Science.gov

Sample records for absorption band structure

  1. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon.

    PubMed

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-05-27

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.

  2. Full band structure calculation of two-photon indirect absorption in bulk silicon

    SciTech Connect

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-03-28

    Degenerate two-photon indirect absorption in silicon is an important limiting effect on the use of silicon structures for all-optical information processing at telecommunication wavelengths. We perform a full band structure calculation to investigate two-photon indirect absorption in bulk silicon, using a pseudopotential description of the energy bands and an adiabatic bond charge model to describe phonon dispersion and polarization. Our results agree well with some recent experimental results. The transverse acoustic/optical phonon-assisted processes dominate.

  3. Dual-Band Perfect Absorption by Breaking the Symmetry of Metamaterial Structure

    NASA Astrophysics Data System (ADS)

    Hai, Le Dinh; Qui, Vu Dinh; Dinh, Tiep Hong; Hai, Pham; Giang, Trinh Thị; Cuong, Tran Manh; Tung, Bui Son; Lam, Vu Dinh

    2017-02-01

    Since the first proposal of Landy et al. (Phys Rev Lett 100:207402, 2008), the metamaterial perfect absorber (MPA) has rapidly become one of the most crucial research trends. Recently, dual-band, multi-band and broadband MPA have been highly desirable in electronic applications. In this paper, we demonstrate and evaluate a MPA structure which can generate dual-band absorption operating at the microwave frequency by breaking the symmetry of structure. There is an agreement between simulation and experimental results. The results can be explained by using the equivalent LC circuit and the electric field distribution of this structure. In addition, various structures with different symmetry configurations were studied to gain greater insight into the absorption.

  4. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  5. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  6. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  7. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  8. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  9. Calculating Effect of Point Defects on Optical Absorption Spectra of III-V Semiconductor Superlattices Based on (8x8) k-dot-p Band Structures

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey; Cardimona, David; Krishna, Sanjay

    For a superlattice which is composed of layered zinc-blende structure III-V semiconductor materials, its realistic anisotropic band structures around the Gamma-point are calculated by using the (8x8)k-dot-p method with the inclusion of the self-consistent Hartree potential and the spin-orbit coupling. By including the many-body screening effect, the obtained band structures are further employed to calculate the optical absorption coefficient which is associated with the interband electron transitions. As a result of a reduced quasiparticle lifetime due to scattering with point defects in the system, the self-consistent vertex correction to the optical response function is also calculated with the help of the second-order Born approximation.

  10. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  11. Shape of impurity electronic absorption bands in nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1994-11-01

    The impurity-matrix anisotropic static intermolecular interactions, orientation-statistical properties, and electronic structure of uniaxial impurity molecules are shown to have a significant influence on spectral moments of the electronic absorption bands of impurities in the nematic liquid crystal. 14 refs., 3 figs.

  12. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  13. Band Structures of Plasmonic Polarons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Lambert, Henry; Giustino, Feliciano

    2015-03-01

    In angle-resolved photoemission spectroscopy (ARPES), the acceleration of a photo-electron upon photon absorption may trigger shake-up excitations in the sample, leading to the emission of phonons, electron-hole pairs, and plasmons, the latter being collective charge-density fluctuations. Using state-of-the-art many-body calculations based on the `GW plus cumulant' approach, we show that electron-plasmon interactions induce plasmonic polaron bands in group IV transition metal dichalcogenide monolayers (MoS2, MoSe2, WS2, WSe2). We find that the energy vs. momentum dispersion relations of these plasmonic structures closely follow the standard valence bands, although they appear broadened and blueshifted by the plasmon energy. Based on our results we identify general criteria for observing plasmonic polaron bands in the angle-resolved photoelectron spectra of solids.

  14. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    PubMed

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  15. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection.

    PubMed

    Leidel, Nils; Chernev, Petko; Havelius, Kajsa G V; Schwartz, Lennart; Ott, Sascha; Haumann, Michael

    2012-08-29

    High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe(2)(μ-adt)(CO)(4)(PMe(3))(2)] (1, adt = S-CH(2)-(NCH(2)Ph)-CH(2)-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,Ph), 1HHy(CO,Ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (Kß(2,5) emission) electronic transitions, and of Kα RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by ~1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of ~2.3 eV for 1(powder) and ~2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2)-y(2)) levels of ~0.5 eV for the nonhydride and ~0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,Ph). XAES-DFT thus enables verification of the effects of ligand

  16. Absorption enhancement of a dual-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Han, Gui Ming; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2017-02-01

    In this paper, we propose and fabricate a dual-band metamaterial absorber in 6-24 THz region. Electric field distribution reveal that the first absorption band is obtained from localized surface plasmon (LSP) modes which are excited both on inside and outside edges of each circular-patterned metal-dielectric stack, while the second absorption band is excited by LSP modes on outside edges of each stack. Measured results indicate that the absorption band width can be tuned by increasing the radius of circular-patterned layers or reducing the thickness of dielectric spacing layers. Moreover, the designed dual-band metamaterial absorber is independent on circular-patterned dielectric layer combinations.

  17. Photonic band structure

    SciTech Connect

    Yablonovitch, E.

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  18. Interpretation of absorption bands in airborne hyperspectral radiance data.

    PubMed

    Szekielda, Karl H; Bowles, Jeffrey H; Gillis, David B; Miller, W David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments.

  19. Interpretation of Absorption Bands in Airborne Hyperspectral Radiance Data

    PubMed Central

    Szekielda, Karl H.; Bowles, Jeffrey H.; Gillis, David B.; Miller, W. David

    2009-01-01

    It is demonstrated that hyperspectral imagery can be used, without atmospheric correction, to determine the presence of accessory phytoplankton pigments in coastal waters using derivative techniques. However, care must be taken not to confuse other absorptions for those caused by the presence of pigments. Atmospheric correction, usually the first step to making products from hyperspectral data, may not completely remove Fraunhofer lines and atmospheric absorption bands and these absorptions may interfere with identification of phytoplankton accessory pigments. Furthermore, the ability to resolve absorption bands depends on the spectral resolution of the spectrometer, which for a fixed spectral range also determines the number of observed bands. Based on this information, a study was undertaken to determine under what circumstances a hyperspectral sensor may determine the presence of pigments. As part of the study a hyperspectral imager was used to take high spectral resolution data over two different water masses. In order to avoid the problems associated with atmospheric correction this data was analyzed as radiance data without atmospheric correction. Here, the purpose was to identify spectral regions that might be diagnostic for photosynthetic pigments. Two well proven techniques were used to aid in absorption band recognition, the continuum removal of the spectra and the fourth derivative. The findings in this study suggest that interpretation of absorption bands in remote sensing data, whether atmospherically corrected or not, have to be carefully reviewed when they are interpreted in terms of photosynthetic pigments. PMID:22574053

  20. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  1. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    PubMed

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  2. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  3. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  4. Modelling of Collision Induced Absorption Spectra Of H2-H2 Pairs for the Planetary Atmospheres Structure: The Second Overtone Band

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra; Borysow, Jacek I.

    1998-01-01

    The main objective of the proposal was to model the collision induced, second overtone band of gaseous hydrogen at low temperatures. The aim of this work is to assist planetary scientists in their investigation of planetary atmospheres, mainly those of Uranus and Neptune. The recently completed extended database of collision induced dipole moments of hydrogen pairs allowed us, for the first time, to obtain dipole moment matrix elements responsible for the roto-vibrational collision induced absorption spectra of H2-H2 in the second overtone band. Despite our numerous attempts to publish those data, the enormous volume of the database did not allow us to do this. Instead, we deposited the data on a www site. The final part of this work has been partially supported by NASA, Division for Planetary Atmospheres. In order to use our new data for modelling purpose, we first needed to test how well we can reproduce the existing experimental data from theory, when using our new input data. Two papers resulted from this work. The obtained agreement between theoretical results and the measurements appeared to be within 10-30%. The obviously poorer agreement than observed for the first H2 overtone, the fundamental, and the rototranslational bands can be attributed to the fact that dipole moments responsible for the second overtone are much weaker, therefore susceptible to larger numerical uncertainties. At the same time, the intensity of the second overtone band is much weaker and therefore it is much harder to be measured accurately in the laboratory. We need to point out that until now, no dependable model of the 2nd overtone band was available for modelling of the planetary atmospheres. The only one, often referred to in previous works on Uranian and Neptune's atmospheres, uses only one lineshape, with one (or two) parameter(s) deduced at the effective temperature of Uranus (by fitting the planetary observation). After that, the parameter(s) was(were) made temperature

  5. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  6. Relation of molecular structure to Franck-Condon bands in the visible-light absorption spectra of symmetric cationic cyanine dyes.

    PubMed

    Lin, Katrina Tao Hua; Silzel, John W

    2015-05-05

    A Franck-Condon (FC) model is used to study the solution-phase absorbance spectra of a series of seven symmetric cyanine dyes having between 22 and 77 atoms. Electronic transition energies were obtained from routine visible-light absorbance and fluorescence emission spectra. Harmonic normal modes were computed using density functional theory (DFT) and a polarizable continuum solvent model (PCM), with frequencies corrected using measured mid-infrared spectra. The model predicts the relative energies of the two major vibronic bands to within 5% and 11%, respectively, and also reproduces structure-specific differences in vibronic band shapes. The bands themselves result from excitation of two distinct subsets of normal modes, one with frequencies between 150 and 625cm(-1), and the other between 850 and 1480cm(-1). Vibronic transitions excite symmetric in-plane bending of the polymethine chain, in-plane bends of the polymethine and aromatic C-H bonds, torsions and deformations of N-alkyl substituents, and in the case of the indocyanines, in-plane deformations of the indole rings. For two dyes, the model predicts vibronic coupling into symmetry-breaking torsions associated with trans-cis photoisomerization.

  7. Constraints on the absorption band model of Q

    NASA Astrophysics Data System (ADS)

    Lundquist, Gary M.; Cormier, Vernon C.

    1980-10-01

    First order models for the combined depth and frequency dependence of Q are derived and tested using several independent constraints. (1) Using a microphysics approach, the adoption of an absorption band as a first-order model for the frequency dependence of Q is justified, and the expected depth behavior of relaxation times in the earth is derived. The significant new parameter in this model of Q is τ2, the period at the half-amplitude point of the high frequency end of the absorption band. (2) Using observed body-wave spectra, the existence of a frequency dependence in Q is proved, and the average location of that frequency dependence (i.e., τ2) is estimated to be in the range 1 to 2.5 Hz. (3) Under the constraints of Q model ratios, the depth dependence of τ2 is estimated by assuming that a free-oscillation and a body-wave Q model both measure Q from the same absorption band. The resulting τ2 is about 0.04 s in the upper 200 km and then increases exponentially with depth in the mantle to about 1.9 at the core mantle boundary. The Q model ratios are better satisfied if a second absorption band is hypothesized to operate in the depth range of the asthenosphere. In that case, τ2 for the mantle absorption band varies from about 0.09 s in the first 200 km to 4.0 s at 2886 km, and τ2 for the asthenosphere absorption band is about 0.005 s in the depth range 35-220 km. (4) Both classes of Q models are tested in the time domain using synthetic seismograms of Russian and American nuclear explosions. Although trade-offs between source and mantle transfer functions preclude further refinement of the models at this time, a compatibility is demonstrated between the double absorption band model and time domain constraints, including arrival time and pulse shape.

  8. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-06-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

  9. Fe-substituted indium thiospinels: New intermediate band semiconductors with better absorption of solar energy

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Chen, Haijie; Qin, Mingsheng; Yang, Chongyin; Zhao, Wei; Liu, Yufeng; Zhang, Wenqing; Huang, Fuqiang

    2013-06-01

    The indium thiospinels In2S3 and MgIn2S4 are promising host for the intermediated band (IB) photovoltaic materials due to their ideal band gap value. Here, the optical properties and electronic structure of Fe-doped In2S3 and MgIn2S4 have been investigated. All the Fe-substituted semiconductors exhibit two additional absorption bands at about 0.7 and 1.25 eV, respectively. The results of first-principles calculations revealed that the Fe substituted at the octahedral In site would introduce a partially filled IB into the band gap. Thanks to the formation of IB, the Fe-substituted semiconductors have the ability to absorb the photons with energies below the band gap. With the wide-spectrum absorption of solar energy, these materials possess potential applications in photovoltaic domain.

  10. PRINCIPAL INFRARED ABSORPTION BANDS OF SOME DERIVATIVES OF 1,3-DINITROBENZENE AND 1,3,5TRINITROBENZENE,

    DTIC Science & Technology

    The frequencies of the strong infrared absorption bands of 46 derivatives of di- and tri-nitrobenzene were measured and tabulated. The vibrational ... modes producing these absorptions were assigned in most cases. The effect of structure on the frequency of the absorption due to each of the modes is discussed, with emphasis on identifying unknowns. (Author)

  11. Concerning the Optical Absorption Band of the Hydrated Electron,

    DTIC Science & Technology

    methylene blue ) showed marked nonlinear absorption due to saturation of optical transitions, no such change was observed for hydrated electrons even though the light intensity was varied by > 10 to the 7th power up to 200 photons per hydrated electron per sq cm. Consequently the photoexcited state lifetime is estimated to be than 6 x 10 to the -12th power sec. This finding is discussed briefly in terms of three possible origins for the absorption band, namely that involving excitation to a bound excited state, as a photoionization efficiency profile or as a distribution

  12. Investigation of locally resonant absorption and factors affecting the absorption band of a phononic glass

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Jiang, Heng; Feng, Yafei; Wang, Yuren

    2014-12-01

    We experimentally and theoretically investigated the mechanisms of acoustic absorption in phononic glass to optimize its properties. First, we experimentally studied its locally resonant absorption mechanism. From these results, we attributed its strong sound attenuation to its locally resonant units and its broadband absorption to its networked structure. These experiments also indicated that the porosity and thickness of the phononic glass must be tuned to achieve the best sound absorption at given frequencies. Then, using lumped-mass methods, we studied how the absorption bandgaps of the phononic glass were affected by various factors, including the porosity and the properties of the coating materials. These calculations gave optimal ranges for selecting the porosity, modulus of the coating material, and ratio of the compliant coating to the stiff matrix to achieve absorption bandgaps in the range of 6-30 kHz. This paper provides guidelines for designing phononic glasses with proper structures and component materials to work in specific frequency ranges.

  13. Band structure in 113Sn

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2016-07-01

    The structure of collective bands in 113Sn, populated in the reaction 100Mo(19F,p 5 n ) at a beam energy of 105 MeV, has been studied. A new positive-parity sequence of eight states extending up to 7764.9 keV and spin (39 /2+) has been observed. The band is explained as arising from the coupling of the odd valence neutron in the g7 /2 or the d5 /2 orbital to the deformed 2p-2h proton configuration of the neighboring even-A Sn isotope. Lifetimes of six states up to an excitation energy of 9934.9 keV and spin 47 /2-belonging to a Δ I =2 intruder band have been measured for the first time, including an upper limit for the last state, from Doppler-shift-attenuation data. A moderate average quadrupole deformation β2=0.22 ±0.02 is deduced from these results for the five states up to spin 43 /2- . The transition quadrupole moments decrease with increase in rotational frequency, indicating a reduction of collectivity with spin, a feature common for terminating bands. The behavior of the kinematic and dynamic moments of inertia as a function of rotational frequency has been studied and total Routhian surface calculations have been performed in an attempt to obtain an insight into the nature of the states near termination.

  14. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  15. Ozone absorption cross section measurements in the Wulf bands

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    A tandem dual-beam spectrometer has been developed to determine ozone absorption cross sections for 13 selected wavelengths between 750 and 975 nm at room temperature. The increasingly pronounced structure in this region may interfere with atmospheric trace gas transitions that are useful for remote sensing and complicate the measurement of aerosols. Ozone concentrations were determined by absorption at the common HeNe laser transition near 632.8 nm using the absolute cross section reported previously. The overall accuracy of these room temperature measurements is generally better than 2 percent. A synoptic near-IR spectrum scaled to these measurements is employed for comparison with results of previous studies.

  16. Effect of Substitution of Mn, Cu, and Zr on the Structural, Magnetic, and Ku-Band Microwave-Absorption Properties of Strontium Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Moradi, Mahmood; Alam, Reza Shams; Mardani, Reza

    2016-08-01

    The ferrites with the compositions of SrMn x Cu x Zr2 x Fe(12-4 x)O19 ( x = 0.0, 0.2, 0.3, 0.4, and 0.5) are synthesized by the coprecipitation method. The formation of M-type hexaferrite is confirmed by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. The morphology of the samples is shown by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) microscopy. Vibrating sample magnetometer (VSM) analysis has been used for the investigation of the magnetic properties, and the reason for the changes in the magnetic properties as a result of doping, are expressed. The values of coercivity decrease by increasing the amount of substitution, which could be related to the modification of anisotropy form the c-axis toward the c-plane. Finally, we have used vector network analysis to investigate the microwave absorption properties. We find that the samples with the composition of SrMn0.4Cu0.4Zr0.8Fe10.4O19 have the largest reflection loss and the widest bandwidth among these samples.

  17. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  18. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  19. Solvatochromic Shifts on Absorption and Fluorescence Bands of N,N-Dimethylaniline.

    PubMed

    Fdez Galván, Ignacio; Elena Martín, M; Muñoz-Losa, Aurora; Aguilar, Manuel A

    2009-02-10

    A theoretical study of the absorption and fluorescence UV/vis spectra of N,N-dimethylaniline in different solvents has been performed, using a method combining quantum mechanics, molecular mechanics, and the mean field approximation. The transitions between the three lowest-lying states have been calculated in vacuum as well as in cyclohexane, tetrahydrofuran, and water. The apparent anomalies experimentally found in water (a blue shift in the absorption bands with respect to the trend in other solvents, and an abnormally high red shift for the fluorescence band) are well reproduced and explained in view of the electronic structure of the solute and the solvent distribution around it. Additional calculations were done with a mixture of cyclohexane and tetrahydrofuran as solvent, which displays a nonlinear solvatochromic shift. Results, although not conclusive, are consistent with experiment and provide a possible explanation for the nonlinear behavior in the solvent mixture.

  20. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy.

    PubMed

    Toulson, Benjamin W; Murray, Craig

    2016-09-01

    Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers.

  1. The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions.

    PubMed

    Stockett, Mark H; Musbat, Lihi; Kjær, Christina; Houmøller, Jørgen; Toker, Yoni; Rubio, Angel; Milne, Bruce F; Brøndsted Nielsen, Steen

    2015-10-21

    We have performed gas-phase absorption spectroscopy in the Soret-band region of chlorophyll (Chl) a and b tagged by quaternary ammonium ions together with time-dependent density functional theory (TD-DFT) calculations. This band is the strongest in the visible region of metalloporphyrins and an important reporter on the microenvironment. The cationic charge tags were tetramethylammonium, tetrabutylammonium, and acetylcholine, and the dominant dissociation channel in all cases was breakage of the complex to give neutral Chl and the charge tag as determined by photoinduced dissociation mass spectroscopy. Two photons were required to induce fragmentation on the time scale of the experiment (microseconds). Action spectra were recorded where the yield of the tag as a function of excitation wavelength was sampled. These spectra are taken to represent the corresponding absorption spectra. In the case of Chl a we find that the tag hardly influences the band maximum which for all three tags is at 403 ± 5 nm. A smaller band with maximum at 365 ± 10 nm was also measured for all three complexes. The spectral quality is worse in the case of Chl b due to lower ion beam currents; however, there is clear evidence for the absorption being to the red of that of Chl a (most intense peak at 409 ± 5 nm) and also a more split band. Our results demonstrate that the change in the Soret-band spectrum when one peripheral substituent (CH3) is replaced by another (CHO) is an intrinsic effect. First principles TD-DFT calculations agree with our experiments, supporting the intrinsic nature of the difference between Chl a and b and also displaying minimal spectral changes when different charge tags are employed. The deviations between theory and experiment have allowed us to estimate that the Soret-band absorption maxima in vacuo for the neutral Chl a and Chl b should occur at 405 nm and 413 nm, respectively. Importantly, the Soret bands of the isolated species are significantly blueshifted

  2. INTERACTION OF LASER RADIATION WITH MATTER: Individual induced absorption bands in MgF2

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Sergeev, P. B.

    2008-03-01

    The absorption spectra of MgF2 samples exposed to an electron beam and laser radiation at 248, 308, and 372 nm are investigated. Fourteen individual absorption bands are separated in the spectra. The parameters of the eight spectra of them are obtained for the first time. The separated bands are assigned to the intrinsic defects of the MgF2 crystal.

  3. Effective band structure of random alloys.

    PubMed

    Popescu, Voicu; Zunger, Alex

    2010-06-11

    Random substitutional A(x)B(1-x) alloys lack formal translational symmetry and thus cannot be described by the language of band-structure dispersion E(k(→)). Yet, many alloy experiments are interpreted phenomenologically precisely by constructs derived from wave vector k(→), e.g., effective masses or van Hove singularities. Here we use large supercells with randomly distributed A and B atoms, whereby many different local environments are allowed to coexist, and transform the eigenstates into an effective band structure (EBS) in the primitive cell using a spectral decomposition. The resulting EBS reveals the extent to which band characteristics are preserved or lost at different compositions, band indices, and k(→) points, showing in (In,Ga)N the rapid disintegration of the valence band Bloch character and in Ga(N,P) the appearance of a pinned impurity band.

  4. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  5. e-beam irradiation effects on IR absorption bands in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ichida, Masao; Nagao, Katsunori; Ikemoto, Yuka; Okazaki, Toshiya; Miyata, Yasumitsu; Kawakami, Akira; Kataura, Hiromichi; Umezu, Ikurou; Ando, Hiroaki

    2017-01-01

    We have measured the absorption and Raman spectral change induced by the irradiation of e-beam. By the irradiation of e-beam on SWNTs thin films, the intensity of defect related Raman band increase, and the peak energy of IR absorption bands shift to the higher energy side. These results indicate that the origin of infrared band is due to the plasmon resonance of finite-length SWNT. We have estimated the effective tube length and defect density from IR absorption peak energy.

  6. Below-band-gap absorption in undoped GaAs at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wasiak, Michał; Walczak, Jarosław; Motyka, Marcin; Janiak, Filip; Trajnerowicz, Artur; Jasik, Agata

    2017-02-01

    This paper presents results of measurements of optical absorption in undoped epitaxial GaAs for photon energies below the band gap. Absorption spectra were determined from transmission spectra of a thin GaAs layer at several temperatures between 25 °C and 205 °C. We optimized our experiment to investigate the long-wavelength part of the spectrum, where the absorption is relatively low, but significant from the point of view of applications of GaAs in semiconductor lasers. Absorption of 100 cm-1 was observed over 30 nm below the band gap at high temperatures.

  7. Conformational statistics of molecules with inner rotation and shapes of their electronic absorption bands

    SciTech Connect

    Aver`yanov, E.M.

    1994-10-01

    The effect of conformational statistics of molecules with inner rotation of {pi}-conjugated fragments on the position, intensity, and electronic absorption band shapes is studied in isotropic molecular media. It is shown that the conformational disorder of molecules with one inner rotation degree of freedom exerts an appreciable effect on the shift, inhomogeneous broadening, and asymmetry of the electronic absorption bands. An interpretation of the available experimental data is give. 19 refs., 1 fig.

  8. HAC: Band Gap, Photoluminescence, and Optical/Near-Infrared Absorption

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Ryutov, Dimitri; Furton, Douglas G.

    1996-01-01

    We report results of laboratory measurements which illustrate the wide range of physical properties found among hydrogenated amorphous carbon (HAC) solids. Within this range, HAC can match quantitatively the astronomical phenomena ascribed to carbonaceous coatings on interstellar grains. We find the optical band gap of HAC to be well correlated with other physical properties of HAC of astronomical interest, and conclude that interstellar HAC must be fairly hydrogen-rich with a band gap of E(sub g) is approx. greater than 2.0 eV.

  9. Temperature behavior of optical absorption bands in colored LiF crystals

    NASA Astrophysics Data System (ADS)

    Fastampa, Renato; Missori, Mauro; Braidotti, Maria Chiara; Conti, Claudio; Vincenti, Maria Aurora; Montereali, Rosa Maria

    We measured the optical absorption spectra of thermally treated, gamma irradiated LiF crystals, as a function of temperature in the range 16-300 K. The temperature dependence of intensity, peak position and bandwidth of F and M absorption bands were obtained.

  10. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  11. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  12. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Hee; Ryu, Yo-Han; Kim, Sung-Soo

    2015-05-01

    This study investigated the dual-band absorption properties of metamaterial absorbers composed of a split ring resonator (SRR) on a grounded magnetic substrate. Polymer composites of carbonyl iron powders (CIP) of high permeability and magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials with the SRR structure. For perpendicular polarization with an electric field (E) perpendicular to the SRR gap, dualband absorption peaks are predicted in the simulation result of reflection loss. Magnetic resonance resulting from antiparallel currents between the SRR and the ground plane is observed at the frequencies of two absorption peaks. The first strong absorption peak at the lower frequency (3.3 GHz) is due to magnetic resonance at the wire part of the SRR. The second absorption peak at the higher frequency (7.2 GHz) is due to magnetic resonance at the SRR split gap. The decreased capacitance with increased gap spacing moves the second absorption frequency to higher frequencies, while the first absorption peak is invariant with gap spacing. In the case of dual gaps at the opposite sides of the SRR, a single absorption peak is predicted due to the elimination of low-frequency resonance. For parallel polarization with the E-field parallel to the SRR gap, a single absorption peak is predicted, corresponding to magnetic resonance at the SRR wire.[Figure not available: see fulltext.

  13. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge absorption bands of isotopic oxygen, (O-18)2, at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Friedman, R. S.; Parkinson, W. H.

    1988-01-01

    Cross-sections of (O-18)2 at 79 K have been obtained from photoabsorption measurements at various pressures throughout the wavelength region 177.8-197.8 nm with a 6.65 m photoelectric scanning spectrometer equipped with a 2400 lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross-sections of the Schumann-Runge bands (14,0) through (2,0) are, with the exception of the (12,0) band, independent of the instrumental width. The measured cross-sections are presented graphically here and are available at wavenumber intervals of about 0.1/cm as numerical compilations stored on magnetic tape. Band oscillator strengths of those bands have been determined by direct numerical integration of the measured absolute cross-sections and are in excellent agreement with these theoretically calculated values.

  14. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  15. Tunable band structure and effective mass of disordered chalcopyrite

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Lian; Xie, Wen-Hui; Zhao, Yong-Hong

    2017-02-01

    The band structure and effective mass of disordered chalcopyrite photovoltaic materials Cu1- x Ag x Ga X 2 ( X = S, Se) are investigated by density functional theory. Special quasirandom structures are used to mimic local atomic disorders at Cu/Ag sites. A local density plus correction method is adopted to obtain correct semiconductor band gaps for all compounds. The bandgap anomaly can be seen for both sulfides and selenides, where the gap values of Ag compounds are larger than those of Cu compounds. Band gaps can be modulated from 1.63 to 1.78 eV for Cu1- x Ag x Ga Se 2, and from 2.33 to 2.64 eV for Cu1- x Ag x Ga S 2. The band gap minima and maxima occur at around x = 0:5 and x = 1, respectively, for both sulfides and selenides. In order to show the transport properties of Cu1- x Ag x Ga X 2, the effective mass is shown as a function of disordered Ag concentration. Finally, detailed band structures are shown to clarify the phonon momentum needed by the fundamental indirect-gap transitions. These results should be helpful in designing high-efficiency photovoltaic devices, with both better absorption and high mobility, by Ag-doping in CuGa X 2.

  16. Hot Bands in Overtone Absorption Transitions: High Temperature Spectra

    DTIC Science & Technology

    1993-03-17

    the overtone transition. ൖ WWIŝST3" 3 24 002 15.NUMBER ,OF ,,A Overtone Spectroscopy, Hot Bands 16. PRKI CODE 17. SECURITY CLASSIFICATION 18...Rev 2-89) aWVPOO AfeD $10 139-18’q wAPI .’ N o, lgi OFFICE OF NAVAL RESEARCH GRANT or CONTRACT N00014-88-K-4130 R&T Code 4131063 Technical Report No...Unannounced fJ Justification ................ Prepared for Publication By ................ Di•.t. ibution I in Availability Codes Avail and /or Dist Special

  17. Nonreciprocal microwave band-gap structures.

    PubMed

    Belov, P A; Tretyakov, S A; Viitanen, A J

    2002-07-01

    An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper, we consider plane electromagnetic waves in this medium and design an analytical model for the material parameters. An analytical solution for plane-wave reflection from a planar interface is also presented. In the proposed material, a new electrically controlled stop band appears for one of the two circularly polarized eigenwaves in a frequency band around the ferrimagnetic resonance frequency. This frequency can be well below the usual lattice band gap, which allows the realization of rather compact structures. The main properties of the material are outlined.

  18. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  19. Band structures of121,123I

    NASA Astrophysics Data System (ADS)

    Goswami, R.; Sethi, B.; Sarkar, M. S.; Sen, S.

    1995-12-01

    The band structures of121, 123I nuclei have been studied using a version of the particle-rotor-model in which the experimental excitation energies of the neighbouring (A-1) cores can be fed directly as input parameters. The calculations have been carried out with axially symmetric Nilsson potential with both prolate and oblate deformations. The parameters of the model have been chosen from earlier theoretical work and experimental odd-even mass differences. Only the Coriolis attenuation factor has been treated as adjustable parameter. The theoretical band structures are in very good agreement with the available experimental data.

  20. The effective air absorption coefficient for predicting reverberation time in full octave bands.

    PubMed

    Wenmaekers, R H C; Hak, C C J M; Hornikx, M C J

    2014-12-01

    A substantial amount of research has been devoted to producing a calculation model for air absorption for pure tones. However, most statistical and geometrical room acoustic prediction models calculate the reverberation time in full octave bands in accordance with ISO 3382-1 (International Organization for Standardization, 2009). So far, the available methods that allow calculation of air absorption in octave bands have not been investigated for room acoustic applications. In this paper, the effect of air absorption on octave band reverberation time calculations is investigated based on calculations. It is found that the approximation method, as described in the standard ANSI S1.26 (American National Standards Institute, 1995), fails to estimate accurate decay curves for full octave bands. In this paper, a method is used to calculate the energy decay curve in rooms based on a summation of pure tones within the band. From this decay curve, which is found to be slightly concave upwards, T20 and T30 can be determined. For different conditions, an effective intensity attenuation coefficient mB ;eff for the full octave bands has been calculated. This mB ;eff can be used for reverberation time calculations, if results are to be compared with T20 or T30 measurements. Also, guidelines are given for the air absorption correction of decay curves, measured in a scale model.

  1. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  2. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  3. The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Duan, Hou-Jian; Wang, Rui-Qiang

    2016-10-01

    We studied the electronic structure and optical absorption properties of phosphorene (a monolayer black phosphorus) under a normally applied electric field. The electric field enlarges the energy gap, weakens the effective mass anisotropy, and increases the effective mass component along the armchair direction (x-direction) for both conduction and valence bands but provides little change to the component along the zigzag direction (y-direction). The band edge optical absorption is completely polarized in the x-direction, and decreases when increasing the electric field. If the exciting frequency is beyond the energy gap, the absorption for the y-polarized light becomes nonzero, but the absorption is still highly polarized.

  4. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  5. AKARI observations of ice absorption bands towards edge-on YSOs

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Noble, J. A.; Pontoppidan, K. M., Fraser, H. J.; Terada, H.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2011-05-01

    Circumstellar disks and envelopes of low-mass YSOs contain significant amounts of ice. Such icy material will evolve to volatile components of planetary systems, such as comets in our solar system. In order to investigate the composition and evolution of circumstellar ice around low-mass YSOs, we have observed ice absorption bands towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Slit-less spectroscopic observations are performed using the grism mode of Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO_2 band and the blue wing of the H_2O band, which are not accessible from the ground. We developed procedures to reduce the spectra of targets with nebulosity. The spectra are fitted with polynomial baselines to derive the absorption spectra. Then we fit the molecular absorption bands with the laboratory spectra from the database, considering the instrumental line profile and the spectral resolution of the dispersion element. Towards the Class 0-I sources, absorption bands of H_2O, CO_2, CO and XCN (OCN^-) are clearly detected. Weak features of 13CO_2, HDO, the C-H band, and gaseous CO are detected as well. OCS ice absorption is tentatively detected towards IRC-L1041-2. The detected features would mostly originate in the cold envelope, while CO gas and OCN^- could originate in the region close to the protostar. Towards class II stars, H_2O ice band is detected. We also detected H_2O ice, CO_2 ice and tentative CO gas features of the foreground component of class II stars.

  6. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  7. A band model for melanin deducted from optical absorption and photoconductivity experiments.

    PubMed

    Crippa, P R; Cristofoletti, V; Romeo, N

    1978-01-03

    Natural and synthetic melanins have been studied by optical absorption and photoconductivity measurements in the range 200--700 nm. Both optical absorption and photoconductivity increase in the ultraviolet region, and a negative photoconductivity was observed with a maximum near 500 nm. This behaviour has been interpreted by the band model of amorphous materials and an "optical gap" of 3.4 eV has been determined.

  8. Midfrequency band dynamics of large space structures

    NASA Astrophysics Data System (ADS)

    Coppolino, Robert N.; Adams, Douglas S.; Levine, Marie B.

    2004-09-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  9. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure

    NASA Astrophysics Data System (ADS)

    Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.

    2014-08-01

    We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al0.3Ga0.7As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.

  10. Theoretical study of electronic absorption spectroscopy of propadienylidene molecule vis-â-vis the observed diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Reddy, Samala Nagaprasad; Mahapatra, S.

    2012-07-01

    Observation of broad and diffuse interstellar bands (DIBs) at 4881 Å and 5440 Å assigned to the optical absorption spectrum of Y-shaped propadienylidene (H2Cdbnd Cdbnd C:) molecule is theoretically examined in this paper. This molecule apparently absorbs in the same wavelength region as the observed DIBs and was suggested to be a potential carrier of these DIBs. This assignment mostly relied on the experimental data from radioastronomy and laboratory measurements. Motivated by these available experimental data we attempt here a theoretical study and investigate the detailed electronic structure and nuclear dynamics underlying the electronic absorption bands of propadienylidene molecule. Our results show that this molecule indeed absorbs in the wavelength region of the recorded DIBs. Strong nonadiabatic coupling between its energetically low-lying electronic states plays major role, initiates ultrafast internal conversion and contributes to the spectral broadening. Theoretical findings are finally compared with the available experimental and theoretical data and discussed in connection with the recorded DIBs.

  11. Multi-band polarization insensitive metamaterial absorber with dual cross-wires structure

    NASA Astrophysics Data System (ADS)

    Yao, Li-fang; Li, Min-hua; Zhai, Xiao-min; Wang, Hui-bo; Dong, Jian-feng

    2015-11-01

    A five-band metamaterial absorber (MMA) based on a simple planar structure is proposed. It utilizes different areas of a single unit cell to match impedance, and produces different absorptive frequencies. Numerical calculation shows that the MMA has five different absorption peaks at 3.78 GHz, 7.66 GHz, 10.9 GHz, 14.5 GHz and 16.7 GHz, and their absorption rates reach 95.5%, 98.6%, 95.7%, 96.6% and 99.8%, respectively. The proposed structure is polarization insensitive for transverse electric (TE) and transverse magnetic (TM) incident waves. Also, the absorptive characteristics over large incident angles are examined. In addition, we analyze the absorption mechanism by the surface current density and power flow density distributions. This simple structure provides a way to design multi-band MMA, and also saves the cost of fabrication.

  12. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  13. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  14. Thin structured rigid body for acoustic absorption

    NASA Astrophysics Data System (ADS)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  15. Electronic band structure of defect chalcopyrites

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoshu; Lambrecht, Walter R. L.

    2001-03-01

    The defect chalcopyrites of chemical composition II-III-VI4 in which II, III and VI mean group-II elements such as Cd or Hg, group-III elements such as Al and Ga and group-VI elements such as S, Se, Te, form an interesting family of semiconductor compounds with potential nonlinear optical applications. They can be thought of as derived from the regular I-III-VI2 chalcopyrites by doubling the formula unit and replacing the group I element, for example, Ag by the group-II element and a vacancy in an ordered manner. The chalcopyrites themselves are derived from II-VI compounds by replacing the group-II by a group I and a group-III element. In this contribution we present electronic band structure calculations of some of these compounds, calculated using the linear muffin-tin orbital method combined with the local density functional approximation. We discuss the relation of the band structures of the corresponding zincblende, chalcopyrite and defect chalcopyrite compounds. In particular, the role of the group I or group II d-band energy will be shown to be important. The trends with chemical substutions and the effects of structural distortions c/a and internal parameters accompanying the chemical distortion will be discussed.

  16. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  17. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  18. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  19. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge absorption bands of isotopic oxygen, (0-16)(0-18), at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Friedman, R. S.; Parkinson, W. H.

    1989-01-01

    Cross-sections of (0-16)(0-18) at 79 K have been obtained from photoabsorption measurements on mixtures of (0-16)2, (0-18)2, and (0-16)(0-18) at various pressures throughout the wavelength region 180.5-195.3 nm with a 6.65 m photoelectric scanning spectrometer equipped with a 2400 lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross-sections of the (0-16)(0-18) Schumann-Runge bands (11.0)-(3.0) are independent of the instrumental width. The measured cross-sections are presented graphically.

  20. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  1. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  2. The C2H, C2, and CN electronic absorption bands in the carbon star HD 19557

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Bregman, J. D.; Cooper, D. M.; Goorvitch, D.; Langhoff, S. R.; Witteborn, F. C.

    1983-01-01

    Infrared spectrophotometry of the R-type carbon star HD 19557 is presented. Two unusual spectroscopic features are seen: a 3.1 micron band is lacking and a 2.8 micron band is present. Identifications are proposed for three previously unreported stellar absorption bands with electronic sequences of C2, CN, and C2H. The latter is proposed to be responsible for the 2.8 micron feature. The atmospheric structure of the star is studied with synthetic spectra, and an effective temperature between 2600 K and 3000 K is suggested. No SiC emission is seen at 11.3 microns, indicating that grain formation is not a viable process around the star. The lack of dust in R stars may suggest a salient difference between R and N types.

  3. Topological Insulators: Electronic Band Structure and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palaz, S.; Koc, H.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study, we present the results of our ab initio calculation of the elastic constants, density of states, charge density, and Born effective charge tensors for ferroelectric (rhombohedral) and paraelectric phases (cubic) of the narrow band ferroelectrics (GeTe, SnTe) pseudopotentials. The related quantities such as bulk modulus and shear modulus using obtained elastic constants have also been estimated in the present work. The total and partial densities of states corresponding to the band structure of Sn(Ge)Te(S,Se) were calculated. We also calculated the Born effective charge tensor of an atom (for instance, Ge, Sn, Te, etc.), which is defined as the induced polarization of the solid along the main direction by a unit displacement in the perpendicular direction of the sublattice of an atom at the vanishing electric field.

  4. a Theoretical Model for Wide-Band Infrared-Absorption Molecular Spectra at any Pressure: Fiction or Reality?

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Vander Auwera, Jean

    2014-06-01

    Various atmospheric applications require modeling of infrared absorption by the main atmospheric species in wide ranges of frequencies, pressures and temperatures. For different pressure regimes, different mechanisms are responsible for the observed intensities of vibration-rotation line manifolds, and the structure of the bands changes drastically when going from low to high densities. Therefore, no universal theoretical model exists presently to interpret simultaneously collapsed band-shapes observed at very high pressures and isolated-line shapes recorded in sub-atmospheric regimes. Using CO_2 absorption spectra as an example, we introduce some improvements in the non-Markovian Energy-Corrected Sudden model, developed for high-density spectra of arbitrary tensorial rank and generalized recently to parallel and perpendicular infrared absorption bands, and test the applicability of this approach for the case of nearly Doppler pressure regime via comparisons with recently recorded experimental intensities. J.V. Buldyreva and L. Bonamy, Phys. Rev. A 60(1), 370-376 (1999). J. Buldyreva and L. Daneshvar, J. Chem. Phys. 139, 164107 (2013). L. Daneshvar, T. Földes, J. Buldyreva, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 2014 (to be submitted).

  5. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Structure of bands. 9701.321 Section 9701... Structure of bands. (a) DHS may, after coordination with OPM, establish ranges of basic pay for bands, with... rates. (b) For each band within an occupational cluster, DHS will establish a common rate range...

  6. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Structure of bands. 9701.321 Section 9701... Structure of bands. (a) DHS may, after coordination with OPM, establish ranges of basic pay for bands, with... rates. (b) For each band within an occupational cluster, DHS will establish a common rate range...

  7. Band structure of doubly-odd nuclei around mass 130

    SciTech Connect

    Higashiyama, Koji; Yoshinaga, Naotaka

    2011-05-06

    Nuclear structure of the doublet bands in the doubly-odd nuclei with mass A{approx}130 is studied in terms of a pair-truncated shell model. The model reproduces quite well the energy levels of the doublet bands and the electromagnetic transitions. The analysis of the electromagnetic transitions reveals new band structure of the doublet bands.

  8. AKARI observations of ice absorption bands towards edge-on young stellar objects

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2012-02-01

    Context. Circumstellar disks and envelopes of low-mass young stellar objects (YSOs) contain significant amounts of ice. Such icy material will evolve to become volatile components of planetary systems, such as comets in our solar system. Aims: To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Methods: We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Results: Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 μm is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μm provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN- could originate in the region close to the protostar

  9. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  10. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  11. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.

  12. Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids.

    PubMed

    Dai, Weitao; Yap, Daniel; Chen, Gang

    2012-07-02

    Efficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material. A spectrally averaged absorptance of 83% is achieved compared to an average absorptance of 28% for the optimized multilayer structure that has the same amount of absorbing material. This enhancement is explained by the coupled-mode theory. Similar designs can also be applied to solar cells.

  13. Real-time monitoring of reactive species in downstream etch reactor by VUV broad-band absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Soriano, R.; Vallier, L.; Cunge, G.; Sadeghi, N.

    2016-09-01

    Plasma etching of nanometric size, high aspect-ratio structures is more challenging at each new technological node. Remote plasmas are beginning to find use when damages on nanostructures by ion bombardment become critical or when etching with high selectivity on different materials present on the wafer is necessary (i . e . tungsten oxide etching with fluorine and hydrogen containing plasmas in remote reactor from AMAT). Furthermore, it is expected that downstream plasma will replace many wet chemical etching processes to alleviate the issue of pattern collapses caused by capillary forces when nanometer size high aspect ratio structures are immersed in liquids. In these downstream plasmas, radicals are the main active species and a control of their density is of prime importance. Most of gases used and radicals produced in etching plasmas (HBr, BrCl, Br2, NF3, CH2F2,...) have strong absorption bands in the vacuum UV spectral region and we have shown that very low concentration of these species can be detected by VUV absorption. We have recently improved the technique by using a VUV CCD camera, instead of the PMT, which render possible the Broad-Band absorption spectroscopy in the 120-200 nm range, with a deuterium lamp, or a laser produced xenon arc lamp as light source. The multi-spectral detection ability of the CCD reduces the acquisition time to less than 1 second and can permit the real time control of the process control.

  14. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands.

    PubMed

    Siritanaratkul, Bhavin; Maeda, Kazuhiko; Hisatomi, Takashi; Domen, Kazunari

    2011-01-17

    Photocatalytic activities of perovskite-type niobium oxynitrides (CaNbO₂N, SrNbO₂N, BaNbO₂N, and LaNbON₂) were examined for hydrogen and oxygen evolution from water under visible-light irradiation. These niobium oxynitrides were prepared by heating the corresponding oxide precursors, which were synthesized using the polymerized complex method, for 15 h under a flow of ammonia. They possess visible-light absorption bands between 600-750 nm, depending on the A-site cations in the structures. The oxynitride CaNbO₂N, was found to be active for hydrogen and oxygen evolution from methanol and aqueous AgNO₃, respectively, even under irradiation by light at long wavelengths (λ<560 nm). The nitridation temperature dependence of CaNbO₂N was investigated and 1023 K was found to be the optimal temperature. At lower temperatures, the oxynitride phase is not adequately produced, whereas higher temperatures produce more reduced niobium species (e. g., Nb³(+) and Nb⁴(+)), which can act as electron-hole recombination centers, resulting in a decrease in activity.

  15. Microwave absorption behavior of a polyaniline magnetic composite in the X-band

    NASA Astrophysics Data System (ADS)

    Aphesteguy, J. C.; Damiani, A.; DiGiovanni, D.; Jacobo, S. E.

    2012-08-01

    The development of nanosized materials is a subject of considerable interest both for understanding of the fundamental properties of magnetic materials for new technological applications. Polyaniline, composites Fe3O4/(PANI) with conducting, magnetic and electromagnetic properties with different amounts of Fe3O4 were successfully prepared. The samples were structurally characterized by scanning electron microscopy (SEM), X-ray diffraction and transmission electron microscopy (TEM) and magnetically, with a superconducting quantum interference device (SQUID) magnetometer. In order to explore microwave-absorbing properties in X-band, the composite nanoparticles were mixed with an epoxy resin to be converted into a microwave-absorbing composite. Microwave behavior with different Fe3O4/(PANI)-epoxy resin ratio was studied using a microwave vector network analyzer (VNA) in the range 7.5 to 13 GHz. For a constant thickness of 1.5 mm, absorption increases with the magnetite contents in the composites and in the oriented samples by the application of a magnetic field.

  16. Band-structure parameters by genetic algorithm

    SciTech Connect

    Starrost, F.; Bornholdt, S.; Solterbeck, C.; Schattke, W.

    1996-05-01

    A genetic algorithm has been used to solve a complex multidimensional parameter-fitting problem. We will focus on the parameters of an empirical tight-binding Hamiltonian. The method is used to approximate the electronic energy band structure if energy values are known for a few wave vectors of high symmetry. Compared to the usual manual procedure this method is more accurate and automatic. This approach, based on the extended H{umlt u}ckel theory (EHT), has provided a list of EHT parameters for IV-IV and III-V semiconductors with zinc-blende structure and helped us to find a symmetry in the EHT. {copyright} {ital 1996 The American Physical Society.}

  17. An alternative model for photodynamic therapy of cancers: Hot-band absorption

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chen, Jiyao

    2013-12-01

    The sulfonated aluminum phthalocyanine (AlPcS), a photosensitizer for photodynamic cancer therapy (PDT), has an absorption tail in the near-infrared region (700-900 nm) which is so-called hot band absorption (HBA). With the HBA of 800 nm, the up-conversion excitation of AlPcS was achieved followed by the anti-Stocks emission (688 nm band) and singlet oxygen production. The HBA PDT of AlPcS seriously damaged the KB and HeLa cancer cells, with a typical light dose dependent mode. Particularly, the in vitro experiments with the AlPcS shielding solutions further showed that the HBA PDT can overcome a self-shielding effect benefiting the PDT applications.

  18. PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION

    SciTech Connect

    Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le; Hardersen, P. S.; Nathues, A.

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  19. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  20. Elucidating the stop bands of structurally colored systems through recursion

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Vukusic, Peter

    2013-04-01

    Interference is the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics: specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer structure and solve it using recursion relations. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursion. We compare to experimental data for various beetles, whose optical structure resembles the proposed model. Thus, using only the phenomenon of interference and the idea of recursion, we are able to elucidate the concept of band structure in the context of the experimentally observed high reflectance and iridescent appearance of structurally colored beetles.

  1. Rotational band structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Poves, A.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Richard, A. L.; Rissanen, J.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈20 neon, sodium, and magnesium isotopes that make up what is commonly called the "island of inversion." However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I =6+ produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA (γ -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.

  2. Rotational Band Structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, Heather; NSCL E11029 Collaboration Team

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N =20 neon, sodium, and magnesium isotopes that make up what is commonly called the ``Island of Inversion''. However, rotational band structures, a characteristic fingerprint of a rigid non-spherical shape, have yet to be observed. We report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I = 6+, produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ-ray tracking detector array, GRETINA. Large-scale shell model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked shell model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results. This material is based upon work supported by the U.S. DOE, Office of Science, NP Office under Contract No. DE-AC02-05CH11231 (LBNL). GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL was supported by NSF.

  3. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  4. Segmental structure in banded mongoose calls.

    PubMed

    Fitch, W Tecumseh

    2012-12-03

    In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech.

  5. A Theoretical Structure of High School Concert Band Performance

    ERIC Educational Resources Information Center

    Bergee, Martin J.

    2015-01-01

    This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…

  6. Band structure of InAsSb strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Liu, Lifeng; Lee, G. S.; Marshak, A. H.

    1992-02-01

    Band structures of relaxed InSb/InAs1-xSbx strained-layer superlattices (SLSs) were calculated based on Herman-Skillman neutral atom ionization energies, effective dipole theory, and strain shift of band edges. The conduction-band minimum and the valence-band maximum of InAs1-xSbx are lower in energy than those of InSb, respectively. The band structures of InSb/InAs1-xSbx are type II SLSs and an extreme type II superlattice is predicted for x<0.82. This extreme type II superlattice with a proper structure factor can have favorable properties for infrared detectors covering the 8-12 μm wavelength range. The requirement for layer thickness of InSb/InAs1-xSbx SLSs with different absorption mechanisms was discussed.

  7. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  8. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  9. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  10. Thermodynamic consequence of the new attribution of bands in the electronic absorption spectrum of electron donor-iodine-solvent systems

    NASA Astrophysics Data System (ADS)

    Abramov, Sergey P.

    1999-06-01

    The subject review pays attention to the peculiarities in behaviour of bands in the electronic absorption spectra of electron donor-iodine-solvent systems, the appearance of which is associated with the intermolecular interaction of molecular iodine with electron donor organic molecules. The new concept of the bands’ attribution to the isomeric equilibrium molecular charge-transfer complexes (CTCs) of CTC-I and CTC-II types is considered. The features of possible phase transitions in the solid state are discussed on the basis of the thermodynamic properties and electronic structures of the CTC-I and CTC-II in electron donor-iodine-solvent systems. The stabilisation of the CTC-II structure with the temperature lowering coincided in many cases with the electrons’ localisation in the solid state structures having charge-transfer bonds.

  11. Infrared, visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands

    SciTech Connect

    Zhang, J.H.; Ding, J.W.; Cao, J.X.; Zhang, Y.L.

    2011-03-15

    The formation energies, electronic structures and optical properties of TM:ZnS systems (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) are investigated by using the first principles method. It is found that the wurtzite and zinc-blende structures have about the same stability, and thus can coexist in the TM:ZnS system. From the wurtzite TM:ZnS, especially, a partially filled intermediate band (IB) is obtained at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}, while it is absent at TM=Mn{sup 2+} and Co{sup 2+}. The additional absorptions are obtained in infrared, visible and ultraviolet (UV) regions, due to the completely spin-polarized IB at Fermi level. The results are very helpful for both the designs and applications of TM:ZnS opto-electronics devices, such as solar-cell prototype. -- Graphical abstract: Absorption coefficients of w-TM{sub x}Zn{sub 1-x}S crystals (TM=Cr{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Co{sup 2+} and Ni{sup 2+}) at x=0.028. The results may be helpful for the design and applications of TM:ZnS devices, especially for the new high efficiency solar-cell prototype, UV detector and UV LEDs. Display Omitted Research highlights: > It is found that the wurtzite and zinc-blende structures can coexist in TM:ZnS. > An intermediate band is obtained in TM:ZnS at TM=Cr{sup 2+}, Ni{sup 2+} and Fe{sup 2+}. > The absorption coefficients are obtained in infrared, visible and ultraviolet regions.

  12. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  13. Sub-nanometer linewidth perfect absorption in visible band induced by Bloch surface wave

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Liu, Wenxing; Zhou, Zhiqiang; Ren, Naifei; Ding, Guilin; Chen, Mingyang; Yao, Hongbing

    2016-12-01

    We demonstrate the unity absorption of visible light with an ultra-narrow 0.1 nm linewidth. It arises from the Bloch surface wave resonance in alternating TiO2/SiO2 multilayers. The total absorption and narrow linewidth are explained from the radiative and absorptive damping, which are quantitatively determined by the temporal coupled mode theory. When a silver film with proper thickness is added to the absorber, the perfect absorption is achieved with only 3 structural bilayers, in contrast with 8 bilayers required without Ag. Furthermore, significant field enhancement and an ultrahigh 2600/RIU sensing figure-of-merit are simultaneously obtained at resonance, which might facilitate applications in nonlinear optical devices and high resolution refractive index sensing.

  14. Band structure and optical properties of silicon carbide

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Vladimir I.; Frolov, Sergey I.

    1991-03-01

    Silicon carbide is an interesting high-temperature large band gap semiconquctor. it ispromising as a basical material for optoelectronic devices . The optical properties of SiC have been studied by several authors. The absrption coefficient of SiC 6H3 has been measured by Choyke and Patrick up to 4.9 eV and by Makarov to 5.8 eV. Reflection spectra of 6H, 15R, and 3C SiC in the range 3.0 to 13 eV have been stidied in . The optical constants of SiC 6H have been measured by reflectivity in the range 4 to 25 eV, The energies of direct optical transitions between subbands in the conduction band, resulting from confinement in a one dimensional superI,at,,tice, have been measured in8sveral polytypes of SiC by absorption ' and electroreflection (ER) ' The electron energy band structure (85) of SiC of1he1 halerite structure (3C SiC) has been calculated by several 1tu4r2 ' . BS of wurtzite modification of SiC have been calculated 1 in ' ' ' for 2H iC. BS of 4H and 6H SiC has been calculated by the semiempirical pseudopotential method at high-symmetry points of the Brillouin zone (BZ). Tight binding calculations of 2H SiC show valence bands which agree with experiment, but unrealistic conductive bands due to the restriction to nearest neighbours in the Hamiltonian matrix In this work we report the electroreflectance (ER) spectra of hexagonal (4H and 6H) and cubic SiC measured in the range 1.0 to 5.6 eV. Values of direct optical gps1ave been obtained from the ER spectra using a multiple oscillator model ' . BS of SiC has been calculated by the first-principles self-consistent linear muffin-tin orbital (LMTO-ASA) method (2H, 4H, and 6H SiC) and by the semiempirical pseudopotential method (3C SiC). Calculated BS parameters have been compared with experimental data measured in this work and those available in the literature.

  15. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  16. Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode.

    PubMed

    Denzer, W; Hamilton, M L; Hancock, G; Islam, M; Langley, C E; Peverall, R; Ritchie, G A D

    2009-11-01

    A fibre coupled near-infrared superluminescent light emitting diode that emits approximately 10 mW of radiation between 1.62 and 1.7 microm is employed in combination with a broad-band cavity enhanced spectrometer consisting of a linear optical cavity with mirrors of reflectivity approximately 99.98% and either a dispersive near-infrared spectrometer or a Fourier transform interferometer. Results are presented on the absorption of 1,3-butadiene, and sensitivities are achieved of 6.1 x 10(-8) cm(-1) using the dispersive spectrometer in combination with phase-sensitive detection, and 1.5 x 10(-8) cm(-1) using the Fourier transform interferometer (expressed as a minimum detectable absorption coefficient) over several minutes of acquisition time.

  17. Doping-Induced Absorption Bands in P3HT: Polarons and Bipolarons.

    PubMed

    Enengl, Christina; Enengl, Sandra; Pluczyk, Sandra; Havlicek, Marek; Lapkowski, Mieczyslaw; Neugebauer, Helmut; Ehrenfreund, Eitan

    2016-12-05

    In this work, we focus on the formation of different kinds of charge carriers such as polarons and bipolarons upon p-type doping (oxidation) of the organic semiconductor poly(3- hexylthiophene-2,5-diyl) (P3HT). We elucidate the cyclic voltammogram during oxidation of this polymer and present spectroscopic changes upon doping in the UV/Vis/near-IR range as well as in the mid-IR range. In the low-oxidation regime, two absorption bands related to sub-gap transitions appear, one in the UV/Vis range and another one in the mid-IR range. The UV/Vis absorption gradually decreases upon further doping while the mid-IR absorption shifts to lower energy. Additionally, electron paramagnetic resonance (EPR) measurements are performed, showing an increase of the EPR signal up to a certain doping level, which significantly decreases upon further doping. Furthermore, the absorption spectra in the UV/Vis range are analyzed in relation to the morphology (crystalline vs. amorphous) by using theoretical models. Finally, the calculated charge carriers from cyclic voltammogram are linked together with optical transitions as well as with the EPR signals upon p-type doping. We stress that our results indicate the formation of polarons at low doping levels and the existence of bipolarons at high doping levels. The presented spectroscopic data are an experimental evidence of the formation of bipolarons in P3HT.

  18. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  19. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane

    NASA Astrophysics Data System (ADS)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2013-05-01

    We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material

  20. Study of sub band gap absorption of Sn doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  1. Femtosecond supercontinuum generation in water in the vicinity of absorption bands.

    PubMed

    Dharmadhikari, J A; Steinmeyer, G; Gopakumar, G; Mathur, D; Dharmadhikari, A K

    2016-08-01

    We show that it is possible to overcome the perceived limitations caused by absorption bands in water so as to generate supercontinuum (SC) spectra in the anomalous dispersion regime that extend well beyond 2000 nm wavelength. By choosing a pump wavelength within a few hundred nanometers above the zero-dispersion wavelength of 1048 nm, initial spectral broadening extends into the normal dispersion regime and, in turn, the SC process in the visible strongly benefits from phase-matching and matching group velocities between dispersive radiation and light in the anomalous dispersion regime. Some of the SC spectra are shown to encompass two and a half octaves.

  2. Theoretical Modeling of Low Energy Electronic Absorption Bands in Reduced Cobaloximes

    PubMed Central

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2015-01-01

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task. PMID:25113847

  3. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes.

    PubMed

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L; Gray, Harry B; Fujita, Etsuko; Muckerman, James T; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M; Field, Martin J

    2014-10-06

    The reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we analyze the low-energy electronic absorption bands of two cobaloxime systems experimentally and use a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  4. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    SciTech Connect

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; Gray, Harry B.; Fujita, Etsuko; Muckerman, James T.; Fontecave, Marc; Artero, Vincent; Arantes, Guilherme M.; Field, Martin J.

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  5. Theoretical modeling of low-energy electronic absorption bands in reduced cobaloximes

    DOE PAGES

    Bhattacharjee, Anirban; Chavarot-Kerlidou, Murielle; Dempsey, Jillian L.; ...

    2014-08-11

    Here, we report that the reduced Co(I) states of cobaloximes are powerful nucleophiles that play an important role in the hydrogen-evolving catalytic activity of these species. In this work we have analyzed the low energy electronic absorption bands of two cobaloxime systems experimentally and using a variety of density functional theory and molecular orbital ab initio quantum chemical approaches. Overall we find a reasonable qualitative understanding of the electronic excitation spectra of these compounds but show that obtaining quantitative results remains a challenging task.

  6. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  7. Electronic structure of polyenes related to the visual chromophore. A simple model for the observed band shapes.

    PubMed Central

    Hemley, R; Kohler, B E

    1977-01-01

    A model is presented which attributes the widths of absorption bands in carotenoids to conformational disorder induced by the beta-ionylidene moiety. With reasonable parameter choices, the model gives a good quantitative fit to the spectra observed for four carotenoids and at the same time accounts for the lack of structure in the long-wavelength absorption of retinal. PMID:922126

  8. Creating a Multiband Perfect Metamaterial Absorber at K Frequency Band Using Defects in the Structure

    NASA Astrophysics Data System (ADS)

    Tran, Manh Cuong; Nguyen, Thi Thuy; Ho, Tuan Hung; Do, Hoang Tung

    2017-01-01

    We present a simple method to achieve a multiband perfect metamaterial absorber for use in the K band by applying defects to the absorber structure. Open boundary conditions with an excitation port are used for simulation of the whole considered structure. A defect was then introduced into the structure to obtain multiband absorption. Two perfect absorption peaks were observed at 19.8 GHz and 23.1 GHz for the structure with a defect of 2 × 2 unit cells. The multiple resonance frequencies could be tuned by varying the defect dimensions. In addition, it was found that the absorber structure is insensitive to the polarization angle of the incident electromagnetic wave over a wide range due to the symmetry of the configuration. This represents a simpler method to create a multifrequency absorber compared with previous works. To the best of our knowledge, this is the first study considering the influence of structural defects on the absorption frequencies of a metamaterial absorber.

  9. The nature of splitting of fullerene C{sub 70} polarized absorption bands in liquid-crystal matrices

    SciTech Connect

    Aver`yanov, E.M.

    1994-06-01

    The recently discovered splitting of polarized electronic absorption bands of fullerene C{sub 70} in uniaxial liquid-crystal matrices is shown to result from the spectral dependence of the polarization of these bands relative to the molecular coordinate system. 9 refs.

  10. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3

    PubMed Central

    Ho, Ching-Hwa; Chen, Hsin-Hung

    2014-01-01

    The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga2S3) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga2S3. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga2S3. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga2S3 crystal is revealed. PMID:25142550

  11. The energy band structure of Si and Ge nanolayers

    NASA Astrophysics Data System (ADS)

    Wu, Xueke; Huang, Weiqi; Huang, Zhongmei; Qin, Chaojie; Tang, Yanlin

    2016-12-01

    First-principles calculation based on density functional theory (DFT) with the generalized gradient approximation (GGA) were carried out to investigate the energy band gap structure of Si and Ge nanofilms. Calculation results show that the band gaps of Si(111) and Ge(110) nanofilms are indirect structures and independent of film thickness, the band gaps of Si(110) and Ge(100) nanofilms could be transfered into the direct structure for nanofilm thickness of less than a certain value, and the band gaps of Si(100) and Ge(111) nanofilms are the direct structures in the present model thickness range (about 7 nm). Moreover, the changes of the band gaps on the Si and Ge nanofilms follow the quantum confinement effects. It will be a good way to obtain direct band gap emission in Si and Ge materials, and to develop Si and Ge laser on Si chip.

  12. Enhanced absorption of graphene strips with a multilayer subwavelength grating structure

    SciTech Connect

    Hu, Jin-Hua; Huang, Yong-Qing Duan, Xiao-Feng; Wang, Qi; Zhang, Xia; Wang, Jun; Ren, Xiao-Min

    2014-12-01

    The optical absorption of graphene strips covered on a multilayer subwavelength grating (MSG) surface is theoretically investigated. The absorption of graphene strips with MSG is enhanced in the wavelength range of 1500 nm to 1600 nm by critical coupling, which is associated with the combined effects of a guided resonance of MSG and its photonic band gap effect. The critical coupling of the graphene strips can be controlled by adjusting the incident angle without changing the structural parameters of MSG. The absorption of graphene strips can also be tuned by varying key parameters, such as grating period, strip width, and incident angle.

  13. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  14. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  15. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  16. Engineering the electronic band structure for multiband solar cells.

    PubMed

    López, N; Reichertz, L A; Yu, K M; Campman, K; Walukiewicz, W

    2011-01-14

    Using the unique features of the electronic band structure of GaN(x)As(1-x) alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the band anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  17. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band.

    PubMed

    Huang, Li; Chowdhury, Dibakar Roy; Ramani, Suchitra; Reiten, Matthew T; Luo, Sheng-Nian; Taylor, Antoinette J; Chen, Hou-Tong

    2012-01-15

    We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

  18. Shape of impurity electronic absorption bands in a nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1995-02-01

    It is shown that the anisotropic intermolecular impurity-matrix interactions, statistical orientation properties, and the electronic structure of the uniaxial impurity molecules considerably affect the spectral moments of the impurity electronic adsorption bands in a nematic liquid crystal. 15 refs., 3 figs.

  19. Universality of Mallmann correlations for nuclear band structures

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Zamfir, N. V.; Cǎta-Danil, G.; Ivaşcu, M.; Mǎrginean, N.

    2008-11-01

    It is shown that the Mallmann's energy ratio correlations, first time proposed 50 years ago for the ground state bands of the even-even nuclei, are universal: all band structures in collective nuclei obey the same systematics. Based on a second order anharmonic vibrator description, parameter-free recurrence relations are proposed for Mallmann-type energy ratios, which can be used to extrapolate band structures to higher spin.

  20. Vorticity structuring and velocity rolls triggered by gradient shear bands.

    PubMed

    Fielding, Suzanne M

    2007-07-01

    We suggest a mechanism by which vorticity structuring and velocity rolls can form in complex fluids, triggered by the linear instability of one-dimensional gradient shear banded flow. We support this with a numerical study of the diffusive Johnson-Segalman model. In the steady vorticity structured state, the thickness of the interface between the bands remains finite in the limit of zero stress diffusivity, presenting a possible challenge to the accepted theory of shear banding.

  1. Band tail absorption saturation in CdWO4 with 100 fs laser pulses.

    PubMed

    Laasner, R; Fedorov, N; Grigonis, R; Guizard, S; Kirm, M; Makhov, V; Markov, S; Nagirnyi, V; Sirutkaitis, V; Vasil'ev, A; Vielhauer, S; Tupitsyna, I A

    2013-06-19

    The decay kinetics of the excitonic emission of CdWO4 scintillators was studied under excitation by powerful 100 fs laser pulses in the band tail (Urbach) absorption region. A special imaging technique possessing both spatial and temporal resolution provided a unique insight into the Förster dipole-dipole interaction of self-trapped excitons, which is the main cause of the nonlinear quenching of luminescence in this material. In addition, the saturation of phonon-assisted excitonic absorption due to extremely short excitation pulses was discovered. A model describing the evolution of electronic excitations in the conditions of absorption saturation was developed and an earlier model of decay kinetics based on the Förster interaction was extended to include the saturation effect. Compared to the previous studies, a more accurate calculation yields 3.7 nm as the Förster interaction radius. It was shown that exciton-exciton interaction is the main source of scintillation nonproportionality in CdWO4. A quantitative description using a new model of nonproportionality was presented, making use of the corrected value of the Förster radius.

  2. The first UV absorption band for indole is not due to two simultaneous orthogonal electronic transitions differing in dipole moment.

    PubMed

    Catalán, Javier

    2015-05-21

    The currently accepted model for the photophysics of indole assumes that the first UV absorption band encompasses two orthogonal electronic transitions ((1)Lb and (1)La), leading to two electronic states with a markedly different dipole moment. However, there is a body of evidence not explained by this model, which led us to develop a new photophysical model for indole. Based on the new model, the polarity of the electronic ground state (S0) in indoles is very similar to that of the first electronic excited state (S1) producing this structured emission; however, this excited state can lead to a highly dipolar excited state (S1') with largely structureless emission under the influence of the polarity of the medium, and also, very likely, of its viscosity. The molecular structure of the new excited state can be reversibly converted into the normal structure of the compound. Previous observations were confirmed by the absorption, emission, and excitation spectra for indole, as well as by its polarized emission and excitation spectra in various media. Thus, the polarized emission spectra for indole in glycerol at 283 K and 223 K showed the transition dipole moments for the emission from the first two excited states in a polar medium, S1 and S1', to differ by less than 20°.

  3. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  4. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  5. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  6. Weak morphology dependent valence band structure of boron nitride

    NASA Astrophysics Data System (ADS)

    Zhi, Chunyi; Ueda, Shigenori; Zeng, Haibo; Wang, Xuebin; Tian, Wei; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2013-08-01

    We report a hard X-ray photoelectron spectroscopy (HX-PES) investigation on valence band structure of Boron Nitrides (BN) having different morphologies, including nanosheets, nanotubes, and micro-sized particles. Very weak morphology/valence band structure dependence was observed. For each case, the B-N π-band overlapping with σ-band between 0 to -12.5 eV and the s-band below -15 eV were identified. No obvious morphology-induced band shifts and intensity variations were observed. First-principles calculations based on density functional theory were performed and the results were compared with the experimental data. This theoretical analysis well explains the weak morphology dependent valence band spectra of BN nanomaterials obtained during HX-PES measurements.

  7. Bi-directional evolutionary optimization for photonic band gap structures

    SciTech Connect

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  8. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  9. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants.

  10. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  11. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  12. Band structures in the nematic elastomers phononic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  13. Quantum and classical optics of dispersive and absorptive structured media

    NASA Astrophysics Data System (ADS)

    Bhat, Navin Andrew Rama

    This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schrodinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF 2 metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100% or more for common media regardless of geometry if the pump is near the band

  14. [Gastric cancer detection using kubelka-Munk spectral function of DNA and protein absorption bands].

    PubMed

    Li, Lan-quan; Wei, Hua-jiang; Guo, Zhou-yi; Yang, Hong-qin; Xie, Shu-sen; Chen, Xue-mei; Li, Li-bo; He, Bol-hua; Wu, Guo-yong; Lu, Jian-jun

    2009-09-01

    Differential diagnosis for epithelial tissues of normal human gastric, undifferentiation gastric adenocarcinoma, gastric squamous cell carcinomas, and poorly differentiated gastric adenocarcinoma were studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 250 to 650 nm, pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the DNA absorption bands at 260 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 68.5% (p < 0.05), 146.5% (p < 0.05), 282.4% (p < 0.05), 32.4% (p < 0.05), 56.00 (p < 0.05) and 83.0% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the protein absorption bands at 280 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 86.8% (p < 0.05), 262.9% (p < 0.05), 660.1% (p < 0.05) and 34% (p < 0.05), 72. 2% (p < 0.05), 113.5% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were

  15. Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques

    NASA Astrophysics Data System (ADS)

    Reyher, H.-J.; Schulz, R.; Thiemann, O.

    1994-08-01

    The magnetic circular dichroism (MCD) of the absorption of Nb4+Li and Ti3+Li centers in LiNbO3 has been selectively measured by applying optically detected magnetic resonance. The attribution of a well-known broad and unstructured absorption band peaking at 1.6 eV to the Nb4+Li bound small polaron is now unambiguously confirmed. In the MCD spectrum of the isoelectronic Ti3+Li center, bands show up, which closely resemble the MCD bands at 1.6 eV of this bound small polaron. This striking similarity is explained by a cluster model, representing both defects. Either TiLi or NbLi is at the center of this cluster. In both cases, the small polaron is bound to the cluster, and its MCD bands correspond to intervalence transfer transitions within the constituents of the cluster. A study of the spin-orbit coupling of the molecular orbitals of the cluster allows one to analyze the structure of the MCD bands at 2.9 eV of Ti3+Li have no counterpart in the Nb4+Li spectrum. These bands are assigned to transitions to excited states, which are specific to the impurity and are related to the 10Dq transitions known for the crystal field states of a d1 ion.

  16. Surface band structure of Bi1 -xSbx(111 )

    NASA Astrophysics Data System (ADS)

    Benia, Hadj M.; Straßer, Carola; Kern, Klaus; Ast, Christian R.

    2015-04-01

    Theoretical and experimental studies agree that Bi1-xSbx (0.07 ≤x ≤0.21 ) is a three-dimensional topological insulator. However, there is still a debate on the corresponding Bi1-xSbx(111 ) surface band structure. While three spin polarized bands have been claimed experimentally, theoretically, only two surface bands appear, with the third band being attributed to surface imperfections. Here, we address this controversy using angle-resolved photoemission spectroscopy (ARPES) on Bi1-xSbx films. To minimize surface imperfections, we have optimized the sample growth recipe. We have measured the evolution of the surface band structure of Bi1-xSbx with x increasing gradually from x =0 to x =0.6 . Our ARPES data show better agreement with the theoretical calculations, where the system is topologically nontrivial with two surface bands.

  17. New Band Structures in Aapprox110 Neutron-Rich Nuclei

    SciTech Connect

    Zhu, S. J.; Wang, J. G.; Ding, H. B.; Gu, L.; Xu, Q.; Yeoh, E. Y.; Xiao, Z. G.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Liu, S. H.; Li, K.; Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.; Qi, B.; Meng, J.

    2010-05-12

    The high spin states of neutron-rich nuclei in Aapprox110 region have been carefully investigated by measuring prompt gamma-gamma-gamma coincident measurements populated in the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. Many new collective bands have been discovered. In this proceeding paper, we introduce some interesting new band structures recently observed by our cooperative groups, that is, the one-phonon- and two-phonon gamma-vibrational bands in odd-A {sup 103}Nb, {sup 105}Mo and {sup 107}Tc, the chiral doublet bands in even-even {sup 106}Mo, {sup 110}Ru and {sup 112}Ru, and the pseudospin partner bands with in {sup 108}Tc. The characteristics of these band structures have been discussed.

  18. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  19. Geometrical attenuation, frequency dependence of Q, and the absorption band problem

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.

    2008-10-01

    A geometrical attenuation model is proposed as an alternative to the conventional frequency-dependent attenuation law Q(f) = Q0(f/f0)η. The new model provides a straightforward differentiation between the geometrical and effective attenuation (Qe) which incorporates the intrinsic attenuation and small-scale scattering. Unlike the (Q0, η) description, the inversion procedure uses only the spectral amplitude data and does not rely on elaborate theoretical models or restrictive assumptions. Data from over 40 reported studies were transformed to the new parametrization. The levels of geometrical attenuation strongly correlate with crustal tectonic types and decrease with tectonic age. The corrected values of Qe are frequency-independent and generally significantly higher than Q0 and show no significant correlation with tectonic age. Several case studies were revisited in detail, with significant changes in the interpretations. The absorption-band and the `10-Hz transition' are not found in the corrected Qe data, and therefore, these phenomena are interpreted as related to geometrical attenuation. The absorption band could correspond to changes in the dominant mode content of the wavefield as the frequency changes from about 0.1 to 100 Hz. Alternatively, it could also be a pure artefact related to the power-law Q(f) paradigm above. The explicit separation of the geometrical and intrinsic attenuation achieves three goals: (1) it provides an unambiguous, assumption- and model-free description of attenuation, (2) it allows relating the observations to the basic physics and geology and (3) it simplifies the interpretation because of reduced emphasis on the apparent Q(f) dependence. The model also agrees remarkably well with the initial attempts for finite-difference short-period coda waveform modelling. Because of its consistency and direct link to the observations, the approach should also help in building robust and transportable coda magnitudes and in seismic

  20. Universality of Mallmann correlations for nuclear band structures

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Zamfir, N. V.; Căta-Danil, G.; Ivaşcu, M.; Mărginean, N.

    2008-10-01

    It is shown that the Mallmann's energy ratio correlations, for the first time observed for the ground state band of the even-even nuclei, are universal: various band structures in all collective nuclei obey the same systematics, and consequently the same spin dependence. Based on a second order anharmonic vibrator description, parameter-free recurrence relations between Mallmann-type energy ratios are deduced, which can be used to extrapolate bands to higher spin.

  1. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized.

  2. Shell model description of band structure in 48Cr

    SciTech Connect

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-02-12

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements.

  3. Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-26

    We design an ultra-thin terahertz metamaterial absorber based on graphene/MgF(2) multilayer stacking unit cells arrayed on an Au film plane and theoretically demonstrate a dual-band total absorption effect. Due to strong anisotropic permittivity, the graphene/MgF(2) multilayer unit cells possess a hyperbolic dispersion. The strong electric and magnetic dipole resonances between unit cells make the impedance of the absorber match to that of the free space, which induces two total absorption peaks in terahertz range. These absorption peaks are insensitive to the polarization and nearly omnidirectional for the incident angle. But the absorption intensity and frequency depend on material and geometric parameters of the multilayer structure. The absorbed electromagnetic waves are finally converted into heat and, as a result, the absorber shows a good nanosecond photothermal effect.

  4. Electronic absorption and ground state structure of carotenoid molecules.

    PubMed

    Mendes-Pinto, Maria M; Sansiaume, Elodie; Hashimoto, Hideki; Pascal, Andrew A; Gall, Andrew; Robert, Bruno

    2013-09-26

    Predicting the complete electronic structure of carotenoid molecules remains an extremely complex problem, particularly in anisotropic media such as proteins. In this paper, we address the electronic properties of nine relatively simple carotenoids by the combined use of electronic absorption and resonance Raman spectroscopies. Linear carotenoids exhibit an excellent correlation between (i) the inverse of their conjugation chain length N, (ii) the energy of their S0 → S2 electronic transition, and (iii) the position of their ν1 Raman band (corresponding to the stretching mode of their conjugated C═C bonds). For cyclic carotenoids such as β-carotene, this correlation is also observed between the latter two parameters (S0 → S2 energy and ν1 frequency), whereas their "nominal" conjugation length N does not follow the same relationship. We conclude that β-carotene and cyclic carotenoids in general exhibit a shorter effective conjugation length than that expected from their chemical structure. In addition, the effect of solvent polarizability on these molecular parameters was investigated for four of the carotenoids used in this study. We demonstrate that resonance Raman spectroscopy can discriminate between the different effects underlying shifts in the S0 → S2 transition of carotenoid molecules.

  5. Band gap reduction in InNxSb1-x alloys: Optical absorption, k . P modeling, and density functional theory

    NASA Astrophysics Data System (ADS)

    Linhart, W. M.; Rajpalke, M. K.; Buckeridge, J.; Murgatroyd, P. A. E.; Bomphrey, J. J.; Alaria, J.; Catlow, C. R. A.; Scanlon, D. O.; Ashwin, M. J.; Veal, T. D.

    2016-09-01

    Using infrared absorption, the room temperature band gap of InSb is found to reduce from 174 (7.1 μm) to 85 meV (14.6 μm) upon incorporation of up to 1.13% N, a reduction of ˜79 meV/%N. The experimentally observed band gap reduction in molecular-beam epitaxial InNSb thin films is reproduced by a five band k . P band anticrossing model incorporating a nitrogen level, EN, 0.75 eV above the valence band maximum of the host InSb and an interaction coupling matrix element between the host conduction band and the N level of β = 1.80 eV. This observation is consistent with the presented results from hybrid density functional theory.

  6. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  7. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  8. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    2014-03-01

    Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.

  9. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  10. Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm

    NASA Technical Reports Server (NTRS)

    Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.

    1992-01-01

    Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.

  11. Band gap and chemically ordered domain structure of a graphene analogue BCN

    NASA Astrophysics Data System (ADS)

    Venu, K.; Kanuri, S.; Raidongia, K.; Hembram, K. P. S. S.; Waghmare, U. V.; Datta, R.

    2010-12-01

    Chemically synthesized few layer graphene analogues of B xC yN z are characterized by aberration corrected transmission electron microscopy and high resolution electron energy loss spectroscopy (HREELS) to determine the local phase, electronic structure and band gap. HREELS band gap studies of a B xC yN z composition reveal absorption edges at 2.08, 3.43 and 6.01 eV, indicating that the B xC yN z structure may consist of domains of different compositions. The K-absorption edge energy position of the individual elements in B xC yN z is determined and compared with h-BN and graphite. An understanding of these experimental findings is developed with complementary first-principles based calculations of the various ordered configurations of B xC yN z.

  12. Unfolding the band structure of non-crystalline photonic band gap materials.

    PubMed

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-08-20

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.

  13. Unfolding the band structure of non-crystalline photonic band gap materials

    PubMed Central

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  14. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.

    PubMed

    Yoo, Byung-Kuk; Kruglik, Sergei G; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-04-05

    To study the ultrafast movement of the heme iron induced by nitric oxide (NO) binding to hemoglobin (Hb) and myoglobin (Mb), we probed the picosecond spectral evolution of absorption band III (∼760 nm) and vibrational modes (iron-histidine stretching, ν(4) and ν(7) in-plane modes) in time-resolved resonance Raman spectra. The time constants of band III intensity kinetics induced by NO rebinding (25 ps for hemoglobin and 40 ps for myoglobin) are larger than in Soret bands and Q-bands. Band III intensity kinetics is retarded with respect to NO rebinding to Hb and to Mb. Similarly, the ν((Fe-His)) stretching intensity kinetics are retarded with respect to the ν(4) and ν(7) heme modes and to Soret absorption. In contrast, band III spectral shift kinetics do not coincide with band III intensity kinetics but follows Soret kinetics. We concluded that, namely, the band III intensity depends on the heme iron out-of-plane position, as theoretically predicted ( Stavrov , S. S. Biopolymers 2004 , 74 , 37 - 40 ).

  15. Absorption enhancement and total absorption in a graphene-waveguide hybrid structure

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Wu, Leiming; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan

    2017-02-01

    We propose a graphene/planar waveguide hybrid structure, and demonstrate total absorption in the visible wavelength range by means of attenuated total reflectance. The excitation of planar waveguide mode, which has strong near field enhancement and increased light interaction length with graphene, plays a vital role in total absorption. We analyze the origin and physical insight of total absorption theoretically by using an approximated reflectance, and show how to design such hybrid structure numerically. Utilizing the tunability of doped graphene, we discuss the possible application in optical modulators. We also achieve broadband absorption enhancement in near-IR range by cascading multiple graphene-waveguide hybrid structures. We believe our results will be useful not only for potential applications in optical devices, but also for studying other two-dimension materials.

  16. Band structure in Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Bachas, Constantin; Tomaras, Theodore

    2016-05-01

    We show how Yang-Mills theory on S3 × ℝ can exhibit a spectrum with continuous bands if coupled either to a topological 3-form gauge field, or to a dynamical axion with heavy Peccei-Quinn scale. The basic mechanism consists in associating winding histories to a bosonic zero mode whose role is to convert a circle in configuration space into a helix. The zero mode is, respectively, the holonomy of the 3-form field or the axion momentum. In these models different θ sectors coexist and are only mixed by (non-local) volume operators. Our analysis sheds light on, and extends Seiberg's proposal for modifying the topological sums in quantum field theories. It refutes a recent claim that B + L violation at LHC is unsuppressed.

  17. Topological band order, structural, electronic and optical properties of XPdBi (X = Lu, Sc) compounds

    NASA Astrophysics Data System (ADS)

    Narimani, M.; Nourbakhsh, Z.

    2016-05-01

    In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel-Vosco generalized gradient approximations and modified Becke-Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.

  18. Unfolding the band structure of GaAsBi

    NASA Astrophysics Data System (ADS)

    Maspero, R.; Sweeney, S. J.; Florescu, Marian

    2017-02-01

    Typical supercell approaches used to investigate the electronic properties of GaAs(1-x)Bi(x) produce highly accurate, but folded, band structures. Using a highly optimized algorithm, we unfold the band structure to an approximate E≤ft(\\mathbf{k}\\right) relation associated with an effective Brillouin zone. The dispersion relations we generate correlate strongly with experimental results, confirming that a regime of band gap energy greater than the spin-orbit-splitting energy is reached at around 10% bismuth fraction. We also demonstrate the effectiveness of the unfolding algorithm throughout the Brillouin zone (BZ), which is key to enabling transition rate calculations, such as Auger recombination rates. Finally, we show the effect of disorder on the effective masses and identify approximate values for the effective mass of the conduction band and valence bands for bismuth concentrations from 0-12%.

  19. Electronic- and band-structure evolution in low-doped (Ga,Mn)As

    SciTech Connect

    Yastrubchak, O.; Gluba, L.; Żuk, J.; Sadowski, J.; Krzyżanowska, H.; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2013-08-07

    Modulation photoreflectance spectroscopy and Raman spectroscopy have been applied to study the electronic- and band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn doping in the range of low Mn content, up to 1.2%. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap-transition energy with increasing Mn content in very low-doped (Ga,Mn)As layers with n-type conductivity are interpreted as a result of merging the Mn-related impurity band with the host GaAs valence band. On the other hand, an increase in the band-gap-transition energy with increasing Mn content in (Ga,Mn)As layers with higher Mn content and p-type conductivity indicates the Moss-Burstein shift of the absorption edge due to the Fermi level location within the valence band, determined by the free-hole concentration. The experimental results are consistent with the valence-band origin of mobile holes mediating ferromagnetic ordering in the (Ga,Mn)As diluted ferromagnetic semiconductor.

  20. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  1. Locally resonant periodic structures with low-frequency band gaps

    NASA Astrophysics Data System (ADS)

    Cheng, Zhibao; Shi, Zhifei; Mo, Y. L.; Xiang, Hongjun

    2013-07-01

    Presented in this paper are study results of dispersion relationships of periodic structures composited of concrete and rubber, from which the frequency band gap can be found. Two models with fixed or free boundary conditions are proposed to approximate the bound frequencies of the first band gap. Studies are conducted to investigate the low-frequency and directional frequency band gaps for their application to engineering. The study finds that civil engineering structures can be designed to block harmful waves, such as earthquake disturbance.

  2. Calculation of 2D electronic band structure using matrix mechanics

    NASA Astrophysics Data System (ADS)

    Pavelich, R. L.; Marsiglio, F.

    2016-12-01

    We extend previous work, applying elementary matrix mechanics to one-dimensional periodic arrays (to generate energy bands), to two-dimensional arrays. We generate band structures for the square-lattice "2D Kronig-Penney model" (square wells), the "muffin-tin" potential (circular wells), and Gaussian wells. We then apply the method to periodic arrays of more than one atomic site in a unit cell, specifically to the case of materials with hexagonal lattices like graphene. These straightforward extensions of undergraduate-level calculations allow students to readily determine band structures of current research interest.

  3. Banded Electron Structure Formation in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Banded electron structures in energy-time spectrograms have been observed in the inner magnetosphere concurrent with a sudden relaxation of geomagnetic activity. In this study, the formation of these banded structures is considered with a global, bounce-averaged model of electron transport, and it is concluded that this structure is a natural occurrence when plasma sheet electrons are captured on closed drift paths near the Earth. These bands do not appear unless there is capture of plasma sheet electrons; convection along open drift paths making open pass around the Earth do not have time to develop this feature. The separation of high-energy bands from the injection population due to the preferential advection of the gradient-curvature drift creates spikes in the energy distribution, which overlap to form a series of bands in the energy spectrograms. The lowest band is the bulk of the injected population in the sub-key energy range. Using the Kp history for an observed banded structure event, a cloud of plasma sheet electrons is captured and the development of their distribution function is examined and discussed.

  4. Heterogeneous porous structures for the fastest liquid absorption

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2013-08-01

    Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.

  5. Automated effective band structures for defective and mismatched supercells

    NASA Astrophysics Data System (ADS)

    Brommer, Peter; Quigley, David

    2014-12-01

    In plane-wave density functional theory codes, defects and incommensurate structures are usually represented in supercells. However, interpretation of E versus k band structures is most effective within the primitive cell, where comparison to ideal structures and spectroscopy experiments are most natural. Popescu and Zunger recently described a method to derive effective band structures (EBS) from supercell calculations in the context of random alloys. In this paper, we present bs_sc2pc, an implementation of this method in the CASTEP code, which generates an EBS using the structural data of the supercell and the underlying primitive cell with symmetry considerations handled automatically. We demonstrate the functionality of our implementation in three test cases illustrating the efficacy of this scheme for capturing the effect of vacancies, substitutions and lattice mismatch on effective primitive cell band structures.

  6. Automated effective band structures for defective and mismatched supercells.

    PubMed

    Brommer, Peter; Quigley, David

    2014-12-03

    In plane-wave density functional theory codes, defects and incommensurate structures are usually represented in supercells. However, interpretation of E versus k band structures is most effective within the primitive cell, where comparison to ideal structures and spectroscopy experiments are most natural. Popescu and Zunger recently described a method to derive effective band structures (EBS) from supercell calculations in the context of random alloys. In this paper, we present bs_sc2pc, an implementation of this method in the CASTEP code, which generates an EBS using the structural data of the supercell and the underlying primitive cell with symmetry considerations handled automatically. We demonstrate the functionality of our implementation in three test cases illustrating the efficacy of this scheme for capturing the effect of vacancies, substitutions and lattice mismatch on effective primitive cell band structures.

  7. Deformed band structures at high spin in 200Tl

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Soumik; Bhattacharyya, S.; Das Gupta, S.; Pai, H.; Mukherjee, G.; Palit, R.; Xu, F. R.; Wu, Q.; Shrivastava, A.; Asgar, Md. A.; Banik, R.; Bhattacharjee, T.; Chanda, S.; Chatterjee, A.; Goswami, A.; Nanal, V.; Pandit, S. K.; Saha, S.; Sethi, J.; Roy, T.; Thakur, S.

    2017-01-01

    High-spin band structures of 200Tl have been studied by γ -ray spectroscopic methods using the 198Pt(7Li,5 n )200Tl reaction at 45 MeV of beam energy. The level scheme of 200Tl has been extended significantly and several new band structures have been established with the observation of 60 new transitions. The π h9 /2⊗ν i13 /2 oblate band has been extended beyond the particle alignment frequencies. The band structures and the other excited states have been compared with the neighboring odd-odd Tl isotopes. Total Routhian surface calculations have been performed to study the deformation and shape changes as a function of spin in this nucleus. These calculations could reproduce the particle alignment frequency and suggest that the neutron pair alignment in ν i13 /2 orbital induces γ softness in 200Tl.

  8. Band-structure engineering in conjugated 2D polymers.

    PubMed

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  9. Electronic band structure of surface-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Ryu, Sae Hee; Sohn, Yeongsup; Kim, Keun Su

    2015-03-01

    There are rapidly growing interests in the study of few-layer black phosphorus owing to its promising device characteristics that may impact our future electronics technology. The low-energy band structure of black phosphorus has been widely predicted to be controllable by external perturbations, such as strain and doping. In this work, we attempt to control the electronic band structure of black phosphorous by in-situ surface deposition of alkali-metal atoms. We found that surface doping induces steep band bending towards the bulk, leading to the emergence of new 2D electronic states that are confined within only few phosphorene layers of black phosphorus. Using angle-resolved photoemission spectroscopy, we directly measured the electronic band structure and its evolution as a function of dopant density. Supported by IBS.

  10. The influence of line shape and band structure on temperatures in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Arking, A.; Grossman, K.

    1972-01-01

    Numerical experiments are performed to examine the effects of line shape and band structure on the radiative equilibrium temperature profile in planetary atmospheres. In order to accurately determine these effects, a method for calculating radiative terms is developed which avoids the usual approximations. It differs from the more commonly used methods in that it allows arbitrary dependence of the absorption coefficient on wave number, without requiring tedious line by line integration and without the constraints of band models. The present formulation is restricted to homogeneous atmospheres but the concept can be extended to the more general case. The numerical experiments reveal that the line shape and band structure of the absorbing gases have a large effect on temperatures in the higher layers of the atmosphere (corresponding to the stratosphere and mesosphere). The more nongrey the spectrum (that is, the higher the peaks and the deeper the troughs in the spectrum), the lower the temperature.

  11. Numerical and experimental study of the effect of microslits on the normal absorption of structural metamaterials

    NASA Astrophysics Data System (ADS)

    Ruiz, H.; Claeys, C. C.; Deckers, E.; Desmet, W.

    2016-03-01

    Resonant metamaterials are emerging as novel concepts to reduce noise levels in targeted frequency zones, so-called stop bands. The metamaterial concept improves acoustic behaviour through an increase of the insertion loss. This paper concerns a first investigation on the absorption capabilities of a resonant metamaterial when thermo-viscous effects are incorporated via the addition of microslits. In a previous work, a resonant metamaterial was obtained through the inclusion of resonating structures into cavities of an open honeycomb assembly. In this study, the air gap of the honeycomb structure is reduced so as to provide viscous losses for the travelling waves. Considering that the created resonant structures with open cavities are rigid, an equivalent fluid model is used to calculate the acoustical properties of a so called microslit metamaterial. It is demonstrated that the unit cell structure can be divided into parallel elements for which the acoustic impedance can be computed via the transfer matrix approach TMM in parallel and series. Likewise, it is shown that the structural response can be predicted by FEM models allowing studying the structural effects separately from the viscous-thermal effects predicted by the equivalent fluid model. Moreover, the combined effect of both approaches is shown experimentally where it is observed that: (i) The absorption of the resonant metamaterial is increased by the addition of microslits, (ii) the modes of the test sample appear as small peaks on the absorption curve of the microslit metamaterial, (iii) the structural modes are grouped below and above the stop band and, (iv) the resonant structures do not lead to additional absorption in the stop band region. Analytical models are compared to experimental measurements to validate the models and to show the potential of this material assembly.

  12. Development of X-Band Dielectric-Loaded Accelerating Structures

    SciTech Connect

    Gold, S. H.; Jing, C.; Kanareykin, A.; Gai, W.; Konecny, R.; Power, J. G.; Kinkead, A. K.

    2010-11-04

    This paper presents a progress report on the development and testing of X-band dielectric-loaded accelerating structures. Recent tests on several quartz DLA structures with different inner diameters are reported. Designs for gap-free DLA structures are presented. Also, planned new experiments are discussed, including higher gradient traveling-wave and standing-wave structures and special grooved structures for multipactor suppression.

  13. Band gap shift and the optical nonlinear absorption of sputtered ZnO-TiO2 films.

    PubMed

    Han, Yi-Bo; Han, Jun-Bo; Hao, Zhong-Hua

    2011-06-01

    ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.

  14. Stratospheric observations of the attenuated solar irradiance in the Schumann-Runge band absorption region of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Hudson, R. D.; Mentall, J. E.

    1981-01-01

    A spectrometer flown on the first Solar Absorption Balloon Experiment (SABE-1) observed the attenuated solar irradiance between 184 and 202 nm from an altitude near 40 km. These measurements provide a check on the absorption cross sections of molecular oxygen in the spectral region of the Schumann-Runge bands. Comparison of the measurements with calculations based on cross sections derived from laboratory data shows a general agreement although the irradiance measurements have large error bars near the centers of the absorption bands. The results imply that the 184-200 nm solar irradiance that penetrates to the stratosphere can be computed to an accuracy of + or - 30% or better by using presently available cross sections.

  15. High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge bands of oxygen at 79 K

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1987-01-01

    Cross sections of O2 at 79 K have been obtained from photoabsorption measurements at various pressures throughout the wavelength region 179.3-198.0 nm with a 6.65-m photoelectric scanning spectrometer equipped with a 2400-lines/mm grating and having an instrumental width (FWHM) of 0.0013 nm. The measured absorption cross sections of the Schumann-Runge bands (12,0) through (2,0) are independent of the instrumental width. The measured cross-sections are presented graphically here and are available at wavenumber intervals of about 0.1/cm as numerical compilations stored on magnetic tape from the National Space Science Data Center, NASA/Goddard. Band oscillator strengths of these bands have been determined by direct numerical integration of the measured cross sections.

  16. Valence band structure in crystalline pentacene thin films

    NASA Astrophysics Data System (ADS)

    Hatch, Richard; Huber, David; Höchst, Hartmut

    2009-03-01

    Organic semiconductors, such as pentacene (Pn), are beginning to show promise as a low-cost substitute for conventional semiconductors for a variety of electronic devices. The overlap of π-orbitals in the Pn crystal leads to molecular orbital-derived bands. We used angle-resolved photoemission spectroscopy (ARPES) to reveal the Pn in-plane band structure of the two highest occupied molecular orbital-derived bands in crystalline thin film Pn (grown on a Bi substrate) for various temperatures between 75 K and 300 K. We mapped these two bands in several crystallographic directions with special attention given to the region near the top of the valence band and show, within the limits of our experimental resolution, that temperature does not change the dispersions of these bands. We fit the band structure to a tight binding model and compared our results with recent theoretical predictions[1-2]. We also calculated the in-plane reciprocal effective mass for the M point and compared it with the measured mobility. [1] H. Yoshida et. al. Phys. Rev. B 77, 235205 (2008). [2] G. A. de Wijs et. al. Synth. Met. 139, 109 (2003).

  17. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    SciTech Connect

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

  18. Band structures and localization properties of aperiodic layered phononic crystals

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-Zhong; Zhang, Chuanzeng

    2012-03-01

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  19. Quasi-static energy absorption of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Jacobsen, AJ; Chen, X

    2014-12-01

    We present a comprehensive modeling and numerical study focusing on the energy quasi-static crushing behavior and energy absorption characteristics of hollow tube microlattice structures. The peak stress and effective plateau stress of the hollow microlattice structures are deduced for different geometrical parameters which gives volume and mass densities of energy absorption, D-v and D-m, scale with the relative density, (rho) over bar, as D-v similar to (rho) over bar (1) (5) and D-m similar to (rho) over bar (0 5), respectively, fitting very well to the experimental results of both 60 degrees inclined and 90 degrees predominately microlattices. Then the strategies for energy absorption enhancement are proposed for the engineering design of microlattice structures. By introducing a gradient in the thickness or radius of the lattice members, the buckle propagation can be modulated resulting in an increase in energy absorption density that can exceed 40%. Liquid filler is another approach to improve energy absorption by strengthening the microtruss via circumference expansion, and the gain may be over 100% in terms of volume density. Insight into the correlations between microlattice architecture and energy absorption performance combined with the high degree of architecture control paves the way for designing high performance microlattice structures for a range of impact and impulse mitigation applications for vehicles and structures. (C) 2014 Elsevier Ltd. All rights reserved.

  20. Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams

    SciTech Connect

    Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J. )

    1990-09-01

    The technique of direct laser absorption spectroscopy in fast ion beams has been employed for the determination of absolute integrated band intensities ({ital S}{sup 0}{sub {ital v}}) for the {nu}{sub 3} fundamental bands of H{sub 3}O{sup +} and NH{sup +}{sub 4}. In addition, the absolute band intensities for the {nu}{sub 1} fundamental bands of HN{sup +}{sub 2} and HCO{sup +} have been remeasured. The values obtained in units of cm{sup {minus}2} atm{sup {minus}1} at STP are 1880(290) and 580(90) for the {nu}{sub 1} fundamentals of HN{sup +}{sub 2} and HCO{sup +}, respectively; and 4000(800) and 1220(190) for the {nu}{sub 3} fundamentals of H{sub 3}O{sup +} and NH{sup +}{sub 4}, respectively. Comparisons with {ital ab} {ital initio} results are presented.

  1. Rotational structure in the near-infrared absorption spectrum of ozone

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    The lowest energy members of the near-IR absorption bands of ozone possess fine structure which is probably due to the rotation of the molecule in the upper vibronic state, suggesting that this state is metastable. A preliminary analysis of the structures as rotational subbands supports a recent theoretical assignment of the near-IR vibronic features to the 3A2 - 1A1 electronic transition. A binding energy of about 0.1 eV is inferred from the breakoff in the observed structure.

  2. Optical absorption of polar and semipolar InGaN/GaN quantum wells for blue to green converter structures

    SciTech Connect

    Neuschl, B. Helbing, J.; Thonke, K.

    2014-11-14

    The optical absorption of indium gallium nitride (InGaN)/GaN multi quantum wells (QWs) is analyzed theoretically and experimentally. For different sample structures, either planar or three-dimensional, including QWs with different tilts relative to the (0001) plane of the wurtzite crystal, the room temperature absorption spectra were measured. We observe increasing absorption for larger indium content in the active zone and for increasing QW thickness. The semipolar structures with their reduced internal electric field are favorable with respect to the spectral absorption when compared with polar samples. Numerical k ⋅ p based simulations for quantum wells with variable thickness, indium content, and orientation are in accordance with the experimental results. By taking all QW energy eigenstates in all bands as well as the orientation dependent transition probabilities into account, the spectral absorption for arbitrary sample structures can be calculated.

  3. Calculation of RIXS spectra of cuprates using band structure parameters

    NASA Astrophysics Data System (ADS)

    Shi, Yifei; Klich, Israel; Benjamin, David; Demler, Eugene

    2015-03-01

    We explore the quasi particle theory to study the Resonant Inelastic X-ray Scattering(RIXS) by using the band structure parameters. We use both the determinant method(D. Benjamin, I. Klich and E. Demler, Phys. Rev. Lett. 112, 247002(2014)) and the expansion in the core-hole potential. The methods are applied to the (CaxLa1?x)(Ba1 . 75 - xLa0 . 25 + x)Cu3Oy, (x= 0 . 1 and 0 . 4). We find that by using the band structure alone we can obtain quantitative agreement with the experimental data, especially for the position of the peak.

  4. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  5. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  6. Metallic subwavelength structures for a broadband infrared absorption control.

    PubMed

    Biener, Gabriel; Niv, Avi; Kleiner, Vladimir; Hasman, Erez

    2007-04-15

    We present a method to control the absorption of a resonator by using a subwavelength structure consisting of thin metallic plates that behaves as a metamaterial film. We demonstrate the ability to tailor the conductivity of such a metallic subwavelength structure to achieve a resonator with the desired impedance matching for the mid-infrared range. This approach provides for broadband, as well as broad-angle, enhanced absorption. Theoretical analyses, as well as experimental results of the optical properties of a metallic NiCr structure at 8-12 microm spectral range are introduced.

  7. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  8. Reconfigurable wave band structure of an artificial square ice

    SciTech Connect

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; Heinonen, Olle

    2016-04-18

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.

  9. Reconfigurable wave band structure of an artificial square ice

    DOE PAGES

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; ...

    2016-04-18

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less

  10. Band structure mapping of bilayer graphene via quasiparticle scattering

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew; Wang, Joel I.-Jan; Li, Suchun; Birdwell, A. Glen; Chen, Yu-An; Watanabe, Kenji; Taniguchi, Takashi; Quek, Su Ying; Jarillo-Herrero, Pablo; LeRoy, Brian J.

    2014-09-01

    A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0 = 3.1 eV, γ1 = 0.39 eV, and γ4 = 0.22 eV.

  11. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  12. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  13. [Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen].

    PubMed

    Gudkov, S V; Karp, O E; Garmash, S A; Ivanov, V E; Chernikov, A V; Manokhin, A A; Astashev, M E; Iaguzhinskiĭ, L S; Bruskov, V I

    2012-01-01

    It is found that in bidistilled water saturated with oxygen hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sourses, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

  14. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    PubMed Central

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas. PMID:28120897

  15. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling

    2017-01-01

    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.

  16. Band structure of W and Mo by empirical pseudopotential method

    NASA Technical Reports Server (NTRS)

    Sridhar, C. G.; Whiting, E. E.

    1977-01-01

    The empirical pseudopotential method (EPM) is used to calculate the band structure of tungsten and molybdenum. Agreement between the calculated reflectivity, density of states, density of states at the Fermi surface and location of the Fermi surface from this study and experimental measurements and previous calculations is good. Also the charge distribution shows the proper topological distribution of charge for a bcc crystal.

  17. Band-structure loops and multistability in cavity QED

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Larson, J.; O'Dell, D. H. J.

    2011-06-01

    We calculate the band structure of ultracold atoms located inside a laser-driven optical cavity. For parameters where the atom-cavity system exhibits bistability, the atomic band structure develops loop structures akin to the ones predicted for Bose-Einstein condensates in ordinary (noncavity) optical lattices. However, in our case the nonlinearity derives from the cavity back-action rather than from direct interatomic interactions. We find both bi- and tristable regimes associated with the lowest band, and show that the multistability we observe can be analyzed in terms of swallowtail catastrophes. Dynamic and energetic stability of the mean-field solutions is also discussed, and we show that the bistable solutions have, as expected, one unstable and two stable branches. The presence of loops in the atomic band structure has important implications for proposals concerning Bloch oscillations of atoms inside optical cavities [Peden , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.043803 80, 043803 (2009); Prasanna Venkatesh , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.063834 80, 063834 (2009)].

  18. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect

    Marsh, Roark A.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  19. Quasiparticle band structures and optical properties of magnesium fluoride.

    PubMed

    Yi, Zhijun; Jia, Ran

    2012-02-29

    The quasiparticle and optical properties of magnesium fluoride (MgF(2)) are computed within the GW approximation based on many-body perturbation theory (MBPT). The many-body effects appearing in self-energy and electron-hole interactions have an important influence on the electronic and optical properties. The DFT-LDA calculation shows a 6.78 eV band gap. Two methods are employed to evaluate the self-energy within the GW approximation in the present work. The generalized plasmon pole model (GPP) provides a band gap of 12.17 eV, which agrees well with the experimental value of 12.4 eV (Thomas et al 1973 Phys. Status Solidi b 56 163). Another band gap value of 11.30 eV is obtained by using a full frequency-dependent self-energy, which is also not far from the experimental value and is much better than the result from the LDA calculation. The calculated optical spectrum within DFT is significantly different from the experiment. Although the calculated optical absorption threshold within the GW method is close to the experiment, the overall shape of the spectrum is still similar to the case of DFT. However, the overall shape of the spectrum via the Bethe-Salpeter equation (BSE) method agrees well with the experiment.

  20. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  1. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  2. Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies

    SciTech Connect

    Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Hiraoka, Koichi; Kojima, Kenichi; Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji; Mimura, Kojiro; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Oguchi, Tamio; Taniguchi, Masaki

    2011-09-15

    We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

  3. Dynamic energy absorption characteristics of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  4. Photonic crystal digital alloys and their band structure properties.

    PubMed

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  5. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  6. Local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Xing; Feng, Ya-Juan; Huang, Jun-Heng; He, Jin-Fu; Liu, Qing-Hua; Pan, Zhi-Yun; Wu, Zi-Yu

    2015-02-01

    The local structures and optical absorption characteristics of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and ultraviolet-visible absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region. Supported by National Basic Research Program of China (2012CB825801), Science Fund for Creative Research Groups of NSFC (11321503), National Natural Science Foundation of China (11321503, 11179004) and Guangdong Natural Science Foundation (S2011040003985)

  7. Extended X-ray absorption fine structure of bimetallic nanoparticles

    PubMed Central

    2011-01-01

    Summary Electronic and magnetic properties strongly depend on the structure of the material, especially on the crystal symmetry and chemical environment. In nanoparticles, the break of symmetry at the surface may yield different physical properties with respect to the corresponding bulk material. A useful tool to investigate the electronic structure, magnetic behaviour and local crystallographic structure is X-ray absorption spectroscopy. In this review, recent developments in the field of extended X-ray absorption fine structure measurements and in the analysis methods for structural investigations of bimetallic nanoparticles are highlighted. The standard analysis based on Fourier transforms is compared to the relatively new field of wavelet transforms that have the potential to outperform traditional analysis, especially in bimetallic alloys. As an example, the lattice expansion and inhomogeneous alloying found in FePt nanoparticles is presented, and this is discussed below in terms of the influence of employed density functional theory calculations on the magnetic properties. PMID:21977436

  8. Absorption-reduced waveguide structure for efficient terahertz generation

    SciTech Connect

    Pálfalvi, L.; Fülöp, J. A.; Hebling, J.

    2015-12-07

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  9. Measurement of valence band structure in arbitrary dielectric films

    SciTech Connect

    Uhm, Han S.; Choi, Eun H.

    2012-10-15

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  10. From lattice Hamiltonians to tunable band structures by lithographic design

    NASA Astrophysics Data System (ADS)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  11. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Bin Bin; Wang, Ye Feng; Wei, Dong; Cui, Bin; Chen, Yu; Zeng, Jing Hui

    2016-06-01

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn2+ is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the "loss-in-potential," inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  12. Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone.

    PubMed

    Albarran, Guadalupe; Boggess, William; Rassolov, Vitaly; Schuler, Robert H

    2010-07-22

    Absorption spectrophotometric and mass spectrometric properties of 1,2-benzoquinone, prepared in aqueous solution by the hexachloroiridate(IV) oxidation of catechol and isolated by HPLC, are reported. Its absorption spectrum has a broad moderately intense band in the near UV with an extinction coefficient of 1370 M(-1)cm(-1) at its 389 nm maximum. The oscillator strength of this band contrasts with those of the order-of-magnitude stronger approximately 250 nm bands of most 1,4-benzoquinones. Gaussian analysis of its absorption spectrum indicates that it also has modestly intense higher energy bands in the 250-320 nm region. In atmospheric pressure mass spectrometric studies 1,2-benzoquinone exhibits very strong positive and negative mass 109 signals that result from the addition of protons and hydride ions in APCI and ESI ion sources. It is suggested that the hydride adduct is formed as the result of the highly polar character of ortho-quinone. On energetic collision the hydride adduct loses an H atom to produce the 1,2-benzosemiquinone radical anion. The present studies also show that atmospheric pressure mass spectral patterns observed for catechol are dominated by signals of 1,2-benzoquinone resulting from oxidation of catechol in the ion sources. Computational studies of the electronic structures of 1,2-benzoquinone, its proton and hydride ion adducts, and 1,2-benzosemiquinone radical anion are reported. These computational studies show that the structures of the proton and hydride adducts are similar and indicate that the hydride adduct is the proton adduct of a doubly negatively charged 1,2-benzoquinone. The contrast between the properties of 1,2- and 1,4-benzoquinone provides the basis for considerations on the effects of conjugation in aromatic systems.

  13. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  14. Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.

    2017-04-01

    We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.

  15. Exciton band structure in two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pier Luigi; Sponza, Lorenzo; Giorgetti, Christine; Reining, Lucia; Sottile, Francesco; Gatti, Matteo

    In low-dimensional materials the screening of the Coulomb interaction is strongly reduced. As a consequence, the binding energy of both Wannier and Frenkel excitons in the optical spectra is large and comparable in size. Therefore, contrarily to bulk materials, it cannot serve as a criterion to distinguish different kinds of excitons. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal BN, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the hopping terms related to the electronic band structure.

  16. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  17. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  18. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-02

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model.

  19. Bonding, structures, and band gap closure of hydrogen at high pressures

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander F.; Tse, John S.; Wang, Hui; Yang, Jianjun; Struzhkin, Viktor V.; Howie, Ross T.; Gregoryanz, Eugene

    2013-01-01

    We have studied dense hydrogen and deuterium experimentally up to 320 GPa and using ab initio molecular dynamic (MD) simulations up to 370 GPa between 250 and 300 K. Raman and optical absorption spectra show significant anharmonic and quantum effects in mixed atomic and molecular dense phase-IV of hydrogen. In agreement with these observations, ab initio MD simulations near 300 K show extremely large atomic motions, which include molecular rotations, hopping, and even pair fluctuations, suggesting that phase IV may not have a well-defined crystalline structure. The structurally diverse layers (molecular and graphenelike) are strongly coupled, thus opening an indirect band gap; moreover, at 300 GPa, we find fast synchronized intralayer structural fluctuations. At 370 GPa, the mixed structure collapses to form a metallic molecular Cmca-4 phase, which exhibits a new interstitial valence charge bonding scheme.

  20. Semiempirical band structure calculations on skutterudite-type compounds

    NASA Astrophysics Data System (ADS)

    Partik, M.; Lutz, H. D.

    Semiempirical band structure calculations were performed on several skutterudite-type compounds by using the extended Hückel method. Starting with the molecular orbital calculations on isolated P4 and As4 rings, the reason for the band dispersions of the skutterudites was found to be the interactions between the nonmetal atoms. Both the intermolecular and the intramolecular interactions between the phosphorus atoms are stronger than those between the arsenic atoms. Hence, the dispersion of the bands in CoP3 is larger than that in CoAs3. The COOP (crystal orbital overlap population) integrals of the intramolecular P-P bonds reveal the relation between the valence electron count and the observed bond lengths. The P-P bonds in the skutterudite-type compounds like TP3 (T=Co, Rh, Ir) become stronger by reduction as in NiP3 and weaker by oxidation as in RT4X12 (X=P, As, Sb; R=alkaline earth or rare earth metals) because the bands near the Fermi level are bonding. The electronic reason for the geometric distortion of the Ge2Y2 (Y=S, Se) units of mixed skutterudites TGe1.5Y1.5 is caused by an electron pair gap on germanium, which corresponds to low electron density perpendicular to the ring plane on the germanium atoms.

  1. Atomic Resolution Mapping of the Excited-State Electronic Structure of Cu2O with Time-Resolved X-Ray Absorption Spectroscopy

    SciTech Connect

    Hillyard, Patrick B.; Kuchibhatla, Satyanarayana V N T; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, Ponnusamy; Saraf, Laxmikant V.; Thevuthasan, Suntharampillai; Gaffney, Kelly J.

    2009-09-29

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that that the conduction band and valence band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  2. Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.

    2009-09-01

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the OK edge and the CuL3 edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu3d and O2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the CuL3 - and OK -edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  3. Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.

    2010-05-02

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  4. Band to band tunneling in III-V semiconductors: Implications of complex band structure, strain, orientation, and off-zone center contribution

    SciTech Connect

    Majumdar, Kausik

    2014-05-07

    In this paper, we use a tight binding Hamiltonian with spin orbit coupling to study the real and complex band structures of relaxed and strained GaAs. A simple d orbital on-site energy shift coupled with appropriate scaling of the off-diagonal terms is found to correctly reproduce the band-edge shifts with strain. Four different 〈100〉 strain combinations, namely, uniaxial compressive, uniaxial tensile, biaxial compressive, and biaxial tensile strain are studied, revealing rich valence band structure and strong relative orientation dependent tunneling. It is found that complex bands are unable to provide unambiguous tunneling paths away from the Brillouin zone center. Tunneling current density distribution over the Brillouin zone is computed using non-equilibrium Green's function approach elucidating a physical picture of band to band tunneling.

  5. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  6. A Study of Higher-Band Dipole Wakefields in X-Band Accelerating Structures for the G/NLC

    SciTech Connect

    Jones, R

    2004-09-02

    The X-band linacs for the G/NLC (Global/Next Linear Collider) have evolved from the DDS (Damped Detuned Structure) series. The present accelerating structures are 60 cm in length and incorporate damping and detuning of the dipole modes which comprise the wakefield. In order to adequately damp the wakefield, frequencies of adjacent structures are interleaved. Limited analysis has been done previously on the higher order dipole bands. Here, we calculate the contribution of higher order bands of interleaved structures to the wakefield. Beam dynamics issues are also studied.

  7. Optical Absorption, Stability and Structure of NpO2+ Complexeswith Dicarboxylic Acids

    SciTech Connect

    Guoxin Tian; Linfeng Rao

    2006-01-04

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes.

  8. Absorption and emission line shapes in the O2 atmospheric bands - Theoretical model and limb viewing simulations

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Bucholtz, A.; Hays, P. B.; Ortland, D.; Skinner, W. R.

    1989-01-01

    A multiple scattering radiative transfer model has been developed to carry out a line-by-line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2 1Sigma(+)g - 3Sigma(-)g atmospheric bands (A,B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  9. Iron-absorption band analysis for the discrimination of iron-rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Analysis of ERTS-1 images of Nevada has followed two courses: comparative lineament mapping and spectral reflectance evaluation. The comparative lineament mapping was conducted by mapping lineaments on 9 x 9 inch prints of MSS bands 5 and 7, transferring the data to a base map, and comparing the results with existing geologic maps. The most significant results are that lineaments are more numerous on the band 7 images, and approximately 100 percent more were mapped than appear on existing maps. Geologic significance of these newly mapped lineaments will not be known until they are checked in the field: many are probably faults. Spectral analysis has been limited to visual comparison among the four MSS bands. In general, higher scene contrast is shown in the near infrared bands (6 and 7) than in the visible wavelength bands (4 and 5). The economic implications of these results derive chiefly from the greater efficiency that can be obtained by using near infrared as well as visible wavelength images.

  10. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  11. Theoretical study on the photofragment branching ratios and anisotropy parameters of ICl in the second absorption band

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Yabushita, Satoshi

    2014-01-01

    Potential energy curves, transition dipole moments, and non-adiabatic coupling terms of the excited states of ICl molecule have been obtained by the spin-orbit configuration interaction method to examine the branching ratios and the anisotropy parameters of the photodissociation process in the second absorption band. The calculation of the branching ratios with the time-dependent coupled Schrödinger equations, including the quantum interference effect between the 0+(III) and 0+(IV) states, shows good agreement with recent experiments, thus resolves the long standing disagreement. The contribution of the quantum interference effect to the photodissociation process is discussed based on a time-dependent perturbation treatment.

  12. Band structure engineering in topological insulator based heterostructures.

    PubMed

    Menshchikova, T V; Otrokov, M M; Tsirkin, S S; Samorokov, D A; Bebneva, V V; Ernst, A; Kuznetsov, V M; Chulkov, E V

    2013-01-01

    The ability to engineer an electronic band structure of topological insulators would allow the production of topological materials with tailor-made properties. Using ab initio calculations, we show a promising way to control the conducting surface state in topological insulator based heterostructures representing an insulator ultrathin films on the topological insulator substrates. Because of a specific relation between work functions and band gaps of the topological insulator substrate and the insulator ultrathin film overlayer, a sizable shift of the Dirac point occurs resulting in a significant increase in the number of the topological surface state charge carriers as compared to that of the substrate itself. Such an effect can also be realized by applying the external electric field that allows a gradual tuning of the topological surface state. A simultaneous use of both approaches makes it possible to obtain a topological insulator based heterostructure with a highly tunable topological surface state.

  13. Band gap tunability of molecular beam epitaxy grown lateral composition modulated GaInP structures by controlling V/III flux ratio

    SciTech Connect

    Park, K. W.; Park, C. Y.; Lee, Y. T.

    2012-07-30

    Lateral composition modulated (LCM) GaInP structures were grown on (001) GaAs substrate by molecular beam epitaxy with different V/III flux ratios. Band gap of LCM structures could be tuned from 1.93 eV to 1.83 eV by decreasing flux ratio while maintaining the same photoluminescence intensity, enhanced light absorption, and widened absorption spectrum. It is shown that for band gap tuning of LCM structures, flux ratio adjustment is a more viable method compared to growth temperature adjustment.

  14. Iron absorption band analysis for the discrimination of iron rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A lineament study of the Nevada test site is near completion. Two base maps (1:500,000) have been prepared, one of band 7 lineaments and the other of band 5 lineaments. In general, more lineaments and more faults are seen on band 5. About 45% of the lineaments appear to be faults and contacts, the others being predominantly streams, roads, railway tracks, and mountain crests. About 25% of the lineaments are unidentified so far. Special attention is being given to unmapped extensions of faults, groups of unmapped lineaments, and known mineralized areas and alteration zones. Earthquake epicenters recorded from 1869 to 1963 have been plotted on the two base maps. Preliminary examination as yet indicates no basic correlation with the lineaments. Attempts are being made to subtract bands optically, using an I2S viewer, an enlarger, and a data color viewer. Success has been limited so far due to technical difficulties, mainly vignetting and poor light sources, within the machines. Some vegetation and rock type differences, however, have been discerned.

  15. Sub-Band Gap Absorption in As-Deposited and Annealed nc-CdSe Thin Films Using Constant Photocurrent Method (CPM)

    NASA Astrophysics Data System (ADS)

    Sharma, Kriti; Al-Kabbi, A. S.; Singh, Baljinder; Saini, G. S. S.; Tripathi, S. K.

    2011-12-01

    Nanocrystalline CdSe thin films have been prepared by thermal vaccum evaporation technique using Inert Gas Condensation method using Argon as inert gas. XRD confirms the crystalline cubic nature of nc-CdSe thin films. The optical band gap is calculated for as deposited nc-CdSe and it comes out to be 2.1 eV. CPM has been used to measure sub-band gap absorption in nanocrystalline CdSe thin films. The thin films of nc-CdSe have been annealed at 80 °C for one hour and sub-bandgap absorption in annealed samples has also been calculated. Slope of Urbach tail which is a measure of disorder in both as deposited and annealed samples has been calculated. In the case of as deposited nc-CdSe thin films, Urbach slope is 354 meV. It decreases to the value 198 meV after annealing which shows structural disorder decreases after annealing.

  16. Fabrication of x-band accelerating structures at Fermilab

    SciTech Connect

    Tug T Arkan et al.

    2004-07-20

    The RF Technology Development group at Fermilab is working together with the NLC and GLC groups at SLAC and KEK on developing technology for room temperature X-band accelerating structures for a future linear collider. We built six 60-cm long, high phase advance, detuned structures (HDS or FXB series). These structures have 150 degrees phase advance per cell, and are intended for high gradient tests. The structures were brazed in a vacuum furnace with a partial pressure of argon, rather than in a hydrogen atmosphere. We have also begun to build 60-cm long, damped and detuned structures (HDDS or FXC/FXD series). We have built 5 FXC and 1 FXD structures. Our goal was to build six structures for the 8-pack test at SLAC by the end of March 2004, as part of the GLC/NLC effort to demonstrate the readiness of room temperature RF technology for a linear collider. This paper describes the RF structure factory infrastructure (clean rooms, vacuum furnaces, vacuum equipment, RF equipment etc.), and the fabrication techniques utilized (the machining of copper cells/couplers, quality control, etching, vacuum brazing, cleanliness requirements etc.) for the production of FXB and FXC/FXD structures.

  17. Sound absorption by subwavelength membrane structures: A geometric perspective

    NASA Astrophysics Data System (ADS)

    Yang, Min; Li, Yong; Meng, Chong; Fu, Caixing; Mei, Jun; Yang, Zhiyu; Sheng, Ping

    2015-12-01

    Decorated membranes comprising a thin layer of elastic film with small rigid platelets fixed on top have been found to be efficient absorbers of low-frequency sound. In this work we consider the problem of sound absorption from a perspective aimed at deriving upper bounds under different scenarios, i.e., whether the sound is incident from one side only or from both sides, and whether there is a reflecting surface on the back side of the membrane. By considering the negligible thickness of the membrane, usually on the order of a fraction of one millimeter, we derive a relation showing that the sum of the incoming sound waves' (complex) pressure amplitudes, averaged over the area of the membrane, must be equal to that of the outgoing waves. By using this relation, and without going to any details of the wave solutions, it is shown that the maximum absorption achievable from one-sided incidence is 50%, while the maximum absorption with a back-reflecting surface can reach 100%. The latter was attained by the hybridized resonances. All the results are shown to be in excellent agreement with the experiments. This generalized perspective, when used together with the Green function's formalism, can be useful in gaining insights into the constraints on what are achievable in scatterings and absorption by thin film structures and delineating them.

  18. Growth and properties of AIIIBV QD structures for intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Vyskočil, J.; Gladkov, P.; Petříček, O.; Hospodková, A.; Pangrác, J.

    2015-03-01

    Intermediate band solar cells theoretically offer a promising way to significantly increase cell efficiency compared to a single-junction solar cell. We focused on the preparation of antimony containing materials as a covering of QD layers. In this article we discuss how the concentration gradient of GaAsSb strain reducing layers can influence the resulting optical properties of the solar cell structures. The main principle of the structure is that the absorption of light is achieved at QD excited states with a better overlap of electron and hole wave functions. With fast relaxation of carriers to the ground state, the electrons and holes are quickly spatially separated. Two different composition gradients of GaAsSb SRL were used for the solar cell structure. One or five quantum dot stacks were compared. The maximal PC increased approximately 17 times with increasing number of QD layers from 1 to 5. The highest PC was achieved for sample I5A with increasing concentration of Sb in the SRL, especially in the QD absorption region. The possible explanation is a better carrier separation in this type of structure suppressing the radiative recombination rate in QDs. These results suggest a high application potential of this structure for photovoltaics.

  19. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    NASA Astrophysics Data System (ADS)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.

    In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.

  20. Is a pyrene-like molecular ion the cause of the 4,430-angstroms diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar bands (DIBs), ubiquitous absorption features in astronomical spectra, have been known since early this century and now number more than a hundred. Ranging from 4,400 angstroms to the near infrared, they differ markedly in depth, width and shape, making the concept of a single carrier unlikely. Whether they are due to gas or grains is not settled, but recent results suggest that the DIB carriers are quite separate from the grains that cause visual extinction. Among molecular candidates the polycyclic aromatic hydrocarbons (PAHs) have been proposed as the possible carriers of some of the DIBs, and we present here laboratory measurements of the optical spectrum of the pyrene cation C16H10+ in neon and argon matrices. The strongest absorption feature falls at 4,435 +/- 5 angstroms in the argon matrix and 4,395 +/- 5 angstroms in the neon matrix, both close to the strong 4,430-angstroms DIB. If this or a related pyrene-like species is responsible for this particular band, it must account for 0.2% of all cosmic carbon. The ion also shows an intense but puzzling broad continuum, extending from the ultraviolet to the visible, similar to what is seen in the naphthalene cation and perhaps therefore a common feature of all PAH cations. This may provide an explanation of how PAHs convert a large fraction of interstellar radiation from ultraviolet and visible wavelengths down to the infrared.

  1. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  2. Birefringence and band structure of CdP2 crystals

    NASA Astrophysics Data System (ADS)

    Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.

    2013-08-01

    The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||сbands. Minimal direct energy intervals correspond to transitions Г1→Г1 for Е||с and Г2→Г1 for Е⊥с. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Г1→Г1 and Г2→Г1 band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5-10 eV and optical functions (n, k, ε1, ε2,d2ε1/dE2 and d2ε2/dE2) were calculated by using Kramers-Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  3. Disorder in ZnSnN2: Characterization and Band Structure Effects

    NASA Astrophysics Data System (ADS)

    Feldberg, N.; Linhart, W. M.; Veal, T. D.; Stampe, P. A.; Kennedy, R. J.; Scanlon, D. O.; Piper, L. F. J.; Yang, Y.; Clarke, R.; Reeves, R. J.; Durbin, S. M.

    2014-03-01

    ZnSnN2 represents a critical member of the Zn-IV-N2 family of materials proposed as alternatives to conventional III-V semiconductors for use in optoelectronic devices. Importantly, it consists of what are known as ``earth abundant'' elements. This compound is predicted to exhibit a tetragonal ordering and to crystallize in an orthorhombic lattice structure. In contrast with density functional theory calculations, films grown by molecular beam epitaxy appear to have a monoclinic structure with γ>118°, possibly due to the disordering of the Zn-Sn sublattice. Similar effects having been seen in other members of the family. We show that increasing cation sublattice disorder is predicted to cause a decrease in the band gap, theoretically by a full 0.9 eV and may be useful for device engineering. Hall Effect shows a degenerate carrier concentration in all samples to date, likely due to disorder and/or deviations from stoichiometry. The onset of optical absorption occurs at higher energy in samples with lower carrier concentrations and ranges from 2-2.4 eV. We see evidence for this in hard x-ray photoelectron spectroscopy, along with signs of band filling. Increasing cation sublattice disorder may be competing with Moss-Burstein band filling.

  4. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  5. Photofield emission spectroscopy of the tungsten <112> band structure

    NASA Astrophysics Data System (ADS)

    Radoń, T.; Jaskółka, S.

    1991-05-01

    Optical transitions in photofield emission (PFE) characteristics from the (112) plane of tungsten have been observed at five values of photon energy in the visible range. To measure very small PFE currents modulated laser radiation and phase-sensitive detection have been used. Shoulders in the characteristics obtained with s-polarized light correspond to transitions in the bulk band structure near the Fermi level in accordance with the theoretical results of Christensen and Feuerbacher [1]. Using p-polarized light, peaks of the surface density of states, lying below the Fermi level, were observed in a good agreement with both the field and photofield emission distributions.

  6. Anomalous quasiparticle lifetime in graphite: band structure effects.

    PubMed

    Spataru, C D; Cazalilla, M A; Rubio, A; Benedict, L X; Echenique, P M; Louie, S G

    2001-12-10

    We report ab initio calculations of quasiparticle lifetimes in graphite, as determined from the imaginary part of the self-energy operator within the GW approximation. The inverse lifetime in the energy range from 0.5 to 3.5 eV above the Fermi level presents significant deviations from the quadratic behavior naively expected from Fermi liquid theory. The deviations are explained in terms of the unique features of the band structure of this material. We also discuss the experimental results from different groups and make some predictions for future experiments.

  7. X-BAND TRAVELING WAVE RF DEFLECTOR STRUCTURES

    SciTech Connect

    Wang, J.W.; Tantawi, S.; /SLAC

    2008-12-18

    Design studies on the X-Band transverse RF deflectors operating at HEM{sub ll} mode have been made for two different applications. One is for beam measurement of time-sliced emittance and slice energy spread for the upgraded LCLS project, its optimization in RF efficiency and system design are carefully considered. Another is to design an ultra-fast RF kicker in order to pick up single bunches from the bunch-train of the B-factory storage ring. The challenges are to obtain very short structure filling time with high RF group velocity and good RF efficiency with reasonable transverse shunt impedance. Its RF system will be discussed.

  8. Engineering band structure in nanoscale quantum-dot supercrystals.

    PubMed

    Baimuratov, Anvar S; Rukhlenko, Ivan D; Fedorov, Anatoly V

    2013-07-01

    Supercrystals made of periodically arranged semiconductor quantum dots (QDs) are promising structures for nanophotonics applications due to almost unlimited degrees of freedom enabling fine tuning of their optical responses. Here we demonstrate broad engineering opportunities associated with the possibility of tailoring the energy bands of excitons in two-dimensional quantum-dot supercrystals through the alteration in the QD arrangement. These opportunities offer an unprecedented control over the optical properties of the supercrystals, which may be used as a versatile material base for advanced photonics devices on the nanoscale.

  9. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  10. Structure- and dose-absorption relationships of coffee polyphenols.

    PubMed

    Erk, Thomas; Hauser, Johanna; Williamson, Gary; Renouf, Mathieu; Steiling, Heike; Dionisi, Fabiola; Richling, Elke

    2014-01-01

    Chlorogenic acids (CGAs) from coffee have biological effects related to human health. Thus, specific data on their bioavailability in the upper gastrointestinal tract are of high interest, since some molecules are absorbed here and so are not metabolized by colonic microflora. Up to now, no data on structure-absorption relationships for CGAs have been published, despite this being the most consumed group of polyphenols in the western diet. To address this gap, we performed ex vivo absorption experiments with pig jejunal mucosa using the Ussing chamber model (a model simulating the mucosa and its luminal/apical side). The main coffee polyphenols, caffeoylquinic acid (CQA), feruloylquinic acid (FQA), caffeic acid (CA), dicaffeoylquinic acid (diCQA), and D-(-)-quinic acid (QA), were incubated in individual experiments equivalent to gut lumen physiologically achievable concentrations (0.2-3.5 mM). Identification and quantification were performed with HPLC-diode array detection and HPLC-MS/MS. Additionally, the presence of ABC-efflux transporters was determined by Western blot analysis. The percentages of initially applied CGAs that were absorbed through the jejunal pig mucosa were, in increasing order: diCQA, trace; CQA, ≈ 1%; CA, ≈ 1.5%; FQA, ≈ 2%; and QA, ≈ 4%. No differences were observed within the CGA subgroups. Dose-absorption experiments with 5-CQA suggested a passive diffusion (nonsaturable absorption and a linear dose-flux relationship) and its secretion was affected by NaN3 , indicating an active efflux. The ABC-efflux transporters MDR 1 and MRP 2 were identified in pig jejunal mucosa for the first time. We conclude that active efflux plays a significant role in CGA bioavailability and, further, that the mechanism of CGA absorption in the jejunum is governed by their physicochemical properties.

  11. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  12. Probing the graphite band structure with resonant soft-x-ray fluorescence

    SciTech Connect

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A.

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  13. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    SciTech Connect

    Vaverka, April Susan Montoya

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  14. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  15. Broad Band Light Absorption and High Photocurrent of (In,Ga)N Nanowire Photoanodes Resulting from a Radial Stark Effect.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Corfdir, Pierre; Brandt, Oliver; Riechert, Henning; Geelhaar, Lutz

    2016-12-21

    The photoelectrochemical properties of (In,Ga)N nanowire photoanodes are investigated using H2O2 as a hole scavenger to prevent photocorrosion. Under simulated solar illumination, In0.16Ga0.84N nanowires grown by plasma-assisted molecular beam epitaxy show a high photocurrent of 2.7 mA/cm(2) at 1.2 V vs reversible hydrogen electrode. This value is almost the theoretical maximum expected from the corresponding band gap (2.8 eV) for homogeneous bulk material without taking into account surface effects. These nanowires exhibit a higher incident photon-to-current conversion efficiency over a broader wavelength range and a higher photocurrent than a compact layer with higher In content of 28%. These results are explained by the combination of built-in electric fields at the nanowire sidewall surfaces and compositional fluctuations in (In,Ga)N, which gives rise to a radial Stark effect. This effect enables spatially indirect transitions at energies much lower than the band gap. The resulting broad band light absorption leads to high photocurrents. This benefit of the radial Stark effect in (In,Ga)N nanowires for solar harvesting applications opens up the perspective to break the theoretical limit for photocurrents.

  16. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    SciTech Connect

    Sudeep, P. M.; Vinayasree, S.; Mohanan, P.; Ajayan, P. M.; Narayanan, T. N.; Anantharaman, M. R.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methyl Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.

  17. Exciton Band Structure in Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Sponza, Lorenzo; Giorgetti, Christine; Reining, Lucia; Sottile, Francesco; Gatti, Matteo

    2016-02-01

    Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal boron nitride, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.

  18. Exciton Band Structure in Two-Dimensional Materials.

    PubMed

    Cudazzo, Pierluigi; Sponza, Lorenzo; Giorgetti, Christine; Reining, Lucia; Sottile, Francesco; Gatti, Matteo

    2016-02-12

    Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal boron nitride, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.

  19. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2.

    PubMed

    de Lange, Arno; Dickenson, Gareth D; Salumbides, Edcel J; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-21

    An extensive survey of the D(2) absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90,000-119,000 cm(-1) covers the full depth of the potential wells of the B (1)Σ(u)(+), B' (1)Σ(u)(+), and C (1)Π(u) electronic states up to the D(1s) + D(2l) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm(-1). Extended calibration methods are employed to extract line positions of D(2) lines at absolute accuracies of 0.03 cm(-1). The D (1)Π(u) and B'' (1)Σ(u)(+) electronic states correlate with the D(1s) + D(3l]) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D(2). The observations are compared with previous studies, both experimental and theoretical.

  20. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  1. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  2. On the Use of Difference Bands for Modeling SF_6 Absorption in the 10μm Atmospheric Window

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Manceron, Laurent; Roy, P.; Boudon, Vincent; Loete, Michel

    2016-06-01

    To model correctly the SF_6 atmospheric absorption requires the knowledge of the spectroscopic parameters of all states involved in the numerous hot bands in the 10,5μm atmospheric transparency window. However, due to their overlapping, a direct analysis of the hot bands near the 10,5μm absorption of SF_6 in the atmospheric window is not possible. It is necessary to use another strategy, gathering information in the far and mid infrared regions on initial and final states to compute the relevant total absorption. In this talk, we present new results from the analysis of spectra recorded at the AILES beamline at the SOLEIL Synchrotron facility. For these measurements, we used a IFS125HR interferometer combined with the synchrotron radiation in the 100-3200 wn range, coupled to a cryogenic multiple pass cell. The optical path length was varied from 45 to 141m with measuring temperatures between 223 and 153+/-5 K. The new information obtained on νb{2}+νb{4}-νb{5}, 2νb{5}-νb{6} and νb{3}+νb{6}-νb{4} allowed to derive improved parameters for νb{5}, 2νb{5} and νb{3}+νb{6}. In turn, they are used to model the more important νb{3}+νb{5}-νb{5} and νb{3}+νb{6}-νb{6} hot band contributions. By including these new parameters in the XTDS model, we substantially improved the SF_6 parameters used to model the atmosphere. F. Kwabia Tchana, F. Willaert, X. Landsheere, J. M. Flaud, L. Lago, M. Chapuis, P. Roy, L. Manceron. A new, low temperature long-pass cell for mid-IR to THz Spectroscopy and Synchrotron Radiation Use. Rev. Sci. Inst. 84, 093101, (2013) C. Wenger, V. Boudon, M. Rotger, M. Sanzharov, and J.-P. Champion,"XTDS and SPVIEW: Graphical tools for Analysis and Simulation of High Resolution Molecular Spectra", J. Mol. Spectrosc. 251, 102 (2008)

  3. A thermal broadening analysis of absorption spectra of the D1/D2/cytochrome b-559 complex in terms of Gaussian decomposition sub-bands.

    PubMed

    Cattaneo, R; Zucchelli, G; Garlaschi, F M; Finzi, L; Jennings, R C

    1995-11-21

    Absorption spectra of the isolated D1/D2/cytochrome b-559 complex have been measured in the temperature range 80-300 K. All spectra were analyzed in terms of a linear combination of Gaussian bands and the thermal broadening data interpreted in terms of a model in which the spectrum of each pigment site is broadened by (a) a homogeneous component due to linear electron-phonon coupling to a low-frequency protein vibration and (b) an inhomogeneous component associated with stochastic fluctuations at each pigment site. In order to obtain a numerically adequate description of the absorption spectra, a minimum number of five sub-bands is required. Further refinement of this sub-band description was achieved by taking into account published data from hole burning and absorption difference spectroscopy. In this way, both a six sub-band description and a seven sub-band description were generated. In arriving at the seven sub-band description, the original five sub-band wavelength positions were essentially unchanged. Thermal broadening analysis of the seven sub-band description yielded data which displayed the closest correspondence with the literature observations. The wavelength positions of the sub-bands were near 661, 667, 670, and 675 nm, with two bands near 680 and 684 nm. The two almost isoenergetic sub-bands near 680 nm, identified as P680 and pheophytin, have optical reorganization energies around 40 and 16 cm-1, respectively. All other sub-bands, identified as accessory pigments, have optical reorganization energies close to 16 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Europa's ultraviolet absorption band (260 to 320 nm) - Temporal and spatial evidence from IUE

    NASA Technical Reports Server (NTRS)

    Ockert, Maureen E.; Nelson, Robert M.; Lane, Arthur L.; Matson, Dennis L.

    1987-01-01

    An analysis of 33 IUE UV spectra of Europa, obtained from 1978 to 1982 for orbital phase angles of 21 to 343 deg, confirms that the Lane et al. (1981) absorption feature, centered at 280 nm, is most clearly revealed when 223-333 deg orbital phase angle spectra are ratioed to those nearest 90 deg. The feature's strength is noted to have persisted over the 5-year period studied, suggesting that no large endogenically or exogenically generated changes in surface sulfur dioxide concentration have occurred. These results further substantiate the Lane et al. hypothesis that the feature is due to the implantation of Io plasma torus-derived sulfur ions on the Europa trailing side's water-ice surface.

  5. Optimizing organic photovoltaics using tailored heterojunctions: A photoinduced absorption study of oligothiophenes with low band gaps

    NASA Astrophysics Data System (ADS)

    Schueppel, R.; Schmidt, K.; Uhrich, C.; Schulze, K.; Wynands, D.; Brédas, J. L.; Brier, E.; Reinold, E.; Bu, H.-B.; Baeuerle, P.; Maennig, B.; Pfeiffer, M.; Leo, K.

    2008-02-01

    A power conversion efficiency of 3.4% with an open-circuit voltage of 1V was recently demonstrated in a thin film solar cell utilizing fullerene C60 as acceptor and a new acceptor-substituted oligothiophene with an optical gap of 1.77eV as donor [K. Schulze , Adv. Mater. (Weinheim, Ger.) 18, 2872 (2006)]. This prompted us to systematically study the energy- and electron transfer processes at the oligothiophene:fullerene heterojunction for a homologous series of these oligothiophenes. Cyclic voltammetry and ultraviolet photoelectron spectroscopy data show that the heterojunction is modified due to tuning of the highest occupied molecular orbital energy for different oligothiophene chain lengths, while the lowest unoccupied molecular orbital energy remains essentially fixed due to the presence of electron-withdrawing end groups (dicyanovinyl) attached to the oligothiophene. Use of photoinduced absorption (PA) allows the study of the electron transfer process at the heterojunction to C60 . Quantum-chemical calculations performed at the density functional theory and/or time-dependent density functional theory level and cation absorption spectra of diluted DCVnT provide an unambiguous identification of the transitions observed in the PA spectra. Upon increasing the effective energy gap of the donor-acceptor pair by increasing the ionization energy of the donor, photoinduced electron transfer is eventually replaced with energy transfer, which alters the photovoltaic operation conditions. The optimum open-circuit voltage of a solar cell is thus a trade-off between efficient charge separation at the interface and maximized effective gap. It appears that the open-circuit voltages of 1.0-1.1V in our solar cell devices have reached an optimum since higher voltages result in a loss in charge separation efficiency.

  6. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2012-04-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  7. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2011-11-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  8. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  9. Proposal of high efficiency solar cells with closely stacked InAs/In0.48Ga0.52P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate-band

    NASA Astrophysics Data System (ADS)

    Yoshikawa, H.; Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-01

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide-gap matrix material, InAs/In0.48Ga0.52P QDSLs, for realizing intermediate-band solar cells (IBSCs) with two-step photon-absorption. The plane-wave expanded Burt-Foreman operator ordered 8-band k . p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two-step photon-absorption can be shifted to higher energy region by using In0.48Ga0.52P, which is lattice-matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In0.48Ga0.52P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two-step photon-absorption by the sunlight occur efficiently. These results indicate that InAs/In0.48Ga0.52P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  10. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  11. Extended x-ray absorption fine structure studies of hemoglobin

    SciTech Connect

    Shulman, R.G.

    1987-02-01

    Results of extended x-ray absorption fine structure (EXAFS) studies of the iron atom in deoxygenated hemoglobin are reviewed. It is shown that the iron-porphinato nitrogen distance has been determined to be 2.06 +/- 0.01 A by two independent investigations. Difficulties experienced in using this distance to calculate the iron's distance above the plane by triangulation are shown to be due to ignoring differences between ferrous and ferric hemes. It is concluded that the iron is 0.2 +/- 0.1/0.2 A above the plane of the nitrogens as originally shown.

  12. Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands.

    PubMed

    Li, Jie; Qin, Yao; Jin, Chao; Li, Ying; Shi, Donglu; Schmidt-Mende, Lukas; Gan, Lihua; Yang, Jinhu

    2013-06-07

    Monolayer and bilayer TiO2 hollow hemisphere/sphere (THH/THS) films consisting of highly ordered hexagonal-patterned THHs/THSs with thin shells of ~10 nm and different diameters of ~170 and ~470 nm have been prepared by templating of two-dimensional polystyrene sphere (PS) assembly films coupled with TiO2 sputtering/wet coating approaches. Owing to their precisely adjustable structural parameters, such as THH/THS shape and diameter as well as film layer thickness, the prepared THH/THS films exhibit widely tunable visible-light reflection and absorption bands, i.e. from 380 to 850 nm for reflection and 390 to 520 nm for absorption, respectively. The mechanism of the novel optical behaviors of the THH/THS films has been discussed in depth, combined with some calculations according to Bragg's law. In addition, photocatalytic experiments of RhB degradation employing the THH/THS films as recyclable catalysts have been conducted. The THH/THS films with controlled structures and precisely tunable optical properties are attractive for a wide range of applications, such as recyclable catalysts for photocatalysis, efficient oxide electrodes or scattering layers for solar cells, gas-permeable electrode materials for high-performance sensors and so on.

  13. Energy conversion within infrared plasmonic absorption metamaterials for multi-band resonance

    NASA Astrophysics Data System (ADS)

    Li, Yongqian; Su, Lei; Xu, Xiaolun; Zhang, Chenglin; Wang, Binbin

    2015-05-01

    The energy conversion within the cross-shaped plasmonic absorber metamaterials (PAM) was investigated theoretically and numerically in the infrared range based on the Poynting's theorem of electromagnetic energy. From the microscopic details, the heat generation owing to the electric current accounts for the majority of the energy conversion, while the magnetic resonance plays a negligible role. The PAMs possess three distinct resonant peaks standing independently, which are attributed to the polarization sensitive excitation of plasmonic resonance. Field redistribution and enhancement associated with multiplex resonant electromagnetic wave passing through the PAM medium provided insight into the energy conversion processes inside the nanostructure. The research results will assist the design of novel plasmon enhanced infrared detectors with multiple-band detection.

  14. Crystal structure and band gap studies of sodalite: experimental and calculated results

    NASA Astrophysics Data System (ADS)

    Pan, Lijun; Liu, Wanchao; Chen, Weiguang; Yan, Kun; Yang, Huizhi; Yu, Jia

    2016-02-01

    In this paper, we investigated the crystal structural properties of sodalite sample by X-ray diffraction and the band gap studies by means of UV-Vis absorption spectroscopy, and compared with the calculated results using density functional theory. The results of X-ray diffraction suggests that the chemical formula should be Na8(AlSiO6)4(OH)2·2(H2O). The optimized lattice parameter is found to be larger 0.45% than experimental value and the calculations demonstrated the structural details of the hydrogen bond located in sodalite cage. The hydrogen bond formed by water molecule and hydroxyl is implied from charge distribution analysis. As the rotation angle of O-O lines in hydrogen bond is 51.8°, the structure should be of the lowest energy. The optical band gap is measured to be 4.5-4.7 eV experimentally, while, the calculated value is 4.16 eV which is attributed to the localized state below Fermi level formed by the hydrogen bonds. Our results are favorable for the understanding the role of sodalite in silicate mud and contribute to further disposals and treatments.

  15. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    SciTech Connect

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B; Kochubey, V I; Gorokhovsky, A V; Tretyachenko, E V; Kunitsky, A I

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with the theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)

  16. Is a pyrene-like molecular ion the cause of the 4,430-A diffuse interstellar absorption band?

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1992-01-01

    The diffuse interstellar band (DIB) absorption features of astronomical spectra are suggested by recent results to be separable from the grains that cause visual extinction. Attention is presently given to laboratory measurements of the optical spectrum of the pyrene cation C16H10(+), which is one of the polycyclic aromatic hydrocarbon (PAH) molecular candidates proposed as carriers for DIBs. This ion exhibits an intense but strangely broad continuum similar to that of the naphthalene cation, so that this may be a common feature of all PAH cations and the basis of an explanation for PAHs' converting of an interstellar radiation fraction as large as that from the UV and visible range down to the IR.

  17. Investigations on crystalline structure and optical band gap of nearly stoichiometric LiNbO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Debnath, C.; Kar, S.; Verma, S.; Bartwal, K. S.

    2014-11-01

    The structural and optical characteristics of nearly stoichiometric lithium niobate, LiNbO3 nanoparticles have been studied. The results are very different compared to the bulk LiNbO3 single crystals. The nanoparticles were synthesized by citrate gel method and the phase was confirmed by powder X-ray diffraction. The size and size distribution of the nanoparticles were obtained by XRD, SEM, TEM and DLS experiments. The particles were in the range of 50-200 nm and most of the particles are about 100 nm of size. The lattice parameters obtained from selected area electron diffraction are aH = 5.213 Å and cH = 14.026 Å for hexagonal system which are slightly larger than the other reported values (JCPDS). The optical properties were obtained from optical absorption spectroscopy in UV-vis.-NIR and IR (FTIR) range, the electronic band gap structure were determined from the fundamental absorption edge in the UV region. The indirect band gap was of 4.78 eV where as the direct gap was of 6.0 eV which are much larger than the other experimental values. The absorption features in the UV range indicate the discrete nature of conduction band and the allowed energy levels in the forbidden gap appeared due to surface defects.

  18. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.

    2012-03-01

    Recent improvements in high spectral resolution measurements of methane absorption at wavenumbers between 4800 cm-1 and 7919 cm-1 have greatly increased the number of lines with known lower state energies, the number of weak lines, and the number of lines observed at low temperatures (Campargue, A., Wang, L., Kassi, S., Mašát, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1141-1151; Campargue, A., Wang, L., Liu, A.W., Hu, S.M., Kassi, S. [2010]. Chem. Phys. 373, 203-210; Mondelain, D., Kassi, S., Wang, L.C. [2011]. Phys. Chem. Chem. Phys. 13, 7985-7996; Nikitin, A.V. et al. [2011a]. J. Mol. Spectrosc. 268, 93-106; Nikitin, A.V. et al. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 2211-2224; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Trans. 112, 937-951), making it possible to fit near-IR spectra of Titan using line-by-line calculations instead of band models (Bailey, J., Ahlsved, L., Meadows, V.S. [2011]. Icarus 213, 218-232; de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003). Using these new results, we compiled an improved line list relative that used by Bailey et al. by updating several spectral regions with either calculated or more recently measured line parameters, revising lower state energy estimates for lines lacking them, and adding room temperature lines to make the list applicable over a wider range of temperatures. We compared current band models with line-by-line calculations using this new line list, both to assess the behavior of band models, and to identify remaining issues with line-by-line calculations when applied to outer planet atmospheres and over a wider range of wavelengths. Comparisons were made for a selection of uniform paths representing outer planet conditions and for representative non-uniform paths within the atmospheres of Uranus, Saturn

  19. Cavity Ringdown Absorption Spectrum of the T_1(n,π*) ← S_0 Transition of Acrolein: Analysis of the 0^0_0 Band Rotational Contour

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2012-06-01

    Acrolein (propenal, CH_2=CH---CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the T_1(π,π*) state, which has a CH_2--twisted equilibrium structure. In solution, the T_1(π,π*) state is typically accessed via intersystem crossing from an intially prepared planar S_1(n,π*) state. An intermediate in this photophysical transformation is the lowest ^3 (n,π*) state, a planar species with adiabatic excitation energy below S_1 and above T_1(π,π*). The present work focuses on this ^3 (n,π*) intermediate state; it is designated T_1(n,π*) as the lowest-energy triplet state of acrolein having a planar equilibrium structure. The T_1(n,π*) ← S_0 band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm-1) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0^0_0 band, recorded using a pulsed dye laser with 0.1 cm-1 spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the T_1(n,π*) state. The determined values (cm-1) are A=1.662, B=0.1485, C=0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm-1 and ± 0.0004 cm-1, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0^0_0 band under jet-cooled conditions

  20. The structure of band-tail states in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Drabold, D. A.; Dong, Jianjun

    1997-03-01

    We compute and analyze the electronic eigenstates of the realistic and large (4096) atom model of Djordjevic, Thorpe and Wooten(B. R. Djordjevic, M. F. Thorpe and F. Wooten, Phys. Rev. B 52) 5685 (1995) in the vicinity of the gap. We discuss the structure, localization, and conductivity (from the Kubo formula) for states from midgap, well into the interior of the valence band. Tight-binding and ab initio (LDA) approximations for the states are discussed; comparisons are made to total yield photoelectron spectroscopy measurements(S. Aljisji, J. D. Cohen, S. Jin and L. Ley, Phys. Rev. Lett. 64), 2811 (1990). This is an extension of our earlier work on amorphous diamond( J. Dong and D. A. Drabold, Phys. Rev. B 54) 10284 (1996) to a-Si.

  1. Dynamical theory of shear bands in structural glasses.

    PubMed

    Wisitsorasak, Apiwat; Wolynes, Peter G

    2017-02-07

    The heterogeneous elastoplastic deformation of structural glasses is explored using the framework of the random first-order transition theory of the glass transition along with an extended mode-coupling theory that includes activated events. The theory involves coupling the continuum elastic theory of strain transport with mobility generation and transport as described in the theory of glass aging and rejuvenation. Fluctuations that arise from the generation and transport of mobility, fictive temperature, and stress are treated explicitly. We examine the nonlinear flow of a glass under deformation at finite strain rate. The interplay among the fluctuating fields leads to the spatially heterogeneous dislocation of the particles in the glass, i.e., the appearance of shear bands of the type observed in metallic glasses deforming under mechanical stress.

  2. Dynamical theory of shear bands in structural glasses

    NASA Astrophysics Data System (ADS)

    Wisitsorasak, Apiwat; Wolynes, Peter G.

    2017-02-01

    The heterogeneous elastoplastic deformation of structural glasses is explored using the framework of the random first-order transition theory of the glass transition along with an extended mode-coupling theory that includes activated events. The theory involves coupling the continuum elastic theory of strain transport with mobility generation and transport as described in the theory of glass aging and rejuvenation. Fluctuations that arise from the generation and transport of mobility, fictive temperature, and stress are treated explicitly. We examine the nonlinear flow of a glass under deformation at finite strain rate. The interplay among the fluctuating fields leads to the spatially heterogeneous dislocation of the particles in the glass, i.e., the appearance of shear bands of the type observed in metallic glasses deforming under mechanical stress.

  3. Visible-light activity of N-LiInO2: Band structure modifications through interstitial nitrogen doping

    NASA Astrophysics Data System (ADS)

    Xu, Kaiqiang; Xu, Difa; Zhang, Xiangchao; Luo, Zhuo; Wang, Yutang; Zhang, Shiying

    2017-01-01

    Element doping is a promising strategy to improve the photo-response and photocatalytic activity of semiconductor photocatalyst with a wide band gap. To reduce the band gap of LiInO2 that is considered as a novel photocatalyst, nitrogen-doped LiInO2 (N-LiInO2) is successfully fabricated by treating LiInO2 and urea at 200 °C. It is found that interstitial instead of substitutional configurations are formed in the crystal structure of N-LiInO2 due to the low-treating temperature and rich-oxygen conditions. The interstitial N-doping forms a doping state with 0.6 eV above the valence band maximum and a defect state with 0.1 eV below the conduction band minimum, reducing the band gap of LiInO2 from 3.5 to 2.8 eV. N-LiInO2 exhibits higher photocatalytic activity towards methylene blue (MB) degradation under 380 nm light irradiation, which is 1.4 times that of pure LiInO2. The enhanced photocatalytic activity of N-LiInO2 is attributed to the extended light absorption and the improved charge carrier separation, which result in more reactive species participating in the photcatalytic process. This work provides a further understanding on tuning the band structure of semiconductor photocatalyst by N-doping strategies.

  4. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO.

    PubMed

    Vaughan, Stewart; Gherman, Titus; Ruth, Albert A; Orphal, Johannes

    2008-08-14

    The novel combination of incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) and a discharge-flow tube for the study of three key atmospheric trace species, I(2), IO and OIO, is reported. Absorption measurements of I(2) and OIO at lambda=525-555 nm and IO at lambda=420-460 nm were made using a compact cavity-enhanced spectrometer employing a 150 W short-arc Xenon lamp. The use of a flow system allowed the monitoring of the chemically short-lived radical species IO and OIO to be conducted over timescales of several seconds. We report detection limits of approximately 26 pmol mol(-1) for I(2) (L=81 cm, acquisition time 60 s), approximately 45 pmol mol(-1) for OIO (L=42.5 cm, acquisition time 5 s) and approximately 210 pmol mol(-1) for IO (L=70 cm, acquisition time 60 s), demonstrating the usefulness of this approach for monitoring these important species in both laboratory studies and field campaigns.

  5. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-06-04

    Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloyed perovskite solid solutions of methylammonium tin iodide and its lead analogue (CH3NH3Sn(1-x)Pb(x)I3). We exploit the fact that, the energy band gaps of the mixed Pb/Sn compounds do not follow a linear trend (the Vegard's law) in between these two extremes of 1.55 and 1.35 eV, respectively, but have narrower bandgap (<1.3 eV), thus extending the light absorption into the near-infrared (~1,050 nm). A series of solution-processed solid-state photovoltaic devices using a mixture of organic spiro-OMeTAD/lithium bis(trifluoromethylsulfonyl)imide/pyridinium additives as hole transport layer were fabricated and studied as a function of Sn to Pb ratio. Our results show that CH3NH3Sn(0.5)Pb(0.5)I3 has the broadest light absorption and highest short-circuit photocurrent density ~20 mA cm(-2) (obtained under simulated full sunlight of 100 mW cm(-2)).

  6. Band structure systematics and symmetries in even-even nuclei

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Cata-Danil, Gh.; Ivascu, M.; Ur, C. A.

    1993-07-01

    It is shown that the experimental in-band energy ratios for the even-even nuclei obey universal systematics similar to those observed by Mallmann for the quasiground band. Systematic correlations between energy ratios belonging to different bands are also found in certain cases. Finally, correlations between mixed energy ratios are shown to be useful in characterizing the evolution of the nulcear collectivity.

  7. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  8. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  9. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  10. Band structure and optical transitions in the Hg3Se2Cl2 crystals

    NASA Astrophysics Data System (ADS)

    Bokotey, O. V.; Vakulchak, V. V.; Nebola, I. I.; Bokotey, A. A.

    2016-12-01

    First-principles calculations of the band structure for Hg3Se2Cl2 crystal were performed by means of density functional theory (DFT). The exchange and correlation potential was described within a framework of the local density approximation based on exchange-correlation energy optimization to calculate the total energy. DOS/PDOS and valence charge distribution were studied in details. Absorption near the fundamental edge was found to be due to indirect and direct allowed transitions. For device applications based on Hg3Se2Cl2 crystal, understanding these fundamental issues is highly important and essential. It should be noted that optoelectronic applications of Hg3Se2Cl2 are caused by coexistence of the large polarized Hg cations and a huge contribution of an harmonic phonon subsystem caused by anions.

  11. Banded Structure and Domain Arrangements in PbTiO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Chou, Chen-Chia; Chen, Cheng-Sao

    1998-09-01

    In the present work we report the ferroelectric domain arrangements and characteristics of banded structures observed in flux-grown PbTiO3 single crystals. Investigations of etched crystals indicate that most of the specimens show banded structures which may correspond to surface relief characteristics of as-grown crystals. Banded structures, which are different from domain structures, possess structural characteristics similar to those of martensite variants in various alloys and ceramics. The stresses produced during transformation were relieved by the formation of the banded structures and the 90° domain structures, suggesting that the band structures and 90° domains are the products of self-accommodation in as-grown PbTiO3 crystals during the cubic/tetragonal (C/T) transformation. Image characteristics imply that banded-structure-induced domain intersections may store high strain energy in lead titanate crystals and therefore hinder polarization switching of the crystals.

  12. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Knox, Kevin R.

    2011-12-01

    In this dissertation, I examine the electronic structure of two very different types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces. The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and micro probe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load

  13. X-band rf structure with integrated alignment monitors

    NASA Astrophysics Data System (ADS)

    Dehler, M.; Raguin, J.-Y.; Citterio, A.; Falone, A.; Wuensch, W.; Riddone, G.; Grudiev, A.; Zennaro, R.

    2009-06-01

    We present the electrical design for an X-band traveling wave accelerator structure with integrated alignment monitors to measure the transverse wake, which will be used as part of the PSI-XFEL project and in the CLIC structure testing program. At PSI, it will compensate nonlinearities in the longitudinal phase space at the injector prototype of the PSI-XFEL. At CLIC it will be tested for breakdown limits and rates in the high gradient regime. The prolonged operation of such a structure in the PSI-XFEL injector, albeit not for the CLIC parameter regime, will constitute a good quality test of the manufacturing procedures employed. The operation in the PSI-XFEL injector will be at a relatively modest beam energy of 250 MeV, at which transverse wakes can easily destroy the beam emittance. For this reason, the layout chosen employs a large iris, 5π/6 phase advance geometry, which minimizes transverse wakefield effects while still retaining a good efficiency. As a second important feature, the design includes two wakefield monitors coupling to the transverse higher order modes, which allow steering the beam to the structure axis, potentially facilitating a higher precision than mechanical alignment strategies. Of special interest is the time domain envelope of these monitor signals. Local offsets due to bends or tilts have individual signatures in the frequency spectrum, which in turn are correlated with different delays in the signal envelope. By taking advantage of this combined with the single bunch mode at the PSI-XFEL, the use of a relatively simple detector-type rf front end should be possible, which will not only show beam offsets but also higher order misalignments such as tilts in the structure. The resolution of these monitors is determined by the tolerance of the random cell-to-cell misalignment leading to a spurious signal in the monitors.

  14. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  15. Band-structure analysis from photoreflectance spectroscopy in (Ga,Mn)As

    SciTech Connect

    Yastrubchak, Oksana; Gluba, Lukasz; Zuk, Jerzy; Wosinski, Tadeusz; Andrearczyk, Tomasz; Domagala, Jaroslaw Z.; Sadowski, Janusz

    2013-12-04

    Modulation photoreflectance spectroscopy has been applied to study the band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn content. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap-transition energy in the (Ga,Mn)As layers with increasing Mn content are interpreted in terms of a disordered valence band, extended within the band gap, formed, in highly Mn-doped (Ga,Mn)As, as a result of merging the Mn-related impurity band with the host GaAs valence band.

  16. Study of band inversion in the PbxSn1-xTe class of topological crystalline insulators using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Tominaga, J.; Uruga, T.

    2014-11-01

    PbxSn1-xTe and PbxSn1-xSe crystals belong to the class of topological crystalline insulators where topological protection is achieved due to crystal symmetry rather than time-reversal symmetry. In this work, we make use of selection rules in the x-ray absorption process to experimentally detect band inversion along the PbTe(Se)-SnTe(Se) tie-lines. The observed significant change in the ratio of intensities of L1 and L3 transitions along the tie-line demonstrates that x-ray absorption can be a useful tool to study band inversion in topological insulators.

  17. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding

    NASA Astrophysics Data System (ADS)

    Medeiros, Paulo V. C.; Stafström, Sven; Björk, Jonas

    2014-01-01

    We use a band unfolding technique to recover an effective primitive cell picture of the band structure of graphene under the influence of different types of perturbations. This involves intrinsic perturbations, such as structural defects, and external ones, comprising nitrogen substitutions and the inclusion of graphene in adsorbed systems. In such cases, the band unfolding provides a reliable and efficient tool for quantitatively analyzing the effect of doping and defects on the electronic structure of graphene. We envision that this approach will become a standard method in the computational analysis of graphene's electronic structure in related systems.

  18. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control

    PubMed Central

    Micillo, Raffaella; Panzella, Lucia; Iacomino, Mariagrazia; Prampolini, Giacomo; Cacelli, Ivo; Ferretti, Alessandro; Crescenzi, Orlando; Koike, Kenzo; Napolitano, Alessandra; d’Ischia, Marco

    2017-01-01

    Eumelanins, the chief photoprotective pigments in man and mammals, owe their black color to an unusual broadband absorption spectrum whose origin is still a conundrum. Excitonic effects from the interplay of geometric order and disorder in 5,6-dihydroxyindole (DHI)-based oligomeric/polymeric structures play a central role, however the contributions of structural (scaffold-controlled) and redox (π-electron-controlled) disorder have remained uncharted. Herein, we report an integrated experimental-theoretical entry to eumelanin chromophore dynamics based on poly(vinyl alcohol)-controlled polymerization of a large set of 5,6-dihydroxyindoles and related dimers. The results a) uncover the impact of the structural scaffold on eumelanin optical properties, disproving the widespread assumption of a universal monotonic chromophore; b) delineate eumelanin chromophore buildup as a three-step dynamic process involving the rapid generation of oxidized oligomers, termed melanochromes (phase I), followed by a slow oxidant-independent band broadening (phase II) leading eventually to scattering (phase III); c) point to a slow reorganization-stabilization of melanochromes via intermolecular redox interactions as the main determinant of visible broadband absorption. PMID:28150707

  19. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control

    NASA Astrophysics Data System (ADS)

    Micillo, Raffaella; Panzella, Lucia; Iacomino, Mariagrazia; Prampolini, Giacomo; Cacelli, Ivo; Ferretti, Alessandro; Crescenzi, Orlando; Koike, Kenzo; Napolitano, Alessandra; D’Ischia, Marco

    2017-02-01

    Eumelanins, the chief photoprotective pigments in man and mammals, owe their black color to an unusual broadband absorption spectrum whose origin is still a conundrum. Excitonic effects from the interplay of geometric order and disorder in 5,6-dihydroxyindole (DHI)-based oligomeric/polymeric structures play a central role, however the contributions of structural (scaffold-controlled) and redox (π-electron-controlled) disorder have remained uncharted. Herein, we report an integrated experimental-theoretical entry to eumelanin chromophore dynamics based on poly(vinyl alcohol)-controlled polymerization of a large set of 5,6-dihydroxyindoles and related dimers. The results a) uncover the impact of the structural scaffold on eumelanin optical properties, disproving the widespread assumption of a universal monotonic chromophore; b) delineate eumelanin chromophore buildup as a three-step dynamic process involving the rapid generation of oxidized oligomers, termed melanochromes (phase I), followed by a slow oxidant-independent band broadening (phase II) leading eventually to scattering (phase III); c) point to a slow reorganization-stabilization of melanochromes via intermolecular redox interactions as the main determinant of visible broadband absorption.

  20. Three-pulse femtosecond spectroscopy of PbSe nanocrystals: 1S bleach nonlinearity and sub-band-edge excited-state absorption assignment.

    PubMed

    Gdor, Itay; Shapiro, Arthur; Yang, Chunfan; Yanover, Diana; Lifshitz, Efrat; Ruhman, Sanford

    2015-02-24

    Above band-edge photoexcitation of PbSe nanocrystals induces strong below band gap absorption as well as a multiphased buildup of bleaching in the 1Se1Sh transition. The amplitudes and kinetics of these features deviate from expectations based on biexciton shifts and state filling, which are the mechanisms usually evoked to explain them. To clarify these discrepancies, the same transitions are investigated here by double-pump-probe spectroscopy. Re-exciting in the below band gap induced absorption characteristic of hot excitons is shown to produce additional excitons with high probability. In addition, pump-probe experiments on a sample saturated with single relaxed excitons prove that the resulting 1Se1Sh bleach is not linear with the number of excitons per nanocrystal. This finding holds for two samples differing significantly in size, demonstrating its generality. Analysis of the results suggests that below band edge induced absorption in hot exciton states is due to excited-state absorption and not to shifted absorption of cold carriers and that 1Se1Sh bleach signals are not an accurate counter of sample excitons when their distribution includes multiexciton states.

  1. meso-meso linked porphyrin-[26]hexaphyrin-porphyrin hybrid arrays and their triply linked tapes exhibiting strong absorption bands in the NIR region.

    PubMed

    Mori, Hirotaka; Tanaka, Takayuki; Lee, Sangsu; Lim, Jong Min; Kim, Dongho; Osuka, Atsuhiro

    2015-02-11

    We describe the synthesis and characterization of directly meso-meso linked porphyrin-[26]hexaphyrin-porphyrin hybrid oligomers and their triply linked (completely fused) hybrid tapes. meso-meso Linked Ni(II) porphyrin-[26]hexaphyrin-Ni(II) porphyrin trimers were prepared by methanesulfonic acid-catalyzed cross-condensation of meso-formyl Ni(II) porphyrins with a 5,10-diaryltripyrrane followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The Ni(II) porphyrin moieties were converted to Zn(II) porphyrins via an indirect route involving reduction of the [26]hexaphyrin to its 28π congener, acid-induced denickelation, oxidation of the [28]hexaphyrin, and finally Zn(II) ion insertion. Over the course of these transformations, porphyrin-[28]hexaphyrin-porphyrin trimers have been revealed to take on a Möbius aromatic twisted structure for the [28]hexaphyrin segment. Oxidation of meso-meso linked hybrid trimer bearing 5,15-diaryl Zn(II) porphyrins with DDQ/Sc(OTf)3 under mild conditions resulted in meso-meso coupling oligomerization, affording the corresponding dimeric (hexamer), trimeric (nonamer), and tetrameric (dodecamer) oligomers. On the other hand, oxidation of a meso-meso linked hybrid trimer bearing 5,10,15-triaryl Zn(II) porphyrin terminals with DDQ/Sc(OTf)3 under harsher conditions afforded a meso-meso, β-β, β-β triply linked hybrid porphyrin tape, which displays a sharp and intense absorption band at 1912 nm. Comparison of this extremely red-shifted absorption band with those of Zn(II) porphyrin tapes suggests that the bathochromic-shifting capability of a [26]hexaphyrin unit is large, almost equivalent to that of four individual Zn(II) porphyrin units. As demonstrated, the fusion of porphyrins to [26]hexaphyrin offers an efficient means to expand their conjugation networks, significantly expanding the capabilities attainable for these chromophores.

  2. Modified Sol-Gel Processing of NiCr2O4 Nanoparticles; Structural Analysis and Optical Band Gap

    NASA Astrophysics Data System (ADS)

    Enhessari, Morteza; Salehabadi, Ali; Khanahmadzadeh, Salah; Arkat, Kamal; Nouri, Jalal

    2017-02-01

    Nickel Chromite nanoparticles were successfully synthesized via a modified sol-gel method using nickel acetate and ammonium dichromate in melted stearic acid as a complexing agent. The diffractograms of the nanoparticles confirmed a pure formation of NiCr2O4 spinel without any minor phase. The coordination structure of as prepared nanoparticles shows a series of absorption bands below 1,000 cm-1 were evidenced the M-O (Cr-O, Ni-O) bond in the sample. Optical band gap, magnetic properties and color parameters (L*.a*.b*) indicates that the final nanoparticles are optically and magnetically active. The particle size of NiCr2O4 was calculated using Scherrer equation at about 24 nm. Optical band gap obtained at 1.7 eV indicating that NiCr2O4 nanoparticles are semiconductor material and can be used in electrical devices.

  3. CMOS color image sensor with overlaid organic photoconductive layers having narrow absorption band

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi; Komatsu, Takashi; Saito, Takahiro

    2007-02-01

    At EI2006, we proposed the CMOS image sensor, which was overlaid with organic photoconductive layers in order to incorporate in it large light-capturing ability of a color film owing to its multiple-layer structure, and demonstrated the pictures taken by the trial product of the proposed CMOS image sensor overlaid with an organic layer having green sensitivity. In this study, we have tried to get the optimized spectral sensitivity for the proposed CMOS image sensor by means of the simulation to minimize the color difference between the original Macbeth chart and its reproduction with the spectral sensitivity of the sensor as a parameter. As a result, it has been confirmed that the proposed CMOS image sensor with multiple-layer structure possesses high potential capability in terms of imagecapturing efficiency when it is provided with the optimized spectral sensitivity.

  4. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering.

    PubMed

    Arteaga, Oriol; Canillas, Adolf; El-Hachemi, Zoubir; Crusats, Joaquim; Ribó, Josep M

    2015-12-28

    The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS(4)) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical response as a function of the polarization of light is complex because, although the quasi-one-dimensional structure confines the local fields along the nanotube axis, there are two orthogonal excitonic bands, of H- and J-character, that can work in favor of or against the field confinement. Results suggest that resonance light scattering is the dominant effect in solid state preparations, i.e. in collective groups (bundles) of ribbons but in diluted solutions, i.e. with isolated nanotubes, the absorption at the excitonic transitions remains dominant and linear dichroism spectra can be a direct probe of the exciton orientations. Therefore, by analyzing scattering and absorption data we can determine the alignment of the excitonic bands within the nanoparticle, i.e. of the orientation of the basic 2D porphyrin architecture in the nanoparticle. This is a necessary first step for understanding the directions of energy transport, charge polarization and non-linear optical properties in these materials.

  5. Band-Gap Design of Quaternary (In,Ga) (As,Sb) Semiconductors via the Inverse-Band-Structure Approach

    SciTech Connect

    Piquini, P.; Graf, P. A.; Zunger. A.

    2008-01-01

    Quaternary systems illustrated by (Ga,In)(As,Sb) manifest a huge configurational space, offering in principle the possibility of designing structures that are lattice matched to a given substrate and have given electronic properties (e.g., band gap) at more than one composition. Such specific configurations were however, hitherto, unidentified. We show here that using a genetic-algorithm search with a pseudopotential Inverse-band-structure (IBS) approach it is possible to identify those configurations that are naturally lattice matching (to GaSb) and have a specific band gap (310 meV) at more than one composition. This is done by deviating from randomness, allowing the IBS to find a partial atomic ordering. This illustrates multitarget design of the electronic structure of multinary systems.

  6. Pattern reconfigurable antenna using electromagnetic band gap structure

    NASA Astrophysics Data System (ADS)

    Ismail, M. F.; Rahim, M. K. A.; Majid, H. A.; Hamid, M. R.; Yusoff, M. F. M.; Dewan, R.

    2017-01-01

    In this paper, a single rectangular patch antenna incorporated with an array of electromagnetic band gap (EBG) structures is proposed. The proposed antenna features radiation pattern agility by means of connecting the shorting pin vias to the EBG unit cells. The proposed design consists of 32 mm × 35.5 mm rectangular patch antenna and 10.4-mm-square mushroom-like EBG unit cells. The EBGs are placed at both sides of the antenna radiating patch and located on the thicker substrate of thickness, h. The copper tape which represents the PIN diode is used to control the connection between the EBG's via and the ground plane as reconfigurable mechanism of the antenna. The simulated result shows by switching the ON and OFF EBG structures in either sides or both, the directional radiation pattern can be tilted from 0 to +14°. The proposed antenna exhibits 7.2 dB realized gain at 2.42 GHz. The parametric study on EBG and antenna is also discussed.

  7. Microwave absorption properties of LiNb3O8 in X-band prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Goud, J. Pundareekam; Sindam, Bashaiah; Tumuluri, Anil; Raju, K. C. James

    2015-08-01

    Single phase LiNb3O8 powders were prepared using combustion synthesis technique. The powders were prepared by heat treating Li2CO3+Nb2O5/urea mixture in 1:3 ratio. Structural and morphological details have been done to confirm the presence of LiNb3O8. The S-parameters were measured using rectangular waveguide method in the X-band frequency (8.2GHz to 12.4GHz) by Vector Network Analyzer. The dielectric characteristics like dielectric constant (ɛ') and dielectric loss (ɛ″) were calculated using Nicolson-Ross-Weir algorithm. Complex permittivity of 28-0.2j and 26-1.0j at 8.2GHz and 12.4GHz respectively are observed. Reflection loss was derived with permittivity and permeability as input parameters. Microwave absorber thickness is optimized and the RL< -20dB is obtained in the X-band frequency.

  8. Probing the band structure and local electronic properties of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walrath, Jenna Cherie

    Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in

  9. Iron-absorption band analysis for the discrimination of iron-rich zones

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Study has concentrated on the two primary aspects of the project, structural analysis through evaluation of lineaments and circular features and spectral analyses through digital computer-processing techniques. Several previously unrecognized lineaments are mapped which may be the surface manifestations of major fault or fracture zones. Two of these, the Walker Lane and the Midas Trench lineament system, transect the predominantly NNE-NNW-trending moutain ranges for more than 500 km. Correlation of major lineaments with productive mining districts implies a genetic relationship, the 50 circular or elliptical features delineated suggest a related role for Tertiary volcanism. Color-ratio composites have been used to identify limonitic zones and to discriminate mafic and felsic rock by combing diazo color transparencies of three different ratios. EROS Data Center scene identification number for color composite in this report is ER 1 CC 500. Refinement of enhancement procedures for the ratio images is progressing. Fieldwork in coordination with both spectral and structural analyses is underway.

  10. Projected shell model study of band structure of 90Nb

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Singh, Dhanvir; Gupta, Anuradha; Singh, Suram; Bharti, Arun

    2016-05-01

    A systematic study of two-quasiparticle bands of the odd-odd 90Nb nucleus is performed using the projected shell model approach. Yrast band with some other bands have been obtained and back-bending in moment of inertia has also been calculated and compared with the available experimental. On comparing the available experimental data, it is found that the treatment with PSM provides a satisfactory explanation of the available data.

  11. Influence of banded structure on the mechanical properties of a high-strength maraging steel

    SciTech Connect

    Ahmed, M.; Salam, I.; Hashmi, F.H.; Khan, A.Q.

    1997-04-01

    Chemical inhomogeneity results in the formation of banded structure in high-strength maraging steels. Segregation of titanium and molybdenum was found to be the primary cause of banded structure formation. When the concentrations of these elements increased beyond certain critical levels, bands comprising different grain sizes formed. The inclusions existed preferentially along the interface of the bands. A high-temperature homogenization treatment substantially reduced or eliminated the banded structure. The large grain size resulting from the homogenization treatment was subsequently reduced by a grain refinement treatment. The mechanical properties of the steel substantially improved following homogenization and grain refinement.

  12. Fracture Induced Sub-Band Absorption as a Precursor to Optical Damage on Fused Silica Surfaces

    SciTech Connect

    Miller, P E; Bude, J D; Suratwala, T I; Shen, N; Laurence, T A; Steele, W A; Menapace, J; Feit, M D; Wong, L L

    2010-03-05

    The optical damage threshold of indentation induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damaged testing, SEM, optical, and photoluminescence microscopy. Localized polishing, chemical etching, and the control of indentation morphology were used to isolate the structural features which limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355nm, 3ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35J/cm{sup 2}. Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.

  13. Band structure engineering of anatase TiO2 by metal-assisted P-O coupling.

    PubMed

    Wang, Jiajun; Meng, Qiangqiang; Huang, Jing; Li, Qunxiang; Yang, Jinlong

    2014-05-07

    In this work, we demonstrate that the metal-assisted P-O coupling is an effective approach to improve the photoelectrochemical properties of TiO2. The (Sc + P) and (In + P) codoping effects on electronic structures and photocatalytic activities of anatase TiO2 are examined by performing hybrid density functional theory calculations. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO2, which is driven by the P-O antibonding states (π*). This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO2. Moreover, the band edge alignments in (Sc + P) and (In + P) codoped anatase TiO2 are desirable for water-splitting. The calculated optical absorption curves indicate that (Sc + P) and (In + P) codoping in anatase TiO2 can also effectively enhance the visible light absorption.

  14. Band structure engineering of anatase TiO{sub 2} by metal-assisted P-O coupling

    SciTech Connect

    Wang, Jiajun; Meng, Qiangqiang; Huang, Jing; Li, Qunxiang Yang, Jinlong

    2014-05-07

    In this work, we demonstrate that the metal-assisted P-O coupling is an effective approach to improve the photoelectrochemical properties of TiO{sub 2}. The (Sc + P) and (In + P) codoping effects on electronic structures and photocatalytic activities of anatase TiO{sub 2} are examined by performing hybrid density functional theory calculations. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO{sub 2}, which is driven by the P-O antibonding states (π*). This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO{sub 2}. Moreover, the band edge alignments in (Sc + P) and (In + P) codoped anatase TiO{sub 2} are desirable for water-splitting. The calculated optical absorption curves indicate that (Sc + P) and (In + P) codoping in anatase TiO{sub 2} can also effectively enhance the visible light absorption.

  15. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.

    PubMed

    Harb, Moussab; Masih, Dilshad; Takanabe, Kazuhiro

    2014-09-14

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta11O30. It is confirmed that the Cu(I)-based multi-metal oxides possess a strong contribution of filled Cu(I) states in the valence band and of empty d(0) metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications.

  16. Band structure and optical transitions in LaFeO3: theory and experiment.

    PubMed

    Scafetta, Mark D; Cordi, Adam M; Rondinelli, James M; May, Steven J

    2014-12-17

    The optical absorption properties of LaFeO(3) (LFO) have been calculated using density functional theory and experimentally measured from several high quality epitaxial films using variable angle spectroscopic ellipsometry. We have analyzed the calculated absorption spectrum using different Tauc models and find the model based on a direct-forbidden transition gives the best agreement with the ab initio band gap energies and band dispersions. We have applied this model to the experimental data and determine the band gap of epitaxial LFO to be ∼2.34 eV, with a slight dependence on strain state. This approach has also been used to analyze the higher indirect transition at ∼3.4 eV. Temperature dependent ellipsometry measurements further confirm our theoretical analysis of the nature of the transitions. This works helps to provide a general approach for accurate determination of band gaps and transition energies in complex oxide materials.

  17. Structure of a positive-parity band in 130Pr

    NASA Astrophysics Data System (ADS)

    Ma, K. Y.; Lu, J. B.; Xu, X.; Liu, Y. M.; Zhang, Z.; Li, X. Y.; Yang, D.; Liu, Y. Z.; Wu, X. G.; He, C. Y.; Zheng, Y.; Li, C. B.

    2017-01-01

    High-spin states of 130Pr have been populated using the 99Ru(35Cl, 2n2p)130Pr reaction at a beam energy of 151 MeV. A new positive-parity side band has been identified and possible interpretations on the origin of the side band have been discussed.

  18. Graphene band structure and its 2D Raman mode

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Reich, Stephanie

    2014-08-01

    High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.

  19. Global Kinetic Modeling of Banded Electron Structures in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Significant fluxes of 10 eV to 30 keV electrons have been detected in the plasmasphere, appearing as banded structures in energy with broad spatial extents and slowly evolving over several days. It is thought that these populations are decaying plasma sheet electrons injected into the corotating region of near-Earth space. This capture can occur when the convective electric field drops rapidly and the Alfven boundary suddenly outward, trapping the inner edge of the plasma sheet along closed drift paths. Our bounce-averaged kinetic model of superthermal electron transport is able to simulate this capture and the subsequent drift, diffusion, and decay of the plasma cloud. Results of this simulation will be shown and discussed, from the initial injection during the elevated convection to the final loss of the particles. It is thought that not only Coulomb collisions but also wave-particle interactions play a significant role in altering the plasma cloud. Quasilinear diffusion is currently being incorporated into the model and the importance of this mechanism will be examined. Also, the high anisotropy of the trapped population could be unstable and generate plasma waves. These and other processes will be investigated to determine the final fate of the cloud and to quantify where, how, and when the energy of the plasma cloud is deposited. Comparisons with CRRES observations of these events are shown to verify the model and explain the data.

  20. A unified perspective of complex band structure: interpretations, formulations, and applications

    NASA Astrophysics Data System (ADS)

    Reuter, Matthew G.

    2017-02-01

    Complex band structure generalizes conventional band structure by also considering wavevectors with complex components. In this way, complex band structure describes both the bulk-propagating states from conventional band structure and the evanescent states that grow or decay from one unit cell to the next. Even though these latter states are excluded by translational symmetry, they become important when translational symmetry is broken via, for example, a surface or impurity. Many studies over the last 80 years have directly or indirectly developed complex band structure for an impressive range of applications, but very few discuss its fundamentals or compare its various results. In this work we build upon these previous efforts to expose the physical foundation of complex band structure, which mathematically implies its existence. We find that a material’s static and dynamic electronic structure are both completely described by complex band structure. Furthermore, we show that complex band structure reflects the minimal, intrinsic information contained in the material’s Hamiltonian. These realizations then provide a context for comparing and unifying the different formulations and applications of complex band structure that have been reported over the years. Ultimately, this discussion introduces the idea of examining the amount of information contained in a material’s Hamiltonian so that we can find and exploit the minimal information necessary for understanding a material’s properties.

  1. A unified perspective of complex band structure: interpretations, formulations, and applications.

    PubMed

    Reuter, Matthew G

    2017-02-08

    Complex band structure generalizes conventional band structure by also considering wavevectors with complex components. In this way, complex band structure describes both the bulk-propagating states from conventional band structure and the evanescent states that grow or decay from one unit cell to the next. Even though these latter states are excluded by translational symmetry, they become important when translational symmetry is broken via, for example, a surface or impurity. Many studies over the last 80 years have directly or indirectly developed complex band structure for an impressive range of applications, but very few discuss its fundamentals or compare its various results. In this work we build upon these previous efforts to expose the physical foundation of complex band structure, which mathematically implies its existence. We find that a material's static and dynamic electronic structure are both completely described by complex band structure. Furthermore, we show that complex band structure reflects the minimal, intrinsic information contained in the material's Hamiltonian. These realizations then provide a context for comparing and unifying the different formulations and applications of complex band structure that have been reported over the years. Ultimately, this discussion introduces the idea of examining the amount of information contained in a material's Hamiltonian so that we can find and exploit the minimal information necessary for understanding a material's properties.

  2. Improved Experimental Line Positions for the (1,1) Band of the b 1Σ+ - X 3Σ- Transition of O2 by Intracavity Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; O'Brien, Emily C.; O'Brien, James J.

    2012-06-01

    We report improved experimental line positions for the (1,1) band of the b 1Σ+ - X 3Σ- transition of O2. Results are comparised with previous experimental measurements and predicted values. Additionally, a new method of producing vibrationally hot molecules for use in absorption spectroscopy of stable gas phase molecules is described.

  3. Intersubband transition in lattice-matched BGaN/AlN quantum well structures with high absorption coefficients.

    PubMed

    Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong

    2017-02-20

    Intersubband absorption properties of lattice-matched BGaN/AlN quantum well (QW) structures grown on AlN substrate are theoretically investigated using an effective mass theory considering the nonparabolicity of the conduction band. These results are compared with those of GaN/AlN QW structures. The intersubband absorption coefficient of the BGaN/AlN QW structure is shown to be enhanced significantly, compared to that of the conventional GaN/AlN QW structure. This can be explained by the fact that the BGaN/AlN QW structure exhibits larger intersuband dipole moment and quasi-Fermi-level separation than the GaN/AlN QW structure, due to the increase in the carrier confinement by a larger internal field. We expect that the BGaN/AlN QW structure with a high absorption coefficient can be used for telecommunication applications at 1.55 µm under the lattice-matched condition, instead of the conventional GaN/AlN QW structure with the large strain.

  4. Energy Absorption Structure of Laser Supported Detonation Wave

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Yamaguchi, Toshikazu; Hatai, Keigo; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2010-05-01

    In Repetitive Pulsed (RP) laser propulsion, when the high energy laser beam is focused in the thruster, Laser Supported Detonation (LSD) wave is generated. This LSD wave converts the laser energy to the enthalpy of the blast wave, which will then apply impulse to the wall of the thruster. Therefore, the energy absorption structure and sustaining condition of LSD wave are important to be understood, which was still not clear though some visualized experiments have been conducted by Ushio et al. before. In this paper, 2-wavelength Mach-Zehnder interferometry is brought to investigate the electron density distribution of LSD area. At the same time, the temperature of the laser induced plasma is measured by an emission spectroscopy experiment, and calculated based on the assumption of local thermal equilibrium. The results show that in LSD, the electron density has a peak (as high as 2×1024[m-3]) behind the shock wave. The irradiated laser can be entirely absorbed before reaching the position of this peak. As a result, a new peak is always generating in front of the old one and this propagating has the same velocity as that of the blast wave. In this way, high heating ratio is sustained right after the shock front. However, as the laser pulse energy becomes lower, the propagating peak cannot catch up with the blast wave anymore, which leads to a termination of the LSD wave. From this study, it is found that for sustaining the LSD wave, a sufficiently thin laser absorption layer is necessary.

  5. Structure-absorption relationships of a series of 6-fluoroquinolones.

    PubMed

    Escribano, E; Calpena, A C; Garrigues, T M; Freixas, J; Domenech, J; Moreno, J

    1997-09-01

    The physicochemical constants and some structural parameters (topological, steric, and electronic) of eight third-generation monofluorate quinolones (six uncommercialized and two used clinically [ciprofloxacin and enrofloxacin]) were determined: pKa, intrinsic solubility (S0), chromatographic capacity factor, partition coefficient (P), valency molecular connectivity, molecular volume, molecular surface area, dipolar moment, and charges associated with each atom of the molecule. The apparent intestinal absorption rate constants (K(abs)) in rat (in vivo perfusion) and the MICs at which 90% of the isolates are inhibited (MIC90s) against 100 Escherichia coli strains were also determined. We sought to establish simple nonlinear and multiple linear correlations between K(abs), on the one hand, and lipophilic parameters and other physicochemical and structural parameters estimated. Of the nonlinear functions examined, the hyperbolic had the best correlation between K(abs) and P, which was in accordance with the Wagner-Sedman (J. G. Wagner and A. J. Sedman, J. Pharmacokinet. Biopharm. 1:23-50, 1973) equation, whereas, after application of the stepwise multiple linear regression method, a multiple linear correlation with some predictive value could be established only between K(abs) as a dependent variable and log P and log S0 as independent variables. In conclusion, the K(abs) and MIC90 of the quinolone CNV 8902 suggest that it is a sufficiently interesting compound to warrant the investigation of its potential therapeutic use orally.

  6. Collision-Induced Absorption by H2 Pairs in the Second Overtone Band at 298 and 77.5 K: Comparison between Experimental and Theoretical Results

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; van-Thanh, Nguyen; Fu, Y.; Borysow, A.

    1999-01-01

    The collision-induced spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K and for gas densities ranging from 100 to 800 amagats. The spectral profile defined by the absorption coefficient per squared density varies significantly with the density, so that the binary absorption coefficient has been determined by extrapolations to zero density of the measured profiles. Our extrapolated measurements and our recent ab initio quantum calculation are in relatively good agreement with one another. Taking into account the very weak absorption of the second overtone band, the agreement is, however, not as good as it has become (our) standard for strong bands.

  7. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band

    NASA Astrophysics Data System (ADS)

    Zhu, Zetao; Sun, Xin; Li, Guoxian; Xue, Hairong; Guo, Hu; Fan, Xiaoli; Pan, Xuchen; He, Jianping

    2015-03-01

    Recently, graphene has been applied as a new microwave absorber because of its high dielectric loss and low density. Nevertheless, the high dielectric constant of pristine graphene has caused unbalanced electromagnetic parameters and results in a bad impedance matching characteristic. In this study, we report a facile microwave-assisted heating approach to produce reduced graphene oxide-nickel (RGO-Ni) composites. The phase and morphology of as-synthesized RGO-Ni composites are characterized by XRD, Raman, FESEM and TEM. The results show that Ni nanoparticles with a diameter around 20 nm are grown densely and uniformly on the RGO sheets. In addition, enhanced microwave absorption properties in Ku-band of RGO-Ni composites is mainly due to the synergistic effect of dielectric loss and magnetic loss and the dramatically electron polarizations caused by the formation of large conductive network. The minimum reflection loss of RGO-Ni-2 composite with the thickness of 2 mm can reaches -42 dB at 17.6 GHz. The RGO-Ni composite is an attractive candidate for the new type of high performance microwave absorbing material.

  8. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  9. Effect of thickness on microwave absorptive behavior of La-Na doped Co-Zr barium hexaferrites in 18.0-26.5 GHz band

    NASA Astrophysics Data System (ADS)

    Arora, Amit; Narang, Sukhleen Bindra; Pubby, Kunal

    2017-02-01

    In this research, the microwave properties of Lanthanum-Sodium doped Cobalt-Zirconium barium hexaferrites, intended as microwave absorbers, are analyzed on Vector Network Analyzer in K-band. The results indicate that the doping has resulted in lowering of real permittivity and enhancement of dielectric losses. Real permeability has shown increase while magnetic losses have shown decrease in value with doping. All these four properties have shown very small variation with frequency in the scanned frequency range which indicates the relaxation type of behavior. Microwave absorption characteristics of these compositions are analyzed with change in sample thickness. The results demonstrate that the matching frequency of the microwave absorber shifts towards lower side of frequency band with increase in thickness. The complete analysis of the prepared microwave absorbers shows a striking achievement with very low reflection loss and wide absorption bandwidth for all the six compositions in 18-26.5 GHz frequency band.

  10. Influence of the nature of the absorption band on the potential performance of high molar extinction coefficient ruthenium(II) polypyridinic complexes as dyes for sensitized solar cells.

    PubMed

    Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara

    2011-07-04

    When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.

  11. Total absorption in ultra-thin lossy layer on transparent substrate using dielectric resonance structure

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Iizuka, H.

    2017-03-01

    A resonant sub-wavelength structure made of a high-refractive-index dielectric material exhibits a resonator-like response and provides unity reflection. We show that near-unity absorption is obtained by using a sub-wavelength resonant structure, which consists of periodic high-refractive-index nano-blocks, when an ultra-thin absorption layer is attached to a transparent dielectric substrate. The resonant structure does not necessarily touch the absorption layer and, therefore, a coating film can be inserted between the absorption layer and the periodic structure. Our results significantly extend application scenarios of detectors and optoelectronic devices that can be implemented on transparent dielectric substrates.

  12. Self-absorption theory applied to rocket measurements of the nitric oxide (1,0)[gamma] band in the daytime thermosphere

    SciTech Connect

    Eparvier, F.G.; Barth, C.A. )

    1992-09-01

    Sounding rocket observations of the ultraviolet fluorescent emissions of the nitric oxide molecule in the lower thermospheric dayglow are described and analyzed. The rocket experiment was an ultraviolet spectrometer which took limb-viewing spectra of the dayglow between 90- and 185- km altitude in the spectral region from 2120 to 2505 [angstrom] with a resolution of 2.0 [angstrom]. The flight occurred at local noon on March 7, 1989, from Poker Flat, Alaska. Several NO[gamma] bands were visible at all altitudes of the flight, along with emission features of N[sub 2], O[sup +], and N[sup +]. The data for the NO (1,0) and (0,1)[gamma] bands were modeled with optically thin synthetic spectra and used as diagnostics of nitric oxide concentrations. The resonant NO (1,0)[gamma] band emissions were shown to be attenuated at low altitudes relative to the expected emission rates predicted from comparison with the nonresonant (0,1)[gamma] band. Inversion of the optically thin data resulted in a peak nitric oxide concentration of 3.1x10[sup 8] cm[sup [minus]3] at an altitude of 100km. A self-absorption model using Holstein transmission functions was developed and applied to the (1,0) [gamma] band observation. The model results agree with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO. The success of the model also confirms the value adopted for the absorption oscillator strength of the (1,0)[gamma] band transition and the instrument calibration.

  13. First principle study of band structure of SrMO3 perovskites

    NASA Astrophysics Data System (ADS)

    Daga, Avinash; Sharma, Smita

    2016-05-01

    First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO3 where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO3 and SrZrO3 to be insulating. A small band gap is observed in SrMoO3 perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all the calculations.

  14. Mg/Ti multilayers: Structural and hydrogen absorption properties

    NASA Astrophysics Data System (ADS)

    Baldi, A.; Pálsson, G. K.; Gonzalez-Silveira, M.; Schreuders, H.; Slaman, M.; Rector, J. H.; Krishnan, G.; Kooi, B. J.; Walker, G. S.; Fay, M. W.; Hjörvarsson, B.; Wijngaarden, R. J.; Dam, B.; Griessen, R.

    2010-06-01

    Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a “spinodal-like” microstructure with a small degree of chemical short-range order in the atomic distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodicities. Notwithstanding the large lattice mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. On exposure to H2 gas a two-step hydrogenation process occurs with the Ti layers forming the hydride before Mg. From in situ measurements of the bilayer thickness Λ at different hydrogen pressures, we observe large out-of-plane expansions of Mg and Ti layers on hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. On unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces.

  15. Structure of dipole bands in doubly odd 102Ag

    NASA Astrophysics Data System (ADS)

    Singh, V.; Sihotra, S.; Malik, S. S.; Bhat, G. H.; Palit, R.; Sheikh, J. A.; Kumar, S.; Singh, N.; Singh, K.; Goswamy, J.; Sethi, J.; Saha, S.; Trivedi, T.; Mehta, D.

    2016-10-01

    Excited states in the transitional doubly odd 102Ag nucleus were populated in the 75As(31P,p 3 n ) fusion-evaporation reaction using the 125 MeV incident 31P beam. The subsequent deexcitations were investigated through in-beam γ -ray spectroscopic techniques using the Indian National Gamma Array spectrometer equipped with 21 clover Ge detectors. The level scheme in 102Ag has been established up to excitation energy ˜6.5 MeV and angular momentum 19 ℏ . The earlier reported level scheme is considerably extended and modified to result in a pair of nearly degenerate negative-parity dipole bands. Lifetime measurements for the states of these two dipole bands have been performed by using the Doppler-shift attenuation method. The two nearly degenerate bands exhibit different features with regard to kinetic moment of inertia, and the reduced transition probabilities B (M 1 ) and B (E 2 ) , which do not favor these to be chiral partners. These bands are discussed in the framework of the hybrid version of tilted-axis cranking (tac) model calculations and assigned the π g9 /2⊗ν h11 /2 and π g9 /2⊗ν h11 /2(d5/2/g7 /2) 2 configurations. The tac model calculations are extended to the nearly degenerate bands observed in the heavier doubly odd Ag-108104 isotopes.

  16. Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.

    NASA Astrophysics Data System (ADS)

    Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.

    The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation

  17. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  18. Optimal frequency selection of multi-channel O2-band different absorption barometric radar for air pressure measurements

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Min, Qilong

    2017-02-01

    Through theoretical analysis, optimal selection of frequencies for O2 differential absorption radar systems on air pressure field measurements is achieved. The required differential absorption optical depth between a radar frequency pair is 0.5. With this required value and other considerations on water vapor absorption and the contamination of radio wave transmission, frequency pairs of present considered radar system are obtained. Significant impacts on general design of differential absorption remote sensing systems are expected from current results.

  19. Band structures in silicene on monolayer gallium phosphide substrate

    NASA Astrophysics Data System (ADS)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  20. Vibrational structure of defect luminescence bands in GaN from electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Alkauskas, Audrius; van de Walle, Chris G.

    2012-02-01

    Optical methods are among the most powerful to characterize defects in materials. The study of optical signatures based on state-of-the-art electronic structure methods is therefore very important. In this work we investigate the vibrational structure of luminescence bands pertaining to deep defect levels in GaN. Since luminescence lineshapes depend sensitively on defect geometries and vibrational frequencies, these should be described accurately. The latter is achieved through the use of hybrid density functionals. Both quasi-localized and bulk phonons are included in our description. In the case of transitions accompanied by very large lattice relaxations, anharmonic effects become sizeable, and these are also accounted for. For the defects studied a very good agreement with available experimental data is achieved. For instance, in the case of wide luminescence bands the resulting line widths are within 0.05 eV of the experimental values. This work was supported by the Swiss NSF and by NSF.

  1. Band structure and many body effects in graphene

    NASA Astrophysics Data System (ADS)

    Bostwick, A.; Ohta, T.; McChesney, J. L.; Seyller, T.; Horn, K.; Rotenberg, E.

    2007-09-01

    We have determined the electronic bandstructure of clean and potassium-doped single layer graphene, and fitted the graphene π bands to a one- and three-near-neighbor tight binding model. We characterized the quasiparticle dynamics using angle resolved photoemission spectroscopy. The dynamics reflect the interaction between holes and collective excitations, namely plasmons, phonons, and electron-hole pairs. Taking the topology of the bands around the Dirac energy for n-doped graphene into account, we compute the contribution to the scattering lifetimes due to electron-plasmon and electron phonon coupling.

  2. Temperature shift of intraband absorption peak in tunnel-coupled QW structure

    NASA Astrophysics Data System (ADS)

    Akimov, V.; Firsov, D. A.; Duque, C. A.; Tulupenko, V.; Balagula, R. M.; Vinnichenko, M. Ya.; Vorobjev, L. E.

    2017-04-01

    An experimental study of the intersubband light absorption by the 100-period GaAs/Al0.25Ga0.75As double quantum well heterostructure doped with silicon is reported and interpreted. Small temperature redshift of the 1-3 intersubband absorption peak is detected. Numerical calculations of the absorption coefficient including self-consistent Hartree calculations of the bottom of the conduction band show good agreement with the observed phenomena. The temperature dependence of energy gap of the material and the depolarization shift should be accounted for to explain the shift.

  3. Radiative analysis of global mean temperature trends in the middle atmosphere: Effects of non-locality and secondary absorption bands

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.

    2016-02-01

    In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.

  4. The Band Structure of Polymers: Its Calculation and Interpretation. Part 3. Interpretation.

    ERIC Educational Resources Information Center

    Duke, B. J.; O'Leary, Brian

    1988-01-01

    In this article, the third part of a series, the results of ab initio polymer calculations presented in part 2 are discussed. The electronic structure of polymers, symmetry properties of band structure, and generalizations are presented. (CW)

  5. The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft x-ray spectroscopy and density functional theory.

    PubMed

    Chen, B; Laverock, J; Piper, L F J; Preston, A R H; Cho, S W; DeMasi, A; Smith, K E; Scanlon, D O; Watson, G W; Egdell, R G; Glans, P-A; Guo, J-H

    2013-04-24

    The electronic structure of single-crystal WO3 and Na0.67WO3 (a sodium-tungsten bronze) has been measured using soft x-ray absorption and resonant soft x-ray emission oxygen K-edge spectroscopies. The spectral features show clear differences in energy and intensity between WO3 and Na0.67WO3. The x-ray emission spectrum of metallic Na0.67WO3 terminates in a distinct Fermi edge. The rigid-band model fails to explain the electronic structure of Na0.67WO3 in terms of a simple addition of electrons to the conduction band of WO3. Instead, Na bonding and Na 3s-O 2p hybridization need to be considered for the sodium-tungsten bronze, along with occupation of the bottom of the conduction band. Furthermore, the anisotropy in the band structure of monoclinic γ-WO3 revealed by the experimental spectra with orbital-resolved geometry is explained via density functional theory calculations. For γ-WO3 itself, good agreement is found between the experimental O K-edge spectra and the theoretical partial density of states of O 2p orbitals. Indirect and direct bandgaps of insulating WO3 are determined from extrapolating separations between spectral leading edges and accounting for the core-hole energy shift in the absorption process. The O 2p non-bonding states show upward band dispersion as a function of incident photon energy for both compounds, which is explained using the calculated band structure and experimental geometry.

  6. The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft x-ray spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Chen, B.; Laverock, J.; Piper, L. F. J.; Preston, A. R. H.; Cho, S. W.; DeMasi, A.; Smith, K. E.; Scanlon, D. O.; Watson, G. W.; Egdell, R. G.; Glans, P.-A.; Guo, J.-H.

    2013-04-01

    The electronic structure of single-crystal WO3 and Na0.67WO3 (a sodium-tungsten bronze) has been measured using soft x-ray absorption and resonant soft x-ray emission oxygen K-edge spectroscopies. The spectral features show clear differences in energy and intensity between WO3 and Na0.67WO3. The x-ray emission spectrum of metallic Na0.67WO3 terminates in a distinct Fermi edge. The rigid-band model fails to explain the electronic structure of Na0.67WO3 in terms of a simple addition of electrons to the conduction band of WO3. Instead, Na bonding and Na 3s-O 2p hybridization need to be considered for the sodium-tungsten bronze, along with occupation of the bottom of the conduction band. Furthermore, the anisotropy in the band structure of monoclinic γ-WO3 revealed by the experimental spectra with orbital-resolved geometry is explained via density functional theory calculations. For γ-WO3 itself, good agreement is found between the experimental O K-edge spectra and the theoretical partial density of states of O 2p orbitals. Indirect and direct bandgaps of insulating WO3 are determined from extrapolating separations between spectral leading edges and accounting for the core-hole energy shift in the absorption process. The O 2p non-bonding states show upward band dispersion as a function of incident photon energy for both compounds, which is explained using the calculated band structure and experimental geometry.

  7. Direct Observation of Band Structure Modifications in Nanocrystals of CsPbBr3 Perovskite.

    PubMed

    Lin, Junhao; Gomez, Leyre; de Weerd, Chris; Fujiwara, Yasufumi; Gregorkiewicz, Tom; Suenaga, Kazutomo

    2016-11-09

    We investigate the variation of the bandgap energy of single quantum dots of CsPbBr3 inorganic halide perovskite as a function of size and shape and upon embedding within an ensemble. For that purpose, we make use of valence-loss electron spectroscopy with Z-contrast annular dark-field (ADF) imaging in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope. In the experiment, energy absorption is directly mapped onto individual quantum dots, whose dimensions and location are simultaneously measured to the highest precision. In that way, we establish an intimate relation between quantum dot size and even shape and its bandgap energy on a single object level. We explicitly follow the bandgap increase in smaller quantum dots due to quantum confinement and demonstrate that it is predominantly governed by the smallest of the three edges of the cuboidal perovskite dot. We also show the presence of an effective coupling between proximal dots in an ensemble, leading to band structure modification. These unique insights are directly relevant to the development of custom-designed quantum structures and solids which will be realized by purposeful assemblage of individually characterized and selected quantum dots, serving as building blocks.

  8. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  9. Electronic transitions in GdN band structure

    SciTech Connect

    Vidyasagar, R. Kita, T.; Sakurai, T.; Ohta, H.

    2014-05-28

    Using the near-infrared (NIR) absorbance spectroscopy, electronic transitions and spin polarization of the GdN epitaxial film have been investigated; and the GdN epitaxial film was grown by a reactive rf sputtering technique. The GdN film exhibited three broad bands in the NIR frequency regimes; and those bands are attributable primarily to the minority and majority spin transitions at the X-point and an indirect transition along the Γ-X symmetric direction of GdN Brillouin zone. We experimentally observe a pronounced red-shift of the indirect band gap when cooling down below the Curie temperature which is ascribed to the orbital-dependent coulomb interactions of Gd-5dxy electrons, which tend to push-up the N-2p bands. On the other hand, we have evaluated the spin polarization of 0.17 (±0.005), which indicates that the GdN epitaxial film has almost 100% spin-polarized carriers. Furthermore, the experimental result of GdN electronic transitions are consistent with the previous reports and are thus well-reproduced. The Arrott plots evidenced that the Curie temperature of GdN film is 36 K and the large spin moment is explained by the nitrogen vacancies and the intra-atomic exchange interaction.

  10. Origin of absorption peaks in reflection loss spectrum in Ku- frequency band of Co-Zr substituted strontium hexaferrites prepared using sucrose precursor

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Pubby, Kunal; Chawla, S. K.; Kaur, Prabhjyot

    2017-03-01

    This study presents the detailed explanation of the factors, contributing towards the absorption peaks in reflection loss spectrum of hexaferrites. Cobalt-Zirconium substituted strontium hexaferrites, synthesized using sucrose precursor sol-gel technique, were analyzed in 12.4-18 GHz frequency range. The concepts of impedance matching through quarter wavelength condition, complex thickness, dielectric phase angle and attenuation constant have been used to determine the location as well as intensity of absorption peaks. This study also demonstrates the potential application of three compositions of this series with doping content (x)==0.0, 0.6 and 0.8 as an effective microwave absorbers in Ku-frequency band.

  11. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band.

    PubMed

    Han, Meikang; Yin, Xiaowei; Wu, Heng; Hou, Zexin; Song, Changqing; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2016-08-17

    Electromagnetic (EM) absorbing and shielding composites with tunable absorbing behaviors based on Ti3C2 MXenes are fabricated via HF etching and annealing treatment. Localized sandwich structure without sacrificing the original layered morphology is realized, which is responsible for the enhancement of EM absorbing capability in the X-band. The composite with 50 wt % annealed MXenes exhibits a minimum reflection loss of -48.4 dB at 11.6 GHz, because of the formation of TiO2 nanocrystals and amorphous carbon. Moreover, superior shielding effectiveness with high absorption effectiveness is achieved. The total and absorbing shielding effectiveness of Ti3C2 MXenes in a wax matrix with a thickness of only 1 mm reach values of 76.1 and 67.3 dB, while those of annealed Ti3C2 MXenes/wax composites are 32 and 24.2 dB, respectively. Considering the promising performance of Ti3C2 MXenes with the modified surface, this work is expected to open the door for the expanded applications of MXenes family in EM absorbing and shielding fields.

  12. Human chromosomal bands: nested structure, high-definition map and molecular basis.

    PubMed

    Costantini, Maria; Clay, Oliver; Federico, Concetta; Saccone, Salvatore; Auletta, Fabio; Bernardi, Giorgio

    2007-02-01

    In this paper, we report investigations on the nested structure, the high-definition mapping, and the molecular basis of the classical Giemsa and Reverse bands in human chromosomes. We found the rules according to which the approximately 3,200 isochores of the human genome are assembled in high (850-band) resolution bands, and the latter in low (400-band) resolution bands, so forming the nested mosaic structure of chromosomes. Moreover, we identified the borders of both sets of chromosomal bands at the DNA sequence level on the basis of our recent map of isochores, which represent the highest-resolution, ultimate bands. Indeed, beyond the 100-kb resolution of the isochore map, the guanine and cytosine (GC) profile of DNA becomes turbulent owing to the contribution of specific sequences such as exons, introns, interspersed repeats, CpG islands, etc. The isochore-based level of definition (100 kb) of chromosomal bands is much higher than the cytogenetic definition level (2-3 Mb). The major conclusions of this work concern the high degree of order found in the structure of chromosomal bands, their mapping at a high definition, and the solution of the long-standing problem of the molecular basis of chromosomal bands, as these could be defined on the basis of compositional DNA properties alone.

  13. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  14. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations.

  15. Polarization and field dependent two-photon absorption in GaAs/AlGaAs multiquantum well waveguides in the half-band gap spectral region

    NASA Astrophysics Data System (ADS)

    Tsang, H. K.; Penty, R. V.; White, I. H.; Grant, R. S.; Sibbett, W.; Soole, J. B. D.; LeBlanc, H. P.; Andreadakis, N. C.; Colas, E.; Kim, M. S.

    1991-12-01

    We report the observation of two photon absorption which is strongly dependent on the applied electric field and the optical polarization. At 1.55 μm wavelength, the two-photon absorption coefficient of the GaAs/AlGaAs multiquantum well (MQW) waveguides for transverse-magnetic light is about seven times lower than for transverse-electric polarized light and changes by a factor of approximately 4 for a change in applied direct-current electric field of ˜140 kV/cm. Ultrafast nonlinear refraction causing phase changes of over π radians without appreciable excess loss is observed. These measurements demonstrate that GaAs/AlGaAs MQW waveguides could be successfully used for subpicosecond all-optical switching near half-band gap, at wavelengths corresponding to the 1.55 μm optical communications band.

  16. Effects of surface texture and measurement geometry on the near infrared water-of-hydration absorption bands. Implications for the Martian regolith water content.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Schmitt, B.

    Near-IR reflectance spectroscopy is widely used to detect mineral hydration on Solar System surfaces by the observation of absorption bands at 1.9 and 3 µm. Recent studies established empirical relationships between the strength of the 3 µm band and the water content of the studied minerals (Milliken et al., 2005). These results have especially been applied to the OMEGA dataset to derive global maps of the Martian regolith water content (Jouglet et al., 2006 and Milliken et al., 2006). However, parameters such as surface texture and measurement geometry are known to have a strong effect on reflectance spectra but their influence on the hydration bands is poorly documented. The aim of this work is the determination of the quantitative effects of particle size, mixing between materials with different albedo and measurement geometry on the absorption bands at 1.9 and 3 µm. We used both an experimental and a modeling approach to study these effects. Bidirectional reflectance spectra were measured for series of well characterized samples (smectite, volcanic tuff and coals, pure and mixed) and modeled with optical constants of a smectite (Roush, 2005). Criteria commonly used to estimate the strength of the bands were then calculated on these spectra. We show that particle size has a strong effect on the 1.9 and 3 µm bands strength, especially for the finest particles (less than 200 µm). Mixing between a fine smectite powder and anthracite powders with various particle sizes (modeled by a synthetic neutral material) highlights the strong effect of the materials albedo on the hydration band estimation criteria. Measurement geometry has a significant effect on the bands strength for high phase angles. Furthermore, the relative variations of band strength with measurement geometry appear very dependent on the surface texture. We will present in details the relationships between these physical parameters and various criteria chosen to estimate the hydration bands

  17. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions

    NASA Astrophysics Data System (ADS)

    Nguyen, L. Tung; Pham, C. Huy; Nguyen, V. Lien

    2011-07-01

    Using the nearest-neighbor tight-binding approach we study the electronic band structures of graphene nanoribbons with self-passivating edge reconstructions. For zigzag ribbons the edge reconstruction moves both the Fermi energy and the flat band down by several hundred meV, and the flat band is always found to be below the Fermi energy. The states featured by the flat band are shown to be mainly localized at the atoms belonging to several lattice lines closest to the edges. For armchair ribbons the edge reconstruction strongly modifies the band structure in the region close to the Fermi energy, leading to the appearance of a band gap even for ribbons which were predicted to be metallic in the model of standard armchair edges. The gap widths are, however, strongly different in magnitude and behave in different ways regarding the ribbon width.

  18. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.

    PubMed

    Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao

    2014-12-15

    This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

  19. Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band.

    PubMed

    Liu, Xiang; Wang, Lai-Sen; Ma, Yating; Zheng, Hongfei; Lin, Liang; Zhang, Qinfu; Chen, Yuanzhi; Qiu, Yulong; Peng, Dong-Liang

    2017-03-01

    Development of microwave absorption materials with tunable thickness and bandwidth is particularly urgent for practical applications but remains a great challenge. Here, two-dimensional nanocomposites consisting of perovskite oxides (LaFeO3) and amorphous carbon were successfully obtained through a one pot with heating treatment using sodium chloride as a hard template. The tunable absorption properties were realized by introducing A-site cation deficiency in LaFeO3 perovskite. Among the A-site cation-deficient perovskites, La0.62FeO3/C (L0.62FOC) has the best microwave absorption properties in which the maximum absorption is -26.6 dB at 9.8 GHz with a thickness of 2.94 mm and the bandwidth range almost covers all X-band. The main reason affecting the microwave absorption performance was derived from the A-site cation deficiency which induced more dipoles polarization loss. This work proposes a promising method to tune the microwave absorption performance via introducing deficiency in a crystal lattice.

  20. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Nand, Mangla; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Shukla, D. K.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Jha, S. N.; Phase, D. M.; Ganguli, Tapas

    2016-04-01

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al2O3 heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al2O3 substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al2O3 substrate. Surface related feature in Ni 2p3/2 core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al2O3 substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al2O3 layers. A type-I band alignment at NiO and Al2O3 heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  1. Chaos and band structure in a three-dimensional optical lattice.

    PubMed

    Boretz, Yingyue; Reichl, L E

    2015-04-01

    Classical chaos is known to affect wave propagation because it signifies the presence of broken symmetries. The effect of chaos has been observed experimentally for matter waves, electromagnetic waves, and acoustic waves. When these three types of waves propagate through a spatially periodic medium, the allowed propagation energies form bands. For energies in the band gaps, no wave propagation is possible. We show that optical lattices provide a well-defined system that allows a study of the effect of chaos on band structure. We have determined the band structure of a body-centered-cubic optical lattice for all theoretically possible couplings, and we find that the band structure for those lattices realizable in the laboratory differs significantly from that expected for the bands in an "empty" body-centered-cubic crystal. However, as coupling is increased, the lattice becomes increasingly chaotic and it becomes possible to produce band structure that has behavior qualitatively similar to the "empty" body-centered-cubic band structure, although with fewer degeneracies.

  2. Three-dimensional structure of the Z band in a normal mammalian skeletal muscle

    PubMed Central

    1996-01-01

    The three-dimensional structure of the vertebrate skeletal muscle Z band reflects its function as the muscle component essential for tension transmission between successive sarcomeres. We have investigated this structure as well as that of the nearby I band in a normal, unstimulated mammalian skeletal muscle by tomographic three- dimensional reconstruction from electron micrograph tilt series of sectioned tissue. The three-dimensional Z band structure consists of interdigitating axial filaments from opposite sarcomeres connected every 18 +/- 12 nm (mean +/- SD) to one to four cross-connecting Z- filaments are observed to meet the axial filaments in a fourfold symmetric arrangement. The substantial variation in the spacing between cross-connecting Z-filament to axial filament connection points suggests that the structure of the Z band is not determined solely by the arrangement of alpha-actinin to actin-binding sites along the axial filament. The cross-connecting filaments bind to or form a "relaxed interconnecting body" halfway between the axial filaments. This filamentous body is parallel to the Z band axial filaments and is observed to play an essential role in generating the small square lattice pattern seen in electron micrographs of unstimulated muscle cross sections. This structure is absent in cross section of the Z band from muscles fixed in rigor or in tetanus, suggesting that the Z band lattice must undergo dynamic rearrangement concomitant with crossbridge binding in the A band. PMID:8636232

  3. Quantitative photoluminescence of broad band absorbing melanins: a procedure to correct for inner filter and re-absorption effects

    NASA Astrophysics Data System (ADS)

    Riesz, Jennifer; Gilmore, Joel; Meredith, Paul

    2005-07-01

    We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant.

  4. Electron momentum density, band structure, and structural properties of SrS

    SciTech Connect

    Sharma, G.; Munjal, N.; Vyas, V.; Kumar, R.; Sharma, B. K.; Joshi, K. B.

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  5. X-ray absorption near-edge structure of selenium in the Cu-In-Se system

    NASA Astrophysics Data System (ADS)

    Wolska, A.; Bacewicz, R.; Filipowicz, J.; Attenkofer, K.

    2001-05-01

    The x-ray absorption near edge structure (XANES) of selenium is investigated in the crystals with compositions from the pseudobinary cut line Cu2Se-In2Se3. This includes CuInSe2, indium-rich ternary compounds (Cu2In4Se7, CuIn3Se5, CuIn5Se8, CuIn7Se11) and α-In2Se3. The absorption at the K and L3/L2 edges of selenium has been measured using synchrotron radiation. Two theoretical approaches are used to the interpretation of the experimental data: the band structure calculation and the real-space multiple-scattering (RSMS) method. In the first one, the angular momentum projected densities of states at Se sites are calculated for CuInSe2 and α-In2Se3 for the energies up to 17 eV above the conduction band minimum by the LMTO-ASA method. The RSMS approach represented by the FEFF8 code is used to calculate the XANES spectra for the phases with tetragonal symmetry. Clusters up to 160 atoms are used in the calculations. The influence of different structural factors on the selenium XANES is studied.

  6. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  7. Thickness and Composition Tailoring of K- and Ka-Band Microwave Absorption of BaCo x Ti x Fe(12-2 x)O19 Ferrites

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Pubby, Kunal; Singh, Charanjeet

    2017-02-01

    The goal of this research is to investigate the electromagnetic and microwave absorption properties of M-type barium hexaferrites with chemical formula BaCo x Ti x Fe(12-2 x)O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) in K and Ka band. Characterization techniques such as x-ray diffraction analysis and scanning electron microscopy were applied to confirm ferrite formation. The frequency dependence of the complex permittivity and complex permeability was studied for prepared ferrite samples in the frequency range from 18 GHz to 40 GHz. Factors such as the quarter-wavelength condition, impedance matching, high dielectric-magnetic losses, as well as ferromagnetic resonance were investigated to determine their contribution to the absorption characteristics. It was found that the quarter-wavelength ( λ/4) model could be successfully applied to predict and understand the position as well as number of reflection peaks in the microwave absorption spectrum. The origin of the reflection loss peaks is explained and verified based on calculations of input impedance, loss tangent, and ferromagnetic resonance. Reflection loss analysis revealed that all six compositions exhibited reflection loss peaks (absorption >90%) at their matching thicknesses and frequencies. Therefore, these ferrites are potential candidates for use in electromagnetic shielding applications requiring low reflectivity in K and Ka band.

  8. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    PubMed

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  9. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide

    SciTech Connect

    Arkhipenko, V. I.; Simonchik, L. V. Usachonak, M. S.; Callegari, Th.; Sokoloff, J.

    2014-09-28

    We demonstrate the ability to develop one-dimensional electromagnetic band gap structure in X-band waveguide solely by using the positive columns of glow discharges in neon at the middle pressure. Plasma inhomogeneities are distributed uniformly along a typical X-band waveguide with cross section of 23×10 mm². It is shown that electron densities larger than 10¹⁴ cm ⁻³ are needed in order to create an effective one-dimensional electromagnetic band gap structure. Some applications for using the one-dimensional electromagnetic band gap structure in waveguide as a control of microwave (broadband filter and device for variation of pulse duration) are demonstrated.

  10. Detailed Study of the TE band structure of two dimensional metallic photonic crystals with square symmetry

    NASA Astrophysics Data System (ADS)

    Sedghi, Aliasghar; Valiaghaie, Soma; Soufiani, Ahad Rounaghi

    2014-10-01

    By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.

  11. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    NASA Astrophysics Data System (ADS)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A.; Martínez-Criado, G.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.

    2009-07-01

    By means of x-ray absorption near-edge structure (XANES) several Ga1-xMnxN (0.03structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding \\mathrm {t_{2}}\\uparrow band localized in the gap region, and the corresponding anti-bonding state \\mathrm {t_{2}}\\downarrow , which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  12. Influence of spin correlations on band structure of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Sinkkonen, J.

    1981-06-01

    A perturbation treatment of the s-f interaction in ferromagnetic semiconductors is presented. The many-spin correlation functions are expressed in terms of connected correlation functions which are constructed by the meanfield theory. For the self-energy an integral equation is obtained which includes correlation effects. The method of calculation is closely connected with the coherent-potential approximation. As an application the density of states is shown in various cases by allowing the bandwidth to vary from broad- to narrow-band regime. The calculation is limited to the paramagnetic phase. Correlation effects are seen as temperature-dependent changes in the density of states.

  13. First direct observation of a nearly ideal graphene band structure

    SciTech Connect

    Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H.; Chiang, S.; Soukiassian, P.; Berger, C.; de Heer, W.A.; Lanzara, A.; Conrad, E.H.

    2009-12-10

    Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(000{bar 1}) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K point. Each cone corresponds to an individual macroscale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.

  14. Photonic band structure of dielectric membranes periodically textured in two dimensions

    NASA Astrophysics Data System (ADS)

    Pacradouni, V.; Mandeville, W. J.; Cowan, A. R.; Paddon, P.; Young, Jeff F.; Johnson, S. R.

    2000-08-01

    The real and imaginary photonic band structure of modes attached to two-dimensionally textured semiconductor membranes is determined experimentally and theoretically. These porous waveguides exhibit large (1000 cm-1 at 9500 cm-1) second-order optical gaps, highly dispersive lifetimes, and bands with well-defined polarization along directions of high symmetry.

  15. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  16. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.

    PubMed

    Sobuś, Jan; Ziółek, Marcin

    2014-07-21

    A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.

  17. Optical band gap and structural study on GeO2- and Y2O3-doped barium aluminoborate glasses

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Fayad, A. M.

    2016-10-01

    A series of barium borate-based glasses containing Al2O3, GeO2 and Y2O3 were prepared by conventional method of glass melting and annealing. The prepared glasses were investigated through optical, FTIR, density and molar volume measurements. The optical absorption spectra reveal three characteristic UV absorption peaks at about 213, 240 and 308 nm. The optical absorption measurements were used to estimate direct and indirect transition of optical band gap ( E opt), Urbach energy (Δ E) and the refractive index ( n).Values of the optical parameters are found to be related to the structural changes that are taking place in the prepared glasses. The deconvoluted vibrational modes identified in the IR spectrum illustrated the conversion of triangular BO3 structural units to BO4 tetrahedral units with the addition of GeO2 or Y2O3. The formation of non-bridging oxygen atoms is assumed to lead to provide some favorable properties, mainly the optical properties and semiconducting behavior of the prepared glassy samples. Density and molar volume data are found to be dependent on the rigidity of the glass network.

  18. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  19. Triaxial superdeformed and normal-deformed high-spin band structures in {sup 170}Hf

    SciTech Connect

    Neusser-Neffgen, A.; Huebel, H.; Bringel, P.; Domscheit, J.; Mergel, E.; Nenoff, N.; Singh, A.K.; Hagemann, G.B.; Jensen, D.R.; Bhattacharya, S.; Curien, D.; Dorvaux, O.; Hannachi, F.; Lopez-Martens, A.

    2006-03-15

    The high-spin structure of {sup 170}Hf was investigated using the EUROBALL spectrometer. The previously known level scheme was extended in the low-spin region as well as to higher spins, and several new bands were discovered. In particular, two bands were identified which show the characteristics of triaxial superdeformation. One of these bands is strongly populated, and its excitation energy and spins are established. Configuration assignments are made to the normal-deformed bands based on comparisons of their properties with cranked shell model calculations. The results for the very high spin states provide important input for such calculations.

  20. Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures

    NASA Astrophysics Data System (ADS)

    Puls, Conor

    Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons. Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility. Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and

  1. Electromagnetic properties and microwave absorption properties of BaTiO 3-carbonyl iron composite in S and C bands

    NASA Astrophysics Data System (ADS)

    Rui-gang, Yang

    2011-07-01

    BaTiO3 powders are prepared by sol-gel method. The carbonyl iron powder is prepared via thermal decomposition of iron pentacarbonyl. Then BaTiO3-carbonyl iron composite with different mixture ratios was prepared using the as-prepared material. The structure, morphology, and properties of the composites are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), and a network analyzer. The complex permittivity and reflection loss of the composites have been measured at different microwave frequencies in S- and C-bands employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3/carbonyl iron on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiO3-carbonyl iron composite has been proposed. The BaTiO3-carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  2. Probing the Spin-Polarized Electronic Band Structure in Monolayer Transition Metal Dichalcogenides by Optical Spectroscopy.

    PubMed

    Wang, Zefang; Zhao, Liang; Mak, Kin Fai; Shan, Jie

    2017-02-08

    We study the electronic band structure in the K/K' valleys of the Brillouin zone of monolayer WSe2 and MoSe2 by optical reflection and photoluminescence spectroscopy on dual-gated field-effect devices. Our experiment reveals the distinct spin polarization in the conduction bands of these compounds by a systematic study of the doping dependence of the A and B excitonic resonances. Electrons in the highest-energy valence band and the lowest-energy conduction band have antiparallel spins in monolayer WSe2 and parallel spins in monolayer MoSe2. The spin splitting is determined to be hundreds of meV for the valence bands and tens of meV for the conduction bands, which are in good agreement with first-principles calculations. These values also suggest that both n- and p-type WSe2 and MoSe2 can be relevant for spin- and valley-based applications.

  3. Probing the Spin-Polarized Electronic Band Structure in Monolayer Transition Metal Dichalcogenides by Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zefang; Zhao, Liang; Mak, Kin Fai; Shan, Jie

    2017-02-01

    We study the electronic band structure in the K/K' valleys of the Brillouin zone of monolayer WSe2 and MoSe2 by optical reflection and photoluminescence spectroscopy on dual-gated field-effect devices. Our experiment reveals the distinct spin polarization in the conduction bands of these compounds by a systematic study of the doping dependence of the A and B excitonic resonances. Electrons in the highest-energy valence band and the lowest-energy conduction band have antiparallel spins in monolayer WSe2, and parallel spins in monolayer MoSe2. The spin splitting is determined to be hundreds of meV for the valence bands and tens of meV for the conduction bands, which are in good agreement with first principles calculations. These values also suggest that both n- and p-type WSe2 and MoSe2 can be relevant for spin- and valley-based applications

  4. Quantitative study of band structure in BaTiO3 particles with vacant ionic sites

    NASA Astrophysics Data System (ADS)

    Oshime, Norihiro; Kano, Jun; Ikeda, Naoshi; Teranishi, Takashi; Fujii, Tatsuo; Ueda, Takeji; Ohkubo, Tomoko

    2016-10-01

    Levels of the conduction band minimum and the valence band maximum in ion-deficient BaTiO3 particles were investigated with optical band gap and ionization energy measurements. Though it is known that the quantification of the band structure in an insulator is difficult, due to the poor electrical conductivity of BaTiO3, systematic variation in the band energy levels was found that correlated with the introduction of vacancies. Photoelectron yield spectroscopy provided direct observation of the occupancy level of electrons, which is altered by the presence of oxygen and barium vacancies. In addition, the conduction band deviation from the vacuum level was determined by optical reflectance spectroscopy. Our results show that: (1) Introduction of oxygen vacancies forms a donor level below the conduction band. (2) The conduction band is shifted to a lower level by a larger number of oxygen vacancies, while the valence band also shifts to a lower level, due to the reduction in the density of O 2p orbitals. (3) Introduction of barium vacancies widens the band gap. Since barium vacancies can induce a small number of oxygen vacancies with accompanying charge compensation, this behavior suppresses any large formation of donor levels in the gap states, indicating that cation vacancies can control the number of both donor and acceptor levels.

  5. Multi-large low-frequency band gaps in a periodic hybrid structure

    NASA Astrophysics Data System (ADS)

    Wang, T.; Sheng, M. P.; Guo, H. B.

    2016-03-01

    A hybrid structure composed of a local resonance mass and an external oscillator is proposed in this paper for restraining the elastic longitudinal wave propagation. Theoretical model has been established to investigate the dispersion relation and band gaps of the structure. The results show that the hybrid structure can produce multi-band gaps wider than the multi-resonator acoustic metamaterials. It is much easier for the hybrid structure to yield wide and low band gaps by adjusting the mass and stiffness of the external oscillator. Small series spring constant ratio results in low-frequency band gaps, in which the external oscillator acts as a resonator and replaces the original local resonator to hold the band gaps in low frequency range. Compared with the one-dimensional phononic crystal (PC) lattice, a new band gap emerges in lower frequency range in the hybrid structure because of the added local resonance, which will be a significant assistance in low-frequency vibration and noise reduction. Further, harmonic response analysis using finite element method (FEM) has been performed, and results show that elastic longitudinal waves are efficiently forbidden within the band gaps.

  6. Indirect optical absorption and origin of the emission from β-FeSi2 nanoparticles: Bound exciton (0.809 eV) and band to acceptor impurity (0.795 eV) transitions

    NASA Astrophysics Data System (ADS)

    Lang, R.; Amaral, L.; Meneses, E. A.

    2010-05-01

    We investigated the optical absorption of the fundamental band edge and the origin of the emission from β-FeSi2 nanoparticles synthesized by ion-beam-induced epitaxial crystallization of Fe+ implanted SiO2/Si(100) followed by thermal annealing. From micro-Raman scattering and transmission electron microscopy measurements it was possible to attest the formation of strained β-FeSi2 nanoparticles and its structural quality. The optical absorption near the fundamental gap edge of β-FeSi2 nanoparticles evaluated by spectroscopic ellipsometry showed a step structure characteristic of an indirect fundamental gap material. Photoluminescence spectroscopy measurements at each synthesis stage revealed complex emissions in the 0.7-0.9 eV spectral region, with different intensities and morphologies strongly dependent on thermal treatment temperature. Spectral deconvolution into four transition lines at 0.795, 0.809, 0.851, and 0.873 eV was performed. We concluded that the emission at 0.795 eV may be related to a radiative direct transition from the direct conduction band to an acceptor level and that the emission at 0.809 eV derives from a recombination of an indirect bound exciton to this acceptor level of β-FeSi2. Emissions 0.851 and 0.873 eV were confirmed to be typical dislocation-related photoluminescence centers in Si. From the energy balance we determined the fundamental indirect and direct band gap energies to be 0.856 and 0.867 eV, respectively. An illustrative energy band diagram derived from a proposed model to explain the possible transition processes involved is presented.

  7. Valence and conduction band structure of the quasi-two-dimensional semiconductor Sn S2

    NASA Astrophysics Data System (ADS)

    Racke, David A.; Neupane, Mahesh R.; Monti, Oliver L. A.

    2016-02-01

    We present the momentum-resolved photoemission spectroscopy of both the valence and the conduction band region in the quasi-two-dimensional van der Waals-layered indirect band gap semiconductor Sn S2 . Using a combination of angle-resolved ultraviolet photoemission and angle-resolved two-photon photoemission (AR-2PPE) spectroscopy, we characterize the band structure of bulk Sn S2 . Comparison with density functional theory calculations shows excellent quantitative agreement in the valence band region and reveals several localized bands that likely originate from defects such as sulfur vacancies. Evidence for a moderate density of defects is also observed by AR-2PPE in the conduction band region, leading to localized bands not present in the computational results. The energetic structure and dispersion of the conduction bands is captured well by the computational treatment, with some quantitative discrepancies remaining. Our results provide a broader understanding of the electronic structure of Sn S2 in particular and van der Waals-layered semiconductors in general.

  8. Disorder enabled band structure engineering of a topological insulator surface

    PubMed Central

    Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei; Alpichshev, Zhanybek; Kapitulnik, A.; Biswas, Rudro R.; Wray, L. Andrew

    2017-01-01

    Three-dimensional topological insulators are bulk insulators with Z2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi2X3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport. PMID:28155858

  9. Disorder enabled band structure engineering of a topological insulator surface

    NASA Astrophysics Data System (ADS)

    Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei; Alpichshev, Zhanybek; Kapitulnik, A.; Biswas, Rudro R.; Wray, L. Andrew

    2017-02-01

    Three-dimensional topological insulators are bulk insulators with Z2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi2X3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.

  10. Disorder enabled band structure engineering of a topological insulator surface

    DOE PAGES

    Xu, Yishuai; Chiu, Janet; Miao, Lin; ...

    2017-02-03

    Three-dimensional topological insulators are bulk insulators with Z2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localizedmore » regime usually associated with impurity bands. Lastly, at native densities in the model Bi2X3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less

  11. Needle Profile Grating Structure for Absorption Enhancement in GaAs Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Yile; Zhang, Xu; Guo, Minqiang; Sun, Xiaohong; Yu, Yanguang; Xi, Jiangtao

    2015-11-01

    We conduct a systematic study of thin film solar cells consisting of a GaAs needle profile (NP) grating structure as a light-trapping layer. The influence of geometric parameters on the optical absorption of the NP grating is investigated using rigorous coupled wave analysis and the finite element method. This type of structure can lead to broadband optical absorption enhancement throughout the wavelength range that we studied. Our simulation results reveal that the absorption efficiency of NP grating can be improved significantly compared with its rectangular grating counterpart. The proposed structure is expected to illuminate the design and fabrication of high-efficiency solar cells.

  12. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    SciTech Connect

    Zhu, Hong; Sun, Wenhao; Ceder, Gerbrand; Armiento, Rickard; Lazic, Predrag

    2014-02-24

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carriers in bulk crystalline semiconductors. The proposed mechanism of orbital interaction on band structure is demonstrated for IV-VI thermoelectric semiconductors. For IV-VI materials, we find that the convergence of multiple carrier pockets not only displays a strong correlation with the s-p and spin-orbit coupling but also coincides with the enhancement of power factor. Our results suggest a useful path to engineer the band structure and an enticing solid-solution design principle to enhance thermoelectric performance.

  13. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  14. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    PubMed Central

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-01-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species. PMID:27703139

  15. First-principle study of energy band structure of armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Guo, Zhankui; Xu, Kewei; Chu, Paul K.

    2012-07-01

    First-principle calculation is carried out to study the energy band structure of armchair graphene nanoribbons (AGNRs). Hydrogen passivation is found to be crucial to convert the indirect band gaps into direct ones as a result of enhanced interactions between electrons and nuclei at the edge boundaries, as evidenced from the shortened bond length as well as the increased differential charge density. Ribbon width usually leads to the oscillatory variation of band gaps due to quantum confinement no matter hydrogen passivated or not. Mechanical strain may change the crystal symmetry, reduce the overlapping integral of C-C atoms, and hence modify the band gap further, which depends on the specific ribbon width sensitively. In practical applications, those effects will be hybridized to determine the energy band structure and subsequently the electronic properties of graphene. The results can provide insights into the design of carbon-based devices.

  16. Magnon band structure and magnon density in one-dimensional magnonic crystals

    NASA Astrophysics Data System (ADS)

    Qiu, Rong-ke; Huang, Te; Zhang, Zhi-dong

    2014-11-01

    By using Callen's Green's function method and the Tyablikov and Anderson-Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the superlattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic field on the magnon-energy band and magnon density in the Kx-direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters.

  17. Double stop-band structure near half-integer tunes in high-intensity rings

    NASA Astrophysics Data System (ADS)

    Moriya, K.; Ota, M.; Fukushima, K.; Yamaguchi, M.; Ito, K.; Okamoto, H.

    2016-11-01

    This paper addresses a detailed experimental study of collective instability bands generated near every half-integer tune per lattice period by coherent dipole and quadrupole resonances. Both instabilities appear side by side or overlap each other but are mostly separable because the dipole resonance often creates a narrower stop band accompanied by more severe particle losses. The separation of these low-order resonance bands becomes greater as the beam intensity increases. In principle, the double stop-band structure can be formed even without machine imperfections when the beam's initial phase-space profile is deviated from the ideal stationary distribution. The tabletop ion-trap system called "S-POD" is employed to experimentally demonstrate the parameter dependence of the double stop-band structure. Numerical simulations are also performed for comparison with experimental observations.

  18. Electronic energy band structure of the double perovskite Ba2MnWO6.

    PubMed

    Fujioka, Yukari; Frantti, Johannes; Nieminen, Risto M

    2008-06-05

    The electronic and magnetic structures of the double perovskite oxide Ba 2MnWO6 (BMW) were determined by employing the density functional theory within the generalized gradient approximation (GGA) + U approach. BMW is considered a prototype double perovskite due to its high degree of B-site ordering and is a good case study for making a comparison between computations and experiments. By adjusting the U-parameter, the electronic energy band structure and magnetic properties, which were consistent with the experimental results, were obtained. These computations revealed that the valence bands are mainly formed from Mn 3d and O 2p states, while the conduction bands are derived from W 5d and O 2p states. The localized bands composed from Mn 3d states are located in the bandgap. The results imply that the formation of polarons in the conduction band initiate the resonance Raman modes observed as a series of equidistant peaks.

  19. Electronic and lattice structures in SmFeAsO1-xFx probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Oyanagi, H.; Sun, Z. H.; Kamihara, Y.; Hosono, H.

    2010-03-01

    Local lattice and electronic structures in the Fe-As layer of SmFeAsO1-xFx superconductors were studied by x-ray absorption spectroscopy, the FeK -edge and the AsK -edge extended x-ray absorption fine-structure, and x-ray absorption near-edge-structure experiments, respectively. Temperature-dependent local lattice distortions were observed in the Fe-As bond mean-square relative displacement of the superconducting samples. A strong coupling of the carrier-induced local lattice distortion (polaron) to the superconducting transition temperature in the oxypnictide superconductors is indicated. The near-edge spectra showed systematic temperature-dependent energy shifts, which indicate an intralayer electron redistribution from Fed states to Asp states due to orbital-selective band filling at low temperatures.

  20. Observation of interface band structure by ballistic-electron-emission microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.

    1988-01-01

    The paper reports an advanced ballistic electron spectroscopy technique that was used to directly measure semiconductor band structure properties at a subsurface interface. Two interface systems having contrasting band structures were investigated by this method: Au-Si and Au-GaAs. It is concluded that the proposed method, based on scanning tunneling microscopy, enables the spatially resolved carrier-transport spectroscopy of interfaces.

  1. B3LYP, BLYP and PBE DFT band structures of the nucleotide base stacks

    NASA Astrophysics Data System (ADS)

    Szekeres, Zs; Bogár, F.; Ladik, J.

    DFT crystal orbital (band structure) calculations have been performed for the nucleotide base stacks of cytosine, thymine, adenine, and guanine arranged in DNA B geometry. The band structures obtained with PBE, BLYP, and B3LYP functionals are presented and compared to other related experimental and theoretical results. The influence of the quality of the basis set on the fundamental gap values was also investigated using Clementi's double ζ, 6-31G and 6-31G* basis sets.

  2. Theoretical study of band structure of odd-mass 115,117I isotopes

    NASA Astrophysics Data System (ADS)

    Singh, Dhanvir; Kumar, Amit; Sharma, Chetan; Singh, Suram; Bharti, Arun

    2016-05-01

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich 115,117I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  3. Feasibility study of SWIR light absorption enhancement in PbS and PbSe nano-structure layers using surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Nissim, Nimrod; Rosenblit, Michael; Sarusi, Gabby

    2017-03-01

    We present a theoretical feasibility study of the use of reflection grating couplers in order to harness the Surface Plasmon Polariton (SPP) to increase the absorption efficiency in the short wavelength infrared (SWIR) spectral range of a novel SWIR to visible (VIS) direct up-conversion imaging device. This device detects the SWIR spectral band photons using high absorption PbSe/CdSe core-shell, PbS nano-spheres or PbSe nano-columns. In order to further enhance the absorption of the SWIR light within the nano-structure layer we propose to add another light absorption enhancement, known as SPP enhanced absorption. The idea is to cover the absorber layer surface with a structured metal layer that will ignite SPPs on the metal - dielectric interface, by coupling between the incident TM polarized photons and the SPP modes; this results in better field confinement at the interface that will further increase the SWIR absorption of this thin layer. Calculation of the field profile of the surface plasmon (SP) in the SWIR range shows perpendicular dominance of the SP's electrical field direction on the dielectric layer side (the PbS or PbSe/CdSe absorption layer side). Based on this result, it was found that, due to the use of quantum confined and, thus, high oscillator strength nanostructures, there is only a marginal increase in the absorption and, hence, in the quantum efficiency when using the SPP enhancement technique. Nevertheless, we show that one of the proposed configurations of the metal grating coupler, having a lamellar structure with a pitch of 1.38μm, a duty cycle (DC) of 0.12μm and a height of 60nm, is predicted to increase the total layer's absorption by 9.5%, mainly due to efficient light scattering rather than to SPP enhanced absorption.

  4. Contribution of the transition moments, form of the absorption band, exciton, and the correlation effects in the linear and nonlinear optical properties of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Díaz-Ponce, Javier Alejandro

    2017-04-01

    This work compares the linear and nonlinear optical properties of polyenes and polyenynes. The simulation was made for finite and infinite conjugation of conjugated polymers, such as polyacetylene, β-carotene, bis (p-toluene sulfonate) (PTS) polyenyne, and a short conjugated polyenyne poly-2,6-decadyin-1,6-ylene azelate (PHDAz). The resonance energy and degree of conjugation are determined by fitting the linear absorption spectra. These parameters are then used for calculating the two photon and third-order nonlinear optical properties. The contribution of the transition moment, the form of the absorption band, the exciton, and phonons in the optical properties are determined. The difference of the experimental values is assigned to correlation effects. We found that the exciton, the correlation effects, and the conduction band are more important in the optical properties of polyenynes than of polyenes. In this way, the dependence of the optical properties of polyenynes on the conduction band makes it possible to increase their nonlinear optical properties by interaction with photons (θ ≈ 0). The dependence of the optical properties on the conduction band also produces that the finiteness of the conjugation strongly decreases the optical properties of polyenynes in relation to polyenes with similar conjugation. On the other hand, the phonons are more important in the optical properties of polyenes than of polyenynes. Consequently, the band is indirect for the studied polyenes and direct for the polyenynes. Therefore, the nonlinear optical properties in the resonance frequency of polyenyne PTS are higher than those for polyacetylene. We also found that asymmetric oscillations of χ(3) in the Brillouin zone increases the χ(3) final value in polyenynes. In addition, we found a change of sign of the wave function coefficients by the Peierls distortion of polyenes to become polyenynes, but this change of sign does not affect the optical properties. As a corollary

  5. The Rovibrational Intensities of Five Absorption Bands of (12)C(16)O2 Between 5218 and 5349/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Brown, Linda R.; Chackerian, Charles, Jr.; Freedman, Richard S.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Absolute line intensities, band intensities, and Herman-Wallis parameters were measured for the (01(sup 1)2)(sub I) from (00(sup 0)0)(sub I) perpendicular band of (12)C(16)O2 centered at 5315/cm, along with the three nearby associated hot bands: (10(sup 0)2)(sub II) from (01(sup 1)0)(sub I) at 5248/cm, (02(sup 2))(sub I) from (01(sup 1)0)(sub I) at 5291/cm, and (10(sup 0)2)(sub I) from (01(sup 1)0)(sub I) at 5349/cm. The nearby parallel hot band (30(sup 0))(sub I) from (10(sup 0)0)(sub II) at 5218/cm was also included in this study.

  6. RF Breakdown in High Vacuum Multimegawatt X-Band Structures

    SciTech Connect

    Dolgashev, V

    2004-06-15

    Increasing the power handling capabilities of rf components is an important issue for the design of rf accelerators and rf sources. RF breakdown is a phenomena that limit the high power performance. A major concern is the damage that can occur in rf components from breakdown. To better understand this damage, we have studied rf breakdown in a rectangular waveguide experimentally and theoretically. The breakdown process in a waveguide is both easier to measure and simulate than breakdown in a complex geometry such as an accelerating structure. We used a particle tracking code and a Particle-In-Cell code to model the breakdown behavior. Models developed for the waveguide were applied to the breakdown in accelerating structures. RF breakdown in traveling wave and standing wave accelerating structures was simulated. We compare the experimental data with results of the simulations for the accelerating structures.

  7. Low-frequency photonic band structures in graphene-like triangular metallic lattice

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2016-11-01

    We study the low frequency photonic band structures in triangular metallic lattice, displaying Dirac points in the frequency spectrum, and constructed upon the lowest order regular polygonal tiles. We show that, in spite of the unfavourable geometrical conditions intrinsic to the structure symmetry, the lowest frequency photonic bands are formed by resonance modes sustained by local structure patterns, with the corresponding electric fields following a triangular distribution at low structure filling rate and a honeycomb distribution at high filling rate. For both cases, the lowest photonic bands, and thus the plasma gap, can be described in the framework of a tight binding model, and analysed in terms of local resonance modes and their mutual correlations. At high filling rate, the Dirac points and their movement following the structure deformation are described in the same framework, in relation with local structure patterns and their variations, as well as the particularity of the metallic lattice that enhances the topological anisotropy.

  8. Electronic band structure effects in the stopping of protons in copper [Electronic band structure non-linear effects in the stopping of protons in copper

    DOE PAGES

    Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.

    2016-10-05

    Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less

  9. Electronic band structure effects in the stopping of protons in copper [Electronic band structure non-linear effects in the stopping of protons in copper

    SciTech Connect

    Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.

    2016-10-05

    Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results are in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.

  10. High-spin band structure of 192Tl

    NASA Astrophysics Data System (ADS)

    Kreiner, A. J.; Filevich, A.; García Bermúdez, G.; Mariscotti, M. A. J.; Baktash, C.; der Mateosian, E.; Thieberger, P.

    1980-03-01

    High-spin states in 192Tl, excited through the 181Ta(18O,7n) and 181Ta(16O,5n) reactions, were studied using in-beam γ-ray spectroscopic techniques. Excitation functions, activity spectra, γ-ray angular distributions, and multidimensional coincidences were measured. The strongly Coríolis-distorted π~h92×ν~i132 two-quasiparticle band already known in the heavier 194,196,198Tl isotopes has also been found in this case based on an Iπ=8- isomeric state at 250.6 keV above the known long-lived 7+ level. Trends already noted in the other Tl isotopes and also predicted by two-quasiparticle plus-rotor model calculations are confirmed thus reinforcing such a theoretical description. NUCLEAR REACTIONS 181Ta(18O,xnγ), E=105-125 MeV; 181Ta(16O,xnγ), E=95-105 MeV; measured Eγ, Iγ, σ(E, Eγ, θγ), γ-γ coin.; 192Tl levels deduced, J, π, T12. Natural target. Ge(Li) detectors.

  11. Control over band structure and tunneling in bilayer graphene induced by velocity engineering.

    PubMed

    Cheraghchi, Hosein; Adinehvand, Fatemeh

    2014-01-08

    The band structure and transport properties of massive Dirac fermions in bilayer graphene with velocity modulation in space are investigated in the presence of a previously created band gap. It is pointed out that velocity engineering may be considered as a factor to control the band gap of symmetry-broken bilayer graphene. The band gap is direct and independent of velocity value if the velocity modulated in two layers is set up equally. Otherwise, in the case of interlayer asymmetric velocity, not only is the band gap indirect, but also the electron-hole symmetry fails. This band gap is controllable by the ratio of the velocity modulated in the upper layer to the velocity modulated in the lower layer. In more detail, the shift of momentum from the conduction band edge to the valence band edge can be engineered by the gate bias and velocity ratio. A transfer matrix method is also elaborated to calculate the four-band coherent conductance through a velocity barrier possibly subjected to a gate bias. Electronic transport depends on the ratio of velocity modulated inside the barrier to that for surrounding regions. As a result, a quantum version of total internal reflection is observed for thick enough velocity barriers. Moreover, a transport gap originating from the applied gate bias is engineered by modulating the velocities of the carriers in the upper and lower layers.

  12. Fine structure of the red luminescence band in undoped GaN

    SciTech Connect

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RL band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.

  13. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  14. Electronic structure of KD2xH2(1-x)PO4 studied by soft x-ray absorption and emission spectroscopies

    SciTech Connect

    Kucheyev, S O; Bostedt, C F; van Buuren, T; Willey, T M; Land, T A; Terminello, L J; Felter, T E; Hamza, A V; Demos, S G; Nelson, A J

    2004-04-27

    The surface and bulk electronic structure of tetragonal (at 300 K) and orthorhombic (at 77 K) KD{sub 2x}H{sub 2(1-x)}PO{sub 4} single crystals (so-called KDP and DKDP), with a deuteration degree x of 0.0, 0.3, and 0.6, is studied by soft x-ray absorption near-edge structure (XANES) and non-resonant soft x-ray emission (XES) spectroscopies. High-resolution O K-edge, P L{sub 2,3}-edge, and K L{sub 2,3}-edge XANES and XES spectra reveal that the element-specific partial density of states in the conduction and valence bands is essentially independent of deuteration x. We give assignment of XANES and XES peaks based on previous molecular orbital and band-structure calculations. Projected densities of states in the conduction band also appear to be essentially identical for tetragonal (at 300 K) and orthorhombic (at 77 K) phases, consistent with previous band structure calculations. However, a decrease in sample temperature from 300 to 77 K results in an {approx} 0.5 eV shift in the valence band edge (probed by XES), with negligible changes to the conduction band edge (probed by XANES). Results also show that high-intensity x-ray irradiation results in decomposition of these hydrogen-bonded materials into water and KPO{sub 3} cyclo- and polyphosphates.

  15. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  16. Effect of Pd ion doping in the band gap of SnO2 nanoparticles: structural and optical studies

    NASA Astrophysics Data System (ADS)

    Nandan, Brajesh; Venugopal, B.; Amirthapandian, S.; Panigrahi, B. K.; Thangadurai, P.

    2013-10-01

    Pd ion doping has influenced the band gap of SnO2 nanoparticles. Undoped and Pd ion-doped SnO2 nanoparticles were synthesized by chemical co-precipitation method. A tetragonal phase of SnO2 with a grain size range of 7-13 nm was obtained (studied by X-ray diffraction and transmission electron microscopy). A decreasing trend in the particle size with increasing doping concentration was observed. The presence of Pd in doped SnO2 was confirmed by chemical analysis carried out by energy-dispersive spectroscopy in the transmission electron microscope. Diffuse reflectance spectra showed a blue shift in absorption with increasing palladium concentration. Band gap of SnO2 nanoparticles was estimated from the diffuse reflectance spectra using Kubelka-Munk function and it was increasing with the increase of Pd ion concentration from 3.73 to 4.21 eV. The variation in band gap is attributed predominantly to the lattice strain and particle size. All the samples showed a broad photoluminescence emission centered at 375 nm when excited at 270 nm. A systematic study on the structural and optical properties of SnO2 nanoparticles is presented.

  17. Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures

    NASA Astrophysics Data System (ADS)

    Ozkaya, Efe; Yilmaz, Cetin

    2017-02-01

    The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.

  18. Berry phase and band structure analysis of the Weyl semimetal NbP

    PubMed Central

    Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2016-01-01

    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase. PMID:27667203

  19. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  20. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  1. Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan

    NASA Astrophysics Data System (ADS)

    Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh

    2017-03-01

    We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.

  2. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    PubMed

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  3. Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Proctor, John E; Sapiña, Fernando; Bettinelli, Marco

    2015-08-03

    The crystal structures, lattice vibrations, and electronic band structures of PbCrO4, PbSeO4, SrCrO4, and SrSeO4 were studied by ab initio calculations, Raman spectroscopy, X-ray diffraction, and optical-absorption measurements. Calculations properly describe the crystal structures of the four compounds, which are isomorphic to the monazite structure and were confirmed by X-ray diffraction. Information is also obtained on the Raman- and IR-active phonons, with all of the vibrational modes assigned. In addition, the band structures and electronic densities of states of the four compounds were determined. All are indirect-gap semiconductors. In particular, chromates are found to have band gaps smaller than 2.5 eV and selenates higher than 4.3 eV. In the chromates (selenates), the upper part of the valence band is dominated by O 2p states and the lower part of the conduction band is composed primarily of electronic states associated with the Cr 3d and O 2p (Se 4s and O 2p) states. Calculations also show that the band gap of PbCrO4 (PbSeO4) is smaller than the band gap of SrCrO4 (SrSeO4). This phenomenon is caused by Pb states, which, to some extent, also contribute to the top of the valence band and the bottom of the conduction band. The agreement between experiments and calculations is quite good; however, the band gaps are underestimated by calculations, with the exception of the bang gap of SrCrO4, for which theory and calculations agree. Calculations also provide predictions of the bulk modulus of the studied compounds.

  4. Three-Dimensional Structure of Vertebrate Muscle Z-Band: The Small-Square Lattice Z-Band in Rat Cardiac Muscle.

    PubMed

    Burgoyne, Thomas; Morris, Edward P; Luther, Pradeep K

    2015-11-06

    The Z-band in vertebrate striated muscle crosslinks actin filaments of opposite polarity from adjoining sarcomeres and transmits tension along myofibrils during muscular contraction. It is also the location of a number of proteins involved in signalling and myofibrillogenesis; mutations in these proteins lead to myopathies. Understanding the high-resolution structure of the Z-band will help us understand its role in muscle contraction and the role of these proteins in the function of muscle. The appearance of the Z-band in transverse-section electron micrographs typically resembles a small-square lattice or a basketweave appearance. In longitudinal sections, the Z-band width varies more with muscle type than species: slow skeletal and cardiac muscles have wider Z-bands than fast skeletal muscles. As the Z-band is periodic, Fourier methods have previously been used for three-dimensional structural analysis. To cope with variations in the periodic structure of the Z-band, we have used subtomogram averaging of tomograms of rat cardiac muscle in which subtomograms are extracted and compared and similar ones are averaged. We show that the Z-band comprises four to six layers of links, presumably α-actinin, linking antiparallel overlapping ends of the actin filaments from the adjoining sarcomeres. The reconstruction shows that the terminal 5-7nm of the actin filaments within the Z-band is devoid of any α-actinin links and is likely to be the location of capping protein CapZ.

  5. Local structure studies of some cobalt (II) complexes using extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Ninama, Samrath; Trivedi, Apurva

    2014-09-01

    Extended X-ray Absorption Fine Structure (EXAFS) analysis of Cobalt (II) complex as a ligand of 2 -methyl-3-[(bis-aniline(R) phenyl]-3H-l,5 benzodiazepine for finding local structure using conventional method .The Co(II) complexes were prepared by chemical root method. The EXAFS spectra were recorded at Cobalt K-edge i.e.; 7709 eV using Dispersive EXFAS beam line at 2.5GeV Indus-2 Synchrotron Radiation Source(SRS) at RRCAT, Indore, India. The recorded EXAFS data were analysed using the computer software Athena for determine the nearest neighbouring distances (bond lengths) of these complexes with conventional methods and it compared with Fourier transform(FT) analysis. The Fourier Transform convert EXAFS data signal into r-space or k-space. This is useful for visualizing the major contributions to the EXAFS spectrum.

  6. Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Creti, A.; Tasco, V.; Cola, A.; Montagna, G.; Tarantini, I.; Salhi, A.; Al-Muhanna, A.; Passaseo, A.; Lomascolo, M.

    2016-02-01

    In this work, we report on the competition between two-step two photon absorption, carrier recombination, and escape in the photocurrent generation mechanisms of high quality InAs/GaAs quantum dot intermediate band solar cells. In particular, the different role of holes and electrons is highlighted. Experiments of external quantum efficiency dependent on temperature and electrical or optical bias (two-step two photon absorption) highlight a relative increase as high as 38% at 10 K under infrared excitation. We interpret these results on the base of charge separation by phonon assisted tunneling of holes from quantum dots. We propose the charge separation as an effective mechanism which, reducing the recombination rate and competing with the other escape processes, enhances the infrared absorption contribution. Meanwhile, this model explains why thermal escape is found to predominate over two-step two photon absorption starting from 200 K, whereas it was expected to prevail at lower temperatures (≥70 K), solely on the basis of the relatively low electron barrier height in such a system.

  7. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts.

  8. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  9. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  10. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  11. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    PubMed

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  12. Plasmonic band structures and optical properties of subwavelength metal/dielectric/metal Bragg waveguides.

    PubMed

    Li, Chao; Zhou, Yun-Song; Wang, Huai-Yu

    2012-03-26

    In this paper, we applied the band structure theory to investigate the plasmonic band (PB) structures and optical properties of subwavelength metal/dielectric/metal Bragg waveguides in the near infrared range with either dielectric or geometric modulation. The Bloch wave vector, density of states, slowdown factor, propagation length and transmittance are calculated and analyzed. Both the modulations are in favor of manipulating surface-plasmon-polariton (SPP) waves. For the dielectric modulation, the PB structure is mainly formed by SPP modes and possesses a "regular pattern" in which the bands and gaps have a relatively even distribution. For the geometric modulation, due to the strong transverse scattering, the contributions of higher modes have to be considered and the gap widths have a significant increase compared to the dielectric modulation. A larger slowdown factor may emerge at the band edge; especially for the geometric modulation, the group velocity can be reduced to 1/100 of light, and negative group velocity is observed as well. While inside the bands, the slowdown factor is smaller and the bands are flat. The contribution of each eigenmode to the PB structure is analyzed.

  13. Electronic band structure of TiN/MgO nanostructures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuaki; Takaki, Hirokazu; Shimono, Masato; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-04-01

    Various nanostructured TiN(001)/MgO(001) superlattices based on a repeated slab model with a vacuum region have been investigated by the total energy pseudopotential method. They are rectangular and rectangular parallelepiped TiN(001) dot structures on MgO(001)-2×2 and 3×3 substrates. A rectangular TiN(001) structure on a MgO(001)-2×1 substrate has also been calculated. Their detailed electronic and internal lattice properties were investigated systematically. The internal atomic coordinates in a unit cell were fully relaxed. The rectangular TiN(001) structure on the MgO(001)-2×1 superlattice, which is not a dot owing to its periodicity, corresponds to metallicity. The electronic states of relaxed rectangular TiN(001) dot/MgO(001)-2×2 and MgO(001)-3×3 superlattices are semiconducting. All relaxed rectangular parallelepiped TiN(001) dot/MgO(001)-2×2 and MgO(001)-3×3 superlattices correspond to metallicity. The electronic properties depend on the shape of the TiN dot and the size of the MgO substrate.

  14. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  15. Predissociation linewidths of the (1,0)-(12,0) Schumann-Runge absorption bands of O2 in the wavelength region 179-202 nm

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Chiu, S. S.-L.; Freeman, D. E.

    1990-01-01

    A nonlinear least-squares method of retrieving predissociation linewidths from the experimental absolute absorption cross sections of Yoshino et al. (1983) has been applied to the (1,0)-(12,0) Schumann-Runge bands of oxygen. The predissociation linewidths deduced are larger than the theoretical predictions of Julienne (1976) and the latest measurements of Lewis et al. (1986). The larger linewidths found will have an impact on calculations of solar flux penetration into the earth atmosphere and of the photodissociation rates of trace species in the upper atmosphere.

  16. Triaxial-band structures, chirality, and magnetic rotation in 133La

    NASA Astrophysics Data System (ADS)

    Petrache, C. M.; Chen, Q. B.; Guo, S.; Ayangeakaa, A. D.; Garg, U.; Matta, J. T.; Nayak, B. K.; Patel, D.; Meng, J.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Seweryniak, D.; Zhu, S.; Ghugre, S. S.; Palit, R.

    2016-12-01

    The structure of 133La has been investigated using the (22Ne 116Cd,4 p n ) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of the active particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. It is shown that the h11 /2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.

  17. Triaxial-band structures, chirality, and magnetic rotation in La133

    DOE PAGES

    Petrache, C. M.; Chen, Q. B.; Guo, S.; ...

    2016-12-05

    The structure of 133La has been investigated using the 116Cd(22Ne,4pn) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of the activemore » particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. As a result, it is shown that the h11/2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.« less

  18. Deformation analysis of ferrite/pearlite banded structure under uniaxial tension using digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochuan; Wang, Yong; Yang, Jia; Qiao, Zhixia; Ren, Chunhua; Chen, Cheng

    2016-10-01

    The ferrite/pearlite banded structure causes the anisotropic behavior of steel. In this paper, digital image correlation (DIC) was used to analyze the micro deformation of this microstructure under uniaxial tension. The reliability of DIC for this application was verified by a zero-deformation experiment. The results show that the performance of DIC can satisfy the requirements of the tensile deformation measurement. Then, two uniaxial tensile tests in different directions (longitudinal direction and transverse direction) were carried out and DIC was used to measure the micro deformation of the ferrite/pearlite banded structure. The measured results show that the ferrite bands undergo the main deformation in the transverse tension, which results in the relatively weaker tensile properties in the transverse direction than in the longitudinal direction. This work is useful to guide the modification of the bands morphology and extend the application scope of DIC.

  19. Two-zone heterogeneous structure within shear bands of a bulk metallic glass

    SciTech Connect

    Shao, Yang; Yao, Kefu; Liu, Xue; Li, Mo

    2013-10-21

    Shear bands, the main plastic strain carrier in metallic glasses, are severely deformed regions often considered as disordered and featureless. Here we report the observations of a sandwich-like heterogeneous structure inside shear bands in Pd{sub 40.5}Ni{sub 40.5}P{sub 19} metallic glass sample after plastic deformation by high-resolution transmission electron microscopy. The experimental results suggest a two-step plastic deformation mechanism with corresponding microstructure evolution at atomic scale, which may intimately connected to the stability of the shear band propagation and the overall plastic deformability.

  20. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    NASA Astrophysics Data System (ADS)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  1. Unfolding of collapsed polymers in shear flow: effects of colloid banding structures in confining channels.

    PubMed

    Chen, Hsieh; Alexander-Katz, Alfredo

    2014-03-01

    Using hydrodynamic simulations, we demonstrate that confined colloidal suspensions can greatly enhance the unfolding of collapsed single polymers in flow. When colloids come in direct contact with the polymers due to the flow, the collapsed chains become flattened or elongated on the surface of the colloids, increasing the probability of forming large chain protrusions that the flow can pull out to unfold the polymers. This phenomenon may be suppressed if the colloid size is commensurate with the confining channels, where the colloids form well-defined banding structures. Here, we analyze the colloid banding structures in detail and their relation to the chain unfolding. We find that for colloid volume fractions up to 30%, the confined colloids form simple cubic (sc), hexagonal (hex), or a mixture of sc + hex structures. By directly changing the heights of the confining channels, we show that the collapsed polymers unfold the most in the mixed sc + hex structures. The diffuse (not well-defined) bands in the mixed sc + hex structures provide the highest collision probability for the colloids and the polymers, thus enhancing unfolding the most. Without colloidal suspensions, we show that the confining channels alone do not have an observable effect on the unfolding of collapsed polymers. The well-defined colloid bands also suppress the unfolding of noncollapsed polymers. In fact, the average size for noncollapsed chains is even smaller in the well-defined bands than in a channel without any colloids. The appearance of well-defined bands in this case also indicates that lift forces experienced by the polymers in confinement are negligible compared to those exerted by the colloidal band structures. Our results may be important for understanding the dynamics of mixed colloid polymer solutions.

  2. The Study of Band Structure of Graphite Intercalation Compound Containing Sodium Calculated Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Nazrul Rosli, Ahmad; Fatimah Wahab, Izzati; Zabidi, Noriza Ahmad; Abu Kassim, Hasan

    2015-06-01

    Sodium intercalation in graphite (GIC-Na) was investigated by the first principle calculation. The structure of GIC-Na was calculated using density functional theory (DFT) with the aid of CASTEP module of Material Studio. The exchange correlation functional has been treat by local density approximation (LDA) and generalized gradient approximation (GGA). It was shown that, unlike potassium GIC and lithium GIC, the band gap of GIC-Na was not induced and has same value of band gap with bulk graphite.

  3. Study on band gap structure of Fibonacci quantum superlattices by using the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Ferrando, V.; Castro-Palacio, J. C.; Marí, B.; Monsoriu, J. A.

    2014-02-01

    The scattering properties of particles in a one-dimensional Fibonacci sequence based potential have been analyzed by means of the Transfer Matrix Method. The electronic band gaps are examined comparatively with those obtained using the corresponding periodic potentials. The reflection coefficient shows self-similar properties for the Fibonacci superlattices. Moreover, by using the generalized Bragg's condition, the band gaps positions are derived from the golden mean involved in the design of the superlattice structure.

  4. Observation of Nonlinear Looped Band Structure of Bose-Einstein condensates in an optical lattice

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Elizabeth; Koller, Silvio; Brown, Roger; Wyllie, Robert; Wilson, Ryan; Porto, Trey

    2016-05-01

    We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce ``swallow-tail'' looped band structure. By carefully preparing different initial coherent states and observing their subsequent decay, we observe distinct decay rates, which provide direct evidence for multi-valued band structure. The double well lattice both stabilizes the looped band structure and allows for dynamic preparation of different initial states, including states within the loop structure. We confirm our state preparation procedure with dynamic Gross-Pitaevskii calculations. The excited loop states are found to be more stable than dynamically unstable ground states, but decay faster than expected based on a mean-field stability calculation, indicating the importance of correlations beyond a mean-field description. Now at Georgia Tech Research Institute.

  5. Coexisting Honeycomb and Kagome Characteristics in the Electronic Band Structure of Molecular Graphene.

    PubMed

    Paavilainen, Sami; Ropo, Matti; Nieminen, Jouko; Akola, Jaakko; Räsänen, Esa

    2016-06-08

    We uncover the electronic structure of molecular graphene produced by adsorbed CO molecules on a copper (111) surface by means of first-principles calculations. Our results show that the band structure is fundamentally different from that of conventional graphene, and the unique features of the electronic states arise from coexisting honeycomb and Kagome symmetries. Furthermore, the Dirac cone does not appear at the K-point but at the Γ-point in the reciprocal space and is accompanied by a third, almost flat band. Calculations of the surface structure with Kekulé distortion show a gap opening at the Dirac point in agreement with experiments. Simple tight-binding models are used to support the first-principles results and to explain the physical characteristics behind the electronic band structures.

  6. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    SciTech Connect

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  7. Mechanism of resonant perfect optical absorption in dielectric film supporting metallic grating structures.

    PubMed

    Chen, Xiumei; Yan, Xiaopeng; Li, Ping; Mou, Yongni; Wang, Wenqiang; Guan, Zhiqiang; Xu, Hongxing

    2016-08-22

    The mechanism of resonant perfect optical absorbers is quantitatively revealed by the coupled mode method for the air/grating/dielectric film/air four region system. The sufficient and necessary conditions of the perfect optical absorption are derived from the interface scattering coefficients analyses. The coupling of the Fabry-Perot modes in the grating slits and non-zero order quasi waveguide modes in the dielectric film play a key role for the perfect optical absorption when the light is incident from the grating side. The analytical sufficient and necessary conditions of the perfect optical absorption provide an efficient tool towards geometry design for the perfect optical absorption at the specific wavelengths. The advantages of a widely tunable perfect optical absorption wavelength, a high Q factor and the confined energy loss on metal surfaces make the air/grating/film/air structures promising for applications in sensing, modulation and detection.

  8. Biomimetic cellular metals-using hierarchical structuring for energy absorption.

    PubMed

    Bührig-Polaczek, A; Fleck, C; Speck, T; Schüler, P; Fischer, S F; Caliaro, M; Thielen, M

    2016-07-19

    Fruit walls as well as nut and seed shells typically perform a multitude of functions. One of the biologically most important functions consists in the direct or indirect protection of the seeds from mechanical damage or other negative environmental influences. This qualifies such biological structures as role models for the development of new materials and components that protect commodities and/or persons from damage caused for example by impacts due to rough handling or crashes. We were able to show how the mechanical properties of metal foam based components can be improved by altering their structure on various hierarchical levels inspired by features and principles important for the impact and/or puncture resistance of the biological role models, rather than by tuning the properties of the bulk material. For this various investigation methods have been established which combine mechanical testing with different imaging methods, as well as with in situ and ex situ mechanical testing methods. Different structural hierarchies especially important for the mechanical deformation and failure behaviour of the biological role models, pomelo fruit (Citrus maxima) and Macadamia integrifolia, were identified. They were abstracted and transferred into corresponding structural principles and thus hierarchically structured bio-inspired metal foams have been designed. A production route for metal based bio-inspired structures by investment casting was successfully established. This allows the production of complex and reliable structures, by implementing and combining different hierarchical structural elements found in the biological concept generators, such as strut design and integration of fibres, as well as by minimising casting defects. To evaluate the structural effects, similar investigation methods and mechanical tests were applied to both the biological role models and the metallic foams. As a result an even deeper quantitative understanding of the form-structure

  9. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  10. Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition in cobalt

    PubMed Central

    Eich, Steffen; Plötzing, Moritz; Rollinger, Markus; Emmerich, Sebastian; Adam, Roman; Chen, Cong; Kapteyn, Henry Cornelius; Murnane, Margaret M.; Plucinski, Lukasz; Steil, Daniel; Stadtmüller, Benjamin; Cinchetti, Mirko; Aeschlimann, Martin; Schneider, Claus M.; Mathias, Stefan

    2017-01-01

    The evolution of the electronic band structure of the simple ferromagnets Fe, Co, and Ni during their well-known ferromagnetic-paramagnetic phase transition has been under debate for decades, with no clear and even contradicting experimental observations so far. Using time- and spin-resolved photoelectron spectroscopy, we can make a movie on how the electronic properties change in real time after excitation with an ultrashort laser pulse. This allows us to monitor large transient changes in the spin-resolved electronic band structure of cobalt for the first time. We show that the loss of magnetization is not only found around the Fermi level, where the states are affected by the laser excitation, but also reaches much deeper into the electronic bands. We find that the ferromagnetic-paramagnetic phase transition cannot be explained by a loss of the exchange splitting of the spin-polarized bands but instead shows rapid band mirroring after the excitation, which is a clear signature of extremely efficient ultrafast magnon generation. Our result helps to understand band structure formation in these seemingly simple ferromagnetic systems and gives first clear evidence of the transient processes relevant to femtosecond demagnetization. PMID:28378016

  11. A generalized approach to modeling absorption and photocurrent in solar cells with light scattering structures

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Munday, Jeremy N.

    2016-10-01

    The spatial dependence of absorption in optical structures is important for determining the performance of optoelectronic devices, such as solar cells and photodetectors. When random scattering structures are introduced, the absorption can be difficult to calculate without direct simulation or broad simplifying assumptions. Here we present a theoretical framework for calculating the absorption in individual layers of arbitrary stratified media composed of any combination of coherent thin-films and/or incoherent thick slabs in the presence of randomizing scattering structures. This model allows for accurate predictions of generated carriers in photovoltaic systems. We discuss how these equations may be implemented to describe several common special cases as well as a few complex, non-traditional structures to show the wide range of applicability. Finally, we perform experiments on two multilayer structures with interlaced scattering layers to demonstrate utility and accuracy of the technique.

  12. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission: Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1984-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  13. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission - Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1985-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  14. Structural vs electronic origin of renormalized band widths in TTF-TCNQ: An angular dependent NEXAFS study

    NASA Astrophysics Data System (ADS)

    Sing, M.; Meyer, J.; Hoinkis, M.; Glawion, S.; Blaha, P.; Gavrila, G.; Jacobsen, C. S.; Claessen, R.

    2007-12-01

    We have performed angle-dependent near-edge x-ray absorption fine structure measurements in the Auger electron yield mode on the correlated quasi-one-dimensional organic conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) in order to determine the orientation of the molecules in the topmost surface layer. We find that the tilt angles of the molecules with respect to the one-dimensional axis are essentially the same as in the bulk. Thus, we can rule out surface relaxation as the origin of the renormalized band widths which were inferred from the analysis of photoemission data within the one-dimensional Hubbard model. Thereby, recent theoretical results are corroborated which invoke long-range Coulomb repulsion as alternative explanation to understand the spectral dispersions of TTF-TCNQ quantitatively within an extended Hubbard model.

  15. TiO2-SnO2:F interfacial electronic structure investigated by soft x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kronawitter, Coleman X.; Kapilashrami, Mukes; Bakke, Jonathan R.; Bent, Stacey F.; Chuang, Cheng-Hao; Pong, Way-Faung; Guo, Jinghua; Vayssieres, Lionel; Mao, Samuel S.

    2012-03-01

    The electronic structure of the titanium dioxide (TiO2)-fluorine-doped tin dioxide (SnO2:F) interface is investigated by soft x-ray absorption spectroscopy using synchrotron radiation. The measurements probe the site- and symmetry-selected unoccupied density of states and reflect the interaction between an early transition-metal-oxide (d0) semiconductor and a post-transition-metal-oxide (d10) degenerate semiconductor. The distinct interfacial electronic structure of TiO2-SnO2:F is established by contrasting spectra with those for anatase and rutile TiO2, SnO2:F, and ZnO-SnO2:F and CdO-SnO2:F interfaces. Oxygen 1s absorption spectra, which relate to the O 2p partial density of states of the conduction band, indicate that the interface is associated with a reduction in Ti d-O p orbital hybridization and an alteration of the TiO2 crystal field. These observations are consistent with measured titanium 2p absorption spectra, which in addition provide evidence for distortion of long-range order around the cation site in the interfacial TiO2. The TiO2-SnO2:F interface is a functional component of a number of optoelectronic devices, perhaps most notably within the anode structure of solar cell architectures. In nonequilibrium conditions, such as those found in operating solar cells, interfacial electronic structure directly influences performance by modifying, for instance, the quasi-Fermi level electrons and the potential distribution at the transparent electrode.

  16. Vibrational structure of n-π* transition of the UV absorption spectrum of acryloyl fluoride in the gas phase.

    PubMed

    Koroleva, Lidiya A; Tyulin, Vladimir I; Matveev, Vladimir K; Pentin, Yuriy A

    2014-03-25

    UV absorption spectrum of acryloyl fluoride molecule in the gas phase has been obtained in the region at 32600-35500 cm(-1) with the purpose of the investigation of the hindered internal rotation. The resolved vibrational structure of this spectrum consists of 92 absorption bands, each of which corresponds to a certain transition from the ground (S0) to excited (S1) electronic state. The assignment of all bands has been made. The values ν00trans=34831.8 cm(-1) and ν00cis=34679.2 cm(-1) have been determined. Several Deslandres Tables (DTs) have been constructed for torsional vibration of s-trans- and s-cis-isomers of investigated molecule. The origins in these DTs correspond to bands assigned to ν00 and to fundamental frequencies of each isomer in the S0 and S1 states. These DTs have been used to determine the harmonic frequencies ωe, anharmonicity coefficients x11, and frequencies of the torsional vibration transitions (0-υ) up to high values of the vibrational quantum number υ of s-trans- and s-cis-isomers in the both electronic states. The frequencies of torsional vibrations are ν1(″)=116.5cm(-1) for s-trans-isomer and ν1(″)=101.2 cm(-1) for s-cis-isomer in the S0 state. The frequencies of ones are ν1(')=170.4 cm(-1) for s-trans-isomer and ν1(')=139.7 cm(-1) for s-cis-isomer in the S1 state. The fundamental vibrational frequencies set has been found for isomers in the S0 and S1 states.

  17. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band.

    PubMed

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 10(8) yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10(7) yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  18. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band

    PubMed Central

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2017-01-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds. PMID:28133388

  19. High-energy Electron Irradiation of Interstellar Carbonaceous Dust Analogs: Cosmic-ray Effects on the Carriers of the 3.4 μm Absorption Band

    NASA Astrophysics Data System (ADS)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel; Tanarro, Isabel; Herrero, Víctor J.

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

  20. Observation of 'Band' Structures in Spacecraft Observations of Inner Magnetosphere Plasma Electrons

    NASA Astrophysics Data System (ADS)

    Mohan Narasimhan, Kirthika; Fazakerley, Andrew; Milhaljcic, Branislav; Grimald, Sandrine; Dandouras, Iannis; Owen, Chris

    2013-04-01

    In previous studies, several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range of 1-25 keV. These structures have been known as "nose structures", with reference to their appearance in energy-time spectrograms and are known as "bands" if they are observed for extended periods of time. These proton structures have been studied quite extensively with multiple mechanisms proposed for their formation, not all of which apply for electrons. We examine Double-Star TC1 PEACE electron data recorded in the inner magnetosphere (L<15) near the equatorial plane to see if these features are also observed in the electron energy spectra. These "bands" also appear in electron spectrograms, spanning an energy range of 0.2-30 keV, and are shown to occur predominantly towards the dayside and dusk sectors. We also see multiple bands in some instances. We investigate the properties of these multi-banded structures and carry out a statistical survey analysing them as a function of geomagnetic activity, looking at both the Kp and Auroral Indices, in an attempt to explain their presence.

  1. Electron-Phonon Renormalization of Electronic Band Structures of C Allotropes and BN Polymorphs

    NASA Astrophysics Data System (ADS)

    Tutchton, Roxanne M.; Marchbanks, Christopher; Wu, Zhigang

    The effect of lattice vibration on electronic band structures has been mostly neglected in first-principles calculations because the electron-phonon (e-ph) renormalization of quasi-particle energies is often small (< 100 meV). However, in certain materials, such as diamond, the electron-phonon coupling reduces the band gap by nearly 0.5 eV, which is comparable to the many-body corrections of the electronic band structures calculated using the density functional theory (DFT). In this work, we compared two implementations of the Allen-Heine-Cardona theory in the EPW code and the ABINIT package respectively. Our computations of Si and diamond demonstrate that the ABINIT implementation converges much faster. Using this method, the e-ph renormalizations of electronic structures of three C allotropes (diamond, graphite, graphene) and four BN polymorphs (zincblend, wurtzite, mono-layer, and layered-hexagonal) were calculated. Our results suggest that (1) all of the zero-point renormalizations of band gaps in these materials, except for graphene, are larger than 100 meV, and (2) there are large variations in e-ph renormalization of band gaps due to differences in crystal structure. This work was supported by a U.S. DOE Early Career Award (Grant No. DE-SC0006433). Computations were carried out at the Golden Energy Computing Organization at CSM and the National Energy Research Scientific Computing Center (NERSC).

  2. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  3. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    SciTech Connect

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; Hozumi, Hideaki; Gao, Yongqian; Eda, Goki; Mattevi, Cecilia; Fujita, Takeshi; Yoshigoe, Akitaka; Ishizuka, Shinji; Adamska, Lyudmyla; Yamada, Takatoshi; Dattelbaum, Andrew M.; Gupta, Gautam; Doorn, Stephen K.; Velizhanin, Kirill A.; Teraoka, Yuden; Chen, Mingwei; Htoon, Han; Chhowalla, Manish; Mohite, Aditya D.; Takakuwa, Yuji

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a set of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.

  4. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGES

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  5. Graphene Oxide Regulated Tin Oxide Nanostructures: Engineering Composition, Morphology, Band Structure, and Photocatalytic Properties.

    PubMed

    Pan, Xiaoyang; Yi, Zhiguo

    2015-12-16

    A facile, one-step hydrothermal method has been developed to fabricate tin oxide-reduced graphene oxide (Sn-RGO) nanocomposites with tunable composition, morphology, and energy band structure by utilizing graphene oxide (GO) as a multifunctional two-dimensional scaffold. By adjusting the GO concentration during synthesis, a variety of tin oxide nanomaterials with diverse composition and morphology are obtained. Simultaneously, the varying of GO concentration can also narrow the bandgap and tune the band edge positions of the Sn-RGO nanocomposites. As a result, the Sn-RGO nanocomposites with controllable composition, morphology, and energy band structure are obtained, which exhibit efficient photoactivities toward methyl orange (MO) degradation under visible-light irradiation. It is expected that our work would point to the new possibility of using GO for directing synthesis of semiconductor nanomaterials with tailored structure and physicochemical properties.

  6. Band structures of nonmagnetic transition-metal oxides: PdO and PtO

    SciTech Connect

    Hass, K.C. ); Carlsson, A.E. )

    1992-08-15

    The electronic band structures of PdO and PtO are calculated using the augmented-spherical-wave method and the local-density approximation. Our results are consistent with the widely held view of these materials as conventional band insulators with the crystal-field splitting of metal {ital d} states primarily responsible for gap formation. A significant role for correlation effects as well cannot be ruled out. The predicted valence-band structure for PdO agrees well with published photoemission data. The electronic structure of PtO is qualitatively similar. In both cases the calculated gap is direct and occurs at the {ital M} point of the Brillouin zone. The magnitude of the gap is found to be larger in PtO, which we attribute to the more relativistic nature of Pt compared to Pd.

  7. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liang, Renrong; Wang, Jing; Xu, Jun

    2012-06-01

    Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs). In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM) achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG) structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  8. Uniform Supersonic Expansion for FTIR Absorption Spectroscopy: The nu(5) Band of (NO)(2) at 26 K.

    PubMed

    Benidar; Georges; Le Doucen R; Boissoles; Hamon; Canosa; Rowe

    2000-01-01

    A high-resolution Fourier transform interferometer (Bruker IFS 120 HR) was combined with a uniform supersonic expansion produced by means of axisymmetric Laval nozzles. The geometry profile of the nozzle enabled us to work under precise thermodynamic and kinetic conditions. The effect of the cooling rate of different nozzles on cluster nucleation is illustrated. The experimental sensitivity was tested by recording the nu(5) band of (NO)(2) at 26 K. Copyright 2000 Academic Press.

  9. Solving the Structure of Reaction Intermediates by Time-Resolved Synchrotron X-ray Absorption Spectroscopy

    SciTech Connect

    Wang, Q.; Hanson, J; Frenkel, A

    2008-01-01

    We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed.

  10. The Effect of Heat on Structural Characteristics and Water Absorption Behavior of Agave Fibers

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2008-04-01

    The structural characteristics and water absorptions behavior agave fibers were investigated over a range of temperature by using XRD, IR, TG and gravimetric methods. Three distinct thermal processes were observed during heating the fiber in the temperature range 310-760 K in air, oxygen and nitrogen invariably. The cellulose structures of the fibers were unaffected on heating up to 450 K. The samples showed thermal decomposition processes beyond 500 K. Fibers displayed a two-stage diffusion behavior. The structural parameters and kinetic of water absorption of the fibers at specific temperatures were analyzed.

  11. Effect of electron correlations on the Fe3Si and α -FeSi2 band structure and optical properties

    NASA Astrophysics Data System (ADS)

    Sandalov, Igor; Zamkova, Natalia; Zhandun, Vyacheslav; Tarasov, Ivan; Varnakov, Sergey; Yakovlev, Ivan; Solovyov, Leonid; Ovchinnikov, Sergey

    2015-11-01

    We use the Vienna ab initio simulation package (vasp) for evaluation of the quasiparticle spectra and their spectral weights within Hedin's GW approximation (GWA) for Fe3Si and α -FeSi2 within the non-self-consistent one-shot approximation G0W0 and self-consistent scGWA with the vertex corrections in the particle-hole channel, taken in the form of two-point kernel. As input for G0W0 , the band structure and wave functions evaluated within the generalized gradient corrected local-density approximation to density functional theory (GGA) have been used. The spectral weights of quasiparticles in these compounds deviate from unity everywhere and show nonmonotonic behavior in those parts of bands where the delocalized states contribute to their formation. The G0W0 and scGWA spectral weights are the same within 2%-5%. The scGWA shows a general tendency to return G0W0 bands to their GGA positions for the delocalized states, while in the flat bands it flattens even more. Variable angle spectroscopic ellipsometry measurements at T =296 K on grown single-crystalline ˜50 -nm-thick films of Fe3Si on n -Si(111) wafer have been performed in the interval of energies ω ˜(1.3 -5 ) eV. The comparison of G0W0 and scGW theory with experimental real and imaginary parts of permittivity, refractive index, extinction and absorption coefficients, reflectivity, and electron energy loss function shows that both G0W0 and scGW qualitatively describe experiment correctly, the position of the low-energy peaks is described better by the scGW theory, however, its detailed structure is not observed in the experimental curves. We suggest that the angle-resolved photoemission spectroscopy experiments, which can reveal the fine details of the quasiparticle band structure and spectral weights, could help to understand (i) if the scGWA with this type of vertex correction is sufficiently good for description of these iron silicides and, possibly, (ii) why some features of calculated permittivity are

  12. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang

    2015-01-01

    In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.

  13. Band-edge electronic structure of β-In2S3: the role of s or p orbitals of atoms at different lattice positions.

    PubMed

    Zhao, Zongyan; Cao, Yuechan; Yi, Juan; He, Xijia; Ma, Chenshuo; Qiu, Jianbei

    2012-04-23

    As a promising solar-energy material, the electronic structure and optical properties of Beta phase indium sulfide (β-In(2)S(3)) are still not thoroughly understood. This paper devotes to solve these issues using density functional theory calculations. β-In(2)S(3) is found to be an indirect band gap semiconductor. The roles of its atoms at different lattice positions are not exactly identical because of the unique crystal structure. Additonally, a significant phenomenon of optical anisotropy was observed near the absorption edge. Owing to the low coordination numbers of the In3 and S2 atoms, the corresponding In3-5s states and S2-3p states are crucial for the composition of the band-edge electronic structure, leading to special optical properties and excellent optoelectronic performances.

  14. Cherenkov oscillator operating at the second band gap of leakage waveguide structures

    NASA Astrophysics Data System (ADS)

    Jang, Kyu-Ha; Park, Seong Hee; Lee, Kitae; Jeong, Young Uk

    2016-10-01

    An electromagnetic wave source operating around second band gaps of metallic grating structures is presented. The considered metallic grating structures are not perfect periodic but inhomogeneously structured within a period to have a second band gap where the wavelength is equal to the period of the structures. The radiation mechanism by an electron beam in the structures is different from the well-known Smith-Purcell radiation occurring in perfect periodic grating structures. That is, the radiating wave has a single frequency and the radiation is unidirectional. When the energy of the electron beam is synchronized at the standing wave point in the dispersion curves, strong interaction happens and coherent radiation perpendicular to the grating surface is generated with relatively lower starting oscillation current.

  15. Water absorption characteristics and structural properties of rice for sake brewing.

    PubMed

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  16. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  17. Shear banding and its contribution to texture evolution in rotated Goss orientations of BCC structured materials

    NASA Astrophysics Data System (ADS)

    Nguyen-Minh, T.; Sidor, J. J.; Petrov, R. H.; Kestens, L. A. I.

    2015-04-01

    Due to progressive deformation, the dislocation densities in crystals are accumulated and the resistance of grains to further deformation increases. Homogeneous deformation becomes energetically less favorable, which may result for some orientations in strain localization. In-grain shear banding, a typical kind of localized deformation in metals with BCC crystal structure, has been accounted for by the geometric softening of crystals. In this study, the occurrence of shear bands in rotated Goss ({110}<110>) orientations of Fe-Si steel is predicted by crystal plasticity simulations and validated by EBSD measurements. It was observed and confirmed by crystal plasticity modeling that such shear bands exhibit stable cube orientations The orientation evolution of crystals in shear bands and its impact on annealing texture of materials are also described.

  18. Transient band structures in the ultrafast demagnetization of ferromagnetic gadolinium and terbium

    NASA Astrophysics Data System (ADS)

    Teichmann, Martin; Frietsch, Björn; Döbrich, Kristian; Carley, Robert; Weinelt, Martin

    2015-01-01

    We compare the laser-driven demagnetization dynamics of the rare earths gadolinium and terbium by mapping their transient valance band structures with time- and angle-resolved photoelectron spectroscopy. In both metals, the minority and majority spin valence bands evolve independently with different time constants after optical excitation. The ultrafast shift of the partially unoccupied minority spin bulk band to higher binding energy and of the majority spin surface state to lower binding energy suggests spin transport between surface and bulk. The slower response of the fully occupied majority spin band follows the lattice temperature and is attributed to Elliott-Yafet type spin-flip scattering. Terbium shows a stronger and faster decay of the exchange splitting, pointing to ultrafast magnon emission via 4 f spin-to-lattice coupling.

  19. TUNABLE Band Structures of 2d Multi-Atom Archimedean-Like Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Y. L.; Chen, C. Q.; Tian, X. G.

    2012-06-01

    Two dimensional multi-atom Archimedean-like phononic crystals (MAPCs) can be obtained by adding "atoms" at suitable positions in primitive cells of traditional simple lattices. Band structures of solid-solid and solid-air MAPCs are computed by the finite element method in conjunction with the Bloch theory. For the solid-solid system, our results show that the MAPCs can be suitably designed to split and shift band gaps of the corresponding traditional simple phononic crystal (i.e., with only one scatterer inside a primitive cell). For the solid-air system, the MAPCs have more and wider band gaps than the corresponding traditional simple phononic crystal. Numerical calculations for both solid-solid and solid-air MAPCs show that the band gap of traditional simple phononic crystal can be tuned by appropriately adding "atoms" into its primitive cell.

  20. Sequential electronic and structural transitions in VO2 observed using X-ray absorption spectromicroscopy.

    PubMed

    Kumar, Suhas; Strachan, John Paul; Pickett, Matthew D; Bratkovsky, Alexander; Nishi, Yoshio; Williams, R Stanley

    2014-11-26

    The popular dual electronic and structural transitions in VO2 are explored using X-ray absorption spectromicroscopy with high spatial and spectral resolutions. It is found that during both heating and cooling, the electronic transition always precedes the structural Peierls transition. Between the two transitions, there are intermediate states that are spectrally isolated here.