Science.gov

Sample records for absorption band parameters

  1. Propane absorption band intensities and band model parameters from 680 to 1580/cm at 296 and 200 K

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Valero, F. P. J.; Varanasi, P.

    1984-01-01

    Band intensities and profiles have been measured for the propane absorption bands from 680 to 1580/cm at 296 and 200 K. This work was stimulated by the discovery of several propane bands in the spectrum of Titan by the Voyager 1 spacecraft. The low temperature laboratory data show that the bands become narrower and the Q branches of the bands somewhat stronger than they are at room temperature. Random band model parameters were determined over the entire region from the 42 spectra obtained at room temperature.

  2. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  3. Polar solvent structural parameters from protonation equilibria of aliphatic and alicyclic diamines and from absorption bands of mixed-valence transition-metal complexes

    NASA Astrophysics Data System (ADS)

    Kornyshev, A. A.; Ulstrup, J.

    1986-04-01

    We have applied non-local electrostatic theory in combination with a simple solute model to obtain solvent structural properties in terms of the short-range dielectric constant, ˜ge, and the correlation length for the solvent polarization fluctuations, A. These parameters are fitted to experimental data for the free energy of interaction between protonated amino groups in dibasic amines and for intervalence band maxima of binuclear ruthenium complexes with bridge groups of varying length. The results show that non-local screening in the outer solvent, ˜ge in the range 3.5-4 for water, and A ≈ 2-3 Å and 4 Å for acetonitrile and water, respectively, provide good fits to the data, implying the significance of solvent structural effects for these phenomena.

  4. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  5. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Technical Reports Server (NTRS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-01-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  6. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  7. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  8. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  9. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon

    PubMed Central

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-01-01

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing. PMID:26012369

  10. Automated Extraction of Absorption Bands from Reflectance Special

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Vale, L.; Mcintire, D.; Jones, J.

    1985-01-01

    A multiple high order derivative spectroscopy technique has been developed for deriving wavelength positions, half widths, and heights of absorption bands in reflectance spectra. The technique is applicable to laboratory spectra as well as medium resolution (100-200/cm) telescope or spacecraft spectra with moderate (few percent) noise. The technique permits absorption band positions to be detected with an accuracy of better than 3%, and often better than 1%. The high complexity of radiative transfer processes in diffusely reflected spectra can complicate the determination of absorption band positions. Continuum reflections, random illumination geometries within the material, phase angle effects, composite overlapping bands, and calibration uncertainties can shift apparent band positions by 20% from their actual positions or mask them beyond detection. Using multiple high order derivative analysis, effects of scattering continua, phase angle, and calibration (smooth features) are suppressed. Inflection points that characterize the positions and half widths of constituent bands are enhanced by the process and directly detected with relatively high sensitivity.

  11. The Red Edge Problem in asteroid band parameter analysis

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Dunn, Tasha L.; Emery, Joshua P.; Bowles, Neil E.

    2016-04-01

    Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.

  12. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  13. Absorptivity of nitric oxide in the fundamental vibrational band

    NASA Astrophysics Data System (ADS)

    Holland, R. F.; Vasquez, M. C.; Beattie, W. H.; McDowell, R. S.

    1983-05-01

    From observations of the spectral absorbance of mixtures of nitric oxide in nitrogen at room temperature, an integrated absorptivity for the NO fundamental band of 137.3 + or - 4.6 per(sq cm atm) at 0 C is derived. The indicated uncertainty is the estimated maximum error.

  14. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  15. Photodissociation of vibrationally excited water in the first absorption band

    NASA Astrophysics Data System (ADS)

    Weide, Klaus; Hennig, Steffen; Schinke, Reinhard

    1989-12-01

    We investigate the photodissociation of highly excited vibrational states of water in the first absorption band. The calculation includes an ab initio potential energy surface for the Östate and an ab initio X˜→Ã transition dipole function. The bending angle is fixed at the equilibrium value within the ground electronic state. Most interesting is the high sensitivity of the final vibrational distribution of OH on the initially prepared vibrational state of H2 O. At wavelengths near the onset of the absorption spectrum the vibrational state distribution can be qualitatively understood as a Franck-Condon mapping of the initial H2 O wave function. At smaller wavelengths final state interaction in the excited state becomes stronger and the distributions become successively broader. Our calculations are in satisfactory accord with recent measurements of Vander Wal and Crim.

  16. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  17. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands. PMID:22781235

  18. Optical absorption of nanoporous silicon: quasiparticle band gaps and absorption spectra

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    2013-03-01

    Silicon is an earth-abundant material of great importance in semiconductors electronics, but its photovoltaic applications are limited by the low absorption coefficient in the visible due to its indirect band gap. One strategy to improve the absorbance is to perforate silicon with nanoscale pores, which introduce carrier scattering that enables optical transitions across the indirect gap. We used density functional and many-body perturbation theory in the GW approximation to investigate the electronic and optical properties of porous silicon for various pore sizes, spacings, and orientations. Our calculations include up to 400 atoms in the unit cell. We will discuss the connection of the band-gap value and absorption coefficient to the underlying nanopore geometry. The absorption coefficient in the visible range is found to be optimal for appropriately chosen nanopore size, spacing, and orientation. Our work allows us to predict porous-silicon structures that may have optimal performance in photovoltaic applications. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  19. Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating.

    PubMed

    Kang, Guoguo; Vartiainen, Ismo; Bai, Benfeng; Turunen, Jari

    2011-01-17

    The performance of infrared (IR) dual-band detector can be substantially improved by simultaneously increasing IR absorptions for both sensor bands. Currently available methods only provide absorption enhancement for single spectral band, but not for the dual-band. The Fabry-Perot (FP) cavity generates a series of resonances in multispectral bands. With this flexibility, we introduced a novel type of dual-band detector structure containing a multilayer FP cavity with two absorbing layers and a subwavelength-period grating mirror, which is capable of simultaneously enhancing the middle wave infrared (MWIR) and the long wave infrared (LWIR) detection. Compared with the bare-absorption-layer detector (common dual-band detector), the optimized FP cavity can provide about 13 times and 17 times absorption enhancement in LWIR and MWIR bands respectively. PMID:21263618

  20. 'Diamondlike' carbon films - Optical absorption, dielectric properties, and hardness dependence on deposition parameters

    NASA Technical Reports Server (NTRS)

    Natarajan, V.; Lamb, J. D.; Woollam, J. A.; Liu, D. C.; Gulino, D. A.

    1985-01-01

    An RF plasma deposition system was used to prepare amorphous 'diamondlike' carbon films. The source gases for the RF system include methane, ethylene, propane, and propylene, and the parameters varied were power, dc substrate bias, and postdeposition anneal temperature. Films were deposited on various substrates. The main diagnostics were optical absorption in the visible and in the infrared, admittance as a function of frequency, hardness, and Auger and ESCA spectroscopy. Band gap is found to depend strongly on RF power level and band gaps up to 2.7 eV and hardness up to 7 Mohs were found. There appears to be an inverse relationship between hardness and optical band gap.

  1. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  2. Sensitivity analysis of oxygen absorption lines in the 1.26-1.27 micron spectral band

    NASA Astrophysics Data System (ADS)

    Edwards, W. C.; Prasad, N.; Browell, E. V.

    2009-12-01

    In the Decadal Survey prepared by the National Research Council (Reference: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond), the ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days and Seasons), requires simultaneous laser remote sensing of CO2 and O2 in order to convert CO2 atmospheric concentrations to mixing ratios. As the mission is envisioned, the CO2 mixing ratio needs to be measured to a precision of 0.5 percent of background or better (slightly less than 2 ppm) at 100-km horizontal length scale overland and at 200-km scale over open oceans. While the O2 measurement could be made at 0.765 µm (the oxygen A band), the absorption cross section is substantially higher and the scattering is lower in the 1.26-1.27 µm wavelength band, and as such it is anticipated that better accuracies could be accomplished. Hence, NASA Langley Research Center is developing oxygen lidar technology in the 1.26-1.27 micron band for surface pressure measurements. One or more wavelengths for differential absorption lidar operation have to be carefully chosen to eliminate ambient influences on them. The model optical depth calculation is very sensitive to knowledge of the transmitted wavelengths and to the choice of Voigt input parameters. Uncertainties in atmospheric profiles of temperature, pressure and relative humidity can cause ~0.5 % errors in model optical depths. In order to select candidate wavelengths in the 1.26 micron spectral band, wavelength uncertainties due to temperature and pressure have to be determined. Uncertainties at line center and offset wavelengths have to be known precisely to reduce uncertainties in oxygen concentration measurements from airborne and space based platforms. In this paper, based on HITRAN database and absorption line measurements, we evaluate systematic relative errors and their sources of pressure shift and atmospheric temperature influences for selected O2 lines suitable for

  3. Absorption coefficients and band strengths for the 703 nm and 727 bands of methane at 77 K

    SciTech Connect

    O`Brien, J.J.; Singh, K.

    1996-12-31

    The technique of intracavity laser spectroscopy has been used to obtain methane absorption spectra for the vibrational overtone bands that occur around 703 nm and 727 nm. Absorption coefficients for the 690-742 nm range have been obtained for a sample temperature of 77 K at a spectral resolution of <0.02 cm{sup -1}. A new method of data analysis is utilized in obtaining the results. It involves deconvolving the many ILS spectral profiles that comprise the absorption bands and summing the results. Values averaged over 1 cm{sup -1} and 1 {Angstrom} intervals are provided. Band strengths also are obtained. The total intensities of the 703 and 727 nm bands are in reasonable agreement with previous laboratory determinations which were obtained for relatively high pressures of methane at room temperature using lower spectral resolution. The methane bands appear in the reflected sunlight spectra from the outer planets. Results averaged over 1 nm intervals are compared with other laboratory studies and with those derived from observations of the outer planets. The band profiles differ considerably from other laboratory results but are in good accord with the planetary observations. Laboratory spectra of methane at appropriate conditions are required for the proper interpretation of the observational data. Absorption spectra can provide some of the most sensitive diagnostic data on the atmospheres of those bodies.

  4. Removal of OH Absorption Bands Due to Pyrohydrolysis Reactions in Fluoride-Containing Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keiji

    1997-05-01

    The purpose of this study is to decrease and to remove OH ions and H2O in borosilicate glasses. Fluoride-containing borosilicate glasses followed by dry-air-bubbling showed the significant decrease of OH absorption bands around 3500 cm-1. The decrease of OH absorption bands was elucidated by the use of pyrohydrolysis reactions in these glasses where fluoride ions react with OH ions or H2O during melting. The rates of the decrease of OH absorption bands substantially depend on high valence cations of fluorides. Particularly, the decrease rates of OH absorption coefficients were in the order of ZrF4-containing glass>AlF3-containing glass>ZnF2-containing glass. ZrF4-containing glass treated by dry-air-bubbling showed a good capability to remove OH absorption band. Fluoride-containing glasses showed the low flow point in comparison with fluoride-free glasses.

  5. Band gap tuning and optical absorption in type-II InAs/GaSb mid infrared short period superlattices: 14 bands K Dot-Operator p study

    SciTech Connect

    AbuEl-Rub, Khaled M.

    2012-09-06

    The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, and are in good agreement with experimental data.

  6. Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Tian, Yiran; Wen, Guangjun; Zhu, Weiren

    2013-05-01

    In this paper, we systematically discuss a novel planar metamaterial absorber (PMA) based on asymmetrical snowflake-shaped resonators, which can exhibit two distinctly different absorption states, single- and dual-band absorptions, by controlling the branch lengths of the proposed resonators. Numerical simulations and experimental measurements are employed to investigate these two kinds of absorption characteristic in an X-band rectangular waveguide. Both results indicate that such a PMA exhibits a wide range of controllable operating frequencies for the single- and dual-band conditions. The proposed PMA is simple and easy to make, and it has wide applications in the fields of stealth technologies, thermal detectors, and imaging.

  7. Observation of temperature dependence of the IR hydroxyl absorption bands in silica optical fiber

    NASA Astrophysics Data System (ADS)

    Yu, Li; Bonnell, Elizabeth; Homa, Daniel; Pickrell, Gary; Wang, Anbo; Ohodnicki, P. R.; Woodruff, Steven; Chorpening, Benjamin; Buric, Michael

    2016-07-01

    This study reports on the temperature dependent behavior of silica based optical fibers upon exposure to high temperatures in hydrogen and ambient air. The hydroxyl absorption bands in the wavelength range of 1000-2500 nm of commercially available multimode fibers with pure silica and germanium doped cores were examined in the temperature range of 20-800 °C. Two hydroxyl-related infrared absorption bands were observed: ∼2200 nm assigned to the combination of the vibration mode of Si-OH bending and the fundamental hydroxyl stretching mode, and ∼1390 nm assigned to the first overtone of the hydroxyl stretching. The absorption in the 2200 nm band decreased in intensity, while the 1390 nm absorption band shifted to longer wavelengths with an increase in temperature. The observed phenomena were reversible with temperature and suspected to be due, in part, to the conversion of the OH spectral components into each other and structural relaxation.

  8. Position and Confidence Limits of an Extremum: The Determination of the Absorption Maximum in Wide Bands.

    ERIC Educational Resources Information Center

    Heilbronner, Edgar

    1979-01-01

    Discusses the determination of the position of the absorption maximum in wide bands as well as the confidence limits for such calculations. A simple method, suited for pocket calculators, for the numerical evaluation of these calculations is presented. (BB)

  9. HAC: Band Gap, Photoluminescence, and Optical/Near-Infrared Absorption

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Ryutov, Dimitri; Furton, Douglas G.

    1996-01-01

    We report results of laboratory measurements which illustrate the wide range of physical properties found among hydrogenated amorphous carbon (HAC) solids. Within this range, HAC can match quantitatively the astronomical phenomena ascribed to carbonaceous coatings on interstellar grains. We find the optical band gap of HAC to be well correlated with other physical properties of HAC of astronomical interest, and conclude that interstellar HAC must be fairly hydrogen-rich with a band gap of E(sub g) is approx. greater than 2.0 eV.

  10. Cause of absorption band shift of disperse red-13 attached on silica spheres

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Ju; Kim, Hyung-Deok; Kim, Na-Rae; Bang, Byeong-Gyu; Park, Eun-Hye; Kang, Kwang-Sun

    2015-08-01

    A reversible color change and large absorption band shift have been observed for the disperse red-13 (DR-13) attached on the surface of the monodisperse silica spheres. Two step synthetic processes including urethane bond formation and hydrolysis-condensation reactions were used to attach the DR-13 on the surface of the silica spheres. After the reaction, the characteristic absorption peak at 2270 cm-1 representing the -N=C=O asymmetric stretching vibration disappeared, and the a new absorption peak at 1700 cm-1 corresponding the C=O stretching vibration appeared. A visual and reversible color change was observed before and after wetting in alcohol. Although the absorption peak of DR-13 in alcohol is at 510 nm, the absorption peak shifts to 788 nm when it is dried. The absorption peak shifts to 718 nm when it is wetted in alcohol. This result can be explained by the formation of intramolecular charge transfer band.

  11. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  12. Forage quantity estimation from MERIS using band depth parameters

    NASA Astrophysics Data System (ADS)

    Ullah, Saleem; Yali, Si; Schlerf, Martin

    Saleem Ullah1 , Si Yali1 , Martin Schlerf1 Forage quantity is an important factor influencing feeding pattern and distribution of wildlife. The main objective of this study was to evaluate the predictive performance of vegetation indices and band depth analysis parameters for estimation of green biomass using MERIS data. Green biomass was best predicted by NBDI (normalized band depth index) and yielded a calibration R2 of 0.73 and an accuracy (independent validation dataset, n=30) of 136.2 g/m2 (47 % of the measured mean) compared to a much lower accuracy obtained by soil adjusted vegetation index SAVI (444.6 g/m2, 154 % of the mean) and by other vegetation indices. This study will contribute to map and monitor foliar biomass over the year at regional scale which intern can aid the understanding of bird migration pattern. Keywords: Biomass, Nitrogen density, Nitrogen concentration, Vegetation indices, Band depth analysis parameters 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands

  13. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  14. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  15. Optical dispersion parameters based on single-oscillator model and optical absorption of nanocrystalline metal phthalocyanine films: A comparison study

    NASA Astrophysics Data System (ADS)

    Farag, A. A. M.; Yahia, I. S.; AlFaify, S.; Bilgiçli, A.; Kandaz, M.; Yakuphanoğlu, F.

    2013-08-01

    Nanocrystalline thin films of {Co(II), Cu(II), Mn(III), Pb(II) and Zn(II)} phthalocyanine complexes were deposited by spin coating sol-gel technique. The surface morphologies of the films are found to be dependable on the type of the metal complex. The absorption spectra of the films show two well defined absorption bands of phthalocyanine molecule; namely Soret (B-band) and Q-bands. The Q-band absorption of the phthalocyanine complexes shifts to longer wavelength with the central metal change. The analysis of the spectral behavior of the absorption coefficient (α) in the absorption region revealed two expected indirect transitions. The refractive index (n) and the absorption index (k) were calculated using the measured data of the transmittance T(λ) and reflectance R(λ) coefficients. The dispersion parameters such as dispersion energy (Ed), oscillator energy (Eo), high frequency dielectric constant (ε∞), and lattice dielectric constant (εL) were determined using the single oscillator model. The main reason for the change in dispersion parameters of the phthalocyanine complexes may be attributed to the intensity of the metal coordination bonds that are dependent on the bound metal atoms due to their electronegativity change. The founded results of the nano-crystalline metal phthalocyanine thin films can be useful for optoelectronic applications. Discussion of the obtained results and their comparisons with the available published literature were also considered.

  16. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  17. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  18. Ocean optics estimation for absorption, backscattering, and phase function parameters.

    PubMed

    Hakim, Ammar H; McCormick, Norman J

    2003-02-20

    We propose and test an inverse ocean optics procedure with numerically simulated data for the determination of inherent optical properties using in-water radiance measurements. If data are available at only one depth within a deep homogeneous water layer, then the single-scattering albedo and the single parameter that characterizes the Henyey-Greenstein phase function can be estimated. If data are available at two depths, then these two parameters can be determined along with the optical thickness so that the absorption and scattering coefficients, and also the backscattering coefficient, can be estimated. With a knowledge of these parameters, the albedo and Lambertian fraction of reflected radiance of the bottom can be determined if measurements are made close to the bottom. A simplified method for determining the optical properties of the water also is developed for only three irradiance-type measurements if the radiance is approximately in the asymptotic regime. PMID:12617207

  19. Sound propagation and absorption in foam - A distributed parameter model.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  20. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν8 +ν10 band of 13C2H4

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Kashirina, N. V.; Maul, C.; Bauerecker, S.

    2015-10-01

    The high resolution spectra of the 13C2H4 molecule was recorded with a Bruker IFS 120 Fourier transform spectrometer and theoretically analyzed in the 1650 - 1800cm-1 region of the ν8 +ν10 band which is forbidden in absorption. About 1200 experimental transitions with the maximum values of quantum numbers Jmax. = 34 and Kamax. = 17 were assigned to the ν8 +ν10 band. On that basis the 516 high accuracy ro-vibrational energies of the (v8=v10=1) vibrational state, as well as energy levels with J ≤ 2 of the (v4 =v8 = 1) and (v7 =v8 = 1) vibrational states, were determined which then were used as input data in the weighted fit of spectroscopic parameters of the Hamiltonian (strong local resonance interactions of the ν8 +ν10 band with the bands ν4 +ν8 and ν7 +ν8 have been taken into account). A set of 34 vibrational, rotational, centrifugal distortion, and resonance interaction parameters was obtained from the fit. These parameters reproduce positions of about 1200 experimentally recorded and assigned transitions with the rms error drms = 0.00018cm-1 (blended and very weak transitions are not taken into account in that case).

  1. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  2. The parameters of the full absorption neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Filchenkov, V. V.; Konin, A. D.; Rudenko, A. I.

    1990-09-01

    The methods of obtaining the parameters of the full absorption neutron spectrometer constructed in JINR [V.P. Dzhelepov et al., Nucl. Instr. and Meth. A269 (1988) 634] (full scintillator volume V=24 1) and used in experiments studying the muon catalysis process are considered. These parameters have been obtained from the analysis of pulse-height distributions measured with γ-sources of different energies and with neutrons selected from the 238PuBe spectrum using the TOF method. A value of σ FWHM=0.09(1+ {1}/{√E e( MeV) } has been obtained for the pulse-height resolution. It is two times better than that obtained for a detector [G. Dietze and H. Klein, Nucl. Instr. and Meth. 193 (1982) 549] of smaller size. The threshold energy for n-γ separation Eγthr≅50keV, which corresponds to the best results obtained with small detectors.

  3. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  4. AKARI observations of ice absorption bands towards edge-on YSOs

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Noble, J. A.; Pontoppidan, K. M., Fraser, H. J.; Terada, H.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2011-05-01

    Circumstellar disks and envelopes of low-mass YSOs contain significant amounts of ice. Such icy material will evolve to volatile components of planetary systems, such as comets in our solar system. In order to investigate the composition and evolution of circumstellar ice around low-mass YSOs, we have observed ice absorption bands towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Slit-less spectroscopic observations are performed using the grism mode of Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO_2 band and the blue wing of the H_2O band, which are not accessible from the ground. We developed procedures to reduce the spectra of targets with nebulosity. The spectra are fitted with polynomial baselines to derive the absorption spectra. Then we fit the molecular absorption bands with the laboratory spectra from the database, considering the instrumental line profile and the spectral resolution of the dispersion element. Towards the Class 0-I sources, absorption bands of H_2O, CO_2, CO and XCN (OCN^-) are clearly detected. Weak features of 13CO_2, HDO, the C-H band, and gaseous CO are detected as well. OCS ice absorption is tentatively detected towards IRC-L1041-2. The detected features would mostly originate in the cold envelope, while CO gas and OCN^- could originate in the region close to the protostar. Towards class II stars, H_2O ice band is detected. We also detected H_2O ice, CO_2 ice and tentative CO gas features of the foreground component of class II stars.

  5. Millimeter Wave Absorption Bands of Silver/copper Iodides-Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Awano, Teruyoshi; Takahashi, Toshiharu

    2013-07-01

    Millimeter wave absorption spectra of silver halides doped silver phosphate glasses were measured using an intense coherent transition radiation. Two bands were observed at 8.4cm-1 and 6.3cm-1 in AgI doped AgPO3 glass and 8.7cm-1 and 6.1cm-1 in AgBr doped one. Small difference of peak positions between these glasses suggests that these absorption bands are concerned with a large number of silver ions in dopant molecules. Cu+ conducting glasses

  6. Broadening of absorption band by coupled gap plasmon resonances in a near-infrared metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Yao, Hongbing; Gong, Daolei; Chen, Mingyang; Tong, Yanqun; Fu, Yonghong; Ren, Naifei

    2016-07-01

    We propose a strategy to broaden the absorption band of the conventional metamaterial absorber by incorporating alternating metal/dielectric films. Up to 7-fold increase in bandwidth and ∼95% average absorption are achieved arising from the coupling of induced multiple gap plasmon resonances. The resonance coupling is analytically demonstrated using the coupled oscillator model, which reveals that both the optimal coupling strength and the resonance wavelength matching are required for the enhancement of absorption bandwidth. The presented multilayer design is easily fabricated and readily implanted to other absorber configurations, offering a practical avenue for applications in photovoltaic cells and thermal emitters.

  7. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250–450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl‑ negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  8. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  9. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  10. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  11. Band-integrated infrared absorptance of low-molecular-weight paraffin hydrocarbons at high temperatures.

    PubMed

    Fuss, S P; Hall, M J; Ezekoye, O A

    1999-05-01

    The spectral absorptance of the 3.4-microm band of methane, ethane, propane, and butane has been measured with a Fourier transform infrared spectrometer over a range of temperatures from 296 to 900 K. The measurements were made at a 4-cm(-1) resolution and integrated over the entire band to give the total absorptance. The total absorptance is found to behave in such a way that it can be correlated by a combination of algebraic expressions that depend on the gas temperature and concentration. Average discrepancies between the correlations and the measurements are less than 4%, with maximum differences of no greater than 17%. In addition, the correlations presented here for methane are shown to be in good agreement with established models. Expressions given for the integrated intensity of each gas show an inverse dependence on temperature, reflecting the associated change in density. PMID:18319871

  12. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  13. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-06-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

  14. AKARI observations of ice absorption bands towards edge-on young stellar objects

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2012-02-01

    Context. Circumstellar disks and envelopes of low-mass young stellar objects (YSOs) contain significant amounts of ice. Such icy material will evolve to become volatile components of planetary systems, such as comets in our solar system. Aims: To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Methods: We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Results: Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 μm is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μm provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN- could originate in the region close to the protostar

  15. Conversion from constitutive parameters to dispersive transmission line parameters for multi-band metamaterials

    NASA Astrophysics Data System (ADS)

    Ozturk, Yusuf; Egemen Yilmaz, Asim; Ozbay, Ekmel

    2016-04-01

    In this study, we explain an approach including conversion from constitutive parameters to dispersive transmission line parameters using the double-band DNG (double-negative) properties of the circular type fishnet metamaterials. After designing the metamaterial structure, the numerical calculations and the composite right/left-handed (CRLH) modeling of circular-type metamaterials are realized in free space. Detailed dispersion characteristics give us the opportunity to explain the true behavior of the inclusions during the analysis stage. By combining the results coming from the standard retrieval procedure with the conventional CRLH theory, we calculate the actual values of the transmission line parameters for all frequency regimes. The constitutive parameters of an equivalent CRLH transmission line are derived and shown to be negative values. It is shown that the constitutive parameters present the same behavior for all negative refractive index regimes. The double-negative properties and the phase advance/lag behavior of metamaterials are observed based on the dispersive transmission line parameters.

  16. Radiation absorption by the C2 band systems for Jupiter entry conditions

    NASA Technical Reports Server (NTRS)

    Sutton, K.; Moss, J. N.

    1979-01-01

    Revised values of the absorption cross sections for seven electronic band systems of C2 have been calculated using recently published experimental data for the electronic transition moments. Using these revised C2 cross section values, computations were made for the radiating flow field over a Jupiter entry probe with coupled ablation injection from a carbon-phenolic heat shield. Results are presented which show that radiation absorption within the ablation layer for the spectral range of 4 to 6 eV is less than that predicted using previous C2 absorption cross section values. The effect of the reduced radiation absorption by the C2 molecule is an increase in the radiative heating rates and ablation mass loss rates for the Jupiter entry conditions considered in the study.

  17. Absorption spectrum of NO in the {gamma}(O, O) band

    SciTech Connect

    Zobnin, A.V.; Korotkov, A.N.

    1995-05-01

    A promising technique for determining the concentration of nitrogen oxide in the air of an industrial zone and in process gases is the measurement of the absorption of UV radiation by this molecule in the {gamma}(O,O) band with the center of {lambda}{sub 0} = 226.5 nm. This band corresponds to the transition X{sup 2}{Pi}{yields}{Alpha}{sup 2}{Sigma} of the NO molecule and is characterized by a complex rotational structure consisting of about 400 lines. This structure cannot be resolved completely by most spectral instruments. However, if the width of the spread function of the device is perceptibly smaller than the width of the given absorption band ({approx_equal}2 nm), but larger than the characteristic space between rotational lines ({approx_equal}0.02 nm), then the recorded transmission spectra of NO are almost insensitive to a change in the form of this function. In the given case, to describe the transmission spectrum it is possible to use the absorption coefficient averaged over rotational lines. And even though the Bouger-Lambert-Beer law is not strictly applicable for this spectrum, the dependence of the transmission spectrum of NO on the optical thickness, temperature, and pressure of the broadening gas can be represented in the form of an empirical dependence that can be useful in practice, for example, when processing the absorption spectra recorded by dispersion gas analyzers. Thus, the need for complex and laborious calculations is avoided, and this simplifies considerably the instrumental implementation of this method of measuring the concentration of NO. The object of the present work is to determine the empirical dependence of the absorption spectrum of NO in the {gamma}(O, O) band on the optical thickness, temperature, and pressure of the broadening gas in the ranges most frequently encountered in operation of dispersion gas analyzers.

  18. Novel Cross-Band Relative Absorption (CoBRA) technique For Measuring Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Prasad, N. S.; Pliutau, D.

    2013-12-01

    We describe a methodology called Cross-Band Relative Absorption (CoBRA) we have implemented to significantly reduce interferences due to variations in atmospheric temperature and pressure in molecular mixing ration measurements [1-4]. The interference reduction is achieved through automatic compensation based on selecting spectral line pairs exhibiting similar evolution behavior under varying atmospheric conditions. The method is applicable to a wide range of molecules including CO2 and CH4 which can be matched with O2 or any other well-mixed atmospheric molecule. Such matching results in automatic simultaneous adjustments of the spectral line shapes at all times with a high precision under varying atmospheric conditions of temperature and pressure. We present the results of our selected CoBRA analysis based on line-by-line calculations and the Modern Era Retrospective Analysis for Research and Applications (MERRA) dataset including more recent evaluation of the error contributions due to water vapor interference effects. References: 1) N. S. Prasad, D. Pliutau, 'Cross-band relative absorption technique for the measurement of molecular mixing ratios.', Optics Express, Vol. 21, Issue 11, pp. 13279-13292 (2013) 2) D. Pliutau and N. S. Prasad, "Cross-band Relative Absorption Technique for Molecular Mixing Ratio Determination," in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3L.4. 3) Denis Pliutau; Narasimha S. Prasad; 'Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios',.Proc. SPIE 8731, Laser Radar Technology and Applications XVIII, 87310L (May 20, 2013); doi:10.1117/12.2016661. 4) Denis Pliutau,; Narasimha S. Prasad; 'Comparative analysis of alternative spectral bands of CO2 and O2 for the sensing of CO2 mixing ratios' Proc. SPIE 8718, Advanced Environmental, Chemical, and Biological Sensing Technologies X, 87180L (May 31, 2013); doi:10.1117/12.2016337.

  19. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.

  20. Impurity Sub-Band in Heavily Cu-Doped InAs Nanocrystal Quantum Dots Detected by Ultrafast Transient Absorption.

    PubMed

    Yang, Chunfan; Faust, Adam; Amit, Yorai; Gdor, Itay; Banin, Uri; Ruhman, Sanford

    2016-05-19

    The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation. Partial redistribution of interband oscillator strength to sub-band levels reduces the band edge bleach per exciton progressively with the degree of doping, even though the total linear absorption cross section at the band edge remains unchanged. In contrast, no doping effects were detected on absorption cross sections high in the conduction band, as expected due to the relatively high density of sates of the undoped QDs. PMID:26720008

  1. Rotational Profiles of Molecular Absorption Bands in Astrophysically Relevant Conditions: Ab-Initio Approach

    SciTech Connect

    Malloci, Giuliano; Mulas, Giacomo; Cappellini, Giancarlo; Satta, Guido; Porceddu, Ignazio; Benvenuti, Piero

    2004-05-01

    A theoretical study of rotational profiles of molecular absorption bands is essential for direct comparison with observations of diffuse interstellar bands. Applications using gaussian quantum-chemical approach within DFT are presented. Structural and vibrational properties of the polycyclic aromatic hydrocarbon ovalene cation (C32H14+) are obtained. We discuss the expected profile of the first electronic transition of such molecule, obtained with a Monte Carlo model of its rotation in the physical conditions of low temperatures and absence of collisions which are characteristic of the interstellar medium (ISM).

  2. Temperature Dependences of Air-Broadening and Shift Parameters in the ν_3 Band of Ozone

    NASA Astrophysics Data System (ADS)

    Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2015-06-01

    Line parameter errors can contribute significantly to the total errors in retrievals of terrestrial atmospheric ozone concentration profiles using the strong 9.6-μm band, particularly for nadir-viewing experiments Detailed knowledge of the interfering ozone signal is also needed for retrievals of other atmospheric species in this spectral region. We have determined Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for a number of transitions in the ν_3 fundamental band of 16O_3. These results were obtained by applying the multispectrum nonlinear least-squares fitting technique to a set of 31 high-resolution infrared absorption spectra of O_3 recorded at temperatures between 160 and 300 K with several different room-temperature and coolable sample cells at the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak. We compare our results with other available measurements and with the ozone line parameters in the HITRAN database. J.~Worden et al., J.~Geophys.~Res. 109 (2004) 9308-9319. R.~Beer et al., Geophys.~Res.~Lett. 35 (2008) L09801. D.~Chris Benner et al., JQSRT 53 (1995) 705-721. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 4. JQSRT 130 (2013) 4-50.

  3. The Ma_Miss instrument performance, II: Band parameters of rocks powders spectra by Martian VNIR spectrometer

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; De Sanctis, Maria Cristina; Ammannito, Eleonora; Carli, Cristian; Di Iorio, Tatiana; Altieri, Francesca

    2015-11-01

    The Ma_Miss instrument (Mars Multispectral Imager for Subsurface Studies, Coradini et al. (2001)) is a Visible and Near Infrared miniaturized spectrometer that will observe the Martian subsurface in the 0.4-2.2 μm spectral range. The instrument will be entirely hosted within the Drill of the ExoMars-2018 Pasteur Rover: it will allow analyzing the borehole wall excavated by the Drill, at different depths, down to 2 m. The aim will be to investigate and characterize the mineralogy and stratigraphy of the shallow Martian subsurface. A series of spectroscopic measurements have been performed in order to characterize the spectral performances of the laboratory model of the instrument (breadboard). A set of six samples have been analyzed. Each sample (four volcanic rocks, a micritic limestone and a calcite) has been reduced in particulate form, ground, sieved and divided into nine different grain sizes in the range d<0.02÷0.8 mm. Spectroscopic measurements have been performed on all samples using two distinct experimental setup: (a) the Ma_Miss breadboard, and (b) the Spectro-Goniometer setup, both in use in the laboratory at INAF - IAPS. In a previous paper spectral parameters such as the continuum slope and the reflectance level of the spectra have been discussed (De Angelis et al., 2014). In this work we focus our discussion on absorption band parameters (position, depth, area, band slope and asymmetry). We analyzed/investigated the absorption features at 1 μm for the volcanic samples and at 1.4, 1.9 and 2.2 μm for the two carbonate samples. Band parameters have been retrieved from spectra measured with both experimental setup and then compared. The comparison shows that band parameters are mutually consistent: band centers (for carbonate samples) are similar within few percent, and band depth and area values (for carbonates) show consistent trends vs. grain size (decreasing towards coarser grains) for most of samples.

  4. An alternative model for photodynamic therapy of cancers: Hot-band absorption

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chen, Jiyao

    2013-12-01

    The sulfonated aluminum phthalocyanine (AlPcS), a photosensitizer for photodynamic cancer therapy (PDT), has an absorption tail in the near-infrared region (700-900 nm) which is so-called hot band absorption (HBA). With the HBA of 800 nm, the up-conversion excitation of AlPcS was achieved followed by the anti-Stocks emission (688 nm band) and singlet oxygen production. The HBA PDT of AlPcS seriously damaged the KB and HeLa cancer cells, with a typical light dose dependent mode. Particularly, the in vitro experiments with the AlPcS shielding solutions further showed that the HBA PDT can overcome a self-shielding effect benefiting the PDT applications.

  5. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application. PMID:25607485

  6. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  7. Nitric oxide γ band fluorescent scattering and self-absorption in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.

    1995-08-01

    The fluorescent scattering of UV sunlight and self-absorption by the nitric oxide (NO) γ bands between 2000-2500 Å are quantified for the purpose of inferring NO density profiles as a function of altitude in the mesosphere and above. Rotational line emission rate factors and cross sections are calculated at a variety of temperatures. The observed variation of the solar spectrum across the γ bands and its effect on emission rate factors are explored by using irradiance measurements that resolve features down to 0.1 Å. The model also includes quenching by O2 and N2, multiple scattering, temperature effects, attenuation of the solar irradiance by O2 and ozone, and self-absorption with the summation of adjacent rotational features. Results indicate that for resonant γ bands, the rotational structure in emission is not symmetric to that in absorption so that as self-absorption increases the shape of the observed emission envelope changes. For γ(1,0) this is largely characterized by an increase in the integrated emission observed longward of 2151 Å compared to shortward. It is found that solar irradiances measured at 0.1 Å resolution decrease the calculated γ(1,0) and γ(0,0) band emission rate factors by less than 3% compared to those measured at 2 Å resolution. However, more Fraunhofer structure included in the calculation is reflected in the relative intensities of the rotational features. It is also found that extinction of the solar irradiance by ozone and quenching by O2 rapidly reduce the γ(1,0) emission rate factor with decreasing altitude below 60 km.

  8. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  9. Analysis of the 4800-Å absorption band of Cs 2 by the classical method

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, Joel; Moeller, Michael B.

    1980-09-01

    The broad absorption band in Cs 2 having peak intensity near 4800 Å is analyzed through computational simulation of the experimental spectrum using the classical method. The absorption, which terminates in a weak satellite at 5223 Å, can be interpreted in terms of a single transition from the ground state ( Re = 4.65 Å, ω e = 42 cm -1) to an upper state having Te = 20 470 cm -1, ω e = 33 cm -1 and Re = 5.28 Å. The absolute absorption strength is roughly consistent with published lifetime data, but its reliability is limited by thermodynamic uncertainties stemming from the remaining uncertainty in the Cs 2 ground state dissociation enegy. The paper includes a summary of diatomic radiation relations pertinent to the analysis of low-resolution spectra, and a brief discussion of the reduced potential method applied to the alkali dimer ground states.

  10. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy.

    PubMed

    Toulson, Benjamin W; Murray, Craig

    2016-09-01

    Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers. PMID:27552402

  11. Relating P-band AIRSAR backscatter to forest stand parameters

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  12. Experimental Air-Broadened Line Parameters in the nu2 Band of CH3D

    NASA Technical Reports Server (NTRS)

    Cross, Adriana Predoi; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-01-01

    In this study we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu2 fundamental band of CH3D. These results were obtained from analysis of 17 room temperature laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. Three absorption cells with path lengths of 10.2, 25 and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129x10(exp -2) to 52.855x10(exp -2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum non-linear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J" = 20 and K = 15, where K" = K' equivalent to K (for a parallel band). The measured air broadening coefficients range from 0.0205 to 0.0835 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(exp -1) atm(exp -1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J" and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J" and J" + 1 in the (sup Q)P- (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  13. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughness and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.

  14. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments. PMID:17282279

  15. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  16. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  17. Line parameters for ozone hot bands in the 4.8-micron spectral region

    NASA Technical Reports Server (NTRS)

    Camy-Peyret, Claude; Flaud, Jean-Marie; Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy

    1990-01-01

    Line positions, intensities, and lower-state energies have been calculated for nine hot bands of (O-16)3 in the 4.8-micron spectral region using improved spectroscopic parameters deduced in recent high-resolution laboratory studies. The good quality of the hot-band parameters has been verified through comparisons of line-by-line simulations with 0.005/cm-resolution laboratory spectra of ozone. The present work and the line parameters calculated for the main bands by Pickett et al. (1988) provide a complete update of ozone spectroscopic parameters in the 4.8 micron region.

  18. Origin of the red shifts in the optical absorption bands of nonplanar tetraalkylporphyrins.

    PubMed

    Haddad, Raid E; Gazeau, Stéphanie; Pécaut, Jacques; Marchon, Jean-Claude; Medforth, Craig J; Shelnutt, John A

    2003-02-01

    The view that the large red shifts seen in the UV-visible absorption bands of peripherally crowded nonplanar porphyrins are the result of nonplanar deformations of the macrocycle has recently been challenged by the suggestion that the red shifts arise from substituent-induced changes in the macrocycle bond lengths and bond angles, termed in-plane nuclear reorganization (IPNR). We have analyzed the contributions to the UV-visible band shifts in a series of nickel or zinc meso-tetraalkylporphyrins to establish the origins of the red shifts in these ruffled porphyrins. Structures were obtained using a molecular mechanics force field optimized for porphyrins, and the nonplanar deformations were quantified by using normal-coordinate structural decomposition (NSD). Transition energies were calculated by the INDO/S semiempirical method. These computational studies demonstrate conclusively that the large Soret band red shifts ( approximately 40 nm) seen for very nonplanar meso-tetra(tert-butyl)porphyrin compared to meso-tetra(methyl)porphyrin are primarily the result of nonplanar deformations and not IPNR. Strikingly, nonplanar deformations along the high-frequency 2B(1u) and 3B(1u) normal coordinates of the macrocycle are shown to contribute significantly to the observed red shifts, even though these deformations are an order of magnitude smaller than the observed ruffling (1B(1u)) deformation. Other structural and electronic influences on the UV-visible band shifts are discussed and problems with the recent studies are examined (e.g., the systematic underestimation of the 2B(1u) and 3B(1u) modes in artificially constrained porphyrin structures that leads to a mistaken attribution of the red shift to IPNR). The effect of nonplanar deformations on the UV-visible absorption bands is then probed experimentally with a series of novel bridled nickel chiroporphyrins. In these compounds, the substituent effect is essentially invariant and the amount of nonplanar deformation

  19. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption.

    PubMed

    He, Jinna; Ding, Pei; Wang, Junqiao; Fan, Chunzhen; Liang, Erjun

    2015-03-01

    A novel plasmonic metamaterial consisting of the solid (bar) and the inverse (slot) compound metallic nanostructure for electromagnetically induced absorption (EIA) is proposed in this paper, which is demonstrated to achieve an ultra-narrow absorption peak with the linewidth less than 8 nm and the absorptivity exceeding 97% at optical frequencies. This is attributed to the plasmonic EIA resonance arising from the efficient coupling between the magnetic response of the slot (dark mode) and the electric resonance of the bar (bright mode). To the best of our knowledge, this is the first time that the plasmonic EIA is used to realize the narrow-band perfect absorbers. The underlying physics are revealed by applying the two-coupled-oscillator model. The near-perfect-absorption resonance also causes an enhancement of about 50 times in H-field and about 130 times in E-field within the slots. Such absorber possesses potential for applications in filter, thermal emitter, surface enhanced Raman scattering, sensing and nonlinear optics. PMID:25836832

  20. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  1. Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin

    NASA Astrophysics Data System (ADS)

    Wójcik, Justyna; Ratuszna, Alicja; Peszke, Jerzy; Wrzalik, Roman

    2015-01-01

    The computational results of the features observed in the room-temperature Q-band absorption spectrum of free-base chlorin (H2Ch) are presented. The vibrational structures of the first and second excited singlet states were calculated based on a harmonic approximation using density functional theory and its time dependent extension within the Franck-Condon and Herzberg-Teller approaches. The outcome allowed to identify the experimental bands and to assign them to the specific vibrational transitions. A very good agreement between the simulated and measured wavelengths and their relative intensities provided the opportunity to predict the origin of the S0 → S2 transition which could not be determined experimentally.

  2. Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin.

    PubMed

    Wójcik, Justyna; Ratuszna, Alicja; Peszke, Jerzy; Wrzalik, Roman

    2015-01-21

    The computational results of the features observed in the room-temperature Q-band absorption spectrum of free-base chlorin (H2Ch) are presented. The vibrational structures of the first and second excited singlet states were calculated based on a harmonic approximation using density functional theory and its time dependent extension within the Franck-Condon and Herzberg-Teller approaches. The outcome allowed to identify the experimental bands and to assign them to the specific vibrational transitions. A very good agreement between the simulated and measured wavelengths and their relative intensities provided the opportunity to predict the origin of the S0 → S2 transition which could not be determined experimentally. PMID:25612704

  3. Study of sub band gap absorption of Sn doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  4. Study of sub band gap absorption of Sn doped CdSe thin films

    SciTech Connect

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  5. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGESBeta

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  6. Thermochromic Absorption, Fluorescence Band Shifts and Dipole Moments of BADAN and ACRYLODAN

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2002-08-01

    Using the thermochromic shift method of absorption and fluorescence bands, the electric dipole moments in the ground (μg) and excited (μe) state are simultaneously determined for BADAN (6-bromoacetyl-2-dimethylamino-naphtalene) and ACRYLODAN (6-acrylolyl-2-dimethylamino-naphtalene) in ethyl acetate. For these compounds the same ratio μe/μg = 2.9 was found, which is similar to that of PRODAN (6-propionyl-2-dimethylamino-naphtalene). The estimated empirical Onsager radii afor BADAN and ACRYLODAN are the same, and they are somewhat smaller than the calculated geometrical values.

  7. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    SciTech Connect

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  8. Theoretical Modeling of Low Energy Electronic Absorption Bands in Reduced Cobaloximes

    PubMed Central

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2015-01-01

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task. PMID:25113847

  9. Femtosecond supercontinuum generation in water in the vicinity of absorption bands.

    PubMed

    Dharmadhikari, J A; Steinmeyer, G; Gopakumar, G; Mathur, D; Dharmadhikari, A K

    2016-08-01

    We show that it is possible to overcome the perceived limitations caused by absorption bands in water so as to generate supercontinuum (SC) spectra in the anomalous dispersion regime that extend well beyond 2000 nm wavelength. By choosing a pump wavelength within a few hundred nanometers above the zero-dispersion wavelength of 1048 nm, initial spectral broadening extends into the normal dispersion regime and, in turn, the SC process in the visible strongly benefits from phase-matching and matching group velocities between dispersive radiation and light in the anomalous dispersion regime. Some of the SC spectra are shown to encompass two and a half octaves. PMID:27472597

  10. Energy band bowing parameter in MgZnO alloys

    SciTech Connect

    Wang, Xu; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Guo, Qixin; Nagaoka, Takashi; Arita, Makoto

    2015-07-13

    We report on bandgap bowing parameters for wurtzite and cubic MgZnO alloys from a study of high quality and single phase films in all Mg content range. The Mg contents in the MgZnO films were accurately determined using the energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra from XPS is proved to be valid for determining the bandgap of MgZnO films. The dependence of the energy bandgap on Mg content is found to deviate downwards from linearity. Fitting of the bandgap data resulted in two bowing parameters of 2.01 ± 0.04 eV and 1.48 ± 0.11 eV corresponding to wurtzite and cubic MgZnO films, respectively.

  11. Linear-Circular Dichroism of Four-Photon Absorption of Light in Semiconductors with a Complex Valence Band

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-04-01

    Matrix elements of optical transitions occuring between the subbands of the valence band of a p-GaAs type semiconductor are calculated. Transitions associated with the non-simultaneous absorption of single photons and simultaneous absorption of two photons are taken into account. The expressions are obtained for the average values of the square modulus of matrix elements calculated with respect to the solid angle of the wave vector of holes. Linear-circular dichroism of four-photon absorption of light in semiconductors with a complex valence band is theoretically studied.

  12. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  13. Nanosecond light induced, thermally tunable transient dual absorption bands in a-Ge₅As₃₀Se₆₅ thin film.

    PubMed

    Khan, Pritam; Saxena, Tarun; Jain, H; Adarsh, K V

    2014-01-01

    In this article, we report the first observation of nanosecond laser induced transient dual absorption bands, one in the bandgap (TA₁) and another in the sub-bandgap (TA₂) regions of a-Ge₅As₃₀Se₆₅ thin films. Strikingly, these bands are thermally tunable and exhibit a unique contrasting characteristic: the magnitude of TA₁ decreases while that of TA₂ increases with increasing temperature. Further, the decay kinetics of these bands is strongly influenced by the temperature, which signifies a strong temperature dependent exciton recombination mechanism. The induced absorption shows quadratic and the decay time constant shows linear dependence on the laser beam fluence. PMID:25300520

  14. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  15. Determining photon energy absorption parameters for different soil samples.

    PubMed

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-05-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with (137)Cs and (60)Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of (137)Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  16. Determining photon energy absorption parameters for different soil samples

    PubMed Central

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-01-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137Cs and 60Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  17. Band parameters of InGaAs/GaAs quantum dots: electronic properties study

    NASA Astrophysics Data System (ADS)

    Yahyaoui, M.; Sellami, K.; Boujdaria, K.; Chamarro, M.; Testelin, C.

    2013-12-01

    We have made a systematic investigation of the band diagram calculation of strained and unstrained InxGa1 - xAs alloys in order to extract accurate and adapted parameters which are useful to the electronic properties of InxGa1 - xAs/GaAs quantum dots. As an application, the 40-band k.p model is used to describe the band offsets as well as the band parameters in the strained InxGa1 - xAs/GaAs system. The κ valence band parameter as well as g* Landé factor depending of the indium concentration were estimated. These results are analyzed and compared with experiment.

  18. Shallow electron traps in alkali halide crystals: Mollwo-Ivey relations of the optical absorption bands

    NASA Astrophysics Data System (ADS)

    Ziraps, Valters

    2001-03-01

    Evidences are given that two classes of the transient IR- absorption bands: (a) with max. at 0.27-0.36 eV in NaCl, KCl, KBr, KI and RbCl (due to shallow electron traps according G. Jacobs or due to bound polarons according E.V. Korovkin and T.A. Lebedkina) and (b) with max. at 0.15-0.36 eV in NaI, NaBr, NaCl:I, KCl:I, RbCl:I and RbBr:I (due to on-center STE localized at iodine dimer according M. Hirai and collaborators) are caused by the same defect- atomic alkali impurity center [M+]c0e- (electron e- trapped by a substitutional smaller size alkali cation impurity [M+]c0). The Mollwo-Ivey plots (for the transient IR-absorption bands) of the zero-phonon line energy E0 (for NaCl, KCl, KBr, RbCl and NaBr, KCl:I) and/or the low-energy edge valued E0 (for NaI, RbCl:I, RbBr:I) versus anion-cation distance (d) evidence that two types of the [M+]c0e- centers are predominant: (a) [Na+]c0e- in the KX and RbX host crystals with the relation E0approximately equals 6.15/d2.74, (b) [Li+]c03- in the NaX host crystals - E0approximately equals 29.4/d4.72. The Mollwo-Ivey relation E0approximately equals 18.36/d(superscript 2.70 is fulfilled as well for the F' band in NaCl, KCl, KBr, KI, RbCl, RbI if we use the F' center optical binding energy values E0.

  19. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  20. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  1. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  2. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  3. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  4. Spectroscopic line parameters for the nu6 band of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron; Blatherwick, Ronald D.; Bonomo, Francis S.; Rinsland, Curtis P.

    1990-01-01

    New measurements and analysis of high-resolution (0.0025/cm) laboratory spectra of the carbonyl fluoride nu6 band are described. The data are used to generate line parameters suitable for high-resolution atmospheric studies.

  5. Polarization-adjustable dual-band absorption in GHz-band metamaterial, based-on no-smoking symbol

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak; Lee, Myung Whan; Lee, Tae Gyun; Kim, Min Woo; Park, Jae Hyun

    2015-11-01

    We propose three kinds of the perfect metamaterial absorbers based on the well-known no-smoking symbol, which can adjust the absorption according to the polarization of incident electromagnetic wave. By modifying no-smoking symbol, a resonance absorption peak at 6.75 GHz can be controlled. In addition, a split-ring structure and the no-smoking symbol also adjust the absorption. We also demonstrate the absorption mechanism for all the structures. These results can be used in controlling absorption by the electromagnetic-wave detector.

  6. Effect of fractal parameters on absorption properties of soot in the infrared region

    NASA Astrophysics Data System (ADS)

    Prasanna, S.; Rivière, Ph.; Soufiani, A.

    2014-11-01

    Absorption coefficient of soot aggregates in the infrared region is investigated using multi-sphere T matrix algorithm. As the refractive index of soot is relatively high, the interaction between neighboring particles is important and Rayleigh approximation is invalid. The absorption cross section of soot is much higher than the Rayleigh approximation prediction. The effect of fractal parameters, dimension Df and prefactor kf, on absorption can be substantial and varies strongly with optical size parameter x and refractive index m. Families of fractal structures having similar absorption cross sections have been identified. It is noted that the fractal structures from the same family have similar particle distance correlation functions. Following this, an empirical model for absorption of soot as a function of m, x and fractal parameters has been developed. The model successfully predicts the absorption within ±5% for various fractal structures. Compared to Rayleigh approximation, the absorption enhancement can be as high as 200% at low temperatures and 120% at high temperatures. Effects of fractal parameters on absorption enhancement are important for low temperature applications but are not significant at high temperatures. This is mainly due to high refractive indices of soot at long wavelengths and shift of emitted radiation towards short wavelengths with increase in temperature.

  7. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  8. Photodissociation of water in the first absorption band: A prototype for dissociation on a repulsive potential energy surface

    SciTech Connect

    Engel, V.; Staemmler, V.; Vander Wal, R.L.; Crim, F.F.

    1992-04-16

    The photodissociation of water in the first absorption band, H{sub 2}O(X) + {Dirac_h}{omega} {yields} H{sub 2}O(A{sup 1}B{sub 1}) {yields} H({sup 2}S) + OH({sup 2}II), is a prototype of fast and direct bond rupture in an excited electronic state. It has been investigated from several perspectives-absorption spectrum, final state distributions of the products, dissociation of vibrationally excited states, isotope effects, and emission spectroscopy. The availability of a calculated potential energy surface for the A state, including all three internal degrees of freedom, allows comparison of all experimental data with the results of rigorous quantum mechanical calculations without any fitting parameters or simplifying model assumptions. As the result of the confluence of ab initio electronic structure theory, dynamical theory, and experiment, water is probably the best studied and best understood polyatomic photodissociation system. In this article we review the joint experimental and theoretical advances which make water a unique system for studying molecular dynamics in excited electronic states. We focus our attention especially on the interrelation between the various perspectives and the correlation with the characteristic features of the upper-state potential energy surface. 80 refs., 14 figs.

  9. Band structure parameters of metallic diamond from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Achatz, P.; Nicolaou, A.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Bustarret, E.

    2015-07-01

    The electronic band structure of heavily boron doped diamond was investigated by angle-resolved photoemission spectroscopy on (100)-oriented epilayers. A unique set of Luttinger parameters was deduced from a comparison of the experimental band structure of metallic diamond along the Δ (Γ X ) and Σ (Γ K ) high-symmetry directions of the reciprocal space, with theoretical band structure calculations performed both within the local density approximation and by an analytical k . p approach. In this way, we were able to describe the experimental band structure over a large three-dimensional region of the reciprocal space and to estimate hole effective masses in agreement with previous theoretical and experimental papers.

  10. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  11. Electronic band structure and effective mass parameters of Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Lu Low, Kain; Yang, Yue; Han, Genquan; Fan, Weijun; Yeo, Yee-Chia

    2012-11-01

    This work investigates the electronic band structures of bulk Ge1-xSnx alloys using the empirical pseudopotential method (EPM) for Sn composition x varying from 0 to 0.2. The adjustable form factors of EPM were tuned in order to reproduce the band features that agree well with the reported experimental data. Based on the adjusted pseudopotential form factors, the band structures of Ge1-xSnx alloys were calculated along high symmetry lines in the Brillouin zone. The effective masses at the band edges were extracted by using a parabolic line fit. The bowing parameters of hole and electron effective masses were then derived by fitting the effective mass at different Sn compositions by a quadratic polynomial. The hole and electron effective mass were examined for bulk Ge1-xSnx alloys along specific directions or orientations on various crystal planes. In addition, employing the effective-mass Hamiltonian for diamond semiconductor, band edge dispersion at the Γ-point calculated by 8-band k.p. method was fitted to that obtained from EPM approach. The Luttinger-like parameters were also derived for Ge1-xSnx alloys. They were obtained by adjusting the effective-mass parameters of k.p method to fit the k.p band structure to that of the EPM. These effective masses and derived Luttinger parameters are useful for the design of optical and electronic devices based on Ge1-xSnx alloys.

  12. Anomalously Broad Diffuse Interstellar Bands and Excited CH+ Absorption in the Spectrum of Herschel 36

    NASA Astrophysics Data System (ADS)

    York, D. G.; Dahlstrom, J.; Welty, D. E.; Oka, T.; Hobbs, L. M.; Johnson, S.; Friedman, S. D.; Jiang, Z.; Rachford, B. L.; Snow, T. P.; Sherman, R.; Sonnentrucker, P.

    2014-02-01

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 Å are found in absorption along the line of sight to Herschel 36, an O star system next to the bright Hourglass nebula of the Hii region Messier 8. Excited lines of CH and CH+ are seen as well. We show that the region is very compact and itemize other anomalies of the gas. An infrared-bright star within 400 AU is noted. The combination of these effects produces anomalous DIBs, interpreted by Oka et al. (2013, see also this volume) as being caused predominantly by infrared pumping of rotational levels of relatively small molecules.

  13. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  14. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized. PMID:26531849

  15. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  16. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient. PMID:25967770

  17. Improved line parameters for ozone bands in the 10-micron spectral region

    NASA Technical Reports Server (NTRS)

    Flaud, Jean-Marie; Camy-Peyret, Claude; Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, Malathy V.

    1990-01-01

    A complete update of spectroscopic line parameters for the 10-micron bands of ozone is reported. The listing contains calculated positions, intensities, lower state energies, and air- and self-broadened halfwidths of more than 53,000 lines. The results have been generated using improved spectroscopic parameters obtained in a number of recent high resolution laboratory studies. A total of eighteen bands of (O-16)3 (sixteen hot bands plus the nu(1) and nu(3) fundamentals) are included along with the nu(1) and nu(3) fundamentals of both (O-16)(O-16)(O-18) and (O-16)(O-18)(O-16). As shown by comparisons of line-by-line simulations with 0.003/cm resolution balloon-borne stratospheric solar spectra, the new parameters greatly improve the accuracy of atmospheric calculations in the 10-micron region, especially for the isotopic (O-16)(O-16)(O-18) and (O-16)(O-18)(O-16) lines.

  18. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  19. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  20. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  1. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  2. Two-photon absorption cross section measurement in the gamma band system of nitric oxide

    SciTech Connect

    Burris, J.F. Jr.

    1982-01-01

    A dye laser with a single longitudinal mode and very stable spatial mode structure has been constructed. With this laser system a four-wave mixing experiment was done in the gamma bands of nitric oxide using two photon resonance. Another four-wave mixing experiment was done in nitrogen using coherent anti-Stokes Raman scattering (CARS) and the two signals ratioed. Using accurately known values of the Raman scattering cross section, the third order susceptibility in NO was determined without needing to know the spatial and temporal properties of the dye lasers. From this susceptibility, the two photon absorption cross section was calculated with the explicit dependence of sigma/sup (2)/ upon X/sup (3)/ shown. For the R/sub 22/ + S/sub 12/(J'' = 9 1/2) (A/sup 2/..sigma..+(v' = 0) -- X/sup 2/..pi..(v'' = 0)) line, sigma/sup (2)/ = (1.0 +/- 0.6) x 10/sup -38/cm/sup 4/g(2/sub 1/-Vertical Barsub f/ is the normalized lineshape. Branching ratios for the A/sup 2/..sigma..+(v' = n) ..-->.. X/sup 2/..omega..(v'' = n)(n = o,...9) transitions of NO were also measured, Franck-Condon factors calculated and the lifetime of the A state determined.

  3. Absolute radical densities in etching plasmas determined by broad-band UV absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Cunge, Gilles; Neuilly, François; Sadeghi, Nader

    1998-08-01

    Broad-band UV absorption spectroscopy was used to determine radical densities in reactive gas plasmas generated in a 13.56 MHz capacitively coupled parallel plate reactor. Five radical species were detected: 0963-0252/7/3/021/img1, CF, AlF, 0963-0252/7/3/021/img2 and 0963-0252/7/3/021/img3. Absolute (line-integrated) 0963-0252/7/3/021/img1 densities were determined in 0963-0252/7/3/021/img5 and 0963-0252/7/3/021/img6 plasmas, as were the 0963-0252/7/3/021/img1 vibrational and rotational temperatures in the latter case. In 0963-0252/7/3/021/img5 plasmas the CF radical was also detected, along with the etch products AlF (from the Al powered electrode) and 0963-0252/7/3/021/img2 (when an Si substrate was present). The fraction that 0963-0252/7/3/021/img2 comprises of the total etch products was estimated. Finally, the 0963-0252/7/3/021/img3 dimer was detected in an 0963-0252/7/3/021/img12 plasma in the presence of an Si substrate. This simple technique allows absolute concentrations of many key reactive species to be determined in reactive plasmas, without the need to analyse the complex rotational spectra of these polyatomic molecules.

  4. 8-band k·p modelling of mid-infrared intersubband absorption in Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Paul, D. J.

    2016-07-01

    The 8-band k.p parameters which include the direct band coupling between the conduction and the valence bands are derived and used to model optical intersubband transitions in Ge quantum well heterostructure material grown on Si substrates. Whilst for Si rich quantum wells the coupling between the conduction bands and valence bands is not important for accurate modelling, the present work demonstrates that the inclusion of such coupling is essential to accurately determine intersubband transitions between hole states in Ge and Ge-rich Si1-xGex quantum wells. This is due to the direct bandgap being far smaller in energy in Ge compared to Si. Compositional bowing parameters for a range of the key modelling input parameters required for Ge/SiGe heterostructures, including the Kane matrix elements, the effective mass of the Γ 2 ' conduction band, and the Dresselhaus parameters for both 6- and 8-band k.p modelling, have been determined. These have been used to understand valence band intersubband transitions in a range of Ge quantum well intersubband photodetector devices in the mid-infrared wavelength range.

  5. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band

    NASA Astrophysics Data System (ADS)

    Zhu, Zetao; Sun, Xin; Li, Guoxian; Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen; He, Jianping

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide-nickel (RGO-Ni) composites. The phase and morphology of as-synthesized RGO-Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO-Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO-Ni-2 composite with the thickness of 2 mm can reaches -42 dB at 17.6 GHz. The RGO-Ni composite is an attractive candidate for the new type of high performance microwave absorbing material.

  6. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Amidon, G. L.

    1992-01-01

    The absorption mechanism of several penicillins was characterized using in situ single-pass intestinal perfusion in the rat. The intrinsic membrane parameters were determined using a modified boundary layer model (fitted value +/- S.E.): Jmax* = 11.78 +/- 1.88 mM, Km = 15.80 +/- 2.92 mM, Pm* = 0, Pc* = 0.75 +/- 0.04 for ampicillin; Jmax* = 0.044 +/- 0.018 mM, Km = 0.058 +/- 0.026 mM, Pm* = 0.558 +/- 0.051, Pc* = 0.757 +/- 0.088 for amoxicillin; and Jmax* = 16.30 +/- 3.40 mM, Km = 14.00 +/- 3.30 mM, Pm* = 0, Pc* = 1.14 +/- 0.05 for cyclacillin. All of the aminopenicillins studied demonstrated saturable absorption kinetics as indicated by their concentration-dependent wall permeabilities. Inhibition studies were performed to confirm the existence of a nonpassive absorption mechanism. The intrinsic wall permeability (Pw*) of 0.01 mM ampicillin was significantly lowered by 1 mM amoxicillin and the Pw* of 0.01 mM amoxicillin was reduced by 2 mM cephradine consistent with competitive inhibition.

  7. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  8. Depth and Shape of the 0.94-microm Water Vapor Absorption Band for Clear and Cloudy Skies.

    PubMed

    Volz, F E

    1969-11-01

    Sky radiation near zenith and solar radiation in the rhosigmatau band region were recorded by means of a rotating interference filter (lambda0.98-0.88 microm) and a silicon detector. Although the spectral resolution of the simple spectrometer was not high, the water vapor content of the cloud free atmosphere was obtained with reasonable accuracy. The band depth of the radiation from thin, bright clouds was only slightly greater than that of the cloud free atmosphere, but dense and dark clouds showed deep bands mainly caused by increased path length as a result of multiple scattering. Considerable distortion of the band due to absorption by liquid water is observed in the radiation from very dark and dense clouds, and sometimes during snowfall. Some laboratory measurements are also discussed. PMID:20076009

  9. LINE PARAMETERS OF THE 782 nm BAND OF CO{sub 2}

    SciTech Connect

    Lu, Y.; Liu, A.-W.; Li, X.-F.; Wang, J.; Cheng, C.-F.; Sun, Y. R.; Lambo, R.; Hu, S.-M.

    2013-09-20

    The 782 nm band of CO{sub 2}, in a transparent window of Earth's atmosphere, was the first CO{sub 2} band observed 80 yr ago in the spectra of Venus. The band is very weak and therefore not saturated by the thick atmosphere of Venus, but its spectral parameters are still very limited due to the difficulty of detecting it in the laboratory. It is the highest overtone (ν{sub 1} + 5ν{sub 3}) of CO{sub 2} given in widely used spectroscopy databases such as HITRAN and GEISA. In the present work, the band is studied using a cavity ring-down spectrometer with ultra-high sensitivity as well as high precision. The positions of 55 lines in the band were determined with an absolute accuracy of 3 × 10{sup –5} cm{sup –1}, two orders of magnitude better than previous studies. The line intensities, self-induced pressure broadening coefficients, and the shift coefficients were also derived from the recorded spectra. The obtained spectral parameters can be applied to model the spectra of the CO{sub 2}-rich atmospheres of planets like Venus and Mars.

  10. Measurement of Oxygen A Band Line Parameters by Using Modulation Spectroscopy with Higher Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin

    1999-01-01

    Wavelength modulation spectroscopy is used to demonstrate that extremely weak absorption lines can be measured even when these lines suffer from interference from the wings of adjacent stronger lines. It is shown that the use of detection at several harmonics allows such interference to be examined clearly and conveniently. The results of experimental measurements on a weak magnetic dipole driven, spin-forbidden line in the oxygen A band, which experiences interference from the wings of a pair of adjacent lines towards the blue and red regions of line center, are presented. A comparison of the experimental results to theory is given.

  11. Evidence for strange stars from joint observation of harmonic absorption bands and of redshift

    NASA Astrophysics Data System (ADS)

    Bagchi, Manjari; Ray, Subharthi; Dey, Mira; Dey, Jishnu

    2006-05-01

    From recent reports on terrestrial heavy ion collision experiments it appears that one may not obtain information about the existence of asymptotic freedom (AF) and chiral symmetry restoration (CSR) for quarks of QCD at high density. This information may still be obtained from compact stars - if they are made up of strange quark matter (SQM). Very high gravitational redshift lines (GRL), seen from some compact stars, seem to suggest high ratios of mass and radius (M/R) for them. This is suggestive of strange stars (SS) and can in fact be fitted very well with SQM equation of state (EOS) deduced with built in AF and CSR. In some other stars broad absorption bands (BAB) appear at about ~0.3keV and multiples thereof, that may fit in very well with resonance with harmonic compressional breathing mode frequencies of these SS. Emission at these frequencies are also observed in six stars. If these two features of large GRL and BAB were observed together in a single star, it would strengthen the possibility for the existence of SS in nature and would vindicate the current dogma of AF and CSR that we believe in QCD. Recently, in 4U 1700 - 24, both features appear to be detected, which may well be interpreted as observation of SS - although the group that analyzed the data did not observe this possibility. We predict that if the shifted lines, that has been observed, are from neon with GRL shift z= 0.4- then the compact object emitting it is a SS of mass 1.2Msolar and radius 7km. In addition the fit to the spectrum leaves a residual with broad dips at 0.35keV and multiples thereof, as in 1E 1207 - 5209 which is again suggestive of SS.

  12. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  13. Band parameters of 2D semiconductor heterostructures determined by micro-ARPES

    NASA Astrophysics Data System (ADS)

    Nguyen, Paul; Wilson, Neil; Rivera, Pasqual; Seyler, Kyle; Barinov, Alexey; Balakrishnan, Geetha; Xu, Xiaodong; Cobden, David

    Heterostructures made by stacking monolayers of different 2D materials can have unique properties, such as hosting long-lived polarized interlayer excitons. Understanding these depends on knowledge of the band parameters of both the separate monolayers and the hetero-bilayer. Interlayer hybridization can also produce distinct electronic structure dependent on the relative monolayer crystal orientation. The most powerful technique for determining such properties is angle-resolved photoemission (ARPES), which can now be applied to micron-scale samples at the Spectromicroscopy Elettra Trieste beamline. Using this new facility, combined with careful sample design, we have studied heterostructures of WSe2, MoSe2, WS2 and graphene. We determined band offsets, effective masses, and spin-orbit splittings with an energy resolution <50 meV. Interestingly, the bands near the gamma-point in hetero-bilayers oriented near zero degrees are not a superposition of those in the isolated monolayers, but exhibit an additional higher band. However, the valence band edge remains at the K-point, which together with the band offsets is consistent with measurements of strong luminescence from interlayer excitons in MoSe2/WSe2.

  14. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  15. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE PAGESBeta

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  16. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  17. First-principles study of the band structure and optical absorption of CuGaS2

    NASA Astrophysics Data System (ADS)

    Aguilera, Irene; Vidal, Julien; Wahnón, Perla; Reining, Lucia; Botti, Silvana

    2011-08-01

    CuGaS2 is the most promising chalcopyrite host for intermediate-band thin-film solar cells. Standard Kohn-Sham density functional theory fails in describing the band structure of chalcopyrite materials, due to the strong underestimation of the band gap and the poor description of p-d hybridization, which makes it inadvisable to use this approach to study the states in the gap induced by doping. We used a state-of-the-art restricted self-consistent GW approach to determine the electronic states of CuGaS2: in the energy range of interest for optical absorption, the GW corrections shift the Kohn-Sham bands almost rigidly, as we proved through analysis of the effective masses, bandwidths, and relative position of the conduction energy valleys. Furthermore, starting from the GW quasiparticle bands, we calculated optical absorption spectra using different approximations. We show that the time-dependent density functional theory can be an efficient alternative to the solution of the Bethe-Salpeter equation when the exchange-correlation kernels derived from the Bethe-Salpeter equation are employed. This conclusion is important for further studies of optical properties of supercells including dopants.

  18. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  19. Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich

    2015-12-01

    In this study, frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany are estimated. Synthetic seismogram envelopes are modelled using elastic and acoustic radiative transfer theory. Scattering and absorption parameters are determined by fitting these synthetic envelopes to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different simulation approaches yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Both methods suggest that intrinsic attenuation is dominant over scattering attenuation in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. Elastic simulations of seismogram envelopes suggest that forward scattering is required to explain the data, however, the degree of forward scattering is not resolvable. Errors in the parameter estimation are smaller in the elastic case compared to results from the acoustic simulations. The frequency decay of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. The fluctuation strength and correlation length of the random medium cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. Furthermore, our elastic simulations show, that using our numerical method, it is not possible to resolve the value of the mean free path of the random medium.

  20. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-04-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of <ν _{_TO}>≈ 5× 108 Hz, compared to <ν _{_TO}>≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  1. Ionospheric absorption, typical ionization, conductivity, and possible synoptic heating parameters in the upper atmosphere

    SciTech Connect

    Walker, J.K.; Bhatnagar, V.P.

    1989-04-01

    Relations for the average energetic particle heating and the typical Hall and Pedersen conductances, as functions of the ground-based Hf radio absorption, are determined. Collis and coworkers used the geosynchronous GEOS 2 particle data to relate or ''calibrate'' the auroral absorption on the same magnetic field lines with five levels of D region ionization. These ionospheric models are related to a Chapman layer that extends these models into the E region. The average energetic particle heating is calculated for each of these models using recent expressions for the effective recombination coefficient. The corresponding height-integrated heating rates are determined and related to the absorption with a quadratic expression. The average Hall and Pedersen conductivities are calculated for each of the nominal absorption ionospheric models. The corresponding height-integrated conductances for nighttime conditions are determined and related to the absorption. Expressions for these conductances during disturbed sunlit conditions are also determined. These relations can be used in conjunction with simultaneous ground-based riometric and magnetic observations to determines the average Hall and Pedersen currents and the Joule heating. The typical daily rate of temperature increase in the mesosphere for storm conditions is several 10 K for both the energetic particle and the Joule heating. The increasing importance of these parameters of the upper and middle atmospheres is discussed. It is proposed that northern hemisphere ionospheric, current, and heating synoptic models and parameters be investigated for use on a regular basis. copyright American Geophysical Union 1989

  2. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  3. Measurements of Band Intensities, Herman-Wallis Parameters, and Self-Broadening Line-Widths of the 30011 - 00001 and 30014 - 00001 Bands of CO2 at 6503 cm(exp -1) and 6076 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Brown, L. R.; Wattson, R. B.; Spencer, M. N.; Chackerian, C., Jr.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rotationless band intensities and Herman-Wallis parameters are listed in HITRAN tabulations for several hundred CO2 overtone-combination bands. These parameters are based on laboratory measurements when available, and on DND calculations for the unmeasured bands. The DND calculations for the Fermi interacting nv(sub 1) + v(sub 3) polyads show the a(sub 2) Herman-Wallis parameter varying smoothly from a negative value for the first member of the polyad to a positive value for the final member. Measurements of the v(sub 1) + v(sub 3) dyad are consistent with the DND calculations for the a(sub 2) parameter, as are our recent measurements of the 4v(sub 1) + v(sub 3) pentad. However, the measurement-based values in the HITRAN tables for the 2v(sub 1) + v(sub 3) triad and the 3v(sub 1) + v(sub 3) tetrad do not support the DND calculated values for the a(sub 2) parameters. We therefore decided to make new measurements to improve some of these intensity parameters. With the McMath FTS at Kitt Peak National Observatory/National Solar Observatory we recorded several spectra of the. 4000 to 8000 cm(exp -1) region of pure CO2 at 0.011 cm(exp -1) resolution using the 6 meter White absorption cell. The signal/noise and absorbance of the first and fourth bands of the 3v(sub 1) + v(sub 3) tetrad of C-12O-16 were ideal on these spectra for measuring line intensities and broadening widths. Our selfbroadening results agree with the HITRAN parameterization, while our measurements of the rotationless band intensities are about 15% less than the HITRAN values. We find a negative value of a(sub 2) for the 30011-00001 band and a positive value for the 30014-00001 band, whereas the HITRAN values of a(sub 2) are positive for all four tetrad bands. Our a(sub 1) and a(sub 2) Herman-Wallis parameters are closer to DND calculated values than the 1992 HITRAN values for both the 30011-00001 and the 30014-00001 band.

  4. Optimization of the design parameters for a wide-band radiometric system

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.

    1978-01-01

    The optimun design parameters for a swept frequency wide-band radiometric antenna system for spacecraft applications are studied. Wide band antenna systems are needed to observe layered surfaces which are frequency sensitive and require multiple measurements for interpretation. The lowest frequency band of interest is between 1.4 to 2.8 Ghz. Starting with a given size reflector fed in the offset mode by a corrugated horn located at the focus of the parabola, the primary performance indexes; e.g., half power beamwidth, cross polarization level, and overall beam efficiency were calculated over a wide frequency range (two to one) for different physical horn dimensions and for different values of f/D ratio. These data are used to find the best design under given restriction of reflector size and blockage.

  5. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  6. The Pt2 (1,0) band of System VI in the near infrared by intracavity laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; O'Brien, James J.

    2011-05-01

    Intracavity laser absorption spectroscopy has been used to record rotationally resolved electronic spectra of Pt2 in the near infrared. The metal dimers were created using a 50 mm-long, platinum-lined hollow cathode plasma discharge. The observed transition at 12 937 cm-1 is identified as the (1,0) band of System VI, with state symmetries Ω = 0 - X Ω = 0.

  7. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks.

    PubMed

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  8. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    NASA Astrophysics Data System (ADS)

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-06-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks.

  9. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  10. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu A.; Liger, V. V.; Mironenko, V. R.; Nadezhdinskii, A. I.; Ponurovskii, Ya Ya; Leonov, S. B.; Yarantsev, D. A.

    2015-04-01

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. A new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene - air mixture.

  11. Absolute Rovibrational Intensities of C-12O2-16 Absorption Bands in the 3090-3850/ CM Spectral Region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1998-01-01

    A multispectrum nonlinear least-squares fitting technique has been used to determine the absolute intensities for approximately 1500 spectral lines in 36 vibration - rotation bands Of C-12O2-16 between 3090 and 3850/ cm. A total of six absorption spectra of a high- purity (99.995% minimum) natural sample of carbon dioxide were used in the analysis. The spectral data (0.01/cm resolution) were recorded at room temperature and low pressure (1 to 10 Torr) using the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak. The absorption path lengths for these spectra varied between 24.86 and 385.76 m. The first experimental determination of the intensity of the theoretically predicted 2(nu)(sub 2, sup 2) + nu(sub 3) "forbidden" band has been made. The measured line intensities obtained for each band have been analyzed to determine the vibrational band intensity, S(sub nu), in /cm/( molecule/sq cm) at 296 K, square of the rotationless transition dipole moment |R|(exp 2) in Debye, as well as the nonrigid rotor coefficients. The results are compared to the values listed in the 1996 HITRAN database which are obtained using the direct numerical diagonalization (DND) technique as well as to other published values where available.

  12. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  13. Confinement effect of laser ablation plume in liquids probed by self-absorption of C{sub 2} Swan band emission

    SciTech Connect

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C{sub 2} molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C{sub 2} molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids.

  14. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band

    NASA Astrophysics Data System (ADS)

    AL-Jalali, Muhammad A.; Aljghami, Issam F.; Mahzia, Yahia M.

    2016-03-01

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG- 1) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  15. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. PMID:26709019

  16. The use of simultaneous confidence bands for comparison of single parameter fluorescent intensity data.

    PubMed

    Kim, Dongha; Donnenberg, Vera S; Wilson, John W; Donnenberg, Albert D

    2016-01-01

    Despite the utility of multiparameter flow cytometry for a wide variety of biological applications, comparing single parameter histograms of fluorescence intensity remains a mainstay of flow cytometric analysis. Even comparisons requiring multiparameter gating strategies often end with single parameter histograms as the final readout. When histograms overlap, analysis relies on comparison of mean or median fluorescence intensities, or determination of percent positive based on an arbitrary cutoff. Earlier attempts to address this problem utilized either simple channel-by-channel subtraction without statistical evaluation, or the Kolmogorov-Smirnov (KS) or Chi-square test statistics, both of which proved to be overly sensitive to small and biologically insignificant differences. Here we present a method for the comparison of two single-parameter histograms based on difference curves and their simultaneous confidence bands generated by bootstrapping raw channel data. Bootstrapping is a nonparametric statistical approach that can be used to generate confidence intervals without distributional assumptions about the data. We have constructed simultaneous confidence bands and show them to be superior to KS and Cox methods. The method constructs 95% confidence bands about the difference curves, provides a P value for the comparison and calculates the area under the difference curve (AUC) as an estimate of percent positive and the area under the confidence band (AUCSCB95), providing a lower estimate of the percent positive. To demonstrate the utility of this new approach we have examined single-color fluorescence intensity data taken from a cell surface proteomic survey of a lung cancer cell line (A549) and a published fluorescence intensity data from a rhodamine efflux assay of P-glycoprotein activity, comparing rhodamine 123 loading and efflux in CD4 and CD8 T-cell populations. SAS source code is provided as supplementary material. PMID:26407241

  17. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  18. Optical analysis of doped ZnO thin films using nonparabolic conduction-band parameters

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Jeong, J.-h.; Park, J. K.; Baik, Y. J.; Kim, I. H.; Seong, T.-Y.; Kim, W. M.

    2012-06-01

    The optical properties of impurity doped ZnO thin films were analyzed by taking into account the nonparabolicity in the conduction-band and the optically determined carrier concentration and mobility were correlated with those measured by Hall measurement. The Drude parameters obtained by applying a simple Drude model combined with the Lorentz oscillator model for the optical transmittance and reflectance spectrum were analyzed by using the carrier density dependent bare band effective mass determined by the first-order nonparabolicity approximation. The squared plasma energy multiplied by the carrier density dependent effective mass yielded fairly linear relationship with respect to the carrier concentration in wide carrier density range of 1019 - 1021 cm-3, verifying the applicability of the nonparabolicity parameter for various types of impurity doped ZnO thin films. The correlation between the optical and Hall analyses was examined by taking the ratios of optical to Hall measurements for carrier density, mobility, and resistivity by introducing a parameter, Rdl, which represents the ratio of the resistances to electron transport from the inside of the lattice and from the crystallographic defects. For both the carrier concentration and mobility, the ratios of optical to Hall measurements were shown to exhibit a monotonically decreasing function of Rdl, indicating that the parameter Rdl could be used as a yardstick in correlating the optically determined carrier density and mobility with those measured by Hall analysis.

  19. Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2ν3 band (5853-6201 cm-1)

    NASA Astrophysics Data System (ADS)

    Starikova, E.; Nikitin, A. V.; Rey, M.; Tashkun, S. A.; Mondelain, D.; Kassi, S.; Campargue, A.; Tyuterev, Vl. G.

    2016-07-01

    The absorption spectrum of the 13CH4 methane isotopologue has been recently recorded by Differential Absorption Spectroscopy (DAS) at 80 K in the 5853-6201 cm-1 spectral range. An empirical list of 3717 lines was constructed for this spectral range corresponding to the upper part of the Tetradecad dominated by the 2ν3 band near 5987 cm-1. In this work, we present rovibrational analyses of these spectra obtained via two theoretical approaches. Assignments of strong and medium lines were achieved with variational calculations using ab initio potential energy (PES) and dipole moment surfaces. For further analysis a non-empirical effective Hamiltonian (EH) of the methane polyads constructed by high-order Contact Transformations (CT) from an ab initio PES was employed. Initially predicted values of EH parameters were empirically optimized using 2898 assigned line positions fitted with an rms deviation of 5×10-3 cm-1. More than 1860 measured line intensities were modeled using the effective dipole transition moments approach with the rms deviation of about 10%. These new data were used for the simultaneous fit of the 13CH4 Hamiltonian parameters of the {Ground state/Dyad/Pentad/Octad/Tetradecad} system and the dipole moment parameters of the {Ground state-Tetradecad} system. Overall, 10 vibrational states and 28 vibration sublevels of the 13CH4 Tetradecad are determined. The comparison of their energy values with corresponding theoretical calculations is discussed.

  20. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  1. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  2. Influence of structural parameters on tunable photonic band gaps modulated by liquid crystals

    NASA Astrophysics Data System (ADS)

    Huang, Aiqin; Zheng, Jihong; Jiang, Yanmeng; Zhou, Zengjun; Tang, Pingyu; Zhuang, Songlin

    2011-10-01

    Tunable photonic crystals (PCs), which are infiltrated with nematic liquid crystals (LCs), tune photonic band gap (PBG) by rotating directors of LCs when applied with the external electrical field. Using the plane wave expansion method, we simulated the PBG structure of two-dimensional tunable PCs with a triangular lattice of circular column, square column and hexagon column, respectively. When PCs are composed of LCs and different substrate materials such as germanium (Ge) and silicon (Si), the influence of structural parameters including column shape and packing ration on PBG is discussed separately. Numerical simulations show that absolute PBG can't be found at any conditions, however large tuning range of polarized wave can be achieved by rotating directors of LCs. The simulation results provide theoretical guidance for the fabrication of field-sensitive polarizer with big tunable band range.

  3. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  4. Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios

    NASA Astrophysics Data System (ADS)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-05-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  5. Retrieval of aerosol parameters from the oxygen A band in the presence of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.

    2013-10-01

    We have investigated the precision of retrieved aerosol parameters for a generic aerosol retrieval algorithm over vegetated land using the O2 A band. Chlorophyll fluorescence is taken into account in the forward model. Fluorescence emissions are modeled as isotropic contributions to the upwelling radiance field at the surface and they are retrieved along with aerosol parameters. Precision is calculated by propagating measurement errors and a priori errors, including model parameter errors, using the forward model's derivatives. Measurement errors consist of noise and calibration errors. The model parameter errors considered are related to the single scattering albedo, surface pressure and temperature profile. We assume that measurement noise is dominated by shot noise; thus, results apply to grating spectrometers in particular. We describe precision for various atmospheric states, observation geometries and spectral resolutions of the instrument in a number of retrieval simulations. These precision levels can be compared with user requirements. A comparison of precision estimates with the literature and an analysis of the dependence on the a priori error in the fluorescence emission indicate that aerosol parameters can be retrieved in the presence of chlorophyll fluorescence: if fluorescence is present, fluorescence emissions should be included in the state vector to avoid biases in retrieved aerosol parameters.

  6. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  7. Band-Selective Measurements of Electron Dynamics in VO2 UsingFemtosecond Near-Edge X-Ray Absorption

    SciTech Connect

    Cavalleri, A.; Rini, M.; Chong, H.H.W.; Fourmaux, S.; Glover,T.E.; Heimann, P.A.; Kieffer, J.C.; Schoenlein, R.W.

    2005-07-20

    We report on the first demonstration of femtosecond x-rayabsorption spectroscopy, made uniquely possible by the use of broadlytunable bending-magnet radiation from "laser-sliced" electron buncheswithin a synchrotron storage ri ng. We measure the femtosecond electronicrearrangements that occur during the photoinduced insulator-metal phasetransition in VO2. Symmetry- and element-specific x-ray absorption fromV2p and O1s core levels (near 500 eV) separately measures the fillingdynamics of differently hybridized V3d-O2p electronic bands near theFermi level.

  8. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  9. Band Structure of the Rhodobacter sphaeroides Photosynthetic Reaction Center from Low-Temperature Absorption and Hole-Burned Spectra.

    PubMed

    Rancova, Olga; Jankowiak, Ryszard; Kell, Adam; Jassas, Mahboobe; Abramavicius, Darius

    2016-06-30

    Persistent/transient spectral hole burning (HB) and computer simulations are used to provide new insight into the excitonic structure and excitation energy transfer of the widely studied bacterial reaction center (bRC) of Rhodobacter (Rb.) sphaeroides. We focus on site energies of its cofactors and electrochromic shifts induced in the chemically oxidized (P(+)) and charge-separated (P(+)QM(-)) states. Theoretical models lead to two alternative interpretations of the H-band. On the basis of our experimental and simulation data, we suggest that the bleach near 813-825 nm in transient HB spectra in the P(+)QM(-) state, often assigned to the upper exciton component of the special pair, is mostly due to different electrochromic shifts of the BL/M cofactors. From the exciton compositions in the charge-neutral (CN) bRC, the weak fourth excitonic band near 780 nm can be denoted PY+, that is, the upper excitonic band of the special pair, which in the CN bRC behaves as a delocalized state over PM and PL pigments that weakly mixes with accessory BChls. Thus, the shoulder in the absorption of Rb. sphaeroides near 813-815 nm does not contain the PY+ exciton band. PMID:27266271

  10. Variability Analysis of the Mechanical Parameters in order to Determine the Forming Limit Band

    NASA Astrophysics Data System (ADS)

    Paraianu, Liana; Bichis, Ioana; Banabic, Dorel

    2011-05-01

    The variability of the so called noise factors greatly influences the results of any forming process (deep-drawing, stretching, etc.). By taking into account this variability, the number of the rejected parts and the manufacturing costs will decrease. The aim of this work is to evaluate the variability of the mechanical parameters of a DC04 steel sheet (0.85 mm thickness). The experimental data needed for evaluating the variability of the mechanical parameters has been obtained from uniaxial tensile tests. A total number of 113 experiments have been made using samples cut at 0°, 45° and 90° with respect to the rolling direction. In this way, the yield stress and the plastic anisotropy coefficient have been determined for each of the orientations mentioned above. The power hardening law offers the possibility to study the variability of the following parameters: yield stress, strength coefficient and strain-hardening exponent. Based on the dispersion of the stress-strain curves, the mechanical coefficients of the Swift hardening law have been determined using a new method. The input parameters exhibiting the most important influence on the scattering of the forming limit diagram have been also established. Finally, in order to determine the Forming Limit Band (FLB), a Monte-Carlo analysis (MCA) has been performed using values and correlations between the mechanical parameters.

  11. Spectral line parameters for the O2 Herzberg I band system

    NASA Astrophysics Data System (ADS)

    Cann, M. W. P.; Nicholls, R. W.

    1991-09-01

    Spectral line parameters required for line-by-line spectral synthesis have been calculated for the weak Herzberg I band system of O2. The line locations were calculated with constants from Borrell et al. (1986) and agree closely with these authors' measured wave numbers. Line strengths were calculated using formulas given by Lewis and Gibson (1990), but empirically modified to concur with the relative strengths measured by Herzberg (1952), the only ones found in the literature. Line strengths and line widths are both very uncertain and need to be revised as more information becomes available. Line parameters were calculated for transitions from the nu-double prime = 0, 1, and 2 vibrational levels.

  12. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  13. On-Wafer S-Parameter Measurements in the 325-508-GHz Band

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samonska, Lorene A.; Pukala, David M.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Lawrence, Charles; Boll, Greg; Mei, Xiaobing

    2011-01-01

    New circuits have been designed and fabricated with operating frequencies over 325 GHz. In order to measure S-parameters of these circuits, an extensive process of wafer dicing and packaging, and waveguide transition design, fabrication, and packaging would be required. This is a costly and time-consuming process before the circuit can be tested in waveguide. The new probes and calibration procedures will simplify the testing process. New on-wafer probes, and a procedure for their calibration, have been developed that allow fast and inexpensive S-parameter characterization of circuits in the 325 -508 -GHz frequency band. The on-wafer probes transition from rectangular waveguide to coplanar waveguide probe tips with 40- m nominal signal-to-ground pin pitch so as to allow for probing circuits on a wafer. The probes with bias tees have been optimized for minimal insertion loss and maximum return loss when placed on 50-ohm structures to allow for calibration. The calibration process has been developed using the Thru-Reflect-Line Agilent algorithm with JPL determined calibration structures and calibration coefficients for the algorithm. This new test capability is presently unique to JPL. With it, researchers will be able to better develop circuits such as low-noise amplifiers, power amplifiers, multipliers, and mixers for heterodyne receivers in the 325-508-GHz frequency band for remote sensing/spectroscopy.

  14. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  15. High resolution absorption spectroscopy of the ν1=2-6 acetylenic overtone bands of propyne: Spectroscopy and dynamics

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Biennier, L.; Garnache, A.; Kachanov, A.; Romanini, D.; Herman, M.

    1999-11-01

    The rotationally resolved nν1 (n=2-6) overtone transitions of the CH acetylenic stretching of propyne (CH3-C≡C-H) have been recorded by using Fourier transform spectroscopy (n=2), various intracavity laser absorption spectrometers (n=3, 4, and 6) and cavity ring down spectroscopy (CRDS) (n=5). The 2ν1, 3ν1, and 6ν1 bands exhibit a well-resolved and mostly unperturbed J-rotational structure, whose analysis is reported. The 5ν1 band recorded by pulsed CRDS shows an unresolved rotational envelope. In the region of 12 700 cm-1, an anharmonic interaction is confirmed between 4ν1 and 3ν1+ν3+ν5. The band at a higher wave number in this dyad exhibits a partly resolved K-structure, whose analysis is reported. The mixing coefficient of the two interacting states is determined consistently using different procedures. The 1/35 anharmonic resonance evidenced in the 4ν1 manifold induces weaker intensity borrowing from the 2ν1 and 3ν1 levels to the ν1+ν3+ν5 and 2ν1+ν3+ν5 level, respectively, which have been predicted and identified. Several hot bands around the 2ν1, 3ν1, and 3ν1+ν3+ν5 bands arising from the ν9=1 and ν10=1 and 2 bending levels are identified and rotationally analyzed, also leading to determine x1,9 [-20.3(3) cm-1], x1,10 [-1.7975(75) cm-1], and x3,10 [-6.56 cm-1]. The J-clumps of the P and R branches in the 6ν1 band at 18 499 cm-1 show a Lorentzian homogeneous profile mostly J-independent with an average full width at half maximum (FWHM) of 0.17 cm-1, attributed to arising from the intramolecular vibrational energy redistribution towards the bath of vibrational states. A detailed comparative examination of the fine structure in all investigated nν1 (n=2 to 7) overtone bands and the similar behavior of the cold and hot bands arising from ν10=1 definitively suggests that a highly specific low-order anharmonic coupling, still unidentified, dominates the hierarchy of interaction mechanisms connecting the nν1 levels to the background

  16. Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy.

    PubMed

    Koplow, J P; Kliner, D A; Goldberg, L

    1998-06-20

    A compact, lightweight, low-power-consumption source of tunable, narrow-bandwidth blue and UV radiation is described. In this source, a single-longitudinal-mode diode laser seeds a pulsed, GaAlAs tapered amplifier whose ~860-nm output is frequency quadrupled by two stages of single-pass frequency doubling. Performance of the laser system is characterized over a wide range of amplifier duty cycles (0.1-1.0), pulse durations (50 ns-1.0 mus), peak currents (absorption spectra of nitric oxide and sulfur dioxide near 215 nm; the SO(2) spectrum was found to have significantly more structure and higher peak absorption cross sections than previously reported. PMID:18273363

  17. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  18. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  19. Chemical effect on the K shell absorption parameters of some selected cerium compounds

    NASA Astrophysics Data System (ADS)

    Akman, F.; Kaçal, M. R.; Durak, R.

    2016-08-01

    In this study, the photoelectric cross section values of Ce, CeCl3.7H2O, Ce2(SO4)3, Ce(OH)4 and Ce2O3 samples were measured in the energy range from 31.82 keV up to 51.70 keV by adopting in narrow beam geometry. Using these photoelectric cross sections, the K shell photoelectric cross sections at the K-edge, the K shell absorption jump ratios and jump factors, the Davisson-Kirchner ratios and K shell oscillator strength values were estimated experimentally. The measured parameters were compared with the theoretical calculated values. It is observed that the K shell photoelectric cross section at the K-edge and K shell oscillator strength values of an element are affected by the chemical environment of material while the K shell absorption jump ratio, K shell absorption jump factor and Davisson-Kirchner ratio are not affected by the chemical environment of material for the present samples. To the best of our knowledge, the chemical effects on the Davisson-Kirchner ratio and K shell oscillator strength have not been discussed for any element by now.

  20. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    NASA Astrophysics Data System (ADS)

    Sudeep, P. M.; Vinayasree, S.; Mohanan, P.; Ajayan, P. M.; Narayanan, T. N.; Anantharaman, M. R.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methyl Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that -37 dB (at 3.2 GHz with 6.5 mm thickness) and -31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of -18 dB (at 8.4 GHz with 2.5 mm thickness) and -10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.

  1. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  2. Modeling of gas absorption cross sections by use of principal-component-analysis model parameters.

    PubMed

    Bak, Jimmy

    2002-05-20

    Monitoring the amount of gaseous species in the atmosphere and exhaust gases by remote infrared spectroscopic methods calls for the use of a compilation of spectral data, which can be used to match spectra measured in a practical application. Model spectra are based on time-consuming line-by-line calculations of absorption cross sections in databases by use of temperature as input combined with path length and partial and total pressure. It is demonstrated that principal component analysis (PCA) can be used to compress the spectrum of absorption cross sections, which depend strongly on temperature, into a reduced representation of score values and loading vectors. The temperature range from 300 to 1000 K is studied. This range is divided into two subranges (300-650 K and 650-1000K), and separate PCA models are constructed for each. The relationship between the scores and the temperature values is highly nonlinear. It is shown, however, that because the score-temperature relationships are smooth and continuous, they can be modeled by polynomials of varying degrees. The accuracy of the data compression method is validated with line-by-line-calculated absorption data of carbon monoxide and water vapor. Relative deviations between the absorption cross sections reconstructed from the PCA model parameters and the line-by-line-calculated values are found to be smaller than 0.15% for cross sections exceeding 1.27 x 10(-21) cm(-1) atm(-1) (CO) and 0.20% for cross sections exceeding 4.03 x 10(-21) cm(-1) atm(-1) (H2O). The computing time is reduced by a factor of 10(4). PMID:12027171

  3. Infrared, visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands

    SciTech Connect

    Zhang, J.H.; Ding, J.W.; Cao, J.X.; Zhang, Y.L.

    2011-03-15

    The formation energies, electronic structures and optical properties of TM:ZnS systems (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) are investigated by using the first principles method. It is found that the wurtzite and zinc-blende structures have about the same stability, and thus can coexist in the TM:ZnS system. From the wurtzite TM:ZnS, especially, a partially filled intermediate band (IB) is obtained at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}, while it is absent at TM=Mn{sup 2+} and Co{sup 2+}. The additional absorptions are obtained in infrared, visible and ultraviolet (UV) regions, due to the completely spin-polarized IB at Fermi level. The results are very helpful for both the designs and applications of TM:ZnS opto-electronics devices, such as solar-cell prototype. -- Graphical abstract: Absorption coefficients of w-TM{sub x}Zn{sub 1-x}S crystals (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) at x=0.028. The results may be helpful for the design and applications of TM:ZnS devices, especially for the new high efficiency solar-cell prototype, UV detector and UV LEDs. Display Omitted Research highlights: > It is found that the wurtzite and zinc-blende structures can coexist in TM:ZnS. > An intermediate band is obtained in TM:ZnS at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}. > The absorption coefficients are obtained in infrared, visible and ultraviolet regions.

  4. Simulation of carbon dioxide absorption by sodium hydroxide solution in a packed bed and studying the effect of operating parameters on absorption

    SciTech Connect

    Yazdanbakhsh, Farzad; Soltani Goharrizi, Ata'ollah; Hashemipour Rafsanjani, Hassan

    2007-07-01

    Available in abstract form only. Full text of publication follows: In this study. simulation of carbon dioxide absorption by Sodium Hydroxide solution in a packed bed has been investigated. At first, mass and energy balances were applied around a differential height of the bed. So, the governing equations were obtained. Surface renewal theory by Danckwerts was used to represent the mass transfer operation Finally, by changing the operating parameters like solvent temperature, inlet gas composition pressure and height of the bed, the effect of these parameters on the absorption and the composition of carbon dioxide in exit stream have been investigated. (authors)

  5. Characteristics of the energy bands and the spectroscopic parameters of Pr3+ ions in PrCl3 mixed methanol, iso-propanol and butanol solutions.

    PubMed

    Jana, Samar; Mitra, Subrata

    2011-12-01

    An investigation on the absorption spectra of the praseodymium chloride (PrCl(3)) in methanol, iso-propanol and butanol is carried out between 190 nm and 1100 nm. We have observed and assigned six energy bands of the 4f(2) electronic configuration of the Pr(3+) ion in the visible to near-infra-red and one due to 4f5d configuration in the ultraviolet region. The 4f5d band has been detected properly for low concentration of PrCl(3). We have also constructed a free-ion Hamiltonian and calculated the energy levels of the 4f(2) configuration theoretically. Hence, the best fit free-ion parameters are deduced. PMID:21840250

  6. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  7. Characterization of NH overtone and combination bands in the near-infrared absorption spectra of simple cyclic imides

    NASA Astrophysics Data System (ADS)

    McNeilly, Patrick J.; Andrea, Tariq A.; Krikorian, S. Edward

    1992-10-01

    Bands due to overtone and combination vibrational modes attributable to the imide grouping have been elucidated in the near-IR absorption spectra of small-ring cyclic imides, in which the grouping is in a cis, cis conformation. The spectra closely parallel the spectra of cis lactams except that two combination modes involving the carbonyl stretching fundamental, [ν(NH) + ν(CO)] and [2ν(C=O) + imide III], occur at higher wavenumbers in the imide spectra, reflecting the higher frequency at which this fundamental absorbs. This same factor results in a reversal in the wavenumber positions of the [2ν(CO) + imide III] and [ν(NH) + imide III] combination bands in the imide spectra relative to those in the lactam spectra. In addition, in-phase and out-of-phase vibrational coupling between the two carbonyl groups in the imides may compound the band due to the [ν(NH) + ν(CO)] combination mode. These three spectral characteristics serve to distinguish the imides from the lactams in the near-IR.

  8. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance

    NASA Astrophysics Data System (ADS)

    Judycka-Proma, U.; Bober, L.; Gajewicz, A.; Puzyn, T.; Błażejowski, J.

    2015-03-01

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH = 2.5 and pH = 7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds).

  9. Scaling features of polarimetric radar parameters retrieved from 3 disdrometers and an X-band radar

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Rainfall fields exhibit scaling features over wide range of spatio-temporal scales. The only device providing high resolution rainfall fields in space and time is radar which does not measure rainfall directly. Here we suggest to investigate scaling features of quantities directly observed with polarimetric radars such as the horizontal reflectivity (Zh) and specific differential phase (Kdp). Results will be interpreted in light of the commonly used power-law relations between these quantities and rainfall rate which interests hydro-meteorologist. DSD parameters such as the total drop concentration (Nt) and the mass-weighted diameter (Dm) will also be investigated Two types of data from devices installed in the vicinity of Ecole des Ponts ParisTech are used: (i) outputs from three optical disdrometers of two different types (Campbell Scientific PWS100 and OTT Parsivel2) from which radar parameters are computed with the help of a T-Matrix code, providing 30 s time steps series since September 2013; (ii) outputs of a dual polarization X band radar (METEOR 60DX) installed in December of 2014, providing fields with a resolution of 100 m in space and 2.5 min in time. Analyses are performed in the Universal Multifractal framework which has been extensively used to analyse and simulate geophysical fields extremely variable over wide ranges of scales. Only three parameters are used to characterize variability across scales: C1 the mean intermittency, alpha the multifractality index and H the non-conservative exponent. Event based analyses are carried out and it appears that the studied Kdp time series exhibit a unique scaling regime on the whole range of available scales (30s-2h) with UM parameters consistent with values reported in the literature for rainfall. The results are more contrasted for Zh whose scaling is worse. The scaling of DSD parameters series only holds down to few minutes. Finally these results are compared with the observations in space provide by the X-band

  10. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    SciTech Connect

    Sudeep, P. M.; Vinayasree, S.; Mohanan, P.; Ajayan, P. M.; Narayanan, T. N.; Anantharaman, M. R.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methyl Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.

  11. Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra; Borysow, Jacek I.

    1998-01-01

    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature

  12. A ROTATING INCONEL BAND TARGET FOR PION PRODUCTION AT A NEUTRINO FACTORY, USING STUDY II PARAMETERS.

    SciTech Connect

    KING,B.J.; SIMOS,N.P.; WEGGEL,R.V.; MOKHOV,N.V.

    2001-05-04

    A conceptual design is presented for a high power pion production target, based on a rotating band of inconel alloy 718, that is intended to provide a back-up targetry option for the Neutrino Factory Study II. The target band has a 2.5 m radius and has an I-beam cross section that is 6 cm high and with a 0.6 cm thick webbing. The pion capture scenario and proton beam parameters are as specified for the Study II base-line targetry option, i.e. capture into a 20 Tesla tapered solenoidal channel with proton beam fills at 2.5 Hz containing 6 short bunches, each spaced by 20 milliseconds, of 1.67 x 10{sup 13} 24 GeV protons. The target is continuously rotated at 1 m/s to Carey heat away from the production region and through a water cooling tank. The mechanical layout and cooling setup are described and results are presented from realistic MARS Monte Carlo computer simulations of the pion yield and energy deposition in the target and from ANSYS finite element calculations for the corresponding shock heating stresses.

  13. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials

    NASA Astrophysics Data System (ADS)

    Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A.

    2014-12-01

    In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic field is used as a cancer treatment. The heating ability of the particles is quantified by the specific absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements difficult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.

  14. Estimation of accuracy of earth-rotation parameters in different frequency bands

    NASA Astrophysics Data System (ADS)

    Vondrak, J.

    1986-11-01

    The accuracies of earth-rotation parameters as determined by five different observational techniques now available (i.e., optical astrometry /OA/, Doppler tracking of satellites /DTS/, satellite laser ranging /SLR/, very long-base interferometry /VLBI/ and lunar laser ranging /LLR/) are estimated. The differences between the individual techniques in all possible combinations, separated by appropriate filters into three frequency bands, were used to estimate the accuracies of the techniques for periods from 0 to 200 days, from 200 to 1000 days and longer than 1000 days. It is shown that for polar motion the most accurate results are obtained with VLBI anad SLR, especially in the short-period region; OA and DTS are less accurate, but with longer periods the differences in accuracy are less pronounced. The accuracies of UTI-UTC as determined by OA, VLBI and LLR are practically equivalent, the differences being less than 40 percent.

  15. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  16. AN EMPIRICAL CALIBRATION TO ESTIMATE COOL DWARF FUNDAMENTAL PARAMETERS FROM H-BAND SPECTRA

    SciTech Connect

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan; Mann, Andrew W.

    2015-02-20

    Interferometric radius measurements provide a direct probe of the fundamental parameters of M dwarfs. However, interferometry is within reach for only a limited sample of nearby, bright stars. We use interferometrically measured radii, bolometric luminosities, and effective temperatures to develop new empirical calibrations based on low-resolution, near-infrared spectra. We find that H-band Mg and Al spectral features are good tracers of stellar properties, and derive functions that relate effective temperature, radius, and log luminosity to these features. The standard deviations in the residuals of our best fits are, respectively, 73 K, 0.027 R {sub ☉}, and 0.049 dex (an 11% error on luminosity). Our calibrations are valid from mid K to mid M dwarf stars, roughly corresponding to temperatures between 3100 and 4800 K. We apply our H-band relationships to M dwarfs targeted by the MEarth transiting planet survey and to the cool Kepler Objects of Interest (KOIs). We present spectral measurements and estimated stellar parameters for these stars. Parallaxes are also available for many of the MEarth targets, allowing us to independently validate our calibrations by demonstrating a clear relationship between our inferred parameters and the stars' absolute K magnitudes. We identify objects with magnitudes that are too bright for their inferred luminosities as candidate multiple systems. We also use our estimated luminosities to address the applicability of near-infrared metallicity calibrations to mid and late M dwarfs. The temperatures we infer for the KOIs agree remarkably well with those from the literature; however, our stellar radii are systematically larger than those presented in previous works that derive radii from model isochrones. This results in a mean planet radius that is 15% larger than one would infer using the stellar properties from recent catalogs. Our results confirm the derived parameters from previous in-depth studies of KOIs 961 (Kepler-42

  17. Jupiter's atmospheric composition and cloud structure deduced from absorption bands in reflected sunlight

    NASA Technical Reports Server (NTRS)

    Sato, M.; Hansen, J. E.

    1979-01-01

    The spectrum of sunlight reflected by Jupiter is analyzed by comparing observations of Woodman (1979) with multiple-scattering computations. The analysis yields information on the vertical cloud structure at several latitudes and on the abundance of CH4 and NH3 in the atmosphere of Jupiter. The abundances of CH4 and NH3 suggest that all ices and rocks are overabundant on Jupiter by a factor of 2 or more, providing an important constraint on models for the formation of Jupiter from the primitive solar nebula. The pressure level of the clouds, the gaseous NH3 abundance, the mean temperature profile, and the Clausius-Clapeyron relation suggest that these clouds are predominantly ammonia crystals with the cloud bottom at 600-700 mb. A diffuse distribution of aerosols exists between 150 and 500 mb, and the spectral variation of albedo reflects a changing bulk absorption coefficient of the material composing the aerosols and is diagnostic of the aerosol composition.

  18. Transient magneto-photoinduced absorption study of singlet fission in low band gap copolymers

    NASA Astrophysics Data System (ADS)

    Huynh, Uyen; Vardeny, Z. Valy

    2015-03-01

    We have observed the existence of singlet fission in thin films of low band gap (LBG) copolymers, PDTP-DFBT and PTB7, using the ultrafast optical pump/probe spectroscopy, probed at the energy range from IR to MIR. The singlet fission is the dissociation of a singlet exciton into two triplets through an intermediate triplet pair state (TT pair) in an overall singlet configuration; in the studied copolymers, it was observed to be very fast, in femtosecond time domain. The intermediate TT state, which dissociates into two separated triplets at later time, or recombines to the ground state appears instantaneously with the singlet exciton formation using our laser system that has ~ 150 fs time resolution. The interplay between the rate of singlet fission into sTT pairs, triplet fusion back to singlet excitons and relaxation between the TT spin sublevels explains the obtained opposite pattern of the transient magnetic field response on the dynamics of singlet excitons and TT pairs.

  19. Rovibrational Intensities of the (00 03) ← (10 00) Dyad Absorption Bands of 12C 16O 2

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Rohidas J.; Giver, Lawrence P.; Chackerian, Charles

    2000-02-01

    Absolute line intensities of 12C16O2 are experimentally measured for the first time for the (0003)I ← (1000)II band at 5687.17 cm-1 and the (0003)I ← (1000)I band at 5584.39 cm-1. The spectra were obtained using a Bomem DA8 Fourier transform spectrometer and a 25-m base-path White cell at NASA-Ames Research Center. The rotationless bandstrengths at a temperature of 296 K and the Herman-Wallis parameters are S0vib = 6.68(30) × 10-25 cm-1/(molecule/cm2); A1 = 1.4(9) × 10-4, and A2 = -1.1(5) × 10-5 for the (0003)I ← (1000)II band and S0vib = 6.07(22) × 10-25 cm-1/(molecule/cm2); A1 = 5.2(1.5) × 10-4 and A2 = -4.0(7) × 10-5 for the (0003)I ← (1000)I band.

  20. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    SciTech Connect

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B; Kochubey, V I; Gorokhovsky, A V; Tretyachenko, E V; Kunitsky, A I

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with the theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)

  1. Preparation of Ni-B Coating on Carbonyl Iron and Its Microwave Absorption Properties in the X Band

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhou, Wan-Cheng; Qing, Yu-Chang

    2014-09-01

    Ni-B coated carbonyl iron particles (CI@Ni-B) are prepared by the electroless plating technique. The structure, morphology, and antioxidant properties of the CI@Ni-B particles are analyzed. The results demonstrate that the CI particles have been coated with intact spherical-shell Ni-B coating, indicating the core-shell structure of CI@Ni-B particles, and the Ni-B coating can prevent the further oxidation of the CI particles. Compared with the raw CI particles/paraffin coatings with the same coating thickness of 2.0 mm and particles content of 70%, the CI@Ni-B particles/paraffin coatings possess higher microwave absorption (the RL exceeding -10 dB is obtained in the whole X band (8.2-12.4 GHz) with minimal RL of -35.0 dB at 9.2 GHz).

  2. Absorption and spectra of optical parameters in amorphous solid solutions of the Se-S system

    SciTech Connect

    Djalilov, N. Z.; Damirov, G. M.

    2011-04-15

    A study of the optical properties of the Se-S system has revealed a correlation between the dependences of optical absorption coefficient {alpha}, effective concentration of charged defects N{sub t}, and characteristic energy E{sub 0} corresponding to the Urbach optical absorption in the spectral region where the Urbach rule works for the Se-S system on the S concentration. These optical properties are controlled by charged defects. It is shown that concentrations of intrinsic charged defects can be changed by variation in composition of the Se-S system. Reflectance spectra of amorphous solid solutions of the Se-S system are studied within the energy range 1-6 eV. Using the Kramers-Kronig method, spectral dependences of optical constants and derivative optical and dielectric functions are calculated. Variation in the spectra of optical parameters with composition of the Se-S system are explained within a cluster model in which the density of electron states is a function of atomic configurations in clusters, i.e., of the character of a short-range order.

  3. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles

    PubMed Central

    2011-01-01

    The suitability of magnetic nanoparticles (MNPs) to act as heat nano-sources by application of an alternating magnetic field has recently been studied due to their promising applications in biomedicine. The understanding of the magnetic relaxation mechanism in biocompatible nanoparticle systems is crucial in order to optimize the magnetic properties and maximize the specific absorption rate (SAR). With this aim, the SAR of magnetic dispersions containing superparamagnetic magnetite nanoparticles bio-coated with polyacrylic acid of an average particle size of ≈10 nm has been evaluated separately by changing colloidal parameters such as the MNP concentration and the viscosity of the solvent. A remarkable decrease of the SAR values with increasing particle concentration and solvent viscosity was found. These behaviours have been discussed on the basis of the magnetic relaxation mechanisms involved. PACS: 80; 87; 87.85jf PMID:21711915

  4. Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Kehayias, P.; Doherty, M. W.; English, D.; Fischer, R.; Jarmola, A.; Jensen, K.; Leefer, N.; Hemmer, P.; Manson, N. B.; Budker, D.

    2013-10-01

    Negatively charged nitrogen-vacancy (NV-) color centers in diamond have generated much interest for use in quantum technology. Despite the progress made in developing their applications, many questions about the basic properties of NV- centers remain unresolved. Understanding these properties can validate theoretical models of NV-, improve their use in applications, and support their development into competitive quantum devices. In particular, knowledge of the phonon modes of the 1A1 electronic state is key for understanding the optical pumping process. Using pump-probe spectroscopy, we measured the phonon sideband of the 1E→1A1 electronic transition in the NV- center. From this we calculated the 1E→1A1 one-phonon absorption spectrum and found it to differ from that of the 3E→3A2 transition, a result which is not anticipated by previous group-theoretical models of the NV- electronic states. We identified a high-energy 169-meV localized phonon mode of the 1A1 level.

  5. Intervalence-Band Absorption Saturation And Optically Induced Damage Of GaAs By Pulsed CO2 Laser Radiation

    NASA Astrophysics Data System (ADS)

    James, R. B.; Christie, W. H.; Eby, R. E.; Darken, L. S.; Mills, B. E.

    1985-11-01

    The absorption of CO2, laser radiation in p-type GaAs is dominated by direct free-hole transitions between states in the heavy- and light-hole bands. For laser intensities on the order of 10 MW/cm2, the absorption associated with these transitions in moderately Zn-doped GaAs begins to saturate in a manner predicted by an inhomogeneously broadened two-level model. For heavily Zn-doped samples (>1018 cm -3), large areas of the surface are found to melt at comparable laser energy densities, in contrast to the lightly doped samples in which the damage initially occurs in small localized sites. As the energy density of the CO2 laser radiation is progressively increased, the surface topography of the samples shows signs of ripple patterns, high local stress, vaporization of material, and exfoliation of solid GaAs fragments. X-ray emission data taken on the laser-melted samples show that there is a loss of As, compared to Ga, from the surface during the high temperature cycling. Secondary ion mass spectrometry (SIMS) measurements are used to study the diffusion of oxygen from the native oxide and the incorporation of trapped oxygen in the near-surface region of the GaAs samples that have been melted by a CO2 laser pulse. We find that oxygen trapping does occur, and that the amount and depth of the oxygen signal depends on the laser energy density and number of laser shots.

  6. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  7. Nonlinear polarization spectroscopy in the frequency domain of light-harvesting complex II: absorption band substructure and exciton dynamics.

    PubMed Central

    Lokstein, H; Leupold, D; Voigt, B; Nowak, F; Ehlert, J; Hoffmann, P; Garab, G

    1995-01-01

    Spectral substructure and ultrafast excitation dynamics have been investigated in the chlorophyll (Chl) a and b Qy region of isolated plant light-harvesting complex II (LHC II). We demonstrate the feasibility of Nonlinear Polarization Spectroscopy in the frequency domain, a novel photosynthesis research laser spectroscopic technique, to determine not only ultrafast population relaxation (T1) and dephasing (T2) times, but also to reveal the complex spectral substructure in the Qy band as well as the mode(s) of absorption band broadening at room temperature (RT). The study gives further direct evidence for the existence of up to now hypothetical "Chl forms". Of particular interest is the differentiated participation of the Chl forms in energy transfer in trimeric and aggregated LHC II. Limits for T2 are given in the range of a few ten fs. Inhomogeneous broadening does not exceed the homogeneous widths of the subbands at RT. The implications of the results for the energy transfer mechanisms in the antenna are discussed. PMID:8534824

  8. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  9. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aditi; Attar, Andrew R.; Leone, Stephen R.

    2016-03-01

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground (2P3/2, I) and spin-orbit excited (2P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ∗C—I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ∗ states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ∗(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for

  10. Absolute integrated intensity and individual line parameters for the 6.2-micron band of NO2. [in solar spectrum

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Bonomo, F. S.; Williams, W. J.; Murcray, D. G.; Snider, D. E.

    1975-01-01

    The absolute integrated intensity of the 6.2-micron band of NO2 at 40 C was determined from quantitative spectra at about 10 per cm resolution by the spectral band model technique. A value of 1430 plus or minus 300 per sq cm per atm was obtained. Individual line parameters, positions, intensities, and ground-state energies were derived, and line-by-line calculations were compared with the band model results and with the quantitative spectra obtained at about 0.5 per cm resolution.

  11. Hybrid functional calculations on the band gap bowing parameters of In x Ga1‑x N

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Yixu, Xu; Jianhua, Zhang; Shunqing, Wu; Zizhong, Zhu

    2016-04-01

    The electronic band structures and band gap bowing parameters of In x Ga1‑x N are studied by the first-principles method based on the density functional theory. Calculations by employing both the Heyd-Scuseria-Ernzerh of hybrid functional (HSE06) and the Perdew-Burke-Ernzerhof (PBE) one are performed. We found that the theoretical band gap bowing parameter is dependent significantly on the calculation method, especially on the exchange-correlation functional employed in the DFT calculations. The band gap of In x Ga1‑x N alloy decreases considerably when the In constituent x increases. It is the interactions of s–s and p–p orbitals between anions and cations that play significant roles in formatting the band gaps bowing. In general, the HSE06 hybrid functional could provide a good alternative to the PBE functional in calculating the band gap bowing parameters. Project supported by the National Natural Science Foundation of China (Nos. 11204257, 21233004) and the China Postdoctoral Science Foundation (No. 2012M511447).

  12. Anisotropic light absorption, refractive indices, and orientational order parameter of unidirectionally aligned columnar liquid crystal films.

    PubMed

    Charlet, Emilie; Grelet, Eric

    2008-10-01

    The anisotropic optical properties of thermotropic columnar liquid crystals absorbing in the visible range are investigated for different discotic compounds unidirectionally oriented in open supported thin films. Two methods to monitor the alignment of columnar mesophases in thin films are reported, making possible to achieve either homeotropic anchoring (columns normal to the substrate) by a specific thermal annealing, or unidirectional planar orientation (columns parallel to the substrate) by using a rubbed Teflon coating. The columnar liquid crystal anchoring is found to depend on the nature of the compound, either parallel or perpendicular to the Teflon orientation. Based on this control of the mesophase alignment, the dichroic ratio and the orientational order parameter of oriented samples are measured, and a high order parameter of 0.9 is found in the case of parallel alignment. From the polarized absorption data of the columnar liquid crystal films, the light wavelength dependence of the birefringence and of the real and imaginary parts (refractive index and extinction coefficient, respectively) of the anisotropic optical indices are determined over the whole visible range. PMID:18999445

  13. CMOS color image sensor with overlaid organic photoconductive layers having narrow absorption band

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi; Komatsu, Takashi; Saito, Takahiro

    2007-02-01

    At EI2006, we proposed the CMOS image sensor, which was overlaid with organic photoconductive layers in order to incorporate in it large light-capturing ability of a color film owing to its multiple-layer structure, and demonstrated the pictures taken by the trial product of the proposed CMOS image sensor overlaid with an organic layer having green sensitivity. In this study, we have tried to get the optimized spectral sensitivity for the proposed CMOS image sensor by means of the simulation to minimize the color difference between the original Macbeth chart and its reproduction with the spectral sensitivity of the sensor as a parameter. As a result, it has been confirmed that the proposed CMOS image sensor with multiple-layer structure possesses high potential capability in terms of imagecapturing efficiency when it is provided with the optimized spectral sensitivity.

  14. Phytoplankton absorption, photosynthetic parameters, and primary production off Baja California: summer and autumn 1998

    NASA Astrophysics Data System (ADS)

    Aguirre-Hernández, Elsa; Gaxiola-Castro, Gilberto; Nájera-Martínez, Sila; Baumgartner, Timothy; Kahru, Mati; Greg Mitchell, B.

    2004-03-01

    To estimate ocean primary production at large space and time scales, it is necessary to use models combined with ocean-color satellite data. Detailed estimates of primary production are typically done at only a few representative stations. To get survey-scale estimates of primary production, one must introduce routinely measured Chlorophyll-a (Chl-a) into models. For best precision, models should be based on accurate parameterizations developed from optical and photosynthesis data collected in the region of interest. To develop regional model parameterizations 14C-bicarbonate was used to estimate in situ primary production and photosynthetic parameters (α* ,Pm* , and Ek) derived from photosynthesis-irradiance (P-E) experiments from IMECOCAL cruises to the southern California Current during July and October 1998. The P-E experiments were done for samples collected from the 50% surface light depth for which we also determined particle and phytoplankton absorption coefficients (ap, aφ, and aφ*). Physical data collected during both surveys indicated that the 1997-1998 El Niño was abating during the summer of 1998, with a subsequent transition to the typical California Current circulation and coastal upwelling conditions. Phytoplankton chl-a and in situ primary production were elevated at coastal stations for both surveys, with the highest values during summer. Phytoplankton specific absorption coefficients in the blue peak (aφ* (440)) ranged from 0.02 to 0.11 m2 (mg Chl-a)-1 with largest values in offshore surface waters. In general aφ* was lower at depth compared to the surface. P-E samples were collected at the 50% light level that was usually in the surface mixed layer. Using α* and spectral absorption, we estimated maximum photosynthetic quantum yields (φmax; mol C/mol quanta). φmax values were lowest in offshore surface waters, with a total range of 0.01-0.07. Mean values of φmax for July and October were 0.011 and 0.022, respectively. In July Pm* was

  15. Self- and CO2-broadened line shape parameters for infrared bands of HDO

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Sung, Keeyoon; Mantz, Arlan W.; Gamache, Robert R.; Villanueva, Geronimo L.

    2015-11-01

    Knowledge of CO2-broadened HDO line widths and their temperature dependence is required to interpret infrared spectra of the atmospheres of Mars and Venus. However, this information is currently absent in most spectroscopic databases. We have analyzed nine high-resolution, high signal-to-noise spectra of HDO and HDO+CO2 mixtures to obtain broadening coefficients and other line shape parameters for transitions of the ν2 and ν3 vibrational bands located at 7.13 and 2.70 μm, respectively. The gas samples were prepared by mixing equal amounts of high-purity distilled H2O and 99% enriched D2O. The spectra were recorded at different temperatures (255-296 K) using a 20.38 cm long coolable cell [1] installed in the sample compartment of the Bruker IFS125HR Fourier transform spectrometer at the Jet Propulsion Laboratory in Pasadena, CA. The retrieved HDO spectroscopic parameters include line positions, intensities, self- and CO2-broadened half-width and pressure-induced shift coefficients and the temperature dependences for CO2 broadening. These spectroscopic parameters were obtained by simultaneous multispectrum fitting [2] of the same interval in all nine spectra. A non-Voigt line shape with speed dependence was applied. Line mixing was also observed for several transition pairs. Preliminary results compare well with the few other measurements reported in the literature.[1] K. Sung et al., J. Mol. Spectrosc. 162, 124-134 (2010).[2] D. C. Benner et al., J. Quant. Spectrosc. Radiat Transfer 53, 705-721 (1995).The research performed at the College of William and Mary was supported by NASA’s Mars Fundamental Research Program (Grant NNX13AG66G). The research at Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, Langley Research Center, and Goddard Space Flight Center was conducted under contracts and cooperative agreements with the National Aeronautics and Space Administration. RRG is pleased to acknowledge support of this study by the

  16. Modeled and Empirical Approaches for Retrieving Columnar Water Vapor from Solar Transmittance Measurements in the 0.72, 0.82, and 0.94 Micrometer Absorption Bands

    NASA Technical Reports Server (NTRS)

    Ingold, T.; Schmid, B.; Maetzler, C.; Demoulin, P.; Kaempfer, N.

    2000-01-01

    A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996-1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18-29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4. and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the ITS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the sun photometers (SPM) with the ITS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.

  17. Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ.

    PubMed

    Sinko, P J; Amidon, G L

    1988-10-01

    The oral absorption of five cephalosporin antibiotics, cefaclor, cefadroxil, cefatrizine, cephalexin, and cephradine, has been studied using a single-pass intestinal perfusion technique in rats. Intrinsic membrane absorption parameters, "unbiased" by the presence of an aqueous permeability (diffusion or stagnant layer), have been calculated utilizing a boundary layer mathematical model. The resultant intrinsic membrane absorption parameters are consistent with a significant carrier-mediated, Michaelis-Menten-type kinetic mechanism and a small passive component in the jejunum. Cefaclor colon permeability is low and does not exhibit concentration dependent behavior. The measured carrier parameters (+/- SD) for the jejunal perfusions are as follows: cefaclor, J*max = 21.3 (+/- 4.0), Km = 16.1 (+/- 3.6), P*m = 0, and P*c = 1.32 (+/- 0.07); cefadroxil, J*max = 8.4 (+/- 0.8), Km = 5.9 (+/- 0.8), P*m = 0, and P*c = 1.43 (+/- 0.10); cephalexin, J*max = 9.1 (+/- 1.2), Km = 7.2 (+/- 1.2), P*m = 0, and P*c = 1.30 (+/- 0.10); cefatrizine, J*max = 0.73 (+/- 0.19), Km = 0.58 (+/- 0.17), P*m = 0.17 (+/- 0.03), and P*c = 1.25 (+/- 0.10); and cephradine, J*max = 1.57 (+/- 0.84), Km = 1.48 (+/- 0.75), P*m = 0.25 (+/- 0.07), and P*c = 1.06 (+/- 0.08). The colon absorption parameter for cefaclor is P*m = 0.36 (+/- 0.06, where J*max (mM) is the maximal flux, Km (mM) is the Michaelis constant, P*m is the passive membrane permeability, and P*c is the carrier permeability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3244617

  18. Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems

    NASA Astrophysics Data System (ADS)

    Van Cong, H.

    2016-04-01

    The effects of impurity size and heavy doping on energy-band-structure parameters of various donor (or acceptor)-Si systems were investigated. A satisfactory description was obtained for intrinsic properties such as: the effective dielectric constant, effective impurity ionization energy, effective intrinsic band gap, being doping-independent, and critical impurity density, Ncn(cp) GMM, which is derived from our simple generalized Mott model (GMM), as well as for extrinsic properties such as: the Fermi energy, reduced band gap, optical band gap, being doping-dependent, and critical impurity density, Ncn(cp) SSS, which is determined by our complicated spin-susceptibility-singularity (SSS) method. That gives: Ncn(cp) SSS ≡ Ncn(cp) GMM for all the studied donor (or acceptor)-Si systems.

  19. Mechanical and mineralogical modifications of petrophysical parameters by deformation bands in a hydrocarbon reservoir (Matzen, Austria)

    NASA Astrophysics Data System (ADS)

    Kaiser, Jasmin; Exner, Ulrike; Gier, Susanne; Hujer, Wolfgang

    2010-05-01

    In porous sedimentary rocks, fault zones are frequently accompanied by deformation bands. These structures are tabular zones of displacement, where grain rotation and in some cases grain fracturing result in a significant reduction in porosity. Core samples were analyzed close to large normal faults from the most productive hydrocarbon reservoir in the Vienna Basin (Austria), the Matzen oil field. The Badenian terrigeneous sandstones contain predominately quartz, feldspar and dolomite as sub-rounded, detrial grains and are weakly cemented by chlorite and kaolinite. Deformation bands occur as single bands of ca. 1-3 mm thickness and negligible displacement, as well as strands of several bands with up to 2 cm thickness and displacement of 1-2 cm. A dramatic porosity reduction can already be recognized macroscopically. In some samples, the corresponding reduction in permeability is highlighted by different degree of oil staining on either side of the bands. The mineralogical composition of the deformation bands compared to the host rock does not indicate any preferential cementation or diagenetic growth of clay minerals or calcite. Instead, clay minerals are slightly enriched in the host sediment. These observations suggest that the formation of deformation bands predates the cementation in the Matzen sands. Thus, we speculate that the porosity reduction is predominately caused by cataclastic grain size reduction. Identification of the grain scale processes of porosity and permeability reduction, in combination with the analysis of the spatial distribution and orientation of the deformation bands may provide valuable information on the reservoir properties and fluid migration paths.

  20. Self-, N2-, O2-broadening coefficients and line parameters of HFC-32 for ν7 band and ground state transitions from infrared and microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Turchetto, Arianna; Puzzarini, Cristina; Stoppa, Paolo; Pietropolli Charmet, Andrea; Giorgianni, Santi

    2014-09-01

    Hydrofluorocarbons have been used as replacement gases of chlorofluorocarbons, since the latter have been phased out by the Montreal Protocol due to their environmental hazardous ozone-depleting effects. This is also the case of difluoromethane (CH2F2, HFC-32), which nowadays is widely used in refrigerant mixtures together with CF3CH3, CF3CH2F, and CF3CHF2. Due to its commercial use, in the last years, the atmospheric concentration of HFC-32 has increased significantly. However, this molecule presents strong absorptions within the 8-12 μm atmospheric window, and hence it is a greenhouse gas which contributes to global warming. Although over the years several experimental and theoretical investigations dealt with the spectroscopic properties of CH2F2, up to now pressure broadening coefficients have never been determined. In the present work, the line-by-line parameters of CH2F2 are retrieved for either ground state or ν7 band transitions by means of microwave (MW) and infrared (IR) absorption spectroscopy, respectively. In particular, laboratory experiments are carried out on 9 pure rotational transitions of the ground state and 26 ro-vibrational transitions belonging to the ν7 band lying around 8.2 μm within the atmospheric region. Measurements are carried out at room temperature on self-perturbed CH2F2 as well as on CH2F2 perturbed by N2 and O2. The line shape analysis leads to the first determination of self-, N2-, O2-, and air-broadening coefficients, and also of line intensities (IR). Upon comparison, broadening coefficients of ground state transitions are larger than those of the ν7 band, and no clear dependence on the rotational quantum numbers can be reported. The obtained results represent basic information for the atmospheric modelling of this compound as well as for remote sensing applications.

  1. Collision-Induced Absorption by H2 Pairs in the Second Overtone Band at 298 and 77.5 K: Comparison between Experimental and Theoretical Results

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; van-Thanh, Nguyen; Fu, Y.; Borysow, A.

    1999-01-01

    The collision-induced spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K and for gas densities ranging from 100 to 800 amagats. The spectral profile defined by the absorption coefficient per squared density varies significantly with the density, so that the binary absorption coefficient has been determined by extrapolations to zero density of the measured profiles. Our extrapolated measurements and our recent ab initio quantum calculation are in relatively good agreement with one another. Taking into account the very weak absorption of the second overtone band, the agreement is, however, not as good as it has become (our) standard for strong bands.

  2. Estimation of variability of specific absorption rate with physical description of children exposed to electromagnetic field in the VHF band.

    PubMed

    Nagaoka, T; Watanabe, S

    2009-01-01

    Recently, there has been an increasing concern regarding the effects of electromagnetic waves on the health of humans. The safety of radio frequency electromagnetic fields (RF-EMFs) is evaluated by the specific absorption rate (SAR). In recent years, SAR has been estimated by numerical simulation using fine-resolution and anatomically realistic reference whole-body voxel models of people of various ages. The variation in SAR with a change in the physical features of a real person is hardly studied, although every person has different physical features. In this study, in order to estimate the individual variability in SAR of persons, we obtained considerable 3D body shape data from actual three-year-old children and developed several homogeneous models of these children. The variability in SAR of the homogeneous models of three-year-old children for whole-body exposure to RF electromagnetic fields in the very high frequency (VHF) band calculated using the finite-difference time-domain method has been described. PMID:19964253

  3. Determination of molecular line parameters for acrolein (C 3H 4O) using infrared tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Harward, Charles N.; Thweatt, W. David; Baren, Randall E.; Parrish, Milton E.

    2006-04-01

    Acrolein (C 3H 4O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds. This work describes the procedure for estimating the molecular line parameters for these overlapping absorption lines in the wavenumber range (958.7-958.9 cm -1) using quantitative reference spectra taken with the infrared lead-salt TDLAS instrument at different pressures and concentrations. The nitrogen broadened half-width for acrolein is 0.0937 cm -1 atm -1 and to our knowledge, is the first time it has been reported in the literature.

  4. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  5. Air-Broadened Line Parameters for the 2←0 Bands of 13C16O and 12C18O at 2.3 μm

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-06-01

    Air-broadened line shape parameters were determined for the first time in the 2←0 bands of 13C16O near 4166.8 cm-1 and 12C18O near 4159.0 cm-1. Spectra were recorded at 0.005 cm-1 resolution using a coolable absorption cell in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Gas temperatures and pressures ranged from 150 to 298 K and 20 to 700 Torr, respectively. Line parameters were determined by broad-band multispectrum least-squares fitting of the 4000-4360 cm-1 region in 16 spectra simultaneously; each set included 4 isotope-enriched pure sample scans and 12 air+CO samples (13CO or C18O, as appropriate). The air-broadened parameters measured were Lorentz half-width coefficients, their temperature dependence exponents; pressure-induced shift coefficients, their temperature dependences; and off-diagonal relaxation matrix elements. Speed dependence parameters were included to minimize the fit residuals. For both isotopologues the individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients. The results for 13C16O and 12C18O are compared with those for the 12C16O 2←0 band and discussed. K. Sung, A. W. Mantz, M. A. H. Smith, et al., JMS 262 (2010) 122-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721. V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller and R. A. Toth, JMS 242 (2007) 90-117. V. Malathy Devi, D. C. Benner, M. A. H. Smith, et al., JQSRT (2012) in press. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  6. Modeling of collision-induced infrared absorption spectra of H2 pairs in the first overtone band at temperatures from 20 to 500 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    A simple formalism is presented that permits quick computations of the low-resolution, rotovibrational collision-induced absorption (RV CIA) spectra of H2 pairs in the first overtone band of hydrogen, at temperatures from 20 to 500 K. These spectra account for the free-free transitions. The sharp dimer features, originating from the bound-free, free-bound, and bound-bound transitions are ignored, though their integrated intensities are properly accounted for. The method employs spectral model line- shapes with parameters computed from the three lowest spectral moments. The moments are obtained from first principles expressed as analytical functions of temperature. Except for the sharp dimer features, which are absent in this model, the computed spectra reproduce closely the results of exact quantum mechanical lineshape computations. Comparisons of the computed spectra with existing experimental data also show good agreement. The work interest for the modeling of the atmospheres of the outer planets in the near-infrared region of the spectrum. The user-friendly Fortran program developed here is available on request from the authors.

  7. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO{sub 2} (a‐SiO{sub 2}) exposed to {sup 60}Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a‐SiO{sub 2}, and the peak energy is larger for α-quartz than that for a‐SiO{sub 2}. The full width at half maximum for a‐SiO{sub 2} is larger by ∼40-60% than that for α-quartz, and it increases with an increase in the disorder of the a‐SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a‐SiO{sub 2}.

  8. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds. PMID:11487809

  9. Influence of Structural Parameters on a Novel Metamaterial Absorber Structure at K-band Frequency

    NASA Astrophysics Data System (ADS)

    Cuong, Tran Manh; Thuy, Nguyen Thi; Tuan, Le Anh

    2016-05-01

    Metamaterials nowadays continue to gain attention thanks to their special electromagnetic characteristics. An increasing number of studies are being conducted on the absolute electromagnetic absorber configurations of high impedance surface materials at a certain frequency band. These configurations are usually fabricated with a layer of metal structure based on a dielectric sheet. In this study, we present an optimal design of a novel electromagnetic absorber metamaterial configuration working at a 23-GHz frequency range (K band).

  10. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  11. New determination of abundances and stellar parameters for a set of weak G-band stars

    NASA Astrophysics Data System (ADS)

    Palacios, A.; Jasniewicz, G.; Masseron, T.; Thévenin, F.; Itam-Pasquet, J.; Parthasarathy, M.

    2016-03-01

    Context. Weak G-band (wGb) stars are a very peculiar class of red giants; they are almost devoided of carbon and often present mild lithium enrichment. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, which prevented any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for a sample of 28 wGb stars and were able to identify them as descendants of early A-type to late B-type stars, although we were not able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. Aims: Using new high-resolution spectra, we present the study of a new sample of wGb stars with the aim of homogeneously deriving their fundamental parameters and surface abundances for a selected set of chemical species that we use to improve our insight on this peculiar class of objects. Methods: We obtained high-resolution and high signal-to-noise spectra for 19 wGb stars in the southern and northern hemisphere that we used to perform consistent spectral synthesis to derive their fundamental parameters and metallicities, as well as the spectroscopic abundances for Li, C, 12C/13C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. Results: We confirm that the wGb stars are stars with initial masses in the range 3.2 to 4.2 M⊙. We suggest that a large fraction could be mildly evolved stars on the subgiant branch currently undergoing the first dredge-up, while a smaller number of stars are more probably in the core He burning phase at the clump. After analysing their abundance pattern, we confirm their strong nitrogen enrichment anti-correlated with large carbon depletion, characteristic of material fully processed through the CNO cycle to an extent not known in evolved intermediate-mass stars

  12. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  13. Posterior uncertainty of GEOS-5 L-band radiative transfer model parameters and brightness temperatures after calibration with SMOS observations

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J.; Reichle, R. H.; Vrugt, J. A.

    2012-12-01

    Simulated L-band (1.4 GHz) brightness temperatures are very sensitive to the values of the parameters in the radiative transfer model (RTM). We assess the optimum RTM parameter values and their (posterior) uncertainty in the Goddard Earth Observing System (GEOS-5) land surface model using observations of multi-angular brightness temperature over North America from the Soil Moisture Ocean Salinity (SMOS) mission. Two different parameter estimation methods are being compared: (i) a particle swarm optimization (PSO) approach, and (ii) an MCMC simulation procedure using the differential evolution adaptive Metropolis (DREAM) algorithm. Our results demonstrate that both methods provide similar "optimal" parameter values. Yet, DREAM exhibits better convergence properties, resulting in a reduced spread of the posterior ensemble. The posterior parameter distributions derived with both methods are used for predictive uncertainty estimation of brightness temperature. This presentation will highlight our model-data synthesis framework and summarize our initial findings.

  14. Radiative analysis of global mean temperature trends in the middle atmosphere: Effects of non-locality and secondary absorption bands

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.

    2016-02-01

    In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.

  15. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  16. Uncovering the mechanism for selective control of the visible and near-IR absorption bands in bacteriochlorophylls a, b and g

    PubMed Central

    Fujisawa, Jun-ichi; Nagata, Morio

    2014-01-01

    Bacteriochlorophylls (BChls) play an important role as light harvesters in photosynthetic bacteria. Interestingly, bacteriochlorophylls (BChls) a, b, and g selectively tune their visible (Qx) and near IR (Qy) absorption bands by the substituent changes. In this paper, we theoretically study the mechanism for the selective control of the absorption bands. Density functional theory (DFT) and time-dependent DFT (TD-DFT) and four-orbital model analyses reveal that the selective red-shift of the Qy band with the substituent change from BChl a to b occurs with the lower-energy shift of the (HOMO, LUMO) excited state directly induced by the molecular-orbital energy changes. In contrast, the Qx band hardly shifts by the cancellation between the higher- and lower-energy shifts of the (HOMO-1, LUMO) excited state directly induced by the molecular-orbital energy changes and configuration interaction, respectively. On the other hand, with the substituent changes from BChl a to g, the Qx band selectively blue-shifts by the larger higher-energy shift of the (HOMO-1, LUMO) excited state directly induced by the molecular-orbital energy shifts than the lower-energy shift due to the configuration interaction. In contrast, the Qy band hardly shifts by the cancellation between the higher- and lower-energy shifts of the (HOMO, LUMO) excited state directly induced by the molecular-orbital energy changes and configuration interaction, respectively. Our work provides the important knowledge for understanding how nature controls the light-absorption properties of the BChl dyes, which might be also useful for design of porphyrinoid chromophores. PMID:27493495

  17. Temperature-dependent parameters of band anticrossing in InGaPN alloys

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Wang, T. S.; Tsai, J. T.; Hwang, J. S.

    2008-07-01

    Temperature-dependent photoreflectance (PR) measurements are employed to characterize the conduction band structure of In0.54Ga0.46P1-yNy (y =0 and 0.02) grown on GaAs substrates. The band gap and the upper subband E+ transition are observed in InGaPN as predicted by the band anticrossing (BAC) model. To investigate the energetic positions of the features in the PR spectra, a Kramers-Kronig analysis is proposed. Based on the PR data and the BAC model, we find that the energy EN of isolated nitrogen states shifts significantly to higher energies with decreasing temperature. Simultaneously, the interaction potential V between the nitrogen states and the unperturbed conduction band also rises to higher values. At 293 K, EN=2.054 eV and V =1.513 eV are determined. The thermal shifts of EN and V are dEN/dT ≈-0.43 meV/K and dV /dT≈-0.67 meV/K, respectively. The temperature-dependent EN level and interaction potential V are attributed to the lattice distortions, which can be affected by temperature-induced changes in deformation potential. This information is important for overall validity of the BAC model to dilute nitride InGaPN alloys.

  18. Strong heavy-to-light hole intersubband absorption in the valence band of carbon-doped GaAs/AlAs superlattices

    NASA Astrophysics Data System (ADS)

    Hossain, M. I.; Ikonic, Z.; Watson, J.; Shao, J.; Harrison, P.; Manfra, M. J.; Malis, O.

    2013-02-01

    We report strong mid-infrared absorption of in-plane polarized light due to heavy-to-light hole intersubband transitions in the valence band of C-doped GaAs quantum wells with AlAs barriers. The transition energies are well reproduced by theoretical calculations including layer inter-diffusion. The inter-diffusion length was estimated to be 8 ± 2 Å, a value that is consistent with electron microscopy measurements. These results highlight the importance of modeling the nanoscale structure of the semiconductors for accurately reproducing intra-band transition energies of heavy carriers such as the holes.

  19. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  20. [Analysis and comparison of intestinal absorption of components of Gegenqinlian decoction in different combinations based on pharmacokinetic parameters].

    PubMed

    Zhang, Yi-Zhu; An, Rui; Yuan, Jin; Wang, Yue; Gu, Qing-Qing; Wang, Xin-Hong

    2013-10-01

    To analyse and compare the characteristics of the intestinal absorption of puerarin, baicalin, berberine and liquiritin in different combinations of Gegenqinlian decoction based on pharmacokinetic parameters, a sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was applied for the quantification of four components in rat's plasma. And pharmacokinetic parameters were determined from the plasma concentration-time data with the DAS software package. The influence of different combinations on pharmacokinetics of four components was studied to analyse and compare the absorption difference of four components, together with the results of the in vitro everted gut model and the rat single pass intestinal perfusion model. The results showed that compared with other combinations, the AUC values of puerarin, baicalin and berberine were increased significantly in Gegenqinlian decoction group, while the AUC value of liquiritin was reduced. Moreover, the absorption of four components was increased significantly supported by the results from the in vitro everted gut model and the rat single pass intestinal perfusion model, which indicated that the Gegenqinlian decoction may promote the absorption of four components and accelerate the metabolism of liquiritin by the cytochrome P450. PMID:24417090

  1. Waveguide design parameters impact on absorption in graphene coated silicon photonic integrated circuits.

    PubMed

    Kovacevic, Goran; Yamashita, Shinji

    2016-02-22

    In this paper, we propose a new way of estimating the absorption in graphene coated silicon wire waveguides based on a self-developed, modified 2D Finite Difference Method, and use it to obtain a detailed absorption dependency of the waveguide design. For the first time, we observe peaks in the TM mode absorption curves, as well as the reversals of the dominantly absorbed mode with waveguide design variation, both of which have not been predicted previously theoretically, but have been implied through experimental results. We also provide a qualitative explanation of our novel numerical results, and explain how these results can be utilized in optimization of various graphene based integrated devices like optical modulators, photodetectors and optical polarizers. PMID:26907015

  2. Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure

    NASA Astrophysics Data System (ADS)

    Behera, Harihar; Mukhopadhyay, Gautam

    2012-10-01

    We present ab initio calculations which show that the direct-band-gap, effective masses and Fermi velocities of charge carriers in ZnO monolayer (ML-ZnO) in graphene-like honeycomb structure are all tunable by application of in-plane homogeneous biaxial strain. Within our simulated strain limit of ±10%, the band gap remains direct and shows a strong non-linear variation with strain. Moreover, the average Fermi velocity of electrons in unstrained ML-ZnO is of the same order of magnitude as that in graphene. The results promise potential applications of ML-ZnO in mechatronics/straintronics and other nano-devices such as the nano-electromechanical systems (NEMS) and nano-optomechanical systems (NOMS).

  3. Comparison of liposome entrapment parameters by optical and atomic absorption spectrophotometry.

    PubMed

    Yoss, N L; Popescu, O; Pop, V I; Porutiu, D; Kummerow, F A; Benga, G

    1985-01-01

    Methods for the complete characterization of liposomes prepared by ether-injection are described in detail. The validity of atomic absorption spectrophotometry for measuring markers of trapped volume was checked by comparative determinations of markers with established optical spectrophotometrical methods. The favorable results using atomic absorption spectrophotometry to quantitate the marker Mn2+ are of particular relevance as manganese ion is also the paramagnetic probe in n.m.r. measurements of water permeability of liposomes; our results indicate that in such measurements no other marker need be incorporated. PMID:3986305

  4. The Influence of Triaxiality Parameter γ on the Chiral Doublet Bands with (πg9/2)-1 (νh11/2)2 Configuration

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Wang, Shouyu; Zhao, Xingyan; Zhu, Xiaoying; Sun, Dapeng; Liu, Chen; Xu, Changjiang

    2012-07-01

    The chiral doublet bands with three-quasiparticle configuration (πg9/2)-1 (νh11/2)2 are studied by the fully quantal triaxial particle rotor model. The energy spectra and B(M1)/B(E2) ratios of the doublet bands with different triaxiality parameter γ are systematically analyzed. It is found that γ is a sensitive parameter for the properties of these doublet bands.

  5. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  6. Optical absorption and band gap reduction in (Fe1-xCrx)2O3 solid solutions: A first-principles study

    SciTech Connect

    Wang, Yong; Lopata, Kenneth A.; Chambers, Scott A.; Govind, Niranjan; Sushko, Petr V.

    2013-12-02

    We provide a detailed theoretical analysis of the character of optical transitions and band gap reduction in (Fe1-xCrx)2O3 solid solutions using extensive periodic model and embedded cluster calculations. Optical absorption bands for x = 0.0, 0.5, and 1.0 are assigned on the basis of timedependent density functional theory (TDDFT) calculations. A band-gap reduction of as much as 0.7 eV with respect to that of pure α-Fe2O3 is found. This result can be attributed to predominantly two effects: (i) the higher valence band edge for x ≈ 0.5, as compared to those in pure α-Fe2O3 and α-Cr2O3, and, (ii) the appearance of Cr  Fe d–d transitions in the solid solutions. Broadening of the valence band due to hybridization of the O 2p states with Fe and Cr 3d states also contributes to band gap reduction.

  7. A laboratory Atlas of the 5 nu-1 NH3 absorption band at 6475 A with applications to Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Miller, J. H.; Boese, R. W.

    1975-01-01

    A complete atlas of the 5 nu-1 absorption band of NH3 is presented together with measurements of the total band intensity, line intensities, and self-broadening coefficients. The spectrum, which is displayed in the interval from 6418 to 6550 A, was obtained photoelectrically at a pressure of 0.061 atm, and many more lines were seen in this spectrum than in a previous one obtained at a pressure of 0.39 atm. The band intensity is used to derive the NH3 abundance in the atmospheres of Jupiter and Saturn, and the abundances in a single vertical path are found to be about 10 m amagat for Jupiter and 2 m amagat for Saturn. These results are shown to be in agreement with previous results obtained from higher resolution photographic spectra.

  8. Sub-gap and band edge optical absorption in a-Si:H by photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, W. B.; Amer, N. M.

    1981-07-01

    Using photothermal deflection spectroscopy, the optical absorption of various a-Si:H films was investigated in the range of 2.1 to 0.6 eV. An absorption shoulder which depends on deposition conditions and on doping was found and was attributed to dangling bonds. The exponential edge broadens with increasing spin density.

  9. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  10. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  11. Clay composition and swelling potential estimation of soils using depth of absorption bands in the SWIR (1100-2500 nm) spectral domain

    NASA Astrophysics Data System (ADS)

    Dufréchou, Grégory; Granjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Presence of clay minerals is traditionally a good estimator of soils swelling and shrinking behavior. Montmorillonite (i.e. smectite group), illite, kaolinite are the most common minerals in soils and are usually associated to high, moderate, and low swelling potential when they are present in significant amount. Characterization of swelling potential and identification of clay minerals of soils using conventional analysis are slow, expensive, and does not permit integrated measurements. SWIR (1100-2500 nm) spectral domain are characterized by significant spectral absorption bands related to clay content that can be used to recognize main clay minerals. Hyperspectral laboratory using an ASD Fieldspec Pro spectrometer provides thus a rapid and less expensive field surface sensing that permits to measure soil spectral properties. This study presents a new laboratory reflectance spectroscopy method that used depth of clay diagnostic absorption bands (1400 nm, 1900 nm, and 2200 nm) to compare natural soils to synthetic montmorillonite-illite-kaolinite mixtures. We observe in mixtures that illite, montmorillonite, and kaolinite content respectively strongly influence the depth of absorption bands at 1400 nm (D1400), 1900 nm (D1900), and 2200 nm (D2200). To attenuate or removed effects of abundance and grain size, depth of absorption bands ratios were thus used to performed (i) 3D (using D1900/D2200, D1400/D1900, and D2200/D1400 as axis), and (ii) 2D (using D1400/D1900 and D1900/D2200 as axis) diagrams of synthetic mixtures. In this case we supposed that the overall reduction or growth of depth absorption bands should be similarly affected by the abundance and grain size of materials in soil. In 3D and 2D diagrams, the mixtures define a triangular shape formed by two clay minerals as external envelop and the three clay minerals mixtures

  12. Strain-engineered band parameters of graphene-like SiC monolayer

    SciTech Connect

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-10-06

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices.

  13. Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies

    SciTech Connect

    Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Hiraoka, Koichi; Kojima, Kenichi; Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji; Mimura, Kojiro; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Oguchi, Tamio; Taniguchi, Masaki

    2011-09-15

    We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

  14. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.

    1990-07-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  15. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  16. Crop parameters estimation by fuzzy inference system using X-band scatterometer data

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Prasad, R.; Singh, V. P.; Jha, S. K.; Shukla, K. K.

    2013-03-01

    Learning fuzzy rule based systems with microwave remote sensing can lead to very useful applications in solving several problems in the field of agriculture. Fuzzy logic provides a simple way to arrive at a definite conclusion based upon imprecise, ambiguous, vague, noisy or missing input information. In the present paper, a subtractive based fuzzy inference system is introduced to estimate the potato crop parameters like biomass, leaf area index, plant height and soil moisture. Scattering coefficient for HH- and VV-polarizations were used as an input in the Fuzzy network. The plant height, biomass, and leaf area index of potato crop and soil moisture measured at its various growth stages were used as the target variables during the training and validation of the network. The estimated values of crop/soil parameters by this methodology are much closer to the experimental values. The present work confirms the estimation abilities of fuzzy subtractive clustering in potato crop parameters estimation. This technique may be useful for the other crops cultivated over regional or continental level.

  17. Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks

    NASA Astrophysics Data System (ADS)

    Baghdadi, N.; Cresson, R.; El Hajj, M.; Ludwig, R.; La Jeunesse, I.

    2012-06-01

    The purpose of this study was to develop an approach to estimate soil surface parameters from C-band polarimetric SAR data in the case of bare agricultural soils. An inversion technique based on multi-layer perceptron (MLP) neural networks was introduced. The neural networks were trained and validated on a noisy simulated dataset generated from the Integral Equation Model (IEM) on a wide range of surface roughness and soil moisture, as it is encountered in agricultural contexts for bare soils. The performances of neural networks in retrieving soil moisture and surface roughness were tested for several inversion cases using or not using a-priori knowledge on soil parameters. The inversion approach was then validated using RADARSAT-2 images in polarimetric mode. The introduction of expert knowledge on the soil moisture (dry to wet soils or very wet soils) improves the soil moisture estimates, whereas the precision on the surface roughness estimation remains unchanged. Moreover, the use of polarimetric parameters α1 and anisotropy were used to improve the soil parameters estimates. These parameters provide to neural networks the probable ranges of soil moisture (lower or higher than 0.30 cm3 cm-3) and surface roughness (root mean square surface height lower or higher than 1.0 cm). Soil moisture can be retrieved correctly from C-band SAR data by using the neural networks technique. Soil moisture errors were estimated at about 0.098 cm3 cm-3 without a-priori information on soil parameters and 0.065 cm3 cm-3 (RMSE) applying a-priori information on the soil moisture. The retrieval of surface roughness is possible only for low and medium values (lower than 2 cm). Results show that the precision on the soil roughness estimates was about 0.7 cm. For surface roughness lower than 2 cm, the precision on the soil roughness is better with an RMSE about 0.5 cm. The use of polarimetric parameters improves only slightly the soil parameters estimates.

  18. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann Y.; ONeill, Peggy E.; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quad-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by the Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well- managed watershed in southwest Oklahoma. Prior to its application for soil moisture inversion, a good agreement was found between the single-scattering IEM simulations and the L band measurements of SIR-C and AIRSAR over a wide range of soil moisture and surface roughness conditions. The sensitivity of soil moisture variation to the co-polarized signals were then examined under the consideration of the calibration accuracy of various components of SAR measurements. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  19. Validation of refractive index structure parameter estimation for certain infrared bands.

    PubMed

    Sivaslıgil, Mustafa; Erol, Cemil Berin; Polat, Özgür Murat; Sarı, Hüseyin

    2013-05-10

    Variation of the atmospheric refraction index due to turbulent fluctuations is one of the key factors that affect the performance of electro-optical and infrared systems and sensors. Therefore, any prior knowledge about the degree of variation in the refractive index is critical in the success of field studies such as search and rescue missions, military applications, and remote sensing studies where these systems are used frequently. There are many studies in the literature in which the optical turbulence effects are modeled by estimation of the refractive index structure parameter, C(n)(2), from meteorological data for all levels of the atmosphere. This paper presents a modified approach for bulk-method-based C(n)(2) estimation. According to this approach, conventional wind speed, humidity, and temperature values above the surface by at least two levels are used as input data for Monin-Obukhov similarity theory in the estimation of similarity scaling constants with a finite difference approximation and a bulk-method-based C(n)(2) estimation. Compared with the bulk method, this approach provides the potential for using more than two levels of standard meteorological data, application of the scintillation effects of estimated C(n)(2) on the images, and a much simpler solution than traditional ones due to elimination of the roughness parameters, which are difficult to obtain and which increase the complexity, the execution time, and the number of additional input parameters of the algorithm. As a result of these studies, Atmospheric Turbulence Model Software is developed and the results are validated in comparison to the C(n)(2) model presented by Tunick. PMID:23669824

  20. Comparison of Coordinated Satellite and Ground-based X-Band Radar Collections for the Retrieval of Snow Parameters

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H.; LeWinter, A. L.; Finnegan, D. C.; Deems, J. S.; Landry, C.

    2012-12-01

    In many regions of the world, snow is a major source of runoff contributing to human existence/sustenance, agriculture, and industry. The uncertainties in quantifying snow mass at both spatial and temporal scales have limited the vital management of this significant component to the global water cycle. With the sensitivity of radar backscatter to physical properties of snow at higher frequencies and the availability of high resolution commercial satellite imaging radars at X-Band frequencies (e.g. 9.6 GHz), snow experiments have been conducted to examine these relationships at finer spatial and temporal scales. For the past several winters, satellite radar acquisitions (at X-Band with co- and cross-polarizations) have been coordinated with ground-based radar collections within a well-instrumented southwestern Colorado basin exhibiting a wide range of snow conditions. Snow-free satellite radar collections (at X-Band with the same viewing geometry) have also been acquired to separate the backscatter contributions of the snow volume from the underlying background target. Ancillary data sets including ground-based LiDAR-derived snow depths and scientific snow pit sampling are also incorporated into the analysis. Despite the fact that it may not be possible to retrieve snow water equivalent from multi-polarization X-Band frequency alone, preliminary results of these comparisons are shown where the ground-based radar transects overlap the satellite radar coverage. Snow parameters such as saturated surface or internal snow layers, snow surface and stratigraphic roughness, and grain size variations may be of particular interest.

  1. Basic parameters of open star clusters DOLIDZE 14 and NGC 110 in infrared bands

    NASA Astrophysics Data System (ADS)

    Joshi, Gireesh C.; Joshi, Y. C.; Joshi, S.; Tyagi, R. K.

    2015-10-01

    The basic physical parameters of a poorly studied open cluster NGC 110 and an unstudied open cluster DOLIDZE 14 are estimated in the present study using the archival PPMXL and WISE catalogues. The radius of both the clusters are estimated by fitting the modified King's empirical model on their stellar density profiles. The other basic parameters of the clusters such as distance, reddening, and age are obtained by visual fitting of the Marigo's solar metallicity isochrone on their IR colour-magnitude diagrams (CMDs). The mean-proper motion of the clusters are estimated through the individual proper motion of probable members identified through the dynamical and statistical methods. The archival catalogues (JHKW1W2) are constructed for both the clusters by compiling the extracted data from the PPMXL and WISE catalogues. The various colour-excesses, such as E (J - H), E (H - K) and E (W1 -W2) , are estimated using the best fit theoretical isochrone on the (J - H) - H, (H - K) - H and (W1 -W2) - H CMDs, respectively. The ratios of various infrared colours of the clusters are obtained through their two-colour diagrams. We also identify the most probable members in these clusters by estimating spatial, kinematic and spatio-kinematic probabilities of stars within the cluster. A correlation between the E (H - K) and E (W1 -W2) is also established.

  2. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  3. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-01

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model. PMID:26087319

  4. Influence of spatial differential reflection parameters on 2,4,6- trinitrotoluene (TNT) absorption spectra

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Guetard, Ga"l.; Hummel, Rolf E.

    2012-06-01

    Differential reflectometry has been shown to be a sensitive and fast tool to detect explosive substances on surfaces such as luggage and parcel. This paper elucidates the influence of several parameters on the sensitivity of the technique. An expression for the reflected intensity that contains the influence of angle of incidence, wavelength of the incident light, and surface roughness has been established. The feature used to identify and detect TNT stems mainly from the diffuse component of the reflected light. This spectral "finger-print" shape does not change by varying these parameters. The maximum sensitivity is obtained for samples which are strongly diffusive and weakly specular.

  5. Investigation of SO3 absorption line for in situ gas detection inside combustion plants using a 4-μm-band laser source.

    PubMed

    Tokura, A; Tadanaga, O; Nishimiya, T; Muta, K; Kamiyama, N; Yonemura, M; Fujii, S; Tsumura, Y; Abe, M; Takenouchi, H; Kenmotsu, K; Sakai, Y

    2016-09-01

    We have investigated 4-μm-band SO3 absorption lines for in situSO3 detection using a mid-infrared laser source based on difference frequency generation in a quasi-phase-matched LiNbO3 waveguide. In the wavelength range of 4.09400-4.10600 μm, there were strong SO3 absorption lines. The maximum absorption coefficient at a concentration of 170 ppmv was estimated to be about 3.2×10-5  cm-1 at a gas temperature of 190°C. In coexistence with H2O, the reduction of the SO3 absorption peak height was observed, which was caused by sulfuric acid formation. We discuss a method of using an SO3 equilibrium curve to derive the total SO3 molecule concentration. PMID:27607263

  6. Calculating Effect of Point Defects on Optical Absorption Spectra of III-V Semiconductor Superlattices Based on (8x8) k-dot-p Band Structures

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey; Cardimona, David; Krishna, Sanjay

    For a superlattice which is composed of layered zinc-blende structure III-V semiconductor materials, its realistic anisotropic band structures around the Gamma-point are calculated by using the (8x8)k-dot-p method with the inclusion of the self-consistent Hartree potential and the spin-orbit coupling. By including the many-body screening effect, the obtained band structures are further employed to calculate the optical absorption coefficient which is associated with the interband electron transitions. As a result of a reduced quasiparticle lifetime due to scattering with point defects in the system, the self-consistent vertex correction to the optical response function is also calculated with the help of the second-order Born approximation.

  7. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  8. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing. PMID:25321779

  9. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  10. Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    NASA Technical Reports Server (NTRS)

    DeLannoy, Gabrielle J. M.; Reichle, Rolf H.; Vrugt, Jasper A.

    2013-01-01

    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO).

  11. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  12. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann; ONeill, Peggy; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quasi-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well-managed watershed in southwest Oklahoma. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  13. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2015-09-01

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041-like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code "CST Particle Studio" has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ˜108 kW with ˜15.5% efficiency in a well confined TE041-like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  14. Absorption spectral band width of charge transfer transition of E(T)(30) dye in homogeneous and heterogeneous media.

    PubMed

    Das, Parimal Kumar; Pramanik, Ramkrishna; Bagchi, Sanjib

    2003-06-01

    Solvation characteristics in homogeneous and heterogeneous media have been probed by monitoring the band width of ICT band of 2,6-di-phenyl-4(2,4,6-triphenyl-1-pyridino) phenolate, the indicator solute for E(T)(30) scale, in pure, mixed binary solvents and aqueous micellar solution. Non-ideal solvation behaviour is observed in all the binary solvent mixtures. Index of preferential solvation has been calculated as a function of solvent composition. Study in micellar media indicates that the dye is located at the micelle-water interface. The effects of variation of micelle concentration, temperature and electrolyte concentration have also been studies. PMID:12736053

  15. Lumped parameter analysis of a stringer reinforced plate excited by band limited noise

    NASA Technical Reports Server (NTRS)

    Bilyeu, D. J.; Whitehouse, G. D.; Whitehurst, C. A.

    1972-01-01

    The maximum root-mean-square response of a square clamped plate, subjected to a stationary random excitation, was determined both theoretically and empirically. For the tests, a 40 x 40 x 1/4 aluminum sheet was milled out to provide a thin waffle plate with 9 panels. The plate was acoustically excited, with the frequency range limited between 25 Hz and 500 Hz. The root-mean-square power of the random excitations, 149 decibels, was nearly constant for all natural frequencies of the plate system. Strain gage readings at 14 points were plotted as power spectral densities and root-mean-square displacements. A modal damping ratio matrix was determined from the response curves. Damping ratios were found to be a function of frequency, but not of location on the plate. For comparisons with the theoretical response, the plate was subdivided into 14 modes and anlayzed as a damped, lumped parameter system by use of an approximate normal-mode method. This method gave the best predictions of the power spectral densities for the lower frequencies. That prediction errors increased for the higher frequencies is attributed to improper assumptions for mass distribution and the insufficient number of lumped mass points.

  16. Optimization of electrothermal atomization parameters for simultaneous multielement atomic absorption spectrometry

    USGS Publications Warehouse

    Harnly, J.M.; Kane, J.S.

    1984-01-01

    The effect of the acid matrix, the measurement mode (height or area), the atomizer surface (unpyrolyzed and pyrolyzed graphite), the atomization mode (from the wall or from a platform), and the atomization temperature on the simultaneous electrothermal atomization of Co, Cr, Cu, Fe, Mn, Mo, Ni, V, and Zn was examined. The 5% HNO3 matrix gave rise to severe irreproducibility using a pyrolyzed tube unless the tube was properly "prepared". The 5% HCl matrix did not exhibit this problem, and no problems were observed with either matrix using an unpyrolized tube or a pyrolyzed platform. The 5% HCl matrix gave better sensitivities with a pyrolyzed tube but the two matrices were comparable for atomization from a platform. If Mo and V are to be analyzed with the other seven elements, a high atomization temperature (2700??C or greater) is necessary regardless of the matrix, the measurement mode, the atomization mode, or the atomizer surface. Simultaneous detection limits (peak height with pyrolyzed tube atomization) were comparable to those of conventional atomic absorption spectrometry using electrothermal atomization above 280 nm. Accuracies and precisions of ??10-15% were found in the 10 to 120 ng mL-1 range for the analysis of NBS acidified water standards.

  17. Optimal Weld Parameters, Weld Microstructure, Mechanical Properties, and Hydrogen Absorption: An Effective Analysis

    NASA Astrophysics Data System (ADS)

    Bhattacharya, J.; Pal, T. K.

    2011-10-01

    Weld bead-in-grooves were deposited on low alloy, high strength steel plates (ASTM A 517 Grade "F") with a commercial flux-cored filler wire, Auto-MIG 420, at different welding conditions. Microstructure and mechanical properties of welds were characterized by means of optical microscopy, SEM, TEM, EPMA, microhardness measurements, tensile tests, and Charpy impact tests. Hydrogen content of weld metals in as-weld condition and after exposing in simulated service condition was measured by LECO Gas Analyzer. Microstructure of weld metals consisted primarily of lath martensite with small amount of M-A constituents (Martensite-Austenite alternating layers). For some particular welding conditions, such as higher heat input and lower preheat temperatures etc., acicular ferrite is observed with lath martensite. Welds consisting of acicular ferrite in the microstructure showed improved mechanical properties as well as lower hydrogen absorption. The study provides guidelines for selecting proper welding conditions, which results in lower propensity to absorb hydrogen during service, as well as better mechanical properties. Necessity of post-weld heat treatment processes, which is mainly performed to achieve toughness, may be reduced; consequently saving cost and time of the welding process.

  18. Fermi-liquid Landau parameters for a nondegenerate band: Spin and charge instabilities in the extended Hubbard model

    NASA Astrophysics Data System (ADS)

    Lhoutellier, Grégoire; Frésard, Raymond; Oleś, Andrzej M.

    2015-06-01

    We investigate the Landau parameters for the instabilities in spin and charge channels in the nondegenerate extended Hubbard model with intersite Coulomb and exchange interactions. To this aim we use the spin rotationally invariant slave boson approach and we determine the necessary inverse propagator matrix. The analytically derived spin Landau parameter F0a for the half filled band uncovers the intrinsic instability of the nondegenerate Hubbard model towards ferromagnetism—negative intersite exchange interaction triggers a ferromagnetic instability at half filling before the metal-insulator transition, indicated by the divergence of the magnetic susceptibility at F0a=-1 . This result is general and the instability occurs in the strongly correlated metallic regime for any lattice, in three or two dimensions. Next as an illustrative example we present numerical results obtained for the cubic lattice with nearest neighbor exchange J and Coulomb V elements and arbitrary electron density. One finds that the range of small doping near half filling is the most unstable one towards spin polarization, but only in the case of ferromagnetic intersite exchange J <0 . Charge Landau parameter F0s is lowered near half filling by increasing U when the intersite Coulomb interaction V is attractive, but in contrast to F0a at J <0 it requires an attraction beyond a critical value Vc to generate the divergence of the charge susceptibility at F0s=-1 in the metallic phase. This instability was found for a broad range of electronic filling away from half filling for moderate attraction.

  19. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  20. Correlation between atmospheric O4 and H2O absorption in visible band and its implication to dust and haze events in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhao, Heng; Yang, Suna; Wang, Zhuoru; Zhou, Bin; Chen, Limin

    2012-12-01

    Ground-based zenith-sky DOAS observation was carried out from October 1, 2009 to September 30, 2010 in Shanghai, China to measure the O4 and H2O absorption in visible band and to illustrate the dependence of their correlation slope on the aerosol pollution type. Good correlations between O4 and H2O DSCDs can be found through linear regression analysis whether it was sunny, cloudy, overcast, or rainy. The correlation slope varied seasonally in the order of summer < autumn, spring < winter. In particular, the correlation slope and fluctuation were small in the summer. It was found that slope values also relied on sky conditions generally in the sequence of dusty > sunny > cloudy > overcast > rainy. The implication of the variation of slope to the aerosol pollution type was discussed for typical heavy dust and haze episodes occurred in March 2010 and October 2009, respectively. As the correlation slope abruptly increased during the heavy dust due to low moisture content and enhanced O4 absorption caused by abundant suspended dry crustal particles, the slope dropped suddenly in the haze episode owing to the significant augment of H2O absorption. Thus, the much discrepant correlation patterns may be regarded as a characteristic signature for dust and haze events.

  1. Band gap formation in La0.7Sr0.3MnO3 (LSMO) thin films measured by reflectivity/absorption and ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Cabrera, Guerau; Trappen, Robbyn; Chu, Ying-Hao; Holcomb, Mikel

    Thin film La0.7Sr0.3MnO3 (LSMO) is a prime candidate for highly spin-polarized magnetic-tunnel-junction memories. Due to its magnetic properties, it is also a good candidate for applications utilizing electrical control of magnetism when grown adjacent to a ferroelectric layer such as Pb(Zr/Ti)O3 (PZT). Recently, Wu and others have seen the emergence of a band gap (about 1eV) in LSMO thin films, when grown adjacent to PZT. Currently, it is understood that LSMO is a half-metal, with a pseudo-gap due to a low desity of states (DOS) near the Fermi level. The transition from pseudo-gap to band gap is not yet fully understood. It is therefore our aim to investigate the formation of this band gap through optical reflectivity/absorption and ultrafast carrier dynamics for a variety of thicknesses ranging from a few nanometers to thicker films (about 100 nm).

  2. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.

  3. Efficient tissue ablation using a laser tunable in the water absorption band at 3 microns with little collateral damage

    NASA Astrophysics Data System (ADS)

    Nierlich, Alexandra; Chuchumishev, Danail; Nagel, Elizabeth; Marinova, Kristiana; Philipov, Stanislav; Fiebig, Torsten; Buchvarov, Ivan; Richter, Claus-Peter

    2014-03-01

    Lasers can significantly advance medical diagnostics and treatment. At high power, they are typically used as cutting tools during surgery. For lasers that are used as knifes, radiation wavelengths in the far ultraviolet and in the near infrared spectral regions are favored because tissue has high contents of collagen and water. Collagen has an absorption peak around 190 nm, while water is in the near infrared around 3,000 nm. Changing the wavelength across the absorption peak will result in significant differences in laser tissue interactions. Tunable lasers in the infrared that could optimize the laser tissue interaction for ablation and/or coagulation are not available until now besides the Free Electron Laser (FEL). Here we demonstrate efficient tissue ablation using a table-top mid-IR laser tunable between 3,000 to 3,500 nm. A detailed study of the ablation has been conducted in different tissues. Little collateral thermal damage has been found at a distance above 10-20 microns from the ablated surface. Furthermore, little mechanical damage could be seen in conventional histology and by examination of birefringent activity of the samples using a pair of cross polarizing filters.

  4. The parameters in the band-anticrossing model for In x Ga1- x N y P1- y before and after annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanzhen; Zhang, Rong; Liu, Bin; Yu, Liyuan; Tang, Chunxiao; Xie, Zili; Xiu, Xiangqian; Zheng, Youdou

    2011-12-01

    We investigate the parameters in the band-anticrossing (BAC) model for GaNP and InGaPN in this work. The parameters in the BAC model for GaNP and InGaNP are obtained by fitting experimental data. It is found that the band gap bowing of In-GaNP is stronger than that of InGaNAs. The effects of annealing on the parameters in the BAC model for InGaNP are also discussed in this work. In addition, the origins for improving luminescence efficiency by annealing are explained. It is relative to the forming of more In-N clusters.

  5. Influence of operating parameters on neutralzation of alkaline wastewater using CO2 in a jet loop absorption reactor

    NASA Astrophysics Data System (ADS)

    Lee, Jea Keun; Son, Min Ki

    2013-04-01

    The increased focus on global warming has resulted in an increase in studies regarding strategies for the control of CO2 emissions from combustion processes. In this study, we tested the absorption of CO2 in combustion gas into an alkaline dyeing wastewater to simultaneously control CO2 and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using CO2 in a bench-scale semi-batch jet loop absorption reactor (0.1m diameter and 1.0m in height). The operating parameters investigated in the study are gas flow rate of 1.0 - 2.0 L/min and liquid recirculation flow rate of 4 - 32 L/min. We show that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate (QL), reached a minimum value in the range of QL=16L/min and QL=24L/min, and then increased with further increase in QL. The fraction of CO2 utilization, defined as the ratio of CO2 used to neutralize the wastewater to CO2 injected into the reactor, showed a higher value of 0.99 when the wastewater pH was above 9.0. However, the fraction of CO2 utilization decreased to 0.88 as the wastewater pH lowers to 7.0. Our results suggest that CO2 in the combustion gas could effectively be used to neutralize alkaline wastewater instead of sulfuric acid, which is a commercially used neutralizing agent in conventional wastewater treatment processes.

  6. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  7. Rovibrational Intensities of the (00(0)3) <-- (10(0)0) Dyad Absorption Bands of (12)C(16)O(2).

    PubMed

    Kshirsagar; Giver; Chackerian

    2000-02-01

    Absolute line intensities of (12)C(16)O(2) are experimentally measured for the first time for the (00(0)3)(I) <-- (10(0)0)(II) band at 5687.17 cm(-1) and the (00(0)3)(I) <-- (10(0)0)(I) band at 5584.39 cm(-1). The spectra were obtained using a Bomem DA8 Fourier transform spectrometer and a 25-m base-path White cell at NASA-Ames Research Center. The rotationless bandstrengths at a temperature of 296 K and the Herman-Wallis parameters are S(0)(vib) = 6.68(30) x 10(-25) cm(-1)/(molecule/cm(2)); A(1) = 1.4(9) x 10(-4), and A(2) = -1.1(5) x 10(-5) for the (00(0)3)(I) <-- (10(0)0)(II) band and S(0)(vib) = 6.07(22) x 10(-25) cm(-1)/(molecule/cm(2)); A(1) = 5.2(1.5) x 10(-4) and A(2) = -4.0(7) x 10(-5) for the (00(0)3)(I) <-- (10(0)0)(I) band. PMID:10637108

  8. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  9. Improved line parameters for the Chi 2Pi-Chi 2Pi (1-0) bands of (35)ClO and (37)ClO

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron; Gillis, James R.; Rinsland, Curtis P.; Burkholder, James B.

    1994-01-01

    Improved line parameters at 296 K for the Chi 2Pi-Chi 2Pi (1-0) bands of (35)ClO and (37)ClO have been calculated with J up to 43.5. The integrated intensity for the 2048 lines in the main and satellite bands has been normalized to 9.68-sq cm/atm at 296K.

  10. The first UV absorption band of l-tryptophan is not due to two simultaneous orthogonal electronic transitions differing in the dipole moment.

    PubMed

    Catalán, Javier

    2016-06-01

    Based on UV/Vis spectroscopic evidence obtained in this work, the first band in the absorption spectrum of l-tryptophan is largely due to a single electronic transition from the ground state to the (1)Lb excited state. However, emission spectra of this compound recorded at a variable temperature in ethanol, n-butanol and diethyl ether are structureless and considerably red-shifted at room temperature; also, lowering the temperature causes the emission to become structured and to undergo such a strong blue shift that it appears to be due to the (1)Lb state of the compound. Based on these findings, the formation (from the excited (1)Lb state) of the excited state responsible for the structureless, markedly red-shifted emission in l-tryptophan is strongly dependent not only on the viscosity of the medium, but also on its dipolarity. PMID:27197597

  11. Determining the effect of detuning parameters on the absorption region for a coupled nonlinear system of varying orientation

    NASA Astrophysics Data System (ADS)

    Yaman, Mustafa; Sen, Sadri

    2007-02-01

    In this study, the nonlinear behavior of a slender beam coupled with a pendulum is investigated numerically in terms of different system parameters. The structure consisting of a cantilever beam of varying orientation with a tip mass and pendulum which is attached to the tip mass as a passive vibration absorber is subjected to a vertical sinusoidal base excitation. The Euler-Bernoulli theory for the slender beam is used to derive the governing non-linear partial differential equation. The non-linear terms arising from inertia, curvature and axial displacement caused by large transverse deflections, and the coupling between the primary structure and absorber are retained up to third order. When the structure is forced in the neighborhood of its resonance, the pendulum absorber (controller) reduces the structure response because of autoparametric interaction between the beam and pendulum. Autoparametric interaction in the system was investigated by varying orientation angles, the forcing amplitude, the internal frequency ratio, and the mass ratio in the neighborhood of the autoparametric resonance. The absorption regions were defined with respect to the system parameters for the passive vibration absorber.

  12. Evaluation of intensity and energy interaction parameters for the complexation of Pr(III) with selected nucleoside and nucleotide through absorption spectral studies.

    PubMed

    Bendangsenla, N; Moaienla, T; David Singh, Th; Sumitra, Ch; Rajmuhon Singh, N; Indira Devi, M

    2013-02-15

    The interactions of Pr(III) with nucleosides and nucleotides have been studied in different organic solvents employing absorption difference and comparative absorption spectrophotometry. The magnitudes of the variations in both energy and intensity interaction parameters were used to explore the degree of outer and inner sphere co-ordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Various electronic spectral parameters like Slater-Condon (F(k)), Racah (E(k)), Lande parameter (ξ(4f)), Nephelauxatic ratio (β), bonding (b(1/2)), percentage covalency (δ) and intensity parameters like oscillator strength (P) and Judd Ofelt electronic dipole intensity parameter (T(λ), λ=2,4,6) have been evaluated. The variation of these evaluated parameters were employed to interpret the nature of binding of Pr(III) with different ligands i.e. Adenosine/ATP in presence and absence of Ca(2+). PMID:23257345

  13. Multispectrum measurements of spectral line parameters including temperature dependences of N2- and self-broadened half-width coefficients in the region of the v9 band of 12C2H6

    SciTech Connect

    Malathy Devi, V.; Benner, D. C.; Rinsland, C.P.; Smith, M.A.H.; Sams, Robert L.; Blake, Thomas A.; Flaud, Jean Marie; Sung, Keeyoon; Brown, L.R.; Mantz, A. W.

    2010-11-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the v9 band at 12μm. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and selfbroadened half- width coefficients and their temperature dependences for a large number transitions. These measurements include several pQ and rQ sub-bands (and other sub-bands such as pP, rR) in the v9 fundamental band of 12C2H6 centered near 822 cm-1. Positions were measured for 2958 transitions and intensities for 3771 transitions. N2- and self-broadened half-width coefficients were determined for over 1700 transitions while temperature dependence exponents were retrieved for over 1350 of those transitions. Of these, many measurements (mostly line positions and intensities) belong to the v9+v4-v4 hot band, v9+2v4-2v4 hot band, 13C12CH6 v9 band and unidentified transitions. Forty-three high resolution (0.0016-0.005 cm-1) infrared laboratory absorption spectra recorded at temperatures between 148 and 298 K were fitted simultaneously to retrieve these parameters. Forty-one of these spectra were obtained in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 148 K were recorded using a new temperature stabilized cryogenic cell designed to work inside the sample compartment of the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena California. The specialized cooling cell developed at Connecticut College and capable of achieving gas sample temperatures down to 70 K with a temperature stability and uniformity of better than ±0.05 K was employed to record the 148 K spectra. Constraints to intensity ratios, doublet separations, half-width coefficients and their temperature dependence exponents were required to

  14. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio

    PubMed Central

    Doret, Muriel; Spilka, Jiří; Chudáček, Václav; Gonçalves, Paulo; Abry, Patrice

    2015-01-01

    Background The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. Aims This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. Study Design The last 30 minutes before delivery of the intrapartum FHR were analyzed. Subjects Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). Outcome Measures Frequency band-based LF/HF ratio and Hurst parameter. Results This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. Conclusions The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions. PMID:26322889

  15. Iron-absorption band analysis for the discrimination of iron-rich zones. [infrared spectral reflectance of Nevada iron deposits

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most major rock units and unaltered and altered areas in the study area can be discriminated on the basis of visible and near-infrared spectral reflectivity differences recorded from satellite altitude. These subtle spectral differences are detectable by digital ratioing of the MSS bands and subsequent stretching to increase the contrast to enhance spectral differences. Hydrothermally altered areas appear as anomalous color patches within the volcanic-rock areas. A map has been prepared which can be regarded as an excellent reconnaissance exploration map, for use in targeting areas for more detailed geological, geochemical, and geophysical studies. Mafic and felsic rock types are easily discriminated on the color stretched-ratio composite. The ratioing process minimizes albedo effects, leaving only the recorded characteristic spectral response. The spectra of unaltered rocks appear different from those of altered rocks, which are typically dominated by limonite and clay minerals. It seems clear that differences in spectral shape can provide a basis for discrimination of geologic material, although the relations between visible and near-infrared spectral reflectivity and mineralogical composition are not yet entirely understood.

  16. Time-Dependent Density Functional Theory Study of Low-Lying Absorption and Fluorescence Band Shapes for Phenylene-Containing Oligoacenes.

    PubMed

    Jun, Ye

    2015-12-24

    Low-lying band shapes of absorption and fluorescence spectra for a member of a newly synthesized family of phenylene-containing oligoacenes (POA 6) reported in J. Am. Chem. Soc. 2012 , 134 , 15351 are studied theoretically with two different approaches with TIPS-anthracene as a comparison. Underlying photophysics and exciton-phonon interactions in both molecules are investigated in details with the aid of the time-dependent density functional theory and multimode Brownian oscillator model. The first two low-lying excited-states of POA 6 were found to exhibit excitation characteristics spanning entire conjugated backbone despite the presence of antiaromatic phenylene section. Absorption and fluorescence spectra calculated from both time-dependent density functional theory and multimode Brownian oscillator model are shown to reach good agreement with experimental ones. The coupling between phonon modes and optical transitions is generally weak as suggested by the multimode Brownian oscillator model. Broader peaks of POA 6 spectra are found to relate to stronger coupling between low frequency phonon modes such as backbone twisting (with frequency <300 cm(-1)) and optical transitions. Furthermore, POA 6 exhibits weaker exciton-phonon coupling for the phonon modes above 1000 cm(-1) compared to TIPS-anthracene owing to extended conjugated backbone. A significant coupling between an in-plane breathing mode localized around the antiaromatic phenylene segment with frequency at 1687 cm(-1) and optical transitions for the first two excited-states of POA 6 is also observed. PMID:26611665

  17. Determination of tidal h Love number parameters in the diurnal band using an extensive VLBI data set

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Mathews, P. M.; Shapiro, I. I.

    1994-01-01

    We use over a decade of geodetic Very Long Baseline Interferometry (VLBI) data to estimate parameters in a resonance expansion of the frequency dependence of the tidal h(sub 2) Love number within the diurnal band. The resonance is associated with the retrograde free core nutation (RFCN). We obtain a value for the real part of the resonance strength of (-0.27 +/- 0.03) x 10(exp -3); a value of -0.19 x 10(exp -3) is predicted theoretically. Uncertainties in the VLBI estimates of the body tide radial displacement amplitudes are approximately 0.5 mm (1.1 mm for the K1 frequency), but they do not yield sufficiently small Love number uncertainties for placing useful constraints on the frequency of the RFCN, given the much smaller uncertainties obtained from independent analyses using nutation or gravimetric data. We also consider the imaginary part of the tidal h(sub 2) Love number. The estimated imaginary part of the resonance strength is (0.00 +/- 0.02) x 10(exp -3). The estimated imaginary part of the nonresonant component of the Love number implies a phase angle in the diurnal tidal response of the Earth of 0.7 deg +/- 0.5 deg (lag).

  18. Continuous monitoring of biophysical Eucalyptus sp. parameters using interferometric synthetic aperture radar data in P and X bands

    NASA Astrophysics Data System (ADS)

    Gama, Fábio Furlan; dos Santos, João Roberto; Mura, José Claudio

    2016-04-01

    This work aims to verify the applicability of models obtained using interferometric synthetic aperture radar (SAR) data for estimation of biophysical Eucalyptus saligna parameters [diameter of breast height (DBH), total height and volume], as a method of continuous forest inventory. In order to obtain different digital elevation models, and the interferometric height (Hint) to retrieve the tree heights, SAR surveying was carried out by an airborne interferometric SAR in two frequencies X and P bands. The study area, located in the Brazilian southeast region (S 22°53‧22″/W 45°26‧16″ and S 22°53‧22″/W 45°26‧16″), comprises 128.64 hectares of Eucalyptus saligna stands. The methodological procedures encompassed: forest inventory, topographic surveying, radar mapping, radar processing, and multivariable regression techniques to build Eucalyptus volume, DBH, and height models. The statistical regression pointed out Hint and interferometric coherence as the most important variables for the total height and DBH estimation; for the volume model, however, only the Hint variable was selected. The performance of the biophysical models from the second campaign, two years later (2006), were consistent and its results are very promising for updating annual inventories needed for managing Eucalyptus plantations.

  19. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  20. Time-resolved absorption changes of the pheophytin Q{sub x} band in isolated photosystem II reaction centers at 7K : energy transfer and charge separation.

    SciTech Connect

    Greenfield, S. R.; Seibert, M.; Wasielewski, M. R.; Chemistry; LANL; NREL; Northwestern Univ.

    1999-09-30

    The pheophytin {alpha} Q{sub x} spectral region of the isolated photosystem II reaction center was investigated at 7 K using femtosecond transient absorption spectroscopy. At this temperature, uphill energy transfer, which greatly complicates the interpretation of the kinetics at or near room temperature, should be essentially shut off. Low-energy ({approx}100 nJ) pulses at 661 and 683 nm were used to excite the short-wavelength and long-wavelength sides of the composite Q{sub y} band, providing preferential excitation of the accessory pigment pool and P680, respectively. The data analysis uses a background subtraction technique developed earlier (Greenfield et al. J. Phys. Chem. B 1997, 101, 2251-2255) to remove the kinetic components of the data that are due to the large time-dependent changes in the background that are present in this spectral region. The instantaneous amplitude of the bleach of the pheophytin {alpha} Q{sub x} band with 683 nm excitation is roughly two-thirds of its final amplitude, providing strong evidence of a multimer description of the reaction center core. The subsequent growth of the bleach shows biphasic kinetics, similar to our earlier results at 278 K. The rate constant of the faster component is (5 ps){sup -1} for 683 nm excitation (a factor of almost two faster than at 278 K), and represents the intrinsic rate constant for charge separation. The bleach growth with 661 nm excitation is also biphasic; however, the faster component appears to be a composite of a (5 ps){sup -1} component corresponding to charge separation following subpicosecond energy transfer to the long-wavelength pigments and a roughly (22 ps){sup -1} component corresponding to charge separation limited by slow energy transfer. The combined quantum yield for these two energy transfer processes is near unity. For both excitation wavelengths, there is also a roughly (100 ps){sup -1} component to the bleach growth. Exposure to high excitation energies ({>=}1 {mu}J) at

  1. Time-resolved absorption changes of the pheophytin Q{sub x} band in isolated photosystem II reaction centers at 7 K: Energy transfer and charge separation

    SciTech Connect

    Greenfield, S.R.; Seibert, M.; Wasielewski, M.R.

    1999-09-30

    The pheophytin a Q{sub x} spectral region of the isolated photosystem II reaction center was investigated at 7 K using femtosecond transient absorption spectroscopy. At this temperature, uphill energy transfer, which greatly complicates the interpretation of the kinetics at or near room temperature, should be essentially shut off. Low-energy ({approximately}100 nJ) pulses at 661 and 683 nm were used to excite the short-wavelength and long-wavelength sides of the composite Q{sub y} band, providing preferential excitation of the accessory pigment pool and P680, respectively. The data analysis uses a background subtraction technique developed earlier (Greenfield et al. J. Phys. Chem. B 1997, 101, 2251--2255) to remove the kinetic components of the data that are due to the large time-dependent changes in the background that are present in this spectral region. The instantaneous amplitude of the bleach of the pheophytin a Q{sub x} band with 683 nm excitation is roughly two-thirds of its final amplitude, providing strong evidence of a multimer description of the reaction center core. The subsequent growth of the bleach shows biphasic kinetics, similar to the earlier results at 278 K. The rate constant of the faster component is (5 ps){sup {minus}1} for 683 nm excitation (a factor of almost two faster than at 278 K), and represents the intrinsic rate constant for charge separation. The bleach growth with 661 nm excitation is also biphasic; however, the faster component appears to be a composite of a (5 ps){sup {minus}1} component corresponding to charge separation following subpicosecond energy transfer to the long-wavelength pigments and a roughly (22 ps){sup {minus}1} component corresponding to charge separation limited by slow energy transfer. The combined quantum yield for these two energy transfer processes is near unity. For both excitation wavelengths, there is also a roughly (100 ps){sup {minus}1} component to the bleach growth. Exposure to high excitation

  2. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  3. Measured and Theoretical Self- and N(2)-Broadened Line Parameters in the ν6 Band of CH(3)D

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyon; Predoi-Cross, Adriana; Smith, Mary Ann H.; Mantz, Arlan W.; Sinyakova, Tatyana; Buldyreva, Jeanna

    2014-06-01

    Monodeuterated methane (CH3D) is a constituent trace species in several planetary atmospheres, and its spectrum is often used in determinations of atmospheric H/D ratios. Methane plays an important role in terrestrial atmospheric chemistry. It is the most abundant hydrocarbon in our atmosphere and as an IR active gas makes an important contribution to the enhanced greenhouse effect. Methane is increasing in the Earth's atmosphere at a rate of about 1% per year. The current knowledge of its sources and sinks are not sufficient to isolate the cause of the observed changes in the mixing ratio and global distribution. As a result, the infrared spectrum of methane and its isotopomers is continually being investigated in order to obtain improved spectroscopic line parameters needed to interpret remote sensing observations. Remote sensing instruments require laboratory data sets based on measurements of very high accuracy. The primary objective of this study is to enhance our spectroscopic knowledge of monodeuterated methane in theν6 band located at 6.8 microns. We present measurement results for self- and N2-broadened line parameters from room temperature down to about 80 K. A total of 23 high-resolution, high S/N spectra recorded with two Fourier transform spectrometers: a) the McMath-Pierce FTS located on Kitt Peak and b) a Bruker IFS-125HR FTS at the Jet Propulsion Laboratory (JPL) 1 were fit simultaneously in a multispectrum approach. 2 The set included both pure CH3D and dilute mixtures of CH3D in research grade nitrogen. The variations in the measured line parameters with the symmetry species, the rotational quantum numbers and with temperature are reported and discussed in comparison with earlier measurements. For the case of nitrogen-broadening, we also provide semi-classical calculations based on a rigorous treatment of the active molecule as a symmetric top, a model intermolecular potential comprising both short- and long-range interactions, and exact

  4. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  5. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  6. Revision of Spectral Parameters for the b- and γ-BANDS of Oxygen and Their Validation Using Atmospheric Spectra with the Sun as Source

    NASA Astrophysics Data System (ADS)

    Gordon, I. E.; Rothman, L. S.; Toon, G. C.

    2011-06-01

    Until recently the B (B1ΣG+ (v=1)←X3Σ-G (v=0)) and γ (B1ΣG+ (v=2)←X3Σ-G (v=0)) bands of oxygen in the visible region had not been used extensively in satellite remote sensing. However, these bands (in particular the B-band) are now being considered for future satellite missions. In this light, it is important to make sure that the reference spectroscopic parameters are accurate enough to provide means of deducing important physical characteristics from the atmospheric spectra. The energy levels and intensities currently given for these bands in the HITRAN spectroscopic database had not been updated for over two decades. We have collected the best available measured line positions that involve the B1ΣG+ (v=1 and v=2) states for the three most abundant isotopologues of oxygen and performed a combined fit to obtain a consistent set of spectroscopic constants. These constants were then used to calculate the line positions. A careful review of the available intensity and line-shape measurements was also carried out, and new parameters were derived based on that review. In particular, line shift parameters that were not previously available were introduced. The new data have been tested in application to high-resolution atmospheric spectra measured with the Fourier transform spectrometers at Park Falls, WI (B-band) and Kitt Peak, AZ (γ-band) and have yielded substantial improvement. In addition, we report the first direct observation and analysis of the 16O18O lines in the γ-band. L.S. Rothman, I.E. Gordon, A. Barbe, D.Chris Benner, P.F. Bernath, et al, ``The HITRAN 2008 Molecular Spectroscopic Database,'' JQSRT 110, 532-572 (2009).

  7. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We coupled a radiative transfer approach with a soil hydrological model (HYDRUS 1D) and a global optimization routine SCE-UA to derive soil hydraulic parameters and soil surface roughness from measured brightness temperatures at 1.4 GHz (L-band) and measured rainfall and calculated potential soil ev...

  8. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  9. A Search for Formic Acid in the Upper Troposphere: A Tentative Identification of the 1105-cm(exp -1) nu(sub 6) Band Q Branch in High-Resolution Balloon-Borne Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02/cm resolution during a balloon flight from Alamogordo, N.M. (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105/ cm has been tentatively identified in upper tropospheric spectra as due to the nu(sub 6) band Q branch. A preliminary analysis indicates a concentration of approx. = 0.6 ppbv and approx. = 0.4 ppbv near 8 and 10 km, respectively.

  10. Cloud top height retrieval using the imaging polarimeter (3MI) top-of-atmosphere reflectance measurements in the oxygen absorption band

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Munro, Rose

    2016-04-01

    The determination of cloud top height from a satellite has a number of applications both for climate studies and aviation safety. A great variety of methods are applied using both active and passive observation systems in the optical and microwave spectral regions. One of the most popular methods with good spatial coverage is based on the measurement of outgoing radiation in the spectral range where oxygen strongly absorbs incoming solar light. Clouds shield tropospheric oxygen reducing the depth of the corresponding absorption line as detected by a satellite instrument. Radiative transfer models are used to connect the solar light reflectance, e.g., in the oxygen A-band located around 761nm, and the cloud top height. The inverse problem is then solved e.g. using look-up tables, to determine the cloud top height. In this paper we propose a new fast and robust oxygen A-band method for the retrieval of cloud altitude using the Multi-viewing Multi-channel Multi-polarization Imaging instrument (3MI) on board the EUMETSAT Polar System Second Generation (EPS-SG). The 3MI measures the intensity at the wavelengths of 410, 443, 490, 555, 670, 763, 765, 865, 910, 1370, 1650, and 2130nm, and (for selected channels) the second and third Stokes vector components which allows the degree of linear polarization and the polarization orientation angle of reflected solar light to be derived at up to 14 observation angles. The instrument response function (to a first approximation) can be modelled by a Gaussian distribution with the full width at half maximum (FWHM) equal to 20nm for all channels except 765nm, 865nm, 1370nm, 1650nm, and 2130nm, where it is equal to 40nm. The FWHM at 763nm (the oxygen A-band location) is equal to 10nm. The following 3MI channels are used in the retrieval procedure: 670, 763, and 865nm. The channels at 670 and 865 nm are not affected by the oxygen absorption. The channel at 763nm is affected by the oxygen concentration vertical profile. The higher

  11. Application of surface pressure measurements of O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II - A quasi-observational study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.

  12. Spectral line parameters including temperature dependences of N2- and self-broadened widths in the region of the nu9 band of C2H6 using a multispectrum fitting technique

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, Jean-Marie; Sung, Keeyoon; Brown, L. R.; Mantz, A. W.

    2010-04-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the nu9 band at 12 micron. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and self-broadened half width coefficients and their temperature dependences for a large number transitions. These measurements include several PQ and RQ sub-bands (and other sub bands such as PP, RR) in the nu9 fundamental band of 12C2H6 centered near 822 cm-1. Positions and intensities were measured for more than 1750 transitions. N2- and self-broadened half width coefficients were measured for over 1450 transitions while the temperature dependence exponents were determined for 1330 transitions. About 1900 additional measurements (mostly line positions and intensities) belonging to the nu9+nu4-nu4 hot band, 13C12CH6 nu9 band and over 500 unidentified transitions were also made in the fitted intervals. Forty-three high resolution (0.0016-0.003 cm-1) infrared laboratory absorption spectra recorded at temperatures between 150 and 298 K were fitted simultaneously in retrieving these parameters. Forty-one of these spectra were recorded in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 150 K were obtained using the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena, California. A specialized cooling cell capable of achieving temperatures down to 70 K was employed to record the 150 K spectra. Constraints pertaining to intensity ratios, doublet separations, half width coefficients and their temperature dependence exponents were written in determining these parameters for each of the two torsional split components. Similar to N2- and self-broadened half width coefficients, their temperature dependence exponents were

  13. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band.

    PubMed

    Han, Meikang; Yin, Xiaowei; Wu, Heng; Hou, Zexin; Song, Changqing; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2016-08-17

    Electromagnetic (EM) absorbing and shielding composites with tunable absorbing behaviors based on Ti3C2 MXenes are fabricated via HF etching and annealing treatment. Localized sandwich structure without sacrificing the original layered morphology is realized, which is responsible for the enhancement of EM absorbing capability in the X-band. The composite with 50 wt % annealed MXenes exhibits a minimum reflection loss of -48.4 dB at 11.6 GHz, because of the formation of TiO2 nanocrystals and amorphous carbon. Moreover, superior shielding effectiveness with high absorption effectiveness is achieved. The total and absorbing shielding effectiveness of Ti3C2 MXenes in a wax matrix with a thickness of only 1 mm reach values of 76.1 and 67.3 dB, while those of annealed Ti3C2 MXenes/wax composites are 32 and 24.2 dB, respectively. Considering the promising performance of Ti3C2 MXenes with the modified surface, this work is expected to open the door for the expanded applications of MXenes family in EM absorbing and shielding fields. PMID:27454148

  14. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band.

    PubMed

    Wainwright, P R

    2003-10-01

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur. PMID:14579857

  15. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  16. Temperature dependences of self- and N2-broadened line-shape parameters in the ν3 and ν5 bands of 12CH3D: Measurements and calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Malathy Devi, V.; Sutradhar, P.; Sinyakova, T.; Buldyreva, J.; Sung, K.; Smith, M. A. H.; Mantz, A. W.

    2016-07-01

    This paper presents the results of a spectroscopic line shape study of self- and nitrogen-broadened 12CH3D transitions in the ν3 and ν5 bands in the Triad region. We combined five pure gas spectra with eighteen spectra of lean mixtures of 12CH3D and nitrogen, all recorded with a Bruker IFS-125 HR Fourier transform spectrometer. The spectra have been analyzed simultaneously using a multispectrum nonlinear least squares fitting technique. N2-broadened line parameters for 184 transitions in the ν3 band and 205 transitions in the ν5 band were measured. In addition, line positions and line intensities were measured for 168 transitions in the ν3 band and 214 transitions in the ν5 band. We have observed 10 instances of weak line mixing corresponding to K″=3 A1 or A2 transitions. Comparisons were made for the N2-broadening coefficients and associated temperature exponents with corresponding values calculated using a semi-classical Robert Bonamy type formalism that involved an inter-molecular potential with terms corresponding to short- and long-range interactions, and exact classical molecular trajectories. The theoretical N2-broadened coefficients are overestimated for high J values, but are in good agreement with the experimental values for small and middle range J values.

  17. Absorption intensity changes and frequency shifts of fundamental and first overtone bands for OH stretching vibration of methanol upon methanol-pyridine complex formation in CCl4: analysis by NIR/IR spectroscopy and DFT calculations.

    PubMed

    Futami, Yoshisuke; Ozaki, Yasushi; Ozaki, Yukihiro

    2016-02-21

    Infrared (IR) and near infrared (NIR) spectra were measured for methanol and the methanol-pyridine complex in carbon tetrachloride. Upon the formation of the methanol-pyridine complex, the frequencies of both the fundamental and first overtone bands of the OH stretching vibration shifted to lower frequencies, and the absorption intensity of the fundamental increased significantly, while that of the first overtone decreased markedly. By using quantum chemical calculations, we estimated the absorption intensities and frequencies of the fundamental and first overtone bands for the OH stretching vibration based on the one-dimensional Schrödinger equation. The calculated results well reproduced the experimental results. The molecular vibration potentials and dipole moment functions of the OH stretching vibration modes were compared between methanol and the methanol-pyridine complex in terms of absorption intensity changes and frequency shifts. The large change in the dipole moment function was found to be the main cause for the variations in absorption intensity for the fundamental and first overtone bands. PMID:26862859

  18. The origin of inverse absorption bands observed in the far-infrared RAIRS spectra of SnCl 4 and SnBr 4 adsorbed on thin-film SnO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Awaluddin, A.; Pilling, M. J.; Wincott, P. L.; LeVent, S.; Surman, M.; Pemble, M. E.; Gardner, P.

    2002-04-01

    The adsorption of SnCl 4 and SnBr 4 on polycrystalline SnO 2 has been studied using synchrotron radiation based far-infrared reflection absorption infrared spectroscopy FIR-RAIRS. In order to exploit the sensitivity advantages of the buried metal layer method, the SnO 2 is in the form of a thin film deposited on a tungsten foil substrate. Adsorption of SnCl 4 and SnBr 4 on an oxygen sputtered surface at 120 K results in spectra characteristic of condensed multilayers. In addition, both spectra exhibit an inverse absorption band centred at 355 cm -1. Modified 4-layer, wavelength-dependent, Greenler calculations show that this inverse absorption band is induced by the presence of the adsorbate but is characteristic of the SnO 2 layer. The lack of any frequency shift upon changing the adsorbate from SnCl 4 to SnBr 4 rules out the possibility that the inverse absorption band is due to a dipole-forbidden parallel mode of the molecule excited via the interaction with free electron oscillations in the metal, resulting from the radiation induced oscillating electric field just below the surface.

  19. A neural network-based four-band model for estimating the total absorption coefficients from the global oceanic and coastal waters

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Cui, Tingwei; Quan, Wenting

    2015-01-01

    this study, a neural network-based four-band model (NNFM) for the global oceanic and coastal waters has been developed in order to retrieve the total absorption coefficients a(λ). The applicability of the quasi-analytical algorithm (QAA) and NNFM models is evaluated by five independent data sets. Based on the comparison of a(λ) predicted by these two models with the field measurements taken from the global oceanic and coastal waters, it was found that both the QAA and NNFM models had good performances in deriving a(λ), but that the NNFM model works better than the QAA model. The results of the QAA model-derived a(λ), especially in highly turbid waters with strong backscattering properties of optical activity, was found to be lower than the field measurements. The QAA and NNFM models-derived a(λ) could be obtained from the MODIS data after atmospheric corrections. When compared with the field measurements, the NNFM model decreased by a 0.86-24.15% uncertainty (root-mean-square relative error) of the estimation from the QAA model in deriving a(λ) from the Bohai, Yellow, and East China seas. Finally, the NNFM model was applied to map the global climatological seasonal mean a(443) for the time range of July 2002 to May 2014. As expected, the a(443) value around the coastal regions was always larger than the open ocean around the equator. Viewed on a global scale, the oceans at a high latitude exhibited higher a(443) values than those at a low latitude.

  20. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.

    PubMed

    Harb, Moussab; Masih, Dilshad; Takanabe, Kazuhiro

    2014-09-14

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta11O30. It is confirmed that the Cu(I)-based multi-metal oxides possess a strong contribution of filled Cu(I) states in the valence band and of empty d(0) metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications. PMID:25055167

  1. Extruded whole grain diets based on brown, soaked and germinated rice. Effects on cecum health, calcium absorption and bone parameters of growing Wistar rats. Part I.

    PubMed

    Albarracín, Micaela; Weisstaub, Adriana R; Zuleta, Angela; Drago, Silvina R

    2016-06-15

    The influence of diets with whole rice processed ingredients on cecum health, calcium absorption and bone parameters was studied using an animal model. Thirty-two male Wistar rats were fed with Control (C), extruded Brown rice (B), extruded Soaked whole rice (S) and extruded Germinated whole rice (G) diets for 60 days. The cecum weight, cecal content pH, cecal sIgA content, and β-glucosidase and β-glucuronidase activities were determined. Calcium apparent absorption, total bone mineral content and density and right femur parameters (ashes, organic content, calcium and P) were evaluated. The results showed that animals fed with whole grain diets have lower food intake in comparison with the C diet, and decreased cecal content pH (7.06 vs. 6.33) and β-glucosidase activity (1.66 vs. 0.21 μmol p-nitrophenol g(-1) cc h(-1)). Even though calcium apparent absorption was not different among treatments (∼70%), none of the whole grain diets improved calcium related bone parameters over the control fed rats (cellulose as dietary fibre). PMID:27199005

  2. Absorption of artificial piggery effluent by soils: Inverse optimisation of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Smith, Chris; Simunek, Jirka; Smiles, David

    2010-05-01

    Smiles and Smith (2004) performed controlled laboratory experiments on the transport of major cations (Na, K, Mg, Ca) during water absorption in horizontal soil columns for three different times. Experimental data consists of profiles of water contents, Cl concentrations, total aqueous and sorbed concentrations of the major cations. Numerical simulation of the experimental dataset requires a coupled code that can consider variably-saturated water flow, multi-component solute transport, and geochemical reactions (aqueous complexation and cation exchange). The HP1 code, based on coupled HYDRUS-1D and PHREEQC, is used to simulate this data set. The sorption of the major cations is described as a competitive cation exchange process. The objective of the study is to calibrate hydraulic, transport, and geochemical parameters using HP1, the universal optimization code UCODE_2005 (Poeter et al., 2005), and the experimental dataset of Smiles and Smith (2004). The dataset was used to calibrate three types of parameters: soil hydraulic parameters (the parameters of the van Genuchten-Mualem model for the soil hydraulic functions), solute transport parameters (dispersivity), and geochemical parameters (exchange coefficients for the major cations and the cation exchange capacity). Different calibration runs were performed with different sets of input data, different sets of optimized parameters, and different formulations of the cation exchange process (i.e., Gapon, Rothmund-Kornfeld). Overall, the description of the dataset with the coupled code is satisfactory. Estimated parameters are within expected ranges for the type of material used. References Poeter, E.P., M.C. Hill, E.R. Banta, S. Mehl, and C. Steen, 2005. UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration and uncertainty evaluation. U.S. Geological Survey Techniques and Methods 6-A11. Smiles, D.E., and C.J. Smith, 2004. Absorption of artificial piggery effluent by soil: A

  3. Measurement of the PPN Parameter (gamma) with radio signals from the Cassini Spacecraft at X- and Ka-Bands

    NASA Technical Reports Server (NTRS)

    Anderson, John D.; Lau, Eunice L.; Giampieri, Giacomo

    2005-01-01

    Radio Doppler data from the Cassini spacecraft during its solar conjunction in June 2002 can be used to measure the bending of light by solar gravitation. In terms of the standard post-Newtonian parameter (gamma), we find that (gamma) - 1 = (-1.3 +/- 5.2)x10^-5 in agreement with the theory of General Relativity. This result implies that the parameter (omega) in the Brans-Dicke theory is greater than 9000 at a 95% confidence level.

  4. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  5. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiment of the N K-edge and Ga M{sub 2,3} edges

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.; Lawniczak-Jablonska, K.; Suski, T.; Gullikson, E.M.; Underwood, J.H.; Perera, R.C.C.; Rife, J.C.

    1997-12-31

    X-ray absorption and glancing angle reflectivity measurements in the energy range of the Nitrogen K-edge and Gallium M{sub 2,3} edges are reported. Linear muffin-tin orbital band-structure and spectral function calculations are used to interpret the data. Polarization effects are evidenced for the N-K-edge spectra by comparing X-ray reflectivity in s- and p-polarized light.

  6. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc

    PubMed Central

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-01-01

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between and is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc. PMID:26206417

  7. Generalized structure scheme of program-technical complex for UHF signal parameter measurements in millimeter and submillimeter wavelength band

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.; Khabayev, P. V.; Kamyshin, Vladimir A.

    1996-12-01

    Special interest in the region of measuring technique of MM and subMM wavelength bands consists in carrying out devices for rapid frequency measuring and estimating of harmonical UHF signals intensity in wide frequency band 60-600 GHz. Power minimum level of these signals is equal 106 -iO W and its dynamicd range of input levels is equal about 60 dB. The measuring thne provided by this technique is equal not more 1 sec. In a number of works [1-3] of the recent time physics and technical bases and applied aspects of the Josephson effect concerned to problem of electromagnetic UHF radiation frequency measuring is examined. In these works a mechanism of the Josephson junction interaction with external electromagnetic UHF signals and relations, are given which simply connect the frequency of its oscillation with the voltage on the Josephson junction. The procedure of the harmonica! signal frequency measuring functionally may be reduced to the estimating of "special features" of the volt-ampere characteristic (VAC) or inverted VAC of the Josephson junction, which displays in the form of a step break of the characteristics under the strict coincidence of the external UHF frequencies and own oscillations of the junction under non-stationary mode as a result of its interaction. Thus for measuring harmonical and poliharmonical signals on the basis of the non-stationary Josefson effect it is necessary to identify the special feature of the VAC or *VAC and their deflection and to determine coordinates of the central point of the special feature or the *VAC deflections asymmetry center.

  8. Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance

    NASA Astrophysics Data System (ADS)

    Han, Dongying; li, Pei; An, Shujun; Shi, Peiming

    2016-03-01

    In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. A novel weak signal detection method aimed at the problem of detecting multi-frequency signals buried under heavy background noise is proposed based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance (SR). First, the noisy signal is processed by parameter compensation, with the noise and system parameters expanded 10 times to counteract the effect of the damping term. The processed signal is decomposed into multiple signals of different scale frequencies by wavelet transform. Following this, we adjust the size of the scaled signals' amplitudes and reconstruct the signals; the weak signal frequency components are then enhanced by multi-stable stochastic resonance. The enhanced components of the signal are processed through a band-pass filter, leaving the enhanced sections of the signal. The processed signal is analyzed by FFT to achieve detection of the multi-frequency weak signals. The simulation and experimental results show that the proposed method can enhance the signal amplitude, can effectively detect multi-frequency weak signals buried under heavy noise and is valuable and usable for bearing fault signal analysis.

  9. Quantum rotational band formulas from a two-parameter potential and the microscopic explanation from the fermion dynamical symmetry model

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Lou, Ji-Zhong; Jing, Xiao-Gong

    1995-06-01

    In this paper, we first demonstrate the applicability of a phenomenological two-parameter formula, as introduced by Holmberg and Lipas from the Bohr Hamiltonian in a way that is different from Wu and Zeng. Second, for the first time, we show microscopically that Holmberg's two-parameter formula can be applied to diatomic molecules and that it can fit the experimental data of rotational spectra of HCl, HBr, and HF very well when the parameters are determined by two arbitrary experimental levels. Third, we derive a two-parameter formula describing γ-soft rotational spectra which is similar to the Holmberg formula, called Holmberg-like formula in this paper. The experimental yrast lines of nine nuclei in the light rare-earth region are fitted by this formula. For the nuclear γ stiffness, γ softness, and for molecular rotational spectra, all the two-parameter formulas are obtained by making use of a single potential function. It is demonstrated that the reason why one can give a unified description for those three systems is the common rotational features like the widely used harmonic oscillator approximation. More importantly, from the more microscopic nuclear fermion dynamical symmetry model (FDSM), we may derive the variable moment of inertia (VMI) model, and further obtain the Holmberg formula and Holmberg-like formula under a certain approximation, as from the nuclear geometric description within the Bohr-Mottelson model (BM). It is shown that the bridge between the descriptions of the FDSM and of the BM is the effect of stretched alignment (stretching effect). According to another interpretation of the FDSM for the nuclear stretching effect, we also give a simple formula to explain the γ-soft rotational spectra and compare the formula with the above one. Finally, we give a phenomenological generalization to the combination of the Holmberg and Holmberg-like formulas, which may describe a transition from γ-stiff rotations to γ-soft rotations.

  10. Optimisation of flame parameters for simultaneous multi-element atomic absorption spectrometric determination of trace elements in rocks

    USGS Publications Warehouse

    Kane, J.S.

    1988-01-01

    A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.

  11. Spectroscopic evidence for the formation of singlet molecular oxygen (/sup 1/. delta. /sub g/O/sub 2/) upon irradiation of a solvent-oxygen (/sup 3/Sigma/sub g//sup -/O/sub 2/) cooperative absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R.

    1988-01-20

    It is well-known that the presence of molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) in a variety of organic solvents causes an often substantial red shift in the solvent absorption spectrum. This extra, broad absorption feature is reversibly removed by purging the solvent with nitrogen gas. Mulliken and Tsubomura assigned the oxygen-dependent absorption band to a transition from a ground state solvent-oxygen complex to a solvent-oxygen charge transfer (CT) state (sol/sup .+/O/sub 2//sup .-/). In addition to the broad Mulliken CT band, there are, often in the same spectral region, distinct singlet-triplet transitions (T/sub 1/ reverse arrow S/sub 0/) which are enhanced by molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/). Since both of these solvent-oxygen cooperative transitions may result in the formation of reactive oxygenating species, singlet molecular oxygen (/sup 1/..delta../sub g/O/sub 2/) and/or the superoxide ion (O/sub 2//sup .-/), it follows that recent studies have focused on unsaturated hydrocarbon oxygenation subsequent to the irradiation of the oxygen-induced absorption bands in both the solution phase and cryogenic (10 K) glasses. In these particular experiments, oxygenated products characteristic of both /sup 1/..delta../sub g/O/sub 2/ and O/sub 2//sub .-/ were obtained, although the systems studied appeared to involve the participation of one intermediate at the exclusion of the other. In this communication, the authors provide, for the first time, direct spectroscopic evidence for the formation of /sup 1/..delta../sub g/O/sub 2/ following a solvent-oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) cooperative absorption. They have observed, in a time-resolved experiment, a near-IR luminescence subsequent to laser excitation of the oxygen-induced absorption bands of mesitylene, p-xylene, o-xylene, toluene, and benzene at 355 nm and 1,4-dioxane at 266 nm. They suggest that this signal is due to /sup 1/..delta../sub g/O/sub 2

  12. Effect of Critical Plasma Spray Parameters on Microstructure and Microwave Absorption Property of Ti3SiC2/Cordierite Coatings

    NASA Astrophysics Data System (ADS)

    Su, Jinbu; Zhou, Wancheng; Wang, Hongyu; Liu, Yi; Qing, Yuchang; Luo, Fa; Zhu, Dongmei; Zhou, Liang

    2016-04-01

    Ti3SiC2/cordierite coatings with different critical plasma spray parameters (CPSP) were fabricated via atmospheric plasma spraying method. The microstructure and phase constitution of the as-sprayed Ti3SiC2/cordierite coatings were characterized. The effects of CPSP conditions on the electromagnetic shielding, and dielectric and microwave absorption properties of coatings in the frequency of 8.2-12.4 GHz were also measured and investigated. The results showed that both real and imaginary part of the complex permittivity decrease with increasing CPSP values, which can be ascribed to the decomposition of some Ti3SiC2 into TiC. The calculated reflection loss of the as-sprayed Ti3SiC2/cordierite coatings with different CPSP conditions and thicknesses indicates that coatings with CPSP 0.3, 0.35, and 0.425 exhibit excellent microwave absorption property in the thickness of 1.5 mm. In order to broaden the bandwidth of the coatings, a double-layer coating system was designed. The calculated reflection loss results show that when the thickness of matching layer is 0.3 mm and the thickness of absorbing layer is 1.5 mm, the double-layer coating system shows a proper microwave absorption property with a minimum absorption value of -17.37 dB at 9.67 GHz and a absorption bandwidth (RL less than -5 dB) of 4.16 GHz in the investigated frequency.

  13. Physical Parameters of Asteroids Estimated from the WISE 3 Band Data and NEOWISE Post-Cryogenic Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Grav, T.; Masiero, J.; Bauer, J.; Cutri, R.; McMillan, R.; Nugent, C. R.; Tholen, D.; Wright, E. L.

    2012-12-01

    Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of 6500 large Main Belt asteroids and 86 NEOs in its 3.4 and 4.6 $ um channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.

  14. PHYSICAL PARAMETERS OF ASTEROIDS ESTIMATED FROM THE WISE 3-BAND DATA AND NEOWISE POST-CRYOGENIC SURVEY

    SciTech Connect

    Mainzer, A.; Masiero, J.; Bauer, J.; Grav, T.; Cutri, R. M.; McMillan, R. S.; Nugent, C. R.; Tholen, D.; Walker, R.; Wright, E. L.

    2012-11-20

    Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Survey Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four-month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of {approx}6500 large Main Belt asteroids and 86 NEOs in its 3.4 and 4.6 {mu}m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.

  15. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-01

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions. PMID:24128921

  16. Construction of high-resolution trace element time-series in slow growth speleothems by LA-ICP-MS: Importance of parameter optimization and oriented band fabric imagery

    NASA Astrophysics Data System (ADS)

    Miller, N. R.; Griffiths, R. E.; Banner, J. L.

    2012-12-01

    Establishing high-resolution trace element time series in speleothems requires analytical techniques capable of representative sampling at sub-annual spatial resolution, but also possessing sufficient signal-to-noise to reliably discern potential season-to-season concentration variations. Growth rate is a major factor affecting both of these analytical challenges. To date, LA-ICP-MS, LA-MC-ICP-MS, SIMS, and μXRF techniques have been successfully applied to speleothem records, but nearly all studies have focused on speleothems with relatively fast growth rates of ≥ 100 μm/yr and which display well-defined banding. U-series dating of central Texas speleothems of the Edwards aquifer karst system demonstrate that calcite growth followed glacial-interglacial climate transitions spanning the past 70 ky. In contrast to previous high-resolution studies, central Texas speleothem growth rates seldom exceeded 25-50μm/yr and thus reside within a "slow-growth" (< 100 μm/yr) regime. Furthermore, seasonal banding is seldom revealed by conventional petrographic methods, thus complicating temporal/spatial sampling. To meet the analytical challenges posed by slow growth speleothems, we present an approach using LA-ICP-MS that integrates ablation and ionization parameters customized for speleothem calcite with oriented UV-fluorescence imagery. Ablation aerosol generation, transport, and ionization efficiency in the ICP are major interrelated factors affecting resolution of micro-scale, chemically-banded materials. To enhance chemical variations in finely banded materials, the aperture diameter must: (1) not exceed the critical sampling limit defined by the Nyquist frequency of the effective chemical waveform, whether sinusoidal or otherwise skewed with a higher frequency limb; and (2) must be capable of generating signals in excess of natural lateral heterogeneity and analytical noise components of measurement. Fabric-oriented, slow line scans, using narrow (5μm) rectangular

  17. Spatial and temporal characterization of a distilled water plasma using Laser-Induced Breakdown Spectroscopy (LIBS) - Effect of self-absorption on plasma parameters

    SciTech Connect

    Boussaiedi, S.; Hannachi, R.; Ghalila, H.; BenLakhdar, Z.; Taieb, G.

    2007-09-19

    The spatio-temporal evolution of the plasma induced by interaction of a Nd-YAG laser pulse with the surface of distilled water is described. The temporal evolution from 200 ns after the plasma creation to 2200 ns of the H{sub {alpha}} and H{sub {beta}} lines are reported. Supposing the Local Themodynamic Equilibrium (LTE), the two plasma parameters: electron density and temperature are determined, including the influence of the self-absorption on its measurements. The spatial evolution of the H{sub {beta}} intensity and of the electron density are given.

  18. Application of wavelet transforms to determine peak shape parameters for interference detection in graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sadler, D. A.; Littlejohn, D.; Boulo, P. R.; Soraghan, J. S.

    1998-08-01

    A procedure to quantify the shape of the absorbance-time profile, obtained during graphite furnace atomic absorption spectrometry, has been used to detect interference effects caused by the presence of a concomitant salt. The quantification of the absorption profile is achieved through the use of the Lipschitz regularity, α0, obtained from the wavelet transform of the absorbance-time profile. The temporal position of certain features and their associated values of α0 provide a unique description of the shape of the absorbance-time profile. Changes to the position or values of α0 between standard and sample atomizations may be indicative of uncorrected interference effects. A weak, but linear, dependence was found of the value of α0 upon the analyte concentration for Cr and Cu. The ability of the Lipschitz regularity to detect interference effects was illustrated for Pb, Se and Cu. For Pb, the lowest concentration of NaCl added, 0.005% m/v, changed both the values of α0 and the peak height absorbance. For Se, no change in the peak height and peak area absorbance signals was detected up to a NaCl concentration of 0.25% m/v. The values of the associated Lipschitz regularities were found to be invariant to NaCl concentration up to this value. For Cu, a concentration of 0.05% m/v NaCl reduced the peak height and peak area absorbance signals by approximately 25% and significantly altered the values of α0.

  19. Band gap bowing parameter in pseudomorphic Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structures

    SciTech Connect

    Goyal, Anshu; Kapoor, Ashok K.; Raman, R.; Dalal, Sandeep; Mohan, Premila; Muralidharan, R.

    2015-06-14

    A method for evaluation of aluminium composition in pseudomorphic Al{sub x}Ga{sub 1−x}N layer from the measured photoluminescence (PL) peak energy is presented here. The layers were grown by metalorganic chemical vapor deposition and characterized by high resolution X-ray diffraction (HRXRD), PL, cathodoluminescence, and atomic force microscopy. We estimated the value of biaxial stress in pseudomorphic Al{sub x}Ga{sub 1−x}N layers grown on sapphire and silicon carbide substrates using HRXRD scans. The effect of biaxial stress on the room temperature band edge luminescence in pseudomorphic Al{sub x}Ga{sub 1−x}N/GaN layers for various aluminium compositions in the range of 0.2 < x < 0.3 was determined. The value of pressure coefficient of band gap was also estimated. The stress corrected bowing parameter in Al{sub x}Ga{sub 1−x}N was determined as 0.50 ± 0.06 eV. Our values match well with the theoretically obtained value of bowing parameter from the density functional theory.

  20. Rotation spectrum and infrared fundamental bands of 123SbD3. Determination of molecular geometry and ab initio calculations of spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Canè, E.; di Lonardo, G.; Fusina, L.; Jerzembeck, W.; Bürger, H.; Breidung, J.; Thiel, W.

    The high resolution infrared spectrum of 123SbD3 has been recorded in the 20-350 cm-1 range and in the regions of the ν1, ν3 and ν2, ν4 fundamental bands centred at 1350 and 600 cm-1, respectively. Splitting of the K'' = 3, 6 lines have been observed both in the rotation and ro-vibration spectra. A large number of 'perturbation allowed' transitions with selection rules Δ(k -l) = ± 3, ± 6, and ± 9 have been identified in all fundamental bands. Accurate ground state molecular parameters have been determined by means of a simultaneous fit of the rotational transitions and about 12 000 ground state combination differences from the infrared bands. The A and B reductions of the rotational Hamiltonian provided almost equivalent results. The molecular parameters of the νi = 1 (i = 1 - 4) states were obtained as a result of the simultaneous analysis of the ν1 (A1)/ν3 (E) stretching and of the ν2 (A1)/ν4 (E) bending dyads. In fact, the corresponding excited states are affected by strong perturbations due to rovibrational interactions of Coriolis and k-type that have been treated explicitly in the model adopted for the analysis. Improved effective ground state and equilibrium geometries were determined for the molecule and compared to those of 123SbH3. Ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent large-core pseudopotential and large basis sets were carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of 123SbH3 and 123SbD3. The theoretical results are in good agreement with the experimental data.

  1. Preliminary evaluation of polarimetric parameters from a new dual-polarization C-band weather radar in an alpine region

    NASA Astrophysics Data System (ADS)

    Paulitsch, H.; Teschl, F.; Randeu, W. L.

    2010-05-01

    The first operational weather radar with dual polarization capabilities was recently installed in Austria. The use of polarimetric radar variables rises several expectations: an increased accuracy of the rain rate estimation compared to standard Z-R relationships, a reliable use of attenuation correction methods, and finally hydrometeor classification. In this study the polarimetric variables of precipitation events are investigated and the operational quality of the parameters is discussed. For the new weather radar also several polarimetric rain rate estimators, which are based on the horizontal polarization radar reflectivity, ZH, the differential reflectivity, ZDR, and the specific differential propagation phase shift, KDP, have been tested. The rain rate estimators are further combined with an attenuation correction scheme. A comparison between radar and rain gauge indicates that ZDR based rain rate algorithms show an improvement over the traditional Z-R estimate. KDP based estimates do not provide reliable results, mainly due to the fact, that the observed KDP parameters are quite noisy. Furthermore the observed rain rates are moderate, where KDP is less significant than in heavy rain.

  2. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  3. Evaluation of polarimetric parameters from a new dual-polarization C-band weather radar in an alpine region

    NASA Astrophysics Data System (ADS)

    Paulitsch, H.; Teschl, F.; Teschl, R.

    2009-04-01

    The first weather radar with dual polarization capabilities was recently installed in Austria. In contrast to conventional weather radars, where the reflectivity is measured in one polarization plane only, a dual polarization radar provides transmission in either horizontal, vertical, or both polarizations while receiving both the horizontal and vertical channels simultaneously. The back-scatter from precipitation particles is different for horizontal and vertical polarization, because these particles are usually far from being spherical. Information on size, shape, and material density of precipitation particles is obtained by comparing the reflected horizontal and vertical power returns and their ratio and correlation. The use of polarimetric radar variables can therefore increase the accuracy of the rain rate estimation compared to standard Z-R relationship of non-polarimetric radars. For the new weather radar different polarimetric rain rate estimators, which are based on the horizontal polarization radar reflectivity, Zh, the differential reflectivity, Zdr, and the specific differential phase shift, Kdp, are used. The rain rate estimators are further combined with an attenuation correction schema. In this study several radar observations of rainfall events are used to test the rain rate estimators and the attenuation correction. The results of the different algorithm are presented and a comparison with rain gauge measurements is made. Also the operational quality of the radar parameters is discussed and the implication of radar measurement errors on the accuracy of polarimetric rain rate estimations is shown.

  4. Self- and air-broadened line shape parameters in the ν2+ν3 band of 12CH4: 4500-4630 cm-1

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Mantz, Arlan W.; Sung, Keeyoon; Crawford, Timothy J.; Predoi-Cross, Adriana

    2015-02-01

    Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. In this paper, we report the self- and air-broadened Lorentz half-widths, pressure-induced shifts and line mixing coefficients (via off-diagonal relaxation matrix elements) along with their temperature dependences for methane ν2+ν3 absorption lines in the 4500-4630 cm-1 region of the Octad. For this, we recorded 14 high-resolution, high signal to noise ratio (S/N) spectra of high-purity (99.95% 12C-enriched) samples of pure methane and its dilute mixtures in dry air between 298 K and 148 K. A Bruker IFS 125HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California, was used to obtain the experimental data. The absorption cell used for this study was a specially built 20.38 cm long coolable cell installed in its sample compartment. The sample pressures for the pure 12CH4 spectra were 4.5-385 Torr; for the air-broadened spectra the total pressures ranged between 95 and 300 Torr with the methane volume mixing ratios between 0.04 and 0.097. All 14 spectra were fitted simultaneously using an interactive multispectrum nonlinear least-squares curve fitting technique. The results are compared to values reported in the literature.

  5. Intraband absorption in the 8-12 μm band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlattice

    NASA Astrophysics Data System (ADS)

    Zhuang, Q. D.; Li, J. M.; Li, H. X.; Zeng, Y. P.; Pan, L.; Chen, Y. H.; Kong, M. Y.; Lin, L. Y.

    1998-12-01

    Normal-incident infrared absorption in the 8-12-μm-atmospheric spectral window in the InGaAs/GaAs quantum-dot superlattice is observed. Using cross-sectional transmission electron microscopy, we find that the InGaAs quantum dots are perfectly vertically aligned in the growth direction (100). Under the normal incident radiation, a distinct absorption peaked at 9.9 μm is observed. This work indicates the potential of this quantum-dot superlattice structure for use as normal-incident infrared imaging focal arrays application without fabricating grating structures.

  6. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump–IR probe study

    PubMed Central

    Linke, Martin; Yang, Yang; Zienicke, Benjamin; Hammam, Mostafa A.S.; von Haimberger, Theodore; Zacarias, Angelica; Inomata, Katsuhiko; Lamparter, Tilman; Heyne, Karsten

    2013-01-01

    Photoisomerization of biliverdin (BV) chromophore triggers the photoresponse in native Agp1 bacteriophytochrome. We discuss heterogeneity in phytochrome Pr form to account for the shape of the absorption profile. We investigated different regions of the absorption profile by angle balanced polarization resolved femtosecond VIS pump–IR probe spectroscopy. We studied the Pr form of Agp1 with its natural chromophore and with a sterically locked 18Et-BV (locked Agp1). We followed the dynamics and orientations of the carbonyl stretching vibrations of ring D and ring A in their ground and electronically excited states. Photoisomerization of ring D is reflected by strong signals of the ring D carbonyl vibration. In contrast, orientational data on ring A show no rotation of ring A upon photoexcitation. Orientational data allow excluding a ZZZasa geometry and corroborates a nontwisted ZZZssa geometry of the chromophore. We found no proof for heterogeneity but identified a new, to our knowledge, electronic transition in the absorption profile at 644 nm (S0→S2). Excitation of the S0→S2 transition will introduce a more complex photodynamics compared with S0→S1 transition. Our approach provides fundamental information on disentanglement of absorption profiles, identification of chromophore structures, and determination of molecular groups involved in the photoisomerization process of photoreceptors. PMID:24138851

  7. Temperature dependence of the fundamental band gap parameters in cadmium-rich ZnxCd1-xSe using photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Lalita; Rath, S.; Abbi, S. C.; Jain, F. C.

    2003-10-01

    Thin films of ternary ZnxCd1-xSe were deposited on GaAs (100) substrate using metalorganic- chemical-vapour-deposition (MOCVD) technique. Temperature dependence of the nearband- edge emission from these Cd-rich ZnxCd1-x Se (for x _ 0_025, 0.045) films has been studied using photoluminescence spectroscopy. Relevant parameters that describe temperature variation of the energy and broadening of the fundamental band gap have been evaluated using various models including the two-oscillator model, the Bose-Einstein model and the Varshni model. While all these models suffice to explain spectra at higher temperatures, the two-oscillator model not only explains low temperature spectra adequately but also provides additional information concerning phonon dispersion in these materials.

  8. Parameter optimization for a high-order band-pass continuous-time sigma-delta modulator MEMS gyroscope using a genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Chang, Honglong; Yuan, Weizheng; Wilcock, Reuben; Kraft, Michael

    2012-10-01

    This paper describes a novel multiobjective parameter optimization method based on a genetic algorithm (GA) for the design of a sixth-order continuous-time, force feedback band-pass sigma-delta modulator (BP-ΣΔM) interface for the sense mode of a MEMS gyroscope. The design procedure starts by deriving a parameterized Simulink model of the BP-ΣΔM gyroscope interface. The system parameters are then optimized by the GA. Consequently, the optimized design is tested for robustness by a Monte Carlo analysis to find a solution that is both optimal and robust. System level simulations result in a signal-to-noise ratio (SNR) larger than 90 dB in a bandwidth of 64 Hz with a 200° s-1 angular rate input signal; the noise floor is about -100 dBV Hz-1/2. The simulations are compared to measured data from a hardware implementation. For zero input rotation with the gyroscope operating at atmospheric pressure, the spectrum of the output bitstream shows an obvious band-pass noise shaping and a deep notch at the gyroscope resonant frequency. The noise floor of measured power spectral density (PSD) of the output bitstream agrees well with simulation of the optimized system level model. The bias stability, rate sensitivity and nonlinearity of the gyroscope controlled by an optimized BP-ΣΔM closed-loop interface are 34.15° h-1, 22.3 mV °-1 s-1, 98 ppm, respectively. This compares to a simple open-loop interface for which the corresponding values are 89° h-1, 14.3 mV °-1 s-1, 7600 ppm, and a nonoptimized BP-ΣΔM closed-loop interface with corresponding values of 60° h-1, 17 mV °-1 s-1, 200 ppm.

  9. C[sub 60] in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation

    SciTech Connect

    Bensasson, R.V.; Dellinger, M. ); Bienvenue, E.; Seta, P. ); Leach, S. Observatoire de Paris-Meudon, Meudon )

    1994-03-31

    A study was made of the solubilization of C[sub 60] in various solvents and systems of biological interest, i.e., octanols, micelles, and liposomes, using visible-UV absorption spectroscopy as a diagnostic tool. The state of incorporation of C[sub 60] molecules in micellar and colloidal liposome solutions was monitored using a number of spectroscopic criteria of solute-solvent and solute-solute interactions based on comparison with spectra obtained in alkane and octanol solvents and from thin films of C[sub 60]. Spectral red shifts and intensity modifications of C[sub 60] absorption and C[sub 60] aggregation are discussed in terms of environment-dependent physical parameters. The results indicate that C[sub 60] can be dispersed in micellar solutions of Triton X-100 and Triton X-100 R-S, the fullerene molecules being localized in the inner hydrophobic part of the micelles. C[sub 60] was shown to be incorporated, mainly as aggregates, into phosphatidylcholine liposome colloidal solutions. It is concluded that micellar and liposome solutions can be prepared which could be used to transfer individual C[sub 60] molecules, or groups of molecules, to biological cells. 38 refs., 9 figs., 2 tabs.

  10. Matrix-assisted laser desorption and ionization in the O---H and C=O absorption bands of aliphatic and aromatic matrices: dependence on laser wavelength and temporal beam profile

    NASA Astrophysics Data System (ADS)

    Cramer, Rainer; Haglund, Richard F.; Hillenkamp, Franz

    1997-12-01

    A tunable free-electron laser (FEL) was used to initiate infrared (IR) matrix-assisted laser desorption and ionization (MALDI) of small proteins in aliphatic and aromatic matrices. The laser wavelength was scanned from 2.65 to 4.2 [mu]m and from 5.5 to 6.5 [mu]m, covering the absorption bands of the O---H and C=O stretching vibrations found in such commonly used IR matrices as succinic, fumaric and nicotinic acids. The temporal profile of the laser pulse was also varied using a broadband electro-optic switch (Pockels cell) to study the effects of fluence and irradiance. Although there are absorption peaks at 3.3 [mu]m for succinic acid and fumaric acid, and at 4.1 [mu]m for nicotinic acid, the lowest threshold-fluence for IR MALDI in this region was around 2.94 [mu]m for all matrices. Moreover, the threshold-fluence increased with increasing absorption up to a value five times that of the 2.94 [mu]m value. This result raises questions about the relative contributions of the different sample constitutents to the absorption and the role of resonant absorption in IR MALDI. The threshold-fluences are typically one order of magnitude higher than those for ultraviolet (UV) MALDI, while extinction coefficients of the IR matrices are 100-1000 times smaller than for UV matrices. Therefore, the absorbed energies per unit volume at the MALDI threshold are 10-100 times smaller than in UV MALDI. All these facts clearly indicate that a different desorption/ionization process must be operative in IR MALDI. Variations in temporal profile of the FEL pulse also revealed that ion desorption depends on laser irradiance rather than laser fluence, a result which cannot be explained simply by energy loss due to heat conduction. Two possible models for IR desorption are suggested based on these observations.

  11. High-resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, Peter L.; Ito, K.; Parkinson, W. H.

    1991-01-01

    Theoretical descriptions of the abundance and excitation of carbon monoxide in interstellar clouds require accurate data on the vacuum-ultraviolet absorption spectrum of the molecule. The 6.65 m spectrometer at the Photon Factory synchrotron light source was used to measure photoabsorption cross sections of CO features between 91.2 and 100.4 nm. These data were recorded at a resolving power of 170,000, more than 20 times greater than that used in previous work.

  12. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  13. Spectral Line Parameters Including Temperature Dependences of Self- and Air-Broadening in the 2 (left arrow) 0 Band of CO at 2.3 micrometers

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.

    2012-01-01

    Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.

  14. Parameter Selection and Longitudinal Phase Space Simulation for a Single Stage X-Band FEL Driver at 250 MeV

    SciTech Connect

    Sun, Yipeng; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2011-08-19

    Hard x-ray Free electron lasers (FEL) are being built or proposed at many accelerator laboratories as it supports wide range of applications in many aspects. Most of the hard x-ray FEL design is similar with the SLAC Linac Coherent Light Source (LCLS), which features a two (or multiple) stage bunch compression. For the first stage of the bunch compression, usually the beam is accelerated in a lower-frequency RF section (such as S-band for LCLS), and then the longitudinal phase space is linearized by a higher-frequency RF section (harmonic RF, such as X-band for LCLS). In this paper, a compact hard x-ray FEL design is proposed, which is based on X-band RF acceleration and eliminating the need of a harmonic RF. The parameter selection and relation is discussed, and the longitudinal phase space simulation is presented. The FEL coherence condition of the electron beam in the undulators requires a large charge density, a small emittance and small energy spread. The RMS electron bunch length from the injector is in the ps scale, with a bunch charge in the range of hundreds pC to several nC, which means that the current is roughly 0.1 kA. According to the requirement from soft x-ray lasing and hard x-ray lasing, a peak current of 1 kA and 3 kA is needed respectively. Thus the bunch has to be compressed. Usually a two stage bunch compression or multipole stage bunch compression is adopted. The z-correlated energy chirp is normally established by letting the beam pass through a section of RF cavities, with a RF phase off crest. As stated above, S-band RF (3 GHz) acceleration could be applied in this section. Due to the nature of RF acceleration wave, the chirp on the bunch is not linear, but has the RF curvature on it. In order to linearize the energy chirp, a harmonic RF section with higher frequency is needed. For LCLS a short X-band RF section (12 GHz) is used which is a fourth order harmonic. The linearized bunch is then passing by a dispersive region, in which the

  15. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  16. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the (1)B(2u) Absorption Band of Benzene, Including the Kekule Vibrational Modes ν(9) and ν(10).

    PubMed

    Willitsford, Adam H; Chadwick, C Todd; Kurtz, Stewart; Philbrick, C Russell; Hallen, Hans

    2016-02-01

    Resonance Raman spectroscopy provides much stronger Raman signal levels than its off-resonant counterpart and adds selectivity by excitation tuning. Raman preresonance of benzene has been well studied. On-resonance studies, especially at phonon-allowed absorptions, have received less attention. In this case, we observe resonance of many of the vibration modes associated motion of the carbons in the ring while tuning over the (1)B2u absorption, including the related ν9 (CC stretch Herzberg notation, ν14 Wilson notation) and ν10 (CH-parallel bend Herzberg notation, ν15 Wilson notation) vibrational modes along with the ν2 (CC-stretch or ring-breathing Herzberg notation, ν1 Wilson notation) mode and multiples of the ν18 (CCC-parallel bend Herzberg notation, ν6 Wilson notation) vibrational mode. The ring-breathing mode is found to mix with the b2u modes creating higher frequency composites. Through the use of an optical parametric oscillator (OPO) to tune through the (1)B2u absorption band of liquid benzene, a stiffening (increase in energy) of the vibrational modes is observed as the excitation wavelength nears the (1)B2u absorption peak of the isolated molecule (vapor) phase. The strongest resonance amplitude observed is in the 2 × ν18 (e2g) mode, with nearly twice the intensity of the ring-breathing mode, ν2. Several overtones and combination modes, especially with ν2 (a1g), are also observed to resonate. Raman resonances on phonon-allowed excitations are narrow and permit the measurement of vibrations not Raman-active in the ground state. PMID:26731431

  17. H(2)O--N(2) collision-induced absorption band intensity in the region of the N(2) fundamental: ab initio investigation of its temperature dependence and comparison with laboratory data.

    PubMed

    Baranov, Yu I; Buryak, I A; Lokshtanov, S E; Lukyanchenko, V A; Vigasin, A A

    2012-06-13

    The present paper aims at ab initio and laboratory evaluation of the N(2) collision-induced absorption band intensity arising from interactions between N(2) and H(2)O molecules at wavelengths of around 4 μm. Quantum chemical calculations were performed in the space of five intermolecular coordinates and varying N--N bond length using Møller-Plesset perturbation and CCSD(T) methods with extrapolation of the electronic energy to the complete basis set. This made it possible to construct the intermolecular potential energy surface and to define the surface of the N--N dipole derivative with respect to internal coordinate. The intensity of the nitrogen fundamental was then calculated as a function of temperature using classical integration. Experimental spectra were recorded with a BOMEM DA3-002 FTIR spectrometer and 2 m base-length multipass White cell. Measurements were conducted at temperatures of 326, 339, 352 and 363 K. The retrieved water-nitrogen continuum significantly deviates from the MT_CKD model because the relatively strong nitrogen absorption induced by H(2)O was not included in this model. Substantial uncertainties in the measurements of the H(2)O-N(2) continuum meant that quantification of any temperature dependence was not possible. The comparison of the integrated N(2) fundamental band intensity with our theoretical estimates shows reasonably good agreement. Theory indicates that the intensity as a function of temperature has a minimum at approximately 500 K. PMID:22547239

  18. Effect of Substitution of Mn, Cu, and Zr on the Structural, Magnetic, and Ku-Band Microwave-Absorption Properties of Strontium Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Moradi, Mahmood; Alam, Reza Shams; Mardani, Reza

    2016-08-01

    The ferrites with the compositions of SrMn x Cu x Zr2 x Fe(12-4 x)O19 ( x = 0.0, 0.2, 0.3, 0.4, and 0.5) are synthesized by the coprecipitation method. The formation of M-type hexaferrite is confirmed by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. The morphology of the samples is shown by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) microscopy. Vibrating sample magnetometer (VSM) analysis has been used for the investigation of the magnetic properties, and the reason for the changes in the magnetic properties as a result of doping, are expressed. The values of coercivity decrease by increasing the amount of substitution, which could be related to the modification of anisotropy form the c-axis toward the c-plane. Finally, we have used vector network analysis to investigate the microwave absorption properties. We find that the samples with the composition of SrMn0.4Cu0.4Zr0.8Fe10.4O19 have the largest reflection loss and the widest bandwidth among these samples.

  19. Enhanced Microwave Absorption of SiO2-Coated Fe0.65Co0.35 Flakes at a Wide Frequency Band (1-18 GHz)

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Gong, Rongzhou; Wang, Xian; Song, Kai; Chen, Yajie; Harris, Vincent G.

    2016-07-01

    Fe0.65Co0.35 (Fe-35Co) flakes were coated with SiO2 by the Stober process. The complex permittivity and permeability of both Fe-35Co and Fe-35Co/SiO2 composites were investigated over the frequency range of 1-18 GHz. Two dielectric resonance peaks were found in the Fe-35Co/SiO2 composite. Magnetic loss was verified to arise predominately from the natural resonance. Of particular importance is the natural resonance frequency increases with the SiO2 cladding. The experiments indicated that a reflection loss (RL) less than -20 dB for the Fe-35Co/SiO2 composites can be measured over the frequency range of 5.16-10.6 GHz with an absorbing thickness of 2-3.5 mm. Furthermore, an optimal RL of -60.23 dB was observed at 6.27 GHz with a thickness of 2.93 mm. The results provide a valuable path towards realizing microwave absorption over a wide frequency range.

  20. Enhanced Microwave Absorption of SiO2-Coated Fe0.65Co0.35 Flakes at a Wide Frequency Band (1-18 GHz)

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Gong, Rongzhou; Wang, Xian; Song, Kai; Chen, Yajie; Harris, Vincent G.

    2016-05-01

    Fe0.65Co0.35 (Fe-35Co) flakes were coated with SiO2 by the Stober process. The complex permittivity and permeability of both Fe-35Co and Fe-35Co/SiO2 composites were investigated over the frequency range of 1-18 GHz. Two dielectric resonance peaks were found in the Fe-35Co/SiO2 composite. Magnetic loss was verified to arise predominately from the natural resonance. Of particular importance is the natural resonance frequency increases with the SiO2 cladding. The experiments indicated that a reflection loss (RL) less than -20 dB for the Fe-35Co/SiO2 composites can be measured over the frequency range of 5.16-10.6 GHz with an absorbing thickness of 2-3.5 mm. Furthermore, an optimal RL of -60.23 dB was observed at 6.27 GHz with a thickness of 2.93 mm. The results provide a valuable path towards realizing microwave absorption over a wide frequency range.

  1. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  2. Singlet molecular oxygen ( sup 1. Delta. sub g O sub 2 ) formation upon irradiation of an oxygen ( sup 3. Sigma. sub g sup minus O sub 2 )-organic molecule charge-transfer absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R. )

    1989-07-13

    Singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) phosphorescence ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2} {l arrow} {sup 1}{Delta}{sub g}O{sub 2}: 1270 nm) has been observed in a time-resolved experiment subsequent to pulsed UV laser irradiation of the oxygen ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2})-organic molecule charge-transfer bands of liquid aromatic hydrocarbons (mesitylene, p-xylene, o-xylene, toluene, benzene), ethers (tetrahydrofuran, 1,4-dioxane, glyme, diglyme, triglyme), alcohols (methanol, propanol), and aliphatic hydrocarbons (cyclohexane, cyclooctane, decahydronaphthalene). Although {sup 1}{Delta}{sub g}O{sub 2} could originate from a variety of different processes in these oxygenated solvent systems, we have used the results of several independent experiments to indicate that an oxygen-solvent charge-transfer (CT) state is the {sup 1}{Delta}{sub g}O{sub 2} precursor. Other transient species have also been observed in time-resolved absorption experiments subsequent to pulsed UV irradiation of the oxygen-solvent CT bands. Some of these molecular transients, or species derived from these intermediates, may be responsible for an observed increase in the rate of {sup 1}{Delta}{sub g}O{sub 2} decay under certain conditions.

  3. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  4. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  5. LINE ABSORPTION OSCILLATOR STRENGTHS FOR THE c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) BANDS IN N{sub 2}

    SciTech Connect

    Lavin, C.; Velasco, A. M.

    2011-09-20

    Theoretical absorption oscillator strengths and emission branching ratios for rotational lines of the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) bands of molecular nitrogen are reported. The calculations have been performed with the molecular quantum defect orbital method, which has proved to be reliable in previous studies of rovibronic transitions in diatomic molecules. The strong interaction between c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) and b' {sup 1}{Sigma}{sup +}{sub u}(10) states has been analyzed through an interaction matrix that includes rotational terms. Owing to the perturbation, the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0), c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(1), and c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(5) bands are not weak, in contrast to what would be expected on the basis of the Franck-Condon principle. Moreover, the intensity distribution of the rotational lines within each of the vibronic bands deviates from considerations based on Hoenl-London factors. In this work, we provide data that may be useful to interpret spectra from atmospheres of the Earth, Titan, and Triton, in which transitions from the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) level have been detected.

  6. Band models and correlations for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1975-01-01

    Absorption of infrared radiation by various line and band models are briefly reviewed. Narrow band model relations for absorptance are used to develop 'exact' formulations for total absorption by four wide band models. Application of a wide band model to a particular gas largely depends upon the spectroscopic characteristic of the absorbing-emitting molecule. Seven continuous correlations for the absorption of a wide band model are presented and each one of these is compared with the exact (numerical) solutions of the wide band models. Comparison of these results indicate the validity of a correlation for a particular radiative transfer application. In radiative transfer analyses, use of continuous correlations for total band absorptance provides flexibilities in various mathematical operations.

  7. Absorption and emission by atmospheric gases - The physical processes

    NASA Astrophysics Data System (ADS)

    McCartney, E. J.

    This book has been written for those who wish to understand better the processes of absorption and emission and their manifold effects. Persons having such interests or needs are the workers in meteorology, atmospheric physics, aerospace surveillance, and air-pollution control. Introductory ideas and useful facts are presented, taking into account an overview of absorption and emission, the electromagnetic spectrum and its parameters, the quantization of energy, the molecular origins of spectra, and the laws of blackbody radiation. Gas properties are considered along with thermodynamics, molecular kinetics, quantized energy states and population, molecular internal energies, spectra of energy transitions, and parameters of line and band absorption. Attention is given to molecular dipole moments, rotational energy and transitions, vibrational energy and transitions, and absorption and emission data.

  8. Intensity Measurements of the 01(sup 1)21-00(sup 0)01 Perpendicular CO2 band at 5315 cm (sup -1) and 4 related hot bands

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Chackerian, Charles, Jr.; Spencer, Mark N.; Brown, Linda R.; Wattson, Richard B.; Gore, Warren J. (Technical Monitor)

    1994-01-01

    The near-infrared thermal emission windows in the spectrum of the night-side of Venus have stimulated new determinations of the intensities of weak CO2 bands which are prominent absorption features in Venus spectra. We have previously measured the 31(sup 1)04-00(sup 0)01 band at 4416 cm (sup -1), which dominates a portion of the 2.2 micrometer window, using the 25-meter White absorption cell at Ames. Parameters for many of the unmeasured bands have been recomputed for the HITRAN compilation using direct numerical diagonalization. This procedure has some uncertainties, particularly for higher overtone-combination perpendicular bands, and substantial differences were noted for these bands when comparing the 1986 HITRAN tabulation with the 1992 values. To clarify this situation, we decided to measure the intensities of several of these bands; L.R.B. obtained spectra using the McMath FTS and 6 meter White cell, covering the region 3800 to 7700 cm (sup -1). A table is provided in which we compare our measured intensities and Herman-Wallis al parameters for the 01(sup 1)21-00(sup 0)01 band and 4 associated hot bands with both Hitran tabulations. It is anticipated that these measured values will be useful in further DND calculations of many very weak unmeasurable bands.

  9. Optical Parameters of Leaves of 30 Plant Species 1

    PubMed Central

    Gausman, H. W.; Allen, W. A.

    1973-01-01

    Optical parameters (absorption coefficient k, infinite reflectance R∞, scattering coefficient 8) are tabulated for seven wavelengths and analyzed for statistical differences for 30 plant species. The wavelengths are: 550 nm (green reflectance peak), 650 nm (chlorophyll absorption band), 850 nm (infrared reflectance plateau), 1450 nm (water absorption band), 1650 nm (reflectance peak following water absorption band at 1450 nm), 1950 nm (water absorption band), and 2200 nm (reflectance peak following water absorption band at 1950 nm). Thick, complex dorsiventral (bifacial mesophyll) leaves such as rubber plant, begonia, sedum, and privet had lower R∞ values than thinner, less complex dorsiventral leaves (i.e., soybean, peach, bean, rose) or essentially centric (undifferentiated mesophyll) sorghum and corn leaves. Infinite reflectance was negatively correlated with leaf thickness (−0.734**). Thick, complex dorsiventral leaves (crinum, oleander, privet, rubber plant, sedum) had higher (p 0.01) k values than thinner, less complex dorsiventral leaves (i.e., soybean, rose, peach) or essentially centric sorghum, sugarcane, and corn leaves. A coefficient of 0.718** was obtained for the correlation of k values with leaf thickness values. Complex dorsiventral oleander, orange, and crinum leaves had higher (p 0.01) 8 values than less complex dorsiventral (i.e., onion, begonia, banana) or centric leaves (i.e., corn and sugarcane). The scattering coefficient was not correlated with leaf thickness. PMID:16658499

  10. An aerosol absorption remote sensing algorithm

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Winker, D. M.; Hu, Y.; Trepte, C. R.; Lucker, P. L.

    2013-12-01

    Aerosol absorption plays an important role in the climate by modulating atmospheric radiative forcing processes. Unfortunately aerosol absorption is very difficult to obtain via satellite remote sensing techniques. In this work we have built an algorithm to obtain aerosol absorption optical depth using both measurements from a passive O2 A-band spectrometer and an active lidar. The instrument protocols for these two satellite instruments are the O2 A-band spectrometer onboard the Orbiting Carbon Observatory (OCO-2) and the CALIOP onboard CALIPSO. The aerosol height and typing information is obtained from the CALIOP measurement. The aerosol extinction and absorption optical depths are then retrieved by fitting the forward model simulations to the O2 A-band spectrometer measurements. The forward model simulates the scattering and absorption of solar light at high spectral resolution in the O2 A-band region. The O2 and other gas absorption coefficients near 0.76 micron are calculated by either the line-by-line code (for instance, the Atmospheric Radiative Transfer Simulator) or the OCO2 ABSCO Look-Up-Table. The line parameters used are from the HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/). The multiple light scattering by molecules, aerosols, and clouds is handled by the radiative transfer model based on the successive order of scattering method (Zhai et al, JQSRT, Vol. 111, pp. 1025-1040, 2010). The code is parallelized with Message Passing Interface (MPI) for better efficiency. The aerosol model is based on Shettle and Fenn (AFGL-TR 790214, 1979) with variant relative humidity. The vertical distribution of the aerosols and clouds will be read in from the CALIPSO product (http://www-calipso.larc.nasa.gov). The surface albedo is estimated by the continuum of the three bands of OCO2 payloads. Sensitivity study shows that the Gaussian quadrature (stream) number should be at least 12 to ensure the reflectance error is within 0.5% at the top of the atmosphere

  11. Enhanced absorption of graphene strips with a multilayer subwavelength grating structure

    SciTech Connect

    Hu, Jin-Hua; Huang, Yong-Qing Duan, Xiao-Feng; Wang, Qi; Zhang, Xia; Wang, Jun; Ren, Xiao-Min

    2014-12-01

    The optical absorption of graphene strips covered on a multilayer subwavelength grating (MSG) surface is theoretically investigated. The absorption of graphene strips with MSG is enhanced in the wavelength range of 1500 nm to 1600 nm by critical coupling, which is associated with the combined effects of a guided resonance of MSG and its photonic band gap effect. The critical coupling of the graphene strips can be controlled by adjusting the incident angle without changing the structural parameters of MSG. The absorption of graphene strips can also be tuned by varying key parameters, such as grating period, strip width, and incident angle.

  12. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  13. LASER APPLICATIONS AND OTHER TOPICS: Theory and optimization of the parameters of a polarization method for the measurement of weak absorption in optical materials

    NASA Astrophysics Data System (ADS)

    Glebov, L. B.; Dokuchaev, V. G.; Petrovskiĭ, G. T.

    1987-06-01

    A theoretical analysis is made of a polarization calorimetric method for the determination of weak absorption in optical materials. Several variants of the method are considered and the optimal conditions for its application are identified. The sensitivity of the method is ~1 dB/km for a sample 1 cm thick. It is shown that the method can be used to determine absorption in optically anisotropic materials.

  14. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  15. Four-band Hamiltonian for fast calculations in intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Luque, Antonio; Panchak, Aleksandr; Vlasov, Alexey; Martí, Antonio; Andreev, Viacheslav

    2016-02-01

    The 8-dimensional Luttinger-Kohn-Pikus-Bir Hamiltonian matrix may be made up of four 4-dimensional blocks. A 4-band Hamiltonian is presented, obtained from making the non-diagonal blocks zero. The parameters of the new Hamiltonian are adjusted to fit the calculated effective masses and strained QD bandgap with the measured ones. The 4-dimensional Hamiltonian thus obtained agrees well with measured quantum efficiency of a quantum dot intermediate band solar cell and the full absorption spectrum can be calculated in about two hours using Mathematica© and a notebook. This is a hundred times faster than with the commonly-used 8-band Hamiltonian and is considered suitable for helping design engineers in the development of nanostructured solar cells.

  16. AM1/CI, CNDO/S and ZINDO/S computations of absorption bands and their intensities in the UV spectra of some 4(3H)-quinazolinones

    NASA Astrophysics Data System (ADS)

    Eshimbetov, A. G.; Kristallovich, E. L.; Abdullaev, N. D.; Tulyaganov, T. S.; Shakhidoyatov, Kh. M.

    2006-10-01

    A detailed analysis of both frontier MOs and electronic transitions in UV spectra of 16 4-quinazolinone derivatives has been carried out in MO terms, by semiempirical methods AM1/CI, CNDO/S and ZINDO/S. On the basis of experimental and theoretical investigations by the ZINDO/S and CNDO/S methods the long-wavelength bands of 4(3H)-quinazolinone and its derivatives have been assigned to n → π* transition of the lbond2 C dbnd O fragment and to the transition caused by intramolecular charge transfer from Ph and N dbnd C sbnd N fragments to lbond2 C dbnd O group. It was shown that theoretically obtained electronic transitions applying method AM1/CI are not in agreement with experimental data observed for the 4(3H)-quinazolinone and 2,4(1H,3H)-quinazolinedione. Good correlation of theoretical and experimental data has been obtained by the method ZINDO/S for the wavelengths and the molar extinction coefficients of the compounds studied. Satisfactory correlation of theoretical and experimental data has also been obtained by the method CNDO/S with singly and doubly excited configurations, for the wavelengths only. Such correlations on experimental and theoretical wavelength and molar absorption coefficients of 4-quinazolinone derivatives are carried out for the first time.

  17. AM1/CI, CNDO/S and ZINDO/S computations of absorption bands and their intensities in the UV spectra of some 4(3H)-quinazolinones.

    PubMed

    Eshimbetov, A G; Kristallovich, E L; Abdullaev, N D; Tulyaganov, T S; Shakhidoyatov, Kh M

    2006-10-01

    A detailed analysis of both frontier MOs and electronic transitions in UV spectra of 16 4-quinazolinone derivatives has been carried out in MO terms, by semiempirical methods AM1/CI, CNDO/S and ZINDO/S. On the basis of experimental and theoretical investigations by the ZINDO/S and CNDO/S methods the long-wavelength bands of 4(3H)-quinazolinone and its derivatives have been assigned to n-->pi(*) transition of the CO fragment and to the transition caused by intramolecular charge transfer from Ph and NCN fragments to CO group. It was shown that theoretically obtained electronic transitions applying method AM1/CI are not in agreement with experimental data observed for the 4(3H)-quinazolinone and 2,4(1H,3H)-quinazolinedione. Good correlation of theoretical and experimental data has been obtained by the method ZINDO/S for the wavelengths and the molar extinction coefficients of the compounds studied. Satisfactory correlation of theoretical and experimental data has also been obtained by the method CNDO/S with singly and doubly excited configurations, for the wavelengths only. Such correlations on experimental and theoretical wavelength and molar absorption coefficients of 4-quinazolinone derivatives are carried out for the first time. PMID:16495133

  18. Observation and analysis of the SF6ν2 + ν4-ν5 band: Improved parameters for the v5 = 1 state

    NASA Astrophysics Data System (ADS)

    Faye, M.; Boudon, V.; Loëte, M.; Roy, P.; Manceron, L.

    2016-07-01

    In this paper, we present the high resolution analysis of the weak ν2 +ν4 -ν5 band of SF6 around 735 cm-1. The spectra were recorded on the AILES Beamline at the SOLEIL Synchrotron facility using a cryogenic multipass cell coupled to a Bruker 125HR spectrometer with a maximum resolution of 0.00102 cm-1. For this band, we worked with 4 mbar of SF6 at a temperature of 223 ± 2 K. The optical path length was fixed to 141 m and the spectrum recorded with 0.001 cm-1 of resolution. A new, cold spectrum of the ν2 +ν4 band was also collected at 153 K, 15-m path length, and 0.0015 cm-1 resolution. The analysis was performed by using the Dijon group XTDS and SPVIEW software, based on tensorial formalism. We achieved correct simulation and line position assignments of the ν2 +ν4 -ν5 band, by gathering ν2 +ν4 data and ν5 Raman data. We could assign 3553 transition for ν2 +ν4 -ν5 with a standard deviation of 1.292 ×10-3 cm-1. This analysis also helped improve the v2 = v4 = 1 level and the v5 = 1 fundamental level v2 = v4 = 1.

  19. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  20. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    SciTech Connect

    Serebryannikov, Andriy E.; Nojima, S.; Alici, K. B.; Ozbay, Ekmel

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  1. Laser supported solid state absorption fronts in silica

    SciTech Connect

    Carr, C W; Bude, J D

    2010-02-09

    We develop a model based on simulation and experiment that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm{sup 2}) laser exposure. We find that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. This behavior is driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  2. Multiphonon infrared absorption in silicon

    NASA Astrophysics Data System (ADS)

    Pradhan, M. M.; Garg, R. K.; Arora, M.

    1987-01-01

    Investigations have been carried out on silicon crystals, grown by float zone (FZ) and Czochralski (CZ) methods, of infrared absorption bands using a Fourier transform infrared spectrophotometer. Multiphonon bands are identified in the light of recent theoretical calculations based on the total energy of silicon crystal lattice. Theoretical results of Ihm et al. (1) and Yin and Cohen (2,3) are found to be in good agreement with the experimental observations of multiphonon infrared bands.

  3. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  4. Construct a new method accurately extracting parameters associate with absorption and scattering coefficients of epithelium and stroma: using perpendicular and oblique fiber bundle probes

    NASA Astrophysics Data System (ADS)

    Hsieh, H. P.; Sung, K. B.; Hsu, F. W.

    2014-05-01

    Diffuse reflectance spectroscopy has been applied as a non-invasive method to measure tissue optical properties, which are associate with anatomical information. The algorithm widely used to extract, optical parameters from reflectance spectra is the regression method, which is time-consuming and frequently converge to local maxima. In this study, the effects of parameters changes on spectra are analyzed in different fiber geometries, source-detector separations and wavelengths. In the end of this paper, a new fitting algorithm is proposed base on parameters features found. The new algorithm is expected to enhance the accuracy of parameters extracted and save 75% of the process time.

  5. High resolution infrared spectra of the ν1- ν4 bands of BiH 3, and ab initio calculations of the spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Jerzembeck, Wolfgang; Bürger, Hans; Breidung, Jürgen; Thiel, Walter

    2004-07-01

    The infrared spectrum of short-lived BiH 3 has been studied by Fourier transform technique. The BiH stretching bands ν1/ ν3 at 1733.2546/1734.4671 cm -1 and the bending fundamentals ν2/ ν4 at 726.6992/751.2385 cm -1 have been measured with a resolution of 5.5 and 6.6 × 10 -3 cm -1, respectively. The spectra were analyzed using different reductions of the rovibrational Hamiltonian accounting for the numerous resonance interactions in particular within the strongly Coriolis-coupled bending dyad. About 1150 and 980 transitions belonging to the ν1/ ν3 and ν2/ ν4 bands were fitted with an rms deviation of 0.62 and 0.53 × 10 -3 cm -1, respectively. High-level ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent small-core pseudopotential and large basis sets were carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of BiH 3. The theoretical results are in good agreement with the available experimental data.

  6. CONSTRAINING THE PHYSICAL CONDITIONS IN THE JETS OF γ-RAY FLARING BLAZARS USING CENTIMETER-BAND POLARIMETRY AND RADIATIVE TRANSFER SIMULATIONS. II. EXPLORING PARAMETER SPACE AND IMPLICATIONS

    SciTech Connect

    Hughes, Philip A.; Aller, Margo F.; Aller, Hugh D. E-mail: mfa@umich.edu

    2015-02-01

    We analyze the shock-in-jet models for the γ-ray flaring blazars 0420-014, OJ 287, and 1156+295 presented in Paper I, quantifying how well the modeling constrains internal properties of the flow (low-energy spectral cutoff, partition between random and ordered magnetic field), the flow dynamics (quiescent flow speed and orientation), and the number and strength of the shocks responsible for radio-band flaring. We conclude that well-sampled, multifrequency polarized flux light curves are crucial for defining source properties. We argue for few, if any, low-energy particles in these flows, suggesting no entrainment and efficient energization of jet material, and for approximate energy equipartition between the random and ordered magnetic field components, suggesting that the ordered field is built by nontrivial dynamo action from the random component, or that the latter arises from a jet instability that preserves the larger-scale, ordered flow. We present evidence that the difference between orphan radio-band (no γ-ray counterpart) and non-orphan flares is due to more complex shock interactions in the latter case.

  7. Constraining the Physical Conditions in the Jets of γ-Ray Flaring Blazars Using Centimeter-band Polarimetry and Radiative Transfer Simulations. II. Exploring Parameter Space and Implications

    NASA Astrophysics Data System (ADS)

    Hughes, Philip A.; Aller, Margo F.; Aller, Hugh D.

    2015-02-01

    We analyze the shock-in-jet models for the γ-ray flaring blazars 0420-014, OJ 287, and 1156+295 presented in Paper I, quantifying how well the modeling constrains internal properties of the flow (low-energy spectral cutoff, partition between random and ordered magnetic field), the flow dynamics (quiescent flow speed and orientation), and the number and strength of the shocks responsible for radio-band flaring. We conclude that well-sampled, multifrequency polarized flux light curves are crucial for defining source properties. We argue for few, if any, low-energy particles in these flows, suggesting no entrainment and efficient energization of jet material, and for approximate energy equipartition between the random and ordered magnetic field components, suggesting that the ordered field is built by nontrivial dynamo action from the random component, or that the latter arises from a jet instability that preserves the larger-scale, ordered flow. We present evidence that the difference between orphan radio-band (no γ-ray counterpart) and non-orphan flares is due to more complex shock interactions in the latter case.

  8. FTIR spectroscopic study of the dynamics of conformational substates in hydrated carbonyl-myoglobin films via temperature dependence of the CO stretching band parameters.

    PubMed Central

    Mayer, E

    1994-01-01

    Two hydrated carbonyl myoglobin (MbCO) films, one containing (0.30 g water)/(g MbCO) from MbCO solution in water at pH 5.5 and the other (0.32 g water)/(gMbCO) from 0.1 M potassium phosphate buffer solution at pH 6.8, were studied by FTIR spectroscopy from 293 K to 78 K at selected temperatures on cooling and reheating. Above approximately 180 K the general trend in temperature dependence of half-bandwidths, peak maxima, and band area ratios of the A1 and A3 conformer bands is similar to those reported by Ansari et al. (1987. Biophys. J. 26:337) for MbCO in 75% glycerol/water solution, but abrupt changes in slopes at approximately 180-200 K and freezing-in of conformer populations, which could be taken as indicator for glass transition of the solvent or the protein, are absent for the hydrated MbCO films. This is interpreted in terms of an exceptionally broad distribution of relaxation times, and is in accord with conclusions from recent calorimetric annealing studies of hydrated protein powders (Sartor et al. 1994. Biophys. J. 66:249). Exchange between the three A conformers does not stop at approximately 180-200 K but occurs over the whole temperature region studied. These results are then discussed with respect to MbCO's behavior in the glass-->liquid transition region of glass-forming solvents, and it is concluded that, in analogy to the behavior of low-molecular-weight compounds with a distribution of rapidly interconverting conformers, freezing-in of MbCO's A conformer populations by the solvent should not be mistaken for a glass transition of MbCO. PMID:7948699

  9. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  10. Visible absorption spectrum of liquid ethylene

    PubMed Central

    Nelson, Edward T.; Patel, C. Kumar N.

    1981-01-01

    The visible absorption spectrum of liquid ethylene at ≈ 108 K from 5500 Å to 7200 Å was measured by using a pulsed tunable dye laser, immersed-transducer, gated-detection opto-acoustic spectroscopy technique. The absorption features show the strongest band with an absorption coefficient of ≈2 × 10-2 cm-1 and the weakest band with an absorption coefficient of ≈1 × 10-4 cm-1. Proposed assignments of the observed absorption peaks involve combinations of overtones of local and normal modes of vibration of ethylene. PMID:16592978

  11. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    SciTech Connect

    Silant’ev, A. V.

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  12. Optical absorption spectra, crystal-field analysis, and electric dipole intensity parameters for europium in Na 3[En(ODA) 3]-2NaClO 4·6H 2O

    NASA Astrophysics Data System (ADS)

    Berry, Mary T.; Schwieters, Charles; Richardson, F. S.

    1988-05-01

    Locations and assignments of 61 crystal-field levels are reported for Eu 3+ in the trigonal Na 3[Eu(oxydiacetate) 3]· 2NaClO 46H 2O system. These energy levels span the 0-37400 cm - energy region, and they were located and assigned from optical emission spectra and from axial and orthoaxial (σ and π-polarized) absorption measurements on single crystals. The assigned crystal-field levels span 22 different multiplet manifolds, with principal parentages derived from seven different f 6 Russell-Saunders terms ( 2F, 5D, 5L, 5H, 5F, 5I, and 5K). The assigned levels are analyzed in terms of a 26-parameter electronic Hamiltonian in which six of the parameters are defined to represent the 4f-electron/crystal-field interactions for Eu 3+ ions located at sites with trigonal dihedral (D 3) symmetry. Quantitative line intensities are reported for 39 individual 4f→4f (crystal-field) transitions observed in the low-temperature (10 K) absorption spectra, and these intensity data are analyzed in terms of a general parametric model for 4f→4f transition intensities in lanthanide systems. The energy and intensity parameterizations provide a basis for calculating the 4f→4f absorption spectra of Eu 3+ in Na 3[Eu(oxydiacetate) 3]· 2NaClO 4·6H 2O over a wide spectral range and excellent agreement between calculated and experimentally measured spectra is obtained. Several of the intensity parameters determined to be important in this study carry information of particular significance to understanding the structural and mechanisticbases of lanthanid

  13. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  14. Identification of sensitive parameters of a tropical forest in Southern Mexico to improve the understanding of C-band radar images

    NASA Astrophysics Data System (ADS)

    Monsivais-Huertero, A.; Jimenez-Escalona, J. C.; Ramos, J.; Zempoaltecatl-Ramirez, E.

    2013-05-01

    Forest areas cover the 32% of the Mexican territory. Due to their geographical location, Mexico presents heterogeneous climatic and topographic conditions. The country is divided into two different regions: an arid /semiarid zone (North) and a tropical/temperate zone (South). Due to the effects of climate change, Mexico has been affected in two ways. In the North, there has been a desertification of regions as result of the absence of rainfall and a low rate of soil moisture. On the other hand, in the South, there has been an increase in the intensity of rainfall causing serious flooding. Another effect is the excessive deforestation in Southern Mexico. The FAO has determined that Mexico could present one of the highest losses of forest areas mainly in temperate and subtropical ecosystems. The Biosphere Reserve of Calakmul is the protected area with the largest surface of tropical forest in Mexico. The Biosphere Reserve of Calakmul is located in the state of Campeche that the flora and fauna are being affected. The type of vegetation located in the reserve of Calakmul Biosphere is rainforest with high spatial density and highly heterogeneous due to multiple plant species and the impact of human activities in the area. The satellite remote sensing techniques becomes a very useful tool to monitor the area because a large area can be covered. To understand the radar images, the identification of sensitive parameters governing the radar signal is necessary. With the launch of the satellites Radarsat-2, ASAR-Envisat and ALOSPalSAR, significant progress has been done in the interpretation of satellite radar images. Directly applying physical models becomes a problem due to the large number of input parameters in the models, together with the difficulty in measuring these parameters in the field. The models developed so far have been applied and validated for homogeneous forests with low or average spatial density of trees. This is why it is recommended in a comprehensive

  15. Narrow band absorber based on a dielectric nanodisk array on silver film

    NASA Astrophysics Data System (ADS)

    Callewaert, F.; Chen, S.; Butun, S.; Aydin, K.

    2016-07-01

    The simulations of normally incident visible light absorption in a periodic array of dielectric nanodisks on the top of a silver film are presented. Electromagnetic simulations indicate narrow resonances with absorption intensities as large as 95%. The absorption enhancement due to the periodic array can be as high as a factor of 30 compared to an equivalent dielectric film on top of a silver mirror. A parametric study shows that the resonance characteristics and the number of modes can be easily tuned and controlled by the refractive index and the geometric parameters of the nanodisks. In particular, the structure can be tuned to have either a single or two absorption peaks. The characteristics of the two main resonance peaks are described in detail using the simulated electric field profiles and the dispersion relation. Proposed narrowband absorber design utilizing continuous metal films and nanostructured dielectric arrays could be used for narrow-band absorption filters, refractive-index based biosensing applications and thermal emitters.

  16. On the radiocarbon record in banded corals: exchange parameters and net transport of /sup 14/CO/sub 2/ between atmosphere and surface ocean

    SciTech Connect

    Druffel, E.M.; Suess, H.E.

    1983-02-20

    We have made radiocarbon measurements of banded hermatypic corals from Florida, Belize, and the Galapagos Islands. Interpretation is presented here of these previously reported results. These measurements represent the /sup 14/C//sup 12/C ratios in dissolved inorganic carbon (DIOC) in the surface ocean waters of the Gulf Stream and the Peru Current at the time of coral ring formation. A depletion in radiocarbon concentration was observed incoral rings that grew from A.D. 1900--1952. It was caused by dilution of existing /sup 14/C levels with dead CO/sub 2/ from fossil fuel burning (the Suess effect, or S/sub e/). A similar trend was observed in the distribution of bomb-produced /sup 14/C in corals that had grown during the years following A.D. 1952. The concentration of bomb-produced radiocarbon was much higher in corals from temperate regions (Florida, Belize, Hawaiian Islands) than in corals from tropical regions (Galapagos Islands and Canton Island). The apparent radiocarbon ages of the surface waters in temperate and tropical oceans during the preanthropogenic period range from about 280 to 520 years B.P. (-40 to -69%). At all investigated locations, it is likely that waters at subsurface depths have the same apparent radiocarbon age of about 670 years B.P. From the change of oceanic ..delta../sup 14/C in the surface during post-bomb times, the approximate annual rate of net input of /sup 14/CO/sub 2/ to the ocean waters is calculated to be about 8% of the prevailing /sup 14/C difference between atmosphere and ocean. From this input and from preanthropogenic ..delta../sup 14/C values found at each location, it can be seen that vertical mixing of water in the Peru Current is about 3 times greater than that in the Gulf Stream.

  17. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  18. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  19. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  20. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  1. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  2. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  3. Gastric Banding

    MedlinePlus

    ... gastric banding before deciding to have the procedure. Advertisements for a device or procedure may not include ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  4. Simulating the spectral response of quantum dot-in-well infrared photodetectors from eight band k.p method

    SciTech Connect

    Anjan Kumar, V. Pendyala, Naresh Babu; Banerjee, Arup

    2014-11-28

    Conduction band energy levels in quantum-dot-in-a-well structures are computed by eight band k.p method (Burt-Foreman Hamiltonian) using finite element software. Optical absorption spectrum due to intersubband transitions is simulated using Fermi golden rule. The use of contact pair boundary condition in strain calculation and criteria for choosing band mixing parameter (E{sub p}) to avoid the spurious solutions are examined in this paper. The simulated intersubband optical absorption spectrum of different structures reported in the literature is in close agreement with the experimentally measured photoconductive absorption region and shows that the method can be used as an effective modeling for quick design of the heterostructures based infrared photodetectors for various wavelengths.

  5. Rotation spectrum and high resolution infrared spectra of the fundamental bands of 121SbD 3. Determination of the ground state and equilibrium structures. Ab initio calculations of the spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Canè, E.; Di Lonardo, G.; Fusina, L.; Jerzembeck, W.; Bürger, H.; Breidung, J.; Thiel, W.

    2006-01-01

    The high resolution infrared spectrum of 121SbD 3, recorded between 20 and 350 cm -1 and in the regions of bending and stretching fundamental bands, centred at 600 and 1350 cm -1, has been analysed. Splittings of the K″=3, 6 lines have been observed both in the rotation and ro-vibration spectra. A large number of 'perturbation allowed' transitions with selection rules Δ(k-ℓ)=±3, ±6 and ±9 have been identified in all fundamental bands. Accurate ground state molecular parameters have been determined fitting simultaneously the rotational transitions and about 9000 ground state combination differences obtained from lines assigned in the ro-vibrational spectra. The A and B reductions of the rotational Hamiltonian have been applied in the analysis of the ground state. They provided almost equivalent results. The molecular parameters of the 1 1, 2 1, 3 1 and 4 1 states have been obtained from the simultaneous analysis of the ν1 ( A1)/ ν3 ( E) stretching and of the ν2 ( A1)/ ν4 ( E) bending dyads. In fact, the corresponding excited states are affected by strong perturbations due to Coriolis and k-type rovibrational interactions that have been treated explicitly in the model adopted for the analysis. Improved effective ground state and equilibrium geometries have been determined and compared to those of 121SbH 3 and of 123SbD 3. Ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent large-core pseudopotential and large basis sets have been carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of 121-stibine. The theoretical constants and structural parameters are in good agreement with the experimental data.

  6. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ν3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ν6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman-inactive, and no reliable spectroscopic information could be obtained up to now and this has precluded a correct modeling of the hot bands. It has been suggested theoretically and experimentally that this band might be slightly activated through Coriolis interaction with infrared-active fundamentals and appears in high pressure measurements as a very faint, unresolved band. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 163 ± 2 K temperature, coupled to synchrotron radiation and a high resolution interferometer, the spectrum of the ν6 far-infrared region has been recorded. Low temperature was used to avoid the presence of hot bands. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution, is indeed ν6. The fully resolved spectrum has been analyzed, thanks to the XTDS software package. The band appears to be activated by faint Coriolis interactions with the strong ν3 and ν4 fundamental bands, resulting in the appearance of a small first-order dipole moment term, inducing unusual selection rules. The band center (ν6 = 347.736707(35) cm(-1)) and rovibrational parameters are now accurately determined for the v6 = 1 level. The ν6 perturbation-induced dipole moment is estimated to be 33 ± 3

  7. Band Model Calculations for CFCl3 in the 8-12 micron Region

    NASA Technical Reports Server (NTRS)

    Silvaggio, Peter M.; Boese, Robert W.; Nanes, Roger

    1980-01-01

    A Goody random band model with a Voigt line profile is used to calculate the band absorption of CFCB at various pressures at room and stratospheric (216 K) temperatures. Absorption coefficients and line spacings are computed.

  8. Strongly nonparabolic variation of the band gap in In x Al1‑x N with low indium content

    NASA Astrophysics Data System (ADS)

    Zubialevich, Vitaly Z.; Dinh, Duc V.; Alam, Shahab N.; Schulz, Stefan; O’Reilly, Eoin P.; Parbrook, Peter J.

    2016-02-01

    80–120 nm thick In x Al1‑x N epitaxial layers with 0 < x < 0.224 were grown by metalorganic vapour phase epitaxy on AlN/Al2O3-templates. The composition was varied through control of the growth temperature. The composition dependence of the band gap was estimated from the photoluminescence excitation absorption edge for 0 < x < 0.11 as the material with higher In content showed no luminescence under low excitation. A very rapid decrease in band gap was observed in this range, dropping down below 5.2 eV at x = 0.05, confirming previous theoretical work that used a band-anticrossing model to describe the strongly x-dependent bowing parameter, which in this case exceeds 25 eV in the x → 0 limit. A double absorption edge observed for InAlN with x < 0.01 was attributed to crystal-field splitting of the highest valence band states. Our results indicate also that the ordering of the valence bands is changed at much lower In contents than one would expect from linear interpolation of the valence band parameters. These findings on band gap bowing and valence band ordering are of direct relevance for the design of InAlN-containing optoelectronic devices.

  9. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  10. Photochemical parameters of atmospheric source gases: accurate determination of OH reaction rate constants over atmospheric temperatures, UV and IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.

    2012-12-01

    instrumental uncertainties related to our FP-RF experiment proves a total uncertainty of the OH reaction rate constant to be as small as ca. 2-3%. The high precision of kinetic measurements allows reliable determination of weak temperature dependences of the rate constants and clear resolution of the curvature of the Arrhenius plots for the OH reaction rate constants of various compounds. The results of OH reaction rate constant determinations between 220 K and 370 K will be presented. Similarly, the accuracy of UV and IR absorption measurements will be highlighted to provide an improved basis for atmospheric modeling.

  11. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  12. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  13. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  14. Atlas of Infrared Absorption Lines

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1977-01-01

    This atlas of infrared absorption line contains absorption line parameters (line strength vs. wavenumber) from 500 to 7000 cm(exp-1) for 15 gases: H2O, CO2, O3, N2O, CO, CH4, O2, SO2, NO, NO2, NH3, HCl, HF, HNO3 and CH3Cl.

  15. Intermediate band solar cells: Recent progress and future directions

    SciTech Connect

    Okada, Y. Tamaki, R.; Farrell, D. J.; Yoshida, K.; Ahsan, N.; Shoji, Y.; Sogabe, T.; Ekins-Daukes, N. J. Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C. C.; Kita, T.; Guillemoles, J.-F.

    2015-06-15

    Extensive literature and publications on intermediate band solar cells (IBSCs) are reviewed. A detailed discussion is given on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC. The experimental solar cell performance is further discussed, which has been recently demonstrated by using highly mismatched alloys and high-density quantum dot arrays and superlattice. IBSCs having widely different structures, materials, and spectral responses are also covered, as is the optimization of device parameters to achieve maximum performance.

  16. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. X. Laser-induced near-surface absorption in single-crystal NaCl

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.; Hess, W.P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand kelvin even in the absence of visible surface damage. The origin of the laser absorption required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single-crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near-surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. The diffuse reflectance spectra acquired after exposure suggest that near-surface V-type centers are responsible for most of the absorption at 248 nm in single-crystal NaCl.

  17. SF_6: the Forbidden Band Unveiled

    NASA Astrophysics Data System (ADS)

    Boudon, V.; Manceron, L.; Kwabia-Tchana, F.; Roy, P.

    2013-06-01

    Sulfur hexafluoride (SF_6) is a greenhouse gas of anthropogenic origin, whose strong infrared absorption in the ν_3 S-F stretching region near 948 cm^{-1} induces a global warming potential 23900 times bigger than CO_2. This heavy species features many hot bands at room temperature (at which the ground state population is only 30 %), especially those originating from the v_6=1 state. Unfortunately, the ν_6 band itself (near 347 cm^{-1}) being, in first approximation, both infrared and Raman inactive, no reliable information could be obtained about it up to now. A long time ago, some authors suggested that this band may be slightly activated through Coriolis interaction and may appear as a very faint band, with an integrated intensity about 2 millionths of that of ν_3. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 165± 2 K temperature, we recorded a spectrum of the ν_6 far-infrared region thanks to the performances of the AILES Beamline at the SOLEIL french synchrotron facility. Low temperature was used to avoid the presence of the 2ν_6-ν_6 hot band and to reduce the neighboring, stronger ν_4-ν_2 difference band. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution is indeed ν_6. We present its fully resolved spectrum. It appears to be activated thanks to unidentified faint interactions resulting in the presence of a first-order dipole moment term that induces unusual selection rules. This spectrum was analyzed thanks to the XTDS software package, leading to accurate molecular spectroscopic parameters that should be useful to model the hot bands of SF_6. W. B. Person, B. J. Krohn, J. Mol. Spectrosc. {98}, 229-257 (1983), C. Chappados, G. Birnbaum, J. Mol. Spectrosc. {105}, 206-214 (1984). Ch. Wenger, V. Boudon, M. Rotger, M. Sanzharov and J.-P. Champion, J. Mol. Spectrosc., {251} 102-113 (2008).

  18. A new model for pressure-induced shifts of electronic absorption bands as applied to neat CS sub 2 and CS sub 2 in n-hexane and dichloromethane solutions

    SciTech Connect

    Agnew, S.F.; Swanson, B.I. )

    1990-01-25

    The authors propose a model for the pressure dependence of electronic absorption spectra and apply it to the authors data on CS{sub 2} both in neat phase and in hexane and dichloromethane solid solutions. They believe that their data represent a rather severe test of this model and argue that any model for the pressure dependence of electronic absorption spectra must include certain minimal effects - dispersive or dielectric and repulsive or volume effects - in order to adequately represent the data. They discuss previous models at some length in order to delineate the limits of their applicability. They further acknowledge and define the limits of the applicability of their model to solvent-induced shifts in general.

  19. Dual band metamaterial perfect absorber based on artificial dielectric “molecules”

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric “molecules” with high symmetry. The artificial dielectric “molecule” consists of four “atoms” of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  20. Interaction of Wide-Band-Gap Single Crystals with 248-nm Excimer Laser Irradiation: X. Laser-Induced Near-Surface Absorption in Single-Crystal NaCl

    SciTech Connect

    Nwe, K H.; Langford, Stephen C.; Dickinson, J T.; Hess, Wayne P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand Kelvin, even in the absence of visible surface damage. The origin of the laser required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. Diffuse reflectance spectra acquired after exposure suggest that near surface V-type centers are responsible for most of the absorption at 248 nm in single crystal NaCl.

  1. Tunable diode-laser absorption measurements of methane at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.

    1996-07-01

    A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

  2. Infrared laser absorption spectroscopy of the nu4 (sigma u) fundamental and associated nu11(pi u) hot band of C7 - Evidence for alternating rigidity in linear carbon clusters

    NASA Technical Reports Server (NTRS)

    Heath, J. R.; Saykally, R. J.

    1991-01-01

    The first characterization of the bending potential of the C7 cluster is reported via the observation of the v = 1(1) and v = 2 deg levels of the nu11 (pi u) bend as hot bands associated with the nu4 (sigma u) antisymmetric stretch fundamental. The lower state hot band rotational constants are measured to be 1004.4(1.3) and 1123.6(9.0) MHz, constituting a 9.3 and 22 percent increase over the ground state rotational constant, 918.89 (41) MHz. These large increases are strong quartic and sextic centrifugal distortion constants determined for the ground and nu 4 = 1 states are found to be anomalously large and negative, evidencing strong perturbations between stretching and bending modes.

  3. Isoabsorption and spectrometric studies of optical absorption edge in Cu6AsS5I superionic crystal

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kayla, M. I.; Kranjčec, M.; Kokhan, O. P.; Minets, Yu. V.

    2011-12-01

    Cu6AsS5I single crystals were grown using chemical vapour transport method. Two low-temperature phase transitions (PT) are observed from isoabsorption studies: a first-order PT at ТІ=153±1 K and a second-order PT in the temperature interval TІI=260-280 K. At low temperatures and high absorption levels an excitonic absorption band was revealed in the range of direct optical transitions. At Т>ТІ, the absorption edge has an exponential shape and a characteristic Urbach bundle is observed. The influence of the cationic P→As substitution on the parameters of the Urbach absorption edge, parameters of exciton-phonon interaction, and phase transitions temperatures are studied.

  4. Optical absorption components of light-modulated absorption spectrum of CdS

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Long, E. R.

    1975-01-01

    The amplitude and decay coefficient of light-induced modulation of absorption (LIMA) was measured as a function of wavelength from 535 to 850 nm for single-crystal CdS. The decay coefficient exhibited a discontinuous resonance at 710 nm which was due to the overlap and cancellation of two opposing absorption changes. A method was developed to separate these opposing absorption changes using the measured decay coefficients. The discrete-level-to-band energy for one absorption change was found to be 1.64 eV. An improved model was developed which contains two associated levels in the band gap separated by 0.32 eV.

  5. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  6. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant. PMID:19650504

  7. Aerosol Properties From Combined Oxygen A Band Radiances and Lidar

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Zhai, Peng-Wang; Hu, Yongxiang

    2015-01-01

    We have developed a new aerosol retrieval technique based on combing high-resolution A band spectra with lidar profiles. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution (17,000:1) measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers in the forward model. The algorithm has been developed to be applied to observations from the CALIPSO and OCO-2 satellites, flying in formation as part of the A-train constellation. We describe the approach and present simulated retrievals to illustrate performance potential.

  8. The tuning of light-matter coupling and dichroism in graphene for enhanced absorption: Implications for graphene-based optical absorption devices

    NASA Astrophysics Data System (ADS)

    Rakheja, Shaloo; Sengupta, Parijat

    2016-03-01

    The inter-band optical absorption in graphene characterized by its fine-structure constant has a universal value of 2.3% independent of the material parameters. However, for several graphene-based photonic applications, enhanced optical absorption is highly desired. In this work, we quantify the tunability of optical absorption in graphene via the Fermi level, angle of incidence of the incident polarized light, and the dielectric constants of the surrounding dielectric media in which graphene is embedded. The influence of impurities adsorbed on the surface of graphene on the Lorentzian broadening of the spectral function of the density of states is analytically evaluated within the equilibrium Green’s function formalism. In all the cases, we find that absorption of light graphene embedded in dielectric medium is significantly higher than 2.3%. We also compute the differential absorption of right and left circularly-polarized light in graphene that is uniaxially and optically strained. The preferential absorption or circular dichroism is investigated for armchair and zigzag strain and the interplay of k-space and velocity anisotropy is examined. Finally, we relate circular dichroism to the Berry curvature of gapped graphene and explain the connection to parameters that define the underlying Hamiltonian.

  9. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3

    PubMed Central

    Ho, Ching-Hwa; Chen, Hsin-Hung

    2014-01-01

    The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga2S3) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga2S3. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga2S3. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga2S3 crystal is revealed. PMID:25142550

  10. Retrieval of cloud microphysical parameters using the NOAA/PSD W-band cloud radar from R/V Ronald H. Brown during the VOCALS-REx field program

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Deszoeke, S. P.; Moran, K.; Pezoa, S.; Wolfe, D. E.; Zuidema, P.

    2009-12-01

    The NOAA Physical Science Division deployed a new pitch-roll stabilized, vertically pointing W-band (94 GHz) Doppler cloud radar on the NOAA research vessel Ronald H. Brown during the VOCALS-Rex field program in fall 2008 in the stratocumulus region off the coast of Chile. The radar operated at full sensitivity on Leg-2 (November 8-30, 2008). The radar produced profiles of full Doppler spectra and the first three moments of the spectral peak at 0.3 s time intervals; the vertical resolution is 25 m. Pitch-roll stabilization allows Doppler measurement of vertical motion without tilt-contamination by horizontal winds; ship heave is measured independently and subtracted from the radar vertical velocity to yield very accurate particle vertical motions. In this paper we describe the results of processing the radar moments in one-hour blocks to retrieve cloud and drizzle microphysical parameters using the method of Frisch, Fairall, and Snider, JAS1995. Additional inputs from a lidar ceilometer and a microwave radiometer are used. For cloud, profiles of liquid water and mean cloud drop radius are obtained; for drizzle profiles of liquid water, mean drizzle drop radius, and rainrate are obtained. Cloud microphysics processing is only possible in non-drizzling cases. The results are compared to analyses from the EPIC2001 field program in the same location.

  11. Measurement of the Temperature Dependence of Line Mixing and Pressure Broadening Parameters between 296 and 90 K in the v3 band of 12CH4 and their Influence on Atmospheric Methane Retrievals

    NASA Technical Reports Server (NTRS)

    Mondelain, Didier; Payan, Sebastien; Deng, Wenping; Camy-Peyret, Claude; Hurtmans, Daniel; Mantz, Arlan W.

    2007-01-01

    We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the v3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperature between 90 K and room temperature. We have investigate the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.

  12. The Fourier transform absorption spectrum of acetylene between 8280 and 8700 cm-1

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Vander Auwera, J.; Campargue, A.

    2016-07-01

    High resolution (0.011 cm-1) room temperature (295 K) Fourier transform absorption spectra (FTS) of acetylene have been analyzed in the 8280-8700 cm-1 range dominated by the ν1+ν2+ν3 band at 8512 cm-1. Line positions and intensities were retrieved from FTS spectra recorded at 3.84 and 56.6 hPa. As a result, a list of 1001 lines was constructed with intensities ranging between about 2×10-26 and 10-22 cm/molecule. Comparison with accurate predictions provided by a global effective operator model led to the assignment of 629 12C2H2 lines. In addition, 114 lines of the 13C12CH2 isotopologue were assigned using information available in the literature. The 12C2H2 lines belong to thirteen bands, nine of which being newly reported. The 13C12CH2 lines belong to three bands, the intensities of which being reported for the first time. Spectroscopic parameters of the 12C2H2 upper vibrational levels were derived from band-by-band analyses of the line positions (typical rms are on the order of 0.002 cm-1). Three of the analyzed bands were found to be affected by rovibrational perturbations, which are discussed in the frame of a global effective Hamiltonian. The obtained line parameters are compared with those of the two bands included in the HITRAN 2012 database.

  13. Enhancement of solar absorption with black Cu2O Nanostructures

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Hatch, John; Ji, Dengxin; Kort, Kenneth; Barman, Biplob; Tsai, Yu Tsung; Qin, Yueling; Banerjee, Sarbajit; Petrou, Athos; Gan, Qiaoqiang; Luo, Hong; Zeng, Hao

    2013-03-01

    Cu2O is a direct gap semiconductor with a band gap of 2.1 eV. It was considered to be a solar absorber material, while the application is hindered by its large band gap and weak stability. Here we report an electrochemical synthesis of Cu2O. By rationally control the synthetic parameters, we achieved two types of Cu2O: one of black color and the other ``normal'' red Cu2O. Both Cu2O films were in cubic phase and their crystal structures are almost identical as seen by X-ray diffraction. This is further corroborated by their nearly identical Raman spectra. The scanning tunneling spectrum (STS) revealed a gap in the red Cu2O around 2.1 eV and a significantly lowered gap of ~ 1.7 eV in the black Cu2O, indicating that the black color is caused by a change in the electronic structure. The reflectance and transmittance indicated a band gap of ~ 1.7 eV for the black Cu2O, with a significantly broadened absorption spectrum. While further effort is needed to understand the mechanism for the lowering of the band gap, we believe that our approach demonstrated means to promote earth abundant and nontoxic materials for potential photovoltaic applications through band gap engineering. Research supported by NSF DMR1104994.

  14. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  15. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted. PMID:26058430

  16. Multi-Band-SWIFT

    PubMed Central

    Corum, Curtis A.; Garwood, Michael

    2015-01-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials. PMID:25557859

  17. Multi-Band-SWIFT

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curtis A.; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  18. High Resolution Photoacoustic Spectroscopy of the Oxygen A-Band to Support the OCO Missions

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; Lunny, E. M.; Bui, T. Q.; Drouin, B. J.; Okumura, M.; Stroscio, G. D.

    2015-12-01

    NASA's Orbiting Carbon Observatory missions require spectroscopic parameterization of the Oxygen A-Band absorption (757-775 nm) with unprecedented detail to meet the objective of delivering space-based column CO2 measurements with an accuracy of better than 1 ppm. This requires spectroscopic parameters with accuracies at the 0.1% level. To achieve this it is necessary for line shape models to include deviations from the Voigt line shape, including the collisional effects of Dicke narrowing, speed-dependence, line mixing (LM), and collision-induced absorption (CIA). To measure these effects to high accuracy, new innovative lab measurements are required. LM and CIA in particular are difficult to measure using standard spectroscopic techniques because, while present at atmospheric temperatures, these effects are difficult to quantify. At pressures of several atmospheres these effects contribute several percent to the A-Band absorption. While the O2 A-band is too weak for direct absorption measurements via a diode laser, a very sensitive photoacoustic spectroscopy technique is being used to study the pressure- dependence of the spectral line shape up to pressures of 5 atm. This spectrometer has a high S/N of about 10,000 and an advantageous zero baseline. In addition, temperature effects on the line shape are studied using a newly developed temperature control scheme. The latest results are reported.

  19. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    NASA Astrophysics Data System (ADS)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  20. Using NPOL (the NASA S-band polarimetric radar), and a network of 2D video disdrometers for external radar calibration and rain rate estimation, and to determine spatial correlation of rain drop size distribution parameters

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Bringi, V. N.; Tolstoy, L.; Petersen, W. A.

    2012-12-01

    On two days during the MC3E campaign in northern Oklahoma, NASA's S-band polarimetric radar (NPOL) performed repeated PPI scans over a network of six 2D video disdrometer (2DVD) sites, located 20 to 30 km from the radar. The scans were repeated approximately every 40 seconds. We consider here the two cases, one a rapidly evolving multi-cell rain event (with large drops) on 24 April 2011 and the second a somewhat more uniform rain event on 11 May 2011. For both events, the external calibration offsets for radar reflectivity and differential reflectivity were determined by comparing the radar data extracted over the disdrometer sites with those determined from scattering simulations using the 2DVD data. Time series comparisons show excellent agreement for all six sites, and a technique was developed to determine the offsets for the NPOL data quantitatively from the comparisons. The radar data were then used to determine the rain rates over the six sites and compared with those derived from the 2DVD measurements. Once again, excellent agreement was obtained for all six sites, both in terms of rain fall rates and rain accumulations (see Fig. 1). Comparisons have also been made over many rain gauges located within ground validation network area. The repeated PPI scans were also used to determine the spatial correlations of two of the main rain drop-size distribution (DSD) parameters (Do and log Nw) as well as rainfall rate (R). The correlations were determined along the radial over the whole azimuthal range of the PPI scans. The spatial correlation of R shows azimuthal dependence particularly for the first event. However, the 50 percentile levels are similar between the two events, at least up to 4 km. For the DSD parameters, reasonable agreement with 2DVD-based spatial correlations were obtained As part of the abovementioned scan sequence, the NPOL had also made repeated RHI scans along one azimuth. These scans were used to determine the vertical correlations of the

  1. Stark Spectroscopy of Rubrene. I. Electroabsorption Spectroscopy and Molecular Parameters.

    PubMed

    Iimori, Toshifumi; Ito, Ryuichi; Ohta, Nobuhiro; Nakano, Hideyuki

    2016-06-30

    Electroabsorption spectroscopy investigation and the determination of molecular parameters for rubrene dispersed in a poly(methyl methacrylate) (PMMA) matrix are reported. The features of the band system in the absorption spectrum in PMMA are analogous to those in solutions. The changes in the electric dipole moment and the polarizability between the excited and ground states are determined from analysis of the Stark effect in the absorption band. The change in the transition dipole moment in the presence of an external electric field is also observed. Although rubrene is predicted to be classified as a nonpolar molecule, there is a contribution of the difference in the electric dipole moment between the excited and ground states to the electroabsorption spectrum. The origin of the nonzero difference in the electric dipole moment is argued. Stark fluorescence spectroscopy investigation is reported in Part II of this series. PMID:27257765

  2. A nonisothermal emissivity and absorptivity formulation for water vapor

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  3. [Passive ranging of infrared target using oxygen A-band and Elsasser model].

    PubMed

    Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi

    2014-09-01

    Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions. PMID:25532368

  4. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    SciTech Connect

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.

    2014-08-14

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  5. Electrodynamic characteristics of berillium oxide in the submillimeter-infrared band

    NASA Astrophysics Data System (ADS)

    Komandin, G. A.; Porodinkov, O. E.; Spektor, I. E.; Polivanov, Yu. N.; Orlov, S. N.; Maslov, V. A.

    2015-12-01

    Single-crystal beryllium oxide has been studied by submillimeter-infrared spectroscopy and nonlinear optics methods in the wavenumber range of 2-5000 cm-1 in the temperature interval of 80-300 K. With the aid of computation models, the dispersion parameters of phonons and nonresonance absorption bands have been determined. The mechanisms responsible for dielectric loss in the terahertz band have been revealed. It has been shown that the decisive contribution is made by low-frequency dipole excitations, including two-phonon difference processes, and this contribution exceeds the phonon contribution by two orders of magnitude. Coherent anti-Stokes Raman scattering has been used to determine the coefficients of absorption by polaritons of the low-frequency dispersion branch.

  6. Coupled valence band dispersions and the quantum defect of excitons in Cu2O

    NASA Astrophysics Data System (ADS)

    Schöne, Florian; Krüger, Sjard-Ole; Grünwald, Peter; Aßmann, Marc; Heckötter, Julian; Thewes, Johannes; Stolz, Heinrich; Fröhlich, Dietmar; Bayer, Manfred; Scheel, Stefan

    2016-07-01

    Recent high-resolution absorption spectroscopy on highly excited excitons in cuprous oxide (Kazimierczuk et al 2014 Nature 514 343–347) have revealed significant deviations of their spectrum from the ideal hydrogen-like series. In atomic physics, the influence of the ionic core and the resulting modifications of the Coulomb interaction are accounted for by the introduction of a quantum defect. Here we translate this concept to the realm of semiconductor physics and show how the complex band dispersion of a crystal is mirrored in a set of empirical parameters similar to the quantum defect in atoms. Experimental data collected from high-resolution absorption spectroscopy in electric fields allow us to compare results for multiple angular momentum states of the yellow and even the green exciton series of {{Cu}}2{{O}}. The agreement between theory and experiment validates our assignment of the quantum defect to the nonparabolicity of the band dispersion.

  7. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  8. Theoretical investigation of zero field splitting parameter of Cr3+ doped diammonium hexaaqua magnesium sulfate

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Yadav, Awadhesh Kumar

    2015-01-01

    The zero field splitting parameter D of Cr3+ doped diammonium hexaaqua magnesium sulfate (DHMS) are calculated with perturbation formula using crystal field (CF) parameters from superposition model. The theoretically calculated ZFS parameters for Cr3+ in DHMS single crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). The theoretical ZFS parameter D is similar to that from experiment. The energy band positions of optical absorption spectra of Cr3+ doped DHMS single crystal are calculated with CFA package, which are in good match with experimental values.

  9. VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

    NASA Astrophysics Data System (ADS)

    Howarth, Ian D.

    2015-06-01

    VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

  10. Radiation Induced Optical Absorption of Cubic Lead Fluoride Crystals and the Effect of Annealing

    NASA Astrophysics Data System (ADS)

    Ren, Guo-Hao; Chen, Xiao-Feng; Li, Huan-Ying; Wu, Yun-Tao; Shi, Hong-Sheng; Qin, Lai-Shun

    2014-08-01

    Transparent and colorless lead fluoride crystals with sizes of 20 × 20 × 20 (mm3) are irradiated with several doses of γ-rays from a 60 Co source. Their transmittance spectra before and after irradiation are measured, and a new parameter ΔT = Tb - Ta is defined to evaluate the irradiation damage. Three optical absorption bands peaking at 270 nm, 370 nm and 500 nm are found in the plots of ΔT versus wavelength, and their intensities increase with the irradiation dose. These optical absorption bands, except the one at 270 nm, can recover spontaneously with time. Thermal annealing treatment can enhance this recovery of the transmittance, while the optimum annealing temperature for different samples depends on the irradiation dose.

  11. Free carrier absorption and lifetime mapping in 4H SiC epilayers

    SciTech Connect

    Galeckas, A.; Grivickas, V.; Linnros, J.; Bleichner, H.

    1997-04-01

    Results of carrier lifetime studies in low-doped epitaxial 4H SiC layers are reported. The free carrier absorption (FCA) technique was applied to extract carrier lifetime parameters and their spatial distribution in a wide photoexcitation range. The FCA magnitude is shown to scale linearly with the photoinjected carrier concentration, while the absorption cross section increases according to a {lambda}{sup 4.4} law for near infrared wavelengths. High spatial resolution carrier lifetime mapping of large 4H SiC areas revealed features related to structural imperfections of epilayers. Finally, a density dependent fast lifetime component was observed at high injection levels and attributed to band-to-band Auger recombination. {copyright} {ital 1997 American Institute of Physics.}

  12. ULTRAVIOLET ABSORPTION SPECTRUM OF NITROUS OXIDE AS FUNCTION OF TEMPERATURE AND ISOTOPIC SUBSTITUTION

    SciTech Connect

    Selwyn, G.S.; Johnston, H.S.

    1980-07-01

    The ultraviolet absorption spectra of nitrous oxide and its {sup 15}N isotopes over the wavelength range 197 to 172 nm and between 150 and 500 K show a weak continuous absorption and a pattern of diffuse banding that became pronounced at higher temperatures. The temperature dependence of the absorption spectrum results from the activation of the n{sub 2}{double_prime} bending mode. Deconvolution of the data shows that absorption by molecules in the (010) vibrational mode results in a spectrum of vibrational bands superimposed on a continuum. A weaker and nearly continuous spectrum results from the ultraviolet absorption by molecules in the (000) vibrational mode. Analysis of the structuring indicates n{sub 2}{double_prime} = (490 {+-} 10) cm{sup -1}. No rotational structure can be observed. Measurement of the n{sub 2}{double_prime} isotope shift is used to identify the quantum number of the upper state vibrational levels. Normal coordinate analysis of the excited state is used to determine a self-consistent set of molecular parameters: bond angle (115{sup o}), the values of n{sub 1}{prime} and n{sub 3}{prime} (1372 and 1761 cm{sup -1}, respectively), and the force constants of the upper state. It is suggested that the transitions observed are {sup 1}S{sup -}({sup 1}A{sup -}) {l_arrow} X- {sup 1}{sup +} and {sup 1}D {l_arrow} {tilde X} {sup 1}S{sup +}.

  13. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  14. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  15. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  16. Cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    Strange, M. G.

    1988-01-01

    The Cloud Absorption Radiometer (CAR) was developed to measure spectrally how light is scattered by clouds and to determine the single scattering albedo, important to meteorology and climate studies, with unprecedented accuracy. This measurement is based on ratios of downwelling to upwelling radiation within clouds, and so is not strongly dependent upon absolute radiometric calibration of the instrument. The CAR has a 5-inch aperture and 1 degree IFOV, and spatially scans in a plane orthogonal to the flight vector from the zenith to nadir at 1.7 revolutions per second. Incoming light is measured in 13 spectral bands, using silicon, germanium, and indium-antimonide detectors. Data from each channel is digitally recorded in flight with 10-bit (0.1 percent) resolution. The instrument incorporates several novel features. These features are briefly detailed.

  17. Infrared spectroscopy at high temperature : N2- and O2-broadening coefficients in the ν4 band of CH4

    NASA Astrophysics Data System (ADS)

    Fissiaux, Laurent; Populaire, Jean-Claude; Blanquet, Ghislain; Lepère, Muriel

    2015-11-01

    In the present work, we have developed a high-temperature absorption cell for infrared spectroscopy. This absorption cell can contain gases of the room temperature up to 650 K without temperature gradient. The construction of the cell and its technical features are described in detail in this paper. In order to demonstrate the feasibility and the interest of the cell, we have measured the N2-, O2- and air-broadening coefficients of, respectively, six and three absorption lines in the ν4 band of methane at four temperatures (350, 425, 500, 575 K). The measurements of these coefficients was realized with a tunable diode-laser spectrometer. The line parameters were obtained by fitting to the experimental profile the Voigt line shape and the Rautian and Galatry models taking into account the collisional narrowing. For these lines, the n parameter of the temperature dependence has been determined.

  18. High sensitivity cavity ring down spectroscopy of the 3ν1+3ν2+ν3 band of NO2 near 7587 cm-1

    NASA Astrophysics Data System (ADS)

    Lukashevskaya, A. A.; Naumenko, O. V.; Mondelain, D.; Kassi, S.; Campargue, A.

    2016-07-01

    The very weak 3ν1+3ν2+ν3 absorption band of the main isotopologue of nitrogen dioxide, 14N16O2, is investigated for the first time near 7587 cm-1. The absorption spectrum was recorded by high sensitivity Continuous Wave-Cavity Ring Down Spectroscopy with a noise equivalent absorption of αmin≈1×10-10 cm-1. 414 lines of the 3ν1+3ν2+ν3 band were assigned with rotational quantum numbers N and Ka as high as 32 and 6, respectively, what corresponds to 518 rotation-vibration transitions. The overall set of spin-rotation energy levels was modeled in the frame of the effective Hamiltonian approach and reproduced with an RMS of 6×10-3 cm-1 for the (obs.-calc.) deviations. The effective Hamiltonian includes interactions with three nearby dark states - (350), (062) and (312) - in Coriolis interaction with the (331) bright state. Using a selected set of experimental line intensities and the fitted values of the vibration-rotation Hamiltonian parameters, the principal parameter in the dipole moment operator expansion is determined for the 3ν1+3ν2+ν3 band. With maximum line intensity on the order of 2.5×10-27 cm/molecule at 296 K, the 3ν1+3ν2+ν3 band is the weakest band of the NO2 molecule rovibrationnally assigned so far.

  19. Foreign-gas-broadening effects in the 15-micron CO2 bands.

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.; Young, C.

    1972-01-01

    The effects of N2, O2, Ar, and He on the absorption of radiation by the 15-micron perpendicular CO2 bands are reported. The investigation was carried out at medium resolution and at gas pressures less than 1 atm. The results of the study are presented in the form of a band-averaged broadening coefficient for N2, band-averaged broadening factors for O2, Ar, and He, and wavelength dependent broadening coefficients for N2, O2, Ar, and He. Comparisons are made with other experimental and theoretical results. In addition transmittances were calculated for homogeneous paths using some of the molecular parameters determined in the study and compared with measured transmittances.

  20. Current band model studies of CH4 at wavelengths less than 2.5 microns

    NASA Technical Reports Server (NTRS)

    Fink, U.

    1982-01-01

    Band model theories are used to calculate the transmission of the methane spectrum. In a band model the monochromatic absorption coefficient over a small wavelength interval is replaced, and an average pressure coefficient is introduced. Two main types of band models were developed. The first is the 'regular' band model, in which the lines in a band are presumed evenly spaced; this is also called the Elsasser band model. In the second type of band model, the lines are randomly spaced; this is often referred to as the Mayor-Goody band model. The methane spectrum is sufficiently irregular that the second band model, the irregular band model, should apply.

  1. Transient absorption characterization of Cu- and Zn-metallized derivatives of meso-tetrakis(4-caynophenyl) N-confused porphyrin

    NASA Astrophysics Data System (ADS)

    Ao, Guanghong; Xiao, Zhengguo; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2015-10-01

    Meso-tetrakis(4-cyanophenyl)N-confused porphyrin [NCTPP(CN)4] and its two metallized derivatives with Cu2+ and Zn2+ ligand in the central position of the macrocycle are synthesized and spectroscopically characterized. Their excited-state dynamics are investigated with transient absorption (TA) spectroscopy upon excitation by 190 fs laser pulses at 420 nm within their Soret band region. A global and target analysis for the TA spectra of each porphyrin is performed via a four-level model including singlet (S) and triplet (T) states to extract the photophysical parameters at a variety of absorption wavelengths. Furthermore the corresponding excited-state lifetimes are extracted and discussed.

  2. Band analysis by spectral curve fitting

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Shaw, J. H.; Calvert, J. G.

    1980-01-01

    A method of estimating the values of the parameters in the models describing the positions, widths, and intensities of the lines in rotation-vibration bands of gases, without the need for line by line analysis, is described. To illustrate the technique, portions of the 1-0 bands of HCl and CO have been analyzed. The values of up to 27 parameters, their standard deviations, and the correlations between the parameters required to describe the spectra have been obtained.

  3. Computer programs for absorption spectrophotometry.

    PubMed

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis. PMID:20072266

  4. Microwave and optical saturable absorption in graphene.

    PubMed

    Zheng, Zhiwei; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun

    2012-10-01

    We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band. PMID:23188285

  5. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators

    NASA Astrophysics Data System (ADS)

    Li, Liyang; Wang, Jun; Du, Hongliang; Wang, Jiafu; Qu, Shaobo; Xu, Zhuo

    2015-01-01

    In this paper, we propose a band enhanced metamaterial absorber in microwave band, which is composed of high-permittivity E-shaped dielectric resonators and metallic ground plate. The E-shaped all-dielectric structure is made of high-temperature microwave ceramics with high permittivity and low loss. An absorption band with 1 GHz bandwidth for both TE and TM polarizations are observed. Moreover, the absorption property is stable under different incident angles. The band enhanced absorption is caused by different resonant modes which lie closely in the absorption band. Due to the enhanced localized electric/magnetic fields at the resonant frequencies, strong absorptions are produced. Our work provides a new method of designing high-temperature and high-power microwave absorbers with band enhanced absorption.

  6. End-to-end sensor simulation for spectral band selection and optimization with application to the Sentinel-2 mission.

    PubMed

    Segl, Karl; Richter, Rudolf; Küster, Theres; Kaufmann, Hermann

    2012-02-01

    An end-to-end sensor simulation is a proper tool for the prediction of the sensor's performance over a range of conditions that cannot be easily measured. In this study, such a tool has been developed that enables the assessment of the optimum spectral resolution configuration of a sensor based on key applications. It employs the spectral molecular absorption and scattering properties of materials that are used for the identification and determination of the abundances of surface and atmospheric constituents and their interdependence on spatial resolution and signal-to-noise ratio as a basis for the detailed design and consolidation of spectral bands for the future Sentinel-2 sensor. The developed tools allow the computation of synthetic Sentinel-2 spectra that form the frame for the subsequent twofold analysis of bands in the atmospheric absorption and window regions. One part of the study comprises the assessment of optimal spatial and spectral resolution configurations for those bands used for atmospheric correction, optimized with regard to the retrieval of aerosols, water vapor, and the detection of cirrus clouds. The second part of the study presents the optimization of thematic bands, mainly driven by the spectral characteristics of vegetation constituents and minerals. The investigation is performed for different wavelength ranges because most remote sensing applications require the use of specific band combinations rather than single bands. The results from the important "red-edge" and the "short-wave infrared" domains are presented. The recommended optimum spectral design predominantly confirms the sensor parameters given by the European Space Agency. The system is capable of retrieving atmospheric and geobiophysical parameters with enhanced quality compared to existing multispectral sensors. Minor spectral changes of single bands are discussed in the context of typical remote sensing applications, supplemented by the recommendation of a few new bands for

  7. A Simple Band for Gastric Banding.

    PubMed

    Broadbent

    1993-08-01

    The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation. PMID:10757939

  8. Interpretation of the Minkowski bands in Grw + 70 deg 8247.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1972-01-01

    Demonstration on the basis of the spectral structure of circular polarization in Grw + 70 deg 8247, that the absorption bands are at least in part molecular in origin. The spectrum of molecular helium has strong bands coincident with several of the Minkowski bands and, in particular, at high temperature shows a strong band head at about 4125 A. Helium molecules could be formed in sufficient density to give the absorption features in the star if it has a pure helium atmosphere. The Zeeman effect in molecular helium can explain in general the observed spectral features in the polarization and also may be responsible for the continuum polarization.

  9. The Interaction of C-Band Microwaves with Large Plasma Sheets

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Huo, Wenqing; Yang, Xinjie; Xu, Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  10. Dynamics of cold bosons in optical lattices: effects of higher Bloch bands

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Delande, Dominique; Zakrzewski, Jakub

    2013-01-01

    The extended effective multiorbital Bose-Hubbard-type Hamiltonian which takes into account higher Bloch bands is discussed for boson systems in optical lattices, with emphasis on dynamical properties, in relation to current experiments. It is shown that the renormalization of Hamiltonian parameters depends on the dimension of the problem studied. Therefore, mean-field phase diagrams do not scale with the coordination number of the lattice. The effect of Hamiltonian parameters renormalization on the dynamics in reduced one-dimensional optical lattice potential is analyzed. We study both the quasi-adiabatic quench through the superfluid-Mott insulator transition and the absorption spectroscopy, that is, the energy absorption rate when the lattice depth is periodically modulated.

  11. Wide band data collection system

    NASA Technical Reports Server (NTRS)

    Turkiewicz, J. M.

    1988-01-01

    The Incorporated Research Institutes for Seismology (IRIS) approached NASA Headquarters in 1986 about the need to collect data daily from seismic stations around the world as part of the Earth Observing System (EOS) mission. A typical IRIS Seismic Station generates 16 Megabytes of data per day when there is seismic activity. The Preliminary Design Parameters of the Wide Band Data Collection System are summarized.

  12. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  13. Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films

    SciTech Connect

    Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G. E-mail: agvedeshwar@gmail.com

    2013-11-21

    The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different six (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.

  14. Multi-band algorithms for the estimation of chlorophyll concentration in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Gilerson, Alexander; Ondrusek, Michael; Tzortziou, Maria; Foster, Robert; El-Habashi, Ahmed; Tiwari, Surya Prakash; Ahmed, Sam

    2015-10-01

    Standard blue-green ratio algorithms do not usually work well in turbid productive waters because of the contamination of the blue and green bands by CDOM absorption and scattering by non-algal particles. One of the alternative approaches is based on the two- or three band ratio algorithms in the red/NIR part of the spectrum, which require 665, 708, 753 nm bands (or similar) and which work well in various waters all over the world. The critical 708 nm band for these algorithms is not available on MODIS and VIIRS sensors, which limits applications of this approach. We report on another approach where a combination of the 745nm band with blue-green-red bands was the basis for the new algorithms. A multi-band algorithm which includes ratios Rrs(488)/Rrs(551)and Rrs(671)/Rrs(745) and two band algorithm based on Rrs671/Rrs745 ratio were developed with the main focus on the Chesapeake Bay (USA) waters. These algorithms were tested on the specially developed synthetic datasets, well representing the main relationships between water parameters in the Bay taken from the NASA NOMAD database and available literature, on the field data collected by our group during a 2013 campaign in the Bay, as well as NASA SeaBASS data from the other group and on matchups between satellite imagery and water parameters measured by the Chesapeake Bay program. Our results demonstrate that the coefficient of determination can be as high as R2 > 0.90 for the new algorithms in comparison with R2 = 0.6 for the standard OC3V algorithm on the same field dataset. Substantial improvement was also achieved by applying a similar approach (inclusion of Rrs(667)/Rrs(753) ratio) for MODIS matchups. Results for VIIRS are not yet conclusive.

  15. Spatially resolved methane band photometry of Saturn. II - Cloud structure models at four latitudes

    NASA Technical Reports Server (NTRS)

    West, R. A.

    1983-01-01

    Saturn's cloud vertical structures in the Equatorial Zone, South Equatorial Belt, and North and South Temperate Regions near + or - 30 deg latitudes are determined by means of an analysis of spatially resolved reflectivity measurements in the 6190, 7250, and 8996 A methane bands. Radiative transfer models are computed for a structure whose parameters are the methane column abundance in an aerosol-free layer at the top of the atmosphere, and the specific abundance of methane in a semiinfinite homogeneous gas-and-cloud mixture deep in the atmosphere. The structure for the South Equatorial Belt resembles that for the North Temperate Region. The level where unit cloud optical depth occurs in the South Temperate Region is deeper than the corresponding level at other latitudes. The differences between model parameters derived by means of different absorption bands are discussed.

  16. Theoretical calculation of zero field splitting parameters of Cr3+ doped ammonium oxalate monohydrate

    NASA Astrophysics Data System (ADS)

    Kripal, Ram; Yadav, Awadhesh Kumar

    2015-06-01

    Zero field splitting parameters (ZFSPs) D and E of Cr3+ ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr3+ in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr3+ in AOM crystal calculated with CFA package are in good match with the experimental values.

  17. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  18. A model for the spectral dependence of optically induced absorption in amorphous silicon

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1990-01-01

    A model based on transitions from localized band tail states to states above the mobility edge is used to explain the broad band induced absorptions observed in recent pump-probe experiments. The model gives the observed decrease of absorption with frequency at subband gap photo energies and high carrier densities (of about 10 to the 20th/cu cm). At lower carrier densities, the absorption has a maximun which is sensitive to the spatial extent of the band tail states.

  19. Strong terahertz absorption using thin metamaterial structures

    SciTech Connect

    Alves, Fabio; Kearney, Brian; Grbovic, Dragoslav; Lavrik, Nickolay V; Karunasiri, Gamani

    2012-01-01

    Metamaterial absorbers with nearly 100% absorption in the terahertz (THz) spectral band have been designed and fabricated using a periodic array of aluminum (Al) squares and an Al ground plane separated by a thin silicon dioxide (SiO{sub 2}) dielectric film. The entire structure is less than 1.6 mm thick making it suitable for the fabrication of microbolometers or bi-material sensors for THz imaging. Films with different dielectric layer thicknesses exhibited resonant absorption at 4.1, 4.2, and 4.5 THz with strengths of 98%, 95%, and 88%, respectively. The measured absorption spectra are in good agreement with simulations using finite element modeling.

  20. IRRS, UV-Vis-NIR absorption and photoluminescence upconversion in Ho 3+-doped oxyfluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Karmakar, Basudeb

    2005-09-01

    Infrared reflection spectroscopic (IRRS), ultraviolet-visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with special emphasis on the spectrochemistry of the oxyfluorophosphate (oxide incorporated fluorophosphates) glasses of the Ba(PO 3) 2-AlF 3-CaF 2-SrF 2-MgF 2-Ho 2O 3 system have been studied with different concentrations (0.1, 0.3 and 1.0 mol%) of Ho 2O 3. IRRS spectral band position and intensity of Ho 3+ ion doped oxyfluorophosphate glasses have been discussed in terms of reduced mass and force constant. UV-Vis-NIR absorption band position has been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 892 nm at room temperature. Three upconverted bands originated from the 5F 3→ 5I 8, ( 5S 2, 5F 4)→ 5I 8 and 5F 5→ 5I 8 transitions have found to be centered at 491 nm (blue, medium), 543 nm (green, very strong) and 658 nm (red, weak), respectively. These bands have been justified from the evaluation of the absorption, normal (down conversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross relaxation (CR) mechanisms involving population of the metastable (storage) energy levels by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in oxyfluorophosphate glasses owing to their high intense low phonon energy (˜600 cm -1) which is very close to that of fluoride glasses (500-600 cm -1).

  1. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  2. Optical absorption enhancement of CdTe nanostructures by low-energy nitrogen ion bombardment

    NASA Astrophysics Data System (ADS)

    Akbarnejad, E.; Ghoranneviss, M.; Mohajerzadeh, S.; Hantehzadeh, M. R.; Asl Soleimani, E.

    2016-02-01

    In this paper we present the fabrication of cadmium telluride (CdTe) nanostructures by means of RF magnetron sputtering followed by low-energy ion implantation and post-thermal treatment. We have thoroughly studied the structural, optical, and morphological properties of these nanostructures. The effects of nitrogen ion bombardment on the structural parameters of CdTe nanostructures such as crystal size, microstrain, and dislocation density have been examined. From x-ray diffractometer (XRD) analysis it could be deduced that N+ ion fluence and annealing treatment helps to form (3 0 0) orientation in the crystalline structure of cadmium-telluride films. Fluctuations in optical properties like the optical band gap and absorption coefficient as a function of N+ ion fluences have been observed. The annealing of the sample irradiated by a dose of 1018 ions cm-2 has led to great enhancement in the optical absorption over a wide range of wavelengths with a thickness of 250 nm. The enhanced absorption is significantly higher than the observed value in the original CdTe layer with a thickness of 3 μm. Surface properties such as structure, grain size and roughness are noticeably affected by varying the nitrogen fluences. It is speculated that nitrogen bombardment and post-annealing treatment results in a smaller optical band gap, which in turn leads to higher absorption. Nitrogen bombardment is found to be a promising method to increase efficiency of thin film solar cells.

  3. Bio-inspired fabrication of hierarchical Ni-Fe-P coated skin collagen fibers for high-performance microwave absorption.

    PubMed

    Wang, Xiaoling; Liao, Xuepin; Zhang, Wenhua; Shi, Bi

    2015-01-21

    In the present investigation, skin collagen fiber (CF) with a well defined hierarchical 3D fibrous structure was employed for the bio-inspired fabrication of high-performance microwave absorption materials. The hierarchical 3D structure of the CF was retained in the CF@Ni-Fe-P composites, and the formation of the Ni-Fe-P coating on the CF surface was identified by XRD and XPS analysis. Based on the electromagnetism parameter measurements, the maximum reflection loss (RL) of the CF@Ni-Fe-P composites reached -31.0 dB, and the width of the absorption band where reflection loss values exceeded -10.0 dB covered the whole Ku-band and some parts of the X-band (9.5-18.0 GHz). The complex permittivity and complex permeability measurements indicated that electronic loss and magnetic loss were involved in the CF@Ni-Fe-P composites for microwave absorption. In addition, due to the magnetic properties of the Ni-Fe-P coating, these CF@Ni-Fe-P composites exhibited excellent magnetic characteristics with high saturation magnetization and low coercivity values. The present investigation indicates a new possibility for the bio-matrix-based fabrication of high-performance microwave absorbing materials with lightweight and efficient absorption properties. PMID:25484199

  4. One-parameter scaling and exponential-sum fitting for water vapor and CO2 infrared transmission functions

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Ridgway, William L.; Yan, Michael M.-H.

    1993-01-01

    A medium-sized band model for water vapor and CO2 absorption is developed using the one-parameter scaling approximation. The infrared spectrum is divided into 10 bands. The Planck-weighted diffuse transmittance is reduced to a function dependent only upon the scaled absorber amount and fit by an exponential sum. By selecting specific sets of absorption coefficients for exponential-sum fitting, computations of fluxes and cooling rate are made very fast. Compared to a broadband model, the accuracy, speed, and versatility are all enhanced. With absorption due to water vapor line, continuum, CO2 as well as O3 included, the parameterization introduces an error of less than 1.5 W/sq m in fluxes and less than 0.15 C/day in the tropospheric and lower stratospheric cooling rates.

  5. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  6. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    NASA Technical Reports Server (NTRS)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  7. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  8. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Steenbergen, E. H.; Synowicki, R. A.; Zhang, Y.-H.; Johnson, S. R.

    2015-02-01

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm-1 as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  9. Effect of annealing on the kinetic properties and band parameters of Hg{sub 1−x−y}Cd{sub x}Eu{sub y}Se semiconductor crystals

    SciTech Connect

    Kovalyuk, T. T. Maistruk, E. V.; Maryanchuk, P. D.

    2014-12-15

    The results of studies of the kinetic properties of Hg{sub 1−x−y}Cd{sub x}Eu{sub y}Se semiconductor crystals in the ranges of temperatures T = 77–300 K and magnetic fields H = 0.5–5 kOe before and after heat treatment of the samples in Se vapors are reported. It is established that annealing of the samples in Se vapors induces a decrease in the electron concentration. From the concentration dependence of the electron effective mass at the Fermi level, the band gap, the matrix element of interband interaction, and the electron effective mass at the bottom of the conduction band are determined.

  10. Electronic structure and optic absorption of phosphorene under strain

    NASA Astrophysics Data System (ADS)

    Duan, Houjian; Yang, Mou; Wang, Ruiqiang

    2016-07-01

    We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.

  11. Detectivity of plasmonic enhanced photodetectors based on nondegenerate two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Bonakdar, Alireza; Kohoutek, John; Mohseni, Hooman

    2012-10-01

    Mid-infrared photodetectors are the subject of many research efforts within the last two decades for enhancing their operating parameters such as temperature stability, detectivity and quantum efficiency. This is due to their wide range of applications like biosensing, night vision, and short range communication. However, mid-infrared photons have much smaller energy compared with the band gap energy of well known semiconductors including III-V and II-VI families. One way to overcome this problem is to utilizing quantum confinement effects by absorbing a photon through the intersubband transition of a conduction electron or valance hole. Fabricating devices at the nanoscale size to achieve quantum confinement is costly and imposes limitations for further device preparation. In addition, the optical properties of quantum confined devices are sensitive to nanoscale geometrical parameters which make them vulnerable to fabrication imperfections. The other approach of detecting mid-infrared light is by exploiting the non-degenerate two photon absorption process (TPA). Two photons with different energies can be absorbed simultaneously by a semiconductor with the band gap energy less than the overall energy of two photons. Thus, a mid-infrared photon as the signal can be detected by a bulk semiconductor with much larger band gap energy when a near-infrared photon as the gate assists the absorption process through TPA.

  12. The 4051 Å Comet Band of 13C3

    NASA Astrophysics Data System (ADS)

    Haddad, M. A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2014-02-01

    The tricarbon C3 molecule has been detected in a number of translucent interstellar clouds via its $A^1\\Piu-X^1\\Sigmag+$ (000-000) electronic `comet' band around 4051 Å. So far, it is the largest molecule unambiguously identified in the diffuse interstellar medium. In this work, rotationally resolved laboratory spectra are presented for the corresponding transition of the 13C3 isotopologue. The spectra are recorded in direct absorption using cavity ring-down spectroscopy in combination with a supersonic plasma jet. A rotational analysis yields accurate spectroscopic parameters. In contrast to 12C3, no significant perturbations are found for (e- or f-parity) levels up to J' = 18 in the A 1Π upper electronic state.

  13. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms.

    PubMed

    Alkaladi, Ali; How, Martin J; Zeil, Jochen

    2013-02-01

    Polarisation sensitivity is based on the regular alignment of dichroic photopigment molecules within photoreceptor cells. In crustaceans, this is achieved by regularly stacking photopigment-rich microvilli in alternating orthogonal bands within fused rhabdoms. Despite being critical for the efficient detection of polarised light, very little research has focused on the detailed arrangement of these microvilli bands. We report here a number of hitherto undescribed, but functionally relevant changes in the organisation of microvilli banding patterns, both within receptors, and across the compound eye of fiddler crabs. In all ommatidia, microvilli bands increase in length from the distal to the proximal ends of the rhabdom. In equatorial rhabdoms, horizontal bands increase gradually from 3 rows of microvilli distally to 20 rows proximally. In contrast, vertical equatorial microvilli bands contain 15-20 rows of microvilli in the distal 30 µm of the rhabdom, shortening to 10 rows over the next 30 µm and then increase in length to 20 rows in parallel with horizontal bands. In the dorsal eye, horizontal microvilli occupy only half the cross-sectional area as vertical microvilli bands. Modelling absorption along the length of fiddler crab rhabdoms suggests that (1) increasing band length assures that photon absorption probability per band remains constant along the length of photoreceptors, indicating that individual bands may act as units of transduction or adaptation; (2) the different organisation of microvilli bands in equatorial and dorsal rhabdoms tune receptors to the degree and the information content of polarised light in the environment. PMID:23108879

  14. Spectroscopic Parameters for Ozone and its Isotopes: Current Status, Prospects for Improvement, and the Identification of 16O16O17O and O-16O-16O-17 and O-16O-17O-16 Lines in Infrared Ground-Based and Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Flaud, J.-M.; Goldman, A.; Perrin, A.; Camy-Peyret, C.; Smith, M. A. H.; Devi, V. Malathy; Benner, D. C.; Barbe, A.; Stephens, T. M.; Murcray, F. J.

    1998-01-01

    We describe the updates to the spectroscopic parameters of ozone and its isotopes in the 1996 HITRAN compilation. Recent published studies not included in HITRAN are also summarized. Finally, we report the identification of infrared lines of the v(sub 3) bands of O-16O-16O-17 and O-16O-17O-16 in high-resolution solar spectra recorded by stratospheric balloon-borne and ground-based Fourier transform spectrometers.

  15. X-Band/Ka-Band Dichroic Plate

    NASA Technical Reports Server (NTRS)

    Chen, Jacqueline C.

    1993-01-01

    Dichroic plate designed nearly transparent to circularly polarized microwaves at frequencies between 31.8 and 34.7 GHz (in and near Ka band) and reflective at frequencies between 8.4 and 8.5 GHz (in the X band). Made of electrically conductive material and contains rectangular holes in staggered pattern.

  16. Inversion of instantaneous equivalent absorption coefficient and its application

    SciTech Connect

    Weihua, W. )

    1992-01-01

    Absorption coefficient is an important parameter for reservoir description. The major troubles in extracting absorption coefficient from seismic data are amplitude and waveform distortions; they greatly restrict the inversion which is based on reflection amplitude variation or reflection frequency variation. This paper presents a new method which avoids amplitude and uses waveform variation gradient in wave propagation to make the inversion of absorption coefficient. Apparent absorption coefficient and pseudo absorption coefficient are adopted so as to remove the influence which the waveform distortion due to thin bed tuning brings to absorption coefficient extraction. The final instantaneous equivalent absorption coefficient, a true absorption coefficient which reflects real absorptive character of a seismic medium, can be obtained by subtracting the pseudo absorption coefficient (inversely calculated using maximum entropy) from the apparent absorption coefficient the authors have calculated.

  17. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  18. Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions.

    PubMed

    Wang, Jie; Xu, Ruisong; Yang, Shilun

    2009-10-01

    Vegetation water content could possibly provide widespread utility in agriculture, forestry and hydrology. In this article, three species leaves were measured radiometrically in order to determine a relationship between leaf water status and the spectral feature centered at 1,450 and 1,940 nm where there are strong water absorptions. The first step of our research is to measure leaf spectra with a FieldSpec-FR. After the spectral analysis using the continuum removal technique, the spectral absorption feature parameters: absorption band depth (D (1450), D (1940)), the normalized band depth of absorption in 1,450 and 1,940 nm (BNA(1450), BNA(1940)), the ratio of the two reflectance of continuum line (R (1450i )/R (1940i )), the ratio of the two band depth (D (1450)/D (1940)) and the ratio of the two absorption areas (A (1450)/A (1940)) in the two wavebands were extracted from each leaf spectrum. The fuel moisture content (FMC), specific leaf weight (SLW), equivalent water thickness (EWT) were measured for each leaf sample. A correlation analysis was conducted between the spectral absorption feature parameters and corresponding FMC, SLW and EWT. In addition, some existing indices for assessing water status such as WI (water index), WI/NDVI (water index/normalized difference vegetation index), MSI (moisture stress index), NDWI (normalized difference water index)were calculated and the correlation between them and water status were analyzed too. The results by comparing the correlations indicated that the spectral absorption feature indices we proposed were better. The indexes BNA(1940), D (1450)/D (1940), and A (1450)/A (1940) were well correlated with FMC, and the correlation between the indexes D (1450,) D (1940), R (1450i )/R (1940i ) and EWT were strong. The index A (1450)/A (1940) was tested to be a good indictor for evaluating plant water content, because there was strongest positive correlation between it and FMC than other indices. PMID:18853268

  19. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    NASA Astrophysics Data System (ADS)

    Singh, Avanish Pratap; Anoop Kumar, S.; Chandra, Amita; Dhawan, S. K.

    2011-06-01

    β-Naphthalene sulphonic acid (β-NSA) doped polyaniline (PANI)-flyash (FA) composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37-21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D-VRH model. SEM images demonstrate that β-NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ'- iɛ″) and permeability (μ*=μ'- iμ″) of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21) using theoretical calculations given in Nicholson-Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 - 12.4 GHz) & Ku-Band (12.4 - 18 GHz) frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  20. Picosecond laser induced electric field modulation of carotenoid absorption bands

    SciTech Connect

    Gosztola, D.; Yamada, Hiroko; Wasielewski, M.R.

    1994-04-01

    We present a new and unique way of forming an intense electric field near a molecule in order to induce electrochromism. We have done this by creating an electron-hole pair within close proximity to, but electronically isolated form, a polarizable molecule. The molecular system that we have utilized consists of a zinc porphyrin -- pyromellitic diimide light induced charge transfer complex held rigidly proximate to a {beta}-carotene using a calix[4]arene linkage. The formation of the charge separated state of the porphyrin-diimide results in a dipole formed by the 8.4 {Angstrom} separation of the electron-hole pair. The electric field from this dipole was found to induce electrochromism in the carotene.