Mill.) in the Caney Creek Wilderness, Ouachita National Forest, Arkansas. Digital images...

  10. Detection of small surface vessels in near, medium, and far infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Milewski, S.; Kastek, M.; Trzaskawka, P.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.

    2011-11-01

    Protection of naval bases and harbors requires close co-operation between security and access control systems covering land areas and those monitoring sea approach routes. The typical location of naval bases and harbors - usually next to a large city - makes it difficult to detect and identify a threat in the dense regular traffic of various sea vessels (i.e. merchant ships, fishing boats, tourist ships). Due to the properties of vessel control systems, such as AIS (Automatic Identification System), and the effectiveness of radar and optoelectronic systems against different targets it seems that fast motor boats called RIB (Rigid Inflatable Boat) could be the most serious threat to ships and harbor infrastructure. In the paper the process and conditions for the detection and identification of high-speed boats in the areas of ports and naval bases in the near, medium and far infrared is presented. Based on the results of measurements and recorded thermal images the actual temperature contrast delta T (RIB / sea) will be determined, which will further allow to specify the theoretical ranges of detection and identification of the RIB-type targets for an operating security system. The data will also help to determine the possible advantages of image fusion where the component images are taken in different spectral ranges. This will increase the probability of identifying the object by the multi-sensor security system equipped additionally with the appropriate algorithms for detecting, tracking and performing the fusion of images from the visible and infrared cameras.

  11. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    SciTech Connect

    Del Grande, N.K.

    1993-12-31

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. The authors mapped surface temperature differences of 0.2 to 0.6 C for 5 to 14 % thickness losses within corroded lap splices at 0.4 seconds after the heat flash. The procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). They established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels whichmore » had thickness losses from milled flat-bottom holes. The authors mapped the lap splice composite thermal inertia, (k{rho}c){sup 1/2}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where they observed ``pillowing`` from volume build-up of corrosion by-products.« less

  12. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    SciTech Connect

    Del Grande, N.K.

    1993-11-01

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. We mapped surface temperature differences of 0.2 to 0.6 {degrees}C for 5 to 14% thickness losses within corroded lap splices at 0.4 seconds after the heat flash. Our procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). We established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels which had thicknessmore » losses from milled flat-bottom holes. We mapped the lap splice composite thermal inertia, (kpc){sup {1/2}}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where we observed ``pillowing`` from volume build-up of corrosion by-products.« less

  13. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  14. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  15. CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Zhong, Guo-qiang; Miao, Shu-zhuo; Zheng, Chuan-tao; Wang, Yi-ding

    2018-03-01

    A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.

  16. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE PAGES

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; ...

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. Lastly, we demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  17. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band.

    PubMed

    Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min

    2018-06-25

    Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.

  18. Detection of interstellar sodium hydroxide in self-absorption toward the galactic center

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Rhodes, P. J.

    1982-01-01

    A weak self-absorbed emission line, which is identified as the J = 4-3 transition of sodium hydroxide, has been detected in the direction of Sgr B2(OH). The correspondingly weak Sgr B2(QH) emission line U75406, previously reported as an unidentified spectral feature by other investigators, is consistent with the J = 3-2 transition of sodium hydroxide. This detection may represent the first evidence of a grain reaction formation mechanism for simple metal hydroxides. The detection of H62 Delta toward Orion A is also reported.

  19. Absorption of light dark matter in semiconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less

  20. Comparison of experimental three-band IR detection of buried objects and multiphysics simulations

    NASA Astrophysics Data System (ADS)

    Rabelo, Renato C.; Tilley, Heather P.; Catterlin, Jeffrey K.; Karunasiri, Gamani; Alves, Fabio D. P.

    2018-04-01

    A buried-object detection system composed of a LWIR, a MWIR and a SWIR camera, along with a set of ground and ambient temperature sensors was constructed and tested. The objects were buried in a 1.2x1x0.3 m3 sandbox and surface temperature (using LWIR and MWIR cameras) and reflection (using SWIR camera) were recoded throughout the day. Two objects (aluminum and Teflon) with volume of about 2.5x10-4 m3 , were placed at varying depths during the measurements. Ground temperature sensors buried at three different depths measured the vertical temperature profile within the sandbox, while the weather station recorded the ambient temperature and solar radiation intensity. Images from the three cameras were simultaneously acquired in five-minute intervals throughout many days. An algorithm to postprocess and combine the images was developed in order to maximize the probability of detection by identifying thermal anomalies (temperature contrast) resulting from the presence of the buried object in an otherwise homogeneous medium. A simplified detection metric based on contrast differences was established to allow the evaluation of the image processing method. Finite element simulations were performed, reproducing the experiment conditions and, when possible, incorporated with data coming from actual measurements. Comparisons between experiment and simulation results were performed and the simulation parameters were adjusted until images generated from both methods are matched, aiming at obtaining insights of the buried material properties. Preliminary results show a great potential for detection of shallowburied objects such as land mines and IEDs and possible identification using finite element generated maps fitting measured surface maps.

  1. C-band Joint Active/Passive Dual Polarization Sea Ice Detection

    NASA Astrophysics Data System (ADS)

    Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.

    2017-12-01

    A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (<30 cm) ice under the difficult conditions of late melt and freeze-up is presented. As the Arctic sea ice cover thins and shrinks, the algorithm offers an approach to adapting existing sensors monitoring thicker ice to provide continuing coverage. Lower resolution (10-26 km) ice detections with spaceborne radiometers and scatterometers are challenged by rapidly changing thin ice. Synthetic Aperture Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (<5 cm thick) from water. As the ice thickens, the COV is less reliable, but adding a mask based on either the PRIC or the cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general

  2. The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2017-06-01

    Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.

  3. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump–IR probe study

    PubMed Central

    Linke, Martin; Yang, Yang; Zienicke, Benjamin; Hammam, Mostafa A.S.; von Haimberger, Theodore; Zacarias, Angelica; Inomata, Katsuhiko; Lamparter, Tilman; Heyne, Karsten

    2013-01-01

    Photoisomerization of biliverdin (BV) chromophore triggers the photoresponse in native Agp1 bacteriophytochrome. We discuss heterogeneity in phytochrome Pr form to account for the shape of the absorption profile. We investigated different regions of the absorption profile by angle balanced polarization resolved femtosecond VIS pump–IR probe spectroscopy. We studied the Pr form of Agp1 with its natural chromophore and with a sterically locked 18Et-BV (locked Agp1). We followed the dynamics and orientations of the carbonyl stretching vibrations of ring D and ring A in their ground and electronically excited states. Photoisomerization of ring D is reflected by strong signals of the ring D carbonyl vibration. In contrast, orientational data on ring A show no rotation of ring A upon photoexcitation. Orientational data allow excluding a ZZZasa geometry and corroborates a nontwisted ZZZssa geometry of the chromophore. We found no proof for heterogeneity but identified a new, to our knowledge, electronic transition in the absorption profile at 644 nm (S0→S2). Excitation of the S0→S2 transition will introduce a more complex photodynamics compared with S0→S1 transition. Our approach provides fundamental information on disentanglement of absorption profiles, identification of chromophore structures, and determination of molecular groups involved in the photoisomerization process of photoreceptors. PMID:24138851

  4. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8-4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ˜0.1 and ˜0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°-80°.

  5. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  6. Detection of concealed explosives at stand-off distances using wide band swept millimetre waves

    NASA Astrophysics Data System (ADS)

    Andrews, David A.; Rezgui, Nacer D.; Smith, Sarah E.; Bowring, Nicholas; Southgate, Matthew; Baker, John G.

    2008-10-01

    Millimetre waves in the range 20 to 110 GHz have been used to detect the presence and thickness of dielectric materials, such as explosives, by measuring the frequency response of the return signal. Interference between the reflected signals from the front and back surfaces of the dielectric provides a characteristic frequency variation in the return signal, which may be processed to yield its optical depth [Bowring et al, Meas. Sci. Technol. 19, 024004 (2008)]. The depth resolution depends on the sweep bandwidth, which is typically 10 to 30 GHz. By using super-heterodyne detection the range of the object can also be determined, which enables a signal from a target, such as a suicide bomber to be extracted from background clutter. Using millimetre wave optics only a small area of the target is illuminated at a time, thus reducing interference from different parts of a human target. Results are presented for simulated explosive materials with water or human backing at stand-off distances. A method of data analysis that involves pattern recognition enables effective differentiation of target types.

  7. NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE

    SciTech Connect

    Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.

    2010-08-01

    We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133{sup +0.018}{sub -0.016}% in the Ks band (8{sigma})-a result that is in sharp contrast to the eclipse depth reported by de Mooij and Snellen. We do not detect its thermal emission in the H band, but place a 3{sigma} limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistributionmore » of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3{sigma} upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets.« less

  8. [Combined G-banded karyotyping and multiplex ligation-dependent probe amplification for the detection of chromosomal abnormalities in fetuses with congenital heart defects].

    PubMed

    Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu

    2017-02-10

    To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.

  9. Efficacy of narrow-band imaging for detecting intestinal metaplasia in adult patients with symptoms of dyspepsia.

    PubMed

    Sobrino-Cossío, S; Abdo Francis, J M; Emura, F; Galvis-García, E S; Márquez Rocha, M L; Mateos-Pérez, G; González-Sánchez, C B; Uedo, N

    2018-02-12

    Atrophy and intestinal metaplasia are early phenotypic markers in gastric carcinogenesis. White light endoscopy does not allow direct biopsy of intestinal metaplasia due to a lack of contrast of the mucosa. Narrow-band imaging is known to enhance the visibility of intestinal metaplasia, to reduce sampling error, and to increase the diagnostic yield of endoscopy for intestinal metaplasia in Asian patients. The aim of our study was to validate the diagnostic performance of narrow-band imaging using 1.5× electronic zoom endoscopy (with no high magnification) to diagnose intestinal metaplasia in Mexican patients. A retrospective cohort study was conducted on consecutive patients with dyspeptic symptoms at a private endoscopy center within the time frame of January 2015 to December 2016. A total of 338 patients (63±8.4 years of age, 40% women) were enrolled. The prevalence of H. pylori infection was 10.9% and the incidence of intestinal metaplasia in the gastric antrum and corpus was 23.9 and 5.9%, respectively. Among the patients with intestinal metaplasia, 65.3% had the incomplete type, 42.7% had multifocal disease, and one third had extension to the gastric corpus. Two patients had low-grade dysplasia. The sensitivity of white light endoscopy was 71.2%, with a false negative rate of 9.9%. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of narrow-band imaging (with a positive light blue crest) were 85, 98, 86.8, 97.7, and 87.2%, respectively. The prevalence of H. pylori infection and intestinal metaplasia in dyspeptic Mexican patients was not high. Through the assessment of the microsurface structure and light blue crest sign, non-optical zoom narrow-band imaging had high predictive values for detecting intestinal metaplasia in patients from a general Western setting. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  10. Fuzzy-logic detection and probability of hail exploiting short-range X-band weather radar

    NASA Astrophysics Data System (ADS)

    Capozzi, Vincenzo; Picciotti, Errico; Mazzarella, Vincenzo; Marzano, Frank Silvio; Budillon, Giorgio

    2018-03-01

    This work proposes a new method for hail precipitation detection and probability, based on single-polarization X-band radar measurements. Using a dataset consisting of reflectivity volumes, ground truth observations and atmospheric sounding data, a probability of hail index, which provides a simple estimate of the hail potential, has been trained and adapted within Naples metropolitan environment study area. The probability of hail has been calculated starting by four different hail detection methods. The first two, based on (1) reflectivity data and temperature measurements and (2) on vertically-integrated liquid density product, respectively, have been selected from the available literature. The other two techniques are based on combined criteria of the above mentioned methods: the first one (3) is based on the linear discriminant analysis, whereas the other one (4) relies on the fuzzy-logic approach. The latter is an innovative criterion based on a fuzzyfication step performed through ramp membership functions. The performances of the four methods have been tested using an independent dataset: the results highlight that the fuzzy-oriented combined method performs slightly better in terms of false alarm ratio, critical success index and area under the relative operating characteristic. An example of application of the proposed hail detection and probability products is also presented for a relevant hail event, occurred on 21 July 2014.

  11. Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data.

  12. Detecting and Quantifying Forest Change: The Potential of Existing C- and X-Band Radar Datasets.

    PubMed

    Tanase, Mihai A; Ismail, Ismail; Lowell, Kim; Karyanto, Oka; Santoro, Maurizio

    2015-01-01

    This paper evaluates the opportunity provided by global interferometric radar datasets for monitoring deforestation, degradation and forest regrowth in tropical and semi-arid environments. The paper describes an easy to implement method for detecting forest spatial changes and estimating their magnitude. The datasets were acquired within space-borne high spatial resolutions radar missions at near-global scales thus being significant for monitoring systems developed under the United Framework Convention on Climate Change (UNFCCC). The approach presented in this paper was tested in two areas located in Indonesia and Australia. Forest change estimation was based on differences between a reference dataset acquired in February 2000 by the Shuttle Radar Topography Mission (SRTM) and TanDEM-X mission (TDM) datasets acquired in 2011 and 2013. The synergy between SRTM and TDM datasets allowed not only identifying changes in forest extent but also estimating their magnitude with respect to the reference through variations in forest height.

  13. Limiting Short-term Noise versus Optical Density in a Direct Absorption Spectrometer for Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Jervis, D.

    2016-12-01

    Field-deployable trace gas monitors are important for understanding a multitude of atmospheric processes: from forest photosynthesis and respiration [1], to fugitive methane emissions [2] and satellite measurement validation [3]. Consequently, a detailed knowledge of the performance limitations of these instruments is essential in order to establish reliable datasets. We present the short-term ( >1 Hz) performance of a long-pass direct absorption spectrometer as a function of the optical density of the absorption transition being probed. In particular, we identify fluctuations in the laser intensity as limiting the optical density uncertainty to 4x10-6/√Hz for weak transitions, and noise in the laser drive current as limiting the fractional noise in the optical density to 4x10-5/√Hz for deep transitions. We provide numerical and analytical predictions for both effects, as well as using the understanding of this phenomena to estimate how noise on neighboring strong and weak transitions couple to each other. All measurements were performed using the Aerodyne Research TILDAS Monitor, but are general to any instrument that uses direct absorption spectroscopy as a detection method. Wehr, R., et al. "Seasonality of temperate forest photosynthesis and daytime respiration." Nature 534.7609 (2016): 680-683. Conley, S., et al. "Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA." Science 351.6279 (2016): 1317-1320. Emmons, L. K., et al. "Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles." Journal of Geophysical Research: Atmospheres 109.D3 (2004).

  14. On the state of the emitter of the 3.3 micron unidentified infrared band - Absorption spectroscopy of polycyclic aromatic hydrocarbon species

    NASA Technical Reports Server (NTRS)

    Flickinger, Gregory C.; Wdowiak, Thomas J.; Gomez, Percy L.

    1991-01-01

    Results of absorption measurements indicate that the PAH species responsible for the UIR (unidentified infrared) emission probably exist in a condensed form rather than as isolated molecules. It is shown that the peak absorption of the C-H stretch feature of vapor-phase PAHs occurs at a higher frequency than that of the condensed-phase PAHs and does not match the 3.289-micron interstellar feature. The vapor-phase experiments duplicate the phenomenon of the 3.3-micron profile simplification of PAH in KBr at elevated temperature. This confirms that the change of the profile with temperature is an intrinsic molecular effect, and is not a consequence of matrix (KBr) or condensed state interactions.

  15. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, Peter L.; Ito, K.; Parkinson, W. H.

    1991-01-01

    Theoretical descriptions of the abundance and excitation of carbon monoxide in interstellar clouds require accurate data on the vacuum-ultraviolet absorption spectrum of the molecule. The 6.65 m spectrometer at the Photon Factory synchrotron light source was used to measure photoabsorption cross sections of CO features between 91.2 and 100.4 nm. These data were recorded at a resolving power of 170,000, more than 20 times greater than that used in previous work.

  17. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  18. Origin of the Absorption Band of Bromophenol Blue in Acidic and Basic pH: Insight from a Combined Molecular Dynamics and TD-DFT/MM Study.

    PubMed

    Chattopadhyaya, M; Murugan, N Arul; Rinkevicius, Zilvinas

    2016-09-15

    We study the linear and nonlinear optical properties of a well-known acid-base indicator, bromophenol blue (BPB), in aqueous solution by employing static and integrated approaches. In the static approach, optical properties have been calculated using time-dependent density functional theory (TD-DFT) on the fully relaxed geometries of the neutral and different unprotonated forms of BPB. Moreover, both closed and open forms of BPB were considered. In the integrated approach, the optical properties have been computed over many snapshots extracted from molecular dynamics simulation using a hybrid time-dependent density functional theory/molecular mechanics approach. The static approach suggests closed neutral ⇒ anionic interconversion as the dominant mechanism for the red shift in the absorption spectra of BPB due to a change from acidic to basic pH. It is found by employing an integrated approach that the two interconversions, namely open neutral ⇒ anionic and open neutral ⇒ dianionic, can contribute to the pH-dependent shift in the absorption spectra of BPB. Even though both static and integrated approaches reproduce the pH-dependent red shift in the absorption spectra of BPB, the latter one is suitable to determine both the spectra and spectral broadening. Finally, the computed static first hyperpolarizability for various protonated and deprotonated forms of BPB reveals that this molecule can be used as a nonlinear optical probe for pH sensing in addition to its highly exploited use as an optical probe.

  19. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  20. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  1. Photodissociation dynamics in the first absorption band of pyrrole. I. Molecular Hamiltonian and the Herzberg-Teller absorption spectrum for the A12(π σ* ) ←X˜ 1 A1(π π ) transition

    NASA Astrophysics Data System (ADS)

    Picconi, David; Grebenshchikov, Sergy Yu.

    2018-03-01

    This paper opens a series in which the photochemistry of the two lowest πσ* states of pyrrole and their interaction with each other and with the ground electronic state X ˜ are studied using ab initio quantum mechanics. New 24-dimensional potential energy surfaces for the photodissociation of the N-H bond and the formation of the pyrrolyl radical are calculated using the multiconfigurational perturbation theory (CASPT2) for the electronic states X ˜ (π π ) , 11A2(πσ*), and 11B1(πσ*) and locally diabatized. In this paper, the ab initio calculations are described and the photodissociation in the state 11A2(πσ*) is analyzed. The excitation 11 A2←X ˜ is mediated by the coordinate dependent transition dipole moment functions constructed using the Herzberg-Teller expansion. Nuclear dynamics, including 6, 11, and 15 active degrees of freedom, are studied using the multi-configurational time-dependent Hartree method. The focus is on the frequency resolved absorption spectrum as well as on the dissociation time scales and the resonance lifetimes. Calculations are compared with available experimental data. An approximate convolution method is developed and validated, with which absorption spectra can be calculated and assigned in terms of vibrational quantum numbers. The method represents the total absorption spectrum as a convolution of the diffuse spectrum of the detaching H-atom and the Franck-Condon spectrum of the heteroaromatic ring. Convolution calculation requires a minimal quantum chemical input and is a promising tool for studying the πσ* photodissociation in model biochromophores.

  2. Spectroscopic, orbital, and physical properties of the binary Feige 24 and detection of transient He II absorption in the system

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Thorstensen, John R.

    1994-01-01

    intensity. Because it is correlated with the passage of the white dwarf at inferior conjunction, the absorption may occur in some foreground plasma emanated by the red dwarf and accumulating near a Lagrangian point or, alternatively, it may originate in an accretion spot on the white dwarf surface coaligned with the major orbital axis. Either way, the He II detection may imply substantial mass loss from the red dwarf with a corollary reclassification of Feige 24 as a mixed He/H DAO white dwarf resulting from accretion of secondary mass-loss material. Feige 24 is the prototype of a class of young, EUV-emitting, binary systems comprising a late main sequence secondary and a hot H-rich white dwarf; the class is characterized by optical and ultraviolet photospheric He II absorption, circumstellar C IV lambda (1550) absorption, and by the presence of EUV-induced, phase-dependent Balmer fluorescence. These young systems present the best opportunity to constrain theory of common-envelope evolution.

  3. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS).

    PubMed

    Li, Yalong; Zhang, Xiaoxing; Li, Xin; Cui, Zhaolun; Xiao, Hai

    2018-01-01

    Air-insulated switchgear cabinets play a role in the protection and control of the modern power grid, and partial discharge (PD) switchgear is a long-term process in the non-normal operation of one of the situations; thus, condition monitoring of the switchgear is important. The air-insulated switchgear during PD enables the decomposition of air components, namely, O 3 and NO. A set of experimental platforms was designed on the basis of the principle of ultraviolet differential optical absorption spectroscopy (UV-DOAS) to detect O 3 and NO concentrations in air-insulated switchgear. Differential absorption algorithm and wavelet transform were used to extract effective absorption spectra; a linear relationship between O 3 and NO concentrations and absorption spectrum data were established. O 3 detection linearity was up to 0.9992 and the detection limit was at 3.76 ppm. NO detection linearity was up to 0.9990 and the detection limit was at 0.64 ppm. Results indicate that detection platform is suitable for detecting trace O 3 and NO gases produced by PD of the air-insulated switchgear.

  4. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-01-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals. PMID:26323238

  5. High resolution absorption spectrum of CO2between 1750 and 2000 Å. 2. Rotational analysis of two parallel-type bands assigned to the lowest electronic transition 13B2←

    NASA Astrophysics Data System (ADS)

    Cossart-Magos, Claudina; Launay, Françoise; Parkin, James E.

    The absorption spectrum of CO2 gas between 175 and 200 nm was photographed at high resolution some years ago. This very weak spectral region proved to be extremely rich in bands showing rotational fine structure. In Part 1 [C. Cossart-Magos, F. Launay, J. E. Parkin, Mol. Phys., 75, 835 (1992), nine perpendicular-type bands were assigned to the lowest singlet-singlet transition, 11A2 ← ν'3 (b2) vibration. Here, the parallel-type bands observed at 185.7 and 175.6 nm are assigned to the lowest triplet-singlet transition, 13B2 ← TMPH0629math005 ν'2 (a1) vibration. The assignment and the rotational and spin constant values obtained are discussed in relation to previous experimental data and ab initio calculation results on the lowest excited states of CO2. The actual role of the 13B2 state in CO2 photodissociation, O(3P)+CO(X1Σ+) recombination, and O(1D) emission quenching by CO(X) molecules is reviewed.

  6. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs.

    PubMed

    Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira

    2004-12-01

    To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.

  7. Detection of secondary eclipses of WASP-10b and Qatar-1b in the Ks band and the correlation between Ks-band temperature and stellar activity.

    NASA Astrophysics Data System (ADS)

    Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; López-Morales, Mercedes; Birkby, Jayne; Fortney, Jonathan J.; Hodgkin, Simon

    2017-10-01

    The Calar Alto Secondary Eclipse study was a program dedicated to observe secondary eclipses in the near-IR of two known close-orbiting exoplanets around K-dwarfs: WASP-10b and Qatar-1b. Such observations reveal hints on the orbital configuration of the system and on the thermal emission of the exoplanet, which allows the study of the brightness temperature of its atmosphere. The observations were performed at the Calar Alto Observatory (Spain). We used the OMEGA2000 instrument (Ks band) at the 3.5m telescope. The data was acquired with the telescope strongly defocused. The differential light curve was corrected from systematic effects using the Principal Component Analysis (PCA) technique. The final light curve was fitted using an occultation model to find the eclipse depth and a possible phase shift by performing a MCMC analysis. The observations have revealed a secondary eclipse of WASP-10b with depth of 0.137%, and a depth of 0.196% for Qatar-1b. The observed phase offset from expected mid-eclipse was of -0.0028 for WASP-10b, and of -0.0079 for Qatar-1b. These measured offsets led to a value for |ecosω| of 0.0044 for the WASP-10b system, leading to a derived eccentricity which was too small to be of any significance. For Qatar-1b, we have derived a |ecosω| of 0.0123, however, this last result needs to be confirmed with more data. The estimated Ks-band brightness temperatures are of 1647 K and 1885 K for WASP-10b and Qatar-1b, respectively. We also found an empirical correlation between the (R'HK) activity index of planet hosts and the Ks-band brightness temperature of exoplanets, considering a small number of systems.

  8. Microwave absorption properties of planar-anisotropy Ce2Fe17N3-δ powders/Silicone composite in X-band

    NASA Astrophysics Data System (ADS)

    Gu, Xisheng; Tan, Guoguo; Chen, Shuwen; Man, Qikui; Chang, Chuntao; Wang, Xinmin; Li, Run-Wei; Che, Shenglei; Jiang, Liqiang

    2017-02-01

    The soft-magnetic properties of planar-anisotropy Ce2Fe17N3-δ powders were reported, and reflection loss (RL) of the powders/Silicone composites with various volume concentrations have been studied in 0.1-18 GHz frequency range. It was found that the optimal RL of this composite absorber with a thickness of 1.72 mm is -60.5 dB at 9.97 GHz and the RL is less than -10 dB in the whole X-band (8-12 GHz). The bandwidth with RL exceeding -10 dB and -20 dB are 5.24 GHz and 1.32 GHz, respectively. Furthermore, all the optimal RL value of the composite with the thickness less than 2.13 mm can reach -20 dB in the range of 8-17 GHz, which indicates that the Ce2Fe17N3-δ/Silicone composite absorber will be a promising candidate in higher gigahertz frequency especially in X-band.

  9. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  10. Broad-band and polarization-independent perfect absorption in graphene-gold cylinder arrays at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Zheng, G. G.; Xu, L. H.; Xian, F. L.; Lai, M.

    2018-07-01

    A wavelength tunable perfect absorber with graphene-hexagonal gold (Au) cylinder array on a ground plate is investigated theoretically. The interactions between electromagnetic (EM) waves and monolayer graphene are analyzed through the field distributions and spectral responses in detail. The finite-difference-time-domain (FDTD) method is used to investigate the tunable properties of the absorber. It is demonstrated that in an optimized configuration, monolayer graphene can interact with light via critical coupling, and the absorptance can be greatly enhanced and reach to 100% for both transverse magnetic (TM) and transverse electronic (TE) polarizations. Furthermore, the influence of geometrical parameters of the structure on the response of the hybrid structure is studied. It is expected that the proposed graphene perfect absorbers can be applied for many applications in the visible (VIS) and the near-infrared (NIR) spectral ranges such as wavelength selective infrared photodetectors and plasmonic sensors.

  11. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  12. Monolithically integrated broad-band Mach-Zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics.

    PubMed

    Psarouli, A; Salapatas, A; Botsialas, A; Petrou, P S; Raptis, I; Makarona, E; Jobst, G; Tukkiniemi, K; Sopanen, M; Stoffer, R; Kakabakos, S E; Misiakos, K

    2015-12-02

    Protein detection and characterization based on Broad-band Mach-Zehnder Interferometry is analytically outlined and demonstrated through a monolithic silicon microphotonic transducer. Arrays of silicon light emitting diodes and monomodal silicon nitride waveguides forming Mach-Zehnder interferometers were integrated on a silicon chip. Broad-band light enters the interferometers and exits sinusoidally modulated with two distinct spectral frequencies characteristic of the two polarizations. Deconvolution in the Fourier transform domain makes possible the separation of the two polarizations and the simultaneous monitoring of the TE and the TM signals. The dual polarization analysis over a broad spectral band makes possible the refractive index calculation of the binding adlayers as well as the distinction of effective medium changes into cover medium or adlayer ones. At the same time, multi-analyte detection at concentrations in the pM range is demonstrated.

  13. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity.

    PubMed

    Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong

    2014-06-05

    High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 10(17) Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry.

  14. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals

    NASA Astrophysics Data System (ADS)

    Bozchalooi, I. Soltani; Liang, Ming

    2008-05-01

    The vibration signal measured from a bearing contains vital information for the prognostic and health assessment purposes. However, when bearings are installed as part of a complex mechanical system, the measured signal is often heavily clouded by various noises due to the compounded effect of interferences of other machine elements and background noises present in the measuring device. As such, reliable condition monitoring would not be possible without proper de-noising. This is particularly true for incipient bearing faults with very weak signature signals. A new de-noising scheme is proposed in this paper to enhance the vibration signals acquired from faulty bearings. This de-noising scheme features a spectral subtraction to trim down the in-band noise prior to wavelet filtering. The Gabor wavelet is used in the wavelet transform and its parameters, i.e., scale and shape factor are selected in separate steps. The proper scale is found based on a novel resonance estimation algorithm. This algorithm makes use of the information derived from the variable shaft rotational speed though such variation is highly undesirable in fault detection since it complicates the process substantially. The shape factor value is then selected by minimizing a smoothness index. This index is defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. De-noising results are presented for simulated signals and experimental data acquired from both normal and faulty bearings with defective outer race, inner race, and rolling element.

  15. CH PLIF and PIV implementation using C-X (0,0) and intra-vibrational band filtered detection

    NASA Astrophysics Data System (ADS)

    Hammack, Stephen D.; Skiba, Aaron W.; Lee, Tonghun; Carter, Campbell D.

    2018-02-01

    This study demonstrates advancement in a low-pulse energy methylidyne (CH) planar laser-induced fluorescence (PLIF) method that facilitates its application alongside flows seeded for particle image velocimetry (PIV) or other particle scattering based methods, as well as in high scattering environments. The C-X (0,0) R-branch excitation and filtered detection are carefully selected such that the laser line frequency is heavily attenuated by an edge filter while allowing transmission of most of the (0,0) band fluorescence. There are strong OH A-X (0,0) lines in the vicinity, but they can be avoided or utilized through dye laser tuning. As a demonstration of efficacy, PIV is performed simultaneously with the PLIF imaging. Using the edge filter, particle scattering signal is reduced to sub-fluorescence levels, allowing for flame-front analysis. This achievement enables flame-front tracking at high repetition rates (due to the low-pulse energy required) in combination with a scattering method such as PIV or use in high scattering environments such as enclosed combustors or near burner surfaces.

  16. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity

    PubMed Central

    Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong

    2014-01-01

    High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 1017 Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry. PMID:24898081

  17. Near-infrared Thermal Emission from TrES-3b: A Ks-band Detection and an H-band Upper Limit on the Depth of the Secondary Eclipse

    NASA Astrophysics Data System (ADS)

    Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.; Lafrenière, David; Albert, Loic

    2010-08-01

    We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133+0.018 -0.016% in the Ks band (8σ)—a result that is in sharp contrast to the eclipse depth reported by de Mooij & Snellen. We do not detect its thermal emission in the H band, but place a 3σ limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistribution of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3σ upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of

  18. Wet and full-depth glide snow avalanche onset monitoring and detection with ground based Ku-band radar

    NASA Astrophysics Data System (ADS)

    Lucas, Célia; Bühler, Yves; Leinss, Silvan; Hajnsek, Irena

    2017-04-01

    Wet and full-depth glide snow avalanches can be of considerable danger for people and infrastructure in alpine regions. In Switzerland avalanche hazard predictions are performed by the Institute for Snow and Avalanche Research SLF. However these predictions are issued on regional scale and do not yield information about the current status of particular slopes of interest. To investigate the potential of radar technology for avalanche prediction on the slope scale, we performed the following experiment. During the winter seasons 2015/2016 and 2016/2017, a ground-based Ku-band radar was placed in the vicinity of Davos (GR) in order to monitor the Dorfberg slope with 4-minute measurement intervals [1]. With Differential Interferometry [2] line of sight movements on the order of a fraction of the radar wavelength (1.7 cm) can be measured. Applying this technique to the Dorfberg scenario, it was possible to detect snowpack displacement of up to 0.4 m over 3 days in the avalanche release area prior to a snow avalanche event. A proof of concept of this approach was previously made by [3-5]. The analysis of the snowpack displacement history of such release areas shows that an avalanche is generally released after several cycles of acceleration and deceleration of a specific area of the snowpack, followed by an abrupt termination of the movement at the moment of the avalanche release. The acceleration and deceleration trends are related to thawing and refreezing of the snowpack induced by the daily temperature variations. The proposed method for the detection of snowpack displacements as indication for potential wet and full-depth glide snow avalanches is a promising tool to increase avalanche safety on specific slopes putting infrastructure or people at risk. The identification of a singular signature to discriminate the time window immediately prior to the release is still under investigation, but the ability to monitor snowpack displacement allows for mapping of zones

  19. Photodissociation dynamics in the first absorption band of pyrrole. II. Photofragment distributions for the 1A2(π σ* ) ←X˜ 1A1(π π ) transition

    NASA Astrophysics Data System (ADS)

    Picconi, David; Grebenshchikov, Sergy Yu.

    2018-03-01

    The analysis of the total kinetic energy release (TKER) of the photofragments pyrrolyl + H-atom formed in the photodissociation of pyrrole in the low-lying state 1A2(πσ*) is presented. The TKER distributions contain complementary and often more precise information on the fragmentation process than the broad diffuse absorption spectra. The distributions are calculated quantum mechanically for the diabatic state 1A2(πσ*) either isolated or coupled to the ground electronic state at an exit channel conical intersection. The calculations use the novel ab initio quasi-diabatic potential energy matrix constructed in the work of Picconi and Grebenshchikov [J. Chem. Phys. 148, 104103 (2018)]. The approximate overlap integral-based adiabatic mapping approach is introduced with which the quantum mechanical TKER distributions can be efficiently and accurately reproduced. Finally, the calculated TKERs are compared with the experimental results. The main features of the measured vibrationally resolved distributions are reproduced, and the spectral peaks are assigned and interpreted in detail.

  20. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  1. Analysis of Fade Detection and Compensation Experimental Results in a Ka-Band Satellite System. Degree awarded by Akron Univ., May 2000

    NASA Technical Reports Server (NTRS)

    Johnson, Sandra

    2001-01-01

    The frequency bands being used for new satellite communication systems are constantly increasing to accommodate the requirements for additional capacity. At these higher frequencies, propagation impairments that did not significantly affect the signal at lower frequencies begin to have considerable impact. In Ka-band, the next logical commercial frequency band to be used for satellite communication, attenuation of the signal due to rain is a primary concern. An experimental satellite built by NASA, the Advanced Communication Technology Satellite (ACTS), launched in September 1993, is the first US communication satellite operating in the Ka-band. In addition to higher carrier frequencies, a number of other new technologies, including onboard baseband processing, multiple beam antennas, and rain fade detection and compensation techniques, were designed into the ACTS. Verification experiments have been conducted since the launch to characterize the new technologies. The focus of this thesis is to describe and validate the method used by the ACTS Very Small Aperture Terminal (VSAT) ground stations in detecting the presence of fade in the communication signal and to adaptively compensate for it by the addition of burst rate reduction and forward error correction. Measured data obtained from the ACTS program is used to validate the compensation technique. In this thesis, models in MATLAB are developed to statistically characterize the increased availability achieved by the compensation techniques in terms of the bit error rate time enhancement factor. Several improvements to the ACTS technique are discussed and possible implementations for future Ka-band systems are also presented.

  2. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation.

    PubMed

    Passarella, Salvatore; Karu, Tiina

    2014-11-01

    In addition to the major functions performed by in the cell, mitochondria play a major role in cell-light interaction. Accordingly it is generally accepted that mitochondria are crucial in cell photobiomodulation; however a variety of biomolecules themselves proved to be targets of light irradiation. We describe whether and how mitochondria can interact with monochromatic and narrow band radiation in the red and near IR optical regions with dissection of both structural and functional effects likely leading to photobiostimulation. Moreover we also report that a variety of biomolecules localized in mitochondria and/or in other cell compartments including cytochrome c oxidase, some proteins, nucleic acids and adenine nucleotides are light sensitive with major modifications in their biochemistry. All together the reported investigations show that the elucidation of the mechanism of the light interaction with biological targets still remains to be completed, this needing further research, however the light sensitivity of a variety of molecules strongly suggests that photobiomodulation could be used in both in photomedicine and in biotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    PubMed

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  4. Detectors for the gamma-ray resonant absorption (GRA) method of explosives detection in cargo: a comparative study

    NASA Astrophysics Data System (ADS)

    Vartsky, David; Goldberg, Mark B.; Engler, Gideon; Shor, Asher; Goldschmidt, Aharon; Feldman, Gennady; Bar, Doron; Orion, Itzhak; Wielopolski, Lucian

    2004-01-01

    Gamma-Ray Resonant Absorption (GRA) is an automatic-decision radiographic screening technique that combines high radiation penetration with very good sensitivity and specificity to nitrogenous explosives. The method is particularly well-suited to inspection of large, massive objects (since the resonant γ-ray probe is at 9.17 MeV) such as aviation and marine containers, heavy vehicles and railroad cars. Two kinds of γ-ray detectors have been employed to date in GRA systems: 1) Resonant-response nitrogen-rich liquid scintillators and 2) BGO detectors. This paper analyses and compares the response of these detector-types to the resonant radiation, in terms of single-pixel figures of merit. The latter are sensitive not only to detector response, but also to accelerator-beam quality, via the properties of the nuclear reaction that produces the resonant-γ-rays. Generally, resonant detectors give rise to much higher nitrogen-contrast sensitivity in the radiographic image than their non-resonant detector counterparts and furthermore, do not require proton beams of high energy-resolution. By comparison, the non-resonant detectors have higher γ-detection efficiency, but their contrast sensitivity is very sensitive to the quality of the accelerator beam. Implications of these detector/accelerator characteristics for eventual GRA field systems are discussed.

  5. Wavelength modulation absorption spectroscopy with 2 f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows

    NASA Astrophysics Data System (ADS)

    Liu, J. T. C.; Jeffries, J. B.; Hanson, R. K.

    Multiplexed fiber-coupled diode lasers are used to probe second-harmonic line shapes of two near-infrared water absorption features, at 1343 nm and 1392 nm, in order to infer temperatures in gases containing water vapor, such as combustion flows. Wavelength modulation is performed at 170 kHz, and is superimposed on 1-kHz wavelength scans in order to recover full second-harmonic line shapes. Digital waveform generation and lock-in detection are performed using a data-acquisition card installed in a PC. An optimal selection of the modulation indices is shown to greatly simplify data interpretation over extended temperature ranges and to minimize the need for calibration when performing 2 f ratio thermometry. A theoretical discussion of this optimized strategy for 2 f ratio thermometry, as well as results from experimental validations in a heated cell, at pressures up to atmospheric, are presented in order to illustrate the utility of this technique for rapid temperature measurements in gaseous flow fields.

  6. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    PubMed

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Design of triple-band polarization controlled terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Xie, Qin; Dong, Guangxi; Huang, Wei-Qing

    2018-02-01

    A kind of triple-band polarization tunable terahertz absorber based on a metallic mirror and a metallic patch structure with two indentations spaced by an insulating medium layer is presented. Results prove that three near-perfect absorption peaks with average absorption coefficients of 98.25% are achieved when the polarization angle is equal to zero, and their absorptivities gradually decrease (and even disappear) by increasing the angle of polarization. When the polarization angle is increased to 90°, three new resonance modes with average absorption rates of 96.59% can be obtained. The field distributions are given to reveal the mechanisms of the triple-band absorption and the polarization tunable characteristics. Moreover, by introducing photosensitive silicon materials (its conductivity can be changed by the pump beam) in the indentations of the patch structure, the number of resonance peaks of the device can be actively tuned from triple-band to dual-band. The presented absorbers have potential applications, such as controlling thermal emissivity, and detection of polarization direction of the incident waves.

  8. Precipitation evidences on X-Band Synthetic Aperture Radar imagery: an approach for quantitative detection and estimation

    NASA Astrophysics Data System (ADS)

    Mori, Saverio; Marzano, Frank S.; Montopoli, Mario; Pulvirenti, Luca; Pierdicca, Nazzareno

    2017-04-01

    Spaceborne synthetic aperture radars (SARs) operating at L-band and above are nowadays a well-established tool for Earth remote sensing; among the numerous civil applications we can indicate flood areas detection and monitoring, earthquakes analysis, digital elevation model production, land use monitoring and classification. Appealing characteristics of this kind of instruments is the high spatial resolution ensured in almost all-weather conditions and with a reasonable duty cycle and coverage. This result has achieved by the by the most recent generation of SAR missions, which moreover allow polarimetric observation of the target. Nevertheless, atmospheric clouds, in particular the precipitating ones, can significantly affect the signal backscattered from the ground surface (e.g. Ferrazzoli and Schiavon, 1997), on both amplitude and phase, with effects increasing with the operating frequency. In this respect, proofs are given by several recent works (e.g. Marzano et al., 2010, Baldini et al., 2014) using X-Band SAR data by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, this sensitivity open interesting perspectives towards the SAR observation, and eventually quantification, of precipitations. In this respect, a proposal approach for X-SARs precipitation maps production and cloud masking arise from our work. Cloud masking allows detection of precipitation compromised areas. Respect precipitation maps, satellite X-SARs offer the unique possibility to ingest within flood forecasting model precipitation data at the catchment scale. This aspect is particularly innovative, even if work has been done the late years, and some aspects need to still address. Our developed processing framework allows, within the cloud masking stage, distinguishing flooded areas, precipitating clouds together with permanent water bodies, all appearing dark in the SAR image. The procedure is mainly based on image segmentation techniques and fuzzy logic (e.g. Pulvirenti et

  9. Narrow band imaging versus autofluorescence imaging for head and neck squamous cell carcinoma detection: a prospective study.

    PubMed

    Ni, X-G; Zhang, Q-Q; Wang, G-Q

    2016-11-01

    This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.

  10. Molecular detection and ecological significance of the cyanobacterial genera Geitlerinema and Leptolyngbya in black band disease of corals.

    PubMed

    Myers, Jamie L; Sekar, Raju; Richardson, Laurie L

    2007-08-01

    Black band disease (BBD) is a pathogenic, sulfide-rich microbial mat dominated by filamentous cyanobacteria that infect corals worldwide. We isolated cyanobacteria from BBD into culture, confirmed their presence in the BBD community by using denaturing gradient gel electrophoresis (DGGE), and demonstrated their ecological significance in terms of physiological sulfide tolerance and photosynthesis-versus-irradiance values. Twenty-nine BBD samples were collected from nine host coral species, four of which have not previously been investigated, from reefs of the Florida Keys, the Bahamas, St. Croix, and the Philippines. From these samples, seven cyanobacteria were isolated into culture. Cloning and sequencing of the 16S rRNA gene using universal primers indicated that four isolates were related to the genus Geitlerinema and three to the genus Leptolyngbya. DGGE results, obtained using Cyanobacteria-specific 16S rRNA primers, revealed that the most common BBD cyanobacterial sequence, detected in 26 BBD field samples, was related to that of an Oscillatoria sp. The next most common sequence, 99% similar to that of the Geitlerinema BBD isolate, was present in three samples. One Leptolyngbya- and one Phormidium-related sequence were also found. Laboratory experiments using isolates of BBD Geitlerinema and Leptolyngbya revealed that they could carry out sulfide-resistant oxygenic photosynthesis, a relatively rare characteristic among cyanobacteria, and that they are adapted to the sulfide-rich, low-light BBD environment. The presence of the cyanotoxin microcystin in these cultures and in BBD suggests a role in BBD pathogenicity. Our results confirm the presence of Geitlerinema in the BBD microbial community and its ecological significance, which have been challenged, and provide evidence of a second ecologically significant BBD cyanobacterium, Leptolyngbya.

  11. Molecular Detection and Ecological Significance of the Cyanobacterial Genera Geitlerinema and Leptolyngbya in Black Band Disease of Corals▿ †

    PubMed Central

    Myers, Jamie L.; Sekar, Raju; Richardson, Laurie L.

    2007-01-01

    Black band disease (BBD) is a pathogenic, sulfide-rich microbial mat dominated by filamentous cyanobacteria that infect corals worldwide. We isolated cyanobacteria from BBD into culture, confirmed their presence in the BBD community by using denaturing gradient gel electrophoresis (DGGE), and demonstrated their ecological significance in terms of physiological sulfide tolerance and photosynthesis-versus-irradiance values. Twenty-nine BBD samples were collected from nine host coral species, four of which have not previously been investigated, from reefs of the Florida Keys, the Bahamas, St. Croix, and the Philippines. From these samples, seven cyanobacteria were isolated into culture. Cloning and sequencing of the 16S rRNA gene using universal primers indicated that four isolates were related to the genus Geitlerinema and three to the genus Leptolyngbya. DGGE results, obtained using Cyanobacteria-specific 16S rRNA primers, revealed that the most common BBD cyanobacterial sequence, detected in 26 BBD field samples, was related to that of an Oscillatoria sp. The next most common sequence, 99% similar to that of the Geitlerinema BBD isolate, was present in three samples. One Leptolyngbya- and one Phormidium-related sequence were also found. Laboratory experiments using isolates of BBD Geitlerinema and Leptolyngbya revealed that they could carry out sulfide-resistant oxygenic photosynthesis, a relatively rare characteristic among cyanobacteria, and that they are adapted to the sulfide-rich, low-light BBD environment. The presence of the cyanotoxin microcystin in these cultures and in BBD suggests a role in BBD pathogenicity. Our results confirm the presence of Geitlerinema in the BBD microbial community and its ecological significance, which have been challenged, and provide evidence of a second ecologically significant BBD cyanobacterium, Leptolyngbya. PMID:17601818

  12. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases

    PubMed Central

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398

  14. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.

    PubMed

    Wojtas, Jacek

    2015-06-17

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases.

  15. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators.

    PubMed

    Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui

    2018-05-14

    Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.

  16. REVERBERATION MAPPING WITH INTERMEDIATE-BAND PHOTOMETRY: DETECTION OF BROAD-LINE Hα TIME LAGS FOR QUASARS AT 0.2 < z < 0.4

    SciTech Connect

    Jiang, Linhua; Shen, Yue; McGreer, Ian D.

    2016-02-20

    We present a reverberation mapping (RM) experiment that combines broad- and intermediate-band photometry; it is the first such attempt targeting 13 quasars at 0.2 < z < 0.9. The quasars were selected to have strong Hα or Hβ emission lines that are located in one of three intermediate bands (with FWHM around 200 Å) centered at 8045, 8505, and 9171 Å. The imaging observations were carried out in the intermediate bands and the broad i and z bands using the prime-focus imager 90Prime on the 2.3 m Bok telescope. Because of the large (∼1 deg{sup 2}) field of view (FOV) of 90Prime, we includedmore » the 13 quasars within only five telescope pointings or fields. The five fields were repeatedly observed over 20–30 epochs that were unevenly distributed over a duration of 5–6 months. The combination of the broad- and intermediate-band photometry allows us to derive accurate light curves for both optical continuum emission (from the accretion disk) and line emission (from the broad-line region, or BLR). We detect Hα time lags between the continuum and line emission in six quasars. These quasars are at relatively low redshifts 0.2 < z < 0.4. The measured lags are consistent with the current BLR size–luminosity relation for Hβ at z < 0.3. While this experiment appears successful in detecting lags of the bright Hα line, further investigation is required to see if it can also be applied to the fainter Hβ line for quasars at higher redshifts. Finally we demonstrate that, by using a small telescope with a large FOV, intermediate-band photometric RM can be efficiently executed for a large sample of quasars at z > 0.2.« less

  17. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  18. Two- and three-dimensional ultrasound imaging to facilitate detection and targeting of taut bands in myofascial pain syndrome.

    PubMed

    Shankar, Hariharan; Reddy, Sapna

    2012-07-01

    Ultrasound imaging has gained acceptance in pain management interventions. Features of myofascial pain syndrome have been explored using ultrasound imaging and elastography. There is a paucity of reports showing the benefit clinically. This report provides three-dimensional features of taut bands and highlights the advantages of using two-dimensional ultrasound imaging to improve targeting of taut bands in deeper locations. Fifty-eight-year-old man with pain and decreased range of motion of the right shoulder was referred for further management of pain above the scapula after having failed conservative management for myofascial pain syndrome. Three-dimensional ultrasound images provided evidence of aberrancy in the architecture of the muscle fascicles around the taut bands compared to the adjacent normal muscle tissue during serial sectioning of the accrued image. On two-dimensional ultrasound imaging over the palpated taut band, areas of hyperechogenicity were visualized in the trapezius and supraspinatus muscles. Subsequently, the patient received ultrasound-guided real-time lidocaine injections to the trigger points with successful resolution of symptoms. This is a successful demonstration of utility of ultrasound imaging of taut bands in the management of myofascial pain syndrome. Utility of this imaging modality in myofascial pain syndrome requires further clinical validation. Wiley Periodicals, Inc.

  19. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  20. Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument

    NASA Astrophysics Data System (ADS)

    Goldie, D. J.; Glowacka, D. M.; Withington, S.; Chen, Jiajun; Ade, P. A. R.; Morozov, D.; Sudiwala, R.; Trappe, N. A.; Quaranta, O.

    2016-07-01

    We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 μm and S-band 34 - 60 μm .

  1. A rapid method of accurate detection and differentiation of Newcastle disease virus pathotypes by demonstrating multiple bands in degenerate primer based nested RT-PCR.

    PubMed

    Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K

    2015-02-01

    A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    NASA Astrophysics Data System (ADS)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration

  3. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  4. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  5. Mid and Near-IR Absorption Spectra of PAH Neutrals and Ions in H20 Ice to Facilitate their Astronomical Detection

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are believed to be the most abundant and widespread class of organic compounds in the universe, having been observed in emission towards energetic regions and absorption towards colder ones.We will present IR spectra of PAHs and their cations in H20 ice measured in the laboratory in the hopes that this will facilitate the detection of these features in the interstellar medium.

  6. Search for the OH (X(2)Pi) Meinel band emission in meteors as a tracer of mineral water in comets: detection of N(2)(+) (A-X)

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.

    2004-01-01

    We report the discovery of the N(2)(+) A-X Meinel band in the 780-840 nm meteor emission from two Leonid meteoroids that were ejected less than 1000 years ago by comet 55P/Tempel-Tuttle. Our analysis indicates that the N(2)(+) molecule is at least an order of magnitude less abundant than expected, possibly as a result of charge transfer reactions with meteoric metal atoms. This new band was found while searching for rovibrational transitions in the X(2)Pi electronic ground state of OH (the OH Meinel band), a potential tracer of water bound to minerals in cometary matter. The electronic A-X transition of OH has been identified in other Leonid meteors. We did not detect this OH Meinel band, which implies that the excited A state is not populated by thermal excitation but by a mechanism that directly produces OH in low vibrational levels of the excited A(2)Sigma state. Ultraviolet dissociation of atmospheric or meteoric water vapor is such a mechanism, as is the possible combustion of meteoric organics.

  7. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  8. SIMULTANEOUS B'V'R' MONITORING OF BL LACERTAE OBJECT S5 0716+714 AND DETECTION OF INTER-BAND TIME DELAY

    SciTech Connect

    Wu Jianghua; He Xiangtao; Boettcher, Markus

    We present the results of our optical monitoring of the BL Lac object S5 0716+714 over seven nights in 2006 December. The monitoring was carried out simultaneously at three optical wavelengths with a novel photometric system. The object did not show large-amplitude internight variations during this period. Intranight variations were observed on four nights and probably on one more. Strong bluer-when-brighter chromatism was detected on both intranight and internight timescales. The intranight variation amplitude decreases in the wavelength sequence of B', R', and V'. Cross-correlation analyses revealed that the variability at the B' and V' bands leads that at themore » R' band by about 30 minutes on one night.« less

  9. Serendipitous Detection of {\\rm{H}}\\,{\\rm{I}} Absorption Sets the True Redshift of 4C +15.05 to z = 0.833

    NASA Astrophysics Data System (ADS)

    Jones, K. M.; Ghosh, T.; Salter, C. J.

    2018-06-01

    4C+15.05 (also known as NRAO 91, PKS 0202+14, or J0204+15) is a quintessential blazar. It has a luminous, variable radio spectrum, a super-luminal jet, and gamma-ray detections. Arecibo observations with the 700–800 MHz receiver on the 305 m diameter William E. Gordon Telescope detected, serendipitously, H I in absorption against 4C+15.05 while using it as a bandpass calibrator for another object in an H I absorption project. Although the redshift we derive is different from that commonly in use in the literature (nominally z = 0.405), it agrees very well with the value of z = 0.833 determined by Stickel et al. This absorption feature is best fitted by a sum of three Gaussians, which yield an average redshift of z = 0.8336 ± 0.0004, although without corresponding high-resolution imaging it is not possible to say whether the components are parts of outflows or inflows. A total column density of N(H I) = 2.39 ± 0.13 × 1021 cm‑2 is derived, relatively high compared to many radio-loud sources. These results are compared to various relationships in the literature.

  10. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  11. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Todd Clancy, R.; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    Visible and near-IR Meinel band emissions originate from excited OH in the terrestrial upper atmosphere (Meinel, I.A.B. [1950]. Astrophys. J. 111, 555. http://dx.doi.org/10.1086/145296), and have recently been detected in the Venus nightside upper mesosphere (Piccioni, G. et al. [2008]. Astron. Astrophys. 483, L29-L33. http://dx.doi.org/10.1051/0004-6361:200809761). Meinel band observations support key studies of transport and photochemistry in both of these atmospheres. In the case of Mars, OH regulates the basic stability of the CO2 atmosphere to photolytic decomposition (to CO and O2, e.g. Parkinson, T.D., Hunten, D.M. [1972]. J. Atmos. Sci. 29, 1380-1390. http://dx.doi.org/10.1175/1520-0469(1972)029<1380:SAAOOO>2.0.CO;2), and yet has never been measured. We present the first detection of Mars atmospheric OH, associated with CRISM near-IR spectral limb observations of polar night Meinel band emissions centered at 1.45 and 2.9 μm. Meinel band (1-0), (2-1), and (2-0) average limb intensities of 990 ± 280, 1060 ± 480, and 200 ± 100 kiloRayleighs (kR), respectively, are determined for 70-90 NS polar winter latitudes over altitudes of 40-56 km. Additional OH bands, such as (3-2), (3-1), and (4-2), present ⩽1σ measurements. Uncertainty in the (4-2) band emission rate contributes to increased uncertainty in the determination of the O2(1Δg) (0-0)/(0-1) band emission ratio A00/A01=47-12+26. An average profile retrieval for Mars OH polar nightglow indicates 45-55 km altitude levels for volume emission rates (VER) of 0.4 (2-0) to 2 (1-0, 2-1) × 104 photons/(cm3 s). Similar to polar night O2(1Δg) emission (e.g. Clancy, R.T. et al. [2012]. J. Geophys. Res. (Planets) 117, E00J10. http://dx.doi.org/10.1029/2011JE004018), Meinel OH band emission is supported by upper level, winter poleward transport of O and H in the deep Hadley solsticial circulations of Mars. The retrieved OH emission rates are compared to polar winter OH nightglow simulated by the LMD (Laboratoire

  12. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    PubMed Central

    Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-01

    A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082

  13. Sensitive Mid-Infrared Detection in Wide-Bandgap Semiconductors Using Extreme Non-Degenerate Two-Photon Absorption

    DTIC Science & Technology

    2011-08-07

    cutting and imaging, with p- and i -GaN regions estimated to be ,1 mm in thickness36. This detector was used in photoconductive mode, with a preamplifier...D., Khoo, I . C., Salamo, G. J., Stegeman, G. I . & Van Straland, E. W. Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt...Am. B 9, 2065–2074 (1992). 14. Sheik- Bahae , M., Wang, J., DeSalvo, R., Hagan, D. J. & Van Styland, E. W. Measurement of nondegenerate nonlinearities

  14. Retrieval Analysis of the CO2 1.6 μm Band in Solar Absorption Spectra Measured by a Ground-Based High-Resolution Fourier Transform Spectrometer at Tsukuba

    NASA Astrophysics Data System (ADS)

    Ohyama, H.; Morino, I.; Nagahama, T.; Suto, H.; Oguma, H.; Machida, T.; Sugimoto, N.; Nakane, H.; Nakagawa, K.

    2006-12-01

    The global measurements of greenhouse gases from space are being planned, such as GOSAT (Greenhouse gases Observing SATellite) and OCO (Orbiting Carbon Observatory). Satellite remote sensing needs validations with other measurement techniques, for example, in-situ or sampling measurement by aircraft or ground station, or remote sensing measurement by ground-based Fourier Transform Spectrometer (FTS). The ground-based FTS measurement can provide the column amounts of atmospheric composition by a retrieval analysis with relatively high precision. In 2001, we started a project to observe the atmospheric compositions in solar absorption spectra by a ground- based high-resolution FTS (Bruker IFS 120 HR) located at Tsukuba, Japan. Three years ago, optical components of the FTS were replaced for measuring greenhouse gases such as carbon dioxide (CO2) and methane (CH4) in the near-infrared region: a CaF2 beam splitter, an InSb detector, and a 1.4-2.4 μm optical filter. The measurements were carried out once a day for ~100 days per year. We also made simultaneous FTS and aircraft in-situ measurements on August 10, 2004 and March 30, 2005. The retrieval analysis was performed for the measured spectra in the CO2 1.6 μm band. We used SEASCRAPE PLUS (Sequential Evaluation Algorithm for Simultaneous and Concurrent Retrieval of Atmospheric Parameter Estimates PLUS, Remote Sensing Analysis Systems, Inc.) as a retrieval analysis program. The column amounts were compared with those derived from in-situ measurements complemented by model data; differences are less than 1%. We have derived the diurnal variations of CO2 on the same days as in-situ measurements, and they showed tendencies similar to the tower measurements at the Meteorological Research Institute in Tsukuba.

  15. Triton-polyacrylamide gel electrophoresis and leucine aminopeptidase activity staining detect Triton-slowed bands including high-molecular-mass aminopeptidase N (CD13) isoform in cholestatic patient sera.

    PubMed

    Kawai, Makoto; Hara, Yukichi

    2006-02-01

    Western blotting of aminopeptidase N (APN) detects a high-molecular-mass isoform (260 kDa) [M. Kawai, Y. Otake, Y. Hara High-molecular-mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients. Clin Chim Acta 330 (2003) 141-149] in cholestatic patient serum but is time-consuming. Human sera were electrophoresed on polyacrylamide gel containing Triton-X100 (Triton-PAGE) and stained with leucine-B-naphthylamide (LAP-staining). The stained bands were eluted from the gel, treated with N- and O-glycosidase if necessary, and analyzed by Western blotting [M. Kawai, Y. Otake, Y. Hara High-molecular-mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients. Clin Chim Acta 330 (2003) 141-149]. Triton-PAGE and LAP-staining clearly detected fast bands in all the sera examined. Almost parallel with leucine aminopeptidase activity, slow bands were strongly stained in all 11 cholestatic patients but clearly stained in 3 out of 14 patients with hepatobiliary diseases other than cholestasis. PAGE with various concentrations of Triton showed that Triton slows down slow bands but not fast bands. Western blotting showed that Triton-PAGE-slow bands of cholestasis contained 140 and 260-kDa APN and that fast bands were slightly smaller than monomer-size slow bands after glycosidase treatment. Less time-consuming than Western blotting, Triton-PAGE and LAP-staining detect novel APN bands slowed by Triton and partly composed of the high-molecular-mass isoform in cholestasis. The slow bands seem to be homodimers of APN with transmembrane anchors. The polypeptide of the fast band seems to be processed differently from that of the slow band.

  16. Novel laparoscopic narrow band imaging for real-time detection of bile leak during hepatectomy: proof of the concept in a porcine model.

    PubMed

    Diana, Michele; Usmaan, Hameed; Legnèr, Andras; Yu-Yin, Liu; D'Urso, Antonio; Halvax, Peter; Nagao, Yoshihiro; Pessaux, Patrick; Marescaux, Jacques

    2016-07-01

    Bile leakage is a serious complication occurring in up to 10 % of hepatic resections. Intraoperative detection of bile leakage is challenging, and concomitant blood oozing can mask the presence of bile. Intraductal dye injection [methylene blue or indocyanine green (ICG)] is a validated technique to detect bile leakage. However, this method is time-consuming, particularly in the laparoscopic setting. A novel narrow band imaging (NBI) modality (SPECTRA-A; Karl Storz, Tuttlingen, Germany) allows easy discrimination of the presence of bile, which appears in clear orange, by image processing. The aim of this experimental study was to evaluate SPECTRA-A ability to detect bile leakage. Twelve laparoscopic partial hepatectomies were performed in seven pigs. The common bile duct was clipped distally and dissected, and a catheter was inserted and secured with a suture or a clip. Liver dissection was achieved with an ultrasonic cutting device. Dissection surfaces were checked by frequently switching on the SPECTRA filter to identify the presence of bile leakage. Intraductal ICG injection through the catheter was performed to confirm SPECTRA findings. Three active bile leakages were obtained out of 12 hepatectomies and successfully detected intraoperatively by the SPECTRA. There was complete concordance between NBI and ICG fluorescence detection. No active leaks were found in the remaining cases with both techniques. The leaking area identified was sutured, and SPECTRA was used to assess the success of the repair. The SPECTRA laparoscopic image processing system allows for rapid detection of bile leaks following hepatectomy without any contrast injection.

  17. Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    NASA Technical Reports Server (NTRS)

    Richardson, Noel D.; St-Jean, Lucas; Gull, Theodore R.; Madura, Thomas; Hillier, D. John; Teodoro, Mairan; Moffat, Anthony; Corcoran, Michael; Damineli, Augusto

    2014-01-01

    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194

  18. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  19. Comparison of two methods for the detection of oligoclonal bands in a large number of clinically isolated syndrome and multiple sclerosis patients.

    PubMed

    Andlovic, Aljoša; Babič, Maša; Accetto, Slavko; Rot, Uroš

    2012-07-01

    A novel oligoclonal band (OB) assay which consists of isoelectric focusing (IEF) and IgG immunodetection by alkaline phosphatase-labeled anti IgG antibody was reported to be very sensitive. It also accurately predicted conversion to MS in patients with CIS. The aim of our study was to compare sensitivity of a novel and the standard procedure with peroxidase immunodetection in a large number of CIS and MS patients. OB were determined in serum and CSF samples in 161 patients (104 females), 47 with CIS and 114 with MS with median age 38 years (range 19-68) using both methods. Eighty-three percent of patients had CSF OB with the standard and 89% with the novel method. Median number of OB was 5 (range 0-17) with the peroxidase and 8 (range 0-18) with the alkaline phosphatase method; p = 0.001. Twenty-one percent of patients had ≥ 10 OB with the standard and 37% with the novel method of the detection; p = 0.021. Subjective impression of band clarity showed that 20% of patients had sharper and stronger bands when the peroxidase and 65% when the alkaline phosphatase method was used; p<0.0001. The alkaline phosphatase method is more sensitive than the peroxidase method and at the same time cheaper, easy to perform and less time consuming. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOEpatents

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  1. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    SciTech Connect

    Yi, Hongming; Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, 350 Shushanhu Road, Hefei, Anhui 230031; Maamary, Rabih

    2015-03-09

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm{sup −1} was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ∼40 mm{sup 3}) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ∼109.5 mmore » multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10{sup −8 }cm{sup −1} W/Hz{sup 1/2}. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ∼1.1 × 10{sup −7 }cm{sup −1} (MDL ∼ 3 ppbv) in 1 s and ∼1.1 × 10{sup −8 }cm{sup −1} (MDL ∼ 330 pptv) in 150 s, respectively, with 1 W laser power.« less

  2. Optical Detection and Probing of Single Dopant Molecules of Pentacene in a p-Terphenyl Crystal by Means of Absorption Spectroscopy

    DTIC Science & Technology

    1989-08-31

    Pentacene in a p-Terphenyl Host Crystal bY !eT=s of bsorotion Spectroscopy 12 PERSONAl AU- OR(S) L. Kador, W.E. Moerner & D.E. Horne 1 3a 7 P; OF REPORT...G(OP SUB-GROUP Single Molecule Detection FM Spectroscopy Pentacene in p-terphenyl 19 AtiSTRACT {Continue on reverse it necessary and identity Oy block...OF PENTACENE IN A p-TERPIIENYL IIOST CRYSTAL BY MEANS OF ABSORPTION SPECTROSCOPY L. Kador , 1). E. I lorne, and W. lF. Moerner IM Research )ivision

  3. No detectable bioeffects following acute exposure to high peak power ultra-wide band electromagnetic radiation in rats.

    PubMed

    Walters, T J; Mason, P A; Sherry, C J; Steffen, C; Merritt, J H

    1995-06-01

    A wide range assessment of the possible bioeffects of an acute exposure to high peak power ultra-wide band (UWB) electromagnetic radiation was performed in rats. The UWB-exposure consisted of 2 min of pulsed (frequency: 60 Hz, pulse width: 5-10 ns) UWB (bandwidth: 0.25-2.50 GHz) electromagnetic radiation. Rats were examined using one of the following: 1) a functional observational battery (FOB); 2) a swimming performance test; 3) a complete panel of blood chemistries; or 4) determination of the expression of the c-fos protein in immunohistologically-stained sections of the brain. No significant differences were found between UWB- or sham-exposed rats on any of the measured parameters.

  4. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  5. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  6. Analysis of synthetic derivatives of peptide hormones by capillary zone electrophoresis and micellar electrokinetic chromatography with ultraviolet-absorption and laser-induced fluorescence detection.

    PubMed

    Solínová, Veronika; Kasicka, Václav; Koval, Dusan; Barth, Tomislav; Ciencialová, Alice; Záková, Lenka

    2004-08-25

    Capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) were used for the analysis of new synthetic derivatives of hypophysis neurohormones--vasopressin and oxytocin, and pancreatic hormone--human insulin (HI) and its octapeptide fragment, derivatized by fluorescent probe, 4-chloro-7-nitrobenzo[1,2,5]oxadiazol (NBD). The suitable composition of background electrolytes (BGEs) was selected on the basis of calculated pH dependence of effective charge of analyzed peptides. Basic ionogenic peptides were analyzed by CZE in the acidic BGE composed of 100 mM H3PO4, 50 mM Tris, pH 2.25. The ionogenic peptides with fluorescent label, NBD, were analyzed in 0.5 M acetic acid, pH 2.5. The best MEKC separation of non-ionogenic peptides was achieved in alkaline BGE, 20 mM Tris, 5 mM H3PO4, with micellar pseudophase formed by 50 mM sodium dodecylsulfate (SDS), pH 8.8. Selected characteristics (noise, detectability of substance, sensitivity of detector) of the UV-absorption detectors (single wavelength detector, multiple-wavelength photodiode array detector (PDA), both of them operating at constant wavelength 206 nm) and laser-induced fluorescence (LIF) detector (excitation/emission wavelength 488/520 nm) were determined. The detectability of peptides in the single wavelength detector was 1.3-6.0 micromol dm(-3) and in the PDA detector 1.6-3.1 micromol dm(-3). The LIF detection was more sensitive, the applied concentration of NBD derivative of insulin fragment in CZE analysis with LIF detection was three orders lower than in CZE with UV-absorption detector, and the detectability of this peptide was improved to 15.8 nmol dm(-3).

  7. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    SciTech Connect

    Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less

  8. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ying; Dash, Manas Ranjan; Chung, Chao-Yu; Lee, Yuan-Pern

    2018-02-01

    We recorded time-resolved infrared absorption spectra of transient species produced on irradiation at 308 nm of a flowing mixture of CH2I2/O2/N2/SO2 at 298 K. Bands of CH2OO were observed initially upon irradiation; their decrease in intensity was accompanied by the appearance of an intense band at 1391.5 cm-1 that is associated with the degenerate SO-stretching mode of SO3, two major bands of HCHO at 1502 and 1745 cm-1, and five new bands near >1340, 1225, 1100, 940, and 880 cm-1. The band near 1340 cm-1 was interfered by absorption of SO2 and SO3, so its band maximum might be greater than 1340 cm-1. SO3 in its internally excited states was produced initially and became thermalized at a later period. The rotational contour of the band of thermalized SO3 agrees satisfactorily with the reported spectrum of SO3. These five new bands are tentatively assigned to an intermediate 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] according to comparison with anharmonic vibrational wavenumbers and relative IR intensities predicted for this intermediate. Observation of a small amount of cyc-(CH2)O(SO2)O is consistent with the expected reaction according to the potential energy scheme predicted previously. SO3+HCHO are the major products of the title reaction. The other predicted product channel HCOOH+SO2 was unobserved and its branching ratio was estimated to be <5%.

  9. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO+SO2.

    PubMed

    Wang, Yi-Ying; Dash, Manas Ranjan; Chung, Chao-Yu; Lee, Yuan-Pern

    2018-02-14

    We recorded time-resolved infrared absorption spectra of transient species produced on irradiation at 308 nm of a flowing mixture of CH 2 I 2 /O 2 /N 2 /SO 2 at 298 K. Bands of CH 2 OO were observed initially upon irradiation; their decrease in intensity was accompanied by the appearance of an intense band at 1391.5 cm -1 that is associated with the degenerate SO-stretching mode of SO 3 , two major bands of HCHO at 1502 and 1745 cm -1 , and five new bands near >1340, 1225, 1100, 940, and 880 cm -1 . The band near 1340 cm -1 was interfered by absorption of SO 2 and SO 3 , so its band maximum might be greater than 1340 cm -1 . SO 3 in its internally excited states was produced initially and became thermalized at a later period. The rotational contour of the band of thermalized SO 3 agrees satisfactorily with the reported spectrum of SO 3 . These five new bands are tentatively assigned to an intermediate 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH 2 )O(SO 2 )O] according to comparison with anharmonic vibrational wavenumbers and relative IR intensities predicted for this intermediate. Observation of a small amount of cyc-(CH 2 )O(SO 2 )O is consistent with the expected reaction according to the potential energy scheme predicted previously. SO 3 +HCHO are the major products of the title reaction. The other predicted product channel HCOOH+SO 2 was unobserved and its branching ratio was estimated to be <5%.

  10. The development of blue ice moraines from englacial debris bands as detected by GPR, Mt Achernar, central Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Kassab, C.; Lindback, K.; Pettersson, R.; Licht, K.; Graly, J. A.; Kaplan, M. R.

    2016-12-01

    Blue ice moraines cover a small percentage of Antarctica, but can contain a significant record of ice sheet dynamics and climate over multiple glacial cycles. Previous work has focused on the temporal and provenance record contained within these moraines and less on mechanisms by which such deposits form and their temporal evolution. In order to create a conceptual model of their formation, >25 km of ground penetrating radar transects at 25 and 100 MHz frequencies were collected at the Mt Achernar moraine adjacent to Law Glacier. Here, ice ablation causes debris bands to emerge and deliver sediment to the surface. Most transects were collected perpendicular to the ice-moraine margin, and extend from the actively flowing Law Glacier ice to a distance of 2 km into the moraine. The 25 and 100 MHz transects penetrate to a depth of 200 m and 60 m respectively and reveal a relatively complex internal stratigraphy. Closest to the ice-moraine margin, stratigraphy is not well resolved due to a high amount of clutter. Steeply dipping parallel reflections first emerge 400m away from the ice margin and dip toward Law Glacier. These reflections continue inwards to 1450m, where the reflections become more closely spaced. Hummocky topography and parallel ridge/trough topography dominate the geomorphic expression. The hummocky topography corresponds to the region where reflections are not well resolved. The ridges are interpreted to be debris bands that are emerging at the surface, similar to those along the margin of the Law Glacier where debris is newly emerging. The reflections in the GPR transects indicate that debris is transported from depth to the surface of the ice where it accumulates forming the Mt Achernar moraine. It appears that the various reflection patterns correspond to unique surface geomorphic expressions. The reflections also indicate that at least the first 2 km of debris rich buried ice in the moraine can be linked to the actively flowing Law Glacier

  11. A further study to investigate the detection and enhancement of latent fingerprints using visible absorption and luminescence chemical imaging.

    PubMed

    Payne, Gemma; Reedy, Brian; Lennard, Chris; Comber, Bruce; Exline, David; Roux, Claude

    2005-05-28

    This study investigated the application of chemical imaging to the detection of latent fingerprints using the Condor macroscopic chemical imaging system (ChemImage Corp., Pittsburgh, USA). Methods were developed and optimised for the visualisation of untreated latent fingerprints and fingerprints processed with DFO, ninhydrin, cyanoacrylate, and cyanoacrylate plus rhodamine 6G stain. The results obtained with chemical imaging were compared to the detection achieved using conventional imaging techniques. The Condor significantly improved the detection of many prints, especially those that might be considered poor quality or borderline prints. Prints on newspaper treated with ninhydrin and DFO, and prints on white and yellow paper treated with ninhydrin, benefited the most from chemical imaging detection. In many cases, fingerprints undetectable using conventional imaging techniques could be visualised with chemical imaging. Ridge detail from untreated prints on yellow paper was also detected using the Condor. When prints of high quality were examined, both detection techniques produced quality results. The results of this project demonstrate that chemical imaging offers advantages over conventional visualisation techniques when examining latent fingerprints, especially those that would be considered difficult, such as weak prints or prints on surfaces that produce highly luminescent backgrounds. Standard testing procedures for the detection and enhancement of fingerprints by chemical imaging are presented and discussed.

  12. Detection of the BL Lac object 1ES 1426+428 in the Very High Energy gamma-ray band by the CAT Telescope from 1998-2000

    NASA Astrophysics Data System (ADS)

    Djannati-Ataï, A.; Khelifi, B.; Vorobiov, S.; Bazer-Bachi, R.; Chounet, L. M.; Debiais, G.; Degrange, B.; Espigat, P.; Fabre, B.; Fontaine, G.; Goret, P.; Gouiffes, C.; Masterson, C.; Piron, F.; Punch, M.; Rivoal, M.; Rob, L.; Tavernet, J.-P.

    2002-08-01

    The BL Lac Object 1ES 1426+428, at a red-shift of z=0.129, has been monitored by the CAT telescope from February 1998 to June 2000. The accumulation of 26 h of observations shows a gamma -ray signal of 321 events above 250 GeV at 5.2 standard deviations, determined using data analysis cuts adapted to a weak, steep-spectrum source. The source emission has an average flux of Phidiff(400 GeV)= 6.73+/-1.27stat+/-1.45syst*E-11 cm-2 s-1 TeV-1, and a very steep spectrum, with a differential spectral index of gamma =-3.60 +/- 0.57 which can be refined to gamma =-3.66 +/- 0.41 using a higher flux data subset. If, as expected from its broad-band properties, the Very High Energy emission is hard at the source, these observations support a strong absorption effect of gamma-rays by the Intergalactic Infrared field.

  13. Temperature shift of intraband absorption peak in tunnel-coupled QW structure

    NASA Astrophysics Data System (ADS)

    Akimov, V.; Firsov, D. A.; Duque, C. A.; Tulupenko, V.; Balagula, R. M.; Vinnichenko, M. Ya.; Vorobjev, L. E.

    2017-04-01

    An experimental study of the intersubband light absorption by the 100-period GaAs/Al0.25Ga0.75As double quantum well heterostructure doped with silicon is reported and interpreted. Small temperature redshift of the 1-3 intersubband absorption peak is detected. Numerical calculations of the absorption coefficient including self-consistent Hartree calculations of the bottom of the conduction band show good agreement with the observed phenomena. The temperature dependence of energy gap of the material and the depolarization shift should be accounted for to explain the shift.

  14. Nonlinear theory of the narrow-band generation and detection of terahertz radiation in resonant tunneling heterostructures

    SciTech Connect

    Kapaev, V. V., E-mail: kapaev@lebedev.ru

    The nonlinear regime of high-frequency response for resonant tunneling structures in a time-periodic electric field has been investigated using a technique for solving the time-dependent Schrödinger equation based on a Floquet mode expansion of the wave functions. The dependences of current harmonic amplitudes on ac signal amplitude have been calculated and the limiting values of the generated field have been determined for singleand double-well resonant tunneling structures. The dynamic Stark effect is shown to play an important role in the formation of response. It leads to a quadratic (in ac field amplitude) shift in the positions of resonances E{sub r}more » in single-well structures and in double-well ones in the nonresonant case and to a splitting at resonance hν ≈ E{sub r2}–E{sub r1} (ν is the signal frequency, E{sub r1} and E{sub r2} are the energies of the size-quantization levels) in double-well structures proportional to the ac signal amplitude. The phenomenon of ac signal detection by resonant tunneling structures has been investigated. The effect of resonant direct-current amplification in double-well structures has been detected at a signal frequency satisfying the condition hν ≈ E{sub r2}–E{sub r1}. In asymmetric systems, detection is shown to be possible in the absence of a dc bias, which allows zero-biased detectors based on them to be created.« less

  15. Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO II Dial system

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2006-09-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.

  16. The Diffuse Interstellar Bands: Solving a Century Old Problem

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2017-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of apporoximately 500 absorption bands that are seen in the spectra of reddened stars (i.e., stars obscured by the presence of interstellar clouds in their line of sight). The first DIBs were detected in the visible over a century ago. Diffuse Interstellar Bands are now detected from the near ultraviolet to the near infrared in the spectra of reddened stars spanning a variety of interstellar environments in our local, and in other galaxies. Although DIB carriers are a significant part of the interstellar chemical inventory as they account for a noticeable fraction of the interstellar extinction, the nature of their carriers is still unknown over a century after the detection of the first bands. DIB carriers are stable and ubiquitous in a broad variety of interstellar environments and play a unique role in interstellar physics and chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics and astrochemistry, quantum chemistry calculations and astrophysical modeling of line-of-sights. In this review, we'll present and discuss the current state of this perplexing problem. We'll review the progress and the failures that have been encountered in the long quest for the identification of the carriers of these ubiquitous interstellar bands.

  17. Development of differential absorption lidar (DIAL) for detection of CO2, CH4 and PM in Alberta

    NASA Astrophysics Data System (ADS)

    Wojcik, Michael; Crowther, Blake; Lemon, Robert; Valupadas, Prasad; Fu, Long; Leung, Bonnie; Yang, Zheng; Huda, Quamrul; Chambers, Allan

    2005-05-01

    Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as satellite imagery and laser based sensors. The Space Dynamics Laboratory (SDL) of Utah State University, in cooperation with Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA), has developed North America's first mobile differential absorption lidar (DIAL) system designed specifically for emissions measurement. This instrument is housed inside a 36' trailer which allows for mobility to travel across Alberta to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 10 meters. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation DIAL can create images of emissions in two dimensions. DIAL imagery may be used to understand and control production practices, characterize source emissions, determine emission factors, locate fugitive leaks, assess plume dispersion, and confirm air dispersion modeling. A system overview of the DIAL instrument and some representative results will be discussed.

  18. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  19. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  20. The librational band of water ice in AFGL 961: revisited

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Wright, C. M.

    2011-07-01

    Of all the water ice absorption bands seen in the laboratory, the librational band near 12-13 μ m has proven the most difficult to conclusively identify in observational spectra. Cox reported the detection of this band in the IRAS spectrum of the massive protostar AFGL 961 near 13.6 μ m; however, the details of the structure of the band were limited by the quality of the IRAS spectrum and the accuracy of the subtracted silicate absorption. AFGL 961 is also a double system comprising two point-like components separated by ˜6 arcsec (AFGL 961E and AFGL 961W) so the IRAS aperture included both components - it is unclear how the combination of the intrinsic spectra of these two sources may have affected the resultant IRAS spectrum. In this paper we report Spitzer and European Southern Observatory (ESO) 3.6-m mid-infrared spectroscopic observations of each component of AFGL 961. We find a broad absorption feature near 13.1 μ m common to both AFGL 961E and W. The profile and peak wavelength of this feature are well matched by the laboratory spectrum of the librational band of amorphous H2O ice in the temperature range 10-30 K, in agreement with the Cox result. Both AFGL 961E and W also have strong CO2 ice absorption near 15.2 μ m, indistinguishable in profile between the two. However, AFGL 961E shows silicates in absorption near 9.7 μ m, while AFGL 961W shows polycyclic aromatic hydrocarbons in emission and, in a small aperture, also silicates in emission. Uncertainty in where the true continuum lies in the 8-13 μ m spectral region for both AFGL 961E and W means we cannot rule out the possibility that a combination of silicate emission and absorption could be responsible for at least some of the features we see in this region. In this case, a much weaker librational band could still be present, but not as a distinct feature. In either case, the ice must be located in a cool, outer envelope surrounding both stars or a cool foreground cloud, far enough away that the

  1. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.

    PubMed

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-11-20

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  2. Novel fiber optic sensor probe with a pair of highly reflected connectors and a vessel of water absorption material for water leak detection.

    PubMed

    Cho, Tae-Sik; Choi, Ki-Sun; Seo, Dae-Cheol; Kwon, Il-Bum; Lee, Jung-Ryul

    2012-01-01

    The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS) located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.

  3. CW EC-QCL-based sensor for simultaneous detection of H 2O, HDO, N 2O and CH 4 using multi-pass absorption spectroscopy

    DOE PAGES

    Yu, Yajun; Sanchez, Nancy P.; Griffin, Robert J.; ...

    2016-05-03

    A sensor system based on a continuous wave, external-cavity quantum-cascade laser (CW EC-QCL) was demonstrated for simultaneous detection of atmospheric H 2O, HDO, N 2O and CH 4 using a compact, dense pattern multi-pass gas cell with an effective path-length of 57.6 m. The EC-QCL with a mode-hop-free spectral range of 1225-1285 cm -1 operating at similar to 7.8 mu m was scanned covering four neighboring absorption lines, for H 2O at 1281.161 cm -1, HDO at 1281.455 cm -1, N 2O at 1281.53 cm -1 and CH 4 at 1281.61 cm -1. A first-harmonic-normalized wavelength modulation spectroscopy with second-harmonicmore » detection (WMS-2f/1f) strategy was employed for data processing. An Allan-Werle deviation analysis indicated that minimum detection limits of 1.77 ppmv for H 2O, 3.92 ppbv for HDO, 1.43 ppbv for N 2O, and 2.2 ppbv for CH 4 were achieved with integration times of 50-s, 50-s, 100-s and 129-s, respectively. In conclusion, experimental measurements of ambient air are also reported.« less

  4. The multi-mode polarization modulation spectrometer: part 1: simultaneous detection of absorption, turbidity, and optical activity.

    PubMed

    Arvinte, Tudor; Bui, Tam T T; Dahab, Ali A; Demeule, Barthélemy; Drake, Alex F; Elhag, Dhia; King, Peter

    2004-09-01

    Circular dichroism (CD) is an important spectroscopic technique for monitoring chirality and biological macromolecule conformation. However, during a CD measurement, absorbance, light scattering/turbidity, and fluorescence can also be detected. The simultaneous measurement of these different spectral features for a single sample is the basis of a multi-mode optical spectrometer. This allows time-efficient gathering of complementary information and provides a scheme to ensure that CD measurements are reliable. Aspects of circular polarization differential light scattering, pH, and temperature variation of a protein (antibody) solution are described. A procedure to help ensure that CD measurements are reliable is described.

  5. A nonlinear merging method of analog and photon signals for CO2 detection in lower altitudes using differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Qi, Zhong; Zhang, Teng; Han, Ge; Li, Dongcang; Ma, Xin; Gong, Wei

    2017-04-01

    The current acquisition system of a lidar detects return signals in two modes (i.e., analog and photon counting); resulting in the lower (below 1500 m) and upper (higher than 1100 m) atmospheric parameters need analog and photon counting signal to retrieve, respectively. Hence, a lidar cannot obtain a continuous column of the concentrations of atmospheric components. For carbon cycle studies, the range-resolved concentration of atmospheric CO2 in the lower troposphere (below 1500 m) is one of the most significant parameters that should be determined. This study proposes a novel gluing method that merges the CO2 signal detected by ground-based DIAL in the lower troposphere. Through simulation experiments, the best uniform approximation polynomial theorem is utilized to determine the transformation coefficient to correlate signals from the different modes perfectly. The experimental results (both simulation experiments and actual measurement of signals) show that the proposed method is suitable and feasible for merging data in the region below 1500 m. Hence, the photon-counting signals whose SNRs are higher than those of the analog signals can be used to retrieve atmospheric parameters at an increased near range, facilitating atmospheric soundings using ground-based lidar in various fields.

  6. Input and output compensation for the cochlear traveling wave delay in wide-band ABR recordings: implications for small acoustic tumor detection.

    PubMed

    Don, Manuel; Elberling, Claus; Maloff, Erin

    2009-02-01

    The Stacked ABR (auditory brainstem response) attempts at the output of the auditory periphery to compensate for the temporal dispersion of neural activation caused by the cochlear traveling wave in response to click stimulation. Compensation can also be made at the input by using a chirp stimulus. It has been demonstrated that the Stacked ABR is sensitive to small tumors that are often missed by standard ABR latency measures. Because a chirp stimulus requires only a single data acquisition run whereas the Stacked ABR requires six, we try to evaluate some indirect evidence justifying the use of a chirp for small tumor detection. We compared the sensitivity and specificity of different Stacked ABRs formed by aligning the derived-band ABRs according to (1) the individual's peak latencies, (2) the group mean latencies, and (3) the modeled latencies used to develop a chirp. For tumor detection with a chosen sensitivity of 95%, a relatively high specificity of 85% may be achieved with a chirp. It appears worthwhile to explore the actual use of a chirp because significantly shorter test and analysis times might be possible.

  7. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10-15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm-2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ˜200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  8. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  9. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  10. Discordant detection of monosomy 7 by GTG-banding and FISH in a patient with Shwachman-Diamond syndrome without evidence of myelodysplastic syndrome or acute myelogenous leukemia.

    PubMed

    Sokolic, R A; Ferguson, W; Mark, H F

    1999-12-01

    The myelodysplastic syndromes (MDS) are a group of hematologic disorders commonly affecting elderly persons and often leading to acute myelogenous leukemia (AML). Although rare in children, when MDS does occur, it is frequently part of a congenital disorder such as Shwachman-Diamond syndrome (SDS). Monosomy 7 and/or deletion of part or all of 7q are poor prognostic signs in MDS and AML, although the pathophysiologic relationship between this finding and MDS or AML is unclear. Shwachman-Diamond syndrome is an inherited illness characterized by exocrine pancreatic insufficiency and by congenital neutropenia. Patients with SDS are at increased risk of developing myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). Because monosomy 7 is a poor prognostic sign in MDS and AML, establishing its presence is important. However, different methods of detection of monosomy 7 may lead to different results in some patients. We present the case of a 10-year-old girl known to have SDS, who had a bone marrow aspiration and biopsy done to rule out MDS and AML. By light microscopy, the patient's bone marrow was unremarkable. GTG-banding showed the following karyotype: 45,XX,-C[3]/47,XX,+C[1]/46,XX[45]. Fluorescence in situ hybridization (FISH) was performed with a chromosome 7-specific alpha-satellite probe (D7Z1). Almost all (373 of 376) cells exhibited only one chromosome 7 signal. A second marrow aspiration done 6 months later showed an essentially normal karyotype by GTG-banding. Fluorescence in situ hybridization with the same chromosome 7 probe showed 230 of 250 cells to be monosomic for chromosome 7. A whole chromosome 7 painting probe demonstrated disomy for chromosome 7 in 90 of 90 cells; however, subtle heteromorphism in the centromeric regions of the 2 copies of chromosome 7 was noted in some cells. This case demonstrates that FISH and GTG-banding can give discordant results, that the two should be viewed as complementary technologies, and that both have a

  11. Polycyclic aromatic hydrocarbon ions and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1995-01-01

    Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these Polycyclic Aromatic Hydrocarbons (PAHs) absorb in the visible. C10H8(+) has 12 discrete absorption bands which fall between 6800 and 5000 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBS at 6520, 6151, and 5965 A, other moderately strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 A. If C16H10(+), or a closely related pyrene-like ion is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.

  12. Photoionization bands of rubidium molecule

    NASA Astrophysics Data System (ADS)

    Rakić, M.; Pichler, G.

    2018-03-01

    We studied the absorption spectrum of dense rubidium vapor generated in a T-type sapphire cell with a special emphasis on the structured photoionization continuum observed in the 200-300 nm spectral region. The photoionization spectrum has a continuous atomic contribution with a pronounced Seaton-Cooper minimum at about 250 nm and a molecular photoionization contribution with many broad bands. We discuss the possible origin of the photoionization bands as stemming from the absorption from the ground state of the Rb2 molecule to excited states of Rb2+* and to doubly excited autoionizing states of Rb2** molecule. All these photoionization bands are located above the Rb+ and Rb2+ ionization limits.

  13. Search for molecular absorptions with the Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1995-01-01

    The objective of this research was a search for water molecules in the gas phase in molecular clouds. Water should be among the most abundant gases in the clouds and is of fundamental importance in gas chemistry, cloud cooling, shock wave chemistry, and gas-grain interactions of interstellar dust. Detection of water in Comet Halley in the 2.7 micron v(3) band in 1986 had shown that airborne H2O observations are feasible (ground-based observations of H2O are impossible because of the massive water content of the atmosphere). We planned to observe the v(3) band in interstellar clouds where a number of lines of this band should be in absorption. The search for H2O commenced in 1988 with a two flight program on the KAO. this resulted in a detection of interstellar H2O with S/N of 2-4 in the v(3) 1(01)-2(02) line at 3801.42/cm. A subsequent flight series of two flights in 1989 resulted in confirmation to the 3801.42/cm line detection and the detection of altogether four strong lines in the 000-001 v(3) vibration-rotation band of H2O.

  14. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    PubMed

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance.

  15. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide.

    PubMed

    Ventura, M; Silva, J R; Andrade, L H C; Scorza Júnior, R P; Lima, S M

    2018-01-05

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations (~2ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH)+1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH)+1δ(CH) combination band at 960nm can be used as a marker for SFZ in methanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide

    NASA Astrophysics Data System (ADS)

    Ventura, M.; Silva, J. R.; Andrade, L. H. C.; Scorza Júnior, R. P.; Lima, S. M.

    2018-01-01

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations ( 2 ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH) + 1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH) + 1δ(CH) combination band at 960 nm can be used as a marker for SFZ in methanol.

  17. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  18. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  19. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  20. Tunable diode laser absorption spectroscopy as method of choice for non-invasive and automated detection of microbial growth in media fills.

    PubMed

    Brueckner, David; Roesti, David; Zuber, Ulrich; Sacher, Meik; Duncan, Derek; Krähenbühl, Stephan; Braissant, Olivier

    2017-05-15

    Tunable diode laser absorption spectroscopy (TDLAS) was evaluated on its potential to detect bacterial growth of contaminated media fill vials. The target was a replacement/ automation of the traditional visual media fill inspection. TDLAS was used to determine non-invasively O 2 and/or CO 2 changes in headspaces of such vials being induced by metabolically active microorganisms. Four different vial formats, 34 microorganisms (inoculation volume<10 cells) and two different media (TSB/FTM) were tested. Applying parallel CO 2 and O 2 headspace measurements all format-organism combinations were detected within <11 days reliably with reproducible results. False negatives were exclusively observed for samples that were intentionally breached with syringes of 0.3mm in diameter. Overall it was shown that TDLAS functionality for a replacement of the visual media fill inspection is given and that investing in further validation and implementation studies is valuable. Nevertheless, some small but vincible challenges remain to have this technology in practical use. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  2. 7T MRI-Histologic Correlation Study of Low Specific Absorption Rate T2-Weighted GRASE Sequences in the Detection of White Matter Involvement in Multiple Sclerosis.

    PubMed

    Bagnato, Francesca; Hametner, Simon; Pennell, David; Dortch, Richard; Dula, Adrienne N; Pawate, Siddharama; Smith, Seth A; Lassmann, Hans; Gore, John C; Welch, Edward B

    2015-01-01

    The high value of the specific absorption rate (SAR) of radio-frequency (RF) energy arising from the series of RF refocusing pulses in T2-weighted (T2-w) turbo spin echo (TSE) MRI hampers its clinical application at 7.0 Tesla (7T). T2-w gradient and spin echo (GRASE) uses the speed from gradient refocusing in combination with the chemical-shift/static magnetic field (B0) inhomogeneity insensitivity from spin-echo refocusing to acquire T2-w images with a limited number of refocusing RF pulses, thus reducing SAR. To investigate whether low SAR T2-w GRASE could replace T2-w TSE in detecting white matter (WM) disease in MS patients imaged at 7T. The .7 mm3 isotropic T2-w TSE and T2-w GRASE images with variable echo times (TEs) and echo planar imaging (EPI) factors were obtained on a 7T scanner from postmortem samples of MS brains. These samples were derived from brains of 3 female MS patients. WM lesions (WM-Ls) and normal-appearing WM (NAWM) signal intensity, WM-Ls/NAWM contrast-to-noise ratio (CNR) and MRI/myelin staining sections comparisons were obtained. GRASE sequences with EPI factor/TE = 3/50 and 3/75 ms were comparable to the SE technique for measures of CNR in WM-Ls and NAWM and for detection of WM-Ls. In all sequences, however, identification of areas with remyelination, Wallerian degeneration, and gray matter demyelination, as depicted by myelin staining, was not possible. T2-w GRASE images may replace T2-w TSE for clinical use. However, even at 7T, both sequences fail in detecting and characterizing MS disease beyond visible WM-Ls. Copyright © 2015 by the American Society of Neuroimaging.

  3. Linear absorptive dielectrics

    NASA Astrophysics Data System (ADS)

    Tip, A.

    1998-06-01

    Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.

  4. Detection of significant cm to sub-mm band radio and  γ-ray correlated variability in Fermi bright blazars

    DOE PAGES

    Fuhrmann, L.; Larsson, S.; Chiang, J.; ...

    2014-05-12

    The exact location of the γ-ray emitting region in blazars is still controversial. In order to attack this problem we present first results of a cross-correlation analysis between radio (11 cm to 0.8 mm wavelength, F-GAMMA programme) and γ-ray (0.1–300 GeV) ~3.5 yr light curves of 54 Fermi-bright blazars. We perform a source stacking analysis and estimate significances and chance correlations using mixed source correlations. These results reveal: (i) the first highly significant multiband radio and γ-ray correlations (radio lagging γ rays) when averaging over the whole sample, (ii) average time delays (source frame: 76 ± 23 to 7 ±more » 9 d), systematically decreasing from cm to mm/sub-mm bands with a frequency dependence τr, γ(ν) ∝ ν -1, in good agreement with jet opacity dominated by synchrotron self-absorption, (iii) a bulk γ-ray production region typically located within/upstream of the 3 mm core region (τ3mm, γ = 12 ± 8 d), (iv) mean distances between the region of γ-ray peak emission and the radio ‘τ = 1 photosphere’ decreasing from 9.8 ± 3.0 pc (11 cm) to 0.9 ± 1.1 pc (2 mm) and 1.4 ± 0.8 pc (0.8 mm), (v) 3 mm/γ-ray correlations in nine individual sources at a significance level where one is expected by chance (probability: 4 × 10 -6), (vi) opacity and ‘time lag core shift’ estimates for quasar 3C 454.3 providing a lower limit for the distance of the bulk γ-ray production region from the supermassive black hole (SMBH) of ~0.8–1.6 pc, i.e. at the outer edge of the broad-line region (BLR) or beyond. A 3 mm τ = 1 surface at ~2–3 pc from the jet base (i.e. well outside the ‘canonical BLR’) finally suggests that BLR material extends to several parsec distances from the SMBH.« less

  5. Using narrow-band imaging with conventional hysteroscopy increases the detection of chronic endometritis in abnormal uterine bleeding and postmenopausal bleeding.

    PubMed

    Ozturk, Mustafa; Ulubay, Mustafa; Alanbay, Ibrahim; Keskin, Uğur; Karasahin, Emre; Yenen, Müfit Cemal

    2016-01-01

    A preliminary study was designed to evaluate whether a narrow-band imaging (NBI) endoscopic light source could detect chronic endometritis that was not identifiable with a white light hysteroscope. A total of 86 patients with endometrial pathology (71 abnormal uterine bleeding and 15 postmenopausal bleeding) were examined by NBI endoscopy and white light hysteroscopy between February 2010 and February 2011. The surgeon initially observed the uterine cavity using white light hysteroscopy and made a diagnostic impression, which was recorded. Subsequently, after pressing a button on the telescope, NBI was used to reevaluate the endometrial mucosa. The median age of the patients was 40 years (range: 30-60 years). Endometritis was diagnosed histologically. Six cases of abnormal uterine bleeding (6/71, 8.4%, 95% confidence interval [CI] 0.03-0.17) and one case of postmenopausal bleeding (1/15, 6%, 95%CI 0.01-0.29) were only diagnosed with chronic endometritis by NBI (7/86, 8.1%, 95%CI 0.04-0.15). Capillary patterns of the endometrium can be observed by NBI and this method can be used to assess chronic endometritis. © 2015 Japan Society of Obstetrics and Gynecology.

  6. Detection of novel genomic aberrations in anaplastic astrocytomas by GTG-banding, SKY, locus-specific FISH, and high density SNP-array.

    PubMed

    Holland, Heidrun; Ahnert, Peter; Koschny, Ronald; Kirsten, Holger; Bauer, Manfred; Schober, Ralf; Meixensberger, Jürgen; Fritzsch, Dominik; Krupp, Wolfgang

    2012-06-15

    Astrocytomas represent the largest and most common subgroup of brain tumors. Anaplastic astrocytoma (WHO grade III) may arise from low-grade diffuse astrocytoma (WHO grade II) or as primary tumors without any precursor lesion. Comprehensive analyses of anaplastic astrocytomas combining both cytogenetic and molecular cytogenetic techniques are rare. Therefore, we analyzed genomic alterations of five anaplastic astrocytomas using high-density single nucleotide polymorphism arrays combined with GTG-banding and FISH-techniques. By cytogenetics, we found 169 structural chromosomal aberrations most frequently involving chromosomes 1, 2, 3, 4, 10, and 12, including two not previously described alterations, a nonreciprocal translocation t(3;11)(p12;q13), and one interstitial chromosomal deletion del(2)(q21q31). Additionally, we detected previously not documented loss of heterozygosity (LOH) without copy number changes in 4/5 anaplastic astrocytomas on chromosome regions 5q11.2, 5q22.1, 6q21, 7q21.11, 7q31.33, 8q11.22, 14q21.1, 17q21.31, and 17q22, suggesting segmental uniparental disomy (UPD), applying high-density single nucleotide polymorphism arrays. UPDs are currently considered to play an important role in the initiation and progression of different malignancies. The significance of previously not described genetic alterations in anaplastic astrocytomas presented here needs to be confirmed in a larger series. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Spectral line discriminator for passive detection of fluorescence

    NASA Technical Reports Server (NTRS)

    Kebabian, Paul L. (Inventor)

    1996-01-01

    A method and apparatus for detecting fluorescence from sunlit plants is based on spectral line discrimination using the A-band and B-band absorption of atmospheric oxygen. Light from a plant including scattered sunlight and the fluorescence from chlorophyll is passed through a chopper into a cell containing low-pressure, high-purity oxygen. A-band or B-band wavelengths present in the light are absorbed by the oxygen in the cell. When the chopper is closed, the absorbed light is remitted as fluorescence into a detector. The intensity of the fluorescence from the oxygen is proportional to the intensity of fluorescence from the plant.

  8. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide.

    PubMed

    Singh, Neetesh; Casas-Bedoya, Alvaro; Hudson, Darren D; Read, Andrew; Mägi, Eric; Eggleton, Benjamin J

    2016-12-15

    We demonstrate a compact silicon-on-sapphire (SOS) strip waveguide sensor for mid-IR absorption spectroscopy. This device can be used for gas and liquid sensing, especially to detect chemically similar molecules and precisely characterize extremely absorptive liquids that are difficult to detect by conventional infrared transmission techniques. We reliably measure concentrations up to 0.25% of heavy water (D2O) in a D2O-H2O mixture at its maximum absorption band at around 4 μm. This complementary metal-oxide-semiconductor (CMOS) compatible SOS D2O sensor is promising for applications such as measuring body fat content or detection of coolant leakage in nuclear reactors.

  9. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  10. Differential-optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1977-01-01

    Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.

  11. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  12. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Infrared laser absorption spectroscopy of the nu4 (sigma u) fundamental and associated nu11(pi u) hot band of C7 - Evidence for alternating rigidity in linear carbon clusters

    NASA Technical Reports Server (NTRS)

    Heath, J. R.; Saykally, R. J.

    1991-01-01

    The first characterization of the bending potential of the C7 cluster is reported via the observation of the v = 1(1) and v = 2 deg levels of the nu11 (pi u) bend as hot bands associated with the nu4 (sigma u) antisymmetric stretch fundamental. The lower state hot band rotational constants are measured to be 1004.4(1.3) and 1123.6(9.0) MHz, constituting a 9.3 and 22 percent increase over the ground state rotational constant, 918.89 (41) MHz. These large increases are strong quartic and sextic centrifugal distortion constants determined for the ground and nu 4 = 1 states are found to be anomalously large and negative, evidencing strong perturbations between stretching and bending modes.

  14. Obituary: David L. Band (1957-2009)

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn

    2011-12-01

    David L. Band, of Potomac Maryland, died on March 16, 2009 succumbing to a long battle with spinal cord cancer. His death at the age of 52 came as a shock to his many friends and colleagues in the physics and astronomy community. Band showed an early interest and exceptional aptitude for physics, leading to his acceptance at the Massachusetts Institute of Technology as an undergraduate student in 1975. After graduating from MIT with an undergraduate degree in Physics, Band continued as a graduate student in Physics at Harvard University. His emerging interest in Astrophysics led him to the Astronomy Department at the Harvard Smithsonian Center for Astrophysics (CfA), where he did his dissertation work with Jonathan Grindlay. His dissertation (1985) entitled "Non-thermal Radiation Mechanisms and Processes in SS433 and Active Galactic Nuclei" was "pioneering work on the physics of jets arising from black holes and models for their emission, including self-absorption, which previewed much to come, and even David's own later work on Gamma-ray Bursts," according to Grindlay who remained a personal friend and colleague of Band's. Following graduate school, Band held postdoctoral positions at the Lawrence Livermore Laboratory, the University of California at Berkeley and the Center for Astronomy and Space Sciences at the University of California San Diego where he worked on the BATSE experiment that was part of the Compton Gamma Ray Observatory (CGRO), launched in 1991. BATSE had as its main objective the study of cosmic gamma-ray bursts (GRBs) and made significant advances in this area of research. Band became a world-renowned figure in the emerging field of GRB studies. He is best known for his widely-used analytic form of gamma-ray burst spectra known as the "Band Function." After the CGRO mission ended, Band moved to the Los Alamos National Laboratory where he worked mainly on classified research but continued to work on GRB energetics and spectra. When NASA planned

  15. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  16. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loops of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer.

    PubMed

    Shibuya, K; Hoshino, H; Chiyo, M; Iyoda, A; Yoshida, S; Sekine, Y; Iizasa, T; Saitoh, Y; Baba, M; Hiroshima, K; Ohwada, H; Fujisawa, T

    2003-11-01

    We investigated the use of high magnification bronchovideoscopy combined with narrow band imaging (NBI) for the detailed examination of angiogenic squamous dysplasia (ASD). This was carried out in relation to bronchial vascular patterns with abnormal mucosal fluorescence in heavy smokers at high risk for lung cancer. Forty eight patients with sputum cytology specimens suspicious or positive for malignancy were entered into the study. Conventional white light and fluorescence bronchoscopic examination was first performed. Observations by high magnification bronchovideoscopy with conventional white light were made primarily at sites of abnormal fluorescence, and then repeated with NBI light to examine microvascular networks in the bronchial mucosa. Spectral features on the RGB (Red/Green/Blue) sequential videoscope system were changed from the conventional RGB broadband filter to the new NBI filter. The wavelength ranges of the new NBI filter were B1: 400-430 nm, B2: 420-470 nm, and G: 560-590 nm. ASD tissues were also examined using a confocal laser scanning microscope equipped with argon-krypton (488 nm) and argon (514 nm) laser sources. The microvessels, vascular networks of various grades, and dotted vessels in ASD tissues were clearly observed in NBI-B1 images. Diameters of the dotted vessels visible on NBI-B1 images agreed with the diameters of ASD capillary blood vessels diagnosed by pathological examination. Capillary blood vessels were also clearly visualised by green fluorescence by confocal laser scanning microscopy. There was a significant association between the frequency of dotted vessels by NBI-B1 imaging and tissues confirmed as ASD pathologically (p=0.002). High magnification bronchovideoscopy combined with NBI was useful in the detection of capillary blood vessels in ASD lesions at sites of abnormal fluorescence. This may enable the discrimination between ASD and another pre-invasive bronchial lesion.

  17. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lübcke, P.; Alvarez Nieves, J. M.; Cárdenas Gonzáles, L.; Platt, U.

    2011-09-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatépetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3°) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO2 was measured at all times well above the detection limit. In

  18. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lübcke, P.; Alvarez Nieves, J. M.; Cárdenas Gonzáles, L.; Platt, U.

    2011-05-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatépetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ± 40 mrad (2.3°) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO2 was measured at all times well above the detection limit. In

  19. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    USGS Publications Warehouse

    Vogel, L.; Galle, B.; Kern, C.; Delgado, Granados H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lubcke, P.; Alvarez, Nieves J.M.; Cardenas, Gonzales L.; Platt, U.

    2011-01-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized 5 since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in 10 volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to vol- 15 canic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatepetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3◦) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to 25 the plume and SO2 was measured at all times well above the detection

  20. Percutaneous absorption

    PubMed Central

    Brisson, Paul

    1974-01-01

    Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976

  1. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this