Science.gov

Sample records for absorption band strength

  1. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge absorption bands of isotopic oxygen, (O-18)2, at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Friedman, R. S.; Parkinson, W. H.

    1988-01-01

    Cross-sections of (O-18)2 at 79 K have been obtained from photoabsorption measurements at various pressures throughout the wavelength region 177.8-197.8 nm with a 6.65 m photoelectric scanning spectrometer equipped with a 2400 lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross-sections of the Schumann-Runge bands (14,0) through (2,0) are, with the exception of the (12,0) band, independent of the instrumental width. The measured cross-sections are presented graphically here and are available at wavenumber intervals of about 0.1/cm as numerical compilations stored on magnetic tape. Band oscillator strengths of those bands have been determined by direct numerical integration of the measured absolute cross-sections and are in excellent agreement with these theoretically calculated values.

  2. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  3. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge bands of oxygen at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1987-01-01

    Cross sections of O2 at 79 K have been obtained from photoabsorption measurements at various pressures throughout the wavelength region 179.3-198.0 nm with a 6.65-m photoelectric scanning spectrometer equipped with a 2400-lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross sections of the Schumann-Runge bands (12,0) through (2,0) are independent of the instrumental width. The measured cross-sections are presented graphically here and are available at wavenumber intervals of about 0.1/cm as numerical compilations stored on magnetic tape from the National Space Science Data Center, NASA/Goddard. Band oscillator strengths of these bands have been determined by direct numerical integration of the measured cross sections.

  4. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge absorption bands of isotopic oxygen, (0-16)(0-18), at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Friedman, R. S.; Parkinson, W. H.

    1989-01-01

    Cross-sections of (0-16)(0-18) at 79 K have been obtained from photoabsorption measurements on mixtures of (0-16)2, (0-18)2, and (0-16)(0-18) at various pressures throughout the wavelength region 180.5-195.3 nm with a 6.65 m photoelectric scanning spectrometer equipped with a 2400 lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross-sections of the (0-16)(0-18) Schumann-Runge bands (11.0)-(3.0) are independent of the instrumental width. The measured cross-sections are presented graphically.

  5. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  6. Infrared band strengths: Laboratory techniques and applications to astronomical observations

    NASA Astrophysics Data System (ADS)

    Gerakines, P. A.

    2002-09-01

    Whenever an abundance measurement is derived by way of infrared spectroscopy, it will typically make use of a laboratory-obtained conversion factor between the size of an IR absorption feature and the (column) density of the molecule under study. This factor is usually called the "absolute absorption intensity" by a chemist or the "band strength" by a typical IR astronomer. Band strengths have been studied in chemistry since the 1950s, and the commonly quoted "accuracy to with a factor of ten" historically required of astronomical calculations has not required much new input into this area. Today, however, astronomical measurements require much higher precision, and it is time for IR astronomers to ask more of laboratory measurements and to understand when and why to use IR band strengths in a more appropriate manner. The history, interpretation, measurement, and common astrophysical applications of infrared band strengths will be discussed. The "secrets" of the laboratory techniques involved in their measurement are described, and a compilation of results from the literature is given along with some new results. Typical astrophysical applications and appropriate uses will also be discussed. Common misconceptions are confronted and two challenges are presented: (i) to the laboratory astrophysics community to produce and advertise accurate values with caveats when necessary, and (ii) to the observational community to use the most appropriate results for the environment under study.

  7. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  8. LINE ABSORPTION OSCILLATOR STRENGTHS FOR THE c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) BANDS IN N{sub 2}

    SciTech Connect

    Lavin, C.; Velasco, A. M.

    2011-09-20

    Theoretical absorption oscillator strengths and emission branching ratios for rotational lines of the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) bands of molecular nitrogen are reported. The calculations have been performed with the molecular quantum defect orbital method, which has proved to be reliable in previous studies of rovibronic transitions in diatomic molecules. The strong interaction between c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) and b' {sup 1}{Sigma}{sup +}{sub u}(10) states has been analyzed through an interaction matrix that includes rotational terms. Owing to the perturbation, the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0), c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(1), and c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(5) bands are not weak, in contrast to what would be expected on the basis of the Franck-Condon principle. Moreover, the intensity distribution of the rotational lines within each of the vibronic bands deviates from considerations based on Hoenl-London factors. In this work, we provide data that may be useful to interpret spectra from atmospheres of the Earth, Titan, and Triton, in which transitions from the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) level have been detected.

  9. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  10. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  11. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  12. Transition Energies and Absorption Oscillator Strengths for {{c}_{4}}^{\\prime 1}{{{\\rm{\\Sigma }}}_{u}}^{+}-{{\\rm{X}}}^{1}{{{\\rm{\\Sigma }}}_{g}}^{+}, {b}^{\\prime 1}{{{\\rm{\\Sigma }}}_{u}}^{+}-{{\\rm{X}}}^{1}{{{\\rm{\\Sigma }}}_{g}}^{+}, and {{c}_{5}}^{\\prime 1}{{{\\rm{\\Sigma }}}_{u}}^{+}-{{\\rm{X}}}^{1}{{{\\rm{\\Sigma }}}_{g}}^{+} Band Systems in N2

    NASA Astrophysics Data System (ADS)

    Lavín, C.; Velasco, A. M.

    2017-04-01

    Theoretical transition energies and absorption oscillator strengths for the {{c}4}\\prime 1{{{{Σ }}}u}+ (v‧ = 0–2, 5, 7, 8) ‑ {{{X}}}1{{{{Σ }}}g}+(v\\prime\\prime =0{--}14) and {{c}5}\\prime 1{{{{Σ }}}u}+ (v‧ = 0, 2) ‑ {{{X}}}1{{{{Σ }}}g}+ (v″ = 0–14) Rydberg bands, and {b}\\prime 1{{{{Σ }}}u}+ (v‧ = 0–9, 11, 12, 14–19, 21, 22) ‑ {{{X}}}1{{{{Σ }}}g}+ (v″ = 0–14) valence bands of molecular nitrogen are reported. The strong interaction between {}1{{{{Σ }}}u}+ states has been dealt with through a vibronic interaction matrix. As a consequence of the Rydberg-valence interaction, irregularities in the vibrational structure of the above band systems are observed. Good agreement is found with the scarce high-resolution data that are available for oscillator strengths. The new band oscillator strengths reported here may be useful for a reliable interpretation of the spectra from atmospheres of the Earth, Titan, and Triton, where {{{N}}}2 is the mayor constituent.

  13. Line strength measurements using diode lasers - The nu2 band of H2S

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1983-01-01

    The strengths of 94 lines in the nu2 band of H2S have been measured with an average accuracy of 3 percent using a tunable diode laser. The line strengths are determined from the peak absorption of nearly Doppler-shaped lines. A detailed error analysis of this measurement method is given. Ratios of the measured line strengths to strengths calculated assuming no vibration-rotation interactions are shown to range from as low as 0.057 to as high as 4.71.

  14. Absorption enhancement of a dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Han, Gui Ming; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2017-02-01

    In this paper, we propose and fabricate a dual-band metamaterial absorber in 6-24 THz region. Electric field distribution reveal that the first absorption band is obtained from localized surface plasmon (LSP) modes which are excited both on inside and outside edges of each circular-patterned metal-dielectric stack, while the second absorption band is excited by LSP modes on outside edges of each stack. Measured results indicate that the absorption band width can be tuned by increasing the radius of circular-patterned layers or reducing the thickness of dielectric spacing layers. Moreover, the designed dual-band metamaterial absorber is independent on circular-patterned dielectric layer combinations.

  15. A measurement of the vibrational band strength for the upsilon sub 3 band of the HO2 radical

    NASA Technical Reports Server (NTRS)

    Zahniser, M. S.; Stanton, A. C.

    1985-01-01

    The HO2 radicals generated in a discharge-flow system were observed with tunable diode laser absorption in the P-branch of the nu(3) vibrationall band at 1080/cm. The observed line positions agree with those calculated from the molecular constants for the nu(3) bland obtained from a previous study using laser magnetic resonance spectroscopy. The band strength was determined by observing line center absoptions when HO2 is produced in the reaction F + H2O2 yields HO2 + HF (k1) with a measured concentration of atomic fluorine and excess hydrogen peroxide. F-atom concentrations are measured by diode laser absorption of the spin-orbit transition at 404/cm. The analysis accounts for HO2 losses due to the reactions of HO2 + HO2 yields H2O2 + O2 (k3) and F + HO2 yields HF + O2 (k4). The line strength for the 6(15) 7(16) F(1) transition is 2.9 x 10 to the 21st power sq cm/molecule/cm which corresponds to a nu(3) band strength of 34 +/- 9 sq/cm(STP atm). This value is a factor of 6 lower than previous ab initio calculations. These results will be useful in assessing the feasibility of atmospheric measurements of HO2 using infrared absorption techniques.

  16. Interpretation of absorption bands in airborne hyperspectral radiance data.

    PubMed

    Szekielda, Karl H; Bowles, Jeffrey H; Gillis, David B; Miller, W David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments.

  17. Interpretation of Absorption Bands in Airborne Hyperspectral Radiance Data

    PubMed Central

    Szekielda, Karl H.; Bowles, Jeffrey H.; Gillis, David B.; Miller, W. David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments. PMID:22574053

  18. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  19. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    PubMed

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  20. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  1. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  2. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon.

    PubMed

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-05-27

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.

  3. A measurement of the vibrational band strength for the v3 band of the HO2 radical

    NASA Technical Reports Server (NTRS)

    Zahniser, M. S.; Stanton, A. C.

    1984-01-01

    Laboratory measurements of the v(3) band strength of HO2 using a tunable diode laser to measure the absorption strength of a vibration-rotation line in the P branch near 1080/cm are reported. The HO2 is generated in a discharge-flow system by reaction of fluorine atoms with excess H2O2: F + H2O2 - HO2 + HF. The HO2 concentration is determined from measurements of F-atom concentrations using both chemical titration with Cl2 and tunable diode laser absorption by the F-atom spin-orbit transition near 404/cm. The experimental data are consistent with a value of k(3) = (1.6 + or - 0.3) x 10 to the 12th cu cm/s and a ratio k(4)/k(1) = 1.0 + or - 0.4. The line strength for the 6(15) - 7(16)F(1) transition is 2.9 x 10 to the -21 sq cm/molecule/cm, which corresponds to a v(3) band strength of 35 + or - 9/sq cm/(STP atm). This value is a factor of 1.6 to 6 lower than previous ab initio calculations.

  4. Shape of impurity electronic absorption bands in nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1994-11-01

    The impurity-matrix anisotropic static intermolecular interactions, orientation-statistical properties, and electronic structure of uniaxial impurity molecules are shown to have a significant influence on spectral moments of the electronic absorption bands of impurities in the nematic liquid crystal. 14 refs., 3 figs.

  5. Constraints on the absorption band model of Q

    NASA Astrophysics Data System (ADS)

    Lundquist, Gary M.; Cormier, Vernon C.

    1980-10-01

    First order models for the combined depth and frequency dependence of Q are derived and tested using several independent constraints. (1) Using a microphysics approach, the adoption of an absorption band as a first-order model for the frequency dependence of Q is justified, and the expected depth behavior of relaxation times in the earth is derived. The significant new parameter in this model of Q is τ2, the period at the half-amplitude point of the high frequency end of the absorption band. (2) Using observed body-wave spectra, the existence of a frequency dependence in Q is proved, and the average location of that frequency dependence (i.e., τ2) is estimated to be in the range 1 to 2.5 Hz. (3) Under the constraints of Q model ratios, the depth dependence of τ2 is estimated by assuming that a free-oscillation and a body-wave Q model both measure Q from the same absorption band. The resulting τ2 is about 0.04 s in the upper 200 km and then increases exponentially with depth in the mantle to about 1.9 at the core mantle boundary. The Q model ratios are better satisfied if a second absorption band is hypothesized to operate in the depth range of the asthenosphere. In that case, τ2 for the mantle absorption band varies from about 0.09 s in the first 200 km to 4.0 s at 2886 km, and τ2 for the asthenosphere absorption band is about 0.005 s in the depth range 35-220 km. (4) Both classes of Q models are tested in the time domain using synthetic seismograms of Russian and American nuclear explosions. Although trade-offs between source and mantle transfer functions preclude further refinement of the models at this time, a compatibility is demonstrated between the double absorption band model and time domain constraints, including arrival time and pulse shape.

  6. nu-2 band of H2 O-16 - Line strengths and transition frequencies

    NASA Technical Reports Server (NTRS)

    Toth, Robert A.

    1991-01-01

    High-resolution spectra of H2 O-16 were recorded with a Fourier-transform spectrometer covering transitions in the (010)-(000) band from 1066 to 2582/cm. The measured line frequencies were used along with additional data taken from studies at microwave and far-infrared frequencies in an analysis to obtain rotational energies of levels in the (000) and (010) states. Measurements of the line strengths were fitted by least squares to a model in which the dipole moment matrix elements were represented by as many as 19 expansion coefficients. The results produced computed line strength values that are in excellent agreement, on the average, with the 874 experimental transitions included in the analysis. These results provide a more accurate representation of the line positions and strengths for the (010)-(000) band than are currently available on the HITRAN absorption line parameter compilation.

  7. Concerning the Optical Absorption Band of the Hydrated Electron,

    DTIC Science & Technology

    methylene blue ) showed marked nonlinear absorption due to saturation of optical transitions, no such change was observed for hydrated electrons even though the light intensity was varied by > 10 to the 7th power up to 200 photons per hydrated electron per sq cm. Consequently the photoexcited state lifetime is estimated to be than 6 x 10 to the -12th power sec. This finding is discussed briefly in terms of three possible origins for the absorption band, namely that involving excitation to a bound excited state, as a photoionization efficiency profile or as a distribution

  8. Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Hardegree-Ullman, E.E.; Gudipati, M.S.; Boogert, A.C.A.; Lignell, H.; Allamandola, L.J.; Stapelfeldt, K. R.; Werner, M.

    2014-01-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10 to 20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and deuterium oxide ices. The deuterium oxide mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 micrometers. Our infrared band strengths were normalized to experimentally determined ultraviolet (UV) band strengths, and we find that they are generally approximately 50% larger than those reported by Bouwman et al. (2011) based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. (2008) to estimate the contribution of frozen PAHs to absorption in the 5 to 8 micrometer spectral region, taking into account the strength of the 3.25 micrometer CH stretching mode. It is found that frozen neutral PAHs contain 5 to 9% of the cosmic carbon budget, and account for 2 to 9% of the unidentified absorption in the 5 to 8 micrometer region.

  9. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    SciTech Connect

    Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.; Boogert, A. C. A.; Lignell, H.; Allamandola, L. J.; Stapelfeldt, K. R. E-mail: gudipati@jpl.nasa.gov

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.

  10. Review of VHF Band 1 field strength prediction

    NASA Astrophysics Data System (ADS)

    Sandell, R. S.; Lee, R. W.; Malcolm-Coe, J.

    1986-06-01

    The results of a review of Very High Frequency (VHF) Band I field strength measurements and prediction methods are described. Most of the measurements were made by the British Broadcasting Company (BBC) and many were used in the early 1960s to prepare CCIR propagation curves. Modern computational methods have permitted a fuller analysis of the data than was possible previously. This led to conculsions about the accuracy of the CCIR prediction method, how it should best be used, and the extent of discrepancies in the existing procedures. In addition, this review examines the BBC's more detailed path loss computerized prediction method. This has the potential to give more accurate results than the CCIR curves, although the program is not yet developed for operations at Band I frequencies. Finally the report makes proposals for future improvements to these prediction techniques, and considers the possibility of developing a harmonized approach.

  11. On the Strength and Validity of Hazard Banding.

    PubMed

    Scheffers, Theo; Doornaert, Blandine; Berne, Nathalie; van Breukelen, Gerard; Leplay, Antoine; van Miert, Erik

    2016-11-01

    Hazard Banding (HB) is a process of allocating chemical substances in bands of increasing health hazard based on their hazard classifications. Recent Control Banding (CB) tools use the classifications of the United Nations Global Harmonized System (UN GHS) or the European Union Classifications, Labelling and Packaging (EU CLP) which are grouped over 5 HBs. The use of CB is growing worldwide for the risk control of substances without an Occupational Exposure Limit Value (OELV). Well-known CB-tools like HSE-COSHH Essentials, BAuA-Einfaches Maßnahmenkonzept Gefahrstoffe (EMKG), and DGUV-IFA-Spaltenmodell (IFA) use however different GHS/CLP groupings which may lead to dissimilar HBs and control regimes for individual substances. And as the choice for a CB tool seems to be determined by geography and/or local status these differences may hamper a global, aligned HSE approach. Therefore, the HB-engines of the three public CBs and an in-company (Solvay) CB called 'Occupational Exposure Banding' (S-OEB) were compared mutually and ranked in their relation with the OELV as the 'de facto' standard. This was investigated graphically and using a 5 strength indicator, statistical method. A data set of 229 substances with high-quality GHS/CLP classifications and OELVs was used. HB concentration ranges, as linked to S-OEB and COSHH, were validated against the corresponding OELV distributions. The four HB-engines allocate between 23 and 64% of the 229 substances in the same bands. The remaining substances differ at least one band, with IFA placing more substances in a higher hazard band, EMKG doing the opposite and COSHH and S-OEB in between. The overall strength scores of S-OEB, IFA, and EMGK HB-engines are higher than COSHH, with S-OEB having the highest overall strength score. The lower ends of the concentration ranges defined for the 3 'highest' hazard bands of S-OEB were in good agreement with the 10(th) percentiles of the corresponding OELV distributions obtained from the

  12. Real line strength distributions for random band models

    NASA Technical Reports Server (NTRS)

    Kim, S. J.; Caldwell, J.

    1983-01-01

    An improved random band-model method, which makes allowance for the real line-strength distribution, is proposed. The model is shown to be useful for low-resolution, infrared observational data of the outer solar system. The method can be used as easily as conventional random band calculations. In the illustrative examples cited here, the variation of line width with J, the rotational quantum number, is small. Other effects which can, in principle, cause the model to deviate from laboratory observations are discussed. These include the assumption that line positions are random, ignoring the effects of the Lorentz wings of lines immediately outside the specific interval for which the mean transmission is calculated, and ignoring the effects of instrumental slit functions.

  13. On the Strength and Validity of Hazard Banding

    PubMed Central

    Scheffers, Theo; Doornaert, Blandine; Berne, Nathalie; van Breukelen, Gerard; Leplay, Antoine; van Miert, Erik

    2016-01-01

    Hazard Banding (HB) is a process of allocating chemical substances in bands of increasing health hazard based on their hazard classifications. Recent Control Banding (CB) tools use the classifications of the United Nations Global Harmonized System (UN GHS) or the European Union Classifications, Labelling and Packaging (EU CLP) which are grouped over 5 HBs. The use of CB is growing worldwide for the risk control of substances without an Occupational Exposure Limit Value (OELV). Well-known CB-tools like HSE-COSHH Essentials, BAuA-Einfaches Maßnahmenkonzept Gefahrstoffe (EMKG), and DGUV-IFA-Spaltenmodell (IFA) use however different GHS/CLP groupings which may lead to dissimilar HBs and control regimes for individual substances. And as the choice for a CB tool seems to be determined by geography and/or local status these differences may hamper a global, aligned HSE approach. Therefore, the HB-engines of the three public CBs and an in-company (Solvay) CB called ‘Occupational Exposure Banding’ (S-OEB) were compared mutually and ranked in their relation with the OELV as the ‘de facto’ standard. This was investigated graphically and using a 5 strength indicator, statistical method. A data set of 229 substances with high-quality GHS/CLP classifications and OELVs was used. HB concentration ranges, as linked to S-OEB and COSHH, were validated against the corresponding OELV distributions. The four HB-engines allocate between 23 and 64% of the 229 substances in the same bands. The remaining substances differ at least one band, with IFA placing more substances in a higher hazard band, EMKG doing the opposite and COSHH and S-OEB in between. The overall strength scores of S-OEB, IFA, and EMGK HB-engines are higher than COSHH, with S-OEB having the highest overall strength score. The lower ends of the concentration ranges defined for the 3 ‘highest’ hazard bands of S-OEB were in good agreement with the 10th percentiles of the corresponding OELV distributions obtained

  14. POROSITY AND BAND-STRENGTH MEASUREMENTS OF MULTI-PHASE COMPOSITE ICES

    SciTech Connect

    Bossa, Jean-Baptiste; Fransen, Coen; Cazaux, Stéphanie; Linnartz, Harold; Maté, Belén; Ortigoso, Juan; Pilling, Sergio; Rocha, Will Robson Monteiro

    2015-11-20

    We use experimental mid-infrared optical constants and extended effective medium approximations to determine the porosity and the band strengths of multi-phase composite ices grown at 30 K. A set of porous H{sub 2}O:CH{sub 4} ices are taken as a prototypical example. As a benchmark and proof of concept, the stoichiometry of the ice constituents is retreived with good accuracy from the refractive indices and the extinction coefficients of the reference binary ice mixtures with known compositions. Accurate band strengths are then calculated from experimental mid-infrared spectra of complex ices. We notice that the presence of pores has only a small effect on the overall band strengths, whereas a water dilution can considerably alter them. Different levels of porosity are observed depending on the abundance of methane used as a gas contaminant premixed with water prior to background deposition. The absorption profiles are also found to vary with deposition rate. To explain this, we use Monte Carlo simulations and we observe that the deposition rate strongly affects the pore size distribution as well as the ice morphology through reorganization processes. Extrapolated to genuine interstellar ices, the methodology presented in this paper can be used to evaluate the porosity and to quantify the relative abundances from observational data.

  15. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  16. Solvent effects on the electronic absorption spectra and acid strength of some substituted pyridinols

    NASA Astrophysics Data System (ADS)

    Hashem, Elham Y.; Saleh, Magda S.

    2002-01-01

    The electronic absorption spectra of some substituted pyridinols in organic solvents of different polarities are studied. Also, the solvent effects on the intramolecular charge transfer bands are discussed using various solvent parameters. The acid-base equilibria of the compounds used are studied spectrophotometrically in various mixed aqueous solvents at 25 °C and 0.1 M ionic strength (NaClO 4). Furthermore, the influence of the solvents on the dissociation constants and tautomeric equilibria of a pyridinol derivatives are discussed. The effect of molecular structure of the pyridinols on the p K's is also examined.

  17. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    DOE PAGES

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, asmore » such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.« less

  18. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    SciTech Connect

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, as such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.

  19. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill A.

    2016-12-01

    Unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron-photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, as such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. As an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ∼ 2.

  20. Study of sub band gap absorption of Sn doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  1. Spectral Classification of Heavily Reddened Stars by CO Absorption Strength

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.

    2017-01-01

    The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.

  2. INTERACTION OF LASER RADIATION WITH MATTER: Individual induced absorption bands in MgF2

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Sergeev, P. B.

    2008-03-01

    The absorption spectra of MgF2 samples exposed to an electron beam and laser radiation at 248, 308, and 372 nm are investigated. Fourteen individual absorption bands are separated in the spectra. The parameters of the eight spectra of them are obtained for the first time. The separated bands are assigned to the intrinsic defects of the MgF2 crystal.

  3. Infrared Spectra and Band Strengths of Amorphous and Crystalline N2O

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Loeffler, M. J.; Gerakines, P. A.

    2017-01-01

    Infrared transmission spectra from 4000 to 400 cm (exp -1), and associated band strengths and absorption coefficients, are presented for the first time for both amorphous and crystalline N2O. Changes in the spectra as a function of ice thickness and ice temperature are shown. New measurements of density, refractive index, and specific refraction are reported for amorphous and crystalline N2O. Comparisons are made to published results, and the most-likely reason for some recent disagreements in the literature is discussed. As with CO2, its isoelectronic congener, the formation of amorphous N2O is found to require greater care than the formation of amorphous solids from more-polar molecules.

  4. FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO{sub 2}, AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES

    SciTech Connect

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-08-01

    Solid carbon dioxide (CO{sub 2}) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO{sub 2} are based. Here we report new infrared (IR) spectra of amorphous CO{sub 2}-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO{sub 2} IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO{sub 2} spectra in the literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO{sub 2} ices, all ices being made near 10 K, are not for amorphous CO{sub 2}, but rather for crystalline CO{sub 2} or crystalline-amorphous mixtures.

  5. e-beam irradiation effects on IR absorption bands in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ichida, Masao; Nagao, Katsunori; Ikemoto, Yuka; Okazaki, Toshiya; Miyata, Yasumitsu; Kawakami, Akira; Kataura, Hiromichi; Umezu, Ikurou; Ando, Hiroaki

    2017-01-01

    We have measured the absorption and Raman spectral change induced by the irradiation of e-beam. By the irradiation of e-beam on SWNTs thin films, the intensity of defect related Raman band increase, and the peak energy of IR absorption bands shift to the higher energy side. These results indicate that the origin of infrared band is due to the plasmon resonance of finite-length SWNT. We have estimated the effective tube length and defect density from IR absorption peak energy.

  6. Near-Infrared Band Strengths of Molecules Diluted in N2 and H2O Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Gerakines, P.A.

    2012-01-01

    The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H2O and N2. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H2O- and N2-dominated mixtures of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), and NH3 (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 per centimeter, 1-2.5 micrometers) with better-known mid-infrared features (4000-400 per centimeter, 2.5-25 micrometers) at longer wavelengths.

  7. Below-band-gap absorption in undoped GaAs at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wasiak, Michał; Walczak, Jarosław; Motyka, Marcin; Janiak, Filip; Trajnerowicz, Artur; Jasik, Agata

    2017-02-01

    This paper presents results of measurements of optical absorption in undoped epitaxial GaAs for photon energies below the band gap. Absorption spectra were determined from transmission spectra of a thin GaAs layer at several temperatures between 25 °C and 205 °C. We optimized our experiment to investigate the long-wavelength part of the spectrum, where the absorption is relatively low, but significant from the point of view of applications of GaAs in semiconductor lasers. Absorption of 100 cm-1 was observed over 30 nm below the band gap at high temperatures.

  8. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  9. Conformational statistics of molecules with inner rotation and shapes of their electronic absorption bands

    SciTech Connect

    Aver`yanov, E.M.

    1994-10-01

    The effect of conformational statistics of molecules with inner rotation of {pi}-conjugated fragments on the position, intensity, and electronic absorption band shapes is studied in isotropic molecular media. It is shown that the conformational disorder of molecules with one inner rotation degree of freedom exerts an appreciable effect on the shift, inhomogeneous broadening, and asymmetry of the electronic absorption bands. An interpretation of the available experimental data is give. 19 refs., 1 fig.

  10. Ozone absorption cross section measurements in the Wulf bands

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    A tandem dual-beam spectrometer has been developed to determine ozone absorption cross sections for 13 selected wavelengths between 750 and 975 nm at room temperature. The increasingly pronounced structure in this region may interfere with atmospheric trace gas transitions that are useful for remote sensing and complicate the measurement of aerosols. Ozone concentrations were determined by absorption at the common HeNe laser transition near 632.8 nm using the absolute cross section reported previously. The overall accuracy of these room temperature measurements is generally better than 2 percent. A synoptic near-IR spectrum scaled to these measurements is employed for comparison with results of previous studies.

  11. HAC: Band Gap, Photoluminescence, and Optical/Near-Infrared Absorption

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Ryutov, Dimitri; Furton, Douglas G.

    1996-01-01

    We report results of laboratory measurements which illustrate the wide range of physical properties found among hydrogenated amorphous carbon (HAC) solids. Within this range, HAC can match quantitatively the astronomical phenomena ascribed to carbonaceous coatings on interstellar grains. We find the optical band gap of HAC to be well correlated with other physical properties of HAC of astronomical interest, and conclude that interstellar HAC must be fairly hydrogen-rich with a band gap of E(sub g) is approx. greater than 2.0 eV.

  12. Temperature behavior of optical absorption bands in colored LiF crystals

    NASA Astrophysics Data System (ADS)

    Fastampa, Renato; Missori, Mauro; Braidotti, Maria Chiara; Conti, Claudio; Vincenti, Maria Aurora; Montereali, Rosa Maria

    We measured the optical absorption spectra of thermally treated, gamma irradiated LiF crystals, as a function of temperature in the range 16-300 K. The temperature dependence of intensity, peak position and bandwidth of F and M absorption bands were obtained.

  13. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  14. Influence of banded structure on the mechanical properties of a high-strength maraging steel

    SciTech Connect

    Ahmed, M.; Salam, I.; Hashmi, F.H.; Khan, A.Q.

    1997-04-01

    Chemical inhomogeneity results in the formation of banded structure in high-strength maraging steels. Segregation of titanium and molybdenum was found to be the primary cause of banded structure formation. When the concentrations of these elements increased beyond certain critical levels, bands comprising different grain sizes formed. The inclusions existed preferentially along the interface of the bands. A high-temperature homogenization treatment substantially reduced or eliminated the banded structure. The large grain size resulting from the homogenization treatment was subsequently reduced by a grain refinement treatment. The mechanical properties of the steel substantially improved following homogenization and grain refinement.

  15. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  16. Investigation of locally resonant absorption and factors affecting the absorption band of a phononic glass

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Jiang, Heng; Feng, Yafei; Wang, Yuren

    2014-12-01

    We experimentally and theoretically investigated the mechanisms of acoustic absorption in phononic glass to optimize its properties. First, we experimentally studied its locally resonant absorption mechanism. From these results, we attributed its strong sound attenuation to its locally resonant units and its broadband absorption to its networked structure. These experiments also indicated that the porosity and thickness of the phononic glass must be tuned to achieve the best sound absorption at given frequencies. Then, using lumped-mass methods, we studied how the absorption bandgaps of the phononic glass were affected by various factors, including the porosity and the properties of the coating materials. These calculations gave optimal ranges for selecting the porosity, modulus of the coating material, and ratio of the compliant coating to the stiff matrix to achieve absorption bandgaps in the range of 6-30 kHz. This paper provides guidelines for designing phononic glasses with proper structures and component materials to work in specific frequency ranges.

  17. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  18. Hot Bands in Overtone Absorption Transitions: High Temperature Spectra

    DTIC Science & Technology

    1993-03-17

    the overtone transition. ൖ WWIŝST3" 3 24 002 15.NUMBER ,OF ,,A Overtone Spectroscopy, Hot Bands 16. PRKI CODE 17. SECURITY CLASSIFICATION 18...Rev 2-89) aWVPOO AfeD $10 139-18’q wAPI .’ N o, lgi OFFICE OF NAVAL RESEARCH GRANT or CONTRACT N00014-88-K-4130 R&T Code 4131063 Technical Report No...Unannounced fJ Justification ................ Prepared for Publication By ................ Di•.t. ibution I in Availability Codes Avail and /or Dist Special

  19. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  20. Fe-substituted indium thiospinels: New intermediate band semiconductors with better absorption of solar energy

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Chen, Haijie; Qin, Mingsheng; Yang, Chongyin; Zhao, Wei; Liu, Yufeng; Zhang, Wenqing; Huang, Fuqiang

    2013-06-01

    The indium thiospinels In2S3 and MgIn2S4 are promising host for the intermediated band (IB) photovoltaic materials due to their ideal band gap value. Here, the optical properties and electronic structure of Fe-doped In2S3 and MgIn2S4 have been investigated. All the Fe-substituted semiconductors exhibit two additional absorption bands at about 0.7 and 1.25 eV, respectively. The results of first-principles calculations revealed that the Fe substituted at the octahedral In site would introduce a partially filled IB into the band gap. Thanks to the formation of IB, the Fe-substituted semiconductors have the ability to absorb the photons with energies below the band gap. With the wide-spectrum absorption of solar energy, these materials possess potential applications in photovoltaic domain.

  1. The effective air absorption coefficient for predicting reverberation time in full octave bands.

    PubMed

    Wenmaekers, R H C; Hak, C C J M; Hornikx, M C J

    2014-12-01

    A substantial amount of research has been devoted to producing a calculation model for air absorption for pure tones. However, most statistical and geometrical room acoustic prediction models calculate the reverberation time in full octave bands in accordance with ISO 3382-1 (International Organization for Standardization, 2009). So far, the available methods that allow calculation of air absorption in octave bands have not been investigated for room acoustic applications. In this paper, the effect of air absorption on octave band reverberation time calculations is investigated based on calculations. It is found that the approximation method, as described in the standard ANSI S1.26 (American National Standards Institute, 1995), fails to estimate accurate decay curves for full octave bands. In this paper, a method is used to calculate the energy decay curve in rooms based on a summation of pure tones within the band. From this decay curve, which is found to be slightly concave upwards, T20 and T30 can be determined. For different conditions, an effective intensity attenuation coefficient mB ;eff for the full octave bands has been calculated. This mB ;eff can be used for reverberation time calculations, if results are to be compared with T20 or T30 measurements. Also, guidelines are given for the air absorption correction of decay curves, measured in a scale model.

  2. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  3. AKARI observations of ice absorption bands towards edge-on YSOs

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Noble, J. A.; Pontoppidan, K. M., Fraser, H. J.; Terada, H.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2011-05-01

    Circumstellar disks and envelopes of low-mass YSOs contain significant amounts of ice. Such icy material will evolve to volatile components of planetary systems, such as comets in our solar system. In order to investigate the composition and evolution of circumstellar ice around low-mass YSOs, we have observed ice absorption bands towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Slit-less spectroscopic observations are performed using the grism mode of Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO_2 band and the blue wing of the H_2O band, which are not accessible from the ground. We developed procedures to reduce the spectra of targets with nebulosity. The spectra are fitted with polynomial baselines to derive the absorption spectra. Then we fit the molecular absorption bands with the laboratory spectra from the database, considering the instrumental line profile and the spectral resolution of the dispersion element. Towards the Class 0-I sources, absorption bands of H_2O, CO_2, CO and XCN (OCN^-) are clearly detected. Weak features of 13CO_2, HDO, the C-H band, and gaseous CO are detected as well. OCS ice absorption is tentatively detected towards IRC-L1041-2. The detected features would mostly originate in the cold envelope, while CO gas and OCN^- could originate in the region close to the protostar. Towards class II stars, H_2O ice band is detected. We also detected H_2O ice, CO_2 ice and tentative CO gas features of the foreground component of class II stars.

  4. Full band structure calculation of two-photon indirect absorption in bulk silicon

    SciTech Connect

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-03-28

    Degenerate two-photon indirect absorption in silicon is an important limiting effect on the use of silicon structures for all-optical information processing at telecommunication wavelengths. We perform a full band structure calculation to investigate two-photon indirect absorption in bulk silicon, using a pseudopotential description of the energy bands and an adiabatic bond charge model to describe phonon dispersion and polarization. Our results agree well with some recent experimental results. The transverse acoustic/optical phonon-assisted processes dominate.

  5. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  6. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  7. A band model for melanin deducted from optical absorption and photoconductivity experiments.

    PubMed

    Crippa, P R; Cristofoletti, V; Romeo, N

    1978-01-03

    Natural and synthetic melanins have been studied by optical absorption and photoconductivity measurements in the range 200--700 nm. Both optical absorption and photoconductivity increase in the ultraviolet region, and a negative photoconductivity was observed with a maximum near 500 nm. This behaviour has been interpreted by the band model of amorphous materials and an "optical gap" of 3.4 eV has been determined.

  8. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  9. The effects of band exercise using proprioceptive neuromuscular facilitation on muscular strength in lower extremity

    PubMed Central

    Rhyu, Hyun-Seung; Kim, Su-Hyun; Park, Hye-Sang

    2015-01-01

    The purpose of this study was to examine whether a six-week elastic band exercise program using proprioceptive neuromuscular facilitation (PNF) can increase isotonic strength of abductor muscles in the lower extremity. Twenty-eight healthy students from S university were divided into an experimental group and control group. Each group was participated in pre and post-measurement in isotonic strength using an isotonic analyzer, En-treeM. Experimental group performed elastic band exercise using PNF pattern for a six-weeks, in contrast, control group did not take any exercise. In the results of this study, isotonic strength measurements of abductor muscles in lower extremity in experimental group were significantly different after exercise, but control group did not show any significant changes. Therefore, we hope that resistive exercise would be very valuable for healthy people as well as the old people with weakened muscle strength. PMID:25830142

  10. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  11. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  12. Observationally determined Fe II oscillator strengths. [interstellar and quasar absorption spectra

    NASA Technical Reports Server (NTRS)

    Van Steenberg, M.; Shull, J. M.; Seab, C. G.

    1983-01-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  13. Infrared Laboratory Oscillator Strengths of Fe I in the H-band

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; Allende Prieto, C.; Nave, G.; Pickering, J. C.

    2013-12-01

    We report experimental oscillator strengths for 28 infrared Fe I transitions, for which no previous experimental values exist. These transitions were selected to address an urgent need for oscillator strengths of lines in the H-band (between 1.4 μm and 1.7 μm) required for the analysis of spectra obtained from the Sloan Digital Sky Survey (SDSS-III) Apache Point Galactic Evolution Experiment (APOGEE). Upper limits have been placed on the oscillator strengths of an additional seven transitions, predicted to be significant by published semi-empirical calculations, but not observed to be so.

  14. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  15. Effects of surface texture and measurement geometry on the near infrared water-of-hydration absorption bands. Implications for the Martian regolith water content.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Schmitt, B.

    Near-IR reflectance spectroscopy is widely used to detect mineral hydration on Solar System surfaces by the observation of absorption bands at 1.9 and 3 µm. Recent studies established empirical relationships between the strength of the 3 µm band and the water content of the studied minerals (Milliken et al., 2005). These results have especially been applied to the OMEGA dataset to derive global maps of the Martian regolith water content (Jouglet et al., 2006 and Milliken et al., 2006). However, parameters such as surface texture and measurement geometry are known to have a strong effect on reflectance spectra but their influence on the hydration bands is poorly documented. The aim of this work is the determination of the quantitative effects of particle size, mixing between materials with different albedo and measurement geometry on the absorption bands at 1.9 and 3 µm. We used both an experimental and a modeling approach to study these effects. Bidirectional reflectance spectra were measured for series of well characterized samples (smectite, volcanic tuff and coals, pure and mixed) and modeled with optical constants of a smectite (Roush, 2005). Criteria commonly used to estimate the strength of the bands were then calculated on these spectra. We show that particle size has a strong effect on the 1.9 and 3 µm bands strength, especially for the finest particles (less than 200 µm). Mixing between a fine smectite powder and anthracite powders with various particle sizes (modeled by a synthetic neutral material) highlights the strong effect of the materials albedo on the hydration band estimation criteria. Measurement geometry has a significant effect on the bands strength for high phase angles. Furthermore, the relative variations of band strength with measurement geometry appear very dependent on the surface texture. We will present in details the relationships between these physical parameters and various criteria chosen to estimate the hydration bands

  16. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  17. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  18. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  19. Dual-Band Perfect Absorption by Breaking the Symmetry of Metamaterial Structure

    NASA Astrophysics Data System (ADS)

    Hai, Le Dinh; Qui, Vu Dinh; Dinh, Tiep Hong; Hai, Pham; Giang, Trinh Thị; Cuong, Tran Manh; Tung, Bui Son; Lam, Vu Dinh

    2017-02-01

    Since the first proposal of Landy et al. (Phys Rev Lett 100:207402, 2008), the metamaterial perfect absorber (MPA) has rapidly become one of the most crucial research trends. Recently, dual-band, multi-band and broadband MPA have been highly desirable in electronic applications. In this paper, we demonstrate and evaluate a MPA structure which can generate dual-band absorption operating at the microwave frequency by breaking the symmetry of structure. There is an agreement between simulation and experimental results. The results can be explained by using the equivalent LC circuit and the electric field distribution of this structure. In addition, various structures with different symmetry configurations were studied to gain greater insight into the absorption.

  20. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  1. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-06-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

  2. AKARI observations of ice absorption bands towards edge-on young stellar objects

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2012-02-01

    Context. Circumstellar disks and envelopes of low-mass young stellar objects (YSOs) contain significant amounts of ice. Such icy material will evolve to become volatile components of planetary systems, such as comets in our solar system. Aims: To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Methods: We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Results: Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 μm is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μm provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN- could originate in the region close to the protostar

  3. Constraining the Solar Coronal Magnetic Field Strength using Split-band Type II Radio Burst Observations

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C.; Gopalswamy, N.

    2016-11-01

    We report on low-frequency radio (85-35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  4. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  5. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.

  6. The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions.

    PubMed

    Stockett, Mark H; Musbat, Lihi; Kjær, Christina; Houmøller, Jørgen; Toker, Yoni; Rubio, Angel; Milne, Bruce F; Brøndsted Nielsen, Steen

    2015-10-21

    We have performed gas-phase absorption spectroscopy in the Soret-band region of chlorophyll (Chl) a and b tagged by quaternary ammonium ions together with time-dependent density functional theory (TD-DFT) calculations. This band is the strongest in the visible region of metalloporphyrins and an important reporter on the microenvironment. The cationic charge tags were tetramethylammonium, tetrabutylammonium, and acetylcholine, and the dominant dissociation channel in all cases was breakage of the complex to give neutral Chl and the charge tag as determined by photoinduced dissociation mass spectroscopy. Two photons were required to induce fragmentation on the time scale of the experiment (microseconds). Action spectra were recorded where the yield of the tag as a function of excitation wavelength was sampled. These spectra are taken to represent the corresponding absorption spectra. In the case of Chl a we find that the tag hardly influences the band maximum which for all three tags is at 403 ± 5 nm. A smaller band with maximum at 365 ± 10 nm was also measured for all three complexes. The spectral quality is worse in the case of Chl b due to lower ion beam currents; however, there is clear evidence for the absorption being to the red of that of Chl a (most intense peak at 409 ± 5 nm) and also a more split band. Our results demonstrate that the change in the Soret-band spectrum when one peripheral substituent (CH3) is replaced by another (CHO) is an intrinsic effect. First principles TD-DFT calculations agree with our experiments, supporting the intrinsic nature of the difference between Chl a and b and also displaying minimal spectral changes when different charge tags are employed. The deviations between theory and experiment have allowed us to estimate that the Soret-band absorption maxima in vacuo for the neutral Chl a and Chl b should occur at 405 nm and 413 nm, respectively. Importantly, the Soret bands of the isolated species are significantly blueshifted

  7. PRINCIPAL INFRARED ABSORPTION BANDS OF SOME DERIVATIVES OF 1,3-DINITROBENZENE AND 1,3,5TRINITROBENZENE,

    DTIC Science & Technology

    The frequencies of the strong infrared absorption bands of 46 derivatives of di- and tri-nitrobenzene were measured and tabulated. The vibrational ... modes producing these absorptions were assigned in most cases. The effect of structure on the frequency of the absorption due to each of the modes is discussed, with emphasis on identifying unknowns. (Author)

  8. Solvatochromic Shifts on Absorption and Fluorescence Bands of N,N-Dimethylaniline.

    PubMed

    Fdez Galván, Ignacio; Elena Martín, M; Muñoz-Losa, Aurora; Aguilar, Manuel A

    2009-02-10

    A theoretical study of the absorption and fluorescence UV/vis spectra of N,N-dimethylaniline in different solvents has been performed, using a method combining quantum mechanics, molecular mechanics, and the mean field approximation. The transitions between the three lowest-lying states have been calculated in vacuum as well as in cyclohexane, tetrahydrofuran, and water. The apparent anomalies experimentally found in water (a blue shift in the absorption bands with respect to the trend in other solvents, and an abnormally high red shift for the fluorescence band) are well reproduced and explained in view of the electronic structure of the solute and the solvent distribution around it. Additional calculations were done with a mixture of cyclohexane and tetrahydrofuran as solvent, which displays a nonlinear solvatochromic shift. Results, although not conclusive, are consistent with experiment and provide a possible explanation for the nonlinear behavior in the solvent mixture.

  9. An alternative model for photodynamic therapy of cancers: Hot-band absorption

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chen, Jiyao

    2013-12-01

    The sulfonated aluminum phthalocyanine (AlPcS), a photosensitizer for photodynamic cancer therapy (PDT), has an absorption tail in the near-infrared region (700-900 nm) which is so-called hot band absorption (HBA). With the HBA of 800 nm, the up-conversion excitation of AlPcS was achieved followed by the anti-Stocks emission (688 nm band) and singlet oxygen production. The HBA PDT of AlPcS seriously damaged the KB and HeLa cancer cells, with a typical light dose dependent mode. Particularly, the in vitro experiments with the AlPcS shielding solutions further showed that the HBA PDT can overcome a self-shielding effect benefiting the PDT applications.

  10. PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION

    SciTech Connect

    Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le; Hardersen, P. S.; Nathues, A.

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  11. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  12. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  13. DISPERSAL OF G-BAND BRIGHT POINTS AT DIFFERENT LONGITUDINAL MAGNETIC FIELD STRENGTHS

    SciTech Connect

    Yang, Yunfei; Ji, Kaifai; Feng, Song; Deng, Hui; Wang, Feng

    2015-09-10

    G-band bright points (GBPs) are thought to be the foot-points of magnetic flux tubes. The aim of this paper is to investigate the relation between the diffusion regimes of GBPs and the associated longitudinal magnetic field strengths. Two high resolution observations of different magnetized environments were acquired with the Hinode/Solar Optical Telescope. Each observation was recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images. GBPs are identified and tracked automatically, and then categorized into several groups by their longitudinal magnetic field strengths, which are extracted from the calibrated NFI magnetograms using a point-by-point method. The Lagrangian approach and the distribution of diffusion indices approach are adopted separately to explore the diffusion regime of GBPs for each group. It is found that the values of diffusion index and diffusion coefficient both decrease exponentially with the increasing longitudinal magnetic field strengths whichever approach is used. The empirical formulas deduced from the fitting equations are proposed to describe these relations. Stronger elements tend to diffuse more slowly than weak elements, independently of the magnetic flux of the surrounding medium. This may be because the magnetic energy of stronger elements is not negligible compared with the kinetic energy of the gas, and therefore the flows cannot perturb them so easily.

  14. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy.

    PubMed

    Toulson, Benjamin W; Murray, Craig

    2016-09-01

    Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers.

  15. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  16. Made-to-measure galaxy modelling utilising absorption line strength data

    NASA Astrophysics Data System (ADS)

    Long, R. J.

    2016-12-01

    We enhance the Syer & Tremaine made-to-measure (M2M) particle method of stellar dynamical modelling to model simultaneously both kinematic data and absorption line strength data, thus creating a ‘chemo-M2M’ modelling scheme. We apply the enhanced method to four galaxies (NGC 1248, NGC 3838, NGC 4452, NGC 4551) observed using the SAURON integral-field spectrograph as part of the ATLAS3D programme. We are able to reproduce successfully the 2D line strength data achieving mean χ2 per bin values of ≈ 1 with > 95% of particles having converged weights. Because M2M uses a 3D particle system, we are also able to examine the underlying 3D line strength distributions. The extent to which these distributions are plausible representations of real galaxies requires further consideration. Overall, we consider the modelling exercise to be a promising first step in developing a ‘chemo-M2M’ modelling system and in understanding some of the issues to be addressed. While the made-to-measure techniques developed have been applied to absorption line strength data, they are in fact general and may be of value in modelling other aspects of galaxies.

  17. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  18. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  19. Self-absorption theory applied to rocket measurements of the nitric oxide (1,0)[gamma] band in the daytime thermosphere

    SciTech Connect

    Eparvier, F.G.; Barth, C.A. )

    1992-09-01

    Sounding rocket observations of the ultraviolet fluorescent emissions of the nitric oxide molecule in the lower thermospheric dayglow are described and analyzed. The rocket experiment was an ultraviolet spectrometer which took limb-viewing spectra of the dayglow between 90- and 185- km altitude in the spectral region from 2120 to 2505 [angstrom] with a resolution of 2.0 [angstrom]. The flight occurred at local noon on March 7, 1989, from Poker Flat, Alaska. Several NO[gamma] bands were visible at all altitudes of the flight, along with emission features of N[sub 2], O[sup +], and N[sup +]. The data for the NO (1,0) and (0,1)[gamma] bands were modeled with optically thin synthetic spectra and used as diagnostics of nitric oxide concentrations. The resonant NO (1,0)[gamma] band emissions were shown to be attenuated at low altitudes relative to the expected emission rates predicted from comparison with the nonresonant (0,1)[gamma] band. Inversion of the optically thin data resulted in a peak nitric oxide concentration of 3.1x10[sup 8] cm[sup [minus]3] at an altitude of 100km. A self-absorption model using Holstein transmission functions was developed and applied to the (1,0) [gamma] band observation. The model results agree with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO. The success of the model also confirms the value adopted for the absorption oscillator strength of the (1,0)[gamma] band transition and the instrument calibration.

  20. Integrated Near-Infrared Band Strengths of Solid CH4 and Its Mixtures with N2

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Caniglia, G.; Baratta, G. A.; Palumbo, M. E.

    2008-10-01

    We studied icy CH4 and its mixtures with N2 (temperature 16-40 K), using near-IR transmittance spectroscopy (1.0-3.6 μm), and monitoring the film growth using interference patterns of two lasers. We measured peak position, full width at half-maximum, and strengths of the methane bands, and density and real refractive index of the icy films. Results confirm and extend but also partially contradict previous studies on similar mixtures. Experimental data can be applied to interpret observations of solar system (trans-Neptunian objects) and interstellar ices, where methane and nitrogen are believed to be present. We predict the optical depths of two methane NIR bands in the line of sight of some dense molecular clouds.

  1. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  2. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  3. Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode.

    PubMed

    Denzer, W; Hamilton, M L; Hancock, G; Islam, M; Langley, C E; Peverall, R; Ritchie, G A D

    2009-11-01

    A fibre coupled near-infrared superluminescent light emitting diode that emits approximately 10 mW of radiation between 1.62 and 1.7 microm is employed in combination with a broad-band cavity enhanced spectrometer consisting of a linear optical cavity with mirrors of reflectivity approximately 99.98% and either a dispersive near-infrared spectrometer or a Fourier transform interferometer. Results are presented on the absorption of 1,3-butadiene, and sensitivities are achieved of 6.1 x 10(-8) cm(-1) using the dispersive spectrometer in combination with phase-sensitive detection, and 1.5 x 10(-8) cm(-1) using the Fourier transform interferometer (expressed as a minimum detectable absorption coefficient) over several minutes of acquisition time.

  4. Doping-Induced Absorption Bands in P3HT: Polarons and Bipolarons.

    PubMed

    Enengl, Christina; Enengl, Sandra; Pluczyk, Sandra; Havlicek, Marek; Lapkowski, Mieczyslaw; Neugebauer, Helmut; Ehrenfreund, Eitan

    2016-12-05

    In this work, we focus on the formation of different kinds of charge carriers such as polarons and bipolarons upon p-type doping (oxidation) of the organic semiconductor poly(3- hexylthiophene-2,5-diyl) (P3HT). We elucidate the cyclic voltammogram during oxidation of this polymer and present spectroscopic changes upon doping in the UV/Vis/near-IR range as well as in the mid-IR range. In the low-oxidation regime, two absorption bands related to sub-gap transitions appear, one in the UV/Vis range and another one in the mid-IR range. The UV/Vis absorption gradually decreases upon further doping while the mid-IR absorption shifts to lower energy. Additionally, electron paramagnetic resonance (EPR) measurements are performed, showing an increase of the EPR signal up to a certain doping level, which significantly decreases upon further doping. Furthermore, the absorption spectra in the UV/Vis range are analyzed in relation to the morphology (crystalline vs. amorphous) by using theoretical models. Finally, the calculated charge carriers from cyclic voltammogram are linked together with optical transitions as well as with the EPR signals upon p-type doping. We stress that our results indicate the formation of polarons at low doping levels and the existence of bipolarons at high doping levels. The presented spectroscopic data are an experimental evidence of the formation of bipolarons in P3HT.

  5. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  6. Femtosecond supercontinuum generation in water in the vicinity of absorption bands.

    PubMed

    Dharmadhikari, J A; Steinmeyer, G; Gopakumar, G; Mathur, D; Dharmadhikari, A K

    2016-08-01

    We show that it is possible to overcome the perceived limitations caused by absorption bands in water so as to generate supercontinuum (SC) spectra in the anomalous dispersion regime that extend well beyond 2000 nm wavelength. By choosing a pump wavelength within a few hundred nanometers above the zero-dispersion wavelength of 1048 nm, initial spectral broadening extends into the normal dispersion regime and, in turn, the SC process in the visible strongly benefits from phase-matching and matching group velocities between dispersive radiation and light in the anomalous dispersion regime. Some of the SC spectra are shown to encompass two and a half octaves.

  7. Theoretical Modeling of Low Energy Electronic Absorption Bands in Reduced Cobaloximes

    PubMed Central

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2015-01-01

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task. PMID:25113847

  8. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes.

    PubMed

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L; Gray, Harry B; Fujita, Etsuko; Muckerman, James T; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M; Field, Martin J

    2014-10-06

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we analyze the low-energy electronic absorption bands of two cobaloxime systems experimentally and use a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  9. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    SciTech Connect

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  10. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; ...

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  11. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  12. The nature of splitting of fullerene C{sub 70} polarized absorption bands in liquid-crystal matrices

    SciTech Connect

    Aver`yanov, E.M.

    1994-06-01

    The recently discovered splitting of polarized electronic absorption bands of fullerene C{sub 70} in uniaxial liquid-crystal matrices is shown to result from the spectral dependence of the polarization of these bands relative to the molecular coordinate system. 9 refs.

  13. Influence of osmotic distillation on membrane absorption for the treatment of high strength ammonia wastewater.

    PubMed

    Wang, Guan-ping; Shi, Han-chang; Shen, Zhi-song

    2004-01-01

    Osmotic distillation (OD) was found to be a coupled process in membrane absorption (MA) for the treatment of high strength ammonia wastewater. As a result, ammonia could not be concentrated in absorption solution(AS) as expected. The inhibition of the coupled OD in MA process was investigated as well as various factors affecting the inhibition. The results indicated that the coupled OD can be effectively inhibited by heating concentrated solution and cooling dilute solution. It was also found that experimental minimum inhibition temperature difference(MITD) between concentrated and dilute solutions was different when using polyvinylidene fluoride(PVDF) and polypropylene(PP) membranes respectively, which could be ascribed to material properties, such as OD and membrane distillation (MD) coefficients of the membranes. Experimental MITDs were found to be higher than theoretical MITDs which were calculated using a simplified method.

  14. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    SciTech Connect

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  15. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  16. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  17. Band tail absorption saturation in CdWO4 with 100 fs laser pulses.

    PubMed

    Laasner, R; Fedorov, N; Grigonis, R; Guizard, S; Kirm, M; Makhov, V; Markov, S; Nagirnyi, V; Sirutkaitis, V; Vasil'ev, A; Vielhauer, S; Tupitsyna, I A

    2013-06-19

    The decay kinetics of the excitonic emission of CdWO4 scintillators was studied under excitation by powerful 100 fs laser pulses in the band tail (Urbach) absorption region. A special imaging technique possessing both spatial and temporal resolution provided a unique insight into the Förster dipole-dipole interaction of self-trapped excitons, which is the main cause of the nonlinear quenching of luminescence in this material. In addition, the saturation of phonon-assisted excitonic absorption due to extremely short excitation pulses was discovered. A model describing the evolution of electronic excitations in the conditions of absorption saturation was developed and an earlier model of decay kinetics based on the Förster interaction was extended to include the saturation effect. Compared to the previous studies, a more accurate calculation yields 3.7 nm as the Förster interaction radius. It was shown that exciton-exciton interaction is the main source of scintillation nonproportionality in CdWO4. A quantitative description using a new model of nonproportionality was presented, making use of the corrected value of the Förster radius.

  18. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  19. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  20. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  1. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  2. Infrared Spectra and Band Strengths of CH3SH, an Interstellar Molecule

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.

    2016-01-01

    Three solid phases of CH3SH (methanethiol or methyl mercaptan) have been prepared and their mid-infrared spectra recorded at 10-110 degrees Kelvin, with an emphasis on the 17-100 degrees Kelvin region. Refractive indices have been measured at two temperatures and used to estimate ice densities and infrared band strengths. Vapor pressures for the two crystalline phases of CH3SH at 110 degrees Kelvin are estimated. The behavior of amorphous CH3SH on warming is presented and discussed in terms of Ostwald's step rule. Comparisons to CH3OH under similar conditions are made, and some inconsistencies and ambiguities in the CH3SH literature are examined and corrected.

  3. [Gastric cancer detection using kubelka-Munk spectral function of DNA and protein absorption bands].

    PubMed

    Li, Lan-quan; Wei, Hua-jiang; Guo, Zhou-yi; Yang, Hong-qin; Xie, Shu-sen; Chen, Xue-mei; Li, Li-bo; He, Bol-hua; Wu, Guo-yong; Lu, Jian-jun

    2009-09-01

    Differential diagnosis for epithelial tissues of normal human gastric, undifferentiation gastric adenocarcinoma, gastric squamous cell carcinomas, and poorly differentiated gastric adenocarcinoma were studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 250 to 650 nm, pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the DNA absorption bands at 260 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 68.5% (p < 0.05), 146.5% (p < 0.05), 282.4% (p < 0.05), 32.4% (p < 0.05), 56.00 (p < 0.05) and 83.0% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the protein absorption bands at 280 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 86.8% (p < 0.05), 262.9% (p < 0.05), 660.1% (p < 0.05) and 34% (p < 0.05), 72. 2% (p < 0.05), 113.5% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were

  4. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  5. Geometrical attenuation, frequency dependence of Q, and the absorption band problem

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.

    2008-10-01

    A geometrical attenuation model is proposed as an alternative to the conventional frequency-dependent attenuation law Q(f) = Q0(f/f0)η. The new model provides a straightforward differentiation between the geometrical and effective attenuation (Qe) which incorporates the intrinsic attenuation and small-scale scattering. Unlike the (Q0, η) description, the inversion procedure uses only the spectral amplitude data and does not rely on elaborate theoretical models or restrictive assumptions. Data from over 40 reported studies were transformed to the new parametrization. The levels of geometrical attenuation strongly correlate with crustal tectonic types and decrease with tectonic age. The corrected values of Qe are frequency-independent and generally significantly higher than Q0 and show no significant correlation with tectonic age. Several case studies were revisited in detail, with significant changes in the interpretations. The absorption-band and the `10-Hz transition' are not found in the corrected Qe data, and therefore, these phenomena are interpreted as related to geometrical attenuation. The absorption band could correspond to changes in the dominant mode content of the wavefield as the frequency changes from about 0.1 to 100 Hz. Alternatively, it could also be a pure artefact related to the power-law Q(f) paradigm above. The explicit separation of the geometrical and intrinsic attenuation achieves three goals: (1) it provides an unambiguous, assumption- and model-free description of attenuation, (2) it allows relating the observations to the basic physics and geology and (3) it simplifies the interpretation because of reduced emphasis on the apparent Q(f) dependence. The model also agrees remarkably well with the initial attempts for finite-difference short-period coda waveform modelling. Because of its consistency and direct link to the observations, the approach should also help in building robust and transportable coda magnitudes and in seismic

  6. Oscillator Strengths and Predissociation Rates for W - X Bands of CO and Its Isotopologues

    NASA Astrophysics Data System (ADS)

    Federman, Steven Robert; Sheffer, Y.; Eidelsberg, M.; Lemaire, J. L.; Stark, G.; Fillion, J. H.; Lyons, J.; Smith, P. L.; Lewis, B. R.; Heays, A. N.; de Oliveira, N.; Roudjane, M.

    2011-05-01

    The photochemistry of carbon monoxide plays an important role in many astrophysical environments, including photon-dominated regions in interstellar clouds, circumstellar disks around newly formed stars, and the envelopes surrounding stars near the end of their lives. It controls the CO abundance and the ratio of its isotopologues. We are conducting experiments on the DESIRS beam-line at the SOLEIL Synchrotron to acquire the necessary data on oscillator strengths and predissociation rates for modeling CO photochemistry. A VUV Fourier Transform Spectrometer provides a resolving power of about 300,000, allowing us to discern individual lines in electronic transitions. Here we focus on results for W - X (v'=0-3, 0) bands seen in spectra of 12C16O, 13C16O, 12C18O, and 13C18O and compare them with earlier determinations. Since we are using a differentially-pumped system, an accurate measure of the column of gas is needed. The most suitable band for calibration appears to be B - X (0, 0), but even here special care is required.

  7. Europa's ultraviolet absorption band (260 to 320 nm) - Temporal and spatial evidence from IUE

    NASA Technical Reports Server (NTRS)

    Ockert, Maureen E.; Nelson, Robert M.; Lane, Arthur L.; Matson, Dennis L.

    1987-01-01

    An analysis of 33 IUE UV spectra of Europa, obtained from 1978 to 1982 for orbital phase angles of 21 to 343 deg, confirms that the Lane et al. (1981) absorption feature, centered at 280 nm, is most clearly revealed when 223-333 deg orbital phase angle spectra are ratioed to those nearest 90 deg. The feature's strength is noted to have persisted over the 5-year period studied, suggesting that no large endogenically or exogenically generated changes in surface sulfur dioxide concentration have occurred. These results further substantiate the Lane et al. hypothesis that the feature is due to the implantation of Io plasma torus-derived sulfur ions on the Europa trailing side's water-ice surface.

  8. Elastic Bands in Combination With Free Weights in Strength Training: Neuromuscular Effects.

    PubMed

    Andersen, Vidar; Fimland, Marius S; Kolnes, Maria K; Saeterbakken, Atle H

    2015-10-01

    This study compared the effects of a variable vs. a constant lower limb resistance training program on muscle strength, muscle activation, and ballistic muscle performance at different knee angles. Thirty-two females were randomized to a constant resistance training free-weight group (FWG) or a variable resistance training group using free weights in combination with elastic bands (EBG). Two variations of the squat exercise (back squat and split) were performed 2 days per week for 10 weeks. Knee extensor maximal voluntary isometric contraction (MVC) and countermovement jump were assessed at knee angles of 60, 90, and 120° before and after the intervention. During the MVCs, muscle activation of the superficial knee extensor muscles was measured using surface electromyography. The FWG increased their MVCs at 60 and 90° (24 and 15%, respectively), whereas the EBG only increased significantly at 60° (15%). The FWG increased their jump height significantly at all angles (12-16%), whereas the EBG only improved significantly at 60 and 90° (15 and 10%, respectively). Both groups improved their 6-repetition maximum free-weight squat performance (EBG: 25% and FWG: 23%). There were no significant changes in muscle activation. In conclusion, constant and variable resistance training provided similar increases in dynamic and isometric strength, and ballistic muscle performance, albeit most consistently for the group training only with free weights.

  9. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-02

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model.

  10. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized.

  11. Band gap reduction in InNxSb1-x alloys: Optical absorption, k . P modeling, and density functional theory

    NASA Astrophysics Data System (ADS)

    Linhart, W. M.; Rajpalke, M. K.; Buckeridge, J.; Murgatroyd, P. A. E.; Bomphrey, J. J.; Alaria, J.; Catlow, C. R. A.; Scanlon, D. O.; Ashwin, M. J.; Veal, T. D.

    2016-09-01

    Using infrared absorption, the room temperature band gap of InSb is found to reduce from 174 (7.1 μm) to 85 meV (14.6 μm) upon incorporation of up to 1.13% N, a reduction of ˜79 meV/%N. The experimentally observed band gap reduction in molecular-beam epitaxial InNSb thin films is reproduced by a five band k . P band anticrossing model incorporating a nitrogen level, EN, 0.75 eV above the valence band maximum of the host InSb and an interaction coupling matrix element between the host conduction band and the N level of β = 1.80 eV. This observation is consistent with the presented results from hybrid density functional theory.

  12. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  13. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-05

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  14. Effect of the Power Balance® band on static balance, hamstring flexibility, and arm strength in adults.

    PubMed

    Verdan, Princess J R; Marzilli, Thomas S; Barna, Geanina I; Roquemore, Anntionette N; Fenter, Brad A; Blujus, Brittany; Gosselin, Kevin P

    2012-08-01

    The purpose of this study was to determine the effect of Power Balance® bands on strength, flexibility, and balance. Strength and flexibility were measured using the MicroFit system. Strength was measured via a bicep curl and flexibility via the sit-and-reach method. Balance was measured by the BIODEX System SD. There were 4 different conditions for the balance test: eyes open on a firm surface (EOFS), eyes closed on a firm surface (ECFS), eyes open on a foam surface (EOFoS), and eyes closed on a foam surface (ECFoS). There were 24 subjects in the study (10 men and 14 women). A counterbalance, double-blind, placebo, controlled within-subject design was used. Each of the subjects participated in 3 treatment sessions, consisting of Power Balance®, placebo band, and no band. An alpha level of p ≤ 0.05 was set a priori. There were no significant differences in strength, flexibility, or balance with regard to the treatments used. There was a significant difference between the conditions in the balance test (p = 0.000): EOFS (0.51), ECFS (0.68), EOFoS (0.99), and ECFoS (2.18); however, these were independent of the treatment conditions. The results indicate that the Power Balance® bands did not have an effect on strength, flexibility, or balance.

  15. Rational Improvement of Molar Absorptivity Guided by Oscillator Strength: A Case Study with Furoindolizine-Based Core Skeleton.

    PubMed

    Lee, Youngjun; Jo, Ala; Park, Seung Bum

    2015-12-21

    The rational improvement of photophysical properties can be highly valuable for the discovery of novel organic fluorophores. Using our new design strategy guided by the oscillator strength, we developed a series of full-color-tunable furoindolizine analogs with improved molar absorptivity through the fusion of a furan ring into the indolizine-based Seoul fluorophore. The excellent correlation between the computable values (oscillator strength and theoretical S0 -S1 energy gap) and photophysical properties (molar absorptivity and emission wavelength) confirmed the effectualness of our design strategy.

  16. An in vitro study on the retentive strength of orthodontic bands cemented with CPP-ACP-containing GIC

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-12-01

    Caries and white spot lesions around orthodontic bands are well known occurrences in fixed orthodontic treatment. There are several methods to overcome these problems. One of these includes modification of the band cement with remineralizing agents such as casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). However, it should be evaluated that the cement modification has no significant negative effects on the retentive strength of the cemented orthodontic bands. In a continuation of our previous studies on the effects of the addition of CPP-ACP on the mechanical properties of luting and lining glass ionomer cement (GIC), this study aimed to investigate the retentive strength of orthodontic bands cemented with CPP-ACP containing GIC. Sixty extracted human pre molars teeth were embedded in acrylic resin and randomly divided into two groups of 30 specimens. In group 1, bands were cemented to the tooth with a GIC. In group 2, CPP-ACP (1.56% w/w) was added to the GIC before cementation. The retentive strength of each groups was determined with a universal testing machine. Further, the amount of cement remaining on the tooth surface was evaluated under a stereomicroscope, and the adhesive remnant index (ARI) score was determined. Results of this study showed that there were no significant differences between the groups in retentive strength and ARI score. In conclusion, modification of GIC with 1.56% w/w CPP-ACP had no negative effects on the retentive strength of the bands so can be used during fixed orthodontic treatment.

  17. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Hee; Ryu, Yo-Han; Kim, Sung-Soo

    2015-05-01

    This study investigated the dual-band absorption properties of metamaterial absorbers composed of a split ring resonator (SRR) on a grounded magnetic substrate. Polymer composites of carbonyl iron powders (CIP) of high permeability and magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials with the SRR structure. For perpendicular polarization with an electric field (E) perpendicular to the SRR gap, dualband absorption peaks are predicted in the simulation result of reflection loss. Magnetic resonance resulting from antiparallel currents between the SRR and the ground plane is observed at the frequencies of two absorption peaks. The first strong absorption peak at the lower frequency (3.3 GHz) is due to magnetic resonance at the wire part of the SRR. The second absorption peak at the higher frequency (7.2 GHz) is due to magnetic resonance at the SRR split gap. The decreased capacitance with increased gap spacing moves the second absorption frequency to higher frequencies, while the first absorption peak is invariant with gap spacing. In the case of dual gaps at the opposite sides of the SRR, a single absorption peak is predicted due to the elimination of low-frequency resonance. For parallel polarization with the E-field parallel to the SRR gap, a single absorption peak is predicted, corresponding to magnetic resonance at the SRR wire.[Figure not available: see fulltext.

  18. Band gap shift and the optical nonlinear absorption of sputtered ZnO-TiO2 films.

    PubMed

    Han, Yi-Bo; Han, Jun-Bo; Hao, Zhong-Hua

    2011-06-01

    ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.

  19. Stratospheric observations of the attenuated solar irradiance in the Schumann-Runge band absorption region of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Hudson, R. D.; Mentall, J. E.

    1981-01-01

    A spectrometer flown on the first Solar Absorption Balloon Experiment (SABE-1) observed the attenuated solar irradiance between 184 and 202 nm from an altitude near 40 km. These measurements provide a check on the absorption cross sections of molecular oxygen in the spectral region of the Schumann-Runge bands. Comparison of the measurements with calculations based on cross sections derived from laboratory data shows a general agreement although the irradiance measurements have large error bars near the centers of the absorption bands. The results imply that the 184-200 nm solar irradiance that penetrates to the stratosphere can be computed to an accuracy of + or - 30% or better by using presently available cross sections.

  20. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands.

    PubMed

    Siritanaratkul, Bhavin; Maeda, Kazuhiko; Hisatomi, Takashi; Domen, Kazunari

    2011-01-17

    Photocatalytic activities of perovskite-type niobium oxynitrides (CaNbO₂N, SrNbO₂N, BaNbO₂N, and LaNbON₂) were examined for hydrogen and oxygen evolution from water under visible-light irradiation. These niobium oxynitrides were prepared by heating the corresponding oxide precursors, which were synthesized using the polymerized complex method, for 15 h under a flow of ammonia. They possess visible-light absorption bands between 600-750 nm, depending on the A-site cations in the structures. The oxynitride CaNbO₂N, was found to be active for hydrogen and oxygen evolution from methanol and aqueous AgNO₃, respectively, even under irradiation by light at long wavelengths (λ<560 nm). The nitridation temperature dependence of CaNbO₂N was investigated and 1023 K was found to be the optimal temperature. At lower temperatures, the oxynitride phase is not adequately produced, whereas higher temperatures produce more reduced niobium species (e. g., Nb³(+) and Nb⁴(+)), which can act as electron-hole recombination centers, resulting in a decrease in activity.

  1. Microwave absorption behavior of a polyaniline magnetic composite in the X-band

    NASA Astrophysics Data System (ADS)

    Aphesteguy, J. C.; Damiani, A.; DiGiovanni, D.; Jacobo, S. E.

    2012-08-01

    The development of nanosized materials is a subject of considerable interest both for understanding of the fundamental properties of magnetic materials for new technological applications. Polyaniline, composites Fe3O4/(PANI) with conducting, magnetic and electromagnetic properties with different amounts of Fe3O4 were successfully prepared. The samples were structurally characterized by scanning electron microscopy (SEM), X-ray diffraction and transmission electron microscopy (TEM) and magnetically, with a superconducting quantum interference device (SQUID) magnetometer. In order to explore microwave-absorbing properties in X-band, the composite nanoparticles were mixed with an epoxy resin to be converted into a microwave-absorbing composite. Microwave behavior with different Fe3O4/(PANI)-epoxy resin ratio was studied using a microwave vector network analyzer (VNA) in the range 7.5 to 13 GHz. For a constant thickness of 1.5 mm, absorption increases with the magnetite contents in the composites and in the oriented samples by the application of a magnetic field.

  2. A new class of topological insulators from I-III-IV half-Heusler compounds with strong band inversion strength

    NASA Astrophysics Data System (ADS)

    Zhang, X. M.; Xu, G. Z.; Du, Y.; Liu, E. K.; Liu, Z. Y.; Wang, W. H.; Wu, G. H.

    2014-02-01

    In this paper, by first principle calculations, we investigate systematically the band topology of a new half-Heusler family with composition of I(A)-III(A)-IV(A). The results clearly show that many of the I-III-IV half-Heusler compounds are in fact promising to be topological insulator candidates. The characteristic feature of these new topological insulators is the naturally strong band inversion strength (up to -2 eV) without containing heavy elements. Moreover, we found that both the band inversion strength and the bulk insulating gap of the compounds can be tailored through strain engineering, and therefore would be grown epitaxially in the form of thin films, and useful in spintronics and other applications.

  3. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  4. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  5. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  6. Adding silanes to MMA: the effects on the water absorption, adhesive strength and mechanical properties of acrylic denture base resins.

    PubMed

    Kanie, T; Fujii, K; Arikawa, H; Inoue, K

    2000-12-01

    The adhesive strength of porcelain artificial teeth and polymethylmethacrylates (PMMAs), which contained silanes with various number of vinyl or ethoxy groups, and the mechanical and physical properties of the PMMAs were measured. Four types of PMMAs with silanes showed high adhesive shear strength and caused fractures in the porcelain. Water absorption of the PMMAs increased with the addition of silane, but that of one type with silane was almost the same as the PMMA only type. The flexural strengths of the PMMAs with silane, except for one type, showed no significant differences compared with that of PMMA (p < 0.05). The Tg levels of all PMMAs with silane fell less than that of PMMA. From these results, it was found that PMMA with silane from three vinyl groups and one ethoxy group showed excellent chemical bonding to porcelain and low water absorption.

  7. Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams

    SciTech Connect

    Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J. )

    1990-09-01

    The technique of direct laser absorption spectroscopy in fast ion beams has been employed for the determination of absolute integrated band intensities ({ital S}{sup 0}{sub {ital v}}) for the {nu}{sub 3} fundamental bands of H{sub 3}O{sup +} and NH{sup +}{sub 4}. In addition, the absolute band intensities for the {nu}{sub 1} fundamental bands of HN{sup +}{sub 2} and HCO{sup +} have been remeasured. The values obtained in units of cm{sup {minus}2} atm{sup {minus}1} at STP are 1880(290) and 580(90) for the {nu}{sub 1} fundamentals of HN{sup +}{sub 2} and HCO{sup +}, respectively; and 4000(800) and 1220(190) for the {nu}{sub 3} fundamentals of H{sub 3}O{sup +} and NH{sup +}{sub 4}, respectively. Comparisons with {ital ab} {ital initio} results are presented.

  8. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  9. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  10. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  11. The influence of recycled expanded polystyrene (EPS) on concrete properties: Influence on flexural strength, water absorption and shrinkage

    NASA Astrophysics Data System (ADS)

    Elsalah, Jamaleddin; Al-Sahli, Yosra; Akish, Ahmed; Saad, Omar; Hakemi, Abdurrahman

    2013-12-01

    Expanded polystyrene waste in a granular form was used as a lightweight aggregate in order to produce lightweight concretë Lightweight EPS concrete composites were produced by replacing the coarse aggregate, either partially or fully with equal volume of EPS aggregates. The coarse aggregate replacements levels used were 25, 50, 75, and 100%, which corresponded to (9.20, 18.40, 27.60, and 36.8%) from total volume. The investigation is directed towards the development and performance evaluation of the concrete composites containing EPS aggregates, without addition of either bonding additives, or super-plasticizers on some concrete properties such as flexure strength, water absorption and change in length (or shrinkage). Experimental results showed that a density reduction of 12% caused flexure strength to decrease by 25.3% at a replacement level of 25% EPS. However, the reduction percentage strongly depends upon the replacement level of EPS granules. Moreover, the lower strength concretes showed a higher water absorption values compared to higher strength concrete, i.e., increasing the volume percentage of EPS increases the water absorption as well as the negative strain (shrinkage). The negative strain was higher at concretes of lower density (containing a high amount of EPS aggregate). The water to cement ratio of EPS aggregate concrete is found to be slightly lower than that of conventional concrete.

  12. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  13. Theoretical study of electronic absorption spectroscopy of propadienylidene molecule vis-â-vis the observed diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Reddy, Samala Nagaprasad; Mahapatra, S.

    2012-07-01

    Observation of broad and diffuse interstellar bands (DIBs) at 4881 Å and 5440 Å assigned to the optical absorption spectrum of Y-shaped propadienylidene (H2Cdbnd Cdbnd C:) molecule is theoretically examined in this paper. This molecule apparently absorbs in the same wavelength region as the observed DIBs and was suggested to be a potential carrier of these DIBs. This assignment mostly relied on the experimental data from radioastronomy and laboratory measurements. Motivated by these available experimental data we attempt here a theoretical study and investigate the detailed electronic structure and nuclear dynamics underlying the electronic absorption bands of propadienylidene molecule. Our results show that this molecule indeed absorbs in the wavelength region of the recorded DIBs. Strong nonadiabatic coupling between its energetically low-lying electronic states plays major role, initiates ultrafast internal conversion and contributes to the spectral broadening. Theoretical findings are finally compared with the available experimental and theoretical data and discussed in connection with the recorded DIBs.

  14. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  15. [Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen].

    PubMed

    Gudkov, S V; Karp, O E; Garmash, S A; Ivanov, V E; Chernikov, A V; Manokhin, A A; Astashev, M E; Iaguzhinskiĭ, L S; Bruskov, V I

    2012-01-01

    It is found that in bidistilled water saturated with oxygen hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sourses, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

  16. Relations Between He I λ10830 Absorption Strength and Stellar Activity Amongst Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.

    2016-11-01

    Correlations are identified between the strength of the λ10830 He I triplet line and the following tracers of stellar activity amongst FGK dwarfs with colours of (B - V) > 0.47: coronal soft X-ray emission, emission in the λ1549 C IV and λ1335 C II lines originating from the transition region, and Ca II H and K emission from the chromosphere. No such correlations are present amongst dwarfs with spectral type earlier than F6. In addition, G and K dwarfs with strong triplet lines show evidence of excess flux in the GALEX FUV band compared to weak-triplet-line dwarfs. The X-ray spectra of late-F, G, and K dwarfs with He I triplets stronger than 160 mÅ have greater values of the ROSAT hardness ratio HR1 than are typical of weak-triplet dwarfs in the same range of spectral type. In other words, dwarfs later than F7V with strong He I triplet lines tend towards harder 0.1-2.0 keV X-ray spectra than weak-triplet dwarfs, although values of HR1 -0.2 to +0.1 can still be encountered amongst a minority of weak-He-triplet stars. As regards, FGK main sequence stars the observational data on the λ10830 triplet line remains sparse. Progress could be made through spectroscopy of high resolution for samples of hundreds of stars, selected on the basis of having other measures of chromospheric and coronal activity available.

  17. Band strength in photoelectron spectra and photoionization cross sections of pyrrole and of conformation isomers of 1,1-dimethylhydrazine

    SciTech Connect

    Kiro, Z. A.; Dykhanov, S. M.; Zverev, V. V.

    1988-09-01

    The dependence of partial photoionization cross sections of the 1,1-dimethylhydrazine molecule on the spatial characteristics (bond lengths, valence and dihedral angles) has been studied. The presence of a gauche-conformation isomer in the gaseous phase has been established, as confirmed by a comparison of the photoionization cross section ratios for the corresponding molecular orbitals with the relative band strengths in photoelectron spectra.

  18. a Theoretical Model for Wide-Band Infrared-Absorption Molecular Spectra at any Pressure: Fiction or Reality?

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Vander Auwera, Jean

    2014-06-01

    Various atmospheric applications require modeling of infrared absorption by the main atmospheric species in wide ranges of frequencies, pressures and temperatures. For different pressure regimes, different mechanisms are responsible for the observed intensities of vibration-rotation line manifolds, and the structure of the bands changes drastically when going from low to high densities. Therefore, no universal theoretical model exists presently to interpret simultaneously collapsed band-shapes observed at very high pressures and isolated-line shapes recorded in sub-atmospheric regimes. Using CO_2 absorption spectra as an example, we introduce some improvements in the non-Markovian Energy-Corrected Sudden model, developed for high-density spectra of arbitrary tensorial rank and generalized recently to parallel and perpendicular infrared absorption bands, and test the applicability of this approach for the case of nearly Doppler pressure regime via comparisons with recently recorded experimental intensities. J.V. Buldyreva and L. Bonamy, Phys. Rev. A 60(1), 370-376 (1999). J. Buldyreva and L. Daneshvar, J. Chem. Phys. 139, 164107 (2013). L. Daneshvar, T. Földes, J. Buldyreva, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 2014 (to be submitted).

  19. Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids.

    PubMed

    Dai, Weitao; Yap, Daniel; Chen, Gang

    2012-07-02

    Efficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material. A spectrally averaged absorptance of 83% is achieved compared to an average absorptance of 28% for the optimized multilayer structure that has the same amount of absorbing material. This enhancement is explained by the coupled-mode theory. Similar designs can also be applied to solar cells.

  20. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  1. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  2. New method for determining relative oscillator strengths of atoms through combined absorption and emission measurements - Application to titanium /Ti I/

    NASA Technical Reports Server (NTRS)

    Cardon, B. L.; Smith, P. L.; Whaling, W.

    1979-01-01

    The paper introduces a procedure that combines measurements of absorption and emission by atoms to obtain relative oscillator strengths that are independent of temperature determination in the sources and of assumptions regarding local thermodynamic equilibrium. The experimental observations are formed into sets of transitions and required to satisfy defined ratios. The procedure is illustrated with the published data of Whaling et al. and Smith and Kuehne for 16 transitions in Ti I. It is shown that the relative oscillator strengths resulting from this procedure have calculated uncertainties between 5 and 17% (about 95% confidence level). Evidence is presented to suggest that these uncertainties have been overestimated.

  3. The C2H, C2, and CN electronic absorption bands in the carbon star HD 19557

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Bregman, J. D.; Cooper, D. M.; Goorvitch, D.; Langhoff, S. R.; Witteborn, F. C.

    1983-01-01

    Infrared spectrophotometry of the R-type carbon star HD 19557 is presented. Two unusual spectroscopic features are seen: a 3.1 micron band is lacking and a 2.8 micron band is present. Identifications are proposed for three previously unreported stellar absorption bands with electronic sequences of C2, CN, and C2H. The latter is proposed to be responsible for the 2.8 micron feature. The atmospheric structure of the star is studied with synthetic spectra, and an effective temperature between 2600 K and 3000 K is suggested. No SiC emission is seen at 11.3 microns, indicating that grain formation is not a viable process around the star. The lack of dust in R stars may suggest a salient difference between R and N types.

  4. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  5. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  6. Sub-nanometer linewidth perfect absorption in visible band induced by Bloch surface wave

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Liu, Wenxing; Zhou, Zhiqiang; Ren, Naifei; Ding, Guilin; Chen, Mingyang; Yao, Hongbing

    2016-12-01

    We demonstrate the unity absorption of visible light with an ultra-narrow 0.1 nm linewidth. It arises from the Bloch surface wave resonance in alternating TiO2/SiO2 multilayers. The total absorption and narrow linewidth are explained from the radiative and absorptive damping, which are quantitatively determined by the temporal coupled mode theory. When a silver film with proper thickness is added to the absorber, the perfect absorption is achieved with only 3 structural bilayers, in contrast with 8 bilayers required without Ag. Furthermore, significant field enhancement and an ultrahigh 2600/RIU sensing figure-of-merit are simultaneously obtained at resonance, which might facilitate applications in nonlinear optical devices and high resolution refractive index sensing.

  7. Dipole Strength Calculation Based on Two-Level System Approximation to Study Q/B-Band Intensity Ratio of ZnTBP in Solvent

    NASA Astrophysics Data System (ADS)

    Rusydi, Febdian; Shukri, Ganes; Saputro, Adithya G.; Agusta, Mohammad K.; Dipojono, Hermawan K.; Suprijadi, Suprijadi

    2017-04-01

    We study the Q/B-band dipole strength of zinc tetrabenzoporphyrin (ZnTBP) using density functional theory (DFT) in various solvents. The solvents are modeled using the polarized continuum model (PCM). The dipole strength calculations are approached by a two-level system, where the Q-band is described by the HOMO → LUMO electronic transition and the B-band by the HOMO-1 → LUMO electronic transition. We compare the results with the experimental data of the Q/B-band intensity ratio. We also perform time-dependent DFT coupled with PCM to calculate the Q/B-band oscillator strength ratio of ZnTBP. The results of both methods show a general trend with respect to the experimental Q/B-band intensity ratio in solvents, except for the calculation in the water solvent. Even so, the approximation is a good starting point for studying the UV-vis spectrum based on DFT study alone.

  8. Effect of upper extremity proprioceptive neuromuscular facilitation combined with elastic resistance bands on respiratory muscle strength: a randomized controlled trial

    PubMed Central

    Areas, Guilherme P. T.; Borghi-Silva, Audrey; Lobato, Arianne N.; Silva, Alessandra A.; Freire, Renato C.; Areas, Fernando Z. S.

    2013-01-01

    Background Elastic resistance bands (ERB) combined with proprioceptive neuromuscular facilitation (PNF) are often used in resistance muscle training programs, which have potential effects on peripheral muscle strength. However, the effects of the combination of ERB and PNF on respiratory muscle strength warrant further investigation. Objectives The assessment of the effects of PNF combined with ERB on respiratory muscle strength. Method Twenty healthy, right-handed females were included. Subjects were randomized to either the resistance training program group (TG, n=10) or the control group (CG, n=10). Maximal expiratory pressure (MEP) and inspiratory pressure (MIP) were measured before and after four weeks of an upper extremity resistance training program. The training protocol consisted of upper extremity PNF combined with ERB, with resistance selected from 1 repetition maximum protocol. Results PNF combined with ERB showed significant increases in MIP and MEP (p<0.05). In addition, there were significant differences between the TG and CG regarding ∆MIP (p=0.01) and ∆MEP (p=0.04). Conclusions PNF combined with ERB can have a positive impact on respiratory muscle strength. These results may be useful with respect to cardiopulmonary chronic diseases that are associated with reduced respiratory muscle strength. PMID:24346292

  9. Real-time monitoring of reactive species in downstream etch reactor by VUV broad-band absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Soriano, R.; Vallier, L.; Cunge, G.; Sadeghi, N.

    2016-09-01

    Plasma etching of nanometric size, high aspect-ratio structures is more challenging at each new technological node. Remote plasmas are beginning to find use when damages on nanostructures by ion bombardment become critical or when etching with high selectivity on different materials present on the wafer is necessary (i . e . tungsten oxide etching with fluorine and hydrogen containing plasmas in remote reactor from AMAT). Furthermore, it is expected that downstream plasma will replace many wet chemical etching processes to alleviate the issue of pattern collapses caused by capillary forces when nanometer size high aspect ratio structures are immersed in liquids. In these downstream plasmas, radicals are the main active species and a control of their density is of prime importance. Most of gases used and radicals produced in etching plasmas (HBr, BrCl, Br2, NF3, CH2F2,...) have strong absorption bands in the vacuum UV spectral region and we have shown that very low concentration of these species can be detected by VUV absorption. We have recently improved the technique by using a VUV CCD camera, instead of the PMT, which render possible the Broad-Band absorption spectroscopy in the 120-200 nm range, with a deuterium lamp, or a laser produced xenon arc lamp as light source. The multi-spectral detection ability of the CCD reduces the acquisition time to less than 1 second and can permit the real time control of the process control.

  10. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  11. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  12. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  13. Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements

    SciTech Connect

    Lindenmaier, Rodica; Tipton, Nicole; Sams, Robert L.; Brauer, Carolyn S.; Blake, Thomas A.; Williams, Stephen D.; Johnson, Timothy J.

    2016-08-04

    Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities, having recently been observed in biomass burning events, as well as a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O—H···O=C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations as well as GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption band strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications.

  14. Absorption and emission line shapes in the O2 atmospheric bands - Theoretical model and limb viewing simulations

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Bucholtz, A.; Hays, P. B.; Ortland, D.; Skinner, W. R.

    1989-01-01

    A multiple scattering radiative transfer model has been developed to carry out a line-by-line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2 1Sigma(+)g - 3Sigma(-)g atmospheric bands (A,B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  15. Iron-absorption band analysis for the discrimination of iron-rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Analysis of ERTS-1 images of Nevada has followed two courses: comparative lineament mapping and spectral reflectance evaluation. The comparative lineament mapping was conducted by mapping lineaments on 9 x 9 inch prints of MSS bands 5 and 7, transferring the data to a base map, and comparing the results with existing geologic maps. The most significant results are that lineaments are more numerous on the band 7 images, and approximately 100 percent more were mapped than appear on existing maps. Geologic significance of these newly mapped lineaments will not be known until they are checked in the field: many are probably faults. Spectral analysis has been limited to visual comparison among the four MSS bands. In general, higher scene contrast is shown in the near infrared bands (6 and 7) than in the visible wavelength bands (4 and 5). The economic implications of these results derive chiefly from the greater efficiency that can be obtained by using near infrared as well as visible wavelength images.

  16. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  17. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  18. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band.

    PubMed

    Huang, Li; Chowdhury, Dibakar Roy; Ramani, Suchitra; Reiten, Matthew T; Luo, Sheng-Nian; Taylor, Antoinette J; Chen, Hou-Tong

    2012-01-15

    We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

  19. Theoretical study on the photofragment branching ratios and anisotropy parameters of ICl in the second absorption band

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Yabushita, Satoshi

    2014-01-01

    Potential energy curves, transition dipole moments, and non-adiabatic coupling terms of the excited states of ICl molecule have been obtained by the spin-orbit configuration interaction method to examine the branching ratios and the anisotropy parameters of the photodissociation process in the second absorption band. The calculation of the branching ratios with the time-dependent coupled Schrödinger equations, including the quantum interference effect between the 0+(III) and 0+(IV) states, shows good agreement with recent experiments, thus resolves the long standing disagreement. The contribution of the quantum interference effect to the photodissociation process is discussed based on a time-dependent perturbation treatment.

  20. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  1. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  2. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  3. Shape of impurity electronic absorption bands in a nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1995-02-01

    It is shown that the anisotropic intermolecular impurity-matrix interactions, statistical orientation properties, and the electronic structure of the uniaxial impurity molecules considerably affect the spectral moments of the impurity electronic adsorption bands in a nematic liquid crystal. 15 refs., 3 figs.

  4. Is a pyrene-like molecular ion the cause of the 4,430-angstroms diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar bands (DIBs), ubiquitous absorption features in astronomical spectra, have been known since early this century and now number more than a hundred. Ranging from 4,400 angstroms to the near infrared, they differ markedly in depth, width and shape, making the concept of a single carrier unlikely. Whether they are due to gas or grains is not settled, but recent results suggest that the DIB carriers are quite separate from the grains that cause visual extinction. Among molecular candidates the polycyclic aromatic hydrocarbons (PAHs) have been proposed as the possible carriers of some of the DIBs, and we present here laboratory measurements of the optical spectrum of the pyrene cation C16H10+ in neon and argon matrices. The strongest absorption feature falls at 4,435 +/- 5 angstroms in the argon matrix and 4,395 +/- 5 angstroms in the neon matrix, both close to the strong 4,430-angstroms DIB. If this or a related pyrene-like species is responsible for this particular band, it must account for 0.2% of all cosmic carbon. The ion also shows an intense but puzzling broad continuum, extending from the ultraviolet to the visible, similar to what is seen in the naphthalene cation and perhaps therefore a common feature of all PAH cations. This may provide an explanation of how PAHs convert a large fraction of interstellar radiation from ultraviolet and visible wavelengths down to the infrared.

  5. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  6. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.

    PubMed

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-07

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  7. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  8. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    PubMed Central

    Stigliano, Robert; Baker, Ian

    2015-01-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2–5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20–40 nm flower-like aggregates with a hydrodynamic diameter of 110–120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99–164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue. PMID:25825545

  9. Low absorption state of phycocyanin from Acaryochloris marina antenna system: On the interplay between ionic strength and excitonic coupling

    NASA Astrophysics Data System (ADS)

    Nganou, Collins

    2013-07-01

    This paper studies the excitonic factor in the excited state energy transfer of phycobilisome (PBS) by using a polarized time-resolved pump-probe and by changing the ionic strength of the cofactors' medium in the PBS of Acaryochloris marina (A. marina). As a result, the interplay between the surrounding medium and the closely excited adjacent cofactors is shown to be a negligible factor of the excitonic decay kinetics at 618 nm of the phycocyanin (PC), while it appears as a driving factor of an increase in excitonic delocalization at 630 nm. The obtained anisotropy values are consistent with the contribution of ionic strength in the excitonic mechanism in PBS. These values were 0.38 in high ionic strength and 0.4 in low ionic strength at 618 nm, and 0.52 in high ionic strength and 0.4 in low ionic strength at 630-635 nm. The anisotropy value of 0.52 in high phosphate is similar at 630 nm and 635 nm, which is consistent with an excitonic delocalization band at 635 nm. The 635 nm band is suggested to show the true low energy level of PC in A. marina PBS. The anisotropy decay kinetic at 630 nm suggests that the excited state population of PC is not all equilibrated in 3 ps because of the existence of the 10 ps decay kinetic component. The presence of the slow kinetic decay component in high, and low ionic strength, is consistent with a 10 and 14 ps energy transfer pathway, while the 450 fs kinetic decay component is consistent with the presence of an additional excitation energy transfer pathway between adjacent α84 and β84. Furthermore, the 450 fs decay kinetic is suggested to be trapped in the trimer, while the 400 fs decay kinetic rules out an excitonic flow from low energy level PC to allophycoyanin. This excitonic flow may occur between β84 in adjacent trimers, towards the low energy state of the PBS rod.

  10. Low absorption state of phycocyanin from Acaryochloris marina antenna system: on the interplay between ionic strength and excitonic coupling.

    PubMed

    Nganou, Collins

    2013-07-28

    This paper studies the excitonic factor in the excited state energy transfer of phycobilisome (PBS) by using a polarized time-resolved pump-probe and by changing the ionic strength of the cofactors' medium in the PBS of Acaryochloris marina (A. marina). As a result, the interplay between the surrounding medium and the closely excited adjacent cofactors is shown to be a negligible factor of the excitonic decay kinetics at 618 nm of the phycocyanin (PC), while it appears as a driving factor of an increase in excitonic delocalization at 630 nm. The obtained anisotropy values are consistent with the contribution of ionic strength in the excitonic mechanism in PBS. These values were 0.38 in high ionic strength and 0.4 in low ionic strength at 618 nm, and 0.52 in high ionic strength and 0.4 in low ionic strength at 630-635 nm. The anisotropy value of 0.52 in high phosphate is similar at 630 nm and 635 nm, which is consistent with an excitonic delocalization band at 635 nm. The 635 nm band is suggested to show the true low energy level of PC in A. marina PBS. The anisotropy decay kinetic at 630 nm suggests that the excited state population of PC is not all equilibrated in 3 ps because of the existence of the 10 ps decay kinetic component. The presence of the slow kinetic decay component in high, and low ionic strength, is consistent with a 10 and 14 ps energy transfer pathway, while the 450 fs kinetic decay component is consistent with the presence of an additional excitation energy transfer pathway between adjacent α84 and β84. Furthermore, the 450 fs decay kinetic is suggested to be trapped in the trimer, while the 400 fs decay kinetic rules out an excitonic flow from low energy level PC to allophycoyanin. This excitonic flow may occur between β84 in adjacent trimers, towards the low energy state of the PBS rod.

  11. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  12. Unusual relative strengths of the diffuse interstellar bands in some interstellar dust clouds

    NASA Technical Reports Server (NTRS)

    Krelowski, J.; Walker, G. A. H.

    1986-01-01

    Some of the diffuse interstellar features (DIBs) in the spectra of certain stars at high galactic latitudes (1 is greater than 15 degrees) are unusually weak or absent while others have the strength expected for their color excess. In some cases the stars are probably reddened by single interstellar clouds. There appear to be three families of DIBs. The effects of these families are examined. The existance of the three families implies that at least three agents cause the DIBs and that the proportions of the agents or the physical conditions giving rise to the DIBs can vary from cloud to cloud.

  13. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  14. Infrared, visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands

    SciTech Connect

    Zhang, J.H.; Ding, J.W.; Cao, J.X.; Zhang, Y.L.

    2011-03-15

    The formation energies, electronic structures and optical properties of TM:ZnS systems (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) are investigated by using the first principles method. It is found that the wurtzite and zinc-blende structures have about the same stability, and thus can coexist in the TM:ZnS system. From the wurtzite TM:ZnS, especially, a partially filled intermediate band (IB) is obtained at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}, while it is absent at TM=Mn{sup 2+} and Co{sup 2+}. The additional absorptions are obtained in infrared, visible and ultraviolet (UV) regions, due to the completely spin-polarized IB at Fermi level. The results are very helpful for both the designs and applications of TM:ZnS opto-electronics devices, such as solar-cell prototype. -- Graphical abstract: Absorption coefficients of w-TM{sub x}Zn{sub 1-x}S crystals (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) at x=0.028. The results may be helpful for the design and applications of TM:ZnS devices, especially for the new high efficiency solar-cell prototype, UV detector and UV LEDs. Display Omitted Research highlights: > It is found that the wurtzite and zinc-blende structures can coexist in TM:ZnS. > An intermediate band is obtained in TM:ZnS at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}. > The absorption coefficients are obtained in infrared, visible and ultraviolet regions.

  15. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  16. Broad Band Light Absorption and High Photocurrent of (In,Ga)N Nanowire Photoanodes Resulting from a Radial Stark Effect.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Corfdir, Pierre; Brandt, Oliver; Riechert, Henning; Geelhaar, Lutz

    2016-12-21

    The photoelectrochemical properties of (In,Ga)N nanowire photoanodes are investigated using H2O2 as a hole scavenger to prevent photocorrosion. Under simulated solar illumination, In0.16Ga0.84N nanowires grown by plasma-assisted molecular beam epitaxy show a high photocurrent of 2.7 mA/cm(2) at 1.2 V vs reversible hydrogen electrode. This value is almost the theoretical maximum expected from the corresponding band gap (2.8 eV) for homogeneous bulk material without taking into account surface effects. These nanowires exhibit a higher incident photon-to-current conversion efficiency over a broader wavelength range and a higher photocurrent than a compact layer with higher In content of 28%. These results are explained by the combination of built-in electric fields at the nanowire sidewall surfaces and compositional fluctuations in (In,Ga)N, which gives rise to a radial Stark effect. This effect enables spatially indirect transitions at energies much lower than the band gap. The resulting broad band light absorption leads to high photocurrents. This benefit of the radial Stark effect in (In,Ga)N nanowires for solar harvesting applications opens up the perspective to break the theoretical limit for photocurrents.

  17. Absolute Absorption Intensities in the Fundamental nu2 and nu5 Bands of 12CH3F.

    PubMed

    Lepère; Blanquet; Walrand; Tarrago

    1998-06-01

    The absolute strengths of 93 lines belonging to the nu2 and nu5 bands of methyl fluoride were measured in the range of 1416-1503 cm-1 using a tunable diode-laser (TDL) spectrometer. These experimental line intensities were obtained from the equivalent width method. The intensities were analyzed within a dyad system, required to account properly for the strong Coriolis coupling between nu2 and nu5. The fit to the experimental data led to the determination of the dipole moment derivatives partial differentialµ/ partial differentialq2 and partial differentialµ/ partial differentialq5, as well as the first-order Herman-Wallis correction in K to partial differentialµ/ partial differentialq5. The intensities were reproduced with an overall standard deviation of 1.44%, to be compared with a mean experimental uncertainty equal to 1.58%. The values derived for the vibrational band strengths of nu2 and nu5 are 2.124 (18) cm-2.atm-1 and 36.96 cm-2.atm-1 at 296 K, respectively. Copyright 1998 Academic Press.

  18. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    SciTech Connect

    Sudeep, P. M.; Vinayasree, S.; Mohanan, P.; Ajayan, P. M.; Narayanan, T. N.; Anantharaman, M. R.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methyl Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.

  19. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2.

    PubMed

    de Lange, Arno; Dickenson, Gareth D; Salumbides, Edcel J; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-21

    An extensive survey of the D(2) absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90,000-119,000 cm(-1) covers the full depth of the potential wells of the B (1)Σ(u)(+), B' (1)Σ(u)(+), and C (1)Π(u) electronic states up to the D(1s) + D(2l) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm(-1). Extended calibration methods are employed to extract line positions of D(2) lines at absolute accuracies of 0.03 cm(-1). The D (1)Π(u) and B'' (1)Σ(u)(+) electronic states correlate with the D(1s) + D(3l]) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D(2). The observations are compared with previous studies, both experimental and theoretical.

  20. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    NASA Astrophysics Data System (ADS)

    Prahara, E.; Meilani

    2014-03-01

    Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  1. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  2. On the Use of Difference Bands for Modeling SF_6 Absorption in the 10μm Atmospheric Window

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Manceron, Laurent; Roy, P.; Boudon, Vincent; Loete, Michel

    2016-06-01

    To model correctly the SF_6 atmospheric absorption requires the knowledge of the spectroscopic parameters of all states involved in the numerous hot bands in the 10,5μm atmospheric transparency window. However, due to their overlapping, a direct analysis of the hot bands near the 10,5μm absorption of SF_6 in the atmospheric window is not possible. It is necessary to use another strategy, gathering information in the far and mid infrared regions on initial and final states to compute the relevant total absorption. In this talk, we present new results from the analysis of spectra recorded at the AILES beamline at the SOLEIL Synchrotron facility. For these measurements, we used a IFS125HR interferometer combined with the synchrotron radiation in the 100-3200 wn range, coupled to a cryogenic multiple pass cell. The optical path length was varied from 45 to 141m with measuring temperatures between 223 and 153+/-5 K. The new information obtained on νb{2}+νb{4}-νb{5}, 2νb{5}-νb{6} and νb{3}+νb{6}-νb{4} allowed to derive improved parameters for νb{5}, 2νb{5} and νb{3}+νb{6}. In turn, they are used to model the more important νb{3}+νb{5}-νb{5} and νb{3}+νb{6}-νb{6} hot band contributions. By including these new parameters in the XTDS model, we substantially improved the SF_6 parameters used to model the atmosphere. F. Kwabia Tchana, F. Willaert, X. Landsheere, J. M. Flaud, L. Lago, M. Chapuis, P. Roy, L. Manceron. A new, low temperature long-pass cell for mid-IR to THz Spectroscopy and Synchrotron Radiation Use. Rev. Sci. Inst. 84, 093101, (2013) C. Wenger, V. Boudon, M. Rotger, M. Sanzharov, and J.-P. Champion,"XTDS and SPVIEW: Graphical tools for Analysis and Simulation of High Resolution Molecular Spectra", J. Mol. Spectrosc. 251, 102 (2008)

  3. A thermal broadening analysis of absorption spectra of the D1/D2/cytochrome b-559 complex in terms of Gaussian decomposition sub-bands.

    PubMed

    Cattaneo, R; Zucchelli, G; Garlaschi, F M; Finzi, L; Jennings, R C

    1995-11-21

    Absorption spectra of the isolated D1/D2/cytochrome b-559 complex have been measured in the temperature range 80-300 K. All spectra were analyzed in terms of a linear combination of Gaussian bands and the thermal broadening data interpreted in terms of a model in which the spectrum of each pigment site is broadened by (a) a homogeneous component due to linear electron-phonon coupling to a low-frequency protein vibration and (b) an inhomogeneous component associated with stochastic fluctuations at each pigment site. In order to obtain a numerically adequate description of the absorption spectra, a minimum number of five sub-bands is required. Further refinement of this sub-band description was achieved by taking into account published data from hole burning and absorption difference spectroscopy. In this way, both a six sub-band description and a seven sub-band description were generated. In arriving at the seven sub-band description, the original five sub-band wavelength positions were essentially unchanged. Thermal broadening analysis of the seven sub-band description yielded data which displayed the closest correspondence with the literature observations. The wavelength positions of the sub-bands were near 661, 667, 670, and 675 nm, with two bands near 680 and 684 nm. The two almost isoenergetic sub-bands near 680 nm, identified as P680 and pheophytin, have optical reorganization energies around 40 and 16 cm-1, respectively. All other sub-bands, identified as accessory pigments, have optical reorganization energies close to 16 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Optimizing organic photovoltaics using tailored heterojunctions: A photoinduced absorption study of oligothiophenes with low band gaps

    NASA Astrophysics Data System (ADS)

    Schueppel, R.; Schmidt, K.; Uhrich, C.; Schulze, K.; Wynands, D.; Brédas, J. L.; Brier, E.; Reinold, E.; Bu, H.-B.; Baeuerle, P.; Maennig, B.; Pfeiffer, M.; Leo, K.

    2008-02-01

    A power conversion efficiency of 3.4% with an open-circuit voltage of 1V was recently demonstrated in a thin film solar cell utilizing fullerene C60 as acceptor and a new acceptor-substituted oligothiophene with an optical gap of 1.77eV as donor [K. Schulze , Adv. Mater. (Weinheim, Ger.) 18, 2872 (2006)]. This prompted us to systematically study the energy- and electron transfer processes at the oligothiophene:fullerene heterojunction for a homologous series of these oligothiophenes. Cyclic voltammetry and ultraviolet photoelectron spectroscopy data show that the heterojunction is modified due to tuning of the highest occupied molecular orbital energy for different oligothiophene chain lengths, while the lowest unoccupied molecular orbital energy remains essentially fixed due to the presence of electron-withdrawing end groups (dicyanovinyl) attached to the oligothiophene. Use of photoinduced absorption (PA) allows the study of the electron transfer process at the heterojunction to C60 . Quantum-chemical calculations performed at the density functional theory and/or time-dependent density functional theory level and cation absorption spectra of diluted DCVnT provide an unambiguous identification of the transitions observed in the PA spectra. Upon increasing the effective energy gap of the donor-acceptor pair by increasing the ionization energy of the donor, photoinduced electron transfer is eventually replaced with energy transfer, which alters the photovoltaic operation conditions. The optimum open-circuit voltage of a solar cell is thus a trade-off between efficient charge separation at the interface and maximized effective gap. It appears that the open-circuit voltages of 1.0-1.1V in our solar cell devices have reached an optimum since higher voltages result in a loss in charge separation efficiency.

  5. Energy conversion within infrared plasmonic absorption metamaterials for multi-band resonance

    NASA Astrophysics Data System (ADS)

    Li, Yongqian; Su, Lei; Xu, Xiaolun; Zhang, Chenglin; Wang, Binbin

    2015-05-01

    The energy conversion within the cross-shaped plasmonic absorber metamaterials (PAM) was investigated theoretically and numerically in the infrared range based on the Poynting's theorem of electromagnetic energy. From the microscopic details, the heat generation owing to the electric current accounts for the majority of the energy conversion, while the magnetic resonance plays a negligible role. The PAMs possess three distinct resonant peaks standing independently, which are attributed to the polarization sensitive excitation of plasmonic resonance. Field redistribution and enhancement associated with multiplex resonant electromagnetic wave passing through the PAM medium provided insight into the energy conversion processes inside the nanostructure. The research results will assist the design of novel plasmon enhanced infrared detectors with multiple-band detection.

  6. Thermodynamic consequence of the new attribution of bands in the electronic absorption spectrum of electron donor-iodine-solvent systems

    NASA Astrophysics Data System (ADS)

    Abramov, Sergey P.

    1999-06-01

    The subject review pays attention to the peculiarities in behaviour of bands in the electronic absorption spectra of electron donor-iodine-solvent systems, the appearance of which is associated with the intermolecular interaction of molecular iodine with electron donor organic molecules. The new concept of the bands’ attribution to the isomeric equilibrium molecular charge-transfer complexes (CTCs) of CTC-I and CTC-II types is considered. The features of possible phase transitions in the solid state are discussed on the basis of the thermodynamic properties and electronic structures of the CTC-I and CTC-II in electron donor-iodine-solvent systems. The stabilisation of the CTC-II structure with the temperature lowering coincided in many cases with the electrons’ localisation in the solid state structures having charge-transfer bonds.

  7. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    SciTech Connect

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B; Kochubey, V I; Gorokhovsky, A V; Tretyachenko, E V; Kunitsky, A I

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with the theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)

  8. Is a pyrene-like molecular ion the cause of the 4,430-A diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar band (DIB) absorption features of astronomical spectra are suggested by recent results to be separable from the grains that cause visual extinction. Attention is presently given to laboratory measurements of the optical spectrum of the pyrene cation C16H10(+), which is one of the polycyclic aromatic hydrocarbon (PAH) molecular candidates proposed as carriers for DIBs. This ion exhibits an intense but strangely broad continuum similar to that of the naphthalene cation, so that this may be a common feature of all PAH cations and the basis of an explanation for PAHs' converting of an interstellar radiation fraction as large as that from the UV and visible range down to the IR.

  9. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.

    2012-03-01

    Recent improvements in high spectral resolution measurements of methane absorption at wavenumbers between 4800 cm-1 and 7919 cm-1 have greatly increased the number of lines with known lower state energies, the number of weak lines, and the number of lines observed at low temperatures (Campargue, A., Wang, L., Kassi, S., Mašát, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1141-1151; Campargue, A., Wang, L., Liu, A.W., Hu, S.M., Kassi, S. [2010]. Chem. Phys. 373, 203-210; Mondelain, D., Kassi, S., Wang, L.C. [2011]. Phys. Chem. Chem. Phys. 13, 7985-7996; Nikitin, A.V. et al. [2011a]. J. Mol. Spectrosc. 268, 93-106; Nikitin, A.V. et al. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 2211-2224; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Trans. 112, 937-951), making it possible to fit near-IR spectra of Titan using line-by-line calculations instead of band models (Bailey, J., Ahlsved, L., Meadows, V.S. [2011]. Icarus 213, 218-232; de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003). Using these new results, we compiled an improved line list relative that used by Bailey et al. by updating several spectral regions with either calculated or more recently measured line parameters, revising lower state energy estimates for lines lacking them, and adding room temperature lines to make the list applicable over a wider range of temperatures. We compared current band models with line-by-line calculations using this new line list, both to assess the behavior of band models, and to identify remaining issues with line-by-line calculations when applied to outer planet atmospheres and over a wider range of wavelengths. Comparisons were made for a selection of uniform paths representing outer planet conditions and for representative non-uniform paths within the atmospheres of Uranus, Saturn

  10. The two-photon absorptivity of rotational transitions in the A2 Sigma hyperon + (v prime = O) - X-2 pion (v prime prime = O) gamma band of nitric oxide

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1982-01-01

    A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.

  11. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO.

    PubMed

    Vaughan, Stewart; Gherman, Titus; Ruth, Albert A; Orphal, Johannes

    2008-08-14

    The novel combination of incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and a discharge-flow tube for the study of three key atmospheric trace species, I(2), IO and OIO, is reported. Absorption measurements of I(2) and OIO at lambda=525-555 nm and IO at lambda=420-460 nm were made using a compact cavity-enhanced spectrometer employing a 150 W short-arc Xenon lamp. The use of a flow system allowed the monitoring of the chemically short-lived radical species IO and OIO to be conducted over timescales of several seconds. We report detection limits of approximately 26 pmol mol(-1) for I(2) (L=81 cm, acquisition time 60 s), approximately 45 pmol mol(-1) for OIO (L=42.5 cm, acquisition time 5 s) and approximately 210 pmol mol(-1) for IO (L=70 cm, acquisition time 60 s), demonstrating the usefulness of this approach for monitoring these important species in both laboratory studies and field campaigns.

  12. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-06-04

    Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloyed perovskite solid solutions of methylammonium tin iodide and its lead analogue (CH3NH3Sn(1-x)Pb(x)I3). We exploit the fact that, the energy band gaps of the mixed Pb/Sn compounds do not follow a linear trend (the Vegard's law) in between these two extremes of 1.55 and 1.35 eV, respectively, but have narrower bandgap (<1.3 eV), thus extending the light absorption into the near-infrared (~1,050 nm). A series of solution-processed solid-state photovoltaic devices using a mixture of organic spiro-OMeTAD/lithium bis(trifluoromethylsulfonyl)imide/pyridinium additives as hole transport layer were fabricated and studied as a function of Sn to Pb ratio. Our results show that CH3NH3Sn(0.5)Pb(0.5)I3 has the broadest light absorption and highest short-circuit photocurrent density ~20 mA cm(-2) (obtained under simulated full sunlight of 100 mW cm(-2)).

  13. The first UV absorption band for indole is not due to two simultaneous orthogonal electronic transitions differing in dipole moment.

    PubMed

    Catalán, Javier

    2015-05-21

    The currently accepted model for the photophysics of indole assumes that the first UV absorption band encompasses two orthogonal electronic transitions ((1)Lb and (1)La), leading to two electronic states with a markedly different dipole moment. However, there is a body of evidence not explained by this model, which led us to develop a new photophysical model for indole. Based on the new model, the polarity of the electronic ground state (S0) in indoles is very similar to that of the first electronic excited state (S1) producing this structured emission; however, this excited state can lead to a highly dipolar excited state (S1') with largely structureless emission under the influence of the polarity of the medium, and also, very likely, of its viscosity. The molecular structure of the new excited state can be reversibly converted into the normal structure of the compound. Previous observations were confirmed by the absorption, emission, and excitation spectra for indole, as well as by its polarized emission and excitation spectra in various media. Thus, the polarized emission spectra for indole in glycerol at 283 K and 223 K showed the transition dipole moments for the emission from the first two excited states in a polar medium, S1 and S1', to differ by less than 20°.

  14. Optical Constants and Band Strengths of CH4:C2H6 Ices in the Near- and Mid-infrared

    NASA Astrophysics Data System (ADS)

    Molpeceres, Germán; Satorre, Miguel Angel; Ortigoso, Juan; Millán, Carlos; Escribano, Rafael; Maté, Belén

    2016-07-01

    We present a spectroscopic study of methane-ethane ice mixtures. We have grown CH4:C2H6 mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm-3, respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm-3. As far as we know this is the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level.

  15. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  16. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  17. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  18. Effects of exercise training using resistance bands on glycaemic control and strength in type 2 diabetes mellitus: a meta-analysis of randomised controlled trials.

    PubMed

    McGinley, Samantha K; Armstrong, Marni J; Boulé, Normand G; Sigal, Ronald J

    2015-04-01

    Resistance exercise using free weights or weight machines improves glycaemic control and strength in people with type 2 diabetes. Resistance band training is potentially less expensive and more accessible, but the effects of resistance band training on glycaemic control and strength in this population are not well understood. This paper aims to systematically review and meta-analyse the effect of resistance band training on haemoglobin A1c (HbA1c) and strength in adults with type 2 diabetes. Database searches were performed in August 2013 (MEDLINE, SPORTDiscus, EMBASE, and CINAHL). Reference lists of eligible articles were hand-searched for additional studies. Randomised trials evaluating the effects of resistance band training in adults with type 2 diabetes on HbA1c or objectively measured strength were selected. Baseline and post-intervention HbA1c and strength were extracted for the intervention and control groups. Details of the exercise interventions and methodological quality were collected. Seven trials met inclusion criteria. Post-intervention-weighted mean HbA1c was nonsignificantly lower in exercise groups compared to control groups [weighted mean difference (WMD) = -0.18 percentage points (-1.91 mmol/mol); P = 0.27]. Post-intervention strength was significantly higher in the exercise groups compared to the control groups in the lower extremities (WMD = 21.90 kg; P < 0.0001), but not in the upper extremities (WMD = 2.27 kg; P = 0.13) or handgrip (WMD = 1.98 kg; P = 0.46). All trials were small and had methodological limitations. Resistance band training did not significantly affect HbA1c, upper extremity, or handgrip strength but significantly increased the strength of the lower extremities in people with type 2 diabetes.

  19. PMSE strength during enhanced D region electron densities: Faraday rotation and absorption effects at VHF frequencies

    NASA Astrophysics Data System (ADS)

    Chau, Jorge L.; Röttger, Jürgen; Rapp, Markus

    2014-10-01

    In this paper we study the effects of absorption and Faraday rotation on measurements of polar mesosphere summer echoes (PMSE). We found that such effects can produce significant reduction of signal-to-noise ratio (SNR) when the D region electron densities (Ne) are enhanced, and VHF radar systems with linearly polarized antennas are used. In particular we study the expected effects during the strong solar proton event (SPE) of July 2000, also known as the Bastille day flare event. During this event, a strong anti-correlation between the PMSE SNR and the D-region Ne was found over three VHF radar sites at high latitudes: Andøya, Kiruna, and Svalbard. This anti-correlation has been explained (a) in terms of transport effects due to strong electric fields associated to the SPE and (b) due to a limited amount of aerosol particles as compared to the amount of D-region electrons. Our calculations using the Ne profiles used by previous researchers explain most, if not all, of the observed SNR reduction in both time (around the SPE peak) and altitude. This systematic effect, particularly the Faraday rotation, should be recognized and tested, and possibly avoided (e.g., using circular polarization), in future observations during the incoming solar maximum period, to contribute to the understanding of PMSE during enhanced D region Ne.

  20. Study of band inversion in the PbxSn1-xTe class of topological crystalline insulators using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Tominaga, J.; Uruga, T.

    2014-11-01

    PbxSn1-xTe and PbxSn1-xSe crystals belong to the class of topological crystalline insulators where topological protection is achieved due to crystal symmetry rather than time-reversal symmetry. In this work, we make use of selection rules in the x-ray absorption process to experimentally detect band inversion along the PbTe(Se)-SnTe(Se) tie-lines. The observed significant change in the ratio of intensities of L1 and L3 transitions along the tie-line demonstrates that x-ray absorption can be a useful tool to study band inversion in topological insulators.

  1. Three-pulse femtosecond spectroscopy of PbSe nanocrystals: 1S bleach nonlinearity and sub-band-edge excited-state absorption assignment.

    PubMed

    Gdor, Itay; Shapiro, Arthur; Yang, Chunfan; Yanover, Diana; Lifshitz, Efrat; Ruhman, Sanford

    2015-02-24

    Above band-edge photoexcitation of PbSe nanocrystals induces strong below band gap absorption as well as a multiphased buildup of bleaching in the 1Se1Sh transition. The amplitudes and kinetics of these features deviate from expectations based on biexciton shifts and state filling, which are the mechanisms usually evoked to explain them. To clarify these discrepancies, the same transitions are investigated here by double-pump-probe spectroscopy. Re-exciting in the below band gap induced absorption characteristic of hot excitons is shown to produce additional excitons with high probability. In addition, pump-probe experiments on a sample saturated with single relaxed excitons prove that the resulting 1Se1Sh bleach is not linear with the number of excitons per nanocrystal. This finding holds for two samples differing significantly in size, demonstrating its generality. Analysis of the results suggests that below band edge induced absorption in hot exciton states is due to excited-state absorption and not to shifted absorption of cold carriers and that 1Se1Sh bleach signals are not an accurate counter of sample excitons when their distribution includes multiexciton states.

  2. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-03

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions.

  3. Water absorption behavior and residual strength assessment of glass/epoxy and glass-carbon/epoxy hybrid composite

    NASA Astrophysics Data System (ADS)

    Mohanty, S. C.; Singh, B. P.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.

    2016-02-01

    Present investigation is aimed to study the water absorption behaviour and evaluation of residual strength of glass fibre/epoxy (GE) and alternate plies of glass- carbon/epoxy (GCE) hybrid composite. Both the composite systems were exposed to water at 70°C. Specimens were weighed after certain time periods to study the water uptake kinetic. Flexural tests were conducted after 4, 100 and 450 hours of ageing to evaluate the effect of hot water ageing on the mechanical properties of these potential materials. The water uptake kinetic was found to follow Fickian diffusion kinetic for GE as well as GCE hybrid composite but the rate of diffusion was higher for GE composite over GCE composite. The water content was also higher in GE composite over GCE composite after 450 hours of ageing. Significant decrement in flexural strength was observed with the increase in ageing time. Presence of water in the composite also imparted significant embrittlement to the matrix as reflected in the decrease in strain at peak for both the composite systems.

  4. High-resolution spectroscopy of the {A}^{1}{\\rm{\\Pi }}(v^{\\prime} =0{--}10){--}{X}^{1}{{\\rm{\\Sigma }}}^{+}(v^{\\prime\\prime} =0) bands in 13C18O: term values, ro-vibrational oscillator strengths and Hönl-London corrections

    NASA Astrophysics Data System (ADS)

    Lemaire, J. L.; Eidelsberg, M.; Heays, A. N.; Gavilan, L.; Federman, S. R.; Stark, G.; Lyons, J. R.; de Oliveira, N.; Joyeux, D.

    2016-08-01

    Our knowledge of astronomical environments containing CO depends on accurate molecular data to reproduce and interpret observations. The constant improvement in UV space instrumentation, both in sensitivity and resolution, requires increasingly detailed laboratory data. Following a long-term experimental campaign at the SOLEIL Synchrotron facility, we have acquired complete datasets on the CO isotopologues in the vacuum ultraviolet. Absorption spectra were recorded using the Fourier-transform spectrometer installed on the DESIRS beamline, providing a resolving power R > 106 in the 8-12 eV range. Such resolution allows the analysis of individual line positions and strengths in electronic transitions and the location of perturbations. We continue our previous work on A-X bands of 12C16O and 13C16O, reporting here measurements for the 13C18O isotopologue. Gas column densities in the differentially-pumped system were calibrated using the B {}1{{{Σ }}}+-X {}1{{{Σ }}}+({v}\\prime =0,v\\prime\\prime =0) band. Absorption bands are analyzed by synthesizing line and band profiles and fitting them to measured spectra. New results for A {}1{{\\Pi }}({v}\\prime =0{--}10)-X {}1{{{Σ }}}+(v\\prime\\prime =0) bands include precise line assignments, term values, band-integrated oscillator strengths as well as individual ro-vibrational oscillator strengths and Hönl-London corrections. For ({v}\\prime =1) our results are compared with earlier studies. The interpretation of mixed perturbing bands, complementing an earlier study, is also presented as well as precise line assignments and term values for the B {}1{{{Σ }}}+-X {}1{{{Σ }}}+(0-0) band calibrator, and the nearby B-X (1-0) and C {}1{{{Σ }}}+-X {}1{{{Σ }}}+(0-0) bands.

  5. Improved Experimental Line Positions for the (1,1) Band of the b 1Σ+ - X 3Σ- Transition of O2 by Intracavity Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; O'Brien, Emily C.; O'Brien, James J.

    2012-06-01

    We report improved experimental line positions for the (1,1) band of the b 1Σ+ - X 3Σ- transition of O2. Results are comparised with previous experimental measurements and predicted values. Additionally, a new method of producing vibrationally hot molecules for use in absorption spectroscopy of stable gas phase molecules is described.

  6. Near-Infrared Band Strengths of Molecules Diluted in N2 and H20 Ice Mixtures Relevant to Interstellar and Planetary Ices

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Richey, Christina R.

    2012-01-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice. Many satellites within the solar system have surfaces that are dominated by H2O or N2 and ices in the interstellar medium (ISM) are primarily composed of H2O. The experiments presented here focus on the near-infrared absorption features of CO, CO2, CH4, and NH3 (nu=10,000-4,000/cm, lambda=1-2.5 microns) and the effects of diluting these molecules in N2 or H2O ice (mixture ratio of 5:1). This is a continuation of previous results published by our research group.

  7. Collision-Induced Absorption by H2 Pairs in the Second Overtone Band at 298 and 77.5 K: Comparison between Experimental and Theoretical Results

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; van-Thanh, Nguyen; Fu, Y.; Borysow, A.

    1999-01-01

    The collision-induced spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K and for gas densities ranging from 100 to 800 amagats. The spectral profile defined by the absorption coefficient per squared density varies significantly with the density, so that the binary absorption coefficient has been determined by extrapolations to zero density of the measured profiles. Our extrapolated measurements and our recent ab initio quantum calculation are in relatively good agreement with one another. Taking into account the very weak absorption of the second overtone band, the agreement is, however, not as good as it has become (our) standard for strong bands.

  8. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band

    NASA Astrophysics Data System (ADS)

    Zhu, Zetao; Sun, Xin; Li, Guoxian; Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen; He, Jianping

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide-nickel (RGO-Ni) composites. The phase and morphology of as-synthesized RGO-Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO-Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO-Ni-2 composite with the thickness of 2 mm can reaches -42 dB at 17.6 GHz. The RGO-Ni composite is an attractive candidate for the new type of high performance microwave absorbing material.

  9. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  10. Effect of thickness on microwave absorptive behavior of La-Na doped Co-Zr barium hexaferrites in 18.0-26.5 GHz band

    NASA Astrophysics Data System (ADS)

    Arora, Amit; Narang, Sukhleen Bindra; Pubby, Kunal

    2017-02-01

    In this research, the microwave properties of Lanthanum-Sodium doped Cobalt-Zirconium barium hexaferrites, intended as microwave absorbers, are analyzed on Vector Network Analyzer in K-band. The results indicate that the doping has resulted in lowering of real permittivity and enhancement of dielectric losses. Real permeability has shown increase while magnetic losses have shown decrease in value with doping. All these four properties have shown very small variation with frequency in the scanned frequency range which indicates the relaxation type of behavior. Microwave absorption characteristics of these compositions are analyzed with change in sample thickness. The results demonstrate that the matching frequency of the microwave absorber shifts towards lower side of frequency band with increase in thickness. The complete analysis of the prepared microwave absorbers shows a striking achievement with very low reflection loss and wide absorption bandwidth for all the six compositions in 18-26.5 GHz frequency band.

  11. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  12. Influence of the nature of the absorption band on the potential performance of high molar extinction coefficient ruthenium(II) polypyridinic complexes as dyes for sensitized solar cells.

    PubMed

    Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara

    2011-07-04

    When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.

  13. Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques

    NASA Astrophysics Data System (ADS)

    Reyher, H.-J.; Schulz, R.; Thiemann, O.

    1994-08-01

    The magnetic circular dichroism (MCD) of the absorption of Nb4+Li and Ti3+Li centers in LiNbO3 has been selectively measured by applying optically detected magnetic resonance. The attribution of a well-known broad and unstructured absorption band peaking at 1.6 eV to the Nb4+Li bound small polaron is now unambiguously confirmed. In the MCD spectrum of the isoelectronic Ti3+Li center, bands show up, which closely resemble the MCD bands at 1.6 eV of this bound small polaron. This striking similarity is explained by a cluster model, representing both defects. Either TiLi or NbLi is at the center of this cluster. In both cases, the small polaron is bound to the cluster, and its MCD bands correspond to intervalence transfer transitions within the constituents of the cluster. A study of the spin-orbit coupling of the molecular orbitals of the cluster allows one to analyze the structure of the MCD bands at 2.9 eV of Ti3+Li have no counterpart in the Nb4+Li spectrum. These bands are assigned to transitions to excited states, which are specific to the impurity and are related to the 10Dq transitions known for the crystal field states of a d1 ion.

  14. Crystal-field analysis and calculation of two-photon absorption line strengths of dicesium sodium hexachlorogadolinate(III).

    PubMed

    Duan, Chang-Kui; Tanner, Peter A

    2010-03-31

    The crystal-field energy level calculation of the 4f(7) ion Gd(3+) in the crystal Cs(2)NaGdCl(6) has fitted 45 levels with standard deviation 12 cm(-1), with the energy parameters being consistent with those from other studies. The resulting eigenvectors have been employed in the calculation of two-photon absorption (TPA) intensities of transitions from the electronic ground state (8)S(7/2) to the crystal-field levels of excited (6)P, (6)I and (6)D multiplet terms. The TPA line strengths are highly polarization dependent and exhibit striking differences for linearly polarized incident radiation compared with circularly polarized radiation. The relative intensities are compared with those available from previous experimental studies and some reassignments have been made. Good agreement of calculated and experimental TPA spectra is found, except for the intensity ratio of the transitions to (6)P(7/2) or (6)P(5/2) compared with that to (6)P(3/2), for linear and circular polarizations, where the calculation overestimates the ratio. Reasons for this disagreement are presented.

  15. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  16. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  17. Optimal frequency selection of multi-channel O2-band different absorption barometric radar for air pressure measurements

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Min, Qilong

    2017-02-01

    Through theoretical analysis, optimal selection of frequencies for O2 differential absorption radar systems on air pressure field measurements is achieved. The required differential absorption optical depth between a radar frequency pair is 0.5. With this required value and other considerations on water vapor absorption and the contamination of radio wave transmission, frequency pairs of present considered radar system are obtained. Significant impacts on general design of differential absorption remote sensing systems are expected from current results.

  18. Radiative analysis of global mean temperature trends in the middle atmosphere: Effects of non-locality and secondary absorption bands

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.

    2016-02-01

    In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.

  19. Novel measurements of refractive index, density and mid-infrared integrated band strengths for solid O2, N2O and NO2 : N2O4 mixtures

    NASA Astrophysics Data System (ADS)

    Fulvio, D.; Sivaraman, B.; Baratta, G. A.; Palumbo, M. E.; Mason, N. J.

    2009-06-01

    We present novel measurements of the refractive index, density and integrated band strengths of mid-infrared features of solid N2O at 16 K and of NO2 and N2O4 in two frozen NO2:N2O4 mixtures deposited at 16 and 60 K. The refractive index and density measurements were performed also for frozen O2 deposited at 16 K. In this case, the integrated band strength values could not be determined since O2 is a homonuclear molecule and therefore its fundamental mode is not infrared active. The solid samples were analysed by infrared spectroscopy in the 8000.800 cm -1 range. The sample thickness was measured by the interference curve obtained using a He-Ne laser operating at 543 nm. The refractive index at this laser wavelength was obtained, by numerical methods, from the measured amplitude of the interference curve. The density values were obtained using the Lorentz-Lorenz relation. Integrated band strength values were then obtained by a linear fit of the integrated band intensities plotted versus column density values. The astrophysical relevance of these novel measurements is briefly discussed.

  20. Origin of absorption peaks in reflection loss spectrum in Ku- frequency band of Co-Zr substituted strontium hexaferrites prepared using sucrose precursor

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Pubby, Kunal; Chawla, S. K.; Kaur, Prabhjyot

    2017-03-01

    This study presents the detailed explanation of the factors, contributing towards the absorption peaks in reflection loss spectrum of hexaferrites. Cobalt-Zirconium substituted strontium hexaferrites, synthesized using sucrose precursor sol-gel technique, were analyzed in 12.4-18 GHz frequency range. The concepts of impedance matching through quarter wavelength condition, complex thickness, dielectric phase angle and attenuation constant have been used to determine the location as well as intensity of absorption peaks. This study also demonstrates the potential application of three compositions of this series with doping content (x)==0.0, 0.6 and 0.8 as an effective microwave absorbers in Ku-frequency band.

  1. Polarization and field dependent two-photon absorption in GaAs/AlGaAs multiquantum well waveguides in the half-band gap spectral region

    NASA Astrophysics Data System (ADS)

    Tsang, H. K.; Penty, R. V.; White, I. H.; Grant, R. S.; Sibbett, W.; Soole, J. B. D.; LeBlanc, H. P.; Andreadakis, N. C.; Colas, E.; Kim, M. S.

    1991-12-01

    We report the observation of two photon absorption which is strongly dependent on the applied electric field and the optical polarization. At 1.55 μm wavelength, the two-photon absorption coefficient of the GaAs/AlGaAs multiquantum well (MQW) waveguides for transverse-magnetic light is about seven times lower than for transverse-electric polarized light and changes by a factor of approximately 4 for a change in applied direct-current electric field of ˜140 kV/cm. Ultrafast nonlinear refraction causing phase changes of over π radians without appreciable excess loss is observed. These measurements demonstrate that GaAs/AlGaAs MQW waveguides could be successfully used for subpicosecond all-optical switching near half-band gap, at wavelengths corresponding to the 1.55 μm optical communications band.

  2. Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band.

    PubMed

    Liu, Xiang; Wang, Lai-Sen; Ma, Yating; Zheng, Hongfei; Lin, Liang; Zhang, Qinfu; Chen, Yuanzhi; Qiu, Yulong; Peng, Dong-Liang

    2017-03-01

    Development of microwave absorption materials with tunable thickness and bandwidth is particularly urgent for practical applications but remains a great challenge. Here, two-dimensional nanocomposites consisting of perovskite oxides (LaFeO3) and amorphous carbon were successfully obtained through a one pot with heating treatment using sodium chloride as a hard template. The tunable absorption properties were realized by introducing A-site cation deficiency in LaFeO3 perovskite. Among the A-site cation-deficient perovskites, La0.62FeO3/C (L0.62FOC) has the best microwave absorption properties in which the maximum absorption is -26.6 dB at 9.8 GHz with a thickness of 2.94 mm and the bandwidth range almost covers all X-band. The main reason affecting the microwave absorption performance was derived from the A-site cation deficiency which induced more dipoles polarization loss. This work proposes a promising method to tune the microwave absorption performance via introducing deficiency in a crystal lattice.

  3. Quantitative photoluminescence of broad band absorbing melanins: a procedure to correct for inner filter and re-absorption effects

    NASA Astrophysics Data System (ADS)

    Riesz, Jennifer; Gilmore, Joel; Meredith, Paul

    2005-07-01

    We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant.

  4. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  5. Thickness and Composition Tailoring of K- and Ka-Band Microwave Absorption of BaCo x Ti x Fe(12-2 x)O19 Ferrites

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Pubby, Kunal; Singh, Charanjeet

    2017-02-01

    The goal of this research is to investigate the electromagnetic and microwave absorption properties of M-type barium hexaferrites with chemical formula BaCo x Ti x Fe(12-2 x)O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) in K and Ka band. Characterization techniques such as x-ray diffraction analysis and scanning electron microscopy were applied to confirm ferrite formation. The frequency dependence of the complex permittivity and complex permeability was studied for prepared ferrite samples in the frequency range from 18 GHz to 40 GHz. Factors such as the quarter-wavelength condition, impedance matching, high dielectric-magnetic losses, as well as ferromagnetic resonance were investigated to determine their contribution to the absorption characteristics. It was found that the quarter-wavelength ( λ/4) model could be successfully applied to predict and understand the position as well as number of reflection peaks in the microwave absorption spectrum. The origin of the reflection loss peaks is explained and verified based on calculations of input impedance, loss tangent, and ferromagnetic resonance. Reflection loss analysis revealed that all six compositions exhibited reflection loss peaks (absorption >90%) at their matching thicknesses and frequencies. Therefore, these ferrites are potential candidates for use in electromagnetic shielding applications requiring low reflectivity in K and Ka band.

  6. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  7. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  8. Oscillator strengths of Cr I lines lying between 200 and 541 nm from hook-method and absorption measurements in a furnace

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Sandeman, R. J.

    1977-01-01

    Measurements of 148 oscillator strengths of neutral chromium transitions were made on Cr vapor in a high-temperature furnace by the hook and absorption methods for strong and weak lines, respectively. With the aid of a 5D-z 5F0 multiplet, the product of the oscillator strengths of the lines of this multiplet with the column densities of their respective lower levels could be determined, and by using estimated oscillator strengths for these lines, all data could be put on a common relative scale. This scale was altered so that the results were matched with relative emission intensities. Results are compared with other authors' results. A correction to the hook method constant was also determined.

  9. Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO

    NASA Astrophysics Data System (ADS)

    Bouilloud, M.; Fray, N.; Bénilan, Y.; Cottin, H.; Gazeau, M.-C.; Jolly, A.

    2015-08-01

    Infrared observations of the interstellar medium revealed the presence of several molecules in the solid phase such as H2O, CO2, CO, CH4, NH3, CH3OH, H2CO and HCOOH. Measurements of column densities and molecular abundances relative to water require the knowledge of infrared band strengths. We present a review of refractive indices at visible wavelengths, densities and infrared band strengths for all eight molecules. We also present new band strengths measured on icy films whose thicknesses have been determined using laser interference techniques. For CO2, CO, CH4 and NH3, our measurements are in agreement with previous determinations taking into account an uncertainty of about 20 per cent. For H2O ice films, the porosity and the density remain unreliable, leading to large uncertainties on the measured band strengths. Concerning amorphous CH3OH, H2CO and HCOOH, the densities and refractive indices are unknown leading to large uncertainties on the band strengths. However, we propose new values that are slightly different from previous determination. Our review and experimental work point out the most reliable band strengths for the eight studied molecules. For CH4, CH3OH, HCOOH and H2CO, the band strengths used to calculate abundances in the ices of interstellar medium seem to be inaccurate, leading to some doubts on the determined values.

  10. Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies

    SciTech Connect

    Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Hiraoka, Koichi; Kojima, Kenichi; Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji; Mimura, Kojiro; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Oguchi, Tamio; Taniguchi, Masaki

    2011-09-15

    We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

  11. Contribution of the transition moments, form of the absorption band, exciton, and the correlation effects in the linear and nonlinear optical properties of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Díaz-Ponce, Javier Alejandro

    2017-04-01

    This work compares the linear and nonlinear optical properties of polyenes and polyenynes. The simulation was made for finite and infinite conjugation of conjugated polymers, such as polyacetylene, β-carotene, bis (p-toluene sulfonate) (PTS) polyenyne, and a short conjugated polyenyne poly-2,6-decadyin-1,6-ylene azelate (PHDAz). The resonance energy and degree of conjugation are determined by fitting the linear absorption spectra. These parameters are then used for calculating the two photon and third-order nonlinear optical properties. The contribution of the transition moment, the form of the absorption band, the exciton, and phonons in the optical properties are determined. The difference of the experimental values is assigned to correlation effects. We found that the exciton, the correlation effects, and the conduction band are more important in the optical properties of polyenynes than of polyenes. In this way, the dependence of the optical properties of polyenynes on the conduction band makes it possible to increase their nonlinear optical properties by interaction with photons (θ ≈ 0). The dependence of the optical properties on the conduction band also produces that the finiteness of the conjugation strongly decreases the optical properties of polyenynes in relation to polyenes with similar conjugation. On the other hand, the phonons are more important in the optical properties of polyenes than of polyenynes. Consequently, the band is indirect for the studied polyenes and direct for the polyenynes. Therefore, the nonlinear optical properties in the resonance frequency of polyenyne PTS are higher than those for polyacetylene. We also found that asymmetric oscillations of χ(3) in the Brillouin zone increases the χ(3) final value in polyenynes. In addition, we found a change of sign of the wave function coefficients by the Peierls distortion of polyenes to become polyenynes, but this change of sign does not affect the optical properties. As a corollary

  12. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  13. Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan

    NASA Astrophysics Data System (ADS)

    Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh

    2017-03-01

    We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.

  14. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  15. Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Creti, A.; Tasco, V.; Cola, A.; Montagna, G.; Tarantini, I.; Salhi, A.; Al-Muhanna, A.; Passaseo, A.; Lomascolo, M.

    2016-02-01

    In this work, we report on the competition between two-step two photon absorption, carrier recombination, and escape in the photocurrent generation mechanisms of high quality InAs/GaAs quantum dot intermediate band solar cells. In particular, the different role of holes and electrons is highlighted. Experiments of external quantum efficiency dependent on temperature and electrical or optical bias (two-step two photon absorption) highlight a relative increase as high as 38% at 10 K under infrared excitation. We interpret these results on the base of charge separation by phonon assisted tunneling of holes from quantum dots. We propose the charge separation as an effective mechanism which, reducing the recombination rate and competing with the other escape processes, enhances the infrared absorption contribution. Meanwhile, this model explains why thermal escape is found to predominate over two-step two photon absorption starting from 200 K, whereas it was expected to prevail at lower temperatures (≥70 K), solely on the basis of the relatively low electron barrier height in such a system.

  16. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  17. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  18. Calculating Effect of Point Defects on Optical Absorption Spectra of III-V Semiconductor Superlattices Based on (8x8) k-dot-p Band Structures

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey; Cardimona, David; Krishna, Sanjay

    For a superlattice which is composed of layered zinc-blende structure III-V semiconductor materials, its realistic anisotropic band structures around the Gamma-point are calculated by using the (8x8)k-dot-p method with the inclusion of the self-consistent Hartree potential and the spin-orbit coupling. By including the many-body screening effect, the obtained band structures are further employed to calculate the optical absorption coefficient which is associated with the interband electron transitions. As a result of a reduced quasiparticle lifetime due to scattering with point defects in the system, the self-consistent vertex correction to the optical response function is also calculated with the help of the second-order Born approximation.

  19. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  20. Predissociation linewidths of the (1,0)-(12,0) Schumann-Runge absorption bands of O2 in the wavelength region 179-202 nm

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Chiu, S. S.-L.; Freeman, D. E.

    1990-01-01

    A nonlinear least-squares method of retrieving predissociation linewidths from the experimental absolute absorption cross sections of Yoshino et al. (1983) has been applied to the (1,0)-(12,0) Schumann-Runge bands of oxygen. The predissociation linewidths deduced are larger than the theoretical predictions of Julienne (1976) and the latest measurements of Lewis et al. (1986). The larger linewidths found will have an impact on calculations of solar flux penetration into the earth atmosphere and of the photodissociation rates of trace species in the upper atmosphere.

  1. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  2. Energies of Maxima and Oscillator Strengths of CaO Elementary Transition Bands Over a Wide Energy Range

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Merzlyakov, D. A.; Sobolev, V. Val.

    2016-09-01

    Integral spectra of the imaginary parts of the dielectric permittivity ɛ2(E) and characteristic volume (-Im ɛ-1) and surface [-Im (1 + ɛ)-1] energy losses of calcium oxide were deconvoluted into elementary components in the range 6-40 eV. The main component parameters including the energies of maxima and oscillator strengths were determined using an improved non-parametric method of united Argand diagrams and the method of the effective number of valence electrons participating in the transitions. A total of 41 components with oscillator strengths in the range 0.001-0.22 were identified instead of the 14 maxima and shoulders of the integral spectra. They were caused by transverse and longitudinal exciton and interband transitions.

  3. Sub-Band Gap Absorption in As-Deposited and Annealed nc-CdSe Thin Films Using Constant Photocurrent Method (CPM)

    NASA Astrophysics Data System (ADS)

    Sharma, Kriti; Al-Kabbi, A. S.; Singh, Baljinder; Saini, G. S. S.; Tripathi, S. K.

    2011-12-01

    Nanocrystalline CdSe thin films have been prepared by thermal vaccum evaporation technique using Inert Gas Condensation method using Argon as inert gas. XRD confirms the crystalline cubic nature of nc-CdSe thin films. The optical band gap is calculated for as deposited nc-CdSe and it comes out to be 2.1 eV. CPM has been used to measure sub-band gap absorption in nanocrystalline CdSe thin films. The thin films of nc-CdSe have been annealed at 80 °C for one hour and sub-bandgap absorption in annealed samples has also been calculated. Slope of Urbach tail which is a measure of disorder in both as deposited and annealed samples has been calculated. In the case of as deposited nc-CdSe thin films, Urbach slope is 354 meV. It decreases to the value 198 meV after annealing which shows structural disorder decreases after annealing.

  4. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band.

    PubMed

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 10(8) yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10(7) yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  5. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band

    PubMed Central

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2017-01-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds. PMID:28133388

  6. High-energy Electron Irradiation of Interstellar Carbonaceous Dust Analogs: Cosmic-ray Effects on the Carriers of the 3.4 μm Absorption Band

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  7. Microwave absorption properties of LiNb3O8 in X-band prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Goud, J. Pundareekam; Sindam, Bashaiah; Tumuluri, Anil; Raju, K. C. James

    2015-08-01

    Single phase LiNb3O8 powders were prepared using combustion synthesis technique. The powders were prepared by heat treating Li2CO3+Nb2O5/urea mixture in 1:3 ratio. Structural and morphological details have been done to confirm the presence of LiNb3O8. The S-parameters were measured using rectangular waveguide method in the X-band frequency (8.2GHz to 12.4GHz) by Vector Network Analyzer. The dielectric characteristics like dielectric constant (ɛ') and dielectric loss (ɛ″) were calculated using Nicolson-Ross-Weir algorithm. Complex permittivity of 28-0.2j and 26-1.0j at 8.2GHz and 12.4GHz respectively are observed. Reflection loss was derived with permittivity and permeability as input parameters. Microwave absorber thickness is optimized and the RL< -20dB is obtained in the X-band frequency.

  8. Uniform Supersonic Expansion for FTIR Absorption Spectroscopy: The nu(5) Band of (NO)(2) at 26 K.

    PubMed

    Benidar; Georges; Le Doucen R; Boissoles; Hamon; Canosa; Rowe

    2000-01-01

    A high-resolution Fourier transform interferometer (Bruker IFS 120 HR) was combined with a uniform supersonic expansion produced by means of axisymmetric Laval nozzles. The geometry profile of the nozzle enabled us to work under precise thermodynamic and kinetic conditions. The effect of the cooling rate of different nozzles on cluster nucleation is illustrated. The experimental sensitivity was tested by recording the nu(5) band of (NO)(2) at 26 K. Copyright 2000 Academic Press.

  9. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  10. Efficient tissue ablation using a laser tunable in the water absorption band at 3 microns with little collateral damage

    NASA Astrophysics Data System (ADS)

    Nierlich, Alexandra; Chuchumishev, Danail; Nagel, Elizabeth; Marinova, Kristiana; Philipov, Stanislav; Fiebig, Torsten; Buchvarov, Ivan; Richter, Claus-Peter

    2014-03-01

    Lasers can significantly advance medical diagnostics and treatment. At high power, they are typically used as cutting tools during surgery. For lasers that are used as knifes, radiation wavelengths in the far ultraviolet and in the near infrared spectral regions are favored because tissue has high contents of collagen and water. Collagen has an absorption peak around 190 nm, while water is in the near infrared around 3,000 nm. Changing the wavelength across the absorption peak will result in significant differences in laser tissue interactions. Tunable lasers in the infrared that could optimize the laser tissue interaction for ablation and/or coagulation are not available until now besides the Free Electron Laser (FEL). Here we demonstrate efficient tissue ablation using a table-top mid-IR laser tunable between 3,000 to 3,500 nm. A detailed study of the ablation has been conducted in different tissues. Little collateral thermal damage has been found at a distance above 10-20 microns from the ablated surface. Furthermore, little mechanical damage could be seen in conventional histology and by examination of birefringent activity of the samples using a pair of cross polarizing filters.

  11. Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption band

    NASA Astrophysics Data System (ADS)

    Godard, M.; Féraud, G.; Chabot, M.; Carpentier, Y.; Pino, T.; Brunetto, R.; Duprat, J.; Engrand, C.; Bréchignac, P.; D'Hendecourt, L.; Dartois, E.

    2011-05-01

    Context. A 3.4 μm absorption band (around 2900 cm-1), assigned to aliphatic C-H stretching modes of hydrogenated amorphous carbons (a-C:H), is widely observed in the diffuse interstellar medium, but disappears or is modified in dense clouds. This spectral difference between different phases of the interstellar medium reflects the processing of dust in different environments. Cosmic ray bombardment is one of the interstellar processes that make carbonaceous dust evolve. Aims: We investigate the effects of cosmic rays on the interstellar 3.4 μm absorption band carriers. Methods: Samples of carbonaceous interstellar analogues (a-C:H and soot) were irradiated at room temperature by swift ions with energy in the MeV range (from 0.2 to 160 MeV). The dehydrogenation and chemical bonding modifications that occurred during irradiation were studied with IR spectroscopy. Results: For all samples and all ions/energies used, we observed a decrease of the aliphatic C-H absorption bands intensity with the ion fluence. This evolution agrees with a model that describes the hydrogen loss as caused by the molecular recombination of two free H atoms created by the breaking of C-H bonds by the impinging ions. The corresponding destruction cross section and asymptotic hydrogen content are obtained for each experiment and their behaviour over a large range of ion stopping powers are inferred. Using elemental abundances and energy distributions of galactic cosmic rays, we investigated the implications of these results in different astrophysical environments. The results are compared to the processing by UV photons and H atoms in different regions of the interstellar medium. Conclusions: The destruction of aliphatic C-H bonds by cosmic rays occurs in characteristic times of a few 108 years, and it appears that even at longer time scales, cosmic rays alone cannot explain the observed disappearance of this spectral signature in dense regions. In diffuse interstellar medium, the formation

  12. Strength and formation of poor metals from insulators: bonds to bands in Al2O3 and H2

    NASA Astrophysics Data System (ADS)

    Nellis, W. J.

    2011-06-01

    HELs of Al2O3 and H2 are ~15 GPa and 0, respectively, while Al-O and H-H bond energies are both 4.5 eV and both are wide gap insulators at ambient. Al2O3 is a likely metallic glass at ~300 GPa; hydrogen is a metallic fluid at 140 GPa. How can such different materials at ambient both be disordered poor metals at 100 GPas? As McQueen pointed out, shock dissipation TS is absorbed in temperature T and entropy S (disorder). Because of strength, the split between T and S differs greatly between these two. H2s interact via weak pair interactions, which means high compressibility, high shock Ts, and dissociation (S) to monatomic metal at high pressures. Al and O atoms interact strongly via directional bonds in large 3D networks. Dissipation is first absorbed breaking bonds (S), which keeps T and thermal pressure low up to 400 GPa. Once most Al-O bonds are broken, Al2O3 is amorphous and atom densities so large that atomic wave functions probably overlap to form a metallic glass. Existing conductivity measurements to 220 GPa need to be extended to ~300 GPa to test this prediction.

  13. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  14. Confinement effect of laser ablation plume in liquids probed by self-absorption of C{sub 2} Swan band emission

    SciTech Connect

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C{sub 2} molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C{sub 2} molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids.

  15. Tentative identification of the 780/cm nu-4 band Q branch of chlorine nitrate in high-resolution solar absorption spectra of the stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.; Malathy Devi, V.

    1985-01-01

    According to models of the photochemistry of the stratosphere, chlorine nitrate (ClONO2) is an important temporary reservoir of stratospheric chlorine. At night, ClO is believed to combine in a three-body reaction with NO2 to form chlorine nitrate. During daylight, chlorine nitrate is destroyed by photolysis to form free chlorine and NO3. Infrared spectroscopy has the potential to provide a technique for conducting important quantitative measurements of stratospheric chlorine nitrate. The present paper reports a detailed study of spectra in the 780/cm region. This study has led to the tentative identification of the nu-4 band Q branch of ClONO2 as a significant contributor to the observed stratospheric absorption near 780.21 per cm.

  16. Coronal Magnetic Field Strength from Decameter Zebra-Pattern Observations: Complementarity with Band-Splitting Measurements of an Associated Type II Burst

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Koval, A. A.; Dorovskyy, V. V.; Zarka, P.; Rucker, H. O.

    2015-01-01

    A zebra pattern and a type II burst with band splitting were analyzed to study the coronal magnetic field in the height range of 1.9 - 2 solar radii. To this aim we used an extremely sensitive telescope (the Ukrainian decameter radio telescope, UTR-2) with a low-noise, high-dynamic-range spectrometer for the observations below 32 MHz. Based on the analysis of the spectral structures, the field strength obtained is 0.43 G. The value was found by fitting two different field indicators together under the assumptions that the shock wave front was perpendicular to the radial direction, and the radio emission of the type II burst was in the fundamental frequency. The result is compared to and agrees with coronal magnetic-field models.

  17. meso-meso linked porphyrin-[26]hexaphyrin-porphyrin hybrid arrays and their triply linked tapes exhibiting strong absorption bands in the NIR region.

    PubMed

    Mori, Hirotaka; Tanaka, Takayuki; Lee, Sangsu; Lim, Jong Min; Kim, Dongho; Osuka, Atsuhiro

    2015-02-11

    We describe the synthesis and characterization of directly meso-meso linked porphyrin-[26]hexaphyrin-porphyrin hybrid oligomers and their triply linked (completely fused) hybrid tapes. meso-meso Linked Ni(II) porphyrin-[26]hexaphyrin-Ni(II) porphyrin trimers were prepared by methanesulfonic acid-catalyzed cross-condensation of meso-formyl Ni(II) porphyrins with a 5,10-diaryltripyrrane followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The Ni(II) porphyrin moieties were converted to Zn(II) porphyrins via an indirect route involving reduction of the [26]hexaphyrin to its 28π congener, acid-induced denickelation, oxidation of the [28]hexaphyrin, and finally Zn(II) ion insertion. Over the course of these transformations, porphyrin-[28]hexaphyrin-porphyrin trimers have been revealed to take on a Möbius aromatic twisted structure for the [28]hexaphyrin segment. Oxidation of meso-meso linked hybrid trimer bearing 5,15-diaryl Zn(II) porphyrins with DDQ/Sc(OTf)3 under mild conditions resulted in meso-meso coupling oligomerization, affording the corresponding dimeric (hexamer), trimeric (nonamer), and tetrameric (dodecamer) oligomers. On the other hand, oxidation of a meso-meso linked hybrid trimer bearing 5,10,15-triaryl Zn(II) porphyrin terminals with DDQ/Sc(OTf)3 under harsher conditions afforded a meso-meso, β-β, β-β triply linked hybrid porphyrin tape, which displays a sharp and intense absorption band at 1912 nm. Comparison of this extremely red-shifted absorption band with those of Zn(II) porphyrin tapes suggests that the bathochromic-shifting capability of a [26]hexaphyrin unit is large, almost equivalent to that of four individual Zn(II) porphyrin units. As demonstrated, the fusion of porphyrins to [26]hexaphyrin offers an efficient means to expand their conjugation networks, significantly expanding the capabilities attainable for these chromophores.

  18. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni-Zn ferrite and carbon formulation in polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Gupta, K. K.; Abbas, S. M.; Goswami, T. H.; Abhyankar, A. C.

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni-Zn ferrite (Ni 0.5Zn0.5Fe2O4) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8-18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6-1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2-12.4 GHz) and Ku (12-18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense.

  19. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.

    PubMed

    Sobuś, Jan; Ziółek, Marcin

    2014-07-21

    A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.

  20. Classical to quantum crossover of the cyclotron resonance in graphene: a study of the strength of intraband absorption

    NASA Astrophysics Data System (ADS)

    Orlita, M.; Crassee, I.; Faugeras, C.; Kuzmenko, A. B.; Fromm, F.; Ostler, M.; Seyller, Th; Martinez, G.; Polini, M.; Potemski, M.

    2012-09-01

    We report on absolute magneto-transmission experiments on highly doped quasi-free-standing epitaxial graphene targeting the classical-to-quantum crossover of the cyclotron resonance. This study allows us to directly extract the carrier density and also other relevant quantities such as the quasiparticle velocity and the Drude weight, which is precisely measured from the strength of the cyclotron resonance. We find that the Drude weight is renormalized with respect to its non-interacting (or random phase approximation) value and that the renormalization is tied to the quasiparticle velocity enhancement. This finding is in agreement with recent theoretical predictions, which attribute the renormalization of the Drude weight in graphene to the interplay between broken Galilean invariance and electron-electron interactions.

  1. Optimal design and loss mechanism analysis of microwave absorbing unidirectional SiC fiber composites with broad absorption band and good polarization stability

    NASA Astrophysics Data System (ADS)

    Wan, Guangchao; Jiang, Jianjun; He, Yun; Bie, Shaowei

    2016-04-01

    A microwave-absorbing unidirectional SiC fiber composite with wide absorption and good polarization stability was designed by genetic algorithm. The anisotropic nature of unidirectional fiber composites was considered in the design by characterizing tensor permittivity. This special composite is composed of two kinds of SiC fibers that separately exhibit relatively high conductivity and low conductivity. The electromagnetic loss mechanism of this composite was examined for polarizations that differ in the electric field of the incident wave, applied either in the direction of the fiber or in the transverse direction, perpendicular to the fibers. For both polarizations, the absorption band of our composite can reach 6 GHz and the lowest microwave reflectivity was about -20 dB over a range of 8-18 GHz. When the electric field is polarized parallel to fibers, strong coupling among the high-conductivity fibers can induce a strong current and thus efficiently dissipate the electromagnetic energy. When the electric field is polarized perpendicular to fibers, the electromagnetic loss mechanism in the composite resembles the electric energy loss in capacitors and currents in the transverse direction are obstructed by the fibers resulting in attenuation of the electromagnetic energy in the matrix.

  2. Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands.

    PubMed

    Li, Jie; Qin, Yao; Jin, Chao; Li, Ying; Shi, Donglu; Schmidt-Mende, Lukas; Gan, Lihua; Yang, Jinhu

    2013-06-07

    Monolayer and bilayer TiO2 hollow hemisphere/sphere (THH/THS) films consisting of highly ordered hexagonal-patterned THHs/THSs with thin shells of ~10 nm and different diameters of ~170 and ~470 nm have been prepared by templating of two-dimensional polystyrene sphere (PS) assembly films coupled with TiO2 sputtering/wet coating approaches. Owing to their precisely adjustable structural parameters, such as THH/THS shape and diameter as well as film layer thickness, the prepared THH/THS films exhibit widely tunable visible-light reflection and absorption bands, i.e. from 380 to 850 nm for reflection and 390 to 520 nm for absorption, respectively. The mechanism of the novel optical behaviors of the THH/THS films has been discussed in depth, combined with some calculations according to Bragg's law. In addition, photocatalytic experiments of RhB degradation employing the THH/THS films as recyclable catalysts have been conducted. The THH/THS films with controlled structures and precisely tunable optical properties are attractive for a wide range of applications, such as recyclable catalysts for photocatalysis, efficient oxide electrodes or scattering layers for solar cells, gas-permeable electrode materials for high-performance sensors and so on.

  3. Iron-absorption band analysis for the discrimination of iron-rich zones. [infrared spectral reflectance of Nevada iron deposits

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most major rock units and unaltered and altered areas in the study area can be discriminated on the basis of visible and near-infrared spectral reflectivity differences recorded from satellite altitude. These subtle spectral differences are detectable by digital ratioing of the MSS bands and subsequent stretching to increase the contrast to enhance spectral differences. Hydrothermally altered areas appear as anomalous color patches within the volcanic-rock areas. A map has been prepared which can be regarded as an excellent reconnaissance exploration map, for use in targeting areas for more detailed geological, geochemical, and geophysical studies. Mafic and felsic rock types are easily discriminated on the color stretched-ratio composite. The ratioing process minimizes albedo effects, leaving only the recorded characteristic spectral response. The spectra of unaltered rocks appear different from those of altered rocks, which are typically dominated by limonite and clay minerals. It seems clear that differences in spectral shape can provide a basis for discrimination of geologic material, although the relations between visible and near-infrared spectral reflectivity and mineralogical composition are not yet entirely understood.

  4. Electromagnetic properties and microwave absorption properties of BaTiO 3-carbonyl iron composite in S and C bands

    NASA Astrophysics Data System (ADS)

    Rui-gang, Yang

    2011-07-01

    BaTiO3 powders are prepared by sol-gel method. The carbonyl iron powder is prepared via thermal decomposition of iron pentacarbonyl. Then BaTiO3-carbonyl iron composite with different mixture ratios was prepared using the as-prepared material. The structure, morphology, and properties of the composites are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), and a network analyzer. The complex permittivity and reflection loss of the composites have been measured at different microwave frequencies in S- and C-bands employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3/carbonyl iron on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiO3-carbonyl iron composite has been proposed. The BaTiO3-carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  5. Effects of an elastic band resistance exercise program on lower extremity muscle strength and gait ability in patients with Alzheimer’s disease

    PubMed Central

    Ahn, Nayoung; Kim, Kijin

    2015-01-01

    [Purpose] This study examined the effects of a resistance exercise programs aiming to improve muscular function in order to prevent and treat Alzheimer’s disease in elderly people. [Subjects and Methods] Elderly patients with mild dementia were randomly assigned to an elastic band resistance exercise group (74.21±6.09 years). The experimental group (n=23) performed upper and lower extremity exercises three times per week for five months. Physical fitness was measured according to chair leg squat, one-leg stance, timed up-and-go test, 2-minute walking test, and gait ability before and after exercise. [Results] Static balance ability in which the participant stood on one foot with eyes open (left and right) increased significantly, but the dynamic balancing ability in the timed up-and-go test did not improve significantly. Cardiorespiratory function and gait speed improved significantly. [Conclusion] The five-month elastic band resistance exercise program improved muscle strength and endurance, cardiovascular function, and gait speed. Therefore, it may be an effective rehabilitation program for elderly patients with Alzheimer’s disease. PMID:26180356

  6. Cavity Ringdown Absorption Spectrum of the T_1(n,π*) ← S_0 Transition of Acrolein: Analysis of the 0^0_0 Band Rotational Contour

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2012-06-01

    Acrolein (propenal, CH_2=CH---CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the T_1(π,π*) state, which has a CH_2--twisted equilibrium structure. In solution, the T_1(π,π*) state is typically accessed via intersystem crossing from an intially prepared planar S_1(n,π*) state. An intermediate in this photophysical transformation is the lowest ^3 (n,π*) state, a planar species with adiabatic excitation energy below S_1 and above T_1(π,π*). The present work focuses on this ^3 (n,π*) intermediate state; it is designated T_1(n,π*) as the lowest-energy triplet state of acrolein having a planar equilibrium structure. The T_1(n,π*) ← S_0 band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm-1) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0^0_0 band, recorded using a pulsed dye laser with 0.1 cm-1 spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the T_1(n,π*) state. The determined values (cm-1) are A=1.662, B=0.1485, C=0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm-1 and ± 0.0004 cm-1, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0^0_0 band under jet-cooled conditions

  7. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    PubMed

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  8. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe

    SciTech Connect

    Tschopp, Mark A.; Solanki, K. N.; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.; Horstemeyer, Mark

    2012-02-10

    The energetics and length scales associated with the interaction between point defects (vacancies and self-interstitial atoms) and grain boundaries in bcc Fe was explored. Molecular statics simulations were used to generate a grain boundary structure database that contained {approx}170 grain boundaries with varying tilt and twist character. Then, vacancy and self-interstitial atom formation energies were calculated at all potential grain boundary sites within 15 {angstrom} of the boundary. The present results provide detailed information about the interaction energies of vacancies and self-interstitial atoms with symmetric tilt grain boundaries in iron and the length scales involved with absorption of these point defects by grain boundaries. Both low- and high-angle grain boundaries were effective sinks for point defects, with a few low-{Sigma} grain boundaries (e.g., the {Sigma}3{l_brace}112{r_brace} twin boundary) that have properties different from the rest. The formation energies depend on both the local atomic structure and the distance from the boundary center. Additionally, the effect of grain boundary energy, disorientation angle, and {Sigma} designation on the boundary sink strength was explored; the strongest correlation occurred between the grain boundary energy and the mean point defect formation energies. Based on point defect binding energies, interstitials have {approx}80% more grain boundary sites per area and {approx}300% greater site strength than vacancies. Last, the absorption length scale of point defects by grain boundaries is over a full lattice unit larger for interstitials than for vacancies (mean of 6-7 {angstrom} versus 10-11 {angstrom} for vacancies and interstitials, respectively).

  9. Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra; Borysow, Jacek I.

    1998-01-01

    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature

  10. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  11. Cloud top height retrieval using the imaging polarimeter (3MI) top-of-atmosphere reflectance measurements in the oxygen absorption band

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Munro, Rose

    2016-04-01

    The determination of cloud top height from a satellite has a number of applications both for climate studies and aviation safety. A great variety of methods are applied using both active and passive observation systems in the optical and microwave spectral regions. One of the most popular methods with good spatial coverage is based on the measurement of outgoing radiation in the spectral range where oxygen strongly absorbs incoming solar light. Clouds shield tropospheric oxygen reducing the depth of the corresponding absorption line as detected by a satellite instrument. Radiative transfer models are used to connect the solar light reflectance, e.g., in the oxygen A-band located around 761nm, and the cloud top height. The inverse problem is then solved e.g. using look-up tables, to determine the cloud top height. In this paper we propose a new fast and robust oxygen A-band method for the retrieval of cloud altitude using the Multi-viewing Multi-channel Multi-polarization Imaging instrument (3MI) on board the EUMETSAT Polar System Second Generation (EPS-SG). The 3MI measures the intensity at the wavelengths of 410, 443, 490, 555, 670, 763, 765, 865, 910, 1370, 1650, and 2130nm, and (for selected channels) the second and third Stokes vector components which allows the degree of linear polarization and the polarization orientation angle of reflected solar light to be derived at up to 14 observation angles. The instrument response function (to a first approximation) can be modelled by a Gaussian distribution with the full width at half maximum (FWHM) equal to 20nm for all channels except 765nm, 865nm, 1370nm, 1650nm, and 2130nm, where it is equal to 40nm. The FWHM at 763nm (the oxygen A-band location) is equal to 10nm. The following 3MI channels are used in the retrieval procedure: 670, 763, and 865nm. The channels at 670 and 865 nm are not affected by the oxygen absorption. The channel at 763nm is affected by the oxygen concentration vertical profile. The higher

  12. Resonance Raman intensity analysis of the excited state proton transfer dynamics of 2-nitrophenol in the charge-transfer band absorption

    SciTech Connect

    Wang Yaqiong; Wang Huigang; Zhang Shuqiang; Pei Kemei; Zheng Xuming; Lee Phillips, David

    2006-12-07

    Resonance Raman spectra were obtained for 2-nitrophenol in cyclohexane solution with excitation wavelengths in resonance with the charge-transfer (CT) proton transfer band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion along more than 15 normal modes: the nominal CCH bend+CC stretch {nu}{sub 12} (1326 cm{sup -1}), the nominal CCC bend {nu}{sub 23} (564 cm{sup -1}), the nominal CO stretch+NO stretch+CC stretch {nu}{sub 14} (1250 cm{sup -1}), the nominal CCH bend+CC stretch+COH bend {nu}{sub 15} (1190 cm{sup -1}); the nominal CCH bend+CC stretch {nu}{sub 17} (1134 cm{sup -1}), the nominal CCC bend+CC stretch {nu}{sub 22} (669 cm{sup -1}), the nominal CCN bend {nu}{sub 27} (290 cm{sup -1}), the nominal NO{sub 2} bend+CC stretch {nu}{sub 21} (820 cm{sup -1}), the nominal CCO bend+CNO bend {nu}{sub 25} (428 cm{sup -1}), the nominal CC stretch {nu}{sub 7} (1590 cm{sup -1}), the nominal NO stretch {nu}{sub 8} (1538 cm{sup -1}), the nominal CCC bend+NO{sub 2} bend {nu}{sub 20} (870 cm{sup -1}), the nominal CC stretch {nu}{sub 6} (1617 cm{sup -1}), the nominal COH bend+CC stretch {nu}{sub 11} (1382 cm{sup -1}), nominal CCH bend+CC stretch {nu}{sub 9} (1472 cm{sup -1}). A preliminary resonance Raman intensity analysis was done and the results for 2-nitrophenol were compared to previously reported results for nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone. The authors briefly discuss the differences and similarities in the CT-band absorption excitation of 2-nitrophenol relative to those of nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone.

  13. Application of surface pressure measurements of O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II - A quasi-observational study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.

  14. Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: a route to triphenylamine-based chromophores with enhanced two-photon absorption.

    PubMed

    Hrobárik, Peter; Hrobáriková, Veronika; Sigmundová, Ivica; Zahradník, Pavol; Fakis, Mihalis; Polyzos, Ioannis; Persephonis, Peter

    2011-11-04

    A series of dipolar and octupolar triphenylamine-derived dyes containing a benzothiazole positioned in the matched or mismatched fashion have been designed and synthesized via palladium-catalyzed Sonogashira cross-coupling reactions. Linear and nonlinear optical properties of the designed molecules were tuned by an additional electron-withdrawing group (EWG) and by changing the relative positions of the donor and acceptor substituents on the heterocyclic ring. This allowed us to examine the effect of positional isomerism and extend the structure-property relationships useful in the engineering of novel heteroaromatic-based systems with enhanced two-photon absorption (TPA). The TPA cross-sections (δ(TPA)) in the target compounds dramatically increased with the branching of the triphenylamine core and with the strength of the auxiliary acceptor. In addition, a change from the commonly used polarity in push-pull benzothiazoles to a reverse one has been revealed as a particularly useful strategy (regioisomeric control) for enhancing TPA cross-sections and shifting the absorption and emission maxima to longer wavelengths. The maximum TPA cross-sections of the star-shaped three-branched triphenylamines are ∼500-2300 GM in the near-infrared region (740-810 nm); thereby the molecular weight normalized δ(TPA)/MW values of the best performing dyes within the series (2.0-2.4 GM·g(-1)·mol) are comparable to those of the most efficient TPA chromophores reported to date. The large TPA cross-sections combined with high emission quantum yields and large Stokes shifts make these compounds excellent candidates for various TPA applications, including two-photon fluorescence microscopy.

  15. Modeling of collision-induced infrared absorption spectra of H2 pairs in the first overtone band at temperatures from 20 to 500 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    A simple formalism is presented that permits quick computations of the low-resolution, rotovibrational collision-induced absorption (RV CIA) spectra of H2 pairs in the first overtone band of hydrogen, at temperatures from 20 to 500 K. These spectra account for the free-free transitions. The sharp dimer features, originating from the bound-free, free-bound, and bound-bound transitions are ignored, though their integrated intensities are properly accounted for. The method employs spectral model line- shapes with parameters computed from the three lowest spectral moments. The moments are obtained from first principles expressed as analytical functions of temperature. Except for the sharp dimer features, which are absent in this model, the computed spectra reproduce closely the results of exact quantum mechanical lineshape computations. Comparisons of the computed spectra with existing experimental data also show good agreement. The work interest for the modeling of the atmospheres of the outer planets in the near-infrared region of the spectrum. The user-friendly Fortran program developed here is available on request from the authors.

  16. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO2

    NASA Astrophysics Data System (ADS)

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-01

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO2 (a-SiO2) exposed to 60Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a-SiO2, and the peak energy is larger for α-quartz than that for a-SiO2. The full width at half maximum for a-SiO2 is larger by ˜40-60% than that for α-quartz, and it increases with an increase in the disorder of the a-SiO2 network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a-SiO2.

  17. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band.

    PubMed

    Han, Meikang; Yin, Xiaowei; Wu, Heng; Hou, Zexin; Song, Changqing; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2016-08-17

    Electromagnetic (EM) absorbing and shielding composites with tunable absorbing behaviors based on Ti3C2 MXenes are fabricated via HF etching and annealing treatment. Localized sandwich structure without sacrificing the original layered morphology is realized, which is responsible for the enhancement of EM absorbing capability in the X-band. The composite with 50 wt % annealed MXenes exhibits a minimum reflection loss of -48.4 dB at 11.6 GHz, because of the formation of TiO2 nanocrystals and amorphous carbon. Moreover, superior shielding effectiveness with high absorption effectiveness is achieved. The total and absorbing shielding effectiveness of Ti3C2 MXenes in a wax matrix with a thickness of only 1 mm reach values of 76.1 and 67.3 dB, while those of annealed Ti3C2 MXenes/wax composites are 32 and 24.2 dB, respectively. Considering the promising performance of Ti3C2 MXenes with the modified surface, this work is expected to open the door for the expanded applications of MXenes family in EM absorbing and shielding fields.

  18. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO{sub 2} (a‐SiO{sub 2}) exposed to {sup 60}Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a‐SiO{sub 2}, and the peak energy is larger for α-quartz than that for a‐SiO{sub 2}. The full width at half maximum for a‐SiO{sub 2} is larger by ∼40-60% than that for α-quartz, and it increases with an increase in the disorder of the a‐SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a‐SiO{sub 2}.

  19. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    NASA Astrophysics Data System (ADS)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  20. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  1. Proposal of high efficiency solar cells with closely stacked InAs/In0.48Ga0.52P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate-band

    NASA Astrophysics Data System (ADS)

    Yoshikawa, H.; Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-01

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide-gap matrix material, InAs/In0.48Ga0.52P QDSLs, for realizing intermediate-band solar cells (IBSCs) with two-step photon-absorption. The plane-wave expanded Burt-Foreman operator ordered 8-band k . p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two-step photon-absorption can be shifted to higher energy region by using In0.48Ga0.52P, which is lattice-matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In0.48Ga0.52P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two-step photon-absorption by the sunlight occur efficiently. These results indicate that InAs/In0.48Ga0.52P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  2. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection.

    PubMed

    Leidel, Nils; Chernev, Petko; Havelius, Kajsa G V; Schwartz, Lennart; Ott, Sascha; Haumann, Michael

    2012-08-29

    High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe(2)(μ-adt)(CO)(4)(PMe(3))(2)] (1, adt = S-CH(2)-(NCH(2)Ph)-CH(2)-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,Ph), 1HHy(CO,Ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (Kß(2,5) emission) electronic transitions, and of Kα RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by ~1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of ~2.3 eV for 1(powder) and ~2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2)-y(2)) levels of ~0.5 eV for the nonhydride and ~0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,Ph). XAES-DFT thus enables verification of the effects of ligand

  3. Absorption intensity changes and frequency shifts of fundamental and first overtone bands for OH stretching vibration of methanol upon methanol-pyridine complex formation in CCl4: analysis by NIR/IR spectroscopy and DFT calculations.

    PubMed

    Futami, Yoshisuke; Ozaki, Yasushi; Ozaki, Yukihiro

    2016-02-21

    Infrared (IR) and near infrared (NIR) spectra were measured for methanol and the methanol-pyridine complex in carbon tetrachloride. Upon the formation of the methanol-pyridine complex, the frequencies of both the fundamental and first overtone bands of the OH stretching vibration shifted to lower frequencies, and the absorption intensity of the fundamental increased significantly, while that of the first overtone decreased markedly. By using quantum chemical calculations, we estimated the absorption intensities and frequencies of the fundamental and first overtone bands for the OH stretching vibration based on the one-dimensional Schrödinger equation. The calculated results well reproduced the experimental results. The molecular vibration potentials and dipole moment functions of the OH stretching vibration modes were compared between methanol and the methanol-pyridine complex in terms of absorption intensity changes and frequency shifts. The large change in the dipole moment function was found to be the main cause for the variations in absorption intensity for the fundamental and first overtone bands.

  4. Absorption Bands at 4300 and 6000-8000Å as Signs of Silicate and Organic Matter Separation and Formation of Hydrated Silicates in KBOs and Similar Bodies

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Dorofeeva, V. A.; Makalkin, A. B.

    2004-12-01

    Recent spectral observations of some Kuiper Belt Objects (KBOs) (Boehnhardt et al.: 2002, Proc. of ACM 2002, 47-50; Fornasier S. et al., 2004, Astron. Astrophys. 421, 353-363) discovered characteristic absorption bands at 4300 and 6000-8000Å in reflectance spectra of the bodies. Spectral positions and other parameters of the features are similar to those found in reflectance spectra of terrestrial phyllosilicates (e. g., Clark et al., 1990, J. Geophys. Res. 95, 12653-12680; Busarev et al., 2004, The new ROSETTA targets (L. Colangeli et al., eds.), 79-83), CI- and CM-carbonaceous chondrites (e. g., Busarev and Taran, 2002, Proc. of ACM 2002, 933-936), primitive C-, P-, D-, F- and G-class asteroids (Vilas and Gaffey, 1989, Science 246, 790-792) and hydrated M-, S- and E-class asteroids (Busarev and Taran, 2002, Proc. of ACM 2002, 933-936). Hence, these absorption bands may be considered as universal indicators of hydrated silicates on celestial solid bodies including KBOs. However, before phyllosilicates were formed, an aqueous media should spring up and exist a considerable time in the bodies. One more important factor for the spectral features of hydrated silicates to be observed, it is probably an aqueous separation of silicate and darkening CHON (PAH plus more light organic compounds) components in the bodies. To check the assumptions we have performed some calculations (Busarev et al., 2003, Earth, Moon, and Planets 92, 345-357) applicable to KBOs and analogous silicate-icy bodies existed for the first time in the formation zones of neighbouring giant planets. According to the calculations, the decay of the short-lived 26Al at the early stage of the bodies' evolution and their mutual collisions (at velocities >1.5 km s-1) at the subsequent stage were probably the main sources of heating sufficient for melting water ice in their interiors. Because of these processes, an internal ocean of liquid water covered with ˜10-km crust of dirty ice could originate in

  5. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.

    PubMed

    Harb, Moussab; Masih, Dilshad; Takanabe, Kazuhiro

    2014-09-14

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta11O30. It is confirmed that the Cu(I)-based multi-metal oxides possess a strong contribution of filled Cu(I) states in the valence band and of empty d(0) metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications.

  6. EL2 deep level defects and above-band gap two-photon absorption in high gain lateral semi-insulating GaAs photoconductive switch

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Wei; Niu, Hongjian; Zhang, Xianbin; Ji, Weili

    2005-01-01

    Experiments of a lateral semi-insulating GaAs photoconductive switch, both linear and nonlinear mode of the switch were observed when the switch was triggered by 1064 nm laser pulses, with energy of 1.9 mJ and the pulse width of 60 ns, and operated at biased electric field of 4.37 kV/cm. It"s wavelength is longer than 876nm, but the experiments indicate that the semi-insulating GaAs photoconductive switches can absorb 1064 nm laser obviously, which is out of the absorption range of the GaAs material. It is not possible to explain this behavior by using intrinsic absorption mechanism. We think that there are two mostly kinds of absorption mechanisms play a key part in absorption process, they are the two-steps-single-photon absorption that based on the EL2 energy level and two-photon absorption.

  7. High-resolution oscillator strength measurements of the v' = 0,1 bands of the B-X, C-X, and E-X systems in five isotopologues of carbon monoxide

    SciTech Connect

    Stark, G.; Heays, A. N.; Lyons, J. R.; Smith, P. L.; Eidelsberg, M.; Lemaire, J. L.; Gavilan, L.; Federman, S. R.; De Oliveira, N.; Joyeux, D.; Nahon, L.

    2014-06-10

    We report oscillator strengths for six strong vibrational bands between 105.0 and 115.2 nm, associated with transitions from the v = 0 level of the X {sup 1}Σ{sup +} ground state to the v = 0 and 1 levels of the B {sup 1}Σ{sup +}, C {sup 1}Σ{sup +}, and E {sup 1}Π states, in {sup 12}C{sup 16}O, {sup 12}C{sup 17}O, {sup 12}C{sup 18}O, {sup 13}C{sup 16}O, and {sup 13}C{sup 18}O. These measurements extend the development of a comprehensive database of line positions, oscillator strengths, and linewidths of photodissociating transitions for all astrophysically relevant CO isotopologues. The E-X bands, in particular, play central roles in CO photodissociation and fractionation models of interstellar clouds and circumstellar disks including the early solar nebula. The resolving powers of the room-temperature measurements, R = 300,000-400,000, allow for the analysis of individual line strengths within bands; the measurements reveal J-dependences in the branch intensities of the C(v = 0,1)-X(0) and E(v = 0,1)-X(0) bands in all isotopologues. Minimal or no isotopologue dependence was found in the f-values of the C(v = 0,1)-X(0) and E(v = 0,1)-X(0) bands at a ∼5% uncertainty level. Revised dissociation branching ratios for the C(v = 0,1) and E(v = 0,1) levels are computed based on these f-values. The weak isotopologue dependence of the f-values presented here eliminates this mechanism as an explanation for the large {sup 17}O enrichments seen in recent laboratory photolysis experiments on CO at wavelengths from 105 to 108 nm.

  8. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  9. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  10. The Oxygen a Band

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Hodges, Joseph; Long, David A.; Sung, Keeyoon; Drouin, Brian; Okumura, Mitchio; Bui, Thinh Quoc; Rupasinghe, Priyanka

    2014-06-01

    The oxygen A band is used for numerous atmospheric experiments, but spectral line parameters that sufficiently describe the spectrum to the level required by OCO2 and other high precision/accuracy experiments are lacking. Fourier transform spectra from the Jet Propulsion Laboratory and cavity ring down spectra from the National Institute of Standards and Technology were fitted simultaneously using the William and Mary multispectrum nonlinear least squares fitting technique into a single solution including the entire band. In addition, photoacoustic spectra already available from the California Institute of Technology will be added to the solution. The three types of spectrometers are complementary allowing the strengths of each to fill in the weaknesses of the others. With this technique line positions, intensities, widths, shifts, line mixing, Dicke narrowing, temperature dependences and collision induced absorption have been obtained in a single physically consistent fit. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at The College of William and Mary, the, Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration and the Jet Propulsion Laboratory. Support for the National Institute of Standards and Technology was provided by the NIST Greenhouse Gas Measurements and Climate Research Program and a NIST Innovations in Measurement Science (IMS) award.

  11. Absorption Oscillator Strengths for the c4‧1Σu+(3, 4, 6)-X1Σg+(v‧‧), b‧1Σu+(10, 13, 20)-X1Σg+(v‧‧), and c5‧1Σu+(1)-X1Σg+(v‧‧) Progressions in N2

    NASA Astrophysics Data System (ADS)

    Lavín, C.; Velasco, A. M.

    2016-01-01

    Absorption oscillator strengths, calculated with the molecular quantum defect orbital method, for the c4'1 Σu+(3)-X1Σg+ (v'' = 0-12), c4'1Σu+(4) -X1Σg+(v'' = 0-12), c4'1Σu+(6) -X1Σg+(v'' = 0-12), b'1Σu+(10) -X1Σg+(v'' = 0-12), b'1Σu+(13) -X1Σg+(v'' = 0-12), b'1Σu+(20) -X1Σg+(v'' = 0-12), and c5'1Σu+(1) -X1Σg+(v'' = 0-12) bands of molecular nitrogen are reported. The Rydberg-valence interaction between states of 1Σu+ symmetry has been treated through an interaction matrix that includes vibrational coupling. Due to the homogeneous interaction, the intensity distribution of the bands within each progression deviates from the Franck-Condon predictions. The present results for vibronic transitions from the X1Σg+(0) ground state agree rather well with reported high-resolution measurements. As far as we know, f-values for bands originating from v″ > 0 vibrational levels of the electronic ground state are reported here for the first time. These data may be useful in the interpretation of the extreme ultraviolet spectra from Earth’s and Titan's atmospheres, in which several bands of the c4'(3), c4', and c4'(6) progressions have been identified.

  12. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    PubMed

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  13. Indirect optical absorption and origin of the emission from β-FeSi2 nanoparticles: Bound exciton (0.809 eV) and band to acceptor impurity (0.795 eV) transitions

    NASA Astrophysics Data System (ADS)

    Lang, R.; Amaral, L.; Meneses, E. A.

    2010-05-01

    We investigated the optical absorption of the fundamental band edge and the origin of the emission from β-FeSi2 nanoparticles synthesized by ion-beam-induced epitaxial crystallization of Fe+ implanted SiO2/Si(100) followed by thermal annealing. From micro-Raman scattering and transmission electron microscopy measurements it was possible to attest the formation of strained β-FeSi2 nanoparticles and its structural quality. The optical absorption near the fundamental gap edge of β-FeSi2 nanoparticles evaluated by spectroscopic ellipsometry showed a step structure characteristic of an indirect fundamental gap material. Photoluminescence spectroscopy measurements at each synthesis stage revealed complex emissions in the 0.7-0.9 eV spectral region, with different intensities and morphologies strongly dependent on thermal treatment temperature. Spectral deconvolution into four transition lines at 0.795, 0.809, 0.851, and 0.873 eV was performed. We concluded that the emission at 0.795 eV may be related to a radiative direct transition from the direct conduction band to an acceptor level and that the emission at 0.809 eV derives from a recombination of an indirect bound exciton to this acceptor level of β-FeSi2. Emissions 0.851 and 0.873 eV were confirmed to be typical dislocation-related photoluminescence centers in Si. From the energy balance we determined the fundamental indirect and direct band gap energies to be 0.856 and 0.867 eV, respectively. An illustrative energy band diagram derived from a proposed model to explain the possible transition processes involved is presented.

  14. Mechanochemical Tuning of Pyrene Absorption Spectrum Using Force Probes.

    PubMed

    Fernández-González, Miguel Ángel; Rivero, Daniel; García-Iriepa, Cristina; Sampedro, Diego; Frutos, Luis Manuel

    2017-02-14

    Control of absorption spectra in chromophores is a fundamental aspect of many photochemical and photophysical processes as it constitutes the first step of the global photoinduced process. Here we explore the use of mechanical forces to modulate the light absorption process. Specifically, we develop a computational formalism for determining the type of mechanical forces permitting a global tuning of the absorption spectrum. This control extends to the excitation wavelength, absorption bands overlap, and oscillator strength. The determination of these optimal forces permits us to rationally guide the design of new mechano-responsive chromophores. Pyrene has been chosen as the case study for applying these computational tools because significant absorption spectra information is available for the chromophore as well as for different strained derivatives. Additionally, pyrene presents a large flexibility, which makes it a good system to test the inclusion of force probes as the strategy to exert forces on the system.

  15. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump-IR probe study.

    PubMed

    Linke, Martin; Yang, Yang; Zienicke, Benjamin; Hammam, Mostafa A S; von Haimberger, Theodore; Zacarias, Angelica; Inomata, Katsuhiko; Lamparter, Tilman; Heyne, Karsten

    2013-10-15

    Photoisomerization of biliverdin (BV) chromophore triggers the photoresponse in native Agp1 bacteriophytochrome. We discuss heterogeneity in phytochrome Pr form to account for the shape of the absorption profile. We investigated different regions of the absorption profile by angle balanced polarization resolved femtosecond VIS pump-IR probe spectroscopy. We studied the Pr form of Agp1 with its natural chromophore and with a sterically locked 18Et-BV (locked Agp1). We followed the dynamics and orientations of the carbonyl stretching vibrations of ring D and ring A in their ground and electronically excited states. Photoisomerization of ring D is reflected by strong signals of the ring D carbonyl vibration. In contrast, orientational data on ring A show no rotation of ring A upon photoexcitation. Orientational data allow excluding a ZZZasa geometry and corroborates a nontwisted ZZZssa geometry of the chromophore. We found no proof for heterogeneity but identified a new, to our knowledge, electronic transition in the absorption profile at 644 nm (S0→S2). Excitation of the S0→S2 transition will introduce a more complex photodynamics compared with S0→S1 transition. Our approach provides fundamental information on disentanglement of absorption profiles, identification of chromophore structures, and determination of molecular groups involved in the photoisomerization process of photoreceptors.

  16. Optical absorption in semiconductor quantum dots coupling to dispersive phonons of infinite modes

    NASA Astrophysics Data System (ADS)

    Ding, Zhiwen; Wang, Qin; Zheng, Hang

    2012-10-01

    Optical absorption spectrum of semiconductor quantum dot is investigated by means of an analytical approach based on the Green's function for different forms of coupling strength in an unified method by using the standard model with valence and conduction band levels coupled to dispersive quantum phonons of infinite modes. The analytical expression of the optical absorption coefficient in semiconductor quantum dots is obtained and by this expression the line shape and the peak position of the absorption spectrum are procured. The relation between the properties of absorption spectrum and the forms of coupling strength is clarified, which can be referenced for choosing the proper form of the coupling strength or spectral density to control the features of absorption spectrum of quantum dot. The coupling and confinement induced energy shift and intensity decrease in the absorption spectrum are determined precisely for a wide range of parameters. The results show that the activation energy of the optical absorption is reduced by the effect of exciton-phonon coupling and photons with lower frequencies could also be absorbed in absorption process. With increase of the coupling constant, the line shape of optical absorption spectrum broadens and the peak position moves to lower photon energy with a rapid decrease in intensity at the same time. Both the coupling induced red shift and the confinement induced blue shift conduce to decrease in the intensity of absorption spectrum. Furthermore, this method may have application potential to other confined quantum systems.

  17. Atmospheric absorption cell characterization

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The measurement capability of the Avionics Laboratory IR Facility was used to evaluate an absorption cell that will be used to simulate atmospheric absorption over horizontal paths of 1 - 10 km in length. Band models were used to characterize the transmittance of carbon dioxide (CO2), nitrogen (N2), and nitrous oxide (N2O) in the cell. The measured transmittance was compared to the calculated values. Nitrous oxide is important in the 4 - 4.5 micron range in shaping the weak line absorption of carbon dioxide. The absorption cell is adequate for simulating atmospheric absorption over these paths.

  18. On the state of the emitter of the 3.3 micron unidentified infrared band - Absorption spectroscopy of polycyclic aromatic hydrocarbon species

    NASA Technical Reports Server (NTRS)

    Flickinger, Gregory C.; Wdowiak, Thomas J.; Gomez, Percy L.

    1991-01-01

    Results of absorption measurements indicate that the PAH species responsible for the UIR (unidentified infrared) emission probably exist in a condensed form rather than as isolated molecules. It is shown that the peak absorption of the C-H stretch feature of vapor-phase PAHs occurs at a higher frequency than that of the condensed-phase PAHs and does not match the 3.289-micron interstellar feature. The vapor-phase experiments duplicate the phenomenon of the 3.3-micron profile simplification of PAH in KBr at elevated temperature. This confirms that the change of the profile with temperature is an intrinsic molecular effect, and is not a consequence of matrix (KBr) or condensed state interactions.

  19. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  20. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    NASA Astrophysics Data System (ADS)

    Guo, Anran; Zhong, Hao; Li, Wei; Gu, Deen; Jiang, Xiangdong; Jiang, Yadong

    2016-10-01

    Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si1-xRux) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si1-xRux thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si1-xRux thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  1. Application of surface pressure measurements from O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part I - An observing system simulation experiments study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    Sea level pressure (SLP) is an important variable in regulating hurricane motion. However, SLP generally cannot be measured in open oceans due to limited buoys. Because of the potential availability of an O2-band differential absorption radar for sea surface barometry, we investigate the value of assimilating various patterns of SLP from such a system on hurricane prediction using the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system (3DVAR) based on Observing System Simulation Experiments (OSSEs). An important objective of this series of study is to explore the potential to use space and airborne sea surface air pressure measurements from an O2-band differential absorption radar currently under development for server weather including hurricane forecasts. The surface pressure patterns include an area of SLP, and a band of SLP either through the center or tangent to the hurricane position; the latter two distributions are similar to what could be obtained from the differential absorption radar system, which could be installed on spaceborne satellites and/or mounted on reconnaissance aircraft. In the banded pressure cases, we propose a vortex reconstruction technique based on surface pressure field. Assimilating observations from the reconstructed surface pressure leads to a better representation of initial SLP and vertical cross-section of wind, relative to the control where no data is assimilated and to the assimilation without vortex reconstruction. In eight of the nine OSSEs simulations on three hurricanes with three leading times of integration, which cover a wide range of initial minimum SLP from 951 to 1011 hPa, substantial improvements are found not only in the hurricane track and position, but also in the hurricane intensity, in terms of the SLP and maximum surface wind. The only case without significant improvement is resulted from the very weak initial condition (SLP 1011 hPa), which had no clear indication of

  2. Relation of molecular structure to Franck-Condon bands in the visible-light absorption spectra of symmetric cationic cyanine dyes.

    PubMed

    Lin, Katrina Tao Hua; Silzel, John W

    2015-05-05

    A Franck-Condon (FC) model is used to study the solution-phase absorbance spectra of a series of seven symmetric cyanine dyes having between 22 and 77 atoms. Electronic transition energies were obtained from routine visible-light absorbance and fluorescence emission spectra. Harmonic normal modes were computed using density functional theory (DFT) and a polarizable continuum solvent model (PCM), with frequencies corrected using measured mid-infrared spectra. The model predicts the relative energies of the two major vibronic bands to within 5% and 11%, respectively, and also reproduces structure-specific differences in vibronic band shapes. The bands themselves result from excitation of two distinct subsets of normal modes, one with frequencies between 150 and 625cm(-1), and the other between 850 and 1480cm(-1). Vibronic transitions excite symmetric in-plane bending of the polymethine chain, in-plane bends of the polymethine and aromatic C-H bonds, torsions and deformations of N-alkyl substituents, and in the case of the indocyanines, in-plane deformations of the indole rings. For two dyes, the model predicts vibronic coupling into symmetry-breaking torsions associated with trans-cis photoisomerization.

  3. PG 1411 + 442 - The nearest broad absorption line quasar

    NASA Technical Reports Server (NTRS)

    Malkan, Matthew A.; Green, Richard F.; Hutchings, John B.

    1987-01-01

    IUE observations reveal strong, moderately broad absorption troughs in the blue wings of the C IV and N V emission lines of the quasar PG 1411 + 442. No absorption from weakly ionized gas is detected. The emission-line strengths and overall shape of the ultraviolet/optical/near-infrared/far-infrared continuum of the new broad absorption line quasar are within the range normally measured in quasars. Its redshift is low enough to allow the morphology of the host galaxy to be studied in deep broad-band and intermediate-band CCD images. The galaxy appears to be a large spiral with a very long arm or tail. The inclination angle is 57 deg, which rules out the possibility that the line of sight to the nucleus intersects a large path length in a galactic disk.

  4. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  5. Intensity-modulating graphene metamaterial for multiband terahertz absorption.

    PubMed

    Gao, Run-Mei; Xu, Zong-Cheng; Ding, Chun-Feng; Yao, Jian-Quan

    2016-03-10

    In this paper, we design a tunable strength multiband absorber consisting of a graphene metamaterial structure and a thick dielectric interlayer deposited on a metal ground plane. We investigate the tunable conductivity properties of the graphene metamaterial and demonstrate multiband absorbers with three absorption bands using a polyimide interlayer in the 0-2.25 THz range by numerical simulation. The results show that the mix absorptivity reached 99.8% at 1.99 THz, and the absorptive strength can be tuned with the modulation depth up to 84.2%. We present a theoretical interpretation based on a standing wave field, which shows that the field energy is localized inside the thicker spacer and then dissipated, effectively trapping the light in the metamaterial absorbers with negligible near-field interactions. The standing wave field theory developed here explains all the features of the multiband metamaterial absorbers and provides a profound understanding of the underlying physics.

  6. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  7. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  8. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the (1)B(2u) Absorption Band of Benzene, Including the Kekule Vibrational Modes ν(9) and ν(10).

    PubMed

    Willitsford, Adam H; Chadwick, C Todd; Kurtz, Stewart; Philbrick, C Russell; Hallen, Hans

    2016-02-04

    Resonance Raman spectroscopy provides much stronger Raman signal levels than its off-resonant counterpart and adds selectivity by excitation tuning. Raman preresonance of benzene has been well studied. On-resonance studies, especially at phonon-allowed absorptions, have received less attention. In this case, we observe resonance of many of the vibration modes associated motion of the carbons in the ring while tuning over the (1)B2u absorption, including the related ν9 (CC stretch Herzberg notation, ν14 Wilson notation) and ν10 (CH-parallel bend Herzberg notation, ν15 Wilson notation) vibrational modes along with the ν2 (CC-stretch or ring-breathing Herzberg notation, ν1 Wilson notation) mode and multiples of the ν18 (CCC-parallel bend Herzberg notation, ν6 Wilson notation) vibrational mode. The ring-breathing mode is found to mix with the b2u modes creating higher frequency composites. Through the use of an optical parametric oscillator (OPO) to tune through the (1)B2u absorption band of liquid benzene, a stiffening (increase in energy) of the vibrational modes is observed as the excitation wavelength nears the (1)B2u absorption peak of the isolated molecule (vapor) phase. The strongest resonance amplitude observed is in the 2 × ν18 (e2g) mode, with nearly twice the intensity of the ring-breathing mode, ν2. Several overtones and combination modes, especially with ν2 (a1g), are also observed to resonate. Raman resonances on phonon-allowed excitations are narrow and permit the measurement of vibrations not Raman-active in the ground state.

  9. Polycyclic Aromatic Hydrocarbon Emission in Spitzer/IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength

    NASA Astrophysics Data System (ADS)

    Stock, D. J.; Peeters, E.

    2017-03-01

    We decompose the observed 7.7 μm polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer/IRS-SL instrument. In order to fit the 7.7 μm PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μm) is linearly related to the UV-field intensity (log G 0). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μm spectral profiles.

  10. Microwave absorption properties of planar-anisotropy Ce2Fe17N3-δ powders/Silicone composite in X-band

    NASA Astrophysics Data System (ADS)

    Gu, Xisheng; Tan, Guoguo; Chen, Shuwen; Man, Qikui; Chang, Chuntao; Wang, Xinmin; Li, Run-Wei; Che, Shenglei; Jiang, Liqiang

    2017-02-01

    The soft-magnetic properties of planar-anisotropy Ce2Fe17N3-δ powders were reported, and reflection loss (RL) of the powders/Silicone composites with various volume concentrations have been studied in 0.1-18 GHz frequency range. It was found that the optimal RL of this composite absorber with a thickness of 1.72 mm is -60.5 dB at 9.97 GHz and the RL is less than -10 dB in the whole X-band (8-12 GHz). The bandwidth with RL exceeding -10 dB and -20 dB are 5.24 GHz and 1.32 GHz, respectively. Furthermore, all the optimal RL value of the composite with the thickness less than 2.13 mm can reach -20 dB in the range of 8-17 GHz, which indicates that the Ce2Fe17N3-δ/Silicone composite absorber will be a promising candidate in higher gigahertz frequency especially in X-band.

  11. Nonlinear absorption and optical strength of BaF{sub 2} and Al{sub 2}O{sub 3} at the wavelength of 248 nm

    SciTech Connect

    Morozov, Nikolai V; Sergeev, P B; Reiterov, V M

    1999-11-30

    An experimental investigation was made of the dependence of the transmission of BaF{sub 2} and Al{sub 2}O{sub 3} samples on the intensity of KrF-laser radiation ({lambda} = 248 nm) pulses of 85 ns duration. The two-photon absorption coefficients were found at {lambda} = 248 nm and their values for these two crystals were 0.5 {+-} 0.2 and 2 {+-} 1 cm Gw{sup -1}. The surface and bulk laser breakdown thresholds were determined for these samples. (nonlinear optical phenomena)

  12. Induced changes in refractive index, optical band gap, and absorption edge of polycarbonate-SiO2 thin films by Vis-IR lasers

    NASA Astrophysics Data System (ADS)

    Ehsani, Hassan; Akhoondi, Somaieh

    2016-09-01

    In this experimental work, we have studied induced changes in refractive index, extinction coefficient, and optical band-gap of Bisphenol-A-polycarbonate (BPA-PC) coated with a uniform and thin, anti-scratch SiO2 film irradiated by visible to near-infrared lasers at 532 nm (green),650 nm(red), and 980 nm (IR)wavelength lasers with different energy densities. Our lasers sources are indium-gallium-aluminum-phosphide, second harmonic of neodymium-YAG-solid state lasers and gallium-aluminum-arsenide-semiconductor laser. The energy densities of our sources have been changed by changing the spot size of incident laser. samples transmission spectra were monitored by carry500 spectrophotometer and induced changes in optical properties are evaluated by using, extrapolation of the transmission spectrum through Swanepoel method and computer application

  13. The Effects of Band Director Leadership Style and Student Leadership Ability on Band Festival Ratings

    ERIC Educational Resources Information Center

    Davison, P. Dru

    2007-01-01

    This study examined the relationship between band director leadership styles and the strength of student leadership within the bands. This study also examined the differences between leadership styles, student leadership strength, and band festival ratings (marching and concert). Subjects (N = 42) were band directors from Texas and Arkansas who…

  14. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  15. Effect of Substitution of Mn, Cu, and Zr on the Structural, Magnetic, and Ku-Band Microwave-Absorption Properties of Strontium Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Moradi, Mahmood; Alam, Reza Shams; Mardani, Reza

    2016-08-01

    The ferrites with the compositions of SrMn x Cu x Zr2 x Fe(12-4 x)O19 ( x = 0.0, 0.2, 0.3, 0.4, and 0.5) are synthesized by the coprecipitation method. The formation of M-type hexaferrite is confirmed by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. The morphology of the samples is shown by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) microscopy. Vibrating sample magnetometer (VSM) analysis has been used for the investigation of the magnetic properties, and the reason for the changes in the magnetic properties as a result of doping, are expressed. The values of coercivity decrease by increasing the amount of substitution, which could be related to the modification of anisotropy form the c-axis toward the c-plane. Finally, we have used vector network analysis to investigate the microwave absorption properties. We find that the samples with the composition of SrMn0.4Cu0.4Zr0.8Fe10.4O19 have the largest reflection loss and the widest bandwidth among these samples.

  16. 13C(16)O(2): Global Treatment of Vibrational-Rotational Spectra and First Observation of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) Absorption Bands.

    PubMed

    Tashkun; Perevalov; Teffo; Lecoutre; Huet; Campargue; Bailly; Esplin

    2000-04-01

    The effective operator approach is applied to the calculation of both line positions and line intensities of the (13)C(16)O(2) molecule. About 11 000 observed line positions of (13)C(16)O(2) selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational-rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm(-1). The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the nu(2) and 3nu(2) regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm(-1), and most of them lie within the experimental accuracy (0.007 cm(-1)) once the observed line positions are included in the global fit. Copyright 2000 Academic Press.

  17. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  18. Theoretical study of the AlO blue-green (B2Sigma + - X2Sigma +) band system

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Lengsfield, B. H., III; Liu, B.

    1983-01-01

    Two independent, extensive theoretical calculations are reported for the relative band strengths of the AlO (B2Sigma + - X2Sigma +) blue-green system and for the radiative lifetimes of the lowest few vibrational levels of the B2Sigma(+) state. The theoretical lifetimes, which include a small (less than -.5 percent) contribution from bound-bound transitions into the A2Pi state, are in excellent agreement with laser fluorescence studies. The theoretical lifetimes increase monotonically and very slowly with increasing vibrational quantum number. The relative band strengths for the blue-green system derived from the two theoretical calculations are in excellent agreement, but differ systematically from the relative band strengths of Linton and Nicholls (1969). The present results suggest that their self-absorption corrections are not large enough, resulting in relative intensities that are too large, especially for the weak bands with r centroids less than 1.5 A.

  19. High resolution spectroscopy of silane with an external-cavity quantum cascade laser: Absolute line strengths of the ν3 fundamental band at 4.6 μm

    NASA Astrophysics Data System (ADS)

    van Helden, J. H.; Lopatik, D.; Nave, A.; Lang, N.; Davies, P. B.; Röpcke, J.

    2015-01-01

    The introduction of room temperature continuous wave external-cavity quantum cascade lasers (EC-QCLs) with narrow linewidths has greatly facilitated high resolution spectroscopy over wide spectral ranges in the mid-infrared (MIR) region. Using the wide tuning range of an EC-QCL we have measured the absolute line strengths of many P-branch transitions of the stretching dyad of the ν3 fundamental band of 28SiH4 between 2096 and 2178 cm-1. Furthermore, the high spectral resolution available has enabled us to resolve and measure representative examples of the tetrahedral splittings associated with each component of the P-branch. The positions of these components are in excellent agreement with spherical top data system (STDS) predictions and theoretical transitions from the TDS spectroscopic database for spherical top molecules. These are the first measurements of these line strengths of 28SiH4 and are an example of the applicability of high-powered, widely tunable EC-QCLs to high resolution spectroscopy.

  20. Effect of low doses of Aspergillus niger phytase on growth performance, bone strength, and nutrient absorption and excretion by growing and finishing swine fed corn-soybean meal diets deficient in available phosphorus and calcium.

    PubMed

    Veum, T L; Ellersieck, M R

    2008-04-01

    Two experiments were conducted to evaluate the efficacy of low doses of Aspergillus niger (AN) phytase for growing and finishing pigs fed corn-soybean meal (SBM) diets with narrow Ca:P ratios that were about 0.9 g/kg deficient in available P and Ca. Experiment 1 utilized 120 pigs with an early finisher period from 51.5 +/- 0.2 to 89.7 +/- 0.9 kg of BW and a late finisher period that ended at 122.5 +/- 2.0 kg of BW. During each period, treatments were the low-P diets with 0, 150, 300, or 450 units (U) of AN phytase added/kg of diet, and a positive control (PC) diet. There were linear increases (P < or = 0.001) in bone strength and ash weight, the absorption of P (g/d and %) and Ca (%), and overall ADG (P = 0.01) with increasing concentration of AN phytase. Pigs fed the diets with 150, 300, or 450 U of AN phytase/kg did not differ from pigs fed the PC diet in growth performance overall, and pigs fed the diets with 300 or 450 U of AN phytase did not differ in P and Ca absorption (g/d) or bone ash weight from pigs fed the PC diet. However, only pigs fed the diet with 450 U of AN phytase/kg had bone strength similar to that of pigs fed the PC diet. Experiment 2 utilized 120 pigs in a grower phase from 25.3 +/- 0.1 to 57.8 +/- 0.8 kg of BW and a finisher phase that ended at 107.6 +/- 1.0 kg of BW. Treatments were the low-P diet with AN phytase added at 300, 500, or 700 U/kg of grower diet, and 150, 250, or 350 U/kg of finisher diet, respectively, resulting in treatments AN300/150, AN500/250, and AN700/350. Growth performance and the absorption (g/d) of P and Ca for the grower and finisher phases were not different for pigs fed the diets containing AN phytase and pigs fed the PC diets. However, pigs fed the PC diets excreted more fecal P (g/d, P < or = 0.01) during the grower and more P and Ca (g/d, P < 0.001) during the finisher phases than the pigs fed the diets with phytase. There were linear increases (P < or = 0.05) in bone strength and bone ash weight with

  1. Optical absorption by free holes in heavily doped GaAs

    NASA Technical Reports Server (NTRS)

    Huberman, M. L.; Ksendzov, A.; Larsson, A.; Terhune, R.; Maserjian, J.

    1991-01-01

    Optical absorption in p-type GaAs with hole concentrations between 10 exp 19 and 10 exp 20/cu cm has been measured for wavelengths between 2 and 20 microns and compared with results of theoretical calculations. In contrast to previous measurements at lower doping levels, the occupied hole states are far from the zone center, where the heavy- and light-hole bands become parallel. This gives rise to a large joint density of states for optical transitions. It is found that the overall magnitude of the observed absorption is explained correctly by the theory, with both the free-carrier (indirect) and the inter-valence-band (direct) transitions contributing significantly to the total absorption. The strength of the absorption (a about 20,000/cm for N(A) = 5 x 10 exp 19/cu cm) is attractive for long-wavelength infrared-detector applications.

  2. Band models and correlations for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1975-01-01

    Absorption of infrared radiation by various line and band models are briefly reviewed. Narrow band model relations for absorptance are used to develop 'exact' formulations for total absorption by four wide band models. Application of a wide band model to a particular gas largely depends upon the spectroscopic characteristic of the absorbing-emitting molecule. Seven continuous correlations for the absorption of a wide band model are presented and each one of these is compared with the exact (numerical) solutions of the wide band models. Comparison of these results indicate the validity of a correlation for a particular radiative transfer application. In radiative transfer analyses, use of continuous correlations for total band absorptance provides flexibilities in various mathematical operations.

  3. Microwave absorption characteristics of the clouds of Venus from Mariner 10 radio occultation

    NASA Technical Reports Server (NTRS)

    Kliore, A. J.; Elachi, C.; Patel, I. R.; Way, J. B.

    1977-01-01

    Measurements of received signal strength at S-band (13 cm) and X-band (4.8 cm) wavelengths during the radio occultation of Mariner 10 by Venus on February 5, 1974, are examined in order to study the structure and composition of the absorbing medium. The frequency excursions of the signals are determined and used to obtain the structure of the refractive index in the lower atmosphere. Profiles of excess signal attenuation due to atmospheric scattering and absorption are presented which indicate that the X-band signal experienced much more absorption and was extinguished at about 50 km, while the S-band signal penetrated to about 42 km. The optical-depth data are inverted by means of a discrete inversion method to obtain the absorption coefficient for each band as a function of height, and the resulting absorption-coefficient profiles are compared with the attenuation at vertical incidence modeled from planetary radar and passive microwave observations of Venus. The absorption coefficients at the two wavelengths are employed to estimate the liquid content and composition of the microwave-absorbing cloud particles.

  4. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  5. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  6. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  7. Identification of Gas Phase PAHs in Absorption Towards Protostellar Sources

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The infrared emission bands (also known as the UIR bands.) have recently been observed in absorption at 3.25 micrometers in the ices surrounding a few proto-stellar objects at 11.2 micrometers in MonR2, and at 6.2 micrometers towards two sources near the galactic center. The UIR bands have been observed in emission for many years, but identifying these bands has proven to be both difficult and contentious as no one has yet found a single material that provides a good match to the features. However, most investigators agree that some form of carbon-based material with aromatic bonds is the most likely candidate, and many arguments favor free molecules (polycyclic aromatic hydrocarbons, PAHs) as the carriers of at least the narrow emission bands. Since the emission arises not from a single molecule but from a family of molecules, identifying which PAHs are contributing to the infrared emission bands is difficult. The identification is further complicated by the fact that the emission at short wavelengths is dominated by small molecules while at long wavelengths it is dominated by large molecules. Thus, for example, the emission at 3.3 micrometers is from a different mix of molecules than those which produce the 11.2 micrometer band. To complicate matters further, the molecular mix includes both neutral and ionic species. In absorption, the same mixture of molecules contributes at all wavelengths and the molecules should be neutral, potentially simplifying comparisons with lab data. Also, absorption strengths measured in the lab are directly applicable to interstellar absorption bands without the need to model an emission spectrum of an unknown mixture of ionized and neutral PAHs. In this paper we show that a mixture of argon matrix isolated PAH molecules can reproduce the 3.25 micrometers absorption band seen in the ISO SWS spectra of four embedded Infrared sources, S140 IRS1, AFGL 2591, Elias 29, and AFGL 989. In section 2 we describe the ISO SWS data analysis and

  8. Effects of magnetic field and the built-in internal fields on the absorption coefficients in a strained wurtzite GaN/AlGaN quantum dot

    NASA Astrophysics Data System (ADS)

    Minimala, N. S.; Peter, A. John

    2013-02-01

    Effects of magnetic field strength and the built-in electric fields on the exciton binding energy and the non-linear optical property such as absorption coefficients in a GaN/AlGaN wide band gap heterostructure are investigated. The internal fields due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Our results show that the optical absorption coefficients strongly depend on the internal fields and the applied magnetic field.

  9. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  10. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  11. Detection and measurement of the Wing-Ford band in the near-infrared spectra of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Hardy, Edouardo; Couture, Jean

    1988-02-01

    An absorption feature was detected at the location of the Wing-Ford band near 9916 A in high-quality CCD spectra of five elliptical galaxies taken with the Cerro Tololo 4-m RC spectrograph. Measurements reveal that the mean strength is 0.013 mag (1 sigma of the mean) and individual galaxy strengths have 1 sigma errors of the order 0.002 mag. The (3-4) band of the delta system of TiO with band head at 9986 A was also detected, suggesting that the observed Wing-Ford feature is affected by the (2-3) band of the delta system of TiO at 9899 A which is present in late giants. Therefore, this feature is not due exclusively to the FeH molecule strong in late M dwarfs.

  12. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  13. Topological band order, structural, electronic and optical properties of XPdBi (X = Lu, Sc) compounds

    NASA Astrophysics Data System (ADS)

    Narimani, M.; Nourbakhsh, Z.

    2016-05-01

    In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel-Vosco generalized gradient approximations and modified Becke-Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.

  14. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  15. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  16. Band heterotopia.

    PubMed

    Alam, M S; Naila, N

    2010-01-01

    Band heterotopias are one of the rarest groups of congenital disorder that result in variable degree of structural abnormality of brain parenchyma. Band of heterotopic neurons result from a congenital or acquired deficiency of the neuronal migration. MRI is the examination of choice for demonstrating these abnormalities because of the superb gray vs. white matter differentiation, detail of cortical anatomy and ease of multiplanar imaging. We report a case of band heterotopia that showed a bilateral band of gray matter in deep white matter best demonstrated on T2 Wt. and FLAIR images.

  17. Interstellar O2. II - VUV oscillator strengths of Schumann-Runge lines and prospects for Space Telescope observations

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Griesinger, H. E.; Black, J. H.; Yoshino, K.; Freeman, D. E.

    1984-01-01

    Interstellar molecular oxygen should be detectable in interstellar clouds through observation of its absorption lines in the spectra of background stars. This paper describes and presents the results of measurements of oscillator strengths for some lines in the vacuum ultraviolet (VUV) spectrum of O2. Lines of the (13, 0) through (16, 0) bands of the B 3Sigma(-)u - X 3Sigma(-)g, Schumann-Runge system between 1760 A and 1790 A will be the most suitable for searches for absorption by interstellar O2 with the High Resolution Spectrograph on Space Telescope. The strongest lines in these bands have oscillator strengths of about 3 x 10 to the -5th.

  18. M DWARF LUMINOSITY, RADIUS, AND α-ENRICHMENT FROM I-BAND SPECTRAL FEATURES

    SciTech Connect

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Robertson, Paul

    2015-03-20

    Despite the ubiquity of M dwarfs and their growing importance to studies of exoplanets, Galactic evolution, and stellar structure, methods for precisely measuring their fundamental stellar properties remain elusive. Existing techniques for measuring M dwarf luminosity, mass, radius, or composition are calibrated over a limited range of stellar parameters or require expensive observations. We find a strong correlation between the K{sub S}-band luminosity (M{sub K}), the observed strength of the I-band sodium doublet absorption feature, and [Fe/H] in M dwarfs without strong Hα emission. We show that the strength of this feature, coupled with [Fe/H] and spectral type, can be used to derive M dwarf M{sub K} and radius without requiring parallax. Additionally, we find promising evidence that the strengths of the I-band sodium doublet and the nearby I-band calcium triplet may jointly indicate α-element enrichment. The use of these I-band features requires only moderate-resolution near-infrared spectroscopy to provide valuable information about the potential habitability of exoplanets around M dwarfs, and surface gravity and distance for M dwarfs throughout the Galaxy. This technique has immediate applicability for both target selection and candidate planet–host system characterization for exoplanet missions such as TESS and K2.

  19. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  20. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  1. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  2. Vibronically induced two-exciton bands in KMnF3 and RbMnF3

    NASA Astrophysics Data System (ADS)

    Darwish, S.; Seehra, Mohindar S.

    1988-03-01

    Several two-exciton bands in the optical-absorption spectra of antiferromagnets KMnF3 (TN~=88 K) and RbMnF3 (TN~=83 K) are studied and their coupling energies, varying between 50 and 710 cm-1, are determined. Also, the temperature dependence (10-300 K) of the oscillator strength, the line position E and the half-width at half maximum δ of two of these bands, α(A+A) and γ(A+C), is measured. The oscillator strength of the α and γ bands decreases as the tempertaure increases, in agreement with an expression given by Fujiwara et al. For the parent A and C single-exciton bands, the oscillator strength increases up to TN and then remains essentially constant above TN. The line position follows an Einstein-type relation E(T)=E(0)+A*/[exp(T*/T)-1]. For KMnF3 (RbMnF3) a single T*=569 K (531 K) describes well the temperature dependence of the A, the α, and the γ bands, confirming that these vibronically induced transitions are promoted by a single phonon. The temperature dependence of δ for the α and γ bands in KMnF3 also follows the Einstein-type relation. The above estimate of T* agrees well with the known frequencies of a phonon in KMnF3 and RbMnF3.

  3. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  4. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s‑1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s‑1 has a density in the range of 109 to 1010 cm‑3 and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s‑1 has a density of 103 cm‑3 and a distance of ∼1 kpc.

  5. Strength Training

    MedlinePlus

    ... strengthens your heart and lungs. When you strength train with weights, you're using your muscles to ... see there are lots of different ways to train with weights. Try a few good basic routines ...

  6. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  7. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  8. Dynamic registration of the absorption spectrum of water in the SiO(2) nanopores in high-frequency range.

    PubMed

    Sinitsa, L N; Lugovskoy, A A

    2010-11-28

    The high-frequency region was used to record the absorption spectrum of water in nanoscale pores during vacuum pumping or injection of water. The wide spectral range, which included the vibration overtones, allowed to resolve the structure of the absorption bands with variation of water concentration in the pores of SiO(2). The absorption bands of water clusters in the 4570-5400 cm(-1) range consist of well-resolved sub-bands with interpeak intervals of up to 580 cm(-1). When the pore diameter is decreased from 11.8 to 2.6 nm, the absorption bands of clusters in this frequency range are shifted by 530 cm(-1) in the direction of the water monomer which indicates an increase of hydrogen bond strength in confined water with an increase of the pore diameter. The spectrum recorded during water pumping is extremely variable in time, and the cluster dynamics in large pores (11.8 nm) differs greatly from the dynamics in small pores (2.6 nm). While all types of water clusters are removed from small pores uniformly, in the case of large pores, the water clusters relating to strong hydrogen bonds are removed from the sample at the beginning of the vacuum pumping and the loosely coupled clusters are removed later. The rate of this process is not steady and varies throughout pumping.

  9. Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath

    NASA Astrophysics Data System (ADS)

    Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.

    2011-04-01

    Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.

  10. A high-resolution study of near-infrared diffuse interstellar bands

    SciTech Connect

    Rawlings, M. G.; Adamson, A. J.; Kerr, T. H. E-mail: aadamson@gemini.edu

    2014-11-20

    We present high-resolution echelle spectroscopic observations of the two near-infrared (NIR) diffuse interstellar bands (DIBs) at 13175 Å and 11797.5 Å. The DIBs have been observed in a number of diffuse interstellar medium sightlines that exhibit a wide range of visual extinctions. Band profiles are similar to those seen in narrow DIBs, clearly asymmetric and can be closely fitted in most cases using two simple Gaussian components. Gaussian fits were generally found to be more successful than fits based on a multiple-cloud model using a template DIB profile. For a sample of nine objects in which both bands are observed, the strength of both NIR DIBs generally increases with A(V), and we report a correlation between the two observed bands over a large A(V) range and widely separated lines of sight. The strength of the two bands is also compared against those of two visual DIBs and the diffuse ISM aliphatic dust absorption feature at 3.4 μm previously detected in the same sightlines. We find that the NIR DIBs do not exhibit notable (anti)correlations with either. Implications of these observations on possible DIB carrier species are discussed.

  11. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  12. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  13. High resolution UV absorption studies of N2, SO2

    NASA Astrophysics Data System (ADS)

    Smith, Peter L.; Stark, G.; Rufus, J.; Yoshino, K.; Huber, K. P.; Ito, K.; Thorne, A. P.

    The most prominent EUV emission features in the airglows of Titan and Triton, where N2 is the major atmospheric constituent, originate from the N2c'4 1Σu+(v=0) level. We report new photoabsorption measurements of 43 rotational line oscillator strengths in the c'4(0)-X(0) band of N2. These are the first measurements of individual line f-values for this band. Such values, which are important for models of atmospheres at various temperatures, cannot be reliably calculated from band f-values and Hönl-London factors because of perturbations. A summation over the integrated cross sections of the measured lines yields a room temperature band f-value of 0.132±0.020. SO2 is an important constituent of the atmospheres of Io and Venus. Accurate photoabsorption cross section data at the temperatures of these planetary atmospheres are required for the interpretation of SO2 observations and for reliable photochemical models. Our high-resolution (λ/Δλ ≈ 450,000), room-temperature measurements of SO2 absorption cross sections in the wavelength region 198 to 220 nm [Stark et al., JGR Planets, 104, 16,585 (1999)] are being extended to lower temperatures. This work was supported in part by NASA Grant NAG5-6222 to Wellesley College.

  14. Absorption of CO laser radiation by NO

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.; Monat, J. P.; Kruger, C. H.

    1976-01-01

    The paper describes absorption calculations and measurements at selected infrared CO laser wavelengths which are nearly coincident with absorption lines in the fundamental vibration-rotation band of NO near 5.3 microns. Initial work was directed towards establishing the optimal CO laser-NO absorption line coincidence for high temperature applications. Measurements of the absorption coefficient at this optimal laser wavelength were carried out, first using a room-temperature absorption cell for high-temperature calculations and then using a shock tube, for the temperature range 630-4000 K, to validate the high temperature calculations.

  15. Laparoscopic gastric banding

    MedlinePlus

    ... adjustable gastric banding; Bariatric surgery - laparoscopic gastric banding; Obesity - gastric banding; Weight loss - gastric banding ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ...

  16. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  17. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  18. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required...

  19. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required...

  20. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required...

  1. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required...

  2. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required...

  3. 47 CFR 27.55 - Power strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power strength limits. 27.55 Section 27.55... COMMUNICATIONS SERVICES Technical Standards § 27.55 Power strength limits. (a) Field strength limits. For the following bands, the predicted or measured median field strength at any location on the geographical...

  4. Infrared laser absorption spectroscopy of the nu4 (sigma u) fundamental and associated nu11(pi u) hot band of C7 - Evidence for alternating rigidity in linear carbon clusters

    NASA Technical Reports Server (NTRS)

    Heath, J. R.; Saykally, R. J.

    1991-01-01

    The first characterization of the bending potential of the C7 cluster is reported via the observation of the v = 1(1) and v = 2 deg levels of the nu11 (pi u) bend as hot bands associated with the nu4 (sigma u) antisymmetric stretch fundamental. The lower state hot band rotational constants are measured to be 1004.4(1.3) and 1123.6(9.0) MHz, constituting a 9.3 and 22 percent increase over the ground state rotational constant, 918.89 (41) MHz. These large increases are strong quartic and sextic centrifugal distortion constants determined for the ground and nu 4 = 1 states are found to be anomalously large and negative, evidencing strong perturbations between stretching and bending modes.

  5. [Passive ranging of infrared target using oxygen A-band and Elsasser model].

    PubMed

    Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi

    2014-09-01

    Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.

  6. Infrared diffuse interstellar bands in the Galactic Centre region.

    PubMed

    Geballe, T R; Najarro, F; Figer, D F; Schlegelmilch, B W; de la Fuente, D

    2011-11-02

    The spectrum of any star viewed through a sufficient quantity of diffuse interstellar material reveals a number of absorption features collectively called 'diffuse interstellar bands' (DIBs). The first DIBs were reported about 90  years ago, and currently well over 500 are known. None of them has been convincingly identified with any specific element or molecule, although recent studies suggest that the DIB carriers are polyatomic molecules containing carbon. Most of the DIBs currently known are at visible and very near-infrared wavelengths, with only two previously known at wavelengths beyond one micrometre (10,000 ångströms), the longer of which is at 1.318 micrometres (ref. 6). Here we report 13 diffuse interstellar bands in the 1.5-1.8 micrometre interval on high-extinction sightlines towards stars in the Galactic Centre. We argue that they originate almost entirely in the Galactic Centre region, a considerably warmer and harsher environment than where DIBs have been observed previously. The relative strengths of these DIBs towards the Galactic Centre and the Cygnus OB2 diffuse cloud are consistent with their strengths scaling mainly with the extinction by diffuse material.

  7. Absolute intensities for the Q-branch of the 3 nu(sub 2) (-) nu(sub 1) (465.161/cm) band of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sirota, J. Marcos; Reuter, Dennis C.

    1993-01-01

    The absolute intensities of four lines, Q 15-Q 18 in the 03(sup 1)0-10(sup 0)0 band, of N2O have been measured using a tunable diode laser spectrometer at temperatures between 380 and 420 K and pressures between 4 and 15 torr. Even though these transitions are weak and produced only about 2% of absorption at the line center for a pathlength of 52 m, they were measured with a signal to noise ratio of about 20 due to the high sensitivity of the instrument. The band strength derived is 1.03 x 10(exp -24) cm/molec at 296 K.

  8. Overtone dissociation of peroxynitric acid (HO2NO2): absorption cross sections and photolysis products.

    PubMed

    Stark, Harald; Brown, Steven S; Burkholder, James B; Aldener, Mattias; Riffault, Veronique; Gierczak, Tomasz; Ravishankara, A R

    2008-10-02

    Band strengths for the second (3nuOH) and third (4nuOH) overtones of the OH stretch vibration of peroxynitric acid, HO2NO2 (PNA) in the gas-phase were measured using Cavity Ring-Down Spectroscopy (CRDS). Both OH overtone transitions show diffuse smoothly varying symmetrical absorption profiles without observable rotational structure. Integrated band strengths (base e) at 296 K were determined to be S(3nuOH) = (5.7 +/- 1.1) x 10(-20) and S(4nuOH) = (4.9 +/- 0.9) x 10(-21) cm(2) molecule(-1) cm(-1) with peak cross sections of (8.8 +/- 1.7) x 10(-22) and (7.0 +/- 1.3) x 10(-23) cm(2) molecule(-1) at 10086.0 +/- 0.2 cm(-1) and 13095.8 +/- 0.4 cm(-1), respectively, using PNA concentrations measured on line by Fourier-transform infrared and ultraviolet absorption spectroscopy. The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors in the measurements. OH overtone spectra measured at lower temperature, 231 K, showed a narrowing of the 3nuOH band along with an increase in its peak absorption cross section, but no change in S(3nuOH) to within the precision of the measurement (+/-9%). Measurement of a PNA action spectrum showed that HO2 is produced from second overtone photodissociation. The action spectrum agreed with the CRDS absorption spectra. The PNA cross sections determined in this work for 3nuOH and 4nuOH will increase calculated atmospheric photolysis rates of PNA slightly.

  9. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  10. Optical Absorption, Stability and Structure of NpO2+ Complexeswith Dicarboxylic Acids

    SciTech Connect

    Guoxin Tian; Linfeng Rao

    2006-01-04

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes.

  11. Diffuse-light absorption spectroscopy for beer classification and prediction of alcoholic content

    NASA Astrophysics Data System (ADS)

    Ciaccheri, L.; Samano Baca, E. E.; Russo, M. T.; Ottevaere, H.; Thienpont, H.; Mignani, A. G.

    2012-04-01

    A miscellaneous of 86 beers was characterized by non-destructive, fast and reagent-free optical measurements. Diffuselight absorption spectroscopy performed in the visible and near-infrared bands was used to gather a turbidity-free spectroscopic information. Also, conventional turbidity and refractive index measurements were added for completing the optical characterization. The near-infrared spectra provided a straightforward turbidity-free assessment of the alcoholic strength. Then, the entire optical data set was processed by means of multivariate analysis looking for a beer clustering according to the own character and identity. Good results were achieved, indicating that optical methods can be successfully used for beer authentication.

  12. Predissociation linewidths of the (3,0)-(11,0) Schumann-Runge absorption bands of (O-18)2 and O-16O-18 in the wavelength region 180-196 nm

    NASA Technical Reports Server (NTRS)

    Chiu, S. S.-L.; Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Freeman, D. E.

    1990-01-01

    The Yoshino et al. (1988) measurements of absolute cross sections and those of Cheung et al. (1988) for spectroscopic constants are presently used to derive the predissociation linewidths of the (3,0)-(11,0) Schumman-Runge bands of (O-18)2 and O-16O-18, in the 180-196 nm wavelength region. Linewidths are determined as parameters in the nonlinear, least-squares fitting of calculated cross-sections to measured ones. The predissociation linewidths obtained are noted to often be greater than previously obtained experimental values for both isotopic molecules.

  13. Probing the diffuse interstellar medium with diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib

    2015-08-01

    For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.

  14. Excited states and absorption spectra of β-diketonate complexes of boron difluoride with aromatic substituents

    NASA Astrophysics Data System (ADS)

    Vovna, V. I.; Kazachek, M. V.; L'vov, I. B.

    2012-04-01

    In the approximation of the time-dependent electron density functional theory, we have studied using the quantum-chemical method the nature of excited states of boron difluoride acetylacetonate F2BAA and its substituted derivatives that contain aromatic groups with one or two benzene cycles in the β-position. Optimization of the geometry of complexes show coplanar positions of cycles for all compounds, except for that with the substituent C6H3(CH3)2. Based on the calculated transition energies and oscillator strengths, we have simulated the absorption spectra in the prevacuum range. The calculated absorption spectra have been compared with the experimental spectra in the gas phase or in solutions. We show that, in the absorption spectra of complexes that contain substituents with one benzene cycle, the first three bands are caused by the transition of π electrons of the substituent to the LUMO of the chelate cycle. In complexes with two cycles in the substituent, the number of these transitions increases to five. As the π system becomes more extended, a bathochromic shift of the first absorption band and an increase in the transition probability are observed.

  15. Unidentified infrared bands in the interstellar medium across the Galaxy

    NASA Astrophysics Data System (ADS)

    Kahanpää, J.; Mattila, K.; Lehtinen, K.; Leinert, C.; Lemke, D.

    2003-07-01

    We present a set of 6-12 mu m ISOPHOT-S spectra of the general interstellar medium of the Milky Way. This part of the spectrum is dominated by a series of strong, wide emission features commonly called the Unidentified Infrared Bands. The sampled area covers the inner Milky Way from l = -60 degr to +60 degr with a ten-degree step in longitude and nominal latitudes b = 0 degr, +/-1 degr. For each grid position the actual observed direction was selected from IRAS 100 mu m maps to minimize contamination by point sources and molecular clouds. All spectra were found to display the same spectral features. Band ratios are independent of band strength and Galactic coordinates. A comparison of total observed flux in band features and IRAS 100 mu m emission, a tracer for large interstellar dust grains, shows high correlation at large as well as small (1 arcmin) scales. This implies a strong connection between large dust grains and the elusive band carriers; the evolutionary history and heating energy source of these populations must be strongly linked. The average mid-infrared spectrum of the Milky Way is found to be similar to the average spectrum of spiral galaxy NGC 891 and the spectra of other spirals. The common spectrum can therefore be used as a template for the 6-12 mu m emission of late-type spiral galaxies. Finally, we show that interstellar extinction only weakly influences the observed features even at lambda  = 10 mu m, where the silicate absorption feature is strongest. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?I/A+A/405/999

  16. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    NASA Astrophysics Data System (ADS)

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.

    2014-08-01

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al0.3Ga0.7As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  17. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  18. Near-infrared absorptions of monomethylhydrazine

    NASA Technical Reports Server (NTRS)

    Murray, Mark; Kurtz, Joe

    1993-01-01

    The peak absorption coefficients for two near-infrared absorptions of monomethylhydrazine, CH3-N2H3, (MMH) were measured. Absorption bands located at 1.524 micrometers (6560/cm), 1.557 micrometers (6423/cm), and 1.583 micrometers (6316/cm) are assigned to the Delta upsilon = 2 overtones of the infared N-H stretching fundamentals at 3317, 3245 and 3177/cm. An absorption band located at 1.04 micrometers (9620 +/- 100/cm) is assigned to the Delta upsilon = 3 overtone of one of these fundamentals. The peak absorption coefficients (alpha(sub 10)) at 1.524 micrometers (6560 +/- 20/cm) and 1.04 micrometers (9620 +/- 100/cm) are 31 x 10(exp -3) and 0.97 x 10(exp -3)/(cm atm), respectively. Uncertainties in these coefficients were estimated to be less than +/- 20% due primarily to uncertainties in the partial vapor pressure of MMH.

  19. Band Structures of Plasmonic Polarons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Lambert, Henry; Giustino, Feliciano

    2015-03-01

    In angle-resolved photoemission spectroscopy (ARPES), the acceleration of a photo-electron upon photon absorption may trigger shake-up excitations in the sample, leading to the emission of phonons, electron-hole pairs, and plasmons, the latter being collective charge-density fluctuations. Using state-of-the-art many-body calculations based on the `GW plus cumulant' approach, we show that electron-plasmon interactions induce plasmonic polaron bands in group IV transition metal dichalcogenide monolayers (MoS2, MoSe2, WS2, WSe2). We find that the energy vs. momentum dispersion relations of these plasmonic structures closely follow the standard valence bands, although they appear broadened and blueshifted by the plasmon energy. Based on our results we identify general criteria for observing plasmonic polaron bands in the angle-resolved photoelectron spectra of solids.

  20. Interpretation of unusual absorption bandwidths and resonance Raman intensities in excited state mixed valence.

    PubMed

    Lockard, Jenny V; Valverde, Guadalupe; Neuhauser, Daniel; Zink, Jeffrey I; Luo, Yun; Weaver, Michael N; Nelsen, Stephen F

    2006-01-12

    Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, primarily because their spectroscopic features are usually overlapped or obscured by other transitions in the molecule. The mixed valence excited state absorption bands of 2,3-di-p-anisyl-2,3-diazabicyclo[2.2.2]octane radical cation are well-separated from others in the absorption spectrum and are particularly well-suited for detailed analysis using the ESMV model. Excited state coupling splits the absorption band into two components. The lower energy component is broader and more intense than the higher energy component. The absorption bandwidths are caused by progressions in totally symmetric modes, and the difference in bandwidths is caused by the coordinate dependence of the excited state coupling. The Raman intensities obtained in resonance with the high and low energy components differ significantly from those expected based on the oscillator strengths of the bands. This unexpected observation is a result of the excited state coupling and is explained by both the averaging of the transition dipole moment orientation over all angles for the two types of spectroscopies and the coordinate-dependent coupling. The absorption spectrum is fit using a coupled two-state model in which both symmetric and asymmetric coordinates are included. The physical meaning of the observed resonance Raman intensity trends is discussed along with the origin of the coordinate-dependent coupling. The well-separated mixed valence excited state spectroscopic components enable detailed electronic and resonance Raman data to be obtained from which the model can be more fully developed and tested.

  1. Study of Evanescence Wave Absorption in Lindane

    NASA Astrophysics Data System (ADS)

    Marzuki, A.; Prasetyo, E.; Gitrin, M. P.; Suryanti, V.

    2017-02-01

    Evanescent wave field has been studied for the purpose of tailoring fiber sensor capable of detecting lindane concentration in a solution. The mounted fiber was optically polished such that part of the fiber clad is stripped off. To study the evanescent wave field absorption in lindane solution, the unclad fiber was immersed in the solution. Light coming out of the fiber was studied at different wavelength each for different lindane concentration. It was shown that evanescent wave field absorption is stronger at wavelength corresponding to lindane absorption band as has been shown from absorption studies lindane in UV-VIS-NIR spectrophotometer.

  2. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  3. Theoretical study on the photoabsorption in the Herzberg I band system of the O 2 molecule

    NASA Astrophysics Data System (ADS)

    Takegami, Ryuta; Yabushita, Satoshi

    2005-01-01

    The Herzberg I band system of the oxygen molecule is electric-dipole forbidden and its absorption strength has been explained by intensity borrowing models which include the spin-orbit (SO) and L-uncoupling (RO) interactions as perturbations. We employed three different levels of theoretical models to evaluate these two interactions, and obtained the rotational and vibronic absorption strengths using the ab initio method. The first model calculates the transition moments induced by the SO interaction variationally with the SO configuration interaction method (SOCI), and uses the first-order perturbation theory for the RO interaction, and is called SOCI. The second is based on the first-order perturbation theory for both the SO and RO interactions, and is called Pert(Full). The last is a limited version of Pert(Full), in that the first-order perturbation wavefunction for the initial and final state is represented by only one dominant basis, namely the 1 3Π g and B3Σu- state, respectively, as originally used by England et al. [Can. J. Phys. 74 (1996) 185], and is called Pert(England). The vibronic oscillator strengths calculated by these three models were in good agreement with the experimental values. As for the integrated rotational linestrengths, the SOCI and Pert(Full) models reproduced the experimental results very well, however the Pert(England) model did not give satisfactory results. Since the Pert(England) model takes only the 1 3Π g and B3Σu- states into consideration, it cannot contain the complicated configuration interactions with highly excited states induced by the SO and RO interaction, which plays an important role for calculating the delicate integrated rotational linestrength. This result suggests that the configuration interaction with highly excited states due to some perturbations cannot be neglected in the case of very weak absorption band systems.

  4. Multi-band slow light metamaterial.

    PubMed

    Zhu, Lei; Meng, Fan-Yi; Fu, Jia-Hui; Wu, Qun; Hua, Jun

    2012-02-13

    In this paper, a multi-band slow light metamaterial is presented and investigated. The metamaterial unit cell is composed of three cut wires of different sizes and parallel to each other. Two transparency windows induced by two-two overlaps of absorption bands of three cut wires are observed. The multi-band transmission characteristics and the slow light properties of metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impacts of structure parameters on transparency windows are also investigated. Simulation results show the spectral properties can be tuned by adjusting structure parameters of metamaterial. The equivalent circuit model and the synthesis method of the multi-band slow light metamaterial are presented. It is seen from simulation results that the synthesis method accurately predicts the center frequency of the multi-band metamaterial, which opens a door to a quick and accurate construction for multi-band slow light metamaterial.

  5. Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal

    NASA Technical Reports Server (NTRS)

    Salama, F.; Bakes, E. L.; Allamandola, L. J.; Tielens, A. G.

    1996-01-01

    The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high-energy range of the spectrum, and possesses a large oscillator strength), and seems to correlate with strong and broad DIBs. For noncompact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low-energy range of the spectrum, and possesses a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that (i) only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narow bands on the other can easily be interpreted in the context of the PAH proposal by a distribution of compact and noncompact PAH ions, respectively. A plausible correlation

  6. Assessment of the Polycyclic Aromatic Hydrocarbon-Diffuse Interstellar Band Proposal

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Bakes, F.; Allamandola, L.; Tielens, A. G. G. M.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high energy range of the spectrum, and possess a large oscillator strength), and seems to correlate with strong and broad DIBs. In the case of non-compact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low energy range of the spectrum, and possess a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that: (i) Only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narrow bands on the other hand can easily be interpreted in the context of the PAH proposal by a distribution between compact and non-compact PAH ions, respectively. A

  7. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  8. Reflective-tube absorption meter

    NASA Astrophysics Data System (ADS)

    Zaneveld, J. Ronald V.; Bartz, Robert; Kitchen, James C.

    1990-09-01

    The design and calibration of a proposed in situ spectral absorption meter is evaluated using a laboratory prototype. The design includes a silver coated (second-surface) glass tube, a tungsten light source (stabilized by means of optical feedback), a monochromator, and a solid state detector. The device measures the absorption coefficient plus a portion of the volume scattering function. Theoretical analyses and laboratory experiments which explore the magnitude and variation of the errors due to scattering and internal reflections are described. Similar analyses are performed on the Cary 1 18 Spectrophotometer to allow cross calibration. Algorithms to yield the abscrption coefficient and the zenith-sun diffuse attenuation coefficient are presented and evaluated. Simultaneous measurement of the beam attenuation or backscattering coefficient allows use of algoriThms with much narrower error bands. The various methods of obtaining absorption and diffuse attenuation values are compared. Procedures for using reverse osmosis filtration to produce a clean water calibration standard are described. An absorption spectrum for pure water is obtained. Development of the absorption meter is proceeding along two lines: 1) a two-wavelength side-by-side LED is being fabricated to allow an in situ chlorophyll a absorption meter to be constructed, and 2) scientific projects using a shipboard or laboratory flow.-through pumping system are being planned.

  9. Substituent Effects on the Absorption and Fluorescence Properties of Anthracene.

    PubMed

    Abou-Hatab, Salsabil; Spata, Vincent A; Matsika, Spiridoula

    2017-02-16

    Substitution can be used to efficiently tune the photophysical properties of chromophores. In this study, we examine the effect of substituents on the absorption and fluorescence properties of anthracene. The effects of mono-, di-, and tetrasubstitution of electron-donating and -withdrawing functional groups were explored. In addition, the influence of a donor-acceptor substituent pair and the position of substitution were investigated. Eleven functional groups were varied on positions 1, 2, and 9 of anthracene, and on position 6 of 2-methoxyanthracene and 2-carboxyanthracene. Moreover, the donor-acceptor pair NH2/CO2H was added on different positions of anthracene for additional studies of doubly substituted anthracenes. Finally, we looked into quadruple substitutions on positions 1,4,5,8 and 2,3,6,7. Vertical excitation energies and oscillator strengths were computed using density functional theory with the hybrid CAM-B3LYP functional and 6-311G(d) basis set. Correlations between the excitation energies or oscillator strengths of the low-lying bright La state and the Hammett sigma parameter, σp(+), of the substituents were examined. The energy is red-shifted for all cases of substitution. Oscillator strengths increase when substituents are placed along the direction of the transition dipole moment of the bright La excited state. Substitution of long chain conjugated groups significantly increases the oscillator strength in comparison to the cases for other substituents. In addition, the results of quadruply substituted geometries reveal symmetric substitution at the 1,4,5,8 positions significantly increases the oscillator strength and can lower the band gap compared to that of the unsubstituted anthracene molecule by up to 0.5 eV.

  10. New narrow infrared absorption features in the spectrum of Io between 3600 and 3100 cm (2.8-3.2 micrometers)

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Geballe, Thomas R.; Salama, Farid; Goorvitch, David

    1994-01-01

    We report the discovery of a series of infrared absorption bands between 3600 and 3100/cm (2.8-3.2 micrometers) in the spectrum of Io. Individual narrow bands are detected at 3553, 3514.5, 3438, 3423, 3411.5, and 3401/cm (2.815, 2.845, 2.909, 2.921, 2.931, and 2.940 micrometers, respectively). The positions and relative strengths of these bands, and the difference of their absolute strengths between the leading and trailing faces of Io, indicate that they are due to SO2. The band at 3438/cm (2.909 micrometers) could potentially have a contribution from an additional molecular species. The existence of these bands in the spectrum of Io indicates that a substantial fraction of the SO2 on Io must reside in transparent ices having relatively large crystal sizes. The decrease in the continuum observed at the high frequency ends of the spectra is probably due to the low frequency side of the recently detected, strong 3590/cm (2.79 micrometer) feature. This band is likely due to the combination of a moderately strong SO2 band and an additional absorption from another molecular species, perhaps H2O isolated in SO2 at low concentrations. A broad (FWHM approximately = 40-60/cm), weak band is seen near 3160/cm (3.16 micrometers) and is consistent with the presence of small quantities of H2O isolated in SO2-rich ices. There is no evidence in the spectra for the presence of H2O vapor on Io. Thus, the spectra presented here neither provide unequivocal evidence for the presence of H2O on Io nor preclude it at the low concentrations suggested by past studies.

  11. Absorption spectroscopic probe to investigate the interaction between Nd(III) and calf-thymus DNA

    NASA Astrophysics Data System (ADS)

    Devi, Ch. Victory; Singh, N. Rajmuhon

    2011-03-01

    The interaction between Nd(III) and Calf Thymus DNA (CT-DNA) in physiological buffer (pH 7.4) has been studied using absorption spectroscopy involving 4f-4f transition spectra in different aquated organic solvents. Complexation with CT-DNA is indicated by the changes in absorption intensity following the subsequent changes in the oscillator strengths of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters namely Slator-Condon ( Fk's), nephelauxetic effect ( β), bonding ( b1/2) and percent covalency ( δ) parameters are computed to correlate with the binding of Nd(III) with DNA. The absorption spectra of Nd(III) exhibited hyperchromism and red shift in the presence of DNA. The binding constant, Kb has been determined by absorption measurement. The relative viscosity of DNA decreased with the addition of Nd(III). Thermodynamic parameters have been calculated according to relevant absorption data and Van't Hoff equation. The characterisation of bonding mode has been studied in detail. The results suggested that the major interaction mode between Nd(III) and DNA was external electrostatic binding.

  12. Hydrogenation of polycyclic aromatic hydrocarbons as a factor affecting the cosmic 6.2 micron emission band

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Wdowiak, T. J.; Harrison, J. G.

    2001-01-01

    While many of the characteristics of the cosmic unidentified infrared (UIR) emission bands observed for interstellar and circumstellar sources within the Milky Way and other galaxies, can be best attributed to vibrational modes of the variants of the molecular family known as polycyclic aromatic hydrocarbons (PAH), there are open questions that need to be resolved. Among them is the observed strength of the 6.2 micron (1600 cm(-1)) band relative to other strong bands, and the generally low strength for measurements in the laboratory of the 1600 cm(-1) skeletal vibration band of many specific neutral PAH molecules. Also, experiments involving laser excitation of some gas phase neutral PAH species while producing long lifetime state emission in the 3.3 micron (3000 cm(-1)) spectral region, do not result in significant 6.2 micron (1600 cm(-1)) emission. A potentially important variant of the neutral PAH species, namely hydrogenated-PAH (H(N)-PAH) which exhibit intriguing spectral correlation with interstellar and circumstellar infrared emission and the 2175 A extinction feature, may be a factor affecting the strength of 6.2 micron emission. These species are hybrids of aromatic and cycloalkane structures. Laboratory infrared absorption spectroscopy augmented by density function theory (DFT) computations of selected partially hydrogenated-PAH molecules, demonstrates enhanced 6.2 micron (1600 cm(-1)) region skeletal vibration mode strength for these molecules relative to the normal PAH form. This along with other factors such as ionization or the incorporation of nitrogen or oxygen atoms could be a reason for the strength of the cosmic 6.2 micron (1600 cm(-1)) feature.

  13. Electronic absorption spectra and energy gap studies of Er3+ ions in different chlorophosphate glasses.

    PubMed

    Ratnakaram, Y C; Reddy, A Viswanadha; Chakradhar, R P Sreekanth

    2002-06-01

    Spectroscopic properties of Er3+ ions in different chlorophosphate glasses 50P2O5-30Na2HPO4-19.8RCl (R = Li, Na, K, Ca and Pb) are studied. The direct and indirect optical band gaps (Eopt) and the various spectroscopic parameters (E1, E2, E3, and zeta4f and alpha) are reported. The oscillator strengths of the transitions in the absorption spectrum are parameterized in terms of three Judd-Ofelt intensity parameters (omega2, omega4 and omega6). These intensity parameters are used to predict the transition probabilities (A), radiative lifetimes (tauR), branching ratios (beta) and integrated cross sections (sigma) for stimulated emission. Attention has been paid to the trend of the intensity parameters over hypersensitive transitions and optical band gaps. The lifetimes and branching ratios of certain transitions are compared with other glass matrices.

  14. Computer programs for absorption spectrophotometry.

    PubMed

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis.

  15. Assignment of the Q-bands of the chlorophylls: coherence loss via Qx - Qy mixing.

    PubMed

    Reimers, Jeffrey R; Cai, Zheng-Li; Kobayashi, Rika; Rätsep, Margus; Freiberg, Arvi; Krausz, Elmars

    2013-09-26

    We provide a new and definitive spectral assignment for the absorption, emission, high-resolution fluorescence excitation, linear dichroism, and/or magnetic circular dichroism spectra of 32 chlorophyllides in various environments. This encompases all data used to justify previous assignments and provides a simple interpretation of unexplained complex decoherence phenomena associated with Qx → Qy relaxation. Whilst most chlorophylls conform to the Gouterman model and display two independent transitions Qx (S2) and Qy (S1), strong vibronic coupling inseparably mixes these states in chlorophyll-a. This spreads x-polarized absorption intensity over the entire Q-band system to influence all exciton-transport, relaxation and coherence properties of chlorophyll-based photosystems. The fraction of the total absorption intensity attributed to Qx ranges between 7% and 33%, depending on chlorophyllide and coordination, and is between 10% and 25% for chlorophyll-a. CAM-B3LYP density-functional-theory calculations of the band origins, relative intensities, vibrational Huang-Rhys factors, and vibronic coupling strengths fully support this new assignment.

  16. Metamaterial with electromagnetic transparency under multiband absorptions

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Qi, Limei

    2017-02-01

    We propose a metal-dielectric-metal (MDM) metamaterial that has an electromagnetic (EM) transparency spectrum under multiband absorptions in the C and the X bands. The ground continuous metal film used in the conventional metamaterial absorber (MA) is replaced by a structured ground plane (SGP) in our design. The band-pass properties of the front patterned metal film and the SGP determine the EM transparency spectrum, while the magnetic and the electric resonances in the MDM structure contribute to the multiband absorptions. Due to the symmetric structure of the unit cell, the absorption bands and the EM transparency spectrum of the metamaterial have the property of polarization independency. Despite the normal incidence, the metamaterial can also be used for non-normal incidence.

  17. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for...

  18. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for...

  19. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for...

  20. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for...

  1. 47 CFR 18.305 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Field strength limits. 18.305 Section 18.305... Standards § 18.305 Field strength limits. (a) ISM equipment operating on a frequency specified in § 18.301... strength levels of emissions which lie outside the bands specified in § 18.301, unless otherwise...

  2. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for...

  3. Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities and complex refractive indices derived from infrared spectra

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.; Zhao, Guizhi

    1986-01-01

    The infrared absorption spectra of thin crystalline films of sulfur dioxide at 90 K are reported in the 2700 to 450/cm region. The observed multiplicity of the spectral features in the regions of fundamentals is attributed to factor group splittings of the modes in a biaxial crystal lattice and the naturally present minor S-34, S-36, and O-18 isotopic species. Complex refractive indices determined by an iterative Kramers-Kronig analysis of the extinction data, and absolute band strengths derived from them, are also reported in this region.

  4. Near-UV absorption cross sections and trans/cis equilibrium of nitrous acid

    SciTech Connect

    Bongartz, A.; Kames, J.; Welter, F.; Schurath, U. )

    1991-02-07

    The A {sup 1}A{double prime} {l arrow} X {sup 1}A{prime} absorption spectrum of gaseous nitrous acid has been measured in the 300-400-nm range. Absolute cross sections were determined by a combination of gas-phase and wet chemical analysis. The cross sections of prominent bands are 25% larger than the recommended values of Stockwell and Calvert. The influence of spectral resolution on absolute and differential absorption cross sections was also investigated. The integrated band area of the n{pi}* transition yields an oscillator strength f = (8.90 {plus minus} 0.36) {times} 10{sup {minus}4}, less than the reported liquid phase value of 2 {times} 10{sup {minus}3}. The equilibrium constant K = p{sub trans}/p{sub cis}, based on the assumption that the oscillator strength of the n{pi}* transition is the same for both rotamers, was found to be 3.25 {plus minus} 0.30 at 277 K. This yields an energy difference {Delta}E between trans- and cis-HONO of -2,700 J mol{sup {minus}1} in the electronic ground state, and -6,000 J mol{sup {minus}1} in the excited state.

  5. High-Absorption-Efficiency Superlattice Solar Cells by Excitons

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Kawaharazuka, Atsushi; Onomitsu, Koji; Horikoshi, Yoshiji

    2013-11-01

    The effect of excitonic absorption on solar cell efficiency has been investigated using solar cells with AlGaAs/GaAs superlattice structures. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption of bulk GaAs. Excitonic absorption shows strong and sharp peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of the superlattice solar cells are quite similar to the calculated absorption spectra considering the excitonic effect. The superlattice solar cells are confirmed to have high absorption coefficient compared with the GaAs and AlGaAs bulk solar cells. These results suggest that the enhanced absorption by excitons can increase the quantum efficiency of solar cells. This effect is more prominent for the solar cells with small absorption layer thicknesses.

  6. Interpretation of the Minkowski bands in Grw + 70 deg 8247.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1972-01-01

    Demonstration on the basis of the spectral structure of circular polarization in Grw + 70 deg 8247, that the absorption bands are at least in part molecular in origin. The spectrum of molecular helium has strong bands coincident with several of the Minkowski bands and, in particular, at high temperature shows a strong band head at about 4125 A. Helium molecules could be formed in sufficient density to give the absorption features in the star if it has a pure helium atmosphere. The Zeeman effect in molecular helium can explain in general the observed spectral features in the polarization and also may be responsible for the continuum polarization.

  7. Atmospheric Absorption Parameters for Laser Propagation

    DTIC Science & Technology

    2007-11-02

    high-resolution, good photometric accuracy data for numerous bands in the 3-5 Am region, using the facility at Kitt Peak National Solar Observatory. The...L49-L52 (2001). 44. A. Castrillo, G. Gagliardi, G. Casa , and L. Gianfrani, "Combined interferometric and absorption-spectroscopic technique for...from FT visible solar absorption spectra and evaluation of spectroscopic databases," JQRST 82, 133-150 (2003). 53. D. Jacquemart, R.R. Gamache, and L.S

  8. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  9. Observationally determined Fe II oscillator strengths

    NASA Astrophysics Data System (ADS)

    Shull, J. M.; van Steenberg, M.; Seab, C. G.

    1983-08-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  10. Molar Absorptivity Measurements in Absorbing Solvents: Impact on Solvent Absorptivity Values.

    PubMed

    Bohman, Ariel; Arnold, Mark A

    2016-10-18

    Molar absorptivity is a fundamental molecular property that quantifies absorption strength as a function of wavelength. Absolute measurements of molar absorptivity demand accounting for all mechanisms of light attenuation, including reflective losses at interfaces associated with the sample. Ideally, such measurements are performed in nonabsorbing solvents and reflective losses can be determined in a straightforward manner from Fresnel equations or effectively accounted for by path length difference methods. At near-infrared wavelengths, however, many solvents, including water, are absorbing which complicates the quantification of reflective losses. Here, generalized equations are developed for calculating absolute molar absorptivities of neat liquids wherein the dependency of reflective loss on absorption properties of the liquid are considered explicitly. The resulting equations are used to characterize sensitivity of absolute molar absorptivity measurements for solvents to the absorption strength of the solvent as well as the path length of the measurement. Methods are derived from these equations to properly account for reflective losses in general and the effectiveness of these methods is demonstrated for absolute molar absorptivity measurements for water over the combination region (5000-4000 cm(-1)) of the near-infrared spectrum. Results indicate that ignoring solvent absorption effects can incorporate wide ranging systematic errors depending upon experimental conditions. As an example, systematic errors range from 0 to 10% for common conditions used in the measurement of absolute molar absorptivity of water over the combination region of the near-infrared spectrum.

  11. Infrared study of the absorption edge of {beta}-InN films grown on GaN/MgO structures

    SciTech Connect

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-15

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that {beta}-InN films have large free-carrier concentrations present (>10{sup 19} cm{sup -3}), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in {beta}-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  12. Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone.

    PubMed

    Albarran, Guadalupe; Boggess, William; Rassolov, Vitaly; Schuler, Robert H

    2010-07-22

    Absorption spectrophotometric and mass spectrometric properties of 1,2-benzoquinone, prepared in aqueous solution by the hexachloroiridate(IV) oxidation of catechol and isolated by HPLC, are reported. Its absorption spectrum has a broad moderately intense band in the near UV with an extinction coefficient of 1370 M(-1)cm(-1) at its 389 nm maximum. The oscillator strength of this band contrasts with those of the order-of-magnitude stronger approximately 250 nm bands of most 1,4-benzoquinones. Gaussian analysis of its absorption spectrum indicates that it also has modestly intense higher energy bands in the 250-320 nm region. In atmospheric pressure mass spectrometric studies 1,2-benzoquinone exhibits very strong positive and negative mass 109 signals that result from the addition of protons and hydride ions in APCI and ESI ion sources. It is suggested that the hydride adduct is formed as the result of the highly polar character of ortho-quinone. On energetic collision the hydride adduct loses an H atom to produce the 1,2-benzosemiquinone radical anion. The present studies also show that atmospheric pressure mass spectral patterns observed for catechol are dominated by signals of 1,2-benzoquinone resulting from oxidation of catechol in the ion sources. Computational studies of the electronic structures of 1,2-benzoquinone, its proton and hydride ion adducts, and 1,2-benzosemiquinone radical anion are reported. These computational studies show that the structures of the proton and hydride adducts are similar and indicate that the hydride adduct is the proton adduct of a doubly negatively charged 1,2-benzoquinone. The contrast between the properties of 1,2- and 1,4-benzoquinone provides the basis for considerations on the effects of conjugation in aromatic systems.

  13. Diffuse Interstellar Bands in Emission

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Sarre, P.; Marshall, C. C. M.; Spekkens, K.; de Naray, R. Kuzio

    Recent Fabry-Pérot observations towards the galaxy NGC 1325 with the Southern African Large Telescope (SALT) led to the serendipitous discovery of an emission feature centered at 661.3 nm arising from material in the interstellar medium (ISM) of our Galaxy; this emission feature lies at the wavelength of one of the sharper and stronger diffuse bands normally seen in absorption. The flux of the feature is 4.2 +/- 0.5 × 10-18 es-1 cm-2 arcsec-2. It appears that this is the first observation of emission from a diffuse band carrier in the ISM, excited in this case by the interstellar radiation field. We present the discovery spectra and describe follow-up measurements proposed for SALT.

  14. Modeling of Photonic Band Gap Crystals and Applications

    SciTech Connect

    El-Kady, Ihab Fathy

    2002-01-01

    In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal

  15. Application of Strength Diagnosis.

    ERIC Educational Resources Information Center

    Newton, Robert U.; Dugan, Eric

    2002-01-01

    Discusses the various strength qualities (maximum strength, high- and low-load speed strength, reactive strength, rate of force development, and skill performance), noting why a training program design based on strength diagnosis can lead to greater efficacy and better performance gains for the athlete. Examples of tests used to assess strength…

  16. Catalogue of diffuse interstellar band measurements

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; York, D. G.; Welty, D. E.

    1976-01-01

    Diffuse-band data have been collected from the literature and reduced statistically to a common measurement system, enabling correlation analyses to be made with a larger quantity of data than previously possible. A full listing of the catalogued data is presented, along with some discussion of the correlations. One important application of such studies is the identification of cases of peculiar diffuse-band behavior, and a table is given showing all cases of band strengths deviating by more than twice the mean dispersion from the best-fit correlations. This table may be useful in planning further observations.

  17. Absorption of surface acoustic waves by graphene

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Xu, W.

    2011-06-01

    We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs). We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  18. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  19. Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge bands

    NASA Technical Reports Server (NTRS)

    Allen, M.; Frederick, J. E.

    1982-01-01

    Accurate calculations of the atmospheric opacity and the photodissociation rate of molecular oxygen in the Schumann-Runge bands (175-205) are necessary for modeling chemistry in the terrestrial upper atmosphere. The present investigation is concerned with a single simple parameterization of effective cross sections which can be used to calculate both O2 opacity and dissociation rates. Use is made of a zenith angle dependent factor which accounts for variations shown in detailed calculations. The conducted analysis is based on the results of Frederick and Hudson (1980). Attention is given to molecular oxygen effective cross sections and nitric oxide effective cross sections. It is found that the depth of the atmosphere to which solar radiation in the 175-200 nm spectral region penetrates is a sensitive function of the rotational line widths in the Schumann-Runge bands. The oscillator strength for each band measures the cross section integrated over the band while the line width determine how the absorption is distributed in wavenumber.

  20. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  1. Indirect band gap in alpha-ZrO2

    SciTech Connect

    Kwok, C.K.; Aita, C.R.

    1990-08-01

    Measurements of the absorption coefficient on the fundamental optical absorption edge of alpha ZrO2 show that an indirect interband transition at 4.70 eV precedes two previously reported direct transitions. This result is in agreement with recent theoretical calculations of the alpha ZrO2 band structure. (JS)

  2. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms.

    PubMed

    Alkaladi, Ali; How, Martin J; Zeil, Jochen

    2013-02-01

    Polarisation sensitivity is based on the regular alignment of dichroic photopigment molecules within photoreceptor cells. In crustaceans, this is achieved by regularly stacking photopigment-rich microvilli in alternating orthogonal bands within fused rhabdoms. Despite being critical for the efficient detection of polarised light, very little research has focused on the detailed arrangement of these microvilli bands. We report here a number of hitherto undescribed, but functionally relevant changes in the organisation of microvilli banding patterns, both within receptors, and across the compound eye of fiddler crabs. In all ommatidia, microvilli bands increase in length from the distal to the proximal ends of the rhabdom. In equatorial rhabdoms, horizontal bands increase gradually from 3 rows of microvilli distally to 20 rows proximally. In contrast, vertical equatorial microvilli bands contain 15-20 rows of microvilli in the distal 30 µm of the rhabdom, shortening to 10 rows over the next 30 µm and then increase in length to 20 rows in parallel with horizontal bands. In the dorsal eye, horizontal microvilli occupy only half the cross-sectional area as vertical microvilli bands. Modelling absorption along the length of fiddler crab rhabdoms suggests that (1) increasing band length assures that photon absorption probability per band remains constant along the length of photoreceptors, indicating that individual bands may act as units of transduction or adaptation; (2) the different organisation of microvilli bands in equatorial and dorsal rhabdoms tune receptors to the degree and the information content of polarised light in the environment.

  3. Absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers: an ab initio simulation.

    PubMed

    Cardozo, Thiago M; Aquino, Adélia J A; Barbatti, Mario; Borges, Itamar; Lischka, Hans

    2015-03-05

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

  4. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Peng, Wen Yu; Strand, Christopher; Mitchell Spearrin, R.; Jeffries, Jay B.; Hanson, Ronald K.; Bekal, Anish; Halder, Purbasha; Poonacha, Samhitha P.; Vartak, Sameer; Sridharan, Arun K.

    2017-01-01

    A mid-infrared quantum cascade laser absorption sensor was developed for in-situ detection of NO2 in high-temperature gas environments. A cluster of spin-split transitions near 1599.9 cm-1 from the ν3 absorption band of NO2 was selected due to the strength of these transitions and the low spectral interference from water vapor within this region. Temperature- and species-dependent collisional broadening parameters of ten neighboring NO2 transitions with Ar, O2, N2, CO2 and H2O were measured and reported. The spectral model was validated through comparisons with direct absorption spectroscopy measurements of NO2 seeded in various bath gases. The performance of the scanned wavelength modulation spectroscopy (WMS)-based sensor was demonstrated in a combustion exhaust stream seeded with varying flow rates of NO2, achieving reliable detection of 1.45 and 1.6 ppm NO2 by mole at 600 K and 800 K, respectively, with a measurement uncertainty of ±11%. 2σ noise levels of 360 ppb and 760 ppb were observed at 600 K and 800 K, respectively, in an absorption path length of 1.79 m.

  5. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane

    NASA Astrophysics Data System (ADS)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2013-05-01

    We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material

  6. Theory of graphene saturable absorption

    NASA Astrophysics Data System (ADS)

    Marini, A.; Cox, J. D.; García de Abajo, F. J.

    2017-03-01

    Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic devices, as well as for applications in mode-locking and random lasers.

  7. Picosecond laser induced electric field modulation of carotenoid absorption bands

    SciTech Connect

    Gosztola, D.; Yamada, Hiroko; Wasielewski, M.R.

    1994-04-01

    We present a new and unique way of forming an intense electric field near a molecule in order to induce electrochromism. We have done this by creating an electron-hole pair within close proximity to, but electronically isolated form, a polarizable molecule. The molecular system that we have utilized consists of a zinc porphyrin -- pyromellitic diimide light induced charge transfer complex held rigidly proximate to a {beta}-carotene using a calix[4]arene linkage. The formation of the charge separated state of the porphyrin-diimide results in a dipole formed by the 8.4 {Angstrom} separation of the electron-hole pair. The electric field from this dipole was found to induce electrochromism in the carotene.

  8. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  9. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].

    PubMed

    2005-01-01

    The infrared absorption spectra of reduced and chemically oxidized reaction center preparations from the purple bacterium Rhodobacter sphaeroides were investigated by means of high-order derivative spectroscopy. The model Gaussian band with a maximum at 810 nm and a half-band of 15 nm found in the absorption spectrum of the reduced reaction center preparation is eliminated after the oxidation of photoactive bacteriochlorophyll dimer (P). This band was related to the absorption of the P(+)y excitonic band of P. On the basis of experimental results, it was concluded that the bleaching of the P(+)y absorption band at 810 nm in the oxidized reaction center preparations gives the main contribution to the blue shift of the 800 nm absorption band of Rb. sphaeroides reaction centers.

  10. The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy.

    PubMed

    Ma, Fei; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2015-12-01

    Native LH1-RC of photosynthetic purple bacteria Thermochromatium (Tch.) tepidum, B915, has an ultra-red BChl a Qy absorption. Two blue-shifted complexes obtained by chemical modification, B893 and B882, have increasing full widths at half maximum (FWHM) and decreasing transition dipole oscillator strength. 77K Stark absorption spectroscopy studies were employed for the three complexes, trying to understand the origin of the 915 nm absorption. We found that Tr(∆α) and |∆μ| of both Qy and carotenoid (Car) bands are larger than for other purple bacterial LH complexes reported previously. Moreover, the red shifts of the Qy bands are associated with (1) increasing Tr(∆α) and |∆μ| of the Qy band, (2) the red shift of the Car Stark signal and (3) the increasing |∆μ| of the Car band. Based on the results and the crystal structure, a combined effect of exciton-charge transfer (CT) states mixing, and inhomogeneous narrowing of the BChl a site energy is proposed to be the origin of the 915 nm absorption. CT-exciton state mixing has long been found to be the origin of strong Stark signal in LH1 and special pair, and the more extent of the mixing in Tch. tepidum LH1 is mainly the consequence of the shorter BChl-BChl distances. The less flexible protein structure results in a smaller site energy disorder (inhomogeneous narrowing), which was demonstrated to be able to influence |∆μ| and absorption.

  11. Dual band metamaterial perfect absorber based on Mie resonances

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Lan, Chuwen; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-08-01

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric "atom" with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric "atom" and copper plate. Mie resonances of dielectric "atom" provide a simple way to design metamaterial perfect absorbers with high symmetry.

  12. High Pressure Noble Gas Alkali Vapor Mixtures and Their Visible and Infrared Excimer Bands.

    DTIC Science & Technology

    1980-02-01

    Dense Alkali Vapors; Near Infrared Lasers; Infrared Absorption and Emission 20. ABSTRACT (Conrfinte on reverse -Ide If nece oeery ed Identify hr block...n,mber) " The infrared absorption of saturated alkali vapors has been measured for the first time. New absorption bands are tentatively assigned to...region of infrared absorption between lu and 2 i in the saturated vapors of sodium, potassium, rubidium and cesium. This new region of absorption appears

  13. Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.

    PubMed

    Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin

    2014-08-01

    The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.

  14. Mechanical, Dielectric, and Microwave-Absorption Properties of Alumina Ceramic Containing Dispersed Ti3SiC2

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Luo, Fa; Su, Jinbu; Zhou, Wancheng; Zhu, Dongmei

    2015-03-01

    Dense Al2O3 ceramics containing dispersed Ti3SiC2 were fabricated by hot-pressed sintering. Effects of Ti3SiC2 content on the mechanical, dielectric, and microwave-absorption properties of the ceramics were investigated. The bulk density, flexural strength, and dielectric constant were enhanced by increasing the Ti3SiC2 content. The complex permittivity increased dramatically when the Ti3SiC2 content was above the percolation threshold. The dielectric performance of the ceramics at high temperatures was also studied. The results revealed increases in both the real and imaginary parts with increasing temperature. Ceramic 2.2 mm thick containing 10% ( w/ w) Ti3SiC2 had the optimum microwave-absorption properties. The absorption bandwidth below -5 dB was in the range 8.2-12.4 GHz with a minimum value of -20 dB at 9.56 GHz. Although the reflection loss increased with the increasing temperature, the ceramic still had favorable microwave-absorption properties throughout the X-band. This study contributes to the development of the microwave absorption materials for high-temperature application.

  15. Vibrational resonance enhanced broadband multiphoton absorption in a triphenylamine derivative

    SciTech Connect

    Lu Changgui; Cui Yiping; Huang Wei; Yun Binfeng; Wang Zhuyuan; Hu Guohua; Cui Jing; Lu Zhifeng; Qian Ying

    2007-09-17

    Multiphoton absorption of 2,5-bis[4-(2-N,N-diphenylaminostyryl)phenyl]-1,3,4-oxadiazole was experimentally studied by using femtosecond laser pulses. This material demonstrates a very broad multiphoton absorption band of around 300 nm width with two peaks of 1250 and 1475 nm. The first peak results from the three-photon absorption process while the second is attributed to the vibrational resonance enhanced four-photon absorption process. Combination of these two processes provides a much broader multiphoton absorption band. In this letter, the analytical solution to nonlinear transmission of a three-photon absorption process is also given when the incident beam has a Gaussian transverse spatial profile.

  16. Feasibility study of SWIR light absorption enhancement in PbS and PbSe nano-structure layers using surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Nissim, Nimrod; Rosenblit, Michael; Sarusi, Gabby

    2017-03-01

    We present a theoretical feasibility study of the use of reflection grating couplers in order to harness the Surface Plasmon Polariton (SPP) to increase the absorption efficiency in the short wavelength infrared (SWIR) spectral range of a novel SWIR to visible (VIS) direct up-conversion imaging device. This device detects the SWIR spectral band photons using high absorption PbSe/CdSe core-shell, PbS nano-spheres or PbSe nano-columns. In order to further enhance the absorption of the SWIR light within the nano-structure layer we propose to add another light absorption enhancement, known as SPP enhanced absorption. The idea is to cover the absorber layer surface with a structured metal layer that will ignite SPPs on the metal - dielectric interface, by coupling between the incident TM polarized photons and the SPP modes; this results in better field confinement at the interface that will further increase the SWIR absorption of this thin layer. Calculation of the field profile of the surface plasmon (SP) in the SWIR range shows perpendicular dominance of the SP's electrical field direction on the dielectric layer side (the PbS or PbSe/CdSe absorption layer side). Based on this result, it was found that, due to the use of quantum confined and, thus, high oscillator strength nanostructures, there is only a marginal increase in the absorption and, hence, in the quantum efficiency when using the SPP enhancement technique. Nevertheless, we show that one of the proposed configurations of the metal grating coupler, having a lamellar structure with a pitch of 1.38μm, a duty cycle (DC) of 0.12μm and a height of 60nm, is predicted to increase the total layer's absorption by 9.5%, mainly due to efficient light scattering rather than to SPP enhanced absorption.

  17. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  18. The 1.27-μm O2 continuum absorption in O2/CO2 mixtures

    NASA Astrophysics Data System (ADS)

    Fraser, G. T.; Lafferty, W. J.

    2001-12-01

    The collision-induced, near-infrared O2 continuum band overlapping the weak a1Δg-X3Σg-, v = 0-0, 1.27 μm discrete band of O2 has been investigated in O2/CO2 mixtures at room temperature (T = 296 K) for total densities from 1.8 to 9.3 times that of an ideal gas under standard conditions (T = 273.15 K and P = 101.325 kPa), i.e., from 1.8 to 9.3 amagats. Absorption spectra were recorded at 0.5 cm-1 resolution using a Fourier transform spectrometer and an 84-m pathlength. A least squares analysis of the integrated band strength, Stotal = SO2ρO2 + SO2 - O2 ρO22 + SO2 - CO2ρO2ρCO2, as a function of the carbon dioxide density, ρCO2, and the oxygen density, ρ02, yields SO2-Co2 = 2.953(32) × 10-43 cm-2 (molecule/cm3)-2 (i.e., 2.132(23) × 10-4 cm-2 amagat-2). The SO2-CO2 coefficient is ˜3 times greater than the corresponding SO2-N2 coefficient determined from studies of O2/N2 mixtures, illustrating the efficiency of large electric multipolar moments in inducing continuum absorption in the 1.27-μm band of O2. The results support the calculations by Brown and Tipping [2000], which demonstrate the importance of water, with its large electric dipole moment, in enhancing the collision-induced absorption bands of O2 and N2 in the atmosphere. We suggest that the apparent inability of radiative transfer models to accurately account for the increased atmospheric absorption present when water vapor levels increase may be due in part to the neglect of the intensity enhancement of a number of continuum bands and of the far wings of discrete bands by water molecule collisions.

  19. Adjustable gastric banding (image)

    MedlinePlus

    ... normal digestive process. In this procedure, a hollow band made of special material is placed around the ... pouch and causes a feeling of fullness. The band can be tightened or loosened over time to ...

  20. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.

    2017-01-01

    In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.

  1. Observation of the visible absorption spectrum of H2O(+)

    NASA Technical Reports Server (NTRS)

    Das, Biman; Farley, John W.

    1991-01-01

    The water cation, H2O(+), has been studied, using laser absorption spectroscopy in a velocity-modulated discharge. It is shown that it is possible to observe the absorption spectrum of an ion that is not a terminal ion, despite the weak absorption oscillator strength, and despite the use of a relatively noisy dye laser. The relative intensities of the absorption lines have been measured to an accuracy of 13 percent. It is concluded that if the absorption cross section of a single transition can be measured absolutely, then the entire manifold will be known absolutely.

  2. New Laboratory Data on a Molecular Band at 4429 Å

    NASA Astrophysics Data System (ADS)

    Araki, M.; Linnartz, H.; Kolek, P.; Ding, H.; Boguslavskiy, A.; Denisov, A.; Schmidt, T. W.; Motylewski, T.; Cias, P.; Maier, J. P.

    2004-12-01

    New laboratory data are presented for the previously reported molecular absorption band at 4429 Å observed in a benzene plasma matching the strongest diffuse interstellar band (DIB) at 4428.9 Å. Gas-phase absorption spectra are presented for rotational temperatures of ~15 and 200 K. The observations indicate that it is unlikely that the laboratory band and the 4429 Å DIB are related. Eleven isomers of C5H5(+) and C6H5(+), both neutral and cationic, were considered as possible carriers of the laboratory band in view of the observed rotational profiles and deuterium isotope shifts. The experimental data and theoretical calculations (CASPT3, MRCI) indicate that the HCCHCHCHCH radical, a planar but nonlinear chain with one hydrogen on each carbon, is the most probable candidate causing the 4429 Å laboratory absorption.

  3. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect

    Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.

    2014-08-28

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  4. Two-Exciton and Exciton-Magnon Bands in DIMANGANESE(+) Magnets.

    NASA Astrophysics Data System (ADS)

    Darwish, Saqer Mohammed

    The temperature dependence of several exciton -magnon and two-exciton bands in the optical absorption spectra of three antiferromagnets have been studied using a Cary 14 spectrophotometer in conjunction with an Air Product Displex, closed-cycle helium refrigerator. The three antiferromagnets with their T_{ rm N} are: KMnF_3, T_{rm N} = 88.3 K; RbMnF_3, T_{ rm N} = 82.6 K; and MnF_2 , T_{rm N} = 67.3 K. In this work the temperature dependence (10 ^circK to 300^ circK) of the line position E, the oscillator strength f, and the half-width of half maximum delta, for several of these bands were measured. For the two-exciton bands f increases where as for the exciton-magnon and exciton-magnon-phonon bands f decreases as the temperature is lowered through T _{rm N}. The temperature dependence of f for the two-exciton bands in the three antiferromagnets agrees well with the theoretical predictions of Fujiwara et al. For the exciton-magnon bands, f increases with increasing T up to T_{rm N} and then remains essentially constant above T_{rm N}, in reasonable agreement with the theory of Shinagawa and Tanabe. For the exciton-magnon-phonon bands, a slight increase in f above T_{rm N} is believed to be due to the role of a phonon. The temperature dependence of the line positions E(T) is also different for the exciton-magnon and two-exciton bands. The exciton-magnon or exciton-magnon-phonon bands undergo a blue shift in E(T) as the temperature is lowered through T_{rm N}. This is semiquantitatively understood in terms of the exchange field using the molecular field theory of Yen et al. On the other hand, most of the two-exciton bands do not show any anomaly in E(T) below T_{rm N}. Instead their line positions are described well by the Einstein-type relation E(T) = E(O) + A ^{*}/ (exp(T^ {*}/T) - 1), where T^{*} represents an odd symmetry phonon with frequency upsilon * = kT^{*} /h. Above T_{rm N} , the exciton-magnon-phonon bands also follow the same equation. From these fits

  5. Excited bands in even-even rare-earth nuclei

    SciTech Connect

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-09-13

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands.

  6. Low Power Band to Band Tunnel Transistors

    DTIC Science & Technology

    2010-12-15

    the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley

  7. High-resolution observations of the 6815-A band of methane in the major planets

    SciTech Connect

    Baines, K.H.; Schempp, W.V.; Smith, W.H.

    1983-12-01

    High-resolution (0.1-A) spectra of the 6815-A band of methane are presented for Jupiter, Saturn, Uranus, and Neptune. Spectra for Uranus, Neptune, and the equatorial region of Saturn were acquired with the SPIFI (Smith, Hicks, and Born (1978) at the 2.2-m telescope of the Mauna-Kea Observatory during May and June 1980. Additional spectra were obtained for Jupiter and the northern temperate and polar regions of Saturn in December 1980 and January 1981 from Kitt Peak National Obsevatory's McMath Solar Telescope. The spectra show a dichotomy in strength of methane absorption between Jupiter-Saturn and Uranus-Neptune. A simple model analysis, based on homogeneous scattering models, is unable to resolve whether this dichotomy is due to an actual increase in the methane mixing ratio with solar distance or to the temperature dependence of line strengths and absorption pathlengths in these atmospheres. If the rotational quantum number for the prominent 6818.9-A feature is J less than 4, then significant aerosol extinction must exist within the visibly accessible portion of Uranus' atmosphere for the methane mixing ratio to be greater than the solar value.

  8. A kind of transmission-type lens using in x-ray band

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Xiao-li; Xu, Xiangyan

    2015-02-01

    The negative refractive index characteristics of one-dimensional photonic crystal consisted by Fibonacci multi-layer films has been studied by numerical method. The refractive indices for two materials, which are used to construct the Fibonacci multi-layer films, are 0.920 and 0.999, respectively. The calculation result shows that, on one hand, there are several negative refractive index zones for this kind of photonic crystal even if the refractive indices are very small; on the other hand, the difference is very large for the frequency between the zones. As an example, a kind of transmission-type plano-concave lens is designed. The simulation of the electromagnetic field distribution for the lens demonstrates that the lens can focus the incoming X-ray radiation. At the same time, the calculation of the absorption strength and refractive indices for real materials shows that not only there are large differences for the absorption strength with different materials, but also the refractive indices for real materials are different in X-ray band. Obviously, the characteristics above support a kind of transmission-type lens using in X-ray.

  9. Absorption in Extended Inhomogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick

    2008-01-01

    The launch of several different sensors, including CloudSat, into the A-train constellation of satellites allows us for the first time to compute absorption that can occur in realistic vertically inhomogeneous clouds including multiple cloud decks. CloudSat data show that these situations are common. Therefore, understanding vertically inhomogeneous clouds is important from both climate and satellite atmospheric composition remote sensing perspectives. Satellite passive sensors that operate from the near IR to the UV often rely on radiative cloud pressures derived from absorption in oxygen bands (A, B, gamma, or O2-O2 bands) or from rotational-Raman scattering in order to retrieve information about atmospheric trace gases. The radiative cloud pressure is distinct from the physical cloud top derived from thermal infrared measurements. Therefore, the combination of information from different passive sensors yields some information about the cloud vertical profile. When either or both the clouds or atmospheric absorbers (trace gases and aerosols) are vertically inhomogeneous, the use of an effective cloud pressure derived from these approaches may lead to errors. Here, we focus on several scenarios (deep convective clouds and distinct two layer clouds) based on realistic cloud optical depth vertical profiles derived from the CloudSatfMODIS combination. We focus on implications for trace-gas column amount retrievals (specifically ozone and NO2) and derived surface UV irradiance from the Ozone Monitoring Instrument (OMI) on the Atrain Aura platform.

  10. Dual band metamaterial perfect absorber based on artificial dielectric “molecules”

    PubMed Central

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric “molecules” with high symmetry. The artificial dielectric “molecule” consists of four “atoms” of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  11. Absorption of light dark matter in semiconductors

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derive the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. With only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.

  12. Effective mie-scattering and CO2 absorption in the dust-laden Martian atmosphere and its impact on radiative-convective temperature changes in the lower scale heights

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.

    1976-01-01

    A time dependent computer model of radiative-convective-conductive heat transfer in the Martian ground-atmosphere system was refined by incorporating an intermediate line strength CO2 band absorption which together with the strong-and weak-line approximation closely simulated the radiative transmission through a vertically inhomogeneous stratification. About 33,000 CO2 lines were processed to cover the spectral range of solar and planetary radiation. Absorption by silicate dust particulates, was taken into consideration to study its impact on the ground-atmosphere temperature field as a function of time. This model was subsequently attuned to IRIS, IR-radiometric and S-band occultation data. Satisfactory simulations of the measured IRIS spectra were accomplished for the dust-free condition. In the case of variable dust loads, the simulations were sufficiently fair so that some inferences into the effect of dust on temperature were justified.

  13. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  14. Interstellar medium. Pseudo-three-dimensional maps of the diffuse interstellar band at 862 nm.

    PubMed

    Kos, Janez; Zwitter, Tomaž; Wyse, Rosemary; Bienaymé, Olivier; Binney, James; Bland-Hawthorn, Joss; Freeman, Kenneth; Gibson, Brad K; Gilmore, Gerry; Grebel, Eva K; Helmi, Amina; Kordopatis, Georges; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren A; Seabroke, George; Sharma, Sanjib; Siebert, Arnaud; Siviero, Alessandro; Steinmetz, Matthias; Watson, Fred G; Williams, Mary E K

    2014-08-15

    The diffuse interstellar bands (DIBs) are absorption lines observed in visual and near-infrared spectra of stars. Understanding their origin in the interstellar medium is one of the oldest problems in astronomical spectroscopy, as DIBs have been known since 1922. In a completely new approach to understanding DIBs, we combined information from nearly 500,000 stellar spectra obtained by the massive spectroscopic survey RAVE (Radial Velocity Experiment) to produce the first pseudo-three-dimensional map of the strength of the DIB at 8620 angstroms covering the nearest 3 kiloparsecs from the Sun, and show that it follows our independently constructed spatial distribution of extinction by interstellar dust along the Galactic plane. Despite having a similar distribution in the Galactic plane, the DIB 8620 carrier has a significantly larger vertical scale height than the dust. Even if one DIB may not represent the general DIB population, our observations outline the future direction of DIB research.

  15. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  16. AKARI OBSERVATIONS OF BROWN DWARFS. I. CO AND CO{sub 2} BANDS IN THE NEAR-INFRARED SPECTRA

    SciTech Connect

    Yamamura, Issei; Tsuji, Takashi; Tanabe, Toshihiko E-mail: ttsuji@ioa.s.u-tokyo.ac.j

    2010-10-10

    Near-infrared medium-resolution spectra of seven bright brown dwarfs are presented. The spectra were obtained with the Infrared Camera on board the infrared astronomical satellite AKARI, covering 2.5-5.0 {mu}m with a spectral resolution of approximately 120. The spectral types of the objects range from L5 to T8 and enable us to study the spectral evolution of brown dwarfs. The observed spectra are in general consistent with predictions from previous observations and photospheric models; spectra of L-type dwarfs are characterized by continuum opacity from dust clouds in the photosphere, while very strong molecular absorption bands dominate the spectra in T-type dwarfs. We find that the CO fundamental band around 4.6 {mu}m is clearly seen even in the T8 dwarf 2MASS J041519 - 0935, confirming the presence of a non-equilibrium chemical state in the atmosphere. We also identify the CO{sub 2} fundamental stretching-mode band at 4.2 {mu}m for the first time in the spectra of late-L- and T-type brown dwarfs. As a preliminary step towards interpretation of the data obtained by AKARI, we analyze the observed spectra by comparing with those predicted by the unified cloudy model (UCM). Although overall spectral energy distributions can be reasonably fitted with the UCM, observed CO and CO{sub 2} bands in late-L and T dwarfs are unexpectedly stronger than the model predictions assuming local thermodynamical equilibrium. We examine the vertical mixing model and find that this model explains the CO band at least partly in the T dwarfs 2MASS J041519 - 0935 and 2MASS J055919 - 1404. The CO fundamental band also shows excess absorption against the predicted one in the L9 dwarf SDSS J083008+4828. Since CO is already highly abundant in the upper photospheres of late-L dwarfs, the extra CO due to vertical mixing has little effect on the CO band strengths, and the vertical mixing model cannot be applied to this L dwarf. A more serious problem is that the significant enhancement of the

  17. Flexibility and Muscular Strength.

    ERIC Educational Resources Information Center

    Liemohn, Wendell

    1988-01-01

    This definition of flexibility and muscular strength also explores their roles in overall physical fitness and focuses on how increased flexibility and muscular strength can help decrease or eliminate lower back pain. (CB)

  18. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  19. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  20. Enhancing antibacterium and strength of cellulosic paper by coating triclosan-loaded nanofibrillated cellulose (NFC).

    PubMed

    Liu, Kai; Chen, Lihui; Huang, Liulian; Ni, Yonghao; Sun, Bo

    2015-03-06

    The nanofibrillated cellulose (NFC) was used as substrates to carry triclosan (TCS), which was then applied as a coating agent for impacting antibacterial property to paper while also improving its strength. The TCS-loaded NFC material was further characterized. UV-vis spectra results showed that a characteristic absorption band at 282 nm was observed, which was attributed to triclosan, confirming its successful loading onto NFC. The antibacterial activity tests indicated that the coated paper exhibited excellent antibacterial activity against Escherichia coli, and the growth inhibition of bacteria (GIB) increased as the loading amount of triclosan coated on paper increased. The GIB can reach 98.7% when the 0.023 g TCS-loaded NFC was coated on paper. Meanwhile, the tensile and tear index of the coated paper increased by 18.0% and 26.4%, respectively compared to the blank paper. Therefore, the triclosan-loaded paper could be potentially used in the medical field.

  1. Strength Training for Girls.

    ERIC Educational Resources Information Center

    Connaughton, Daniel; Connaughton, Angela; Poor, Linda

    2001-01-01

    Strength training can be fun, safe, and appropriate for young girls and women and is an important component of any fitness program when combined with appropriate cardiovascular and flexibility activities. Concerns and misconceptions regarding girls' strength training are discussed, presenting general principles of strength training for children…

  2. Absorption-Line Studies of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  3. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  4. 47 CFR 15.243 - Operation in the band 890-940 MHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... frequency energy to measure the characteristics of a material. Devices operated pursuant to the provisions... message. (b) The field strength of any emissions radiated within the specified frequency band shall not...) The field strength of emissions radiated on any frequency outside of the specified band shall...

  5. Water vapour and greenhouse trapping: The role of far infrared absorption

    NASA Astrophysics Data System (ADS)

    Sinha, Ashok; Harries, John E.

    Few observations have been made of atmospheric absorption across the far infra-red. Yet water vapour absorption in this spectral region may significantly effect climate. The impact of far infra-red absorption is assessed by calculating the spectral variation of the total and water vapour greenhouse effects, for the sub-arctic winter (SAW) and tropical (TRP) standard atmospheres. Although the calculated efficiency of greenhouse trapping peaks outside of the far infra-red, the low strength there of the Planck function causes relatively small absolute forcings, except in the carbon dioxide and ozone bands. The sensitivity of the normalised greenhouse effect to water vapour concentration is largest in the far infra-red for the SAW atmosphere, and in the window region for the TRP. The sensitivity differs most between the two atmospheres in the far infra-red. Maximum water vapour greenhouse trapping arises in the far infra-red, over the middle/upper troposphere; in the SAW case the contribution from the water vapour continuum is virtually eliminated. Improved spectral observations and simulations at far infra-red wavelengths thus appear necessary to better understand the contemporary greenhouse effect, and to validate models of climate change.

  6. Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses.

    PubMed

    Moorthy, L R; Rao, T S; Janardhnam, K; Radhapathy, A

    2000-08-01

    Alkali chloroborophosphate glasses containing 1 mol% of Er3+ ions were studied experimentally using the absorption and emission spectroscopy. The energy level scheme for the 4f11 (Er3+) electronic configuration was deduced from the observed band energies of the absorption spectra in terms of a parametrized Hamiltonian using the various free-ion spectroscopic parameters. Oscillator strengths (f) measured from the absorption spectra have been analyzed using the Judd-Ofelt theory to evaluate the three intensity parameters omegalambda (lambda = 2, 4 and 6). Reasonable agreement between the measured and calculated f values has been found. Electric and magnetic dipole transition probabilities, fluorescence branching ratios, integrated emission cross sections and radiative lifetimes were calculated for all the excited states of Er3+ ions. The non-radiative (WNR) relaxation rates from the excited levels to the next lower levels have been calculated and the relationship between the energy gap and non-radiative relaxation rate has been established. These results were used to predict the possible potential laser transitions in Er-doped alkali chloroborophosphate glasses.

  7. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  8. Effect of space flight on bone strength

    NASA Technical Reports Server (NTRS)

    Spengler, D. M.; Morey, E. R.; Carter, D. R.; Turner, R. T.; Baylink, D. J.

    1982-01-01

    To test the possibility that spaceflight has a deleterious effect on bone mechanical properties, femur breaking strength by torsional loading in rats that had been flown for 19 days aboard Cosmos 936 was determined. The results showed that femurs from flight rats were less stiff than the flight controls, and failed under torsion at a lower torque and energy of absorption. The defect was corrected following space flight and could be prevented during space flight by centrifuging the rats at 1 x g. Altered bone geometry due to inhibition of bone formation at the periosteal surface provides the most likely explanation for the decrease in bone strength during spaceflight.

  9. Ionic strength and pH effect on the Fe(III)-imidazolate bond in the heme pocket of horseradish peroxidase: an EPR and UV-visible combined approach.

    PubMed

    Laurenti, E; Suriano, G; Ghibaudi, E M; Ferrari, R P

    2000-10-01

    The effects of chloride, dihydrogenphosphate and ionic strength on the spectroscopic properties of horseradish peroxidase in aqueous solution at pH=3.0 were investigated. A red-shift (lambda=408 nm) of the Soret band was observed in the presence of 40 mM chloride; 500 mM dihydrogenphosphate or chloride brought about a blue shift of the same band (lambda=370 nm). The EPR spectrum of the native enzyme at pH 3.0 was characterized by the presence of two additional absorption bands in the region around g=6, with respect to pH 6.5. Chloride addition resulted in the loss of these features and in a lower rhombicity of the signal. A unique EPR band at g=6.0 was obtained as a result of the interaction between HRP and dihydrogenphosphate, both in the absence and presence of 40 mM Cl-. We suggest that a synergistic effect of low pH, Cl- and ionic strength is responsible for dramatic modifications of the enzyme conformation consistent with the Fe(II)-His170 bond cleavage. Dihydrogenphosphate as well as high chloride concentrations are shown to display an unspecific effect, related to ionic strength. A mechanistic explanation for the acid transition of HRP, previously observed by Smulevich et al. [Biochemistry 36 (1997) 640] and interpreted as a pure pH effect, is proposed.

  10. Wide Band to ''Double Band'' upgrade

    SciTech Connect

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs.

  11. Laboratory studies of infrared absorption by NO2 and HNO3

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Goldman, A.; Bonomo, F.

    1975-01-01

    Data concerning the quantitative absorption in the 11 and 22 micron region by HNO3 were obtained. Results are presented indicating the temperature dependence of these bands of HNO3 vapor. The 21.8 micron absorption bands of HNO3 vapor at 40 C are discussed along with the integrated intensity and line parameters for the 6.2 micron band of NO2.

  12. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  13. Adapted Resistance Training Improves Strength in Eight Weeks in Individuals with Multiple Sclerosis.

    PubMed

    Keller, Jennifer L; Fritz, Nora; Chiang, Chen Chun; Jiang, Allen; Thompson, Tziporah; Cornet, Nicole; Newsome, Scott D; Calabresi, Peter A; Zackowski, Kathleen

    2016-01-29

    Hip weakness is a common symptom affecting walking ability in people with multiple sclerosis (MS). It is known that resistance strength training (RST) can improve strength in individuals with MS, however; it remains unclear the duration of RST that is needed to make strength gains and how to adapt hip strengthening exercises for individuals of varying strength using only resistance bands. This paper describes the methodology to set up and implement an adapted resistance strength training program, using resistance bands, for individuals with MS. Directions for pre- and post-strength tests to evaluate efficacy of the strength-training program are included. Safety features and detailed instructions outline the weekly program content and progression. Current evidence is presented showing that significant strength gains can be made within 8 weeks of starting a RST program. Evidence is also presented showing that resistance strength training can be successfully adapted for individuals with MS of varying strength with little equipment.

  14. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  15. Perfect electromagnetic absorption at one-atom-thick scale

    SciTech Connect

    Li, Sucheng; Duan, Qian; Li, Shuo; Yin, Qiang; Lu, Weixin; Li, Liang; Hou, Bo; Gu, Bangming; Wen, Weijia

    2015-11-02

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  16. Sapphire fiber evanescent wave absorption in turbid media.

    PubMed

    Zhang, Jian; Xiong, Feibing; Djeu, Nicholas

    2009-08-01

    The influence of particulates on sapphire fiber evanescent wave absorption by water has been studied. Suspensions containing micro-sized graphite flakes and glassy carbon powder were used. Conventional free-space transmittance measurements of these samples showed strong absorption and scattering, which severely screened the absorption by water. However, the absorption on the water band determined from the evanescent wave interaction was unaffected by the presence of the graphite flakes. These results indicate that fiber-optic evanescent wave chemical sensors may be suitable for process control applications involving turbid reactor streams.

  17. Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.

    2012-01-01

    The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.

  18. What band rocks the MTB? (Invited)

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  19. 47 CFR 27.804 - Field strength limits at WMTS facility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Field strength limits at WMTS facility. 27.804... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility. For any operation in the 1392-1395 MHz band, the predicted or measured field strength—into the WMTS...

  20. 47 CFR 27.804 - Field strength limits at WMTS facility.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Field strength limits at WMTS facility. 27.804... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility. For any operation in the 1392-1395 MHz band, the predicted or measured field strength—into the WMTS...