Science.gov

Sample records for absorption circular dichroism

  1. A combination spectrophotometer for measuring electronic absorption, natural circular dichroism, and magnetic circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Policke, Timothy A.; Schreiner, Anton F.; Trexler, Jack W.; Knopp, James A.

    1990-08-01

    The design, construction, and evaluation of a combination spectrometer for measuring electronic absorption (EA), natural circular dichroism (CD), and magnetic circular dichroism (MCD) are described. Around the optical components of a JASCO ORD/UV-5 spectropolarimeter, a new EA/CD/MCD instrument was built with the realized intentions of increasing sensitivity and upgrading the analog tube type circuitry to a solid-state digitally, computer-controlled spectrophotometer. It is a flexible, dynamic, and user-controllable system, interfaced to an Apple II Plus computer, for studying instrument and signal parameters. The monochromator (M), photoelastic modulator (PEM), photomultiplier tube applied voltage (PMHV), and photomultiplier tube dc output current (PMdc) are under complete and independent software control. Our system has two unique aspects for obtaining the circular dichroism. First, the ac signal is measured with a voltage-to-frequency (V/f) converter; and, second, both the ac and the dc are independently recorded and their ratio is digitally calculated. This design has several advantages which include the elimination of voltage divider integrated circuits or division electronics, a wide dynamic range, a greater precision of ac values at low percentages of full scale, and the capability of continuous integration over long time periods. Also, both types of spectra, EA and CD or MCD, are obtained from the current output of the PM. This paper not only describes the design of the instrument for obtaining the two types of spectra but also compares four methods of obtaining the circular dichroism. Sensitivities of ˜1×10-7ΔA units are achievable as determined by measuring CD spectra of the well-known enantiomer (+)-[Co(en)3]3+.

  2. Toroidal circular dichroism

    NASA Astrophysics Data System (ADS)

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  3. Nucleic acid vibrational circular dichroism, absorption, and linear dichroism spectra. I. A DeVoe theory approach.

    PubMed Central

    Self, B D; Moore, D S

    1997-01-01

    Infrared (IR) vibrational circular dichroism (VCD), absorption, and linear dichroism (LD) spectra of four homopolyribonucleotides, poly(rA), poly(rG), poly(rC), and poly(rU), have been calculated, in the 1750-1550 cm-1 spectral region, using the DeVoe polarizability theory. A newly derived algorithm, which approximates the Hilbert transform of imaginaries to reals, was used in the calculations to obtain real parts of oscillator polarizabilities associated with each normal mode. The calculated spectra of the polynucleotides were compared with previously measured solution spectra. The good agreement between calculated and measured polynucleotide spectra indicates, for the first time, that the DeVoe theory is a useful means of calculating the VCD and IR absorption spectra of polynucleotides. For the first time, calculated DeVoe theory VCD and IR absorption spectra of oriented polynucleotides are presented. The calculated VCD spectra for the oriented polynucleotides are used to predict the spectra for such measurements made in the future. The calculated IR spectra for the oriented polynucleotides are useful in interpreting the linear dichroism of the polynucleotides. PMID:9199798

  4. Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studies.

    PubMed

    Dartigalongue, Thibault; Niezborala, Claire; Hache, François

    2007-04-07

    A thorough absorption and circular dichroism study is performed in carbonmonoxy-myoglobin with a sub-picosecond visible pump, ultraviolet probe experiment. Differential absorption in the 220-360 nm range shows that the time-resolved response mainly comes from the heme and that aromatic amino acids do not contribute significantly. Time-resolved CD at 260 nm shows no dynamics and confirms this result. On the contrary, a strong CD dynamics is observed at 230 nm. This signal could originate from transient deformation of the alpha-helices in the protein.

  5. Studying metal ion-protein interactions: electronic absorption, circular dichroism, and electron paramagnetic resonance.

    PubMed

    Quintanar, Liliana; Rivillas-Acevedo, Lina

    2013-01-01

    Metal ions play a wide range of important functional roles in biology, and they often serve as cofactors in enzymes. Some of the metal ions that are essential for life are strongly associated with proteins, forming obligate metalloproteins, while others may bind to proteins with relatively low affinity. The spectroscopic tools presented in this chapter are suitable to study metal ion-protein interactions. Metal sites in proteins are usually low symmetry centers that differentially absorb left and right circularly polarized light. The combination of electronic absorption and circular dichroism (CD) in the UV-visible region allows the characterization of electronic transitions associated with the metal-protein complex, yielding information on the geometry and nature of the metal-ligand interactions. For paramagnetic metal centers in proteins, electron paramagnetic resonance (EPR) is a powerful tool that provides information on the chemical environment around the unpaired electron(s), as it relates to the electronic structure and geometry of the metal-protein complex. EPR can also probe interactions between the electron spin and nuclear spins in the vicinity, yielding valuable information on some metal-ligand interactions. This chapter describes each spectroscopic technique and it provides the necessary information to design and implement the study of metal ion-protein interactions by electronic absorption, CD, and EPR.

  6. Three-photon circular dichroism: towards a generalization of chiroptical non-linear light absorption.

    PubMed

    Friese, Daniel H; Ruud, Kenneth

    2016-02-07

    We present the theory of three-photon circular dichroism (3PCD), a novel non-linear chiroptical property not yet described in the literature. We derive the observable absorption cross section including the orientational average of the necessary seventh-rank tensors and provide origin-independent expressions for 3PCD using either a velocity-gauge treatment of the electric dipole operator or a length-gauge formulation using London atomic orbitals. We present the first numerical results for hydrogen peroxide, 3-methylcyclopentanone (MCP) and 4-helicene, including also a study of the origin dependence and basis set convergence of 3PCD. We find that for the 3PCD-brightest low-lying Rydberg state of hydrogen peroxide, the dichroism is extremely basis set dependent, with basis set convergence not being reached before a sextuple-zeta basis is used, whereas for the MCP and 4-helicene molecules, the basis set dependence is more moderate and at the triple-zeta level the 3PCD contributions are more or less converged irrespective of whether the considered states are Rydberg states or not. The character of the 3PCD-brightest states in MCP is characterized by a fairly large charge-transfer character from the carbonyl group to the ring system. In general, the quadrupole contributions to 3PCD are found to be very small.

  7. Binding of anti-prion agents to glycosaminoglycans: Evidence from electronic absorption and circular dichroism spectroscopy

    SciTech Connect

    Zsila, Ferenc . E-mail: zsferi@chemres.hu; Gedeon, Gabor

    2006-08-11

    The polyanionic glycosaminoglycans (GAGs) are intimately involved in the pathogenesis of protein conformational disorders such as amyloidosis and prion diseases. Several cationic agents are known to exhibit anti-prion activity but their mechanism of action is poorly understood. In this study, UV absorption and circular dichroism (CD) spectroscopic techniques were used to investigate the interaction between heparin and chondroitin-6-sulfate and anti-prion drugs including acridine, quinoline, and phenothiazine derivatives. UV band hypochromism of ({+-})-quinacrine, ({+-})-primaquine, tacrine, quinidine, chlorpromazine, and induced CD spectra of ({+-})-quinacrine upon addition of GAGs provided evidence for the GAG binding of these compounds. The association constants ({approx}10{sup 6}-10{sup 7} M{sup -1}) estimated from the UV titration curves show high-affinity drug-heparin interactions. Ionic strength-dependence of the absorption spectra suggested that the interaction between GAGs and the cationic drugs is principally electrostatic in nature. Drug binding differences of heparin and chondroitin-6-sulfate were attributed to their different negative charge density. These results call the attention to the alteration of GAG-prion/GAG-amyloid interactions by which these compounds might exert their anti-prion/anti-amyloidogenic activities.

  8. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  9. Mn L3,2 X-ray absorption and magnetic circular dichroism inferromagnetic Ga1-xMnxP

    SciTech Connect

    Stone, P.R.; Scarpulla, M.A.; Farshchi, R.; Sharp, I.D.; Haller,E.E.; Dubon, O.D.; Yu, K.M.; Beeman, J.W.; Arenholz, E.; Denlinger, J.D.; Ohldag, H.

    2006-03-25

    We have measured the X-ray absorption and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edges in ferromagnetic Ga{sub 1-x}Mn{sub x}P for 0.018 {le} x {le} 0.042. Large XMCD asymmetries at the L{sub 3} edge indicate significant spin-polarization of the density of states at the Fermi energy. The temperature dependence of the XMCD and moment per Mn of 2.67 {+-} 0.45 {mu}{sub B} calculated using sum rules are consistent with magnetometry values. The spectral shapes of the X-ray absorption and XMCD are nearly identical with those for Ga{sub 1-x}Mn{sub x}As indicating that the hybridization of Mn d and anion p states is similar in the two materials.

  10. Excited-state absorption and circular dichroism of ruthenium(II) tris(phenanthroline) in the ultraviolet region.

    PubMed

    Niezborala, Claire; Hache, François

    2007-08-16

    Excitation of ruthenium(II) tris(phenanthroline) in the visible region results in the tranfer of an electron from the central atom toward one of the ligands. To probe this excited state, we have performed pump-induced absorption and circular dichroism in the ultraviolet wavelengths, in the intraligand pi-pi* transition region. On top of the bleaching of the ground state transitions, new structures appear in the absorption and CD spectra. Thanks to a classical calculation based on the polarizability theory, we can interpret these features as the result of a strong reduction of the excitonic coupling due to a blue shift of the pi-pi* transition in the reduced ligand accompanied by the onset of new excited-state transitions.

  11. X-ray absorption and magnetic circular dichroism studies of Co2FeAl in magnetic tunnel junctions

    SciTech Connect

    Ebke, D.; Kugler, Z.; Thomas, P.; Schebaum, O.; Schafers, M.; Nissen, D.; Schmalhorst, J.; Hutten, A.; Arenholz, E.; Thomas, A.

    2010-01-11

    The bulk magnetic moment and the element specific magnetic moment of Co{sub 2}FeAl thin films were examined as a function of annealing temperature by alternating gradient magnetometer (AGM) and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD), respectively. A high magnetic moment can be achieved for all annealing temperatures and the predicted bulk and interface magnetic moment of about 5 {tilde A}{sub B} are reached via heating. We will also present tunnel magnetoresistance (TMR) values of up to 153% at room temperature and 260% at 13 K for MgO based magnetic tunnel junctions (MTJs) with Co{sub 2}FeAl and Co-Fe electrodes.

  12. Computational study of the one- and two-photon absorption and circular dichroism of (L)-tryptophan.

    PubMed

    Guillaume, Maxime; Ruud, Kenneth; Rizzo, Antonio; Monti, Susanna; Lin, Zijing; Xu, Xuee

    2010-05-20

    A density functional theory (DFT) study of the one- and two-photon absorption and circular dichroism spectra of (l)-tryptophan in water is presented. The effects on the simulated spectra of conformational averaging, of solvent as described by the polarizable continuum model (PCM), and of the choice of exchange-correlation (XC) functional are analyzed. Conformational Maxwell-Boltzmann (MB) averaging is carried out at room temperature in the gas phase using the ten lowest-energy conformers in the gas phase, whereas in the solvent, the nine lowest zwitterionic conformers are determined in combination with a PCM continuum model and employed in the calculations. One- and two-photon absorption and circular dichroism spectra are calculated using time-dependent DFT with both the B3LYP and CAM-B3LYP XC functionals, including the 15 lowest excited electronic states in each case. The spectra are shown to be strongly influenced by all parameters of our computational models. Changing the XC functional yields large changes not only in the excitation energies but also in the transition dipole moments and the rotational strengths of each excited state. The inclusion of the effect of water solvation also yields different response properties for each excited state, as well as different ground-state equilibrium geometries for the gas and solvated phases. MB weights change significantly from the gas to the solvated phase, making the effect of conformational averaging strongly phase dependent. The study of all these effects highlights the importance of an accurate and reliable treatment of both ground and excited states when aiming at predicting experimental one- or two-photon spectra. However, the comparison between the MB weighted spectra and experiment for the linear spectroscopies turns out to be rather satisfactory, showing that our approach can yield at least information on the major features of the spectra.

  13. Photoelectron circular dichroism of isopropanolamine

    NASA Astrophysics Data System (ADS)

    Catone, D.; Turchini, S.; Contini, G.; Prosperi, T.; Stener, M.; Decleva, P.; Zema, N.

    2017-01-01

    Spectroscopies based on circular polarized light are sensitive to the electronic and structural properties of chiral molecules. Photoelectron circular dichroism (PECD) is a powerful technique that combines the chiral sensitivity of the circular polarized light and the electronic information obtained by photoelectron spectroscopy. An experimental and theoretical PECD study of the outer valence and C 1s core states of 1-amino-2-propanol in the gas phase is presented. The experimental dichroic dispersions in the photoelectron kinetic energy are compared with theoretical calculations employing a multicentric basis set of B-spline functions and a Kohn-Sham Hamiltonian. In order to understand analogies and differences in the dichroism of structural isomers bearing the same functional groups, a comparison with previous PECD study of valence band of 2-amino-1-propanol is carried out.

  14. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  15. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  16. X-ray absorption spectroscopy and magnetic circular dichroism studies of L10-Mn-Ga thin films

    NASA Astrophysics Data System (ADS)

    Glas, M.; Sterwerf, C.; Schmalhorst, J. M.; Ebke, D.; Jenkins, C.; Arenholz, E.; Reiss, G.

    2013-11-01

    Tetragonally distorted Mn3-xGax thin films with 0.1absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD). A highly textured L10 crystal structure of the Mn-Ga films was verified by X-ray diffraction measurements. For samples with e-beam evaporated MgO barrier no evidence for Mn-O was found whereas in samples with magnetron sputtered MgO, Mn-O was detected, even for the thickest interlayer thickness. Both XAS and XMCD measurements showed an increasing interfacial Mn-O amount with decreasing CoFeB interlayer thickness. Additional element specific full hysteresis loops determined an out-of-plane magnetization axis for the Mn and Co, respectively.

  17. X-ray absorption spectroscopy and magnetic circular dichroism studies of L1{sub 0}-Mn-Ga thin films

    SciTech Connect

    Glas, M. Sterwerf, C.; Schmalhorst, J. M.; Reiss, G.; Ebke, D.; Jenkins, C.; Arenholz, E.

    2013-11-14

    Tetragonally distorted Mn{sub 3−x}Ga{sub x} thin films with 0.1absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD). A highly textured L1{sub 0} crystal structure of the Mn-Ga films was verified by X-ray diffraction measurements. For samples with e-beam evaporated MgO barrier no evidence for Mn-O was found whereas in samples with magnetron sputtered MgO, Mn-O was detected, even for the thickest interlayer thickness. Both XAS and XMCD measurements showed an increasing interfacial Mn-O amount with decreasing CoFeB interlayer thickness. Additional element specific full hysteresis loops determined an out-of-plane magnetization axis for the Mn and Co, respectively.

  18. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    SciTech Connect

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  19. Electronic ground states of Fe2(+) and Co2(+) as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy.

    PubMed

    Zamudio-Bayer, V; Hirsch, K; Langenberg, A; Ławicki, A; Terasaki, A; V Issendorff, B; Lau, J T

    2015-12-28

    The (6)Π electronic ground state of the Co2 (+) diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, (6)Φ, (8)Φ, and (8)Γ, for the electronic ground state of Fe2 (+) have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d transition elements cannot generally be assumed to be connected by a one-electron process.

  20. Interaction between adenovirus DNA-binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption.

    PubMed

    van Amerongen, H; van Grondelle, R; van der Vliet, P C

    1987-07-28

    The adenovirus DNA-binding protein (AdDBP) is a multifunctional protein required for viral DNA replication and control of transcription. We have studied the binding of AdDBP to single-stranded M13 DNA and to the homopolynucleotides poly(rA), poly(dA), and poly(dT) by means of circular dichroism (CD) and optical density (OD) measurements. The binding to all these polynucleotides was strong and nearly stoichiometric. Titration experiments showed that the size of the binding site is 9-11 nucleotides long for M13 DNA, poly(dA), and poly(rA). A higher value (15.0 +/- 0.8) was found for poly(dT). Pronounced changes in the circular dichroism and optical density spectra were observed upon binding of AdDBP. In general, both the positive peak around 260-270 nm and the negative peak around 240-250 nm in the CD spectra decreased in intensity, and a shift of the crossover point to longer wavelengths was found. The OD spectra observed upon binding of AdDBP are remarkably similar to those obtained with prokaryotic helix-destabilizing proteins like bacteriophage T4 gene 32 protein and fd gene 5 protein. The data can best be interpreted by assuming that the AdDBP-polynucleotide complex has a regular, rigid, and extended configuration that satifies two criteria: (1) a considerable tilt of the bases in combination with (2) a small rotation per base and/or a shift of the bases closer to the helix axis.

  1. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    SciTech Connect

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-21

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  2. Absorption and Magnetic Circular Dichroism Analyses of Giant Zeeman Splittings in Diffusion-Doped Colloidal Cd(1-x)Mn(x)Se Quantum Dots.

    PubMed

    Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R

    2015-08-06

    Impurity ions can transform the electronic, magnetic, or optical properties of colloidal quantum dots. Magnetic impurities introduce strong dopant-carrier exchange coupling that generates giant Zeeman splittings (ΔEZ) of excitonic excited states. To date, ΔEZ in colloidal doped quantum dots has primarily been quantified by analysis of magnetic circular dichroism (MCD) intensities and absorption line widths (σ). Here, we report ΔEZ values detected directly by absorption spectroscopy for the first time in such materials, using colloidal Cd(1-x)Mn(x)Se quantum dots prepared by diffusion doping. A convenient method for decomposing MCD and absorption data into circularly polarized absorption spectra is presented. These data confirm the widely applied MCD analysis in the low-field, high-temperature regime, but also reveal a breakdown at low temperatures and high fields when ΔEZ/σ approaches unity, a situation not previously encountered in doped quantum dots. This breakdown is apparent for the first time here because of the extraordinarily large ΔEZ and small σ achieved by nanocrystal diffusion doping.

  3. All-dielectric metasurface circular dichroism waveplate.

    PubMed

    Hu, Jingpei; Zhao, Xiaonan; Lin, Yu; Zhu, Aijiao; Zhu, Xiaojun; Guo, Peiji; Cao, Bing; Wang, Chinhua

    2017-01-31

    We propose and experimentally demonstrate a high efficient circularly polarizing dichroism waveplate (CPDW) using a Si-based all-dielectric 2Dchiral metasurface. We demonstrate that the CPDW exhibits a unique dichroism in that it functions as a transmissive quarter waveplate for one of either left-or right-handed circularly polarized incident lightand a reflective mirror for the opposite polarization. The circular polarization dichroism (CPD = IRCP - ILCP) in transmission at wavelength ~1.5 μm reaches 97% and the extinction ratio (ER = IRCP/ILCP) is as high as 345:1. Experimental fabrications and measurements of the proposed all-dielectric metasurface are implemented and found to be in excellent agreement with the simulations. The proposed all-dielectric chiral metasurface is of advantages of high-dichroism, easy-fabrication and standard semiconductor fabrication techniques compatible, which could lead to enhanced security in fiber and free-space communications, as well as imaging and sensing applications for circularly polarized light with a highly integrated photonic platform.

  4. All-dielectric metasurface circular dichroism waveplate

    PubMed Central

    Hu, Jingpei; Zhao, Xiaonan; Lin, Yu; Zhu, Aijiao; Zhu, Xiaojun; Guo, Peiji; Cao, Bing; Wang, Chinhua

    2017-01-01

    We propose and experimentally demonstrate a high efficient circularly polarizing dichroism waveplate (CPDW) using a Si-based all-dielectric 2Dchiral metasurface. We demonstrate that the CPDW exhibits a unique dichroism in that it functions as a transmissive quarter waveplate for one of either left-or right-handed circularly polarized incident lightand a reflective mirror for the opposite polarization. The circular polarization dichroism (CPD = IRCP − ILCP) in transmission at wavelength ~1.5 μm reaches 97% and the extinction ratio (ER = IRCP/ILCP) is as high as 345:1. Experimental fabrications and measurements of the proposed all-dielectric metasurface are implemented and found to be in excellent agreement with the simulations. The proposed all-dielectric chiral metasurface is of advantages of high-dichroism, easy-fabrication and standard semiconductor fabrication techniques compatible, which could lead to enhanced security in fiber and free-space communications, as well as imaging and sensing applications for circularly polarized light with a highly integrated photonic platform. PMID:28139753

  5. All-dielectric metasurface circular dichroism waveplate

    NASA Astrophysics Data System (ADS)

    Hu, Jingpei; Zhao, Xiaonan; Lin, Yu; Zhu, Aijiao; Zhu, Xiaojun; Guo, Peiji; Cao, Bing; Wang, Chinhua

    2017-01-01

    We propose and experimentally demonstrate a high efficient circularly polarizing dichroism waveplate (CPDW) using a Si-based all-dielectric 2Dchiral metasurface. We demonstrate that the CPDW exhibits a unique dichroism in that it functions as a transmissive quarter waveplate for one of either left-or right-handed circularly polarized incident lightand a reflective mirror for the opposite polarization. The circular polarization dichroism (CPD = IRCP ‑ ILCP) in transmission at wavelength ~1.5 μm reaches 97% and the extinction ratio (ER = IRCP/ILCP) is as high as 345:1. Experimental fabrications and measurements of the proposed all-dielectric metasurface are implemented and found to be in excellent agreement with the simulations. The proposed all-dielectric chiral metasurface is of advantages of high-dichroism, easy-fabrication and standard semiconductor fabrication techniques compatible, which could lead to enhanced security in fiber and free-space communications, as well as imaging and sensing applications for circularly polarized light with a highly integrated photonic platform.

  6. Biological Sensing with Terahertz Circular Dichroism Spectroscopy

    DTIC Science & Technology

    2005-05-31

    S.J. and Plaxco, K.W. (2003) “Terahertz circular dichroism spectroscopy: a potential approach to unbiased, in situ life detection.” Astrobiology , 3...detection.” Astrobiology , 3, 489-504 Xu, J., Ramian, G.J., Galan, J.F., Savvidis, P.G., Scopatz, A.M., Birge, R.R., Allen, S.J. and Plaxco, K.W. (2004

  7. Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques

    NASA Astrophysics Data System (ADS)

    Reyher, H.-J.; Schulz, R.; Thiemann, O.

    1994-08-01

    The magnetic circular dichroism (MCD) of the absorption of Nb4+Li and Ti3+Li centers in LiNbO3 has been selectively measured by applying optically detected magnetic resonance. The attribution of a well-known broad and unstructured absorption band peaking at 1.6 eV to the Nb4+Li bound small polaron is now unambiguously confirmed. In the MCD spectrum of the isoelectronic Ti3+Li center, bands show up, which closely resemble the MCD bands at 1.6 eV of this bound small polaron. This striking similarity is explained by a cluster model, representing both defects. Either TiLi or NbLi is at the center of this cluster. In both cases, the small polaron is bound to the cluster, and its MCD bands correspond to intervalence transfer transitions within the constituents of the cluster. A study of the spin-orbit coupling of the molecular orbitals of the cluster allows one to analyze the structure of the MCD bands at 2.9 eV of Ti3+Li have no counterpart in the Nb4+Li spectrum. These bands are assigned to transitions to excited states, which are specific to the impurity and are related to the 10Dq transitions known for the crystal field states of a d1 ion.

  8. Quantum-cascade laser-based vibrational circular dichroism.

    PubMed

    Lüdeke, Steffen; Pfeifer, Marcel; Fischer, Peer

    2011-04-20

    Vibrational circular dichroism (VCD) spectra were recorded with a tunable external-cavity quantum-cascade laser (QCL). In comparison with standard thermal light sources in the IR, QCLs provide orders of magnitude more power and are therefore promising for VCD studies in strongly absorbing solvents. The brightness of this novel light source is demonstrated with VCD and IR absorption measurements of a number of compounds, including proline in water.

  9. Circular dichroism and magnetic circular dichroism of reduced molybdenum-iron protein of Azotobacter vinelandii nitrogenase.

    PubMed

    Stephens, P J; McKenna, C E; McKenna, M C; Nguyen, H T; Devlin, F

    1981-05-12

    Studies of the circular dichroism (CD) and magnetic circular dichroism (MCD) of the dithionite-reduced molybdenum-iron protein of Azotobacter vinelandii nitrogenase (Av1) are reported. CD and MCD are measurable at room temperature across a wide spectral range, from the near-UV to the near-IR. The visible-near-UV CD is insignificantly affected by moderate variations in pH, temperature, ionic strength, and buffer, providing evidence against conformational change in the range studied. Mg2+ and ATP also cause no observable change in the visible-near-UV CD. Both CD and MCD in the visible-near-UV are unaffected by 30% inactivation by O2. However, the CD and MCD spectra of uncrystallized Av1 differ very significantly from those of crystallized Av1; in particular, the MCD spectrum is very sensitive to the presence of heme impurities. The identicality in both CD and MCD spectra of the reduced molybdenum-iron proteins from Azotobacter vinelandii and Klebsiella pneumoniae shows that these proteins contain metal clusters, identical in number, structure, and protein environment. While the absorption, CD, and MCD spectra of reduced Av1 are typical in many respects of simpler iron-sulfur proteins and are most similar to the [Fe4S4(SR)4]3- clusters found in reduced bacterial ferredoxins, significant differences exist. It is concluded, therefore, that the clusters present are not identical with those previously characterized, a conclusion earlier arrived at from electron paramagnetic resonance, Mössbauer, and EXAFS spectroscopies.

  10. Local electronic states of Fe4N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Toko, Kaoru; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Suemasu, Takashi; Kimura, Akio

    2015-05-01

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L2,3 and N K-edges for Fe4N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe4N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L2,3-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by σ* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by π* and σ* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe4N.

  11. Theoretical calculations of infrared absorption, vibrational circular dichroism, and two-dimensional vibrational spectra of acetylproline in liquids water and chloroform.

    PubMed

    Hahn, Seungsoo; Lee, Hochan; Cho, Minhaeng

    2004-07-22

    Infrared absorption, vibrational circular dichroism, and two-dimensional infrared pump-probe and photon echo spectra of acetylproline solutions are theoretically calculated and directly compared with experiments. In order to quantitatively determine interpeptide interaction-induced amide I mode frequency shifts, high-level quantum chemistry calculations were performed. The solvatochromic amide I mode frequency shift and fluctuation were taken into account by carrying out molecular dynamics simulations of acetylproline dissolved in liquids water and chloroform and by using the extrapolation method developed recently. We first studied correlation time scales of the two amide I vibrational frequency fluctuations, cross correlation between the two fluctuating local mode frequencies, ensemble averaged conformations of the acetylproline molecule in liquids water and chloroform. The corresponding conformations of the acetylproline in liquids water and chloroform are close to the ideal 3(10) helix and the C(7) structure, respectively. A few methods proposed to determine the angle between the two transition dipoles associated with the amide I vibrations were tested and their limitations are discussed.

  12. Local electronic states of Fe{sub 4}N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect

    Ito, Keita; Toko, Kaoru; Suemasu, Takashi; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Kimura, Akio

    2015-05-21

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L{sub 2,3} and N K-edges for Fe{sub 4}N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe{sub 4}N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L{sub 2,3}-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by σ* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by π* and σ* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe{sub 4}N.

  13. Circular Dichroism in Multiphoton Ionization of Resonantly Excited He+ Ions

    NASA Astrophysics Data System (ADS)

    Ilchen, M.; Douguet, N.; Mazza, T.; Rafipoor, A. J.; Callegari, C.; Finetti, P.; Plekan, O.; Prince, K. C.; Demidovich, A.; Grazioli, C.; Avaldi, L.; Bolognesi, P.; Coreno, M.; Di Fraia, M.; Devetta, M.; Ovcharenko, Y.; Düsterer, S.; Ueda, K.; Bartschat, K.; Grum-Grzhimailo, A. N.; Bozhevolnov, A. V.; Kazansky, A. K.; Kabachnik, N. M.; Meyer, M.

    2017-01-01

    Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He+(3 p ) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.

  14. X-ray magnetic circular dichroism and x-ray absorption spectroscopy of novel magnetic thin films

    SciTech Connect

    Brewer, M.A.; Ju, H.L.; Krishnan, K.M.

    1997-04-01

    The optimization of the magnetic properties of materials for a wide range of applications requires a dynamic iteration between synthesis, property measurements and characterization at appropriate length scales. The authors interest arises both from the increased appreciation of the degree to which magnetic properties can be influenced by tailored microstructures and the ability to characterize them by x-ray scattering/dichroism techniques. Preliminary results of this work at the ALS on `giant` moment in {alpha}{double_prime}-Fe{sub 16}N{sub 2} and `colossal` magnetoresistance in manganite perovskites is presented here. It has recently been claimed that {alpha}{double_prime}-Fe{sub 16}N{sub 2} possesses a giant magnetization of 2.9 T ({approximately}2300 emu/cc) when grown on lattice-matched In{sub 0.2}Ga{sub 0.8}As(001) and Fe/GaAs(001). However, attempts at growth on simpler substrates have resulted in only a modest enhancement in moment and often in multiphase mixtures. Theoretical calculations based on the band structure of Fe{sub 16}N{sub 2} predict values for the magnetization around 2.3 T ({approximately}1780 emu/cc), well below Sugita`s claims, but consistent with the magnetization reported by several other workers. Using appropriate sum rules applied to the integrated MCD spectrum, they hope to determine the magnetic moment of the iron species in the {alpha}{double_prime}-Fe{sub 16}N{sub 2} films and other phases and resolve the orbital and spin contributions to the moment. There is also rapidly growing interest in the `colossal magnetoresistance` effect observed in manganese oxides for both fundamental and commercial applications. To address some of these issues the authors have measured the electron energy loss spectra (EELS) of manganese perovskites at room temperature.

  15. Photoelectron circular dichroism in different ionization regimes

    NASA Astrophysics Data System (ADS)

    Wollenhaupt, Matthias

    2016-12-01

    Photoelectron circular dichroism (PECD) describes an asymmetry in the photoelectron angular distribution (PAD) from photoionization of randomly oriented enantiomers with circularly polarized light. Baulieu et al present a comprehensive set of measured PADs from multiphoton ionization of limonene and fenchone in different ionization regimes (multiphoton and tunneling) and analyze the resulting PECD (Baulieu et al 2016 New J. Phys. 18 102002). From their observations the authors conclude that the PECD is universal in the sense that the molecular chirality is encoded in the PAD independent of the ionization regime. The analysis is supplemented by a classical model based on electron scattering in a chiral potential. The paper presents beautiful data and is an important step towards a more complete physical picture of PECD. The results and their interpretation stimulate the ongoing vivid debate on the role of resonances in multiphoton PECD.

  16. Circular Dichroism Microscopy Free from Commingling Linear Dichroism via Discretely Modulated Circular Polarization

    PubMed Central

    Narushima, Tetsuya; Okamoto, Hiromi

    2016-01-01

    In this work, we developed a circular dichroism (CD) imaging microscope with a device to suppress the commingling of linear birefringence (LB) and linear dichroism (LD) signals. CD signals are, in principle, free from the commingling influence of LD and LB if the sample is illuminated with pure circularly polarized light, with no linear polarization contribution. Based on this idea, we here propose a novel circular polarization modulation method to suppress the contribution of linear polarization, which enables high-sensitivity CD detection (10−4 level in optical density unit or mdeg level in ellipticity) for microscopic imaging at a nearly diffraction limited spatial resolution (sub-μm level). The highly sensitive, diffraction-limited local CD detection will make direct analyses of chiral structures and spatial mappings of optical activity feasible for μm- to sub-μm-sized materials and may yield a number of applications as a unique optical imaging method. PMID:27761022

  17. Comparative Study of Optical Absorption and Circular Dichroism of Bacteriochlorophyll Oligomers in Triton X-100, the Antenna Pigment B850, and the Primary Donor p-860 of Photosynthetic Bacteria Indicates that All are Similar Dimers of Bacteriochlorophyll a

    NASA Astrophysics Data System (ADS)

    Scherz, A.; Rosenbach-Belkin, V.

    1989-03-01

    Dimers of bacteriochlorophyll a (Bchla) with optical absorption maximum at 853 nm and a nonconservative circular dichroism spectrum are formed in a solution of formamide/water that contains micelles of Triton X-100. The apparent equilibrium constant and the corresponding Gibbs energy change for the Bchl self-organization are 4.9 × 106 M-1 and -9.2 kcal/mol, respectively. The experimental absorption and circular dichroism spectra of the in vitro Bchl dimer (termed Bchl-853) are similar to the spectra of the bacterial light-harvesting complex B850 and the primary electron donor P-860 and probably point to a common structural motif. Indeed, simulation of the dimers' spectra (optical absorption and circular dichroism), achieved by using an extended version of the exciton theory, suggests the same geometry as recently elucidated for P-860 by x-ray diffraction crystallography. The proposed geometry is predicted to have the minimum energy in the gas phase. In conclusion, the spectral properties of the bathochromically shifted forms of Bchla are likely a result of strong dipolar interactions in self-organized structures of Bchls.

  18. Circular dichroism of erythrocyte membrane glycoproteins.

    PubMed

    Decker, R V; Carraway, K L

    1975-03-28

    The circular dichroism spectra were obtained for purified equine, human and bovine membrane glycoproteins, which have 40, 55 and 70% carbohydrate, respectively. The spectra in aqueous buffer show similar shapes, maxima and minima but somewhat different peak amplitudes. Analysis of the spectra indicated that the glycoproteins can be pictured as existing primarily in an unordered form in dilute aqueous buffer with small amounts of alpha-helix (13-23%) present. In 2-chloroethanol, a helix-promoting solvent, the amount of alpha-helix is increased to 60-70%. The glycoproteins underwent denaturation in guanidine hydrochloride, although evidence of some residual structure did remain. The spectra of the glycoproteins change relatively little on going from aqueous buffer to dodecylsulfate solutions. Removal of 60% of the sialic acid does not induce significant conformational alterations. The anomalous behavior of the glycoproteins during molecular weight determinations does not appear to be related primarily to conformational restrictions on the polypeptide chain.

  19. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  20. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  1. Complex polarization propagator calculations of magnetic circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Solheim, Harald; Ruud, Kenneth; Coriani, Sonia; Norman, Patrick

    2008-03-01

    It is demonstrated that the employment of the nonlinear complex polarization propagator enables the calculation of the complete magnetic circular dichroism spectra of closed-shell molecules, including at the same time both the so-called Faraday A and B terms. In this approach, the differential absorption of right and left circularly polarized light in the presence of a static magnetic field is determined from the real part of the magnetic field-perturbed electric dipole polarizability. The introduction of the finite lifetimes of the electronically excited states into the theory results in response functions that are well behaved in the entire spectral region, i.e., the divergencies that are found in conventional response theory approaches at the transition energies of the system are not present. The applicability of the approach is demonstrated by calculations of the ultraviolet magnetic circular dichroism spectra of para-benzoquinone, tetrachloro-para-benzoquinone, and cyclopropane. The present results are obtained with the complex polarization propagator approach in conjunction with Kohn-Sham density functional theory and the standard adiabatic density functionals B3LYP, CAM-B3LYP, and BHLYP.

  2. Z-DNA: vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC)-poly(dG-dC) forms a left-handed double-helical structure that has been termed Z-DNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions. In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) down to 180 nm under conditions in which the 230- to 300-nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the B and Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) is 3 M C/sub 2/O/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of doublehelical DNA structures.

  3. Z-DNA Vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC).poly(dG-dC) forms a left-handed double-helical structure that has been termed ZDNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions (Pohl, F.M. and Jovin, T.M. (1972) J. Mol. Biol. 67, 675-696). In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low-salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) down to 180 nm under conditions in which the 230 to 300 nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the Band Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) in 3 M Cs/sub 2/SO/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of double-helical DNA structures.

  4. Circular dichroism beamline B23 at the Diamond Light Source.

    PubMed

    Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano

    2012-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well established technique in structural biology. The first UV-VIS beamline, dedicated to circular dichroism, at Diamond Light Source Ltd, a third-generation synchrotron facility in south Oxfordshire, UK, has recently become operational and it is now available for the user community. Herein the main characteristics of the B23 SRCD beamline, the ancillary facilities available for users, and some of the recent advances achieved are summarized.

  5. Electronic and vibrational circular dichroism spectra of (R)-(-)-apomorphine

    NASA Astrophysics Data System (ADS)

    Abbate, Sergio; Longhi, Giovanna; Lebon, France; Tommasini, Matteo

    2012-09-01

    Apomorphine is a chiral drug molecule; notwithstanding its extraordinary importance, little attention has been paid to the characterization of its chiroptical properties. Here we report on its electronic circular dichroism (ECD) spectra, recorded in methanol and water, and vibrational circular dichroism (VCD) in methanol and dimethyl sulfoxide (DMSO) solutions. Density functional theory (DFT) calculations have allowed us to interpret the spectra and to evaluate the role of possible conformations, charge-states and interactions with counter ions.

  6. Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer.

    PubMed

    Wang, Hancong; Li, Zhipeng; Zhang, Han; Wang, Peijie; Wen, Shuangchun

    2015-02-03

    We investigated the near-field response in silver nanoparticle aggregates to the excitation of circular polarized light. In a right-angle trimer system, the local field intensity excited by right-hand circularly polarized light is almost one thousand times larger than the left-hand case. By analyzing the polarization and phase of the local field in plasmonic hotspots, we found this local circular dichroism is originated from the near-field interference excited by orthogonal polarized incident lights. The local circular dichroism can be tuned by the rotation of the third particle, the interparticle distance, and the dielectric environment. This phenomenon could also widely exist in more complicated nanoaggregates. These findings would benefit for resolving light handedness, and enhancing circular dichroism and optical activity.

  7. Circular dichroism of chiral photonic crystal liquid layers with enclosed defect inside

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Ashot; Kocharian, Armen; Vardanyan, Gagik

    2015-03-01

    The photonic crystals of artificial and self-organizing structures with spatial periodic changes in dielectric and magnetic properties have attracted considerable interest recently due to unusual physical properties and wide practical applications. The chiral periodic structure in the scale of optical wavelength gives rise to strong and characteristic circular dichroism responses at visible wavelengths. Here we investigate photonic density, circular dichroism and peculiarities of absorption and emission spectra at various eigen polarizations in multilayered one-dimensional chiral soft matter with two layers of CLCs and an isotropic defect layer inside. The circular dichroism is defined by differences in light energy absorption A=1-(R + T) by the system (R and T are the reflection and transmission coefficients, respectively) and A s , r are the light absorptions, if the incident light has left and right circular polarizations, respectively. This problem can be solved by the modified Ambartsumian's layer addition method. The influence of absorption and gain on the circular dichroism, absorption and emission spectra is established in cholesteric liquid crystal (CLC) cell with an isotropic defect layer inside.

  8. Rhenocene: Magnetic circular dichroism and laser-induced fluorescence in nitrogen matrices

    NASA Astrophysics Data System (ADS)

    Cox, P. Anthony; Grebenik, Peter; Perutz, Robin N.; Graham, Robin G.; Grinter, Roger

    1984-07-01

    Rhenocene generated in nitrogen matrices by photolysis of Re(η-C 5H 5) 2H, shows an intense, structured progression in magnetic circular dichroism. The non-linear magnetic field and temperature dependence of the dichroism indicate a 2E 2g(= 5/2) ground state. Lazer-induced fluorescence is used to establish the (0.0) component of the absorption band and to derive the energies of three totally symmetric vibrational fundamentals.

  9. Circular dichroism and magnetic circular dichroism of Azotobacter vinelandii ferredoxin I.

    PubMed

    Stephens, P J; Jensen, G M; Devlin, F J; Morgan, T V; Stout, C D; Martin, A E; Burgess, B K

    1991-04-02

    Room temperature circular dichroism (CD) and low temperature magnetic circular dichroism (MCD) spectra of air-oxidized and dithionite-reduced Azotobacter vinelandii ferredoxin I (FdI), a [( 4Fe-4S]2+/1+, [3Fe-4S]1+/0) protein, are reported. Unlike the CD of oxidized FdI, the CD of dithionite-reduced FdI exhibits significant pH dependence, consistent with protonation-deprotonation at or near the cluster reduced: the [3Fe-4S] cluster. The MCD of reduced FdI, which originates in the paramagnetic reduced [3Fe-4S]0 cluster, is also pH-dependent. Detailed studies of the field dependence and temperature dependence of the MCD of oxidized and reduced FdI, in the latter case at pH 6.0 and 8.3, are reported. The low-field temperature dependence of the MCD of oxidized FdI, which originates in the paramagnetic oxidized [3Fe-4S]1+ cluster, establishes the absence of a significant population of excited electronic states of this cluster up to 60 K. The low-field temperature dependence of the MCD of reduced FdI establishes that the ground-state manifold of the reduced [3Fe-4S]0 cluster possesses S greater than or equal to 2 at both pH 6.0 and 8.3. Analysis, assuming S = 2 and an axial zero-field splitting Hamiltonian, leads to D = -2.0 and -3.5 cm-1 at pH 6.0 and 8.3, respectively. The site of the (de)protonation affecting the spectroscopic properties of the [3Fe-4S] cluster remains unknown.

  10. Circular dichroism in biological photonic crystals and cubic chiral nets.

    PubMed

    Saba, M; Thiel, M; Turner, M D; Hyde, S T; Gu, M; Grosse-Brauckmann, K; Neshev, D N; Mecke, K; Schröder-Turk, G E

    2011-03-11

    Nature provides impressive examples of chiral photonic crystals, with the notable example of the cubic so-called srs network (the label for the chiral degree-three network modeled on SrSi2) or gyroid structure realized in wing scales of several butterfly species. By a circular polarization analysis of the band structure of such networks, we demonstrate strong circular dichroism effects: The butterfly srs microstructure, of cubic I4(1)32 symmetry, shows significant circular dichroism for blue to ultraviolet light, that warrants a search for biological receptors sensitive to circular polarization. A derived synthetic structure based on four like-handed silicon srs nets exhibits a large circular polarization stop band of a width exceeding 30%. These findings offer design principles for chiral photonic devices.

  11. Magnetic circular dichroism of porphyrin lanthanide M3+ complexes.

    PubMed

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, Elena; Yamamoto, Shigeki; Bouř, Petr

    2014-10-01

    Lanthanide complexes exhibit interesting spectroscopic properties yielding many applications as imaging probes, natural chirality amplifiers, and therapeutic agents. However, many properties are not fully understood yet. Therefore, we applied magnetic circular dichroism (MCD) spectroscopy, which provides enhanced information about the underlying electronic structure to a series of lanthanide compounds. The metals in the M(3+) state included Y, La, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu; the spectra were collected for selected tetraphenylporphin (TPP) and octaethylporphin (OEP) complexes in chloroform. While the MCD and UV-VIS absorption spectra were dominated by the porphyrin signal, metal binding significantly modulated them. MCD spectroscopy was found to be better suited to discriminate between various species than absorption spectroscopy alone. The main features and trends in the lanthanide series observed in MCD and absorption spectra of the complexes could be interpreted at the Density Functional Theory (DFT) level, with effective core potentials on metal nuclei. The sum over state (SOS) method was used for simulation of the MCD intensities. The combination of the spectroscopy and quantum-chemical computations is important for understanding the interactions of the metals with the organic compounds.

  12. Optical properties and circular dichroism of chiral metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Fan, Zhiyuan; Govorov, Alexander; OU Team

    2013-03-01

    In nature, biological systems are built up by homochiral building blocks, such as a sugar and protein. Circular dichroism (CD) is an effective tool of resolving molecular conformations. It utilizes circularly polarized light to detect differential absorption of chiral materials. In medicine, it will help us to develop new drugs and therapies, if we understand the connection between the physical or chemical properties of drug molecules and their conformations. With the rapid development of nanotechnologies, chiral nanomaterials attract lots of attention nowadays. CD signals of chiral molecules can be enhanced or shifted to the visible band in the presence of plasmonic nanocrystals. Here we present a plasmonic CD mechanism from a single chiral metal nanocrystal. The mechanism is essentially different from the dipolar plasmon-plasmon interaction in a chiral NP assembly, which mimics the CD mechanism of chiral molecules. Chiral metal nanocrystals are expected to have promising applications in biosensing. Recently a few experimental papers reported successful realizations of chiral nanocrystals in a macroscopic ensemble in solution. Particularly the paper described silver nanoparticles grown on chiral template molecules and demonstrating characteristic CD signals at a plasmonic wavelength. The plasmonic CD signals in Ref. can come from a dipolar plasmon-molecule interaction or from a chiral shape of nanocrystals. This work was supported by the NSF (project: CBET- 0933782) and by the Volkswagen Foundation.

  13. Cyanobacterial phycobilisomes: selective dissociation monitored by fluorescence and circular dichroism

    SciTech Connect

    Rigbi, M.; Rosinski, J.; Siegelman, H.W.; Sutherland, J.C.

    1980-04-01

    Phycobilisomes are supramolecular assemblies of phycobiliproteins responsible for photosynthetic light collection in red algae and cyanobacteria. They can be selectively dissociated by reduction of temperature and buffer concentration. Phycobilisomes isolated from Fremyella diplosiphon transfer energy collected by C-phycoerythrin and C-phycocyanin to allophycocyanin. The energy transfer to allophycocyanin is nearly abolished at 2/sup 0/C, as indicated by a blue shift in fluorescence emission, and is accompanied by a decrease in the circular dichroism in the region of allophycocyanin absorbance. Further dissociation of the phycobilisomes can be attained by reduction of buffer concentration and holding at 2/sup 0/C. Energy transfer to C-phycocyanin is nearly abolished, and decreases occur in the circular dichroism in the region of C-phycocyanin and C-phycoerythrin absorbance. Complete dissociation of the phycobilisomes at low buffer concentration and 2/sup 0/C requires extended time. Energy transfer to C-phycocyanin is further reduced and the circular dichroism maximum of C-phycoerythrin at 575 nm is lost. Circular dichroism provides information on the hexamer-monomer transitions of the phycobiliproteins, whereas fluorescence is indicative of hexamer-hexamer interactions. We consider that hydrophobic interactions are fundamental to the maintenance of the structure and function of phycobilisomes.

  14. Circular Dichroism Method for Heat Capacity Determination of Proteins

    ERIC Educational Resources Information Center

    Jones, Cecil L.; Bailey, Chris; Bheemarti, Kiran Kumar

    2006-01-01

    Circular dichroism spectroscopy was used to measure the thermal unfolding of bovine pancreatic ribonuclease A (RNase A) with various concentrations of guanidine hydrochloride (GuHCl). A red shift in transition midpoint temperatures, T[subscript m], occurred with increasing concentration of the strong protein denaturant. van Hoff enthalpy changes,…

  15. Magnetic circular dichroism for surface and thin film magnetism

    NASA Astrophysics Data System (ADS)

    Yokoyama, Toshihiko; Nakagawa, Takeshi; Takagi, Yasumasa

    The technical development of the characterization of magnetic thin films is an urgent subject especially for further improvement of high-density and high-speed recording media. This article focuses attention on the fundamental methodology and recent exploitations of various magnetic circular dichroism (MCD) techniques. First, basic theories and experimental methods of the magneto-optical Kerr effect (MOKE) and X-ray magnetic circular dichroism (XMCD) are described. MOKE is a conventional but usually the most useful method to characterize macroscopic magnetization of metal thin films using visible lasers. Moreover, recent development of MOKE allows one to perform optical microscopic and ultrafast time resolved investigations. XMCD has now become a mature technique by virtue of the developments of soft and hard X-ray synchrotron radiation sources. Since XMCD is based on core absorption spectroscopy, the technique provides information on element specific magnetization. Using the so-called sum rules, one can determine the microscopic spin and orbital magnetic moments. The experimental method and an example using a superconducting magnet system combined with a liquid helium sample cryostat are described. Moreover, by combining XMCD with photoelectron emission microscopy (PEEM), one can perform spatiotemporal measurements, whose spatial resolution reaches several tens of nanometres. Magnetization induced second harmonic generation (MSHG) is also described. This is a unique technique for its inherently high sensitivity to surfaces and interfaces since MSHG is inhibited in the bulk of centrosymmetric crystals. The drastic polarization dependence of MSHG based on the selection rules is also discussed. As a last method addressed in this article, the threshold photoemission MCD technique is reviewed. The technique has recently been proposed and has demonstrated the possibility of an ultrafast spatiotemporal method by combining PEEM. Applications of these various MCD families

  16. Photoemission and magnetic circular dichroism studies of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Fujimori, Atsushi

    2005-03-01

    Recently, a series of novel ferromagnetic semiconductors have been synthesized using MBE and related techniques and have attracted much attention because of unknown mechanisms of carrier-induced ferromagnetism and potential applications as "spin electronics" devices. Some new materials show ferromagnetism even well above room temperature. Photoemission spectroscopy has been used to study the d orbitals of the dilute transition-metal atoms, mostly Mn, and their hybridization with the host band states [1]. Soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the transition-metal 2p-3d absorption edges are useful techniques to study the valence and spin states of the transition-metal atoms. Furthermore, since MCD has different sensitivities to the ferromagnetic and paramagnetic components at different temperatures and magnetic fileds, if the sample is a mixture of ferromagnetic and non-ferromagnetic transition- metal atoms, it can be used to separate the two components and to study their electronic structures. In this talk, results are presented for the prototypical diluted ferromagnetic semiconductor Ga1-xMnxAs [2] and the room-temperature ferromagnets Zn1-xCoxO and Ti1-xCoxO2.I acknowledge collaboration with Y. Ishida, J.-I. Hwang, M. Kobayashi, Y. Takeda, Y. Saitoh, J. Okamoto, T. Okane, Y. Muramatsu, K. Mamiya, T. Koide, A. Tanaka, M. Tanaka, Hayashi, S. Ohya, T. Kondo, H. Munekata, H. Saeki, H. Tabata, T. Kawai, Y. Matsumoto, H. Koinuma, T. Fukumura and M. Kawasaki. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area "Semiconductor nano-spintronics" (14076209) from MEXT, Japan.1. J. Okabayashi et al., Phys. Rev. B 64, 125304 (2001).2. A. Fujimori et al., J. Electron Spectrosc. Relat. Phenom., in press.

  17. PCDDB: new developments at the Protein Circular Dichroism Data Bank.

    PubMed

    Whitmore, Lee; Miles, Andrew John; Mavridis, Lazaros; Janes, Robert W; Wallace, B A

    2017-01-04

    The Protein Circular Dichroism Data Bank (PCDDB) has been in operation for more than 5 years as a public repository for archiving circular dichroism spectroscopic data and associated bioinformatics and experimental metadata. Since its inception, many improvements and new developments have been made in data display, searching algorithms, data formats, data content, auxillary information, and validation techniques, as well as, of course, an increase in the number of holdings. It provides a site (http://pcddb.cryst.bbk.ac.uk) for authors to deposit experimental data as well as detailed information on methods and calculations associated with published work. It also includes links for each entry to bioinformatics databases. The data are freely available to accessors either as single files or as complete data bank downloads. The PCDDB has found broad usage by the structural biology, bioinformatics, analytical and pharmaceutical communities, and has formed the basis for new software and methods developments.

  18. PCDDB: new developments at the Protein Circular Dichroism Data Bank

    PubMed Central

    Whitmore, Lee; Miles, Andrew John; Mavridis, Lazaros; Janes, Robert W.; Wallace, B.A.

    2017-01-01

    The Protein Circular Dichroism Data Bank (PCDDB) has been in operation for more than 5 years as a public repository for archiving circular dichroism spectroscopic data and associated bioinformatics and experimental metadata. Since its inception, many improvements and new developments have been made in data display, searching algorithms, data formats, data content, auxillary information, and validation techniques, as well as, of course, an increase in the number of holdings. It provides a site (http://pcddb.cryst.bbk.ac.uk) for authors to deposit experimental data as well as detailed information on methods and calculations associated with published work. It also includes links for each entry to bioinformatics databases. The data are freely available to accessors either as single files or as complete data bank downloads. The PCDDB has found broad usage by the structural biology, bioinformatics, analytical and pharmaceutical communities, and has formed the basis for new software and methods developments. PMID:27613420

  19. Stereochemistry of the tadalafil diastereoisomers: a critical assessment of vibrational circular dichroism, electronic circular dichroism, and optical rotatory dispersion.

    PubMed

    Qiu, Shi; De Gussem, Ewoud; Tehrani, Kourosch Abbaspour; Sergeyev, Sergey; Bultinck, Patrick; Herrebout, Wouter

    2013-11-14

    The stereochemistry of all four stereoisomers of tadalafil is determined using vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotatory dispersion (ORD) spectroscopy. By comparing experimentally obtained VCD spectra to computationally simulated ones, the absolute configuration of the enantiomeric pair (6R, 12aR)/(6S, 12aS) can be confidently assigned without prior knowledge of their relative stereochemistry. IR and NMR spectra are used to aid the assignment of the relative stereochemistry. The IR and VCD difference spectra further confirm the assignment of all stereoisomers. ECD and ORD spectra are used to investigate the complementarity of the three chiroptical techniques. VCD spectroscopy itself is found to have the ability to identify diastereoisomers, and simultaneous use of these chiroptical spectroscopic methods and NMR chemical shifts aids in increasing the reliability of stereochemistry assignment of diastereoisomers.

  20. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Sainctavit, Philippe; Ollefs, Katharina; Sikora, Marcin; Filipponi, Adriano; Glatzel, Pieter; Wilhelm, Fabrice; Rogalev, Andrei

    2016-12-01

    X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of  ∼4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.

  1. Calculation of the circular dichroism spectra of carbon monoxy- and deoxy myoglobin: interpretation of a time-resolved circular dichroism experiment.

    PubMed

    Dartigalongue, Thibault; Hache, François

    2005-11-08

    A calculation of the circular dichroism (CD) spectra of carbon monoxy- and deoxy myoglobin is carried out in relation with a time-resolved CD experiment. The calculation is based on the polarizability theory and the parameters are adjusted to fit the experimental absorption and CD spectra. By performing the calculation for intermediate configurations of the protein, we are able to propose an explanation of the CD structure observed on a sub-100 ps time scale. The role of the proximal histidine is, in particular, clearly demonstrated in the first step of the myoglobin relaxation from its liganded to it deliganded form.

  2. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Mankey, G.J.; Willis, R.F.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    We have begun a program to characterize magnetic alloy overlays using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  3. Circular Dichroism in the Photoionization of Nanoparticles from Chiral Compounds

    SciTech Connect

    Paul, J.; Doerzbach, A.; Siegmann, K.

    1997-10-01

    The dichroism in photoemission from chiral molecules is observed for the first time. Particles consisting of chiral molecules are suspended in air and irradiated alternately with right and left circularly polarized uv light. We found a polarization dependence in the total photoelectric current. The asymmetries observed are of the order of 10{sup {minus}2} to 10{sup {minus}3} , as expected from perturbation theory, and reverse their sign when the handedness of the molecules is changed. {copyright} {ital 1997} {ital The American Physical Society}

  4. Fourier transform vibrational circular dichroism of small pharmaceutical molecules

    NASA Astrophysics Data System (ADS)

    Long, Fujin; Freedman, Teresa B.; Nafie, Laurence A.

    1998-06-01

    Fourier transform vibrational circular dichroism (FT-VCD) spectra of the small pharmaceutical molecules propanolol, ibuprofen and naproxen have been measured in the hydrogen stretching and mid-infrared regions to obtain information on solution conformation and to identify markers for absolute configuration determination. Ab initio molecular orbital calculations of low energy conformations, vibrational frequencies and VCD intensities for fragments of the drugs were utilized in interpreting the spectra. Features characteristic of five conformers of propranolol were identified. The weak positive CH stretching VCD signal in ibuprofen and naproxen is characteristic of the S-configuration of the chiral center common to these two analgesics.

  5. Characterization of Co distribution in ZnO by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, Z.; Cao, J. X.

    2013-05-01

    We analyze the electronic and magnetic properties of the various atomic arrangements of Zn1-xCoxO with x = 10% using K-edge x-ray absorption and magnetic circular dichroism spectra from both measurements and first principle calculations. Significantly, the K-edge spectroscopic features of Co are highly sensitive to the local atomic arrangement, and thus can be used as a powerful tool to investigate structural properties of dilute magnetic semiconductors. We clearly showed that defects such as interstitial Co and O vacancy near to substitutional Co are present in the 10% Co doped ZnO sample. The magnetic ordering of ZnO-based diluted magnetic semiconductors is strongly correlated with the presence of oxygen vacancies. Finally, we elucidated the origin of the X-ray magnetic circular dichroism signals.

  6. Dynamic perturbation effects upon the circular dichroism intensity induced in an aggregate of dye chromophores bound to biopolymers

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1980-11-01

    The dynamic perturbation effects of polarizable monomer perturbers upon the circular dichroism intensity arising from absorption transitions of an arbitrary aggregate of dye chromophores bound to a large host polymer are formulated using the linear response theory in the decorrelation approximation, where the interchromophoric retardation phase factors are eliminated by a first-order Taylor expansion which is compatible with the use of the retarded helix selection rules in the long-wavelength approximation. A space-averaged and closed-form formulation of the non-conservative circular dichroism intensity which is perturbed by intensity with the outside perturber transitions is derived in the limit of the weak dynamic perturbation where perturber—perturber interactions are negligible. The relevant formulation is applied in order to investigate the intercalation model dependence of the non-conservative circular dichroism intensity induced at the visible absorption band of proflavine molecules intercalated in either poly(A—T) or poly(G—C).

  7. Nanosecond T-jump experiment in poly(glutamic acid): a circular dichroism study.

    PubMed

    Mendonça, Lucille; Hache, François

    2012-01-01

    Poly(glutamic acid) has been studied with a nanosecond T-jump experiment. A new experimental set-up based on the frequency-quadrupling of an 82 MHz Titanium-Sapphire laser allows rapid CD measurements to be performed. Combining time-resolved absorption and circular dichroism at 204 and 220 nm, we are able to measure precisely the unfolding relaxation time as well as the helical fraction evolution. We show that only CD at 220 nm is relevant to observe the unfolding of an alpha helix whereas no change is observed for CD at 204 nm. Conversely, both absorptions yield information on the dynamics of the process.

  8. Magnetic circular dichroism in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Rogalev, A.; Wilhelm, F.

    2015-12-01

    An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

  9. Enzymatic assay of beta-lactamase using circular dichroism spectropolarimetry.

    PubMed

    Long, D M

    1997-05-01

    A method for measuring the rates of enzymatic hydrolysis of beta-lactam antibiotics based on circular dichroism spectropolarimetry is described. Unhydrolyzed beta-lactam antibiotics have high molar ellipticities, but the hydrolyzed compounds are circular dichroism (CD) inactive in the case of penams or have significantly different CD spectra in the case of cephems. By measuring CD at constant wavelength as a function of time for reaction mixtures containing beta-lactamase and beta-lactam antibiotics, rates of hydrolysis and steady-state enzyme kinetic constants can be derived. The method was applied to measurement of a wide range of enzymatic reaction constants for wild-type and four mutant RTEM-1 beta-lactamases. Compared to the commonly employed assay based on ultraviolet spectroscopy, the new method offers several advantages. These include the ability to measure larger enzymatic Michaelis-Menten constants, less interference from high concentrations of beta-lactamase, higher sensitivity, and potentially less interference from other uv-absorbing components of complex reaction mixtures.

  10. Circular dichroism in drug discovery and development: an abridged review.

    PubMed

    Bertucci, Carlo; Pistolozzi, Marco; De Simone, Angela

    2010-09-01

    Chirality plays a fundamental role in determining the pharmacodynamic and pharmacokinetic properties of drugs, and contributes significantly to our understanding of the mechanisms that lie behind biorecognition phenomena. Circular dichroism spectroscopy is the technique of choice for determining the stereochemistry of chiral drugs and proteins, and for monitoring and characterizing molecular recognition phenomena in solution. The role of chirality in our understanding of recognition phenomena at the molecular level is discussed here via several selected systems of interest in the drug discovery and development area. The examples were selected in order to underline the utility of circular dichroism in emerging studies of protein-protein interactions in biological context. In particular, the following aspects are discussed here: the relationship between stereochemistry and pharmacological activity--stereochemical characterization of new leads and drugs; stereoselective binding of leads and drugs to target proteins--the binding of drugs to serum albumins; conformational transitions of peptides and proteins of physiological relevance, and the stereochemical characterization of therapeutic peptides.

  11. Multiple ligand-binding properties of the lipocalin member chicken alpha1-acid glycoprotein studied by circular dichroism and electronic absorption spectroscopy: the essential role of the conserved tryptophan residue.

    PubMed

    Zsila, Ferenc; Matsunaga, Hisami; Bikádi, Zsolt; Haginaka, Jun

    2006-08-01

    Multiple ligand-binding properties of the 30-kDa chicken alpha(1)-acid glycoprotein (cAGP), a member of the lipocalin protein family, were investigated for the first time by using circular dichroism (CD) and UV/Vis absorption spectroscopy methods. By measuring induced CD (ICD) spectra, high-affinity binding (K(a) approximately 10(5)-10(6) M(-1)) of several drugs, dyes and natural compounds to cAGP was demonstrated including antimalarial agents (quinacrine, primaquine), phenotiazines (chlorpromazine, methylene blue), propranolol, non-steroidal antiinflammatory drugs (ketoprofen, diclofenac), tamoxifen, diazepam, tacrine, dicoumarol, cationic dyes (auramine O, thioflavine T, ethidium bromide), benzo[a]pyrene, L-thyroxine, bile pigments (bilirubin, biliverdin), alkaloids (piperine, aristolochic acid), saturated and unsaturated fatty acids. Analysis of the extrinsic CD spectra with the study of the covalently modified protein and CD displacement experiments revealed that a single Trp26 residue of cAGP conserved in the whole lipocalin family is part of the binding site, and it is essentially involved in the ligand-binding process via pi-pi stacking interaction resulting in the appearance of strong induced CD bands due to the non-degenerate intermolecular exciton coupling between the pi-pi* transitions of the stacked indole ring-ligand chromophore. The finding that cAGP is able to accommodate a broad spectrum of ligands belonging to different chemical classes suggests that its core beta-barrel cavity is unusually wide containing overlapping sub-sites. Significance of these new data in understanding of the ligand-binding properties of other lipocalins, especially that of human AGP, and potential practical applications are briefly discussed. Overall, cAGP serves as a simple, ultimate model to extend our knowledge on ligand-binding properties of lipocalins and to study the role of tryptophan residues in molecular recognition processes.

  12. Thermal lens-circular dichroism detector for high-performance liquid chromatography.

    PubMed

    Xu, M R; Tran, C D

    1990-11-15

    A novel and ultrasensitive chiral detector for high-performance liquid chromatography has been developed. This detector is based on the measurement of circular dichroism of chiral effluents by the thermal lens effect. In this instrument, the chromatographic effluent was sequentially excited by left circularly polarized laser light (LCPL) and right circularly polarized laser light (RCPL); both of these excitation beams were derived from the same argon ion laser whose linearly polarized output was transformed into circularly polarized light by means of a Pockels cell. The heat generated as a consequence of the sample absorption of the LCPL and RCPL was measured by the probe laser beam collinearly overlapping with the two excitation beams. A lock-in amplifier was used to measure the thermal lens-circular dichroism (TL-CD) signal which corresponds to the difference in the thermal lens signals produced by the LCPL and RCPL excitation beams. In addition to its high sensitivity, the advantages of this TL-CD chiral detector include its ability to provide, directly and in real time, information on the chirality (i.e., circular dichroism) and optical purity of chiral samples. A detection limit of 7.2 ng was achieved for (-)-tris(ethylenediamine)cobalt(III) (k' = 0.45) as well as for the (+)-tris(ethylenediamine)cobalt(III) (k' = 1.40) when these two enantiomers were chromatographically separated from the corresponding racemic mixture through the use of bis(mu-d-tartrato)diantiomonate(III) ion pair reversed-phase chromatography. This limit of detection was found by using a 10-microL flow cell and having 5-mm path length and 6-mW excitation laser beam (lambda = 514.5 nm) modulated at 2 Hz.

  13. Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Taihua; Park, Hyun Gyu; Lee, Hee-Seung; Choi, Seong-Ho

    2004-10-01

    Chiral biomolecules conjugated with silver nanoparticles were investigated by circular dichroism (CD) spectroscopy. Silver nanoparticles were prepared by the citrate reduction method and were characterized by UV spectroscopy and TEM. Conjugation of thiol group-containing biomolecules, such as cysteine, glutathione and penicillamine, with silver nanoparticles resulted in the generation of new characteristic CD signals in the region of 240-400 nm, whereas no CD signal changes were found with lysine or glutamine. Association through hydrogen bonding among the biomolecules is considered to be essential for CD signal generation, which was confirmed by experiment with cysteine methyl ester. Interestingly, Au nanoparticles were not found to generate CD signals in the wavelength region tested, indicating that this phenomenon is a unique feature of silver nanoparticles, distinguished from gold nanoparticles.

  14. A novel computational method for comparing vibrational circular dichroism spectra.

    PubMed

    Shen, Jian; Zhu, Chengyue; Reiling, Stephan; Vaz, Roy

    2010-08-01

    A novel method, SimIR/VCD, for comparing experimental and calculated VCD (vibrational circular dichroism) spectra is developed, based on newly defined spectra similarities. With computationally optimized frequency scaling and shifting, a calculated spectrum can be easily identified to match an observed spectrum, which leads to an unbiased molecular chirality assignment. The time-consuming manual band-fitting work is greatly reduced. With (1S)-(-)-alpha-pinene as an example, it demonstrates that the calculated VCD similarity is correlated with VCD spectra matching quality and has enough sensitivity to identify variations in the spectra. The study also compares spectra calculated using different DFT methods and basis sets. Using this method should facilitate the spectra matching, reduce human error and provide a confidence measure in the chiral assignment using VCD spectroscopy.

  15. DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL.

    PubMed

    Réfrégiers, Matthieu; Wien, Frank; Ta, Ha Phuong; Premvardhan, Lavanya; Bac, Stéphane; Jamme, Frederic; Rouam, Valerie; Lagarde, Bruno; Polack, François; Giorgetta, Jean Luc; Ricaud, Jean Paul; Bordessoule, Michel; Giuliani, Alexandre

    2012-09-01

    The new synchrotron-radiation circular-dichroism (SRCD) endstation on the UV-visible synchrotron beamline DISCO has been commissioned at the SOLEIL synchrotron. The design has been focused on preservation of a high degree of linear polarization at high flux and moderate resolving power covering the vacuum ultraviolet to visible spectral range (125-600 nm). The beam dimensions have been set to 4 mm × 4 mm at 1 nm bandwidth for lower sample degradation. The nitrogen-purged sample chamber fits three types of sample holders accommodating conventional round cell mounting, automated rotation of the samples, as well as a microfluidic set-up. Automated temperature-controlled data collection on microvolumes is now available to the biology and chemistry communities. Macromolecules including membrane proteins, soluble proteins, bio-nanotubes, sugars, DNA and RNAs are now routinely investigated.

  16. Supramolecular Chemistry: Induced Circular Dichroism to Study Host-Guest Geometry

    ERIC Educational Resources Information Center

    Mendicuti, Francisco; Gonzalez-Alvarez, Maria Jose

    2010-01-01

    In this laboratory experiment, students obtain information about the structure of a host-guest complex from the interpretation of circular dichroism measurements. The value and sign of the induced circular dichroism (ICD) on an achiral chromophore guest when it complexes with a cyclodextrin can be related to the guest penetration and its…

  17. Instrument for x-ray magnetic circular dichroism measurements at high pressures

    SciTech Connect

    Haskel, D.; Tseng, Y. C.; Lang, J. C.; Sinogeikin, S.

    2007-08-15

    An instrument has been developed for x-ray magnetic circular dichroism (XMCD) measurements at high pressures and low temperatures. This instrument couples a nonmagnetic copper-beryllium diamond anvil cell featuring perforated diamonds with a helium flow cryostat and an electromagnet. The applied pressure can be controlled in situ using a gas membrane and calibrated using Cu K-edge x-ray absorption fine structure measurements. The performance of this instrument was tested by measuring the XMCD spectra of the Gd{sub 5}Si{sub 2}Ge{sub 2} giant magnetocaloric material.

  18. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.

    PubMed

    Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W

    2014-03-01

    Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is

  19. Theoretical UV circular dichroism of aliphatic cyclic dipeptides.

    PubMed

    Carlson, Kristine L; Lowe, Stephen L; Hoffmann, Mark R; Thomasson, Kathryn A

    2005-06-23

    Four cyclic dipeptides (piperazine-2,5-diones), cyclo(L-Pro-Gly), cyclo(L-Pro-L-Leu), cyclo(L-Ala-L-Ala), and cyclo(L-Pro-L-Ala), were modeled from crystal structure data. Conformations resulting from energy minimization using molecular mechanics were compared with traditional ab initio and density functional theory geometric optimizations for each dipeptide. In all computational cases, the gas phase was assumed. The pi-pi transition feature of the UV circular dichroic (CD) spectra was predicted for each peptide structure via the classical dipole interaction model. The dipole interaction model predicted CD spectra that qualitatively agreed with experiment when MP2 or DFT geometries were used. By coupling MP2 or DFT geometric optimizations with the classical physics method of the dipole interaction model, significantly better CD spectra were calculated than those using geometries obtained by molecular mechanics. Thus, one can couple quantum mechanical geometries with a classical physics model for calculation of circular dichroism.

  20. Optical activity and circular dichroism of plasmonic nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Khosravi Khorashad, Larousse; Liu, Na; Govorov, Alexander O.

    Plasmonic circular dichroism (CD) has offered an efficient spectroscopy method for the electronic, chemical, and structural properties of different types of light active molecules in the subwavelength regime. Among the different chiral geometries of metal nanoparticles utilized by the plasmonic CD spectroscopy, gold nanorods (AuNRs) have shown strong CD signals in the visible frequency range. In this work, we theoretically study the CD signals of AuNR arrangements in order to mimic structures and chemical bonds of chiral biomolecules. In particular, our twisted three-AuNR geometries resemble a molecular structure of tartaric acid. This molecule played an important role in the discovery of chemical chirality. In our study, we show that the strength of CD signals changes dramatically by tuning the interparticle distances and angles. Since the CD signals are typically weak, we develop reliable computational approaches to calculate the plasmonic CD. Manipulating interparticle distances, size, and molecular bond angles result in full control over peak positions, handedness, and positive and negative bands which are observed in the CD spectra. This work has been supported under the grant from Volkswagen Foundation. We also acknowledge the financial support of Condensed Matter and Surface Science program of Ohio University.

  1. Structures of plant viruses from vibrational circular dichroism.

    PubMed

    Shanmugam, Ganesh; Polavarapu, Prasad L; Kendall, Amy; Stubbs, Gerald

    2005-08-01

    Vibrational circular dichroism (VCD) spectra in the amide I and II regions have been measured for viruses for the first time. VCD spectra were recorded for films prepared from aqueous buffer solutions and also for solutions using D(2)O buffers at pH 8. Investigations of four filamentous plant viruses, Tobacco mosaic virus (TMV), Papaya mosaic virus, Narcissus mosaic virus (NMV) and Potato virus X (PVX), as well as a deletion mutant of PVX, are described in this paper. The film VCD spectra of the viruses clearly revealed helical structures in the virus coat proteins; the nucleic acid bases present in the single-stranded RNA could also be characterized. In contrast, the solution VCD spectra showed the characteristic VCD bands for alpha-helical structures in the coat proteins but not for RNA. Both sets of results clearly indicated that the coat protein conformations are dominated by helical structures, in agreement with earlier reports. VCD results also indicated that the coat protein structures in PVX and NMV are similar to each other and somewhat different from that of TMV. The present study demonstrates the feasibility of measuring VCD spectra for viruses and extracting structural information from these spectra.

  2. Circular dichroism study of the carbohydrate-modified opioid peptides

    NASA Astrophysics Data System (ADS)

    Horvat, Štefica; Otvos, Laszlo; Urge, Laszlo; Horvat, Jaroslav; Čudić, Mare; Varga-Defterdarović, Lidija

    1999-09-01

    The conformational preferences of enkephalins and the related glycoconjugates in which free or protected carbohydrate moieties were linked to the opioid peptides through an ether, ester or amide bond were investigated by circular dichroism spectroscopy in water, trifluoroethanol and water-trifluoroethanol mixtures. The analysis of the spectra revealed that the conformation of the enkephalin molecule is very sensitive to slight changes in the peptide structure around the C-terminal region. It was found that the type II β-turn structures are populated in N-terminal tetrapeptide enkephalin fragment, while leucine-enkephalin amide feature a type I (III) β-turn structure in solution. Incorporation of the sugar moiety into opioid peptide compound did not significantly influence the overall conformation of the peptide backbone, although minor intensity changes may reflect shifts in the population of the different turn systems. These small structural alterations can be responsible for the receptor-subtype selectivity of the various carbohydrate-modified enkephalin analogs.

  3. Induced circular dichroism of polyoxometalates via electrostatic encapsulation with chiral organic cations.

    PubMed

    Wang, Yizhan; Shi, Lei; Yang, Yang; Li, Bao; Wu, Lixin

    2014-09-21

    To explore the principle of chiral induction in inorganic clusters, chiral organic cations with two stereocenters, R- and S-BPEA, are used to encapsulate a series of polyoxometalates (POMs) bearing different structures and transition absorption bands in aqueous solution, constructing a series of chiral supramolecular complexes. Due to the induction of chiral organic cations, POMs possessing both chiral and achiral structures show an induced circular dichroism (ICD) effect. ICD signals in the absorption bands corresponding to ligand to metal charge transfer (LMCT) transitions, d-d transitions and intervalence charge transfer (IVCT) transitions are observed for different complexes. Moreover, the ICD of the POMs exhibits a direct correlation with the degree of POM distortion and the distance between the chiral center and the POM surface. The encapsulation of POMs with chiral organic cations via electrostatic interactions provides a facile and effective method for constructing optically pure POM-based materials.

  4. Circular dichroism of a finite number of identical chromophores in a helical arrangement.

    PubMed

    Dick, Bernhard

    2011-06-06

    Compact expressions to calculate the transition energies, absorption line strengths, and rotational line strengths of circular dichroism for the excitonic states in a helical arrangement of N identical chromophores are presented. The absorption spectrum A(ν) and the CD spectrum C(ν) are given in terms of the same function G(ν,α) as A(ν) = a(1)G(ν,0) + a(2)G(ν,α), C(ν) = (s(1) - s(2))G(ν,α) + s(3)(d/dα)G(ν,α). The function G(ν,α) depends only on the helical angle α and the number N of interacting chromophores. An analytical expression can be given when only next-neighbor interactions are considered. All other structural parameters of the system (e.g. orientation of transition dipoles and the translation vector of the helix) enter only into the prefactors a(j) and s(j).

  5. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials

    PubMed Central

    Khanikaev, A. B.; Arju, N.; Fan, Z.; Purtseladze, D.; Lu, F.; Lee, J.; Sarriugarte, P.; Schnell, M.; Hillenbrand, R.; Belkin, M. A.; Shvets, G.

    2016-01-01

    Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating. PMID:27329108

  6. Synchrotron radiation circular dichroism spectroscopy applied to metmyoglobin and a 4-alpha-helix bundle carboprotein.

    PubMed

    Thulstrup, Peter W; Brask, Jesper; Jensen, Knud J; Larsen, Erik

    2005-05-01

    The novel technique, synchrotron radiation-based circular dichroism (SR-CD), has been applied to the study of metmyoglobin and a carboprotein (carbohydrate-based peptide with protein tertiary structure) with 4-alpha-helix bundle structure, as well as a carbopeptide (carbohydrate-based peptide) with a truncated peptide sequence. The use of synchroton radiation (SR) enabled circular dichroism (CD) measurements in the vacuum ultraviolet (VUV) down to 168 nm in D(2)O and 160 nm in 2,2,2-trifluoroethanol (TFE). The band shape in the CD spectra in the low wavelength region was studied, comparing samples with two types of alpha-helical tertiary structure, namely the globin fold and the 4-alpha-helix bundle motif. No significant differences were found between the CD spectra of the alpha-helical samples (metmyoglobin and carboprotein) in D(2)O solution. The use of 2,2,2-TFE (TFE) as solvent clearly alters the VUV CD but the two samples have very similar CD spectra. The solvent-induced denaturing of metmyoglobin in TFE was observed using absorption and CD spectroscopy of the Soret band, with results indicating heme release. The VUV spectrum of TFE-denatured metmyoglobin exhibits dramatic differences in comparison with previous studies of the native enzyme in aqueous solution. The implications of this observation are discussed.

  7. Circular dichroism of cholesteric polymers and the orbital angular momentum of light

    SciTech Connect

    Loeffler, W.; Woerdman, J. P.; Broer, D. J.

    2011-06-15

    We explore experimentally if light's orbital angular momentum (OAM) interacts with chiral nematic polymer films. Specifically, we measure the circular dichroism of such a material using light beams with different OAM. We investigate the case of strongly focused, nonparaxial light beams, where the spatial and polarization degrees of freedom are coupled. Within the experimental accuracy, we cannot find any influence of the OAM on the circular dichroism of cholesteric polymers.

  8. Experimental demonstration of the microscopic origin of circular dichroism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady B.

    2016-09-01

    Fully two-dimensional metamaterials, also known as metasurfaces comprised of planar-chiral plasmonic metamolecules that are just nanometers thick, have been shown to exhibit chiral dichroism in transmission. The origin of the resulting circular dichroism is rather subtle. Theoretical calculations indicate that this surprising effect relies on finite non-radiative (Ohmic) losses of the metasurface. In the absence of such losses on the nanoscale, the chiral dichroism in transmission (CDT) defined as the difference between the transmission coefficients of the RCP and LCP waves, must identically vanish. This surprising theoretical prediction has never been experimentally verified because of the challenge of measuring non-radiative loss on the nanoscale. We use a combination of nanoscale characterization techniques to demonstrate that the RCP and LCP states of the incident light produce drastically different distributions of optical energy and Ohmic heat dissipation in the two-dimensional chiral nanoantennas, thereby producing a strong chiral dichroism in absorption (CDA). A planar-chiral metasurface, along with its chiral enantiomer, was designed to maximize the CDA in mid-IR range. The CDA gives rise to the CDT observed experimentally in the far-field measurements. We then use scattering-type near-field scanning optical microscopy to map the optical energy distribution on the nanoantennas and their enantiomers in response to the RCP and LCP light. Photo-expansion microscopy, also known as AFM-IR, was then utilized to experimentally demonstrate drastically different Ohmic heating of the nanoantennas under RCP and LCP light illumination. In collaboration with: A.B.Khanikaev, N.Arju, Z.Fan, D.Purtseladze, F.Lu, J.Lee, P.Sarriugarte, M.Schnell, R.Hillenbrand, M.A.Belkin

  9. Characterization of the Cu(Π) and Zn(Π) binding to the Amyloid-β short peptides by both the Extended X-ray Absorption Fine Structure and the Synchrotron Radiation Circular Dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyin; Sun, Shuaishuai; Xu, Jianhua; Zhang, Jing; Huang, Yan; Zhang, Bingbing; Tao, Ye

    2013-04-01

    Alzheimer's disease (AD) is a progressive and devastating neurodegenerative pathology, clinically characterized by dementia, cognitive impairment, personality disorders and memory loss. It is generally accepted that, misfolding of Aβ peptides is the key element in pathogenesis and the secondary structure of Aβ can be changed to major β-strand with reasons unknown yet. Many studies have shown that the misfolding may be linked with some biometals, mainly copper and zinc ions. To characterize interactions of Aβ and metal ions, we utilized both the extended X-ray fine structure spectroscopy (EXAFS) and the synchrotron radiation circular dichroism spectroscopy (SRCD). Aβ (13-22), Aβ (13-21), Aβ (E22G) and Aβ(HH-AA) were selected to study the mechanism of copper and zinc binding to Aβ. We found that Cu interaction with H13 and H14 residues led to the disappearance of the PPΠ, while the Cu binding E22 residue caused a remarkable conformation change to β-sheet enrichment. The Zn ion, in contrast, made little effect on the conformation and it coordinated to only one histidine (H residue) or not.

  10. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  11. Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2004-03-01

    The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.

  12. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    SciTech Connect

    Nunes, J.A.; Tong, W.G.; Chandler, D.W.; Rahn, L.A.

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  13. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  14. Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Liu, Wei; Sun, Ye; Yang, Xin-Ling; Sun, Ying; Zhang, Li

    2012-01-01

    Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 10 4 M -1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.

  15. Conformational changes in photoexcited (R)-(+)-1,1'-bi-2-naphthol studied by time-resolved circular dichroism.

    PubMed

    Niezborala, Claire; Hache, François

    2008-09-24

    Conformational changes following photoexcitation of ( R)-(+)-1,1'-bi-2-naphthol are studied with a time-resolved circular dichroism (CD) experiment. Two wavelengths are investigated. For lambda = 237 nm, we observe a bleaching of the ground-state absorption and a transient CD structure. Thanks to a coupled-oscillator calculation, we can attribute this effect to a decrease of the dihedral angle. For lambda = 245 nm, excited-state absorption and CD are observed. All these effects are solvent-dependent. In particular, it is shown that dynamics is slower in a protic solvent, which is attributed to hydrogen-bonding of the hydroxy groups with the solvent.

  16. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    PubMed Central

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  17. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  18. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    PubMed Central

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-01-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species. PMID:27703139

  19. Acid-Base Titration of (S)-Aspartic Acid: A Circular Dichroism Spectrophotometry Experiment

    NASA Astrophysics Data System (ADS)

    Cavaleiro, Ana M. V.; Pedrosa de Jesus, Júlio D.

    2000-09-01

    The magnitude of the circular dichroism of (S)-aspartic acid in aqueous solutions at a fixed wavelength varies with the addition of strong base. This laboratory experiment consists of the circular dichroism spectrophotometric acid-base titration of (S)-aspartic acid in dilute aqueous solutions, and the use of the resulting data to determine the ionization constant of the protonated amino group. The work familiarizes students with circular dichroism and illustrates the possibility of performing titrations using a less usual instrumental method of following the course of a reaction. It shows the use of a chiroptical property in the determination of the concentration in solution of an optically active molecule, and exemplifies the use of a spectrophotometric titration in the determination of an ionization constant.

  20. Ab initio study of the one- and two-photon circular dichroism of R-(+)-3-methyl-cyclopentanone

    NASA Astrophysics Data System (ADS)

    Rizzo, Antonio; Lin, Na; Ruud, Kenneth

    2008-04-01

    One- and two-photon circular dichroism spectra of R-(+)-3-methyl-cyclopentanone, a system that has been the subject of recent experimental studies of (2+1) resonance-enhanced multiphoton ionization circular dichroism, have been calculated with an origin-invariant density functional theory approximation in the region of the lowest electronic excited states, both for the gas phase and for a selection of solvents. A polarizable continuum model is used in the calculations performed on the solvated system. Two low-lying conformers are analyzed, and a comparison of the intensities and characteristic features is made with the corresponding two-photon absorption for each species, also for the Boltzmann-averaged spectra. The effect of the choice of geometry, basis set, and exchange-correlation functional is carefully analyzed. It is found that a density functional theory approach using the Coulomb attenuating method variant of Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals with correlation-consistent basis sets of double-zeta quality can reproduce the experimental electronic circular dichroism spectra very well. The features appearing in experiment are characterized in terms of molecular excitations, and the differences in the response of each state in the one- and two-photon processes are highlighted.

  1. Vibrational Circular Dichroism (VCD) Reveals Subtle Conformational Aspects and Intermolecular Interactions in the Carnitine Family.

    PubMed

    Mazzeo, Giuseppe; Abbate, Sergio; Longhi, Giovanna; Castiglioni, Ettore; Villani, Claudio

    2015-12-01

    Vibrational circular dichroism spectra (VCD) in the mid-IR region and electronic circular dichroism (ECD) spectra for three carnitine derivatives in the form of hydrochloride salts were recorded in deuterated methanol solutions. Density Functional Theory calculations help one to understand the significance of the observed VCD bands. VCD and ECD spectra are informative about the absolute configuration of the molecule, but VCD data reveal also some conformational aspects in the N,N,N-trimethyl moiety and inform us about intermolecular interactions gained from the carbonyl stretching region for the acyl substituted carnitines.

  2. Isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution

    PubMed Central

    Kanematsu, Yusuke; Kamiya, Yukiko; Matsuo, Koichi; Gekko, Kunihiko; Kato, Koichi; Tachikawa, Masanori

    2015-01-01

    H/D isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution has been analyzed by multicomponent density functional theory calculations using the polarizable continuum model. By comparing the computational spectra with the corresponding experimental spectrum obtained with a vacuum-ultraviolet circular dichroism spectrophotometer, it was demonstrated that the isotope effect provides insights not only into the isotopic difference of the intramolecular interactions of the solutes, but also into that of the solute–solvent intermolecular interaction. PMID:26658851

  3. Circular Dichroism of Carotenoids in Bacterial Light-Harvesting Complexes: Experiments and Modeling

    PubMed Central

    Georgakopoulou, S.; van Grondelle, R.; van der Zwan, G.

    2004-01-01

    In this work we investigate the origin and characteristics of the circular dichroism (CD) spectrum of rhodopin glucoside and lycopene in the light-harvesting 2 complex of Rhodopseudomonas acidophila and Rhodospirillum molischianum, respectively. We successfully model their absorption and CD spectra based on the high-resolution structures. We assume that these spectra originate from seven interacting transition dipole moments: the first corresponds to the 0-0 transition of the carotenoid, whereas the remaining six represent higher vibronic components of the S2 state. From the absorption spectra we get an estimate of the Franck-Condon factors of these transitions. Furthermore, we investigate the broadening mechanisms that lead to the final shape of the spectra and get an insight into the interaction energy between carotenoids. Finally, we examine the consequences of rotations of the carotenoid transition dipole moment and of deformations in the light-harvesting 2 complex rings. Comparison of the modeled carotenoid spectra with modeled spectra of the bacteriochlorophyll QY region leads to a refinement of the modeling procedure and an improvement of all calculated results. We therefore propose that the combined carotenoid and bacteriochlorophyll CD can be used as an accurate reflection of the overall structure of the light-harvesting complexes. PMID:15326029

  4. A Simple Spreadsheet Program to Simulate and Analyze the Far-UV Circular Dichroism Spectra of Proteins

    ERIC Educational Resources Information Center

    Abriata, Luciano A.

    2011-01-01

    A simple algorithm was implemented in a spreadsheet program to simulate the circular dichroism spectra of proteins from their secondary structure content and to fit [alpha]-helix, [beta]-sheet, and random coil contents from experimental far-UV circular dichroism spectra. The physical basis of the method is briefly reviewed within the context of…

  5. Circular Dichroism Investigation of Dess-Martin Periodinane Oxidation in the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Reed, Nicole A.; Rapp, Robert D.; Hamann, Christian S.; Artz, Pamela G.

    2005-01-01

    Dess-Martin periodinane oxidation is an experiment that provides an avenue to the introduction of Circular Dichroism (CD) spectroscopy in organic chemistry curriculum as a diagnostic tool for examination of the results of a familiar reaction, and absolute configuration. From the experiment, students increased their understanding of CD theory and…

  6. Protein Circular Dichroism Data Bank (PCDDB): data bank and website design.

    PubMed

    Whitmore, Lee; Janes, Robert W; Wallace, B A

    2006-06-01

    The Protein Circular Dichroism Data Bank (PCDDB) is a new deposition data bank for validated circular dichroism spectra of biomacromolecules. Its aim is to be a resource for the structural biology and bioinformatics communities, providing open access and archiving facilities for circular dichroism and synchrotron radiation circular dichroism spectra. It is named in parallel with the Protein Data Bank (PDB), a long-existing valuable reference data bank for protein crystal and NMR structures. In this article, we discuss the design of the data bank structure and the deposition website located at http://pcddb.cryst.bbk.ac.uk. Our aim is to produce a flexible and comprehensive archive, which enables user-friendly spectral deposition and searching. In the case of a protein whose crystal structure and sequence are known, the PCDDB entry will be linked to the appropriate PDB and sequence data bank files, respectively. It is anticipated that the PCDDB will provide a readily accessible biophysical catalogue of information on folded proteins that may be of value in structural genomics programs, for quality control and archiving in industrial and academic labs, as a resource for programs developing spectroscopic structural analysis methods, and in bioinformatics studies.

  7. Theoretical Calculation of Electronic Circular Dichroism of a Hexahydroxydiphenoyl-Containing Flavanone Glycoside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time-dependent density functional theory (TDDFT) was employed for theoretical calculation of electronic circular dichroism (ECD) of a hexahydroxydiphenoyl (HHDP)-containing flavanone glycoside, mattucinol-7-O-[4'',6''-O-(aS)-hexahydroxydiphenoyl]-ß-d-glucopyranoside (2). It identified the roles of t...

  8. NIR-VCD, vibrational circular dichroism in the near-infrared: experiments, theory and calculations.

    PubMed

    Abbate, Sergio; Castiglioni, Ettore; Gangemi, Fabrizio; Gangemi, Roberto; Longhi, Giovanna

    2009-01-01

    The first well documented experiments of Near Infrared Vibrational Circular Dichroism (NIR-VCD) were performed around 1975. We review the thirty year history of NIR-VCD, encompassing both instrumental development and theoretical/computational methods that allow interpretation of experimental spectra, harvesting useful structural information therefrom. We hope to stimulate interest in this still scarcely explored spectroscopy of chiral molecules.

  9. Determination of Myoglobin Stability by Circular Dichroism Spectroscopy: Classic and Modern Data Analysis

    ERIC Educational Resources Information Center

    Mehl, Andrew F.; Crawford, Mary A.; Zhang, Lei

    2009-01-01

    Few laboratory procedures describe the use of circular dichroism (CD) at the undergraduate level. To increase the number of laboratory exercises using CD, a thermal denaturation study of myoglobin using CD is described to assess protein stability. Values obtained from a more classic linear data analysis approach are consistent with data analyzed…

  10. Electrically induced circular dichroism of multi-domain layers of a long-pitch cholesteric liquid crystal

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitry D.; Sherman, Maria M.; Yakovlev, Dmitry A.

    2014-01-01

    Circular dichroism is typical of cholesteric materials with a cholesteric pitch of the order of light wavelength, where it is connected with selective reflection of one of the circularly polarized components of light. In this work we report, for the first time, on our observations of circular dichroism on multi-domain layers of a nonabsorbing cholesteric LC material whose natural cholesteric pitch is much larger than the wavelength of incident light. It is demonstrated that the degree of manifestation of the circular dichroism depends heavily on the LC layer thickness, voltage applied to the layer, and wavelength.

  11. Multiphoton ionization and circular dichroism: new experimental approach and application to natural products.

    PubMed

    Logé, Christoph; Boesl, Ulrich

    2011-07-11

    Enantio-sensitive laser mass spectrometry is the combination of multiphoton ionization by circularly polarized laser light with mass spectrometric detection of ions. The method has been developed as a tool for the fast investigation of chiral molecules in sample mixtures without any preceding separation and offers many new experimental possibilities. The main difficulties of the detection of circular dichroism in this way arise from systematic and statistical deviations. Herein, we report the newest approach to overcome these problems using a so-called twin-peak ion source, back-reflection of the laser light, and reference substances. By these means, the detection limit for circular dichroism can be lowered from the percent to the per-mill range. The capabilities of the new setup are demonstrated by the investigation of several natural products.

  12. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal

    SciTech Connect

    Takahashi, S.; Ota, Y.; Tatebayashi, J.; Tajiri, T.; Iwamoto, S.; Arakawa, Y.

    2014-08-04

    Circular dichroism covering the telecommunication band is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC). We design a rotationally stacked woodpile PhC structure where neighboring layers are rotated by 60° and three layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. Due to the large contrast of refractive indices between GaAs and air, the experimentally obtained circular dichroism extends over a wide wavelength range, with the transmittance of right-handed circularly polarized incident light being 85% and that of left-handed light being 15% at a wavelength of 1.3 μm. The obtained results show good agreement with numerical simulations.

  13. Circular dichroism and superdiffusive transport at the surface of BiTeI.

    PubMed

    Mauchain, J; Ohtsubo, Y; Hajlaoui, M; Papalazarou, E; Marsi, M; Taleb-Ibrahimi, A; Faure, J; Kokh, K A; Tereshchenko, O E; Eremeev, S V; Chulkov, E V; Perfetti, L

    2013-09-20

    We investigate the electronic states of BiTeI after the optical pumping with circularly polarized photons. Our data show that photoexcited electrons reach an internal thermalization within 300 fs of the arrival of the pump pulse. Instead, the dichroic contrast generated by the circularly polarized light relaxes on a time scale shorter than 80 fs. This result implies that orbital and spin polarization created by the circular pump pulse rapidly decays via manybody interaction. The persistent dichroism at longer delay times is due to the helicity dependence of superdiffussive transport. We ascribe it to the lack of inversion symmetry in an electronic system far from equilibrium conditions.

  14. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frömter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grützmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  15. Circular dichroism and polarized fluorescence characteristics of blue-green algal allophycocyanins

    SciTech Connect

    Canaani, O.D.; Gantt, E.

    1980-06-24

    Allophycocyanin, the terminal pigment in the phycobiliprotein transfer sequence, isolated from dissociated phycobilisomes of Nostoc sp., was fractionated on calcium phosphate columns into four spectral forms: APC I, II, III, and B. These forms had distinctive isoelectric points of 5.15, 4.68, 4.82, and 4.98, respectively. The APC forms differed in their secondary structure as suggested by the varying percentages of their ..cap alpha.. helix and ..beta..-pleated sheets. APC II and III are short-emitting forms with a fluorescence maximum at 660 nm, while APC I and B are long-emitting forms with a maximum at 681 nm. The maximum of APC I and B at -196/sup 0/C in 0.1 M phosphate and 20% glycerol shifted to 688 nm. Fluorescence polarization spectra suggest that there are at least two groups of chromophores responsible for the absorption of APC I and similarly of APC B. In APC II and III, the fluorescence was mostly depolarized. Circular dichroism revealed extensive positive and negative ellipticity band multiplicities in the chromophore absorption region of APC I and B, but not in APC II and III. Two main CD extrema in APC B, a negative band and a positive band, are probably the result of exciton coupling of phycocyanobilin chromophores absorbing at longer wavelength. In APC I three different peaks are revealed in the absorption spectrum and four ellipticity bands in the CD spectrum at -196/sup 0/C. These can best be explained as being due to the combined interactions of the chromophore with the protein and exciton coupling between chromophores.

  16. X-ray magnetic circular dichroism in (Ge,Mn) compounds: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Tardif, Samuel; Titov, Andrey; Arras, Emmanuel; Slipukhina, Ivetta; Hlil, El-Kébir; Cherifi, Salia; Joly, Yves; Jamet, Matthieu; Barski, André; Cibert, Joël; Kulatov, Erkin; Uspenskii, Yurii A.; Pochet, Pascal

    2014-03-01

    X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L2,3 edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early ab initio studies show that the Density Functional Theory (DFT) can very well describe the valence band electronic properties but fails to reproduce a characteristic change of sign in the L3 XMCD spectrum of Mn in Ge3Mn5, which is observed in experiments. In this work we demonstrate that this disagreement is partially related to an underestimation of the exchange splitting of Mn 2p core states within the local density approximation. It is shown that the change in sign experimentally observed is reproduced if the exchange splitting is accurately calculated within the Hartree-Fock approximation, while the final states can be still described by the DFT. This approach is further used to calculate the XMCD in different (Ge,Mn) compounds. It demonstrates that the agreement between experimental and theoretical spectra can be improved by combining state of the art calculations for the core and valence states respectively.

  17. Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes.

    PubMed

    Autschbach, Jochen; Jorge, Francisco E; Ziegler, Tom

    2003-05-05

    Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.

  18. UV and circular dichroism thermal lens microscope for integrated chemical systems and HPLC on microchip

    NASA Astrophysics Data System (ADS)

    Mawatari, Kazuma; Kitamori, Takehiko

    2005-09-01

    Thermal lens microscope (TLM) is our original sensitive detector for non-fluorescent molecules in microspace. The principle is based on absorption of light followed by photothermal process. TLM has been successfully applied tosensitive detection on microchip, and TLM enabled various applications combined with microchip technologies. We are now developing HPLC microchips as one of the important separation techniques for analysis and synthesis. For HPLC microchip systems, direct and sensitive UV detection on microchip becomes key technology. Therefore, we extended applicability of TLM from visible to UV light absorbing samples by pulse UV laser excitation (UV-TLM). Quasi- continuous wave (QCW) method was applied for lock-in amplifier detection. By applying UV-TLM for biomolecules separation and detection, about two orders of higher sensitivity was achieved compared with UV spectrophotometer. For synthesis on microchip, recognition and detection of chiral samples become important in pharmaceutical field. Therefore, function of TLM was extended for selective detection of chiral samples by utilizing polarization modulation of excitation beam and resultant circular dichroism of sample (CD-TLM). The chirality of samples was detected selectively on microchip with two orders higher sensitivity than CD spectrophotometer. Finally, we explained the instrumentation using fiber optics and micro lens technology for achieving a miniaturized practical device.

  19. Vibronic coupling effect on circular dichroism spectrum: Carotenoid-retinal interaction in xanthorhodopsin

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.; Balashov, Sergei P.

    2017-03-01

    The role of vibronic coupling of antenna carotenoid and retinal in xanthorhodopsin (XR) in its circular dichroism (CD) spectrum is examined computationally. A vibronic exciton model combined with a transition-density-fragment interaction (TDFI) method is developed, and applied to absorption and CD spectral calculations of XR. The TDFI method is based on the electronic Coulomb and exchange interactions between transition densities for individual chromophores [K. J. Fujimoto, J. Chem. Phys. 137, 034101 (2012)], which provides a quantitative description of electronic coupling energy. The TDFI calculation reveals a dominant contribution of the Coulomb interaction to the electronic coupling energy and a negligible contribution of the exchange interaction, indicating that the antenna function of carotenoid results from the Förster type of excitation-energy transfer, not from the Dexter one. The calculated absorption and CD spectra successfully reproduce the main features of the experimental results, which allow us to investigate the mechanism of biphasic CD spectrum observed in XR. The results indicate that vibronic coupling between carotenoid and retinal plays a significant role in the shape of the CD spectrum. Further analysis reveals that the negative value of electronic coupling directly contributes to the biphasic shape of CD spectrum. This study also reveals that the C6—C7 bond rotation of salinixanthin is not the main factor for the biphasic CD spectrum although it gives a non-negligible contribution to the spectral shift. The present method is useful for analyzing the molecular mechanisms underlying the chromophore-chromophore interactions in biological systems.

  20. Nuclear-Spin-Induced Circular Dichroism in the Infrared Region for Liquids.

    PubMed

    Chen, Fang; Yao, Guo-hua; Zhang, Zhen-lin; Liu, Fan-chen; Chen, Dong-ming

    2015-06-22

    Recently, the nuclear-spin-induced optical rotation (NSOR) and circular dichroism (NSCD) for liquids were discovered and extensively studied and developed. However, so far, nuclear-spin-induced magnetic circular dichroism in the IR region (IR-NSCD) has not been explored, even though all polyatomic molecules exhibit extensive IR spectra. Herein, IR-NSCD is proposed and discussed theoretically. The results indicate that in favorable conditions the IR-NSCD angle may be much larger than the NSOR angle in the UV/Vis region due to a vibrational resonance effect and can be measurable by using the NSOR experiment scheme. IR-NSCD can automatically combine and give NMR spectra and IRCD spectra of the nuclear spin prepolarized samples in liquids, which, in principle, could be developed to become a unique, novel analytical tool.

  1. ValiDichro: a website for validating and quality control of protein circular dichroism spectra

    PubMed Central

    Woollett, Benjamin; Whitmore, Lee; Janes, Robert W.; Wallace, B. A.

    2013-01-01

    Circular dichroism (CD) spectroscopy is widely used in structural biology as a technique for examining the structure, folding and conformational changes of proteins. A new server, ValiDichro, has been developed for checking the quality and validity of CD spectral data and metadata, both as an aid to data collection and processing and as a validation procedure for spectra to be included in publications. ValiDichro currently includes 25 tests for data completeness, consistency and quality. For each test that is done, not only is a validation report produced, but the user is also provided with suggestions for correcting or improving the data. The ValiDichro server is freely available at http://valispec.cryst.bbk.ac.uk/circularDichroism/ValiDichro/upload.html. PMID:23625965

  2. The use of Coulomb-attenuated methods for the calculation of electronic circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Shcherbin, Dmitry; Ruud, Kenneth

    2008-06-01

    We explore different parametrizations of the Coulomb-attenuated method B3LYP functional (CAM-B3LYP) for the calculation of circular dichroism spectra. In order to assess the performance of the different parametrizations, the calculated results are compared with high-level coupled-cluster calculations at the CC2 and CCSD levels of theory. We demonstrate that it is not possible to directly obtain good results both for the excitation energies and the rotational strengths simultaneously for any of the parametrizations of the CAM-B3LYP functional that we have tested. However, using the lowest excited state as a reference instead of the ground state—that is, shifting uniformly all excitation energies—leads to one parametrization which performs better than the others and thus can be recommended for studies of circular dichroism using the CAM-B3LYP functional.

  3. Time-resolved circular dichroism in carbonmonoxy-myoglobin: the central role of the proximal histidine.

    PubMed

    Dartigalongue, Thibault; Hache, François

    2006-05-05

    A calculation of the circular dichroism (CD) spectra of carbonmonoxy- and deoxy-myoglobin is carried out in relation to a time-resolved CD experiment. This calculation allows us to assign a dominant role to the proximal histidine in the definition of the electronic normal modes and to interpret the transient CD structure observed in a strain of the proximal histidine. This strain builds up in 10 ps and relaxes in 50 ps as the protein evolves towards its deoxy form.

  4. X-ray magnetic circular dichroism in Co2FeGa: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Kukusta, D. A.; Antonov, V. N.; Yaresko, A. N.

    2011-08-01

    The electronic structure and x-ray magnetic circular dichroism (XMCD) spectra of the Heusler alloy Co2FeGa were investigated theoretically from first principles, using the fully relativistic Dirac linear MT-orbital (LMTO) band structure method. Densities of valence states, orbital and spin magnetic moments are analyzed and discussed. The origin of the XMCD spectra in the Co2FeGa compound is examined. The calculated results are compared with available experimental data.

  5. Reversible binding of ethacrynic acid to human serum albumin: difference circular dichroism study.

    PubMed

    Bertucci, C; Nanni, B; Salvadori, P

    1999-01-01

    The reversible binding of ethacrynic acid was characterized by a difference circular dichroism method. A 2/1 stoichiometry was determined for the [drug]/[HSA] (human serum albumin) complex. The reversible binding of ethacrynic acid to HSA determines direct competition with ligands that selectivity bind to site II and to the fatty acid site. Furthermore, indirect competition was shown for ligands for site I (anti-cooperative) and to site III (cooperative).

  6. Circular dichroism spectroscopy study of crystalline-to-amorphous transformation in chiral platinum(II) complexes.

    PubMed

    Zhang, Xiao-Peng; Wu, Tao; Liu, Jian; Zhao, Jin-Cheng; Li, Cheng-Hui; You, Xiao-Zeng

    2013-07-01

    Two couples of enantiomeric platinum(II) complexes: Pt(L1a )Cl (1a), Pt(L1b )Cl (1b) and Pt(L1a )(C ≡ C - Ph) (2a), Pt(L1b )(C ≡ C - Ph) (2b) (L1a  = (+)-1,3-di-(2-(4,5-pinene)pyridyl)benzene, L1b  = (-)-1,3-di-(2-(4,5-pinene)pyridyl)benzene) were synthesized and characterized. Their absolute configurations were determined by single crystal X-ray diffraction and further verified by circular dichroism (CD) spectra (including electronic circular dichroism [ECD] and vibrational circular dichroism [VCD]). These complexes show interesting mechanoluminescence and/or vapoluminescence due to crystalline-to-amorphous transformation. The crystalline solids, grinding-induced amorphous powders, and vapor-induced amorphous powders of complexes 2a and 2b were comparatively investigated by solid-state ECD and VCD spectra. The transformation from crystalline solids to amorphous powders was accompanied by significant variances of the spectral feature in both ECD and VCD spectra.

  7. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  8. Correction: Absolute stereochemistry and preferred conformations of urate degradation intermediates from computed and experimental circular dichroism spectra.

    PubMed

    Pipolo, Silvio; Percudani, Riccardo; Cammi, Roberto

    2016-04-14

    Correction for 'Absolute stereochemistry and preferred conformations of urate degradation intermediates from computed and experimental circular dichroism spectra' by Silvio Pipolo et al., Org. Biomol. Chem., 2011, 9, 5149-5155.

  9. The tuning of light-matter coupling and dichroism in graphene for enhanced absorption: Implications for graphene-based optical absorption devices

    NASA Astrophysics Data System (ADS)

    Rakheja, Shaloo; Sengupta, Parijat

    2016-03-01

    The inter-band optical absorption in graphene characterized by its fine-structure constant has a universal value of 2.3% independent of the material parameters. However, for several graphene-based photonic applications, enhanced optical absorption is highly desired. In this work, we quantify the tunability of optical absorption in graphene via the Fermi level, angle of incidence of the incident polarized light, and the dielectric constants of the surrounding dielectric media in which graphene is embedded. The influence of impurities adsorbed on the surface of graphene on the Lorentzian broadening of the spectral function of the density of states is analytically evaluated within the equilibrium Green’s function formalism. In all the cases, we find that absorption of light graphene embedded in dielectric medium is significantly higher than 2.3%. We also compute the differential absorption of right and left circularly-polarized light in graphene that is uniaxially and optically strained. The preferential absorption or circular dichroism is investigated for armchair and zigzag strain and the interplay of k-space and velocity anisotropy is examined. Finally, we relate circular dichroism to the Berry curvature of gapped graphene and explain the connection to parameters that define the underlying Hamiltonian.

  10. Magnetic circular dichroism in the ion yield of polarized chromium atoms at the 2p edge

    SciTech Connect

    Pruemper, G.; Viefhaus, J.; Becker, U.; Kroeger, S.; Mueller, R.; Zimmermann, P.; Martins, M.

    2003-09-01

    The effect of magnetic dichroism in the partial and total ion yield of chromium, i.e., the absorption of polarized chromium vapor was observed in the gas phase. The measurements were performed at the 2p edge and at photon energies above the 2p edge. The structure of the dichroism at the 2p edge can be understood by including the coupling of the 2p hole with the 3d and 4s shells. Our experimental results for the dichroism at the 2p edge are similar to results of solid-state experiments. Implications for the sum rules used as a standard tool to calculate the spin and orbital momentum are discussed.

  11. Terahertz Circular Dichroism Spectroscopy: A Potential Approach to the In Situ Detection of Life's Metabolic and Genetic Machinery

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Ramian, Gerald J.; Galan, Jhenny F.; Savvidis, Pavlos G.; Scopatz, Anthony Michael; Birge, Robert R.; Allen, S. James; Plaxco, Kevin W.

    2003-11-01

    We propose a terahertz (far-infrared) circular dichroism-based life-detection technology that may provide a universal and unequivocal spectroscopic signature of living systems regardless of their genesis. We argue that, irrespective of the specifics of their chemistry, all life forms will employ well-structured, chiral, stereochemically pure macromolecules (>500 atoms) as the catalysts with which they perform their metabolic and replicative functions. We also argue that nearly all such macromolecules will absorb strongly at terahertz frequencies and exhibit significant circular dichroism, and that this circular dichroism unambiguously distinguishes biological from abiological materials. Lastly, we describe several approaches to the fabrication of a terahertz circular dichroism spectrometer and provide preliminary experimental indications of their feasibility. Because terahertz circular dichroism signals arise from the molecular machinery necessary to carry out life's metabolic and genetic processes, this life-detection method differs fundamentally from more well-established approaches based on the detection of isotopic fractionation, "signature" carbon compounds, disequilibria, or other by-products of metabolism. Moreover, terahertz circular dichroism spectroscopy detects this machinery in a manner that makes few, if any, assumptions as to its chemical nature or the processes that it performs.

  12. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA

    PubMed Central

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.

    2015-01-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105

  13. Universality of photoelectron circular dichroism in the photoionization of chiral molecules

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Ferré, A.; Géneaux, R.; Canonge, R.; Descamps, D.; Fabre, B.; Fedorov, N.; Légaré, F.; Petit, S.; Ruchon, T.; Blanchet, V.; Mairesse, Y.; Pons, B.

    2016-10-01

    Photoionization of chiral molecules by circularly polarized radiation gives rise to a strong forward/backward asymmetry in the photoelectron angular distribution, referred to as photoelectron circular dichroism (PECD). Here we show that PECD is a universal effect that reveals the inherent chirality of the target in all ionization regimes: single photon, multiphoton, above-threshold and tunnel ionization. These different regimes provide complementary spectroscopic information at electronic and vibrational levels. The universality of the PECD can be understood in terms of a classical picture of the ionizing process, in which electron scattering on the chiral potential under the influence of a circularly polarized electric field results in a strong forward/backward asymmetry.

  14. An X-ray magnetic circular dichroism study of the interface Magnetism in titanate Heterostructures

    NASA Astrophysics Data System (ADS)

    Salluzzo, Marco; CNR-SPIN Team

    2014-03-01

    The 2D-electron system (2DES) created at the interface between LaAlO3 and SrTiO3 have attracted strong interest in recent years. This system shows an intriguing inversion the Ti3d bands hierarchy at the interface respect the bulk, and some reports even suggested coexistence between ferromagnetism and superconductivity. By using x-ray magnetic circular dichroism we show that oxygen vacancies induce magnetic interfacial localized Ti3 + states, which couple to the 2DES, with a negative exchange interaction. The magnetic dichroism signal is quenched in standard LAO/STO interfaces annealed in high oxygen pressure after the deposition and showing a homogeneous superconducting ground state, suggesting a decisive role of oxygen vacancies in the magnetism of these oxide interfaces.

  15. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  16. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGES

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  17. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    SciTech Connect

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw -Wai; Rose, Volker

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  18. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  19. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  20. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  1. Measurement of circular dichroism dynamics in a nanosecond temperature-jump experiment.

    PubMed

    Khuc, Mai-Thu; Mendonça, Lucille; Sharma, Sapna; Solinas, Xavier; Volk, Martin; Hache, François

    2011-05-01

    The use of a fast temperature jump (T-jump) is a very powerful experiment aiming at studying protein denaturation dynamics. However, probing the secondary structure is a difficult challenge and rarely yields quantitative values. We present the technical implementation of far-UV circular dichroism in a nanosecond T-jump experiment and show that this experiment allows us to follow quantitatively the change in the helical fraction of a poly(glutamic acid) peptide during its thermal denaturation with 12 ns time resolution.

  2. Chiral imaging of collagen by second-harmonic generation circular dichroism

    PubMed Central

    Lee, H.; Huttunen, M. J.; Hsu, K.-J.; Partanen, M.; Zhuo, G.-Y.; Kauranen, M.; Chu, S.-W.

    2013-01-01

    We provide evidence that the chirality of collagen can give rise to strong second-harmonic generation circular dichroism (SHG-CD) responses in nonlinear microscopy. Although chirality is an intrinsic structural property of collagen, most of the previous studies ignore that property. We demonstrate chiral imaging of individual collagen fibers by using a laser scanning microscope and type-I collagen from pig ligaments. 100% contrast level of SHG-CD is achieved with sub-micrometer spatial resolution. As a new contrast mechanism for imaging chiral structures in bio-tissues, this technique provides information about collagen morphology and three-dimensional orientation of collagen molecules. PMID:23761852

  3. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements.

    PubMed

    Reiter, Kevin; Kühn, Michael; Weigend, Florian

    2017-02-07

    We present an implementation of vibrational circular dichroism (VCD) spectra in TURBOMOLE. We mainly followed the route proposed by Cheeseman [Chem. Phys. Lett. 252, 211 (1996)] and extended the modules for calculating the magnetic response and vibrational frequencies accordingly. The implementation allows for gauge origin invariant employment of effective core potentials, as demonstrated for Co(ppy)3, ppy = 2-Phenylpyridine. In this way, scalar relativistic effects are covered and heavy elements can be treated. Further, with the present implementation molecular symmetry may be efficiently exploited, which makes the calculation of large (symmetric) systems feasible. The calculation of the VCD spectrum of icosahedral C620(2+) is shown as an illustrative application.

  4. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  5. Chiral imaging of collagen by second-harmonic generation circular dichroism.

    PubMed

    Lee, H; Huttunen, M J; Hsu, K-J; Partanen, M; Zhuo, G-Y; Kauranen, M; Chu, S-W

    2013-06-01

    We provide evidence that the chirality of collagen can give rise to strong second-harmonic generation circular dichroism (SHG-CD) responses in nonlinear microscopy. Although chirality is an intrinsic structural property of collagen, most of the previous studies ignore that property. We demonstrate chiral imaging of individual collagen fibers by using a laser scanning microscope and type-I collagen from pig ligaments. 100% contrast level of SHG-CD is achieved with sub-micrometer spatial resolution. As a new contrast mechanism for imaging chiral structures in bio-tissues, this technique provides information about collagen morphology and three-dimensional orientation of collagen molecules.

  6. The connection between robustness angles and dissymmetry factors in vibrational circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Longhi, Giovanna; Tommasini, Matteo; Abbate, Sergio; Polavarapu, Prasad L.

    2015-10-01

    To analyze vibrational circular dichroism (VCD) spectra the angle between the electric and magnetic dipole transition moments was introduced as robustness index. We demonstrate that VCD for each normal mode can be made robust by a suitable translation of the coordinate system origin to a robust point. Normal modes differ in how VCD band robustness varies under translations from these respective robust points. It is shown that variation in robustness of a VCD band depends on a parameter inversely proportional to the dissymmetry factor g. Thus, robustness varies slowly for VCD bands with large dissymmetry factors and vice versa.

  7. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements

    NASA Astrophysics Data System (ADS)

    Reiter, Kevin; Kühn, Michael; Weigend, Florian

    2017-02-01

    We present an implementation of vibrational circular dichroism (VCD) spectra in TURBOMOLE. We mainly followed the route proposed by Cheeseman [Chem. Phys. Lett. 252, 211 (1996)] and extended the modules for calculating the magnetic response and vibrational frequencies accordingly. The implementation allows for gauge origin invariant employment of effective core potentials, as demonstrated for Co(ppy)3, ppy = 2-Phenylpyridine. In this way, scalar relativistic effects are covered and heavy elements can be treated. Further, with the present implementation molecular symmetry may be efficiently exploited, which makes the calculation of large (symmetric) systems feasible. The calculation of the VCD spectrum of icosahedral C6202+ is shown as an illustrative application.

  8. Theoretical study of the X-ray natural circular dichroism of some crystalline amino acids

    NASA Astrophysics Data System (ADS)

    Takahashi, Osamu; Kimoto, Mai; Pettersson, Lars G. M.

    2015-04-01

    X-ray natural circular dichroism (XNCD) spectra of alanine and serine were calculated at the C, N, and O K-edges within the framework of density functional theory. Basis set and gauge dependence of D-alanine were examined as a test case. XNCD spectra of crystalline D-alanine and L-serine were obtained using cluster models of increasing size. The absolute intensities of the XNCD spectra were found to be reduced in the solid phase compared to the gas phase monomers, suggesting that a monomer model is not necessarily a good representation of the solid phase.

  9. Similar structures, different characteristics: circular dichroism of metallic helix arrays with single-, double-, and triple-helical structures.

    PubMed

    Zhang, Peng; Yang, Zhenyu; Zhao, Ming; Wu, Lin; Lu, Zeqin; Cheng, Yongzhi; Gong, Rongzhou; Zheng, Yu; Duan, Jian

    2013-04-01

    We fabricated three-dimensional metallic helix arrays with single-, double-, and triple-helical structures. The transmission performances with the normal incident angle were measured in the microwave frequency of 12-18 GHz. For the single- and double-helical structures, giant circular dichroism with fairly wide bands is observed in the transmission spectra. However, the triple-helical structure does not exhibit circular dichroism. Based on the phenomenon of circular dichroism, the single- and double-helical structures can be used as broadband circular polarizers in the microwave region, but triple-helical ones cannot. The experiments have a good agreement with our simulation results, which were studied by the finite-difference time domain method.

  10. A simple method for correction of circular dichroism spectra obtained from membrane-containing samples.

    PubMed

    Chakraborty, Hirak; Lentz, Barry R

    2012-02-07

    Circular dichroism (CD) spectroscopy is an important technique in structural biology for examining folding and conformational changes of proteins in solution. However, the use of CD spectroscopy in a membrane medium (and also in a nonhomogeneous medium) is limited by (i) high light scattering and (ii) differential scattering of incident left and right circularly polarized light, especially at shorter wavelengths (<200 nm). We report a novel methodology for estimating the distortion of CD spectra caused by light scattering for membrane-bound peptides and proteins. The method is applied to three proteins with very different secondary structures to illustrate the limits of its capabilities when calibrated with a simple soluble peptide ([Ac]ANLKALEAQKQKEQRQAAEELANAK[OH], standard peptide) with a balanced secondary structure. The method with this calibration standard was quite successful in estimating α-helix but more limited when it comes to proteins with very high β-sheet or β-turn content.

  11. Enantiomeric Excess Sensitivity to Below One Percent by Using Femtosecond Photoelectron Circular Dichroism.

    PubMed

    Kastner, Alexander; Lux, Christian; Ring, Tom; Züllighoven, Stefanie; Sarpe, Cristian; Senftleben, Arne; Baumert, Thomas

    2016-04-18

    Photoelectron circular dichroism (PECD) is experimentally investigated with chiral specimens with varying amounts of enantiomeric excess (ee). As a prototype, we measure and analyze the photoelectron angular distribution from randomly oriented fenchone molecules in the gas phase that result from ionization with circularly polarized femtosecond laser pulses. The quantification of these measurements shows a linear dependence with respect to the ee values. In addition, differences in the ee values (denoted as detection limit) of below one percent can be distinguished for nearly enantiopure samples, as well as for almost racemates. In combination with the use of a reference, the assignment of absolute ee values is possible. The present measurement time is a few minutes, but this could be reduced. This table-top laser-based approach should facilitate widespread implementation in chiral analysis.

  12. Stereoselective bile pigment binding to polypeptides and albumins: a circular dichroism study.

    PubMed

    Goncharova, Iryna; Urbanová, Marie

    2008-12-01

    Stereoselective recognition of bilirubin and biliverdin by poly(L-lysine) (PLL), poly(D-lysine) (PDL), and poly(L-arginine) (PLA) and their micelles with dodecanoate ions (C(12)) at different pH has been studied using a combination of vibrational and electronic circular dichroism. Biliverdin has been found to be more sensitive to pH in its complexes with the polypeptides. In acidic media in the complexes with PLL-C(12) and PDL-C(12) the conformation becomes more closed than the characteristic one found at physiological pH. Partial flattening and chiral self-association of bilirubin molecules takes place at higher concentrations with PLL and PDL. For both pigments, inversions of the ECD signals are observed in the systems with PLA at pH > or = 8.5. This study was carried out in order to clarify the role of Lys and Arg residues in pigment binding to serum albumin. The circular dichroism spectra obtained for bilirubin bound to different mammalian serum albumins have been compared with the homology within the IIA principal ligand-binding structural domains. Analysis suggests that the chiroptical properties of the pigment in the complexes with serum albumins depend on the location of Lys and/or Arg at positions 222 and 199 in the binding site.

  13. Advantages of synchrotron radiation circular dichroism spectroscopy to study intrinsically disordered proteins.

    PubMed

    Kumagai, Patricia S; DeMarco, Ricardo; Lopes, Jose L S

    2017-03-03

    The unordered secondary structural content of an intrinsically disordered protein (IDP) is susceptible to conformational changes induced by many different external factors, such as the presence of organic solvents, removal of water, changes in temperature, binding to partner molecules, and interaction with lipids and/or other ligands. In order to characterize the high-flexibility nature of an IDP, circular dichroism (CD) spectroscopy is a particularly useful method due to its capability of monitoring both subtle and remarkable changes in different environments, relative ease in obtaining measurements, the small amount of sample required, and the capability for sample recovery (sample not damaged) and others. Using synchrotron radiation as the light source for CD spectroscopy represents the state-of-the-art version of this technique with feasibility of accessing the lower wavelength UV region, and therefore presenting a series of advantages over conventional circular dichroism (cCD) to monitor a protein conformational behavior, check protein stability, detect ligand binding, and many others. In this paper, we have performed a comparative study using cCD and SRCD methods for investigating the secondary structure and the conformational behavior of natively unfolded proteins: MEG-14 and soybean trypsin inhibitor. We show that the SRCD technique greatly improves the analysis and accuracy of the studies on the conformations of IDPs.

  14. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  15. Synergistic gel formation of xyloglucan/gellan mixtures as sudied by rheology, DSC, and circular dichroism.

    PubMed

    Nitta, Yoko; Kim, Bo S; Nishinari, Katsuyoshi; Shirakawa, Mayumi; Yamatoya, Kazuhiko; Oomoto, Toshio; Asai, Iwao

    2003-01-01

    The gelation behavior of mixtures of tamarind seed xyloglucan (TSX) and sodium form gellan (Na-G) was investigated. The storage and loss shear moduli, G' and G'', of the mixtures showed that a thermoreversible gel was obtained although each polysaccharide alone did not form a gel at experimental conditions. The viscoelastic behavior of the mixtures showed a gel formation of TSX and Na-G induced by synergistic interaction. This synergistic interaction was also revealed by differential scanning calorimetry (DSC) and circular dichroism. Although TSX alone did not show any peak in DSC curves, mixtures with only a small amount of Na-G, which by itself did not show any peak, showed a single peak. With increasing Na-G content, another peak began to appear at the same temperature at which a peak of Na-G alone appeared. Thermally induced changes in circular dichroism of the mixtures were different from those expected from the individual behavior of TSX and Na-G.

  16. Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams

    NASA Astrophysics Data System (ADS)

    Feng, C.; Wang, Z. B.; Lee, S.; Jiao, J.; Li, L.

    2012-05-01

    Recently it was shown by experiments that circular dichroism (CD) can be observed in the metamaterials of non-chiral structures when they were subjected to obliquely incident light (E. Plum, et al., Physical Review Letters 102, 113902, 2009). By far, external chirality simulation was only done for a particle array embedded in a homogenous medium (V. Yannopapas, Optics Letters 34, 5, 2009); no attempt has been made on simulating and modelling of circular dichroism in layered metamaterials (e.g., thin film on substrate structure). In this paper, we present the simulation of CD effect in layered external chiral metamaterials using CST software, theoretically investigate this intriguing phenomenon through a frequency domain finite integration technique, and optimize the metamaterial unit cell configurations (size, periodicity and film thickness) to maximize the CD phenomenon in near-infrared spectrum range. We show that the CD effect can be enhanced by five times using an optimized unit cell configuration, which is more than three times higher than the existing maximum theoretical results. The CD generation mechanism was elaborated with the help of induced surface current distributions.

  17. A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis.

    PubMed

    Nehira, Tatsuo; Ishihara, Kaoru; Matsuo, Koichi; Izumi, Shunsuke; Yamazaki, Takeshi; Ishida, Atsuhiko

    2012-11-15

    We report an improved fluorescence-detected circular dichroism (FDCD)-based analytical method that is useful for probing protein three-dimensional structures. The method uses a novel FDCD device with an ellipsoidal mirror that functions on a standard circular dichroism (CD) spectrometer and eliminates all artifacts. Our experiments demonstrated three important findings. First, the method is applicable to any proteins either by using intrinsic fluorescence derived from tryptophan residues or by introducing a fluorescent label onto nonfluorescent proteins. Second, by using intrinsic fluorescence, FDCD spectroscopy can detect a structural change in the tertiary structure of metmyoglobin due to stepwise denaturation on a change in pH. Such changes could not be detected by conventional CD spectroscopy. Third, based on the typical advantages of fluorescence-based analyses, FDCD measurements enable observation of only the target proteins in a solution even in the presence of other peptides. Using our ellipsoidal mirror FDCD device, we could observe structural changes of fluorescently labeled calmodulin on binding with Ca(2+) and/or interacting with binding peptides. Because FDCD appears to reflect the protein's local structure around the fluorophore, it may provide a useful means for "pinpoint analysis" of protein structures.

  18. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy.

    PubMed

    Matsuo, Koichi; Sakurada, Yoshie; Yonehara, Ryuta; Kataoka, Mikio; Gekko, Kunihiko

    2007-06-01

    To elucidate the structure of denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra from 260 to 172 nm of three proteins (metmyoglobin, staphylococcal nuclease, and thioredoxin) in the native and the acid-, cold-, and heat-denatured states, using a synchrotron-radiation VUVCD spectrophotometer. The circular dichroism spectra of proteins fully unfolded by guanidine hydrochloride (GdnHCl) were also measured down to 197 nm for comparison. These denatured proteins exhibited characteristic VUVCD spectra that reflected a considerable amount of residual secondary structures. The contents of alpha-helices, beta-strands, turns, poly-L-proline type II (PPII), and unordered structures were estimated for each denatured state of the three proteins using the SELCON3 program with Protein Data Bank data and the VUVCD spectra of 31 reference proteins reported in our previous study. Based on these contents, the characteristics of the four types of denaturation were discussed for each protein. In all types of denaturation, a decrease in alpha-helices was accompanied by increases in beta-strands, PPII, and unordered structures. About 20% beta-strands were present even in the proteins fully unfolded by GdnHCl in which beta-sheets should be broken. From these results, we propose that denatured proteins constitute an ensemble of residual alpha-helices and beta-sheets, partly unfolded (or distorted) alpha-helices and beta-strands, PPII, and unordered structures.

  19. Conformational structure of bombesin as studied by vibrational and circular dichroism spectroscopy.

    PubMed

    Carmona, P; Lasagabaster, A; Molina, M

    1995-01-19

    Raman and Fourier transform infrared (FTIR) spectroscopies and circular dichroism (CD) have been applied to investigate the secondary structure of bombesin in the solid state and in phosphate buffer solution (pH 3.8). At concentrations around 10(-5) M, circular dichroism reveals that bombesin exists as an irregular or disordered conformation. However, the secondary structure of the peptide appears to be a mixture of disordered structure and intermolecular beta-sheets in 0.01 M sodium phosphate buffer when the peptide concentrations are higher than around 6.5 mM. The tendency of bombesin to form aggregated beta-sheet species seems to be originated mainly in the sequence of the residues 7-14, as supported by the Raman spectra and beta-sheet propensities (P beta) of the amino-acid residues. It is the hydrophobic force of this amino-acid sequence, and not a salt bridge effect, that is the factor responsible for the formation of peptide aggregates.

  20. Circular dichroism and thermal denaturation studies of subnucleosomes and their relationships to nucleosome structure

    SciTech Connect

    Mencke, A.J.; Rill, R.L.

    1982-01-01

    Chicken erythrocyte chromatin moderately digested with micrococcal nuclease yields several species of nucleosomes and subnucleosomes that are resolved by electrophoresis in the presence of 3 M urea. This report compares the circulr dichroism spectra, thermal denaturation, and certain other properties of chromatosomes (trimmed nucleosomes cores, and four subnucleosomes. One subnucleosome is a partial core lacking an H2a-H2b pair and 40-50 DNA base pairs(bp) from one end. The stoichiometries of the other subnucleosomes, which contain homotypic histones associated with short DNA fragments, are (H3)(H4)/70-80 bp, (H1)/60-70 bp, and (H2a)(H2b)/50-60 bp. The latter subnucleosomes originate from the ends of nucleosome cores. All properties of partial and whole nucleosome cores were nearly identical, indicating that the terminal H2a-H2b pairs do not make binding contacts with the residual core DNA or histones that are critical to the conformation of the remaining core structure. Analyses of histone contributions of the far-UV circular dichroism of subnucleosomes showed that H2a-H2b pairs and H3-H4 pairs in nucleosomes are both nearly 50% ..cap alpha.. helical and that their helix contents do not depend on the nucleosome integrity. These and other results suggest that homotypic histone pairs and the DNA they tightly bind define quasi-independent conformational subdomains within nucleosomes. H3-H4 pairs stabilized and reduced the 275-nm circular dichroism intensity of short DNA fragments much more effectively than H2a-H2b pairs. In addition, H3-H4 pairs stabilized considerably more DNA than predicted for simple electrostatic interactions. H1 also thermally stabilized less effectively than H3-H4 pairs, and modestly increased the 275-nm CD intensity relative to protein-free DNA.

  1. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins

    NASA Astrophysics Data System (ADS)

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin.

  2. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins.

    PubMed

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    2014-05-21

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin.

  3. Room temperature high circular dichroism ultraviolet lasing from planar spiral metal-GaN nanowire cavity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shih, Min-Hsiung

    2016-09-01

    Circularly polarized light and chiroptical effect have received considerable attention in advanced photonic and electronic technologies including optical spintronics, quantum-based optical information processing and communication, and high-efficiency liquid crystal display backlights. Moreover, the development of circularly polarized photon sources has played a major role in circular dichroism (CD) spectroscopy, which is important for analyses of optically active molecules, chiral synthesis in biology and chemistry, and ultrafast magnetization control. However, the conventional collocation of light-emitting devices and additional circular-polarization converters that produce circularly polarized beams makes the setup bulky and hardly compatible with nanophotonic devices in ultrasmall scales. In fact, the direct generation of circularly polarized photons may simplify the system integration, compact the setup, lower the cost of external components, and perhaps enhance the power efficiency. In this work, with the spiral-type metal-gallium nitride (GaN) nanowire cavity, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with decently high degrees of circular polarizations.

  4. X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Baker, A. A.; Harrison, S. E.; Kummer, K.; van der Laan, G.; Hesjedal, T.

    2017-01-01

    Magnetic doping of topological insulators (TIs) is crucial for unlocking novel quantum phenomena, paving the way for spintronics applications. Recently, we have shown that doping with rare earth ions introduces large magnetic moments and allows for high doping concentrations without the loss of crystal quality, however no long range magnetic order was observed. In Dy-doped Bi2Te3 we found a band gap opening above a critical doping concentration, despite the paramagnetic bulk behavior. Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of an in situ cleaved film in the cleanest possible environment. The Dy M4,5 absorption spectra measured with circularly polarized x-rays are fitted using multiplet calculations to obtain the effective magnetic moment. Arrott-Noakes plots, measured by the Dy M5 XMCD as a function of field at low temperatures, give a negative transition temperature. The evaporation of a ferromagnetic Co thin film did not introduce ferromagnetic ordering of the Dy dopants either; instead a lowering of the transition temperature was observed, pointing towards an antiferromagnetic ordering scenario. This result shows that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned along the direction of the applied magnetic field, while the exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically coupled, as in zero applied field.

  5. Theoretical description of circular dichroism in photoelectron angular distributions of randomly oriented chiral molecules after multi-photon photoionization

    NASA Astrophysics Data System (ADS)

    Goetz, R. E.; Isaev, T. A.; Nikoobakht, B.; Berger, R.; Koch, C. P.

    2017-01-01

    Photoelectron circular dichroism refers to the forward/backward asymmetry in the photoelectron angular distribution with respect to the propagation axis of circularly polarized light. It has recently been demonstrated in femtosecond multi-photon photoionization experiments with randomly oriented camphor and fenchone molecules [C. Lux et al., Angew. Chem., Int. Ed. 51, 4755 (2012) and C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013)]. A theoretical framework describing this process as (2+1) resonantly enhanced multi-photon ionization is constructed, which consists of two-photon photoselection from randomly oriented molecules and successive one-photon ionization of the photoselected molecules. It combines perturbation theory for the light-matter interaction with ab initio calculations for the two-photon absorption and a single-center expansion of the photoelectron wavefunction in terms of hydrogenic continuum functions. It is verified that the model correctly reproduces the basic symmetry behavior expected under exchange of handedness and light helicity. When applied to fenchone and camphor, semi-quantitative agreement with the experimental data is found, for which a sufficient d wave character of the electronically excited intermediate state is crucial.

  6. Vibrational circular dichroism in general anisotropic thin solid films: measurement and theoretical approach.

    PubMed

    Buffeteau, Thierry; Lagugné-Labarthet, François; Sourisseau, Claude

    2005-06-01

    In this study, the measurement of the true vibrational circular dichroism (VCD) spectrum is considered from an experimental and theoretical approach for any general anisotropic thin solid sample exhibiting linear as well as circular birefringence (LB, CB) and dichroism (LD, CD) properties. For this purpose, we have made use of a simple model alpha-helix polypeptide, namely, the poly(gamma-benzyl-L-glutamate) or PBLG, reference sample possessing a well-known VCD spectrum and giving rise to slightly oriented films by deposition onto a solid substrate. Also, we have used a different Fourier transform infrared modulation of polarization (PM-FTIR) optical setup with two-channel electronic processing in order to record the PM-VLD and PM-VCD spectra for various sample orientations in its film plane. All the corresponding general relations of the expected intensities in these experiments and the related properly designed calibration measurements were established using the Stokes-Mueller formalism; in addition, the residual birefringence of the optical setup and the transmittance anisotropy of the detector were estimated. From a comparative study of the results obtained in solution and in the solid state, we then propose a simple new experimental procedure to extract the true VCD spectrum of an oriented PBLG thin film: its consists of calculating the half-sum of two spectra recorded at theta and at theta +/- 90 degrees sample orientations. Moreover, the complete linear and circular birefringence and dichroism properties of the ordered PBLG thin film are estimated in the amide I and amide II vibrational regions. This allows us to establish for any sample orientation various theoretical simulations of the VCD spectra that agree nicely with the observed experimental results; this confirms that the measurement of LD and LB is in this case a prerequisite in simulating the true VCD spectrum of a partly oriented anisotropic sample. This validates our combined experimental and

  7. Anisotropic Circular Dichroism Signatures of Oriented Thylakoid Membranes and Lamellar Aggregates of LHCII

    SciTech Connect

    Miloslavina, Y.; Hind, G.; Lambrev, P. H.; Javorfi, T.; Varkonyi, Z.; Karlicky, V.; Wall, J. S.; Garab, G.

    2011-06-12

    In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment-pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while 'psi-type' CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an

  8. Anisotropic Circular Dichroism Signatures of Oriented Thylakoid Membranes and Lamellar Aggregates of LHCII

    SciTech Connect

    Miloslavina Y.; Hind G.; Lambrev, P. H.; Javorfi, T.; Varkonyi, Z.; Karlicky, V.; Wall, J. S.; Garab, G.

    2012-03-01

    In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment-pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while 'psi-type' CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an

  9. Conformational Effects on the Circular Dichroism of Human Carbonic Anhydrase II: A Multilevel Computational Study

    PubMed Central

    Karabencheva-Christova, Tatyana G.; Carlsson, Uno; Balali-Mood, Kia; Black, Gary W.; Christov, Christo Z.

    2013-01-01

    Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions. PMID:23526922

  10. Rotationally Resolved Magnetic Vibrational Circular Dichroism of Hydrogen Chloride and Deuterium Chloride

    NASA Astrophysics Data System (ADS)

    Tam, C. N.; Keiderling, T. A.

    1993-02-01

    The magnetic vibrational circular dichroism (MVCD) spectra of HCI and DCI are presented. The average rotational g-value of H35Cl in the first excited vibrational states was determined to be 0.45 l and 0.449 for the P and R branches, respectively, using moment analysis of the MVCD bandshapes. In addition, the gJ-values of H37Cl, D35Cl, and D37Cl were measured for the first time. Within our experimental error, the gJ-values obtained were consistent with the accepted gJ-values for the ground state of H35Cl and with theoretically calculated gJ-values for the other isotopomers. The results show that MVCD can provide an alternative method to microwave spectroscopy or molecular beam magnetic resonance spectroscopy for determining rotational g-values.

  11. Vitamin E Circular Dichroism Studies: Insights into Conformational Changes Induced by the Solvent's Polarity.

    PubMed

    Marquardt, Drew; Van Oosten, Brad J; Ghelfi, Mikel; Atkinson, Jeffrey; Harroun, Thad A

    2016-12-14

    We used circular dichroism (CD) to study differences in CD spectra between α-, δ-, and methylated-α-tocopherol in solvents with different polarities. CD spectra of the different tocopherol structures differ from each other in intensity and peak locations, which can be attributed to chromanol substitution and the ability to form hydrogen bonds. In addition, each structure was examined in different polarity solvents using the Reichardt index-a measure of the solvent's ionizing ability, and a direct measurement of solvent-solute interactions. Differences across solvents indicate that hydrogen bonding is a key contributor to CD spectra at 200 nm. These results are a first step in examining the hydrogen bonding abilities of vitamin E in a lipid bilayer.

  12. Circular dichroism spectroscopy: An efficient approach for the quantitation of ampicillin in presence of cloxacillin

    NASA Astrophysics Data System (ADS)

    Rahman, Nafisur; Khan, Sumaiya

    2016-05-01

    Ampicillin exhibited a negative and a positive cotton effects on the circular dichroism (CD) spectra in the wavelength range of 200-280 nm. Cloxacillin showed a positive cotton band peaking at 228 nm. Three sensitive, precise and accurate CD spectroscopic methods have been developed for the determination of ampicillin and cloxacillin. Method A was used for the determination of ampicillin in presence of cloxacillin by measuring ellipticity at 206 nm. Method B and C were employed to determine ampicillin and cloxacillin based on evaluation of ellipticity at 233 nm and 228 nm, respectively. Methods A, B and C showed linearity in the concentration range of 10-40 μg mL- 1, 5-40 μg mL- 1 ampicillin and 10-80 μg mL- 1 cloxacillin, respectively. The method A was successfully applied to the determination of ampicillin in commercial dosage forms containing equivalent amount of cloxacillin.

  13. Strong intermolecular exciton couplings in solid-state circular dichroism of aryl benzyl sulfoxides.

    PubMed

    Padula, Daniele; Di Pietro, Sebastiano; Capozzi, Maria Annunziata M; Cardellicchio, Cosimo; Pescitelli, Gennaro

    2014-09-01

    A series of 13 enantiopure aryl benzyl sulfoxides () with different substituents on the two aromatic rings has been previously analyzed by means of electronic circular dichroism (CD) spectroscopy. Most of these compounds are crystalline and their X-ray structure is established. For almost one-half of the series, CD spectra measured in the solid state were quite different from those in acetonitrile solution. We demonstrate that the difference is due to strong exciton couplings between molecules packed closely together in the crystal. The computational approach consists of time-dependent density functional theory (TDDFT) calculations run on "dimers" composed of nearest neighbors found in the lattice. Solid-state CD spectra are well reproduced by the average of all possible pairwise terms. The relation between the crystal space group and conformation, and the appearance of solid-state CD spectra, is also discussed.

  14. Helical Inversion of Gel Fibrils by Elongation of Perfluoroalkyl Chains as Studied by Vibrational Circular Dichroism.

    PubMed

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2016-05-01

    Vibrational circular dichroism (VCD) spectroscopy was applied to gelation by a chiral low-molecular mass weight gelator, N,N'-diperfluoroalkanoyl-1,2-trans-diaminocyclohexane. Attention was focused on the winding effects of (-CF2 )n chains on the gelating ability. For this purpose, a series of gelators were synthesized with perfluoroalkyl chains of different length (n = 6-8). When gelation was studied using acetonitrile as a solvent, the fibrils took different morphologies, depending on the chain length: twisted saddle-like ribbon or helical ribbon from fibril (n = 6) and a helical ribbon from platelet (n = 8). The signs of VCD peaks assigned to the couplet of C=O stretching and to the C-F stretching were also dependent on n, indicating that a gelator molecule changed conformation on elongating perfluoroalkyl chains. A model is proposed for the aggregation modes in fibrils. Chirality 28:361-364, 2016. © 2016 Wiley Periodicals, Inc.

  15. Development of a universal ellipsoidal mirror device for fluorescence detected circular dichroism: elimination of polarization artifacts.

    PubMed

    Nehira, Tatsuo; Tanaka, Katsunori; Takakuwa, Takashi; Ohshima, Chie; Masago, Hisashi; Pescitelli, Gennaro; Wada, Akio; Berova, Nina

    2005-01-01

    We have developed an ellipsoidal mirror fluorescence detected circular dichroism (FDCD) device with enhanced detection sensitivity that eliminates the polarization artifact; this is applicable to samples with strongly polarized fluorescence. The device, JASCO FDCD465, has an ellipsoidal mirror structure with a framework consisting of three mirrors (one elliptical and two plane mirrors) that maximally collects light in the FDCD. All assemblies on the device including the ellipsoidal mirror, cylindrical cell, and photomultiplier tube (PMT) are aligned on the chamber-fitting sample mount as an attachment compatible with a standard CD spectropolarimeter. The new FDCD465 device eliminates the polarization artifact caused by anisotropic distribution of the emitted light. It represents a convenient, reliable, and sensitive FDCD attachment to the JASCO J-800 CD spectrometer series that can be used under both isotropic and photoselected conditions.

  16. Circular dichroism of stem bromelain: a third spectral class within the family of cysteine proteinases.

    PubMed Central

    Arroyo-Reyna, A; Hernandez-Arana, A; Arreguin-Espinosa, R

    1994-01-01

    Two forms of stem bromelain (EC 3.4.22.4) were isolated from commercial, crude and chromatographically purified preparations of the enzyme by means of gel-filtration and cation-exchange liquid chromatography. These forms possess nearly identical secondary and tertiary structures, as judged from their circular dichroism (c.d.) spectra. The spectral characteristics of stem bromelain suggest that this enzyme belongs to the alpha + beta protein class, as other cysteine proteinases do. In agreement with these results, quantitative estimation of secondary structures yielded amounts similar to those for papain and proteinase omega. However, the bromelain c.d. curve is clearly distinguishable from those reported for papain and proteinase omega, on one hand, and that of chymopapain, on the other. Thus, it is apparent that there are at least three types of c.d. spectra associated with the family of cysteine proteinases. PMID:8198520

  17. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy.

    PubMed

    Kane, Avinash S; Hoffmann, Armin; Baumgärtel, Peter; Seckler, Robert; Reichardt, Gerd; Horsley, David A; Schuler, Benjamin; Bakajin, Olgica

    2008-12-15

    We have developed a microfluidic mixer optimized for rapid measurements of protein folding kinetics using synchrotron radiation circular dichroism (SRCD) spectroscopy. The combination of fabrication in fused silica and synchrotron radiation allows measurements at wavelengths below 220 nm, the typical limit of commercial instrumentation. At these wavelengths, the discrimination between the different types of protein secondary structure increases sharply. The device was optimized for rapid mixing at moderate sample consumption by employing a serpentine channel design, resulting in a dead time of less than 200 micros. Here, we discuss the design and fabrication of the mixer and quantify the mixing efficiency using wide-field and confocal epi-fluorescence microscopy. We demonstrate the performance of the device in SRCD measurements of the folding kinetics of cytochrome c, a small, fast-folding protein. Our results show that the combination of SRCD with microfluidic mixing opens new possibilities for investigating rapid conformational changes in biological macromolecules that have previously been inaccessible.

  18. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  19. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism

    PubMed Central

    Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas

    2015-01-01

    The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis. PMID:25960309

  20. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism

    NASA Astrophysics Data System (ADS)

    Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas

    2015-05-01

    The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis.

  1. Vitamin E Circular Dichroism Studies: Insights into Conformational Changes Induced by the Solvent’s Polarity

    PubMed Central

    Marquardt, Drew; Van Oosten, Brad J.; Ghelfi, Mikel; Atkinson, Jeffrey; Harroun, Thad A.

    2016-01-01

    We used circular dichroism (CD) to study differences in CD spectra between α-, δ-, and methylated-α-tocopherol in solvents with different polarities. CD spectra of the different tocopherol structures differ from each other in intensity and peak locations, which can be attributed to chromanol substitution and the ability to form hydrogen bonds. In addition, each structure was examined in different polarity solvents using the Reichardt index—a measure of the solvent’s ionizing ability, and a direct measurement of solvent–solute interactions. Differences across solvents indicate that hydrogen bonding is a key contributor to CD spectra at 200 nm. These results are a first step in examining the hydrogen bonding abilities of vitamin E in a lipid bilayer. PMID:27983631

  2. Chiral Orbital Angular Momentum and Circular Dichroism ARPES in p- and d-orbital Bands

    NASA Astrophysics Data System (ADS)

    Park, Jin-Hong; Han, Jung Hoon

    2012-02-01

    We derive explicit formulas relating the circular dichroism angle-resolved photoemission (CD-ARPES) signal to the existence of nonzero chiral orbital angular momentum (OAM) in the band structure. The existence of nonzero chiral OAM is a generic feature of surface states that break inversion symmetry, as pointed out in several recent articles [1-3]. We propose that CD-ARPES setup is an effective probe of the OAM of quasi-particles occupying the surface states. Explicit formulas for the p- and d-orbital bands are derived to show that the CD-ARPES signal is proportional to the OAM in the momentum space.[4pt] [1] S. R. Park, C. H. Kim, J. Yu, J. H. Han and C. Kim, Phys. Rev. Lett. 107, 156803 (2011).[0pt] [2] S. R. Park et al., arXiv:1103.0805 (2011).[0pt] [3] Choong H. Kim et al., arXiv:1107.3285 (2011).

  3. Rashba splitting in an image potential state investigated by circular dichroism two-photon photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakazawa, T.; Takagi, N.; Kawai, Maki; Ishida, H.; Arafune, R.

    2016-09-01

    We have explored the band splitting and spin texture of the image potential state (IPS) on Au(001) derived from the Rashba-type spin-orbit interaction (SOI) by using angle-resolved bichromatic two-photon photoemission (2PPE) spectroscopy in combination with circular dichroism (CD). The Rashba parameter for the first (n =1 ) IPS is determined to be 48-20+8meV Å , which is consistent with the spin-polarized band structure calculated from the embedded Green's function technique for semi-infinite crystals. The present results demonstrate that bichromatic CD-2PPE spectroscopy is powerful for mapping the spin-polarized unoccupied band structures originating from SOIs in various classes of condensed matter.

  4. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality

    PubMed Central

    Hu, Li; Huang, Yingzhou; Fang, Liang; Chen, Guo; Wei, Hua; Fang, Yurui

    2015-01-01

    In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields. PMID:26538460

  5. Stereochemical study of tolperisone, a muscle relaxant agent, by circular dichroism and ultraviolet spectroscopy.

    PubMed

    Zsila, F; Hollósi, M; Gergely, A

    2000-11-01

    The stereochemistry of tolperisone, a chiral aryl-alkyl basic ketone was investigated by means of circular dichroism (CD) and ultraviolet (UV) spectroscopy. The unusually high optical activity of tolperisone hydrochloride in the n-->pi* region is interpreted by the presence of a chiral conformer in solution. For stereochemical reasons, the C = O group and the aromatic moiety lack coplanarity by forming an inherently dissymetric chromophore, of M helicity. Similar helicity prevails in the crystal phase, according to the solid-state CD spectrum of (-)-tolperisone HCl salt. The chirality rule proposed by Snatzke for nonplanar benzoyl chromophores predicts the absolute configuration of (-)-tolperisone hydrochloride to be R, in agreement with other alpha-methyl-beta-amino-ketones.

  6. Applications of the Cartesian coordinate tensor transfer technique in the simulations of vibrational circular dichroism spectra of oligonucleotides.

    PubMed

    Andrushchenko, Valery; Bouř, Petr

    2010-01-01

    The application of the Cartesian coordinate tensor transfer (CCT) technique for simulations of the IR absorption and vibrational circular dichroism (VCD) spectra of relatively large nucleic acid fragments is demonstrated on several case studies. The approach is based on direct ab initio calculations of atomic tensors, determining molecular properties, for relatively small fragments, and subsequent transfer of these tensors to the larger systems in Cartesian coordinates. This procedure enables precise computations of vibrational spectra for large biomolecular systems, currently with up to several thousands of atoms. The versatile ability of the CCT methods is emphasized on the examples of VCD and IR absorption spectra calculations for B- and Z-forms of DNA, single-, double-, and triple-stranded RNA helices and DNA structures with different base content and sequences. The development and recent improvements of the methodology are followed, including utilization of the constrained normal mode optimization (NMO) strategy and combined quantum mechanics and molecular dynamics simulations. Advantages, drawbacks, and recommendations for future improvements of the CCT method as applied to nucleic acid spectra calculations are discussed.

  7. Cadmium binding studies to the earthworm Lumbricus rubellus metallothionein by electrospray mass spectrometry and circular dichroism spectroscopy

    SciTech Connect

    Ngu, Thanh T.; Sturzenbaum, Stephen R.; Stillman, Martin J. . E-mail: Martin.Stillman@uwo.ca

    2006-12-08

    The earthworm Lumbricus rubellus has been found to inhabit cadmium-rich soils and accumulate cadmium within its tissues. Two metallothionein (MT) isoforms (1 and 2) have been identified and cloned from L. rubellus. In this study, we address the metalation status, metal coordination, and structure of recombinant MT-2 from L. rubellus using electrospray ionization mass spectrometry (ESI-MS), UV absorption, and circular dichroism (CD) spectroscopy. This is the first study to show the detailed mass and CD spectral properties for the important cadmium-containing earthworm MT. We report that the 20-cysteine L. rubellus MT-2 binds seven Cd{sup 2+} ions. UV absorption and CD spectroscopy and ESI-MS pH titrations show a distinct biphasic demetalation reaction, which we propose results from the presence of two metal-thiolate binding domains. We propose stoichiometries of Cd{sub 3}Cys{sub 9} and Cd{sub 4}Cys{sub 11} based on the presence of 20 cysteines split into two isolated regions of the sequence with 11 cysteines in the N-terminal and 9 cysteines in the C-terminal. The CD spectrum reported is distinctly different from any other metallothionein known suggesting quite different binding site structure for the peptide.

  8. Magnetic circular dichroism investigation on chromophores in reaction centers of photosystem I and II of green plant photosynthesis

    NASA Astrophysics Data System (ADS)

    Nozawa, Tsunenori; Kobayashi, Masayuki; Wang, Zheng-Yu; Itoh, Shigeru; Iwaki, Masayo; Mimuro, Mamoru; Satoh, Kimiyuki

    1995-01-01

    Magnetic circular dichroism (MCD) of chlorophylls (Chl) in P700-enriched (12 Chl/P700) photosystem (PS) I particles and D1-D2-cyt b559 (PSII reaction center) particles isolated from spinach are measured in the wavelength region between 450 and 750 nm. The relative magnitude of MCD to absorption intensity ([MCD]/[Abs]) is found to be a good measure to estimate the interaction of chromophores (dimer or monomer). The difference spectrum between reduced and oxidized state for the 12 Chl/P700 particles can be interpreted to be composed of a positive MCD from P700 and a negative MCD for P700 +. MCD signals for the primary acceptor Chl a monomer (A 0) and the reduced cytochrome f are also observed. The MCD signal from pheophytin a in the PSII reaction center is remarkably in the Qx, region as strong as the signal from the reaction center chlorophylls (P680 and accessory) and other attached chlorophylls. Based on the data, the MCD bands, as well as the absorption bands in the Qy region, are deconvoluted into the contribution from reaction center chlorophylls and the other chlorophylls. The [MCD]/[Abs] ratio of P680 or P700 is small and similar to that of special pair bacteriochlorophylls in the reaction center of purple bacteria, indicating the specific feature of MCD signals that originate from a dimer-type interaction.

  9. Kondo screening and beyond: An x-ray absorption and dichroism study of CePt5/Pt(111 )

    NASA Astrophysics Data System (ADS)

    Praetorius, C.; Fauth, K.

    2017-03-01

    We use x-ray absorption spectroscopy as well as its linear and circular magnetic dichroisms to characterize relevant interactions and energy scales in the surface intermetallic CePt5/Pt(111 ). The experiments provide insight into crystal field splitting, effective paramagnetic moments, their Kondo screening and mutual interactions, and thus into many aspects which typically determine the low-temperature behavior of correlated rare-earth compounds. Exploiting the tunability of Ce valence through the thickness-dependent epitaxial strain at the CePt5/Pt(111 ) interface, we are able to systematically investigate the impact of hybridization strength on these interactions. Considerable Kondo screening is indeed observed at all CePt5 thicknesses, and found to be strongest in case of strongest hybridization. While the magnetic response is commensurate with an impurity Kondo scale of TK≳102 K for specimen temperatures T ≳30 K, this is no longer the case at lower temperature. Its detailed study by x-ray circular magnetic dichroism (XMCD) at one specific thickness of CePt5 reveals an anomaly of the susceptibility at T*≈25 K instead, which we tentatively associate with the onset of lattice coherence. At lowest temperature we observe paramagnetic saturation with a small Ce 4 f saturation magnetization. Within the framework of itinerant 4 f electrons, saturation is due to a field-induced Lifshitz transition involving a very heavy band with correspondingly small degeneracy temperature of TF≈7 K. This small energy scale results in the persistence of Curie-Weiss behavior across the entire range of experimentally accessible temperatures (T ≳2 K). Our work highlights the potential of magnetic circular dichroism studies in particular for Kondo and heavy-fermion materials, which so far has remained largely unexplored.

  10. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    PubMed

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates.

  11. 4-Arylflavan-3-ols as Proanthocyanidin Models: Absolute Configuration via Density Functional Calculation of Electronic Circular Dichroism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Density functional theory/B3LYP has been employed to optimize the conformations of selected 4-arylflavan-3-ols and their phenolic methyl ether 3-O-acetates. The electronic circular dichroism spectra of the major conformers have been calculated using time-dependent density functional theory to valida...

  12. Circular dichroism in valence photoelectron spectroscopy of free unoriented chiral molecules: Camphor and bromocamphor

    SciTech Connect

    Lischke, T.; Boewering, N.; Schmidtke, B.; Mueller, N.; Khalil, T.; Heinzmann, U.

    2004-08-01

    The circular dichroism in the photoelectron angular distribution was investigated for valence photoionization of randomly oriented pure enantiomers of camphor and bromocamphor molecules using circularly polarized light in the vacuum ultraviolet. The forward-backward electron emission spectra were recorded simultaneously with two spectrometers at several opposite angles relative to the propagation direction of the photon beam and compared for each of the two substances. Measurements were also carried out for reversed light helicity and opposite molecular handedness. For the left- and right-handed enantiomers of both molecules we observed asymmetries of comparable magnitude up to several percent. The measured asymmetry parameters vary strongly for different orbital binding energies and also for the selected photon energies in the valence region. The results for both molecules are compared. They suggest a strong influence of the final states on the asymmetry, depending on the chiral geometry of the molecular electronic structure, as well as a significant dependence on the initial states involved. They also confirm theoretical predictions describing the effect in pure electric-dipole approximation.

  13. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature

    PubMed Central

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-01-01

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and −1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations. PMID:27220650

  14. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature.

    PubMed

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-05-25

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations.

  15. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth

    NASA Astrophysics Data System (ADS)

    de Visser, Pieter J.; Levallois, Julien; Tran, Michaël K.; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O.; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B.

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13 ±1 %, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light.

  16. Elimination of artifacts derived from the residual birefringence of a phase modulator for circular dichroism by retardation domain analysis.

    PubMed

    Satozono, Hiroshi

    2015-04-01

    It is well known that various artifacts interfere with circular dichroism (CD) measurement using the polarization modulation technique. In this report, we propose a simple analysis method for eliminating the artifacts derived from the residual birefringence of a phase modulator. We consider the origin of the artifacts and find that those in CD can be distinguished by analyzing signals as a function of the retardation of the phase modulator using a Mueller matrix method. We experimentally obtain pure CD from a sample with CD and linear dichroism by applying retardation domain analysis.

  17. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    SciTech Connect

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.

  18. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE PAGES

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; ...

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values thatmore » have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  19. Circular dichroism of two conformations of poly[d(G-C)] induced by low pH.

    PubMed Central

    Antao, V P; Gray, C W; Gray, D M; Ratliff, R L

    1986-01-01

    Circular dichroism (CD) and UV absorption data showed that poly[d(G-C)] (at 0.09M NaCl, 0.01M Na+ (phosphate), 20 degrees C) underwent two conformational transitions upon lowering of the pH by the addition of HCl. The first transition was complete at about pH 3.0. The second transition was complete upon lowering the pH to 2.6 or upon raising the temperature, at pH 3.0, to about 40 degrees C. There was no indication of denaturation during either transition. The CD spectrum for the second acid conformation had large CD bands including a positive one at 288nm, a characteristic associated with C X C+ base-pairs. Electron microscopy showed no significant formation of condensed supramolecular aggregates corresponding to the first or second acid forms of poly[d(G-C)]. On the basis of spectral data, electron microscopy, and proton-uptake measurements, we propose models for the secondary structures that poly[d(G-C)] adopts in its two acid conformations. PMID:3808946

  20. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra.

    PubMed

    Goings, Joshua J; Li, Xiaosong

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  1. Specific features of the circular dichroism of a chiral photonic crystal with a defect layer inside in the presence of a gain

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.

    2017-01-01

    The specific features of the circular dichroism (CD) spectra of a cholesteric liquid crystal (CLC) layer with a defect layer inside in the presence of gain have been investigated. The features of the dependence of CD on the parameter characterizing the gain on the defect mode are analyzed for two cases: (i) gain is present in the defect layer and is absent in the CLC sublayers and (ii) gain is absent in the defect layer but is present in the CLC sublayers. It is shown that these dependences significantly differ in the two aforementioned cases. The dependences of the reflection, transmission, and absorption on the defect mode on the gain parameter have been investigated for incident light with both circular polarizations.

  2. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra*

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Brunger, Michael J.; Wang, Feng

    2013-11-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations dominate the VOA spectra (i.e., VCD and ROA) > 3000 cm-1 reflecting the side chain structures of the amino acids. Finally the carboxyl and the C(2)H modes of aliphatic amino acids, together with the side chain vibrations, are very active in the VCD/IR and ROA/Raman spectra, which makes such the vibrational spectroscopic methods a very attractive means to study biomolecules.

  3. Utilization of circular dichroism experiment to distinguish acanthoside D and eleutheroside E.

    PubMed

    Kil, Yun-Seo; Park, Ji-Yeon; Kim, Youngmee; Nam, Sang-Jip; Kim, Sung-Jin; Kim, Yeong Shik; Seo, Eun Kyoung

    2015-11-01

    Two lignan glycosides, acanthoside D (1) (=liriodendrin, (+)-syringaresinol di-O-β-D-glucopyranoside) and eleutheroside E (2) have been confused each other for so long time, and hard to be distinguished each other. Now, this two compounds need to be defined properly so that all the commercial mistakes and confusions should not be made. They have identical planar structures except for the configurations at C-7 and C-8 in each structure according to the chemistry database, SciFinder(®). The systematic name of acanthoside D is [(1S,3aR,4S,6aR)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis(2,6-dimethoxy-4,1-phenylene) bis-β-D-glucopyranoside (1), and the name of eleutheroside E is [(1R,3aR,4S,6aS)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis(2,6-dimethoxy-4,1-phenylene) bis-β-D-glucopyranoside (2). The differences at two chiral centers do not make any differences in the NMR spectra. Thus, the circular dichroism were utilized to dissolve this difficult problem. Acanthoside D (1) showed a positive Cotton effect at 200 nm, whereas eleutheroside E (2) exhibited a negative cotton effect at 200 nm. The absolute structure of acanthoside D was also confirmed by X-ray crystallography.

  4. Thermal unfolding of the N-terminal region of p53 monitored by circular dichroism spectroscopy.

    PubMed

    Schaub, Leasha J; Campbell, James C; Whitten, Steven T

    2012-11-01

    It has been estimated that 30% of eukaryotic protein and 70% of transcription factors are intrinsically disordered (ID). The biochemical significance of proteins that lack stable tertiary structure, however, is not clearly understood, largely owing to an inability to assign well-defined structures to specific biological tasks. In an attempt to investigate the structural character of ID protein, we have measured the circular dichroism spectrum of the N-terminal region of p53 over a range of temperatures and solution conditions. p53 is a well-studied transcription factor that has a proline-rich N-terminal ID region containing two activation domains. High proline content is a property commonly associated with ID, and thus p53 may be a good model system for investigating the biochemical importance of ID. The spectra presented here suggest that the N-terminal region of p53 may adopt an ordered structure under physiological conditions and that this structure can be thermally unfolded in an apparent two-state manner. The midpoint temperature for this thermal unfolding of the N-terminal region of p53 was at the near-physiological temperature of 39°C, suggesting the possibility of a physiological role for the observed structural equilibrium.

  5. Nuclear magnetic resonance and circular dichroism study of metastin (Kisspeptin-54) structure in solution.

    PubMed

    Shin, Ronald; Welch, Danny R; Mishra, Vinod K; Nash, Kevin T; Hurst, Douglas R; Rama Krishna, N

    2009-01-01

    KISS1 was first discovered as a metastasis suppressor, but also plays crucial roles in the onset of puberty. The KISS1 gene encodes a secreted protein of 145 amino acids that exhibits no sequence similarity with any known proteins. KISS1 protein is proteolytically processed to generate a number of so-called kisspeptins (KP), the most well characterized is known as KP-54 or metastin. KP-54 is carboxy-terminally amidated and binds to and activates the KISS1 receptor (KISS1R). The current studies were undertaken in order to determine structure of KP-54 using nuclear magnetic resonance and circular dichroism. KP-54 is mostly disordered both in water and in trifluoroethanol/water mixed solvent, with no structural motifs. In sodium dodecyl sulfate micelles, KP-54 remains mostly disordered except for a small increase in helical propensity (from 3.7% in water to 9.9% in micelles). Despite this apparent lack of structure, KP-54 is biologically active. The intrinsic disorder of KP-54 may confer advantages in its ability to recognize and bind a wide range of target proteins.

  6. [Study of collagen mimetic peptide's triple-helix structure and its thermostability by circular dichroism].

    PubMed

    Zhang, Zhi-Bao; Wang, Jing-Jie; Chen, Hui-Juan; Xiong, Qing-Qing; Liu, Ling-Rong; Zhang, Qi-Qing

    2014-04-01

    In the present study, the authors explore the triple-helix conformation and thermal stability of collagen mimetic peptides (CMPs) as a function of peptide sequence and/or chain length by circular dichroism(CD). Five CMPs were designed and synthetized varying the number of POG triplets or incorporating an integrin alpha2beta1 binding motif Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER). CD spectroscopy from 260 to 190 nm was recorded to confirm the existence of triple-helix conformation at room temperature, while thermal melting and thermal annealing of triple-helix (thermal unfolding and refolding of triple-helix, respectively) was characterized by monitoring ellipticity at 225 nm as a function of temperature. The results demonstrated that all the CMPs adopted triple-helix conformation, and the thermal stability of the CMPs was enhanced with increasing the number of POG triplets. In contrast to natural collagen, the thermal denaturation processes of CMPs were reversible, i. e. the triple-helix unfolded upon heating while refolded upon cooling. Meanwhile, the phenomenon of "hysteresis" was observed by comparing melting and thermal curves. These findings add new insights to the mechanisms of collagen and CMPs assembly, as well as provide an alternative approach to the fabrication of artificial collagen-likes biomaterials.

  7. Computation of magnetic circular dichroism by sum-over-states summations.

    PubMed

    Štěpánek, Petr; Bouř, Petr

    2013-07-05

    Magnetic circular dichroism (MCD) spectroscopy has been established as a convenient method to study electronic structure, in particular for small symmetric organic molecules. Newer applications on more complex systems are additionally stimulated by the latest availability of precise quantum-chemical techniques for the spectral simulations. In this work, a sum over states (SOS) summation is reexamined as an alternative to the derivative techniques for the MCD modeling. Unlike in previous works, the excited electronic states are calculated by the time-dependent density functional theory (TDDFT). A gradient formulation of the MCD intensities is also proposed, less dependent on the origin choice than the standard expressions. The dependencies of the results on the basis set, number of electronic states, and coordinate origin are tested on model examples, including large symmetric molecules with degenerate electronic states. The results suggest that the SOS/TDDFT approach is a viable and accurate technique for spectral simulation. It may even considerably reduce the computational time, if compared with the traditional MCD computational procedures based on the response theory.

  8. Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism.

    PubMed

    Mendonça, Lucille; Hache, François; Changenet-Barret, Pascale; Plaza, Pascal; Chosrowjan, Haik; Taniguchi, Seiji; Imamoto, Yasushi

    2013-10-02

    Motions of the trans-p-coumaric acid carbonyl group following the photoexcitation of the R52Q mutant of photoactive yellow protein (PYP) are investigated, for the first time, by ultrafast time-resolved circular dichroism (TRCD) spectroscopy. TRCD is monitored in the near-ultraviolet, over a time scale of 10 ps. Immediately after excitation, TRCD is found to exhibit a large negative peak, which decays within a few picoseconds. A quantitative analysis of the signals shows that, upon excitation, the carbonyl group undergoes a fast (≪0.8 ps) and unidirectional flipping motion in the excited state with an angle of ca. 17-53°. For the subset of proteins that do not enter the signaling photocycle, TRCD provides strong evidence that the carbonyl group moves back to its initial position, leading to the formation of a nonreactive ground-state intermediate of trans conformation. The initial ground state is then restored within ca. 3 ps. Comparative study of R52Q and wild-type PYP provides direct evidence that the absence of Arg52 has no effect on the conformational changes of the chromophore during those steps.

  9. A split beam method for measuring time-resolved circular dichroism

    NASA Astrophysics Data System (ADS)

    Wenzel, Stephan; Buss, Volker

    1997-04-01

    An improvement to the Lewis-Kliger method for measuring transient circular dichroism on the nanosecond time scale is described. The method uses a single-probe beam that is split into two different beams of plane polarized light entering the sample and a retarder from opposite directions in different succession. Rochon polarizers are used as high-quality polarizing beam splitters to select the slow axis component of the emerging elliptical polarized light beams. The intensities of the light beams are determined by an imaging spectrograph coupled to an intensified charge coupled device detector. The split beam method reduces the need for very precise calibration of the central strain plate acting as a retarder and controlling the ellipticity of the probe light. The necessary calculations are simple and can be shown to be equivalent to the formulas derived by Lewis and Kliger. The static CD spectrum of vitamin B12 is presented and compared to a spectrum obtained with a commercial instrument and standard technique. The time resolution of the instrument is demonstrated by observation of photobleaching of carbon monoxy myoglobin from horse heart muscle.

  10. Reversible Plasmonic Circular Dichroism via Hybrid Supramolecular Gelation of Achiral Gold Nanorods.

    PubMed

    Jin, Xue; Jiang, Jian; Liu, Minghua

    2016-12-27

    The fabrication of chiroptical plasmonic nanomaterials such as chiral plasmonic gold nanorods (GNRs) has been attracting great interest. Generally, in order to realize the plasmonic circular dichroism (PCD) from achiral GNRs, it is necessary to partially replace the surface-coated cetyltrimethylammonium bromide with chiral molecules. Here, we present a supramolecular approach to generate and modulate the PCD of GNRs through the hybrid gelation of GNRs with an amphiphilic chiral dendron gelator. Upon gelation, the PCD could be produced and further regulated depending on the ratio of the dendrons to GNRs. It was revealed that the wrapping of the self-assembled nanofibers around the GNRs is crucial for generating the PCD. Furthermore, the hybrid gel underwent a thermotriggered gel-sol and sol-gel transformation, during which the PCD can disappear (solution) and reappear (gel), respectively, and such process can be repeated many times. In addition, the hybrid gel could also undergo shrinkage upon addition of a slight amount of Mg(2+) ions, during which the PCD disappeared also. Thus, through the gel formation and subsequent metal ion- or temperature-triggered phase transition, PCD can be reversibly modulated. The results not only clarified the generation mechanism of PCD from the achiral GNRs without the chiral modification on the surface but also offered a simple and efficient way to modulate the PCD.

  11. Circular dichroism sensor based on cadmium sulfide quantum dots for chiral identification and detection of penicillamine.

    PubMed

    Ngamdee, Kessarin; Puangmali, Theerapong; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2015-10-22

    A new chemical sensor based on the measuring of circular dichroism signal (CD) was fabricated from cysteamine capped cadmium sulfide quantum dots (Cys-CdS QDs). The chiral-thiol molecules, d-penicillamine (DPA) and l-penicillamine (LPA), were used to evaluate potentials of this sensor. Basically, DPA and LPA provide very low CD signals. However, the CD signals of DPA and LPA can be enhanced in the presence of Cys-CdS QDs. The CD spectra of DPA and LPA exhibited a mirror image profile. Parameters affecting the determination of DPA and LPA were thoroughly investigated in details. Under the optimized condition, the CD signals of DPA and LPA displayed a linear relationship with the concentrations of both enantiomers, ranging from 1 to 35 μM. Detection limits of this sensor were 0.49 and 0.74 μM for DPA and LPA, respectively. To demonstrate a potential application of this sensor, the proposed sensor was used to determine DPA and LPA in real urine samples. It was confirmed that the proposed detection technique was reliable and could be utilized in a broad range of applications.

  12. Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry.

    PubMed

    Song, Dongsheng; Rusz, Jan; Cai, Jianwang; Zhu, Jing

    2016-10-01

    EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y3Fe5O12, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique.

  13. Studies on fish and pork paste gelation by dynamic rheology and circular dichroism.

    PubMed

    Liu, R; Zhao, S-M; Xiong, S-B; Xie, B-J; Liu, H-M

    2007-09-01

    The muscle paste of fish, pork, and their mixtures were prepared to study the gelling characteristics by dynamic rheological measurement. The gelation mechanisms of muscle paste were also investigated by circular dichroism. Gel formation of fish paste occurred in 2 steps of 5 to 35 and 51 to 90 degrees C respectively, while pork paste mainly in 1 step of 49 to 72 degrees C. Gel formation was relative to the alpha-helix unfolding of myosin, which responded the melting temperatures of 40 and 50 degrees C for fish myosin and 50 and 60 degrees C for pork myosin, respectively. Alpha-helix unfolding of myosin was beneficial for gel formation. During gel formation, G' of muscle paste was linearly related to alpha-helical content of myosin. The interactions of fish and pork proteins at high temperature (>35 degrees C) could change the gel forming characteristics of muscle paste. Mixed paste exhibited a similar gelation pattern to individual fish paste with 2 visible increases in G'. Addition of pork could suppress the breakdown of fish gel structure at approximately 50 degrees C. Mixing pork and silver carp in a certain ratio could improve the gel properties of silver carp products.

  14. Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy

    PubMed Central

    2016-01-01

    Circular dichroism (CD) induced at exciton transitions by chiral ligands attached to single component and core/shell colloidal quantum dots (QDs) was used to study the interactions between QDs and their capping ligands. Analysis of the CD line shapes of CdSe and CdS QDs capped with l-cysteine reveals that all of the features in the complex spectra can be assigned to the different excitonic transitions. It is shown that each transition is accompanied by a derivative line shape in the CD response, indicating that the chiral ligand can split the exciton level into two new sublevels, with opposite angular momentum, even in the absence of an external magnetic field. The role of electrons and holes in this effect could be separated by experiments on various types of core/shell QDs, and it was concluded that the induced CD is likely related to interactions of the highest occupied molecular orbitals of the ligands with the holes. Hence, CD was useful for the analysis of hole level–ligand interactions in quantum semiconductor heterostructures, with promising outlook toward better general understanding the properties of the surface of such systems. PMID:27960517

  15. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory

    PubMed Central

    Uporov, Igor V.; Forlemu, Neville Y.; Nori, Rahul; Aleksandrov, Tsvetan; Sango, Boris A.; Mbote, Yvonne E. Bongfen; Pothuganti, Sandeep; Thomasson, Kathryn A.

    2015-01-01

    The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD) resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima. PMID:26370961

  16. Conformational flexibility of a scorpion toxin active on mammals and insects: a circular dichroism study.

    PubMed

    Loret, E P; Sampieri, F; Roussel, A; Granier, C; Rochat, H

    1990-01-01

    Three scorpion toxins have been analyzed by circular dichroism in water and in 2,2,2-trifluoroethanol (TFE) solutions. These toxins were chosen because they are representative of three kinds of pharmacological activities: (1) toxin AaH IT2, an antiinsect toxin purified from the venom of Androctonus australis Hector, which is able to bind to insect nervous system preparation, (2) toxin Css II, from the venom of Centruroides suffusus suffusus, which is a beta-type antimammal toxin capable of binding to mammal nervous system preparation, and (3) the toxin Ts VII from the venom of Tityus serrulatus, which is able to bind to both types of nervous systems. In order to minimize bias, CD data were analyzed by a predictive algorithm to assess secondary structure content. Among the three molecules, Ts VII presented the most unordered secondary structure in water, but it gained in ordered forms when solubilized in TFE. These results indicated that the Ts VII backbone is the most flexible, which might result in a more pronounced tendency for this toxin molecule to undergo conformational changes. This is consistent with the fact that it competes with both antiinsect and beta-type antimammal toxins for the binding to the sodium channel.

  17. Applications of Circular Dichroism for Structural Analysis of Gelatin and Antimicrobial Peptides

    PubMed Central

    Gopal, Ramamourthy; Park, Jin Soon; Seo, Chang Ho; Park, Yoonkyung

    2012-01-01

    Circular dichroism (CD) is a useful technique for monitoring changes in the conformation of antimicrobial peptides or gelatin. In this study, interactions between cationic peptides and gelatin were observed without affecting the triple helical content of the gelatin, which was more strongly affected by anionic surfactant. The peptides did not adopt a secondary structure in the presence of aqueous solution or Tween 80, but a peptide secondary structure formed upon the addition of sodium dodecyl sulfate (SDS). The peptides bound to the phosphate group of lipopolysaccharide (LPS) and displayed an alpha-helical conformation while (KW)4 adopted a folded conformation. Further, the peptides did not specifically interact with the fungal cell wall components of mannan or laminarin. Tryptophan blue shift assay indicated that these peptides interacted with SDS, LPS, and gelatin but not with Tween 80, mannan, or laminarin. The peptides also displayed antibacterial activity against P. aeruginosa without cytotoxicity against HaCaT cells at MIC, except for HPA3NT3-analog peptide. In this study, we used a CD spectroscopic method to demonstrate the feasibility of peptide characterization in numerous environments. The CD method can thus be used as a screening method of gelatin-peptide interactions for use in wound healing applications. PMID:22489150

  18. Simultaneous Analysis of Secondary Structure and Light Scattering from Circular Dichroism Titrations: Application to Vectofusin-1

    NASA Astrophysics Data System (ADS)

    Vermeer, Louic S.; Marquette, Arnaud; Schoup, Michel; Fenard, David; Galy, Anne; Bechinger, Burkhard

    2016-12-01

    Circular Dichroism data are often decomposed into their constituent spectra to quantify the secondary structure of peptides or proteins but the estimation of the secondary structure content fails when light scattering leads to spectral distortion. If peptide-induced liposome self-association occurs, subtracting control curves cannot correct for this. We show that if the cause of the light scattering is independent from the peptide structural changes, the CD spectra can be corrected using principal component analysis (PCA). The light scattering itself is analysed and found to be in good agreement with backscattering experiments. This method therefore allows to simultaneously follow structural changes related to peptide-liposome binding as well as peptide induced liposome self-association. We apply this method to study the structural changes and liposome binding of vectofusin-1, a transduction enhancing peptide used in lentivirus based gene therapy. Vectofusin-1 binds to POPC/POPS liposomes, causing a reversal of the negative liposome charge at high peptide concentrations. When the peptide charges exactly neutralise the lipid charges on both leaflets reversible liposome self-association occurs. These results are in good agreement with biological observations and provide further insight into the conditions required for efficent transduction enhancement.

  19. Circular dichroism spectroscopy of chlorin e6 and its complexes with quantum dots in different media

    NASA Astrophysics Data System (ADS)

    Kundelev, E. V.; Orlova, A. O.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.

    2017-01-01

    The circular dichroism (CD) spectra of chlorin e6 and its complexes with ZnS:Mn/ZnS and CdSe/ZnS quantum dots (QDs) in aqueous solutions with different pH, in methanol, and in dimethyl sulfoxide (DMSO) have been experimentally investigated. The changes in the CD spectra of free chlorin e6 caused by its complexing with semiconductor QDs are analyzed. The application of CD spectroscopy made it possible to record for the first time the CD spectrum of luminescent dimer of chlorin e6 and reveal a nonluminescent aggregate of chlorin e6 (interpreted preliminary as a "tetramer"), the anisotropy factor of which exceeds that of its monomer by a factor of 40. An analysis of the experimental data shows that chlorin e6 in a complex with QDs can be either in the monomeric form or in the form of a nonluminescent "tetramer." The interaction with a relatively low-stable luminescent dimer of chlorin e6 with QDs leads to its partial monomerization and formation of complexes where chlorin e6 is in the monomeric form.

  20. Comparison of vibrational circular dichroism instruments: development of a new dispersive VCD.

    PubMed

    Lakhani, Ahmed; Malon, Petr; Keiderling, Timothy A

    2009-07-01

    A dispersive vibrational circular dichroism (VCD) instrument has been designed and optimized for the measurement of mid-infrared (MIR) bands such as the amide I and amide II vibrational modes of peptides and proteins. The major design considerations were to construct a compact VCD instrument for biological molecules, to increase signal-to-noise (S/N) ratio, to simultaneously collect and digitize the sample transmission and polarization modulation signals, and to digitally ratio them to yield a VCD spectrum. These were realized by assembling new components using design factors adapted from previous VCD instruments. A collection of spectra for peptides and proteins having different dominant secondary structures (alpha-helix, beta-sheet, and random coil) measured for identical samples under the same conditions showed that the new instrument had substantially improved S/N as compared with our previous dispersive VCD instrument. These instruments both provide protein VCD for the amide I that are comparable to or somewhat better than those measurable with commercial Fourier transform (FT) VCD instruments if just the amide I band in the spectra is obtained at modest resolution (8 cm(-1)) with the same total data collection time on each type of instrument.

  1. The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy.

    PubMed

    Stephens, Philip J; Devlin, Frank J; Pan, Jian-Jung

    2008-05-15

    The vibrational circular dichroism (VCD) spectra of the two enantiomers of a chiral molecule are of equal magnitude and opposite sign: i.e. mirror-image enantiomers give mirror-image VCD spectra. In principle, the absolute configuration (AC) of a chiral molecule can therefore be determined from its VCD spectrum. In practice, the determination of the AC of a chiral molecule from its experimental VCD spectrum requires a methodology which reliably predicts the VCD spectra of its enantiomers. The only reliable methodology developed to date uses the Stephens quantum-mechanical theory of the rotational strengths of fundamental vibrational transitions, developed in the early 1980s, implemented using ab initio density functional theory in the GAUSSIAN program in the mid 1990s. This methodology has by now been widely used in determining ACs from experimental VCD spectra. In this article we discuss the protocol for determining the ACs of chiral molecules with optimum reliability and its implementation for a variety of molecules, including the D3 symmetry perhydrotriphenylene, a thiazino-oxadiazolone recently shown to be a highly active calcium entry channel blocker, the alkaloid natural products schizozygine, iso-schizogaline, and iso-schizogamine, and the iridoid natural products plumericin, iso-plumericin, and prismatomerin. The power of VCD spectroscopy in determining ACs, even for large organic molecules and for substantially conformationally-flexible organic molecules is clearly documented.

  2. Fluorescence and Circular Dichroism Spectroscopy of Cytochrome c in Alkylammonium Formate Ionic Liquids

    PubMed Central

    Wei, Wenjun; Danielson, Neil D.

    2012-01-01

    The structural stability of cytochrome c has been studied in alkylammonium formate (AAF) ionic liquids such as methylammonium formate (MAF) and ethylammonium formate (EAF) by fluorescence and circular dichroism (CD) spectroscopy. At room temperature, the native structure of cytochrome c is maintained in relatively high ionic liquid concentrations (50%–70% AAF/water or AAF/phosphate buffer pH 7.0) in contrast to denaturation of cytochrome c in similar solutions of methanol or acetonitrile, with water or buffer co-solvents. Fluorescence and CD spectra indicate the conformation of cytochrome c is maintained in 20% AAF-80% water from 30 – 50 °C. No such temperature stability is found in 80% AAF-20% water. About one third of the enzyme activity of cytochrome c in 80% AAF-20% water can be maintained as compared to phosphate buffer and this is greater than the activities measured in corresponding methanol and acetonitrile aqueous solutions. This biophysical study shows that AAFs have potential application as organic solvent replacements at moderate temperature in the mobile phase for the separation of proteins in their native form by reversed phase liquid chromatography. PMID:21210672

  3. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory.

    PubMed

    Uporov, Igor V; Forlemu, Neville Y; Nori, Rahul; Aleksandrov, Tsvetan; Sango, Boris A; Mbote, Yvonne E Bongfen; Pothuganti, Sandeep; Thomasson, Kathryn A

    2015-09-07

    The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD) resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima.

  4. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism

    PubMed Central

    Cao, Tun; Wei, Chenwei; Mao, Libang

    2015-01-01

    Control of the polarization of light is highly desirable for detection of material’s chirality since biomolecules have vibrational modes in the optical region. Here, we report an ultrafast tuning of pronounced circular conversion dichroism (CCD) in the mid-infrared (M-IR) region, using an achiral phase change metamaterial (PCMM). Our structure consists of an array of Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) dielectric layer, where the Au square patches occupy the sites of a rectangular lattice. The extrinsically giant 2D chirality appears provided that the rectangular array of the Au squares is illuminated at an oblique incidence, and accomplishes a wide tunable wavelength range between 2664 and 3912 nm in the M-IR regime by switching between the amorphous and crystalline states of the Ge2Sb2Te5. A photothermal model is investigated to study the temporal variation of the temperature of the Ge2Sb2Te5 layer, and shows the advantage of fast transiting the phase of Ge2Sb2Te5 of 3.2 ns under an ultralow incident light intensity of 1.9 μW/μm2. Our design is straightforward to fabricate and will be a promising candidate for controlling electromagnetic (EM) wave in the optical region. PMID:26423517

  5. Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin e6

    NASA Astrophysics Data System (ADS)

    Kundelev, Evgeny V.; Orlova, Anna O.; Maslov, Vladimir G.; Baranov, Alexsander V.; Fedorov, Anatoly V.

    2016-04-01

    Experimental investigation of circular dichroism (CD) spectra of complexes based on ZnS:Mn/ZnS and CdSe/ZnS QDs and chlorin e6 (Ce6) molecules in aqua solutions at different pH level, in methanol and in DMSO were carried out. The changes in CD spectra of Ce6 upon its bonding in complex with semiconductor QDs were analyzed. Application of CD spectroscopy allowed to obtain the CD spectrum of luminescent Ce6 dimer for the first time, and to discover a nonluminescent Ce6 aggregate, preliminary identified as a "tetramer", dissymmetry factor of which is 40 times larger than that for its monomer. The analysis of obtained data showed that in complexes with QDs Ce6 can be either in the monomeric form or in the form of non-luminescent tetramer. The interaction of relatively unstable luminescent Ce6 dimerwith QDs leads to its partial monomerization and formation complexes with chlorin e6 in monomeric form.

  6. Simultaneous Analysis of Secondary Structure and Light Scattering from Circular Dichroism Titrations: Application to Vectofusin-1

    PubMed Central

    Vermeer, Louic S.; Marquette, Arnaud; Schoup, Michel; Fenard, David; Galy, Anne; Bechinger, Burkhard

    2016-01-01

    Circular Dichroism data are often decomposed into their constituent spectra to quantify the secondary structure of peptides or proteins but the estimation of the secondary structure content fails when light scattering leads to spectral distortion. If peptide-induced liposome self-association occurs, subtracting control curves cannot correct for this. We show that if the cause of the light scattering is independent from the peptide structural changes, the CD spectra can be corrected using principal component analysis (PCA). The light scattering itself is analysed and found to be in good agreement with backscattering experiments. This method therefore allows to simultaneously follow structural changes related to peptide-liposome binding as well as peptide induced liposome self-association. We apply this method to study the structural changes and liposome binding of vectofusin-1, a transduction enhancing peptide used in lentivirus based gene therapy. Vectofusin-1 binds to POPC/POPS liposomes, causing a reversal of the negative liposome charge at high peptide concentrations. When the peptide charges exactly neutralise the lipid charges on both leaflets reversible liposome self-association occurs. These results are in good agreement with biological observations and provide further insight into the conditions required for efficent transduction enhancement. PMID:28004740

  7. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    PubMed

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline.

  8. Magnetic Circular Dichroism of X-Ray Emission for Gadolinium in 4d-4f Excitation Region

    NASA Astrophysics Data System (ADS)

    Takayama, Yasuhiro; Shinoda, Motoki; Obu, Kenji; Lee, Chol; Shiozawa, Hidetsugu; Hirose, Masaaki; Ishii, Hiroyoshi; Miyahara, Tsuneaki; Okamoto, Jun

    2002-01-01

    We have measured magnetic circular dichroism of x-ray emission spectra (XES) for gadolinium in the 4d-4f excitation region. At a pre-threshold excitation energy, a large magnetic circular dichroism (MCD) signal appeared in a Raman scattering and the dramatic dependence of the MCD spectra on the excitation energy was observed. Theoretical calculation shows that the magnetic moment estimated with total photoelectron yield (TEY) spectra was much smaller than that with the emission spectra. This indicates that the MCD for the TEY reflects the magnetic state on the surface whereas the MCD for the XES reflects that in the bulk. We also observed the MCD spectra for total photon yield (TPY) and found the great difference of the MCD spectra for the TEY and TPY.

  9. Detailed structural study of β-artemether: Density functional theory (DFT) calculations of Infrared, Raman spectroscopy, and vibrational circular dichroism

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Chen, Jianchao; Li, Linwei; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2015-10-01

    In this study, the experimental and theoretical studies on the structure of β-artemether are presented. The optimized molecular structure, Mulliken atomic charges, vibrational spectra (IR, Raman and vibrational circular dichroism), and molecular electrostatic potential have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (2d, p) basis set. Reliable vibrational assignments for Artemether have been made on the basis of potential energy distribution (PED). The vibrational circular dichroism (VCD) has been explored by ab initio calculations, and then was used to compare with the experimental VCD. The consistence between them confirmed the absolute configuration of Artemether. In addition, HOMO-LUMO of the title compound as well as thermo-dynamical parameters has illustrated the stability of β-artemether.

  10. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy: An Emerging Method in Structural Biology for Examining Protein Conformations and Protein Interactions

    SciTech Connect

    Wallace, B.A.; Sutherland, J.; Gekko, K.; Hoffmann, S. V.; Lin, Y.-H.; Tao, Y.; Wien, F.; Janes, R. W.

    2011-09-01

    Circular dichroism (CD) spectroscopy is a well-established technique in structural biology. The use of synchrotron radiation as an intense light source for these measurements extends the applications possible using lab-based instruments. In recent years, there has been a major growth in synchrotron radiation circular dichroism (SRCD) beamlines worldwide, including ones at the NSLS, ISA, SRS, HiSOR, BSRF, NSRRC, SOLEIL, Diamond, TERAS, BESSYII, and ANKA synchrotrons. Through the coordinated efforts of beamline scientists and users at these sites, important proof-of-principle studies have been done enabling the method to be developed for novel and productive studies on biological systems. This paper describes the characteristics of SRCD beamlines and some of the new types of applications that have been undertaken using these beamlines.

  11. New synchrotron radiation circular dichroism end-station on DISCO beamline at SOLEIL synchrotron for biomolecular analysis.

    PubMed

    Miron, Simona; Réfregiers, Matthieu; Gilles, Anne-Marie; Maurizot, Jean-Claude

    2005-08-05

    The novel Synchrotron Radiation Circular Dichroism (SRCD) technique is becoming a new tool of investigation for the molecular structures of biomolecules, like proteins, carbohydrates or others bio-materials. Here, we describe the characteristics of a new experimental end-station for circular dichroism studies, in construction on DISCO beamline at SOLEIL synchrotron (Saint-Aubin, France). This experimental end-station will be an open facility for the community of researchers in structural biology. In order to show the kind of information accessible with this type of technique, we give an example: the conformational study of the galactose mutarotase from Escherichia coli, an enzyme involved in the galactose metabolism. This study was made using an operational SRCD station available at SRS (Daresbury Laboratory, UK).

  12. Computational Study of the Structure, the Flexibility, and the Electronic Circular Dichroism of Staurosporine - a Powerful Protein Kinase Inhibitor

    NASA Astrophysics Data System (ADS)

    Karabencheva-Christova, Tatyana G.; Singh, Warispreet; Christov, Christo Z.

    2014-07-01

    Staurosporine (STU) is a microbial alkaloid which is an universal kinase inhibitor. In order to understand its mechanism of action it is important to explore its structure-properties relationships. In this paper we provide the results of a computational study of the structure, the chiroptical properties, the conformational flexibility of STU as well as the correlation between the electronic circular dichroism (ECD) spectra and the structure of its complex with anaplastic lymphoma kinase.

  13. All-optical switching in granular ferromagnets caused by magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Ellis, Matthew O. A.; Fullerton, Eric E.; Chantrell, Roy W.

    2016-07-01

    Magnetic recording using circularly polarised femto-second laser pulses is an emerging technology that would allow write speeds much faster than existing field driven methods. However, the mechanism that drives the magnetisation switching in ferromagnets is unclear. Recent theories suggest that the interaction of the light with the magnetised media induces an opto-magnetic field within the media, known as the inverse Faraday effect. Here we show that an alternative mechanism, driven by thermal excitation over the anisotropy energy barrier and a difference in the energy absorption depending on polarisation, can create a net magnetisation over a series of laser pulses in an ensemble of single domain grains. Only a small difference in the absorption is required to reach magnetisation levels observed experimentally and the model does not preclude the role of the inverse Faraday effect but removes the necessity that the opto-magnetic field is 10 s of Tesla in strength.

  14. All-optical switching in granular ferromagnets caused by magnetic circular dichroism

    PubMed Central

    Ellis, Matthew O. A.; Fullerton, Eric E.; Chantrell, Roy W.

    2016-01-01

    Magnetic recording using circularly polarised femto-second laser pulses is an emerging technology that would allow write speeds much faster than existing field driven methods. However, the mechanism that drives the magnetisation switching in ferromagnets is unclear. Recent theories suggest that the interaction of the light with the magnetised media induces an opto-magnetic field within the media, known as the inverse Faraday effect. Here we show that an alternative mechanism, driven by thermal excitation over the anisotropy energy barrier and a difference in the energy absorption depending on polarisation, can create a net magnetisation over a series of laser pulses in an ensemble of single domain grains. Only a small difference in the absorption is required to reach magnetisation levels observed experimentally and the model does not preclude the role of the inverse Faraday effect but removes the necessity that the opto-magnetic field is 10 s of Tesla in strength. PMID:27466066

  15. Theory of Monte Carlo simulations of the magnetic circular dichroism spectra of alkali metal/rare gas systems

    NASA Astrophysics Data System (ADS)

    Kenney, John W.; Boatz, Jerry A.; Terrill Vosbein, Heidi A.

    The history of magnetic circular dichroism (MCD) spectroscopy in the study of alkali metal/rare gas (M/Rg) cryogenic systems is reviewed in the context of developing a better understanding of alkali metal/hydrogen systems of current interest to the U.S. Air Force as enhanced-performance cryogenic rocket propellants. A new theory for simulating the MCD spectra of M/Rg systems is presented together with a careful discussion of the theory's implicit and explicit approximations and their implications. This theory uses a classical Monte Carlo (MC) simulation scheme to model the perturbing effects of the Rg environment on the 2S → 2P MCD-active transition of the M atom. The theory sets up the MC-MCD simulation as a 6 × 6 matrix eigenvalue/eigenvector problem in the 2P manifold in which are included the effects of M-Rg interactions, metal atom spin-orbit coupling in the 2P manifold, magnetic Zeeman perturbations of the 2S and 2P manifolds, Boltzmann temperature factors, and electric dipole transition moment integrals for left circularly polarized (LCP) and right circularly polarized (RCP) light. The theory may be applied to any type of trapping site of the host M in the guest Rg matrix; a single atom substitutional metal atom trapping site (one host Rg atom is replaced by one guest M atom) is modeled in this study for M = Na and Rg = Ar. Two temperature factors are used in these simulations; a lattice temperature to model the mobility of the Rg lattice and a magnetic temperature to model Boltzmann factors in the 2S ground manifold. The 6 × 6 eigenvalue/eigenvector problem is solved for a number of randomly generated and suitably averaged Rg configurations to yield the simulated MC-MCD spectrum for the single substitutional Na/Ar system. The MC-MCD simulations of Na/Ar give the characteristic triplet MCD spectrum with the correct Boltzmann temperature dependence. The simulated MC-MCD spectrum correctly inverts when the direction of the applied magnetic field is

  16. Electronic circular dichroism of the chiral rigid tricyclic dilactam with nonplanar tertiary amide groups.

    PubMed

    Pazderková, Markéta; Profant, Václav; Seidlerová, Beata; Dlouhá, Helena; Hodačová, Jana; Jávorfi, Tamás; Siligardi, Giuliano; Baumruk, Vladimír; Bednárová, Lucie; Maloň, Petr

    2014-09-25

    Electronic circular dichroism (ECD) of the spirocyclic dilactam 5,8-diazatricyclo[6,3,0,0(1,5)]undecane-4,9-dione has been measured in the extended wavelength range (170-260 nm) utilizing far-UV CD instrumentation including synchrotron radiation light source. The data of this model of two nonplanar tertiary amide groups interacting within the rigid chiral environment provided new information particularly about the shorter wavelength π-π* transition region below 190 nm. The interpretation using TDDFT calculations confirmed that effects of amide nonplanarity follow our previous observations on monolactams as far as amide n-π* transitions are concerned. ECD band in the n-π* transition region of the nonplanar diamide exhibits an identical bathochromic shift and its sign remains tied to the sense of nonplanar deformation in the same way. As far as n-π* transitions are concerned amide nonplanarity acts as a local phenomenon independently reflecting sum properties of single amide groups. On the other hand, CD bands associated with π-π* transitions (found between ∼170 to 210 nm) form an exciton-like couplet with the sign pattern determined by mutual orientation of the associated electric transition moments. This sign pattern follows predictions pertaining to a coupled oscillator. The influence of amide nonplanarity on π-π* transitions is only minor and concentrates into the shorter wavelength lobe of the π-π* couplet. The detailed analysis of experimental ECD with the aid of TDDFT calculations shows that there is only little interaction between effects of inherent chirality caused by nonplanarity of amide groups and amide-amide coupling. Consequently these two effects can be studied nearly independently using ECD. In addition, the calculations indicate that participation of other type of transitions (n-σ*, π-σ* or Rydberg type transitions) is only minor and is concentrated below 180 nm.

  17. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  18. Magnetic circular dichroism of symmetry and spin forbidden transitions of high-spin metal ions

    NASA Astrophysics Data System (ADS)

    Oganesyan, Vasily S.; Thomson, Andrew J.

    2000-09-01

    Recently we have developed a general method of analyzing magnetic circular dichroism (MCD) spectra and magnetization curves of high-spin metal ions for spin-allowed transitions [Oganesyan et al., J. Chem. Phys. 110, 762 (1999)]. In the present article this approach is extended to cover the cases of spin- and symmetry-forbidden transitions. At high ligand fields many low-energy ligand field transitions become spin-forbidden. Extraction of information content about the electronic structure of the ground state can be obtained through the analysis and correlation of the positions, signs, and intensities of the MCD bands and magnetization curves of these transitions. The casting of the theory in terms of the irreducible tensor method allows full advantage to be taken of any symmetry elements and simplifies multielectron calculations. The theory is valid over the entire range of magnetic field strength and, therefore, allows the information content of spectra over the full field and temperature range to be exploited. The method is applied to the analysis of the recorded MCD spectra and magnetization curves of the lowest energy spin-forbidden ligand field transitions of pseudo-tetrahedral high-spin Fe(III), S=5/2, in the protein rubredoxin from Methanobacterium thermoautotrophicum (strain Marburg). The predicted signs, intensities, and magnetization curves for these transitions are in excellent agreement with experimental data. We also show that when the anisotropy of the ground state is larger than the Zeeman splitting the MCD of both spin-forbidden and allowed transitions can become comparable in magnitude. Hence caution is needed in order to avoid the misinterpretation of experimental results.

  19. Species-dependent stereoselective drug binding to albumin: a circular dichroism study.

    PubMed

    Pistolozzi, Marco; Bertucci, Carlo

    2008-03-01

    Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.

  20. Ultracentrifuge and circular dichroism studies of folding equilibria in a retro GCN4-like leucine zipper.

    PubMed Central

    Holtzer, M E; Braswell, E; Angeletti, R H; Mints, L; Zhu, D; Holtzer, A

    2000-01-01

    Equilibrium ultracentrifuge and circular dichroism (CD) studies of a retropeptide of a GCN4-like leucine zipper in neutral saline buffer are reported as functions of temperature. Ultracentrifuge results indicate the presence of three oligomeric species: monomer, dimer, and tetramer, in quantifiable amounts, and the data provide values for the standard DeltaG, DeltaH, and DeltaS for interconversion. CD at 222 nm displays the strong concentration dependence characteristic of dissociative unfolding, but also shows a helicity far below that of the parent propeptide. Remarkably enough, the CD at 222 nm shows an extremum in the region between 0 and 20 degrees C. At higher T, the usual cooperative unfolding is observed. Comparable data are presented for a mutant retropeptide, in which a single asparagine residue is restored to the characteristic heptad position it occupies in the propeptide. The mutant shows marked differences from its unmutated relative in both thermodynamic properties and CD, although the oligomeric ensemble also comprises monomers, dimers, and tetramers. The mutant is closer in helicity to the parent propeptide but is less stable. These findings do not support either of the extant views on retropeptides. The behavior seen is consistent neither with the view that retropeptides should have the same structure as propeptides nor with the view that they should have the same structure but opposite chirality. The simultaneous availability of oligomeric population data and CD allows the latter to be dissected into individual contributions from monomers, dimers, and tetramers. This dissection yields explanations for the observed extrema in curves of CD (222 nm) versus T and reveals that the dimer population in both retropeptides undergoes "cold denaturation." PMID:10733982

  1. Vibrational circular dichroism (VCD), VCD exciton coupling, and X-ray determination of the absolute configuration of an α,β-unsaturated germacranolide.

    PubMed

    Sánchez-Castellanos, Mariano; Bucio, María A; Hernández-Barragán, Angelina; Joseph-Nathan, Pedro; Cuevas, Gabriel; Quijano, Leovigildo

    2015-03-01

    The absolute configuration of was deduced by vibrational circular dichroism together with the evaluation of the Flack and Hooft X-ray parameters. Vibrational circular dichroism exciton coupling, using the carbonyl group signals, confirmed the absolute configuration of . In addition, sodium borohydride reduction of the 11,13-double bond of 6-epi-desacetyllaurenobiolide () yields an almost equimolecular mixture of C11 epimers, while reduction of the same double bond of 6-epi-laurenobiolide () provided almost exclusively the (11S) diastereoisomer .

  2. Simulated IR, isotropic and anisotropic Raman, and vibrational circular dichroism amide I band profiles of stacked β-sheets.

    PubMed

    Schweitzer-Stenner, Reinhard

    2012-04-12

    The amide I mode is a highly structure sensitive vibration of polypeptides that gives rise to a very strong band in IR absorption and a moderate band in Raman spectra. Many theoretical simulations of IR-band profiles have been undertaken thus far in order to expand the usability of amide I for the structure analysis of peptides and proteins. These simulations have thus far focused on the IR band profiles and to a limited extent on calculating the corresponding vibrational circular dichroism (VCD) signal. In this paper, we use excitonic coupling theory to simulate the IR, isotropic Raman, anisotropic Raman, and VCD band profiles of amide I of parallel and antiparallel β-sheets as well as of two layers of stacked β-sheets with antiparallel and parallel orientations of the respective sheets. Our calculations reveal anisotropic Raman and to a lesser extent VCD amide I profiles rather than the corresponding IR profile as suitable tools to discriminate between parallel and antiparallel β-sheets. Stacking has a very limited influence on the Raman and IR band profiles, but enhance the VCD signal, the sign of which allows one to discriminate between parallel and antiparallel orientations of stacked sheets. Helical twisting and bending of parallel β-sheets give rise to a very enhanced positive couplet, in agreement with the recent work of Schweitzer-Stenner and Measey (J. Am. Chem. Soc., 2011, 133, 1066). Stochastic uncorrelated inhomogeneity of individual peptide groups causes significant asymmetric broadening of Raman bands and, to a lesser extent, of IR bands and reduces the VCD-couplet of stacked β-sheets.

  3. Time-resolved x-ray magnetic circular dichroism study of ultrafast demagnetization in a CoPd ferromagnetic film excited by circularly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    López-Flores, Víctor; Arabski, Jacek; Stamm, Christian; Halté, Valérie; Pontius, Niko; Beaurepaire, Eric; Boeglin, Christine

    2012-07-01

    The magnetization dynamics of CoPd films excited by circularly polarized ultrashort laser pulses is studied by time-resolved x-ray magnetic circular dichroism. In those films the ultrafast dynamics measured at the Co-L3 edge is strongly sensitive to the orbital magnetic moment Lz. The amount of angular momentum transferred by the circularly polarized ultrashort laser pulses to the ferromagnetic films is evaluated to ±0.1 ℏ/atom, which is above the detection limit of the experiment. Despite this, no polarization-dependent difference on the magnetization dynamics could be evidenced. These results are explained by ultrafast electronic relaxation mechanisms of the transferred angular momentum, faster than ˜100 fs. This experiment sets the methodology as well as an upper time limit for determination of angular momentum relaxation processes.

  4. Calcium Binding Ability of Recombinant Buffalo Regucalcin: A Study Using Circular Dichroism Spectroscopy.

    PubMed

    Harikrishna, P; Thomas, Jobin; Shende, A M; Bhure, S K

    2017-02-13

    Regucalcin is a calcium regulating multifunctional protein reported to have many important functions like calcium homeostasis, anti-oxidative, anti-apoptotic and anti-cancerous functions. Although it is demonstrated as a calcium regulating protein, the calcium binding ability of regucalcin is still a controversy. The main reason for the controversy is that it lacks a typical EF hand motif which is common to most of the calcium binding proteins. Even though many studies reported regucalcin as a calcium binding protein, there are some studies reporting regucalcin as non-calcium binding also. In the present study, we investigated the calcium binding ability of recombinant buffalo regucalcin by assessing the secondary structural changes of the protein using circular dichroism spectroscopy after adding Ca(2+) to the protein solution. Two types of calcium binding studies were done, one with different concentration of calcium chloride (0.5 mM CaCl2, 1 mM CaCl2, 2 mM CaCl2) and other at different time interval (no incubation and 10 min incubation) after addition of calcium chloride. Significant structural changes were observed in both studies which prove the calcium binding ability of recombinant regucalcin. A constant increase in the α-helix (1.1% with 0.5 mM CaCl2, 1.4% with 1 mM CaCl2, 3.5% with 2 mM CaCl2) and a decrease in β-sheets (78.5% with 0.5 mM CaCl2, 77.4% with 1 mM CaCl2, 75.7% with 2 mM CaCl2) were observed with the increase in calcium chloride concentration. There was a rapid increase in α-helix and decrease in β-sheets immediately after addition of calcium chloride, which subsides after 10 min incubation.

  5. The Role of Heme Chirality in the Circular Dichroism of Heme Proteins

    NASA Astrophysics Data System (ADS)

    Woody, Robert W.; Pescitelli, Gennaro

    2014-07-01

    The rotational strength (R) of the Soret transition in sperm-whale myoglobin (SW Mb), the hemoglobin from Chironomus thummi thummi (CTT Hb), and human hemoglobin (hHb) has been calculated using 20 high-resolution (< 1:5 Å) crystal structures. The intrinsic rotational strength due to heme non-planarity was calculated using π-electron theory and time-dependent density functional theory (TDDFT). Calculations on model protoporphyrins with a planar nucleus and with various torsional angles for the 2- and 4-vinyl substituents showed maximum R of ±0.70 Debye-Bohr magneton (1 DBM = 0.9273 · 10-38 cgs units). Viewing the heme so that the 2- and 4-vinyls are in a counterclockwise relationship, if a vinyl points toward the viewer, it contributes positively to R. Calculations of the intrinsic R for explicit heme geometries of SW Mb, CTT Hb, and hHb gave averages of 0.40±0.09, ±0:44±0.04, and +0.32±0.11 DBM, respectively. Coupling of the Soret transition with aromatic side-chain and peptide backbone transitions was also considered. For SW Mb, the magnitudes of the contributions decreased in the order Rint > Raro > Rpep. For CTT Hb and hHB, the orders were, respectively, Rint > Rpep > Raro and Rint > Raro ≈ Rpep. Human Hb ɑ chains showed the same trend as CTT Hb. Only in the hHb β chains did Raro predominate, with the order Raro > Rint > Rpep. The total predicted Rtot for SW Mb, CTT Hb, and hHb averaged +0.77±0.10 (0.56 - 0.80), -0.37±0.12 (-0.5), and +0.31±0.17 DBM (0.23 - 0.50), respectively. (Values in parentheses are experimental values.) Thus, contrary to the currently accepted view, coupling with aromatic side-chain or peptide transitions is not the dominant factor in the Soret circular dichroism (CD) of these proteins. The Soret CD is dominated by intrinsic CD of the heme chromophore, of which vinyl torsion is the major determinant. This result suggests an explanation for the large effect of heme isomerism on the Soret CD of Mb and Hb. Rotation about the

  6. Freeze-Quench Magnetic Circular Dichroism Spectroscopic Study of the "Very Rapid" Intermediate in Xanthine Oxidase.

    PubMed

    Jones, Robert M.; Inscore, Frank E.; Hille, Russ; Kirk, Martin L.

    1999-11-01

    Freeze-quench magnetic circular dichroism spectroscopy (MCD) has been used to trap and study the excited-state electronic structure of the Mo(V) active site in a xanthine oxidase intermediate generated with substoichiometric concentrations of the slow substrate 2-hydroxy-6-methylpurine. EPR spectroscopy has shown that the intermediate observed in the MCD experiment is the "very rapid" intermediate, which lies on the main catalytic pathway. The low-energy (< approximately 30 000 cm(-1)) C-term MCD of this intermediate is remarkably similar to that of the model compound LMoO(bdt) (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate; bdt = 1,2-benzenedithiolate), and the MCD bands have been assigned as dithiolate S(ip) --> Mo d(xy) and S(op) --> Mo d(xz,yz) LMCT transitions. These transitions result from a coordination geometry of the intermediate where the Mo=O bond is oriented cis to the ene-1,2-dithiolate of the pyranopterin. Since X-ray crystallography has indicated that a terminal sulfido ligand is oriented cis to the ene-1,2-dithiolate in oxidized xanthine oxidase related Desulfovibrio gigas aldehyde oxidoreductase, we have suggested that a conformational change occurs upon substrate binding. The substrate-mediated conformational change is extremely significant with respect to electron-transfer regeneration of the active site, as covalent interactions between the redox-active Mo d(xy) orbital and the S(ip) orbitals of the ene-1,2-dithiolate are maximized when the oxo ligand is oriented cis to the dithiolate plane. This underlies the importance of the ene-1,2-dithiolate portion of the pyranopterin in providing an efficient superexchange pathway for electron transfer. The results of this study indicate that electron-transfer regeneration of the active site may be gated by the orientation of the Mo=O bond relative to the ene-1,2-dithiolate chelate. Poor overlap between the Mo d(xy) orbital and the S(ip) orbitals of the dithiolate in the oxidized enzyme geometry may

  7. Room-Temperature Ferromagnetism of Cu-Doped ZnO Films Probed by Soft X-Ray Magnetic Circular Dichroism

    SciTech Connect

    Herng, T.S.; Ku, W.; Qi, D.-C.; Berlijn, T.; Yi, J.B.; Yang, K.S.; Dai, Y.; Feng, Y.P.; Santoso, I.; Sanchez-Hanke, C.; Gao, X.Y.; Wee, A.T.S.; Ding, J.; Rusydi, A.

    2010-11-08

    We report direct evidence of room-temperature ferromagnetic ordering in O-deficient ZnO:Cu films by using soft x-ray magnetic circular dichroism and x-ray absorption. Our measurements have revealed unambiguously two distinct features of Cu atoms associated with (i) magnetically ordered Cu ions present only in the oxygen-deficient samples and (ii) magnetically disordered regular Cu{sup 2+} ions present in all the samples. We find that a sufficient amount of both oxygen vacancies (V{sub O}) and Cu impurities is essential to the observed ferromagnetism, and a non-negligible portion of Cu impurities is uninvolved in the magnetic order. Based on first-principles calculations, we propose a microscopic 'indirect double-exchange' model, in which alignments of localized large moments of Cu in the vicinity of the V{sub O} are mediated by the large-sized vacancy orbitals.

  8. Soft x-ray magnetic circular dichroism study of valence and spin states in FeT2O4 (T = V, Cr) spinel oxides

    NASA Astrophysics Data System (ADS)

    Kang, J.-S.; Hwang, Jihoon; Kim, D. H.; Lee, Eunsook; Kim, W. C.; Kim, C. S.; Lee, Han-Koo; Kim, J.-Y.; Han, S. W.; Hong, S. C.; Kim, Bongjae; Min, B. I.

    2013-05-01

    Electronic structures of spinel oxides FeT2O4 (T = V, Cr) have been investigated by employing soft x-ray magnetic circular dichroism (XMCD) and soft x-ray absorption spectroscopy (XAS). XAS reveals that Cr and V ions are trivalent, and that Fe ions are nearly divalent in FeT2O4 (T = V, Cr). Finite XMCD signals are observed in FeV2O4 at T = 80 K, while they are very weak in FeCr2O4. XMCD shows that Fe spins are antiparallel to V and Cr spins, with the V and Cr spins being canted from Fe spins, which suggests a Yafet-Kittel type triangular spin configuration in FeT2O4 (T = V, Cr).

  9. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    SciTech Connect

    Zamudio-Bayer, V.; Hirsch, K.; Langenberg, A.; Kossick, M.; Ławicki, A.; Lau, J. T.; Terasaki, A.; Issendorff, B. von

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  10. [Conformation study of cyclic adenosine-3',5'-monophosphate and some of its derivatives by means of circular dichroism].

    PubMed

    Tunitskaia, V L; Guliaev, N N; Poletaev, A I; Severin, E S

    1977-04-01

    Circular dichroism spectra of adenosine and cyclic adenosine-3',5'-monophosphate (cAMP) and their derivatives, having different substituents in 8-position of heterocycle, are studied, cAMP is suggested to have preferable anti-conformation in the solution, while its derivatives with substituents in 8-position of purine base are preferable in sin-conformation. An exception is 8-(beta aminoethylamine-)cAMP, which has an anti-conformation within pH range from 4.5 to 9.5. This is probably due to the formation of intra-molecular ionic bond between cyclophosphate group and aliphatic amino group of 8-position substituent.

  11. X-ray magnetic circular dichroism of CeFe2 by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Jaouen, N.; Chiuzbăian, S. G.; Hague, C. F.; Delaunay, R.; Baumier, C.; Lüning, J.; Rogalev, A.; Schmerber, G.; Kappler, J.-P.

    2010-05-01

    We have measured the CeL x-ray magnetic circular dichroism (XMCD) in ferromagnetic CeFe2 using the partial fluorescence yield given by the Ce2p3d resonant inelastic x-ray scattering (RIXS) spectrum. The lifetime broadening of the 3d core hole is four times smaller than that of the Ce2p core hole providing improved resolution over earlier experiments. Clear evidence for a 4f2 , 4f1 , 4f0 strongly mixed-valent ground state is observed confirming, by and large, impurity Anderson model predictions which take into account the RIXS XMCD geometrical dependence.

  12. Domain imaging on multiferroic BiFeO{sub 3}(001) by linear and circular dichroism in threshold photoemission

    SciTech Connect

    Sander, Anke; Christl, Maik; Chiang, Cheng-Tien; Alexe, Marin; Widdra, Wolf

    2015-12-14

    We demonstrate ferroelectric domain imaging at BiFeO{sub 3}(001) single crystal surfaces with laser-based threshold photoemission electron microscopy (PEEM). Work function differences and linear dichroism allow for the identification of the eight independent ferroelectric domain configurations in the PEEM images. There, the determined domain structure is consistent with piezoresponse force microscopy of the sample surface and can also be related to the circular dichroic PEEM images. Our results provide a method for efficient mapping of complex ferroelectric domains with laser-excited PEEM and may allow lab-based time-resolved studies of the domain dynamics in the future.

  13. Circular dichroism spectroscopic investigation of double-decker phthalocyanine with G-Quadruplex as promising telomerase inhibitor

    NASA Astrophysics Data System (ADS)

    Baǧda, Efkan; Baǧda, Esra; Yabaş, Ebru

    2017-01-01

    In the present study, interaction of a double-decker phthalocyanine with two G-quadruplex DNA, Tel 21 and cMYC, was investigated. To the best of our knowledge, this is the first study about G-quadruplex-double decker phthalocyanine interaction. The spectrophotometric titration method was used for binding constant calculations. From the binding constants, it can be said that double-decker phthalocyanine more likely to bind Tel 21 rather than cMYC. The conformational changes upon binding were monitored via circular dichroism spectroscopy. The ethidium bromide replacement assay was investigated spectrofluorometrically.

  14. Planar chiral metamaterial design utilizing metal-silicides for giant circular dichroism and polarization rotation in the infrared region

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Zhong, Kesong; Ma, Hongfeng; Li, Yun; Sui, Chenghua; Wang, Juanzhuan; Shi, Yi

    2017-01-01

    A planar chiral metamaterial (PCMM) comprizing double-layer sandwich structure utilizing metal-silicides in the shape of windmill is proposed in the infrared region (IR). Giant circular dichroism (CD) and polarization rotation are observed simultaneously. Furthermore, the effect of Drude model parameters (ωp,ωτ) of metal-silicides on CD and optical activity are also investigated. The results show that CD and optical activity reach maximum if ωp and ωτ are in the distribution of narrow trumpet shape.

  15. Determination of the absolute configuration of the natural product Klaivanolide via density functional calculations of vibrational circular dichroism (VCD).

    PubMed

    Devlin, Frank J; Stephens, Philip J; Figadère, Bruno

    2009-01-01

    The absolute configuration (AC) of the antiprotozoal lactone, Klaivanolide, 1, from Uvaria klaineana, has been determined using Vibrational Circular Dichroism (VCD) spectroscopy. The experimental VCD spectrum of the (+) enantiomer of 1 was measured. To analyze the AC of (+)-1, the conformationally-averaged VCD spectrum of 7-S-1 was calculated using density functional theory (DFT) and the GAUSSIAN 03 program. The B3PW91/TZ2P conformationally-averaged VCD spectrum of 7-S-1 proves that the AC of 1 is 7-S-(+).

  16. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGES

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; ...

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  17. Relaxation Dynamics in Photoexcited Chiral Molecules Studied by Time-Resolved Photoelectron Circular Dichroism: Toward Chiral Femtochemistry

    PubMed Central

    2016-01-01

    Unravelling the main initial dynamics responsible for chiral recognition is a key step in the understanding of many biological processes. However, this challenging task requires a sensitive enantiospecific probe to investigate molecular dynamics on their natural femtosecond time scale. Here we show that, in the gas phase, the ultrafast relaxation dynamics of photoexcited chiral molecules can be tracked by recording time-resolved photoelectron circular dichroism (TR-PECD) resulting from the photoionization by a circularly polarized probe pulse. A large forward–backward asymmetry along the probe propagation axis is observed in the photoelectron angular distribution. Its evolution with pump–probe delay reveals ultrafast dynamics that are inaccessible in the angle-integrated photoelectron spectrum or via the usual electron emission anisotropy parameter (β). PECD, which originates from the electron scattering in the chiral molecular potential, appears as a new sensitive observable for ultrafast molecular dynamics in chiral systems. PMID:27786493

  18. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    NASA Astrophysics Data System (ADS)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  19. Ab initio calculations of X-ray magnetic circular dichroism spectra within the projector augmented wave method: An implementation into the VASP code

    NASA Astrophysics Data System (ADS)

    Dixit, Anant; Alouani, M.

    2016-10-01

    X-ray absorption and X-ray magnetic circular dichroism (XMCD) are very powerful tools for probing the orbital and spin moments of each atomic species orbital of magnetic materials. In this work, we present the implementation of a module for computing the X-ray absorption and XMCD spectra into the VASP code. We provide a derivation of the absorption cross-section in the electric dipole approximation. The matrix elements, which make up the X-ray absorption cross-section for a given polarization of light, are then computed using either the momentum operator p or the position operator r, within the projector augmented wave method. The core electrons are described using the relativistic basis-set whereas for the valence electrons, the spin-orbit coupling is added perturbatively to the semi-relativistic Hamiltonian. We show that both the p and the r implementations lead to the same results. The results for the K-edge and L23-edges of bcc-iron are then computed and compared to experiment.

  20. Probing early events in ferrous cytochrome c folding with time-resolved natural and magnetic circular dichroism spectroscopies.

    PubMed

    Chen, Eefei; Goldbeck, Robert A; Kliger, David S

    2009-10-01

    In a 1998 collaboration with Tony Fink, we coupled nanosecond circular dichroism methods (TRCD) with a CO-photolysis system for quickly triggering folding in cytochrome c (cyt c) in order to make the first time-resolved far-UV CD measurement of early secondary structure formation in a protein. The small signal observed in that initial study, approximately 10% of native helicity, became the seed for increasingly robust results from subsequent studies bringing additional natural and magnetic circular polarization dichroism and optical rotatory dispersion detection methods (e.g., TRORD, TRMCD, and TRMORD), coupled to fast photolysis and photoreduction triggers, to the study of early folding events. Nanosecond polarization methods are reviewed here in the context of the range of initiation methods and structure-sensitive probes currently available for fast folding studies. We also review the impact of experimental results from fast polarization studies on questions in folding dynamics such as the possibility of multiple folding pathways implied by energy landscape models, the sequence dependence of ultrafast helix formation, and the simultaneity of chain collapse and secondary structure formation implicit in molten globule models for kinetic folding intermediates.

  1. A circular dichroism sensor for Ni(2+) and Co(2+) based on L-cysteine capped cadmium sulfide quantum dots.

    PubMed

    Tedsana, Wimonsiri; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2015-03-31

    A new circular dichroism sensor for detecting Ni(2+) and Co(2+) was proposed for the first time using chiral chelating quantum dots. The detection principle was based on changing of circular dichroism signals of the chiral quantum dots when forming a chiral complex with Ni(2+) or Co(2+). L-Cysteine capped cadmium sulfide quantum dots (L-Cyst-CdS QDs) were proposed as a chiral probe. The CD spectrum of L-Cyst-CdS QDs was significantly changed in the presence of Ni(2+) and Co(2+). On the other hand, other studied cations did not alter the original CD spectrum. Moreover, when increasing the concentration of Ni(2+) or Co(2+), the intensity of the CD spectrum linearly increased as a function of concentration and could be useful for the quantitative analysis. The proposed CD sensor showed linear working concentration ranges of 10-60 μM and 4-80 μM with low detection limits of 7.33 μМ and 1.13 μM for the detection of Ni(2+) and Co(2+), respectively. Parameters possibly affected the detection sensitivity such as solution pH and incubation time were studied and optimized. The proposed sensor was applied to detect Ni(2+) and Co(2+) in real water samples, and the results agreed well with the analysis using the standard ICP-OES.

  2. Folding-unfolding of goat alpha-lactalbumin studied by stopped-flow circular dichroism and molecular dynamics simulations.

    PubMed

    Yoda, T; Saito, M; Arai, M; Horii, K; Tsumoto, K; Matsushima, M; Kumagai, I; Kuwajima, K

    2001-01-01

    Folding reaction of goat alpha-lactalbumin has been studied by stopped-flow circular dichroism and molecular dynamics simulations. The effects of four single mutations and a double mutation on the stability of the protein under a native condition were studied. The mutations were introduced into residues located at a hydrophobic core in the alpha-domain of the molecule. Here we show that an amino acid substitution (T29I) increases the native-state stability of goat alpha-lactalbumin against the guanidine hydrochloride-induced unfolding by 3.5 kcal/mol. Kinetic refolding and unfolding of wild-type and mutant goat alpha-lactalbumin measured by stopped-flow circular dichroism showed that the local structure around the Thr29 side chain was not constructed in the transition state of the folding reaction. To characterize the local structural change around the Thr29 side chain to an atomic level of resolution, we performed high-temperature (at 400 K and 600 K) molecular dynamics simulations and studied the structural change at an initial stage of unfolding observed in the simulation trajectories. The Thr29 portion of the molecule experienced structural disruption accompanied with the loss of inter-residue contacts and with the water molecule penetration in the 400-K simulation as well as in four of the six 600-K simulations. Disruption of the N-terminal portion was also observed and was consistent with the results of kinetic refolding/unfolding experiments shown in our previous report.

  3. Detection of biological particles by the use of circular dichroism measurements improved by scattering theory

    NASA Astrophysics Data System (ADS)

    Rosen, David L.; Pendleton, J. David

    1995-09-01

    Light scattered from optically active spheres was theoretically analyzed for biodetection. The circularly polarized signal of near-forward scattering from circularly dichroic spheres was calculated. Both remote and point biodetection were considered. The analysis included the effect of a circular aperture and beam block at the detector. If the incident light is linearly polarized, a false signal would limit the sensitivity of the biodetector. If the incident light is randomly polarized, shot noise would limit the sensitivity. Suggested improvements to current techniques include a beam block, precise angular measurements, randomly polarized light, index-matching fluid, and larger apertures for large particles.

  4. Soft x-ray circular dichroism and scattering using a modulated elliptically polarizing wiggler and double synchronous detection

    SciTech Connect

    Sutherland, J.C.; Polewski, K.; Monteleone, D.C.

    1998-01-23

    We have constructed an experimental station (beamline) at the National Synchrotron Light Source to measure circular dichroism (CD) using soft x-rays (250 {le} hv {le} 900 eV) from a time modulated elliptically polarizing wiggler. The polarization of the soft x-ray beam switches periodically between two opposite polarizations, hence permitting the use of phase-sensitive (lock-in) detection. While the wiggler can be modulated at frequencies up to 100 Hz, switching transients limit the actual practical frequency to {approx}25 Hz. With analog detection, switching transients are blocked by a chopper synchronized to the frequency and phase of the wiggler. The CD is obtained from the ratio of the signal recovered at the frequency of polarization modulation, f, to the average beam intensity, which is recovered by synchronous detection at frequency 2f.

  5. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    SciTech Connect

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  6. A QM/MM-MD study on protein electronic properties: Circular dichroism spectra of oxytocin and insulin

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yuya; Akinaga, Yoshinobu; Kawashima, Yukio; Jung, Jaewoon; Ten-no, Seiichiro

    2012-06-01

    A QM/MM (quantum-mechanical/molecular-mechanical) molecular-dynamics approach based on the generalized hybrid-orbital (GHO) method, in conjunction with the second-order perturbation (MP2) theory and the second-order approximate coupled-cluster (CC2) model, is employed to calculate electronic property accounting for a protein environment. Circular dichroism (CD) spectra originating from chiral disulfide bridges of oxytocin and insulin at room temperature are computed. It is shown that the sampling of thermal fluctuation of molecular geometries facilitated by the GHO-MD method plays an important role in the obtained spectra. It is demonstrated that, while the protein environments in an oxytocin molecule have significant electrostatic influence on its chiral center, it is compensated by solvent induced charges. This gives a reasonable explanation to experimental observations. GHO-MD simulations starting from different experimental structures of insulin indicate that existence of the disulfide bridges with negative dihedral angles is crucial.

  7. Thermolysis of (1R,2R)-1,2-dideuteriocyclobutane. An application of vibrational circular dichroism to kinetic analysis

    SciTech Connect

    Chickos, J.S.; Annamalai, A.; Keiderling, T.A.

    1986-07-23

    The relative rates of geometric isomerization to racemization have been studied for the title compound by using a combination of infrared (IR) and vibrational circular dichroism (VCD) spectroscopies, respectively. The results are interpreted with a kinetic and mechanistic scheme which parallels that used by Berson, Pedersen, and Carpenter on a similar study of chiral cyclopropane-d/sub 2/ thermolysis. Relative rates of isomerization to stereomutation of 1.5 +/- 0.4 were obtained which can be interpreted to be consistent with a mechanism best described by random methylene rotation in tetramethylene-d/sub 2/. This is the first application of VCD to kinetic analysis, and the advantages of IR techniques over the more usually employed UV spectroscopies to this type of basic mechanistic problem are illustrated.

  8. A fast but accurate excitonic simulation of the electronic circular dichroism of nucleic acids: how can it be achieved?

    PubMed

    Loco, Daniele; Jurinovich, Sandro; Di Bari, Lorenzo; Mennucci, Benedetta

    2016-01-14

    We present and discuss a simple and fast computational approach to the calculation of electronic circular dichroism spectra of nucleic acids. It is based on a exciton model in which the couplings are obtained in terms of the full transition-charge distributions, as resulting from TDDFT methods applied on the individual nucleobases. We validated the method on two systems, a DNA G-quadruplex and a RNA β-hairpin whose solution structures have been accurately determined by means of NMR. We have shown that the different characteristics of composition and structure of the two systems can lead to quite important differences in the dependence of the accuracy of the simulation on the excitonic parameters. The accurate reproduction of the CD spectra together with their interpretation in terms of the excitonic composition suggest that this method may lend itself as a general computational tool to both predict the spectra of hypothetic structures and define clear relationships between structural and ECD properties.

  9. Conformational dependence of the circular dichroism spectra of single amino acids from plane-waves-based density functional theory calculations.

    PubMed

    Molteni, E; Onida, G; Tiana, G

    2015-04-09

    We study the conformational dependence of circular dichroism (CD) spectra of amino acid molecules by means of an efficient ab initio DFT approach which is free from the typical gauge invariance issues arising with the use of localized basis sets and/or real-space grids. We analyze the dependence of the chiroptical spectra on the backbone dihedrals in the specific case of alanine and consider the role of side chain degrees of freedom at the examples of leucine, phenylalanine, and serine, whose side chains have different physicochemical properties. The results allow one to identify the most diagnostic regions of the CD spectra and to critically compare the conformations which match the experimental CD data with conformations extracted from the rotamer library. The inclusion of a solvation shell of explicit water molecules and its effect on the CD spectrum are analyzed at the example of alanine.

  10. On the interplay between chirality and exciton coupling: a DFT calculation of the circular dichroism in π-stacked ethylene.

    PubMed

    Norman, Patrick; Linares, Mathieu

    2014-09-01

    The chirality of stacked weakly interacting π-systems was interpreted in terms of Frenkel exciton states and the formation of excitonic circular dichroism (CD) bands was monitored for ethylene stacks of varying sizes. Convergence of CD bands with respect to the system size was observed for stacks involving around 10 molecules. By means of rotation around the C-C double bond in ethylene, chirality was induced in the monomeric system and which was shown to dominate the spectral responses, even for polymer aggregates. In helical assemblies of chiral entities, there will always be a mix of excitonic and monomeric contributions to the CD signal and it is demonstrated that the complex polarization propagator approach in combination with Density Functional Theory is a suitable method to address this situation.

  11. Structure and conformational stability of the enzyme I of Streptomyces coelicolor explored by FTIR and circular dichroism.

    PubMed

    Hurtado-Gómez, Estefanía; Barrera, Francisco N; Neira, José L

    2005-04-01

    The bacterial phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS), formed by a cascade of several proteins, couples the translocation and phosphorylation of specific sugars across cell membranes. The structure and thermal stability of the first protein (enzyme I, EI) of the PTS in Streptomyces coelicolor is studied by using far-UV circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) at pH 7.0. The deconvolution of FTIR spectra indicates that the protein is mainly composed by a 35% of alpha-helical structure and 30% of beta-sheet. The thermal denaturation curves, as followed by both techniques, show only a midpoint at 330 K. This thermal denaturation behaviour is different to that observed in other members of the EI family.

  12. Absolute Configuration Assignment of 3',4'-di-O-acylkhellactones Using Vibrational Circular Dichroism Exciton Chirality.

    PubMed

    Buendía-Trujillo, Abigail I; Torrres-Valencia, J Martín; Joseph-Nathan, Pedro; Burgueño-Tapia, Eleuterio

    2015-06-01

    The 3'R,4'R absolute configuration (AC) of the angular-type pyranocoumarins (-)-3',4'-di-O-acetylkhellactone (2), (-)-4'-O-acetyl-3'-O-angeloylkhellactone (3), (+)-3'-O-acetyl-4'-O-isobutyroylkhellactone (4), and (-)-3'-O-angeloyl-4'-O-senecioylkhellactone (5), isolated from the aerial parts of Prionosciadium thapsoides, was assigned by vibrational circular dichroism exciton chirality (VCDEC), and confirmed by comparison of their VCD frequencies with those calculated using DFT at the B3LYP/DGDZVP level. This again reveals that AC assignments based on optical rotation data are not very confident. Evaluation of Flack and Hooft parameters obtained after single-crystal X-ray diffraction analysis of 3, independently confirmed this AC.

  13. Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism.

    PubMed

    Ascoli, Giorgio A; Domenici, Enrico; Bertucci, Carlo

    2006-09-01

    The drug binding to plasma and tissue proteins are fundamental factors in determining the overall pharmacological activity of a drug. Human serum albumin (HSA), together with alpha1-acid glycoprotein (AGP), are the most important plasma proteins, which act as drug carriers, with drug pharmacokinetic implications, resulting in important clinical impacts for drugs that have a relatively narrow therapeutic index. This review focuses on the combination of biochromatography and circular dichroism as an effective approach for the characterization of albumin binding sites and their enantioselectivity. Furthermore, their applications to the study of changes in the binding properties of the protein arising by the reversible or covalent binding of drugs are discussed, and examples of physiological relevance reported. Perspectives of these studies reside in supporting the development of new drugs, which require miniaturization to facilitate the screening of classes of compounds for their binding to the target protein, and a deeper characterization of the mechanisms involved in the molecular recognition processes.

  14. Soft x-ray magnetic circular dichroism of L21-type Co2FeGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Umetsu, R. Y.; Nakamura, T.; Kobayashi, K.; Kainuma, R.; Sakuma, A.; Fukamichi, K.; Ishida, K.

    2010-03-01

    Spin and orbital magnetic moments of the L21-type Co2FeGa Heusler alloy have been investigated using x-ray magnetic circular dichroism spectra in the soft x-ray region. From the spectra of the L2,3-edge of Co and Fe, the ratios of the orbital magnetic moment to the spin magnetic moment Morb/Mspin are estimated to be 0.06 for Co and 0.02 for Fe, in agreement with the available theoretical values. The orbital magnetic moments of these two elements are small in line with theoretical results, reflecting the high symmetry of the L21-type crystal structure. Furthermore, it has been confirmed that the magnetic moment of Ga is induced in the present alloy.

  15. Circular dichroism and infrared spectroscopic characterization of secondary structure components of protein Z during mashing and boiling processes.

    PubMed

    Han, Yupeng; Wang, Jinjing; Li, Yongxian; Hang, Yu; Yin, Xiangsheng; Li, Qi

    2015-12-01

    In beer brewing, protein Z is hypothesized to stabilize beer foam. However, few investigations have revealed the relationship between conformational alterations to protein Z during the brewing process and beer foam. In this report, protein Z from sweet wort was isolated during mashing and boiling processes. Circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) were used to monitor the structural characteristics of protein Z. The results showed that the α-helix and β-sheet content decreased, whereas the content of β-turn and random coil increased. The complex environment rich in polysaccharides may facilitate conformational alterations and modifications to protein Z. Additionally, the formation of extended structural features to protein Z provides access to reactive amino acid side chains that can undergo modifications and the exposure of hydrophobic core regions of the protein. Analyzing structural transformations should provide a deeper understanding of the mechanism of protein Z on maintaining beer foam.

  16. Spectral characteristics of fluorescence and circular dichroism of aflatoxin B1 reaction with its anti-idiotypic antibody

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Yang, Hongxiu; Wang, Xiaohong; Chen, Fusheng

    2012-11-01

    Aflatoxin B1 (AFB1) is a toxic secondary metabolite and sensitive methods for its analysis have been developed. In our lab, a number of works have been carried out, including exploitation of detection methods and production of anti-idiotypic antibody (Ab2) against Fab fragment of anti-AFB1 antibody (Ab1). In this paper, Ab2 was generated upon the immunization of mice with F(ab')2 fragment, which was specific to AFB1 and obtained by pepsin digestion of Ab1. The characteristics of Ab2 was primarily investigated by indirect competitive enzyme-linked immunosorbent assay (icELISA), which indicated that Ab2, might bear an internal image of antigen AFB1 and was able to combine to F(ab')2 in competition with AFB1, and the concentration of Ab2 to cause 50% inhibition of binding (IC50) was 131.8 μg/mL. In addition, fluorescence and circular dichroism studies were designed to explore the mutual relationship among AFB1, F(ab')2 and Ab2. The fluorescence spectroscopy implied that both AFB1 and Ab2 act as a quencher upon F(ab')2, and the Ab2 could compete with AFB1 when both of Ab2 and AFB1 reacted with F(ab')2. The circular dichroism (CD) spectrum suggested that both the binding of Ab2 and AFB1 on F(ab')2 brought secondary conformation change of F(ab')2, especially in the changes of α helix and β sheet. The research performed would provide unique insight into the comprehension of interaction among AFB1, F(ab')2 and Ab2 as well as offer structural information for substitution researches of toxic antigen like AFB1.

  17. Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: applications in secondary structure analyses.

    PubMed

    Lopes, Jose L S; Miles, Andrew J; Whitmore, Lee; Wallace, B A

    2014-12-01

    Circular dichroism (CD) spectroscopy is a valuable method for defining canonical secondary structure contents of proteins based on empirically-defined spectroscopic signatures derived from proteins with known three-dimensional structures. Many proteins identified as being "Intrinsically Disordered Proteins" have a significant amount of their structure that is neither sheet, helix, nor turn; this type of structure is often classified by CD as "other", "random coil", "unordered", or "disordered". However the "other" category can also include polyproline II (PPII)-type structures, whose spectral properties have not been well-distinguished from those of unordered structures. In this study, synchrotron radiation circular dichroism spectroscopy was used to investigate the spectral properties of collagen and polyproline, which both contain PPII-type structures. Their native spectra were compared as representatives of PPII structures. In addition, their spectra before and after treatment with various conditions to produce unfolded or denatured structures were also compared, with the aim of defining the differences between CD spectra of PPII and disordered structures. We conclude that the spectral features of collagen are more appropriate than those of polyproline for use as the representative spectrum for PPII structures present in typical amino acid-containing proteins, and that the single most characteristic spectroscopic feature distinguishing a PPII structure from a disordered structure is the presence of a positive peak around 220nm in the former but not in the latter. These spectra are now available for inclusion in new reference data sets used for CD analyses of the secondary structures of soluble proteins.

  18. Design of plasmonic circular grating with broadband absorption enhancements

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Yang, Cheng-Du; Kao, Yi-Lun; Cheng, Chih-Jen

    2015-05-01

    We have investigated the effect of concentric circles geometry on the performance of focusing plasmonic circular grating (PCG)-coupled surface-omnidirectional absorption. We wish to highlight the essential characteristics of plasmonic circular grating nanostructure to assist researchers in developing and advancing suitable organic solar cells (OSC) for unique applications. Exactly how plasmonic enhancement and the absorption characteristics of the organic materials (P3HT:PCBM and PEDOT:PSS) interact with each other is also examined. We present experimental studies of broadband absorption enhancement in PCG structure. We show that the PCG structure can result in broadband absorption enhancement, the overall optical absorption in organic film can be greatly enhanced up to ~111.2 % compared to the planar device without grating.

  19. X-ray magnetic circular dichroism on La2/3Ca1/3Mn0.97Fe0.03O3 thin films

    NASA Astrophysics Data System (ADS)

    Figueroa, Adriana I.; Campillo, Gloria E.; Baker, Alexander A.; Osorio, Jaime A.; Arnache, Oscar L.; van der Laan, Gerrit

    2015-11-01

    The element-selective technique of X-ray magnetic circular dichroism (XMCD) has been used to study the magnetic properties of La2/3Ca1/3Mn0.97Fe0.03O3 (LCMFO) thin films. XMCD measurements below the ferromagnetic ordering temperature at the Mn and Fe L2,3 absorption edges allow the determination of the contributions and relative orientations of the Mn and Fe magnetic moments. A reduction in the Mn L2,3 XMCD signal of the LCMFO sample compared to that for the parent La2/3Ca1/3MnO3 (LCMO) system reveals important modifications in the electronic and magnetic properties with the presence of Fe. The Fe L2,3 X-ray absorption (XAS) for the LCMFO film is characteristic of Fe3+, and the comparison with multiplet calculations shows that the Fe dopants occupy octahedral sites in the crystal, which is consistent with Fe3+ substituting Mn3+ in LCMO. The magnetic moments of Mn and Fe are found to align antiparallel, which suggests the presence of Mn-O-Fe superexchange coupling. This result is consistent with macroscopic magnetometry measurements on the LCMFO system, which show a decrease in saturation magnetization of LCMO with Fe doping.

  20. Plasmon hybridization method to aid in study of circular dichroism modes of planar nanostructures for biosensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Phua, Wee Kee; Khoo, Eng Huat

    2016-09-01

    In this study, we extended the plasmon hybridization method from a single nanoparticle to a complex planar nanostructure. This is achieved through a decomposition of the complex nanostructure into nanoparticle building blocks in its most fundamental forms. Using the gammadion planar nanostructure as an example, we validated our theory by comparing the field profile in the gammadion's arms under the influence of an incident circularly polarized wave. This further allows us to address the origin of the plasmonics modes in the circular dichroism (CD) spectrum of the gammadion nanostructure. The use of this hybridization method provides a simple and intuitive explanation on how conductive and inductive coupling may result from complex planar nanostructures. Understanding these coupling effects open up the path to study the optical properties of a complex nanostructure. With our approach, we will be able to apply such top down hybridization studies to other complex planar structures. With knowledge of the origin of these CD modes, we can gain further insight on the modes of chiral nanostructures, allowing us to further enhance the field for ultrasensitive sensing of chiral micro and macro molecules.

  1. Wavelength-Dependent Second Harmonic Generation Circular Dichroism for Differentiation of Col I and Col III Isoforms in Stromal Models of Ovarian Cancer Based on Intrinsic Chirality Differences.

    PubMed

    Campbell, Kirby R; Campagnola, Paul J

    2017-03-02

    Extensive remodeling of the extracellular matrix (ECM) occurs in many epithelial cancers. For example, in ovarian cancer, upregulation of collagen isoform type III has been linked to invasive forms of the disease, and this change may be a potential biomarker. To examine this possibility, we implemented wavelength-dependent second harmonic generation circular dichroism (SHG-CD) imaging microscopy to quantitatively determine changes in chirality in ECM models comprised of different Col I/Col III composition. In these models, Col III was varied between 0 and 40%, and we found increasing Col III results in reduced net chirality, consistent with structural biology studies of Col I and III in tissues where the isoforms comingle in the same fibrils. We further examined the wavelength dependence of the SHG-CD to both optimize the response and gain insight into the underlying mechanism. We found using shorter SHG excitation wavelengths resulted in increased SHG-CD sensitivity, where this is consistent with the electric-dipole-coupled oscillator model suggested previously for the nonlinear chirality response from thin films. Moreover, the sensitivity is further consistent with the wavelength dependency of SHG intensity fit to a two-state model of the two-photon absorption in collagen. We also provide experimental calibration protocols to implement the SHG-CD modality on a laser scanning microscope. We last suggest that the technique has broad applicability in probing a wide range of diseased states with changes in collagen molecular structure.

  2. Ab initio ground state and L{sub 2,3} x-ray magnetic circular dichroism of Mn-based Heusler alloys

    SciTech Connect

    Galanakis, I.; Ostanin, S.; Alouani, M.; Dreysse, H.; Wills, J. M.

    2000-02-01

    Relativistic full-potential calculations within the generalized gradient approximation (GGA) for a series of Mn-based Heusler alloys are presented. Calculated equilibrium lattice parameters deviate less than 1.2% from the experimental values. The main features of a half metallic system are present in the density of states for the PtMnSb and NiMnSb. We predict that PdMnSb shows half metallic character under hydrostatic pressure. The substitution of Sb in PtMnSb by Sn or Te destroys the minority spin band gap. Spin and orbital magnetic moments for all the systems are in good agreement with previous calculations and experimental data. L{sub 2,3} x-ray absorption and x-ray magnetic circular dichroism (XMCD) spectra are calculated for all the five compounds. Pt spectra present big deviations from system to system in the PtMnY (Y=Sn,Sb,Te) compounds while Mn spectra show only small deviations. For all these spectra GGA underestimates the L{sub 3}/L{sub 2} integrated branching ratio and produces a much smaller L{sub 2} peak intensity for the Ni site in NiMnSb. The XMCD sum rules are used to compute the spin and orbital magnetic moments and the results are compared to the direct calculations. (c) 2000 The American Physical Society.

  3. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  4. X-ray magnetic circular dichroism and photoemission studies of ferromagnetism in CaMn1-xRuxO3 thin films

    NASA Astrophysics Data System (ADS)

    Terai, K.; Yoshii, K.; Takeda, Y.; Fujimori, S. I.; Saitoh, Y.; Ohwada, K.; Inami, T.; Okane, T.; Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Kobayashi, K.; Kobayashi, M.; Fujimori, A.

    2008-03-01

    We have studied the electronic and magnetic properties of epitaxially grown CaMn1-xRuxO3 thin films (x=1.0,0.75,0.5) by soft x-ray absorption, soft x-ray magnetic circular dichroism (XMCD), and hard x-ray photoemission spectroscopy (HXPES) measurements. The XMCD studies indicated that the spin moments of Mn and Ru are aligned in opposite directions. The valence-band HXPES spectra revealed that the Ru4d t2g states around the Fermi level and the Mn3d t2g up-spin states centered ˜2eV below it showed systematic concentration dependences. From these results, we propose that the localized Mn3d t2g states and the itinerant Ru4d t2g band are antiferromagnetically coupled and give rise to the ferromagnetic ordering, which is in analogy to the mechanism proposed for double perovskite oxides, such as Sr2FeMoO6 .

  5. Effects of electron configuration and coordination number on the vibrational circular dichroism spectra of metal complexes of trans-1,2-diaminocyclohexane.

    PubMed

    Merten, Christian; Hiller, Kaitlynd; Xu, Yunjie

    2012-10-05

    Transition metal complexes of ethylenediamine have attracted significant interest as prototype systems for a range of studies related to their chiroptical properties. In order to better elucidate the effects of different central metal ions and also different coordination numbers on the vibrational circular dichroism (VCD) spectra, trans-1,2-diamino cyclohexane (chxn) was chosen as the chiral ligands in the current report. In this case the conformation of the diamino ligand is predetermined by its absolute configuration and the transition from the λ- to the δ-form that can occur in the case of ethylenediamine is no longer possible. The fingerprint region of the vibrational absorption and VCD spectra of three transition metal complexes of chxn have been analysed in detail. For the tris chelate complexes Ni(chxn)(3)(2+) and Cu(chxn)(3)(2+), selective enhancement of some VCD bands in the otherwise almost identical spectra has been observed and explained in terms of a ring current mechanism and of a different number of unpaired electrons of the metal centers. The comparison of the VCD spectra of Cu(chxn)(3)(2+) and Cu(chxn)(2)(2+) reveals the effects of coordination number that manifest as an inversion of the strong bisignate VCD pattern of the NH(2) scissor vibrational modes. This leads to the conclusion that this region can be used to extract information about the ligand environment and the chirality of the metal center.

  6. First principle simulation of the temperature dependent magnetic circular dichroism of a trinuclear copper complex in the presence of zero field splitting.

    PubMed

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2011-09-22

    We present a test of a recently developed density functional theory (DFT) based methodology for the calculation of magnetic circular dichroism (MCD) spectra in the presence of zero-field splitting (ZFS). The absorption and MCD spectra of the trinuclear copper complex μ(3)O ([Cu(3)(L)(μ(3)-O)](4+)), which models the native intermediate produced in the catalytic cycle of the multicopper oxidases, have been simulated from first principle within the framework of adiabatic time dependent density functional theory. The effects of the ZFS of the quartet (4)A(2) ground state on the theoretical MCD spectrum of μ(3)O have been analyzed. The simulated spectra are consistent with the experimental ones. The theoretical assignments of the MCD spectra are based on direct simulation as well as a detailed analysis of the molecular orbitals in μ(3)O. Some of the assignments differ from those given in previous studies. The ZFS effects in the presence of a strong external magnetic field (7 T) prove negligible. The change of the sign of the ZFS changes systematically the intensity of the MCD bands of the z-polarized excitations. The effect of the ZFS on the x,y-polarized excitations is not uniform.

  7. Electronic structure and x-ray magnetic circular dichroism in A2FeReO6 (A =Ca ,Sr ,andBa ) oxides

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Ernst, A.

    2016-07-01

    A systematic electronic structure study of A2FeReO6 (A =Ba ,Sr ,andCa ) has been performed by employing the local-spin-density approximation (LSDA) and LSDA +U methods using the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. We investigated the effects of the subtle interplay between spin-orbit coupling, electron correlations, and lattice distortion on the electronic structure of double perovskites. Ca2FeReO6 has a large distortion in the Fe-O-Re bond, and the electronic structure is mainly determined by electron correlations and lattice distortion. In the Ba -Sr -Ca row, the correlation effects at the Fe site are increased. The correlations at the Re site are small in the Ba- and Sr-based compounds but significant in Ca2FeReO6 . Ca2FeReO6 behaves like an insulator only if considered with a relatively large value of Coulomb repulsion Ueff=2.3 eV at the Re site in addition to Ueff=3.1 eV at the Fe site. Ca2FeReO6 possesses a phase transition at 140 K where the metal-insulator transition (MIT) occurs between metallic high-temperature and insulating low-temperature phases. The spin and orbital magnetic moments are linear functions of temperature before and after the MIT but change abruptly at the point of the phase transition. From theoretically calculated magnetocrystalline anisotropy energy (MAE), we found that the easy axis of magnetization for the low-temperature phase is along the b direction, in agreement with experimental data. We found that the major contribution to the MAE is due to the orbital magnetic anisotropy at the Re site. X-ray-absorption spectra and x-ray magnetic circular dichroism at the Re, Fe, and Ba L2 ,3 and Fe, Ca, and O K edges were investigated theoretically in the frame of the LSDA +U method. A qualitative explanation of the x-ray magnetic circular dichroism spectra shape is provided by an analysis of the corresponding selection rules, orbital character, and occupation numbers of individual orbitals

  8. Magnetic circular dichroism spectroscopy of N-confused porphyrin and its ionized forms.

    PubMed

    Ziegler, Christopher J; Erickson, Nathan R; Dahlby, Michael R; Dalby, Michael R; Nemykin, Victor N

    2013-11-14

    N-Confused porphyrin (NCP) and its externally methylated variant (MeNCP) were investigated using UV-vis and magnetic circular dichrosim (MCD) spectroscopies. In addition to evaluating the spectroscopy of the neutral compounds, the acid/base chemistry of these macrocycles was examined by the same methods. NCP exhibits two tautomeric states depending on the polarity of the solvent, and their protonation/deprotonation chemistries also differ depending on solvent polarity. DFT and TDDFT calculations were employed to evaluate the observed spectroscopic changes. Using both experimental and calculated results, we were able to determine the sites of protonation/deprotonation for both tautomeric forms of NCP. Inspection of the MCD Faraday B terms for all of the macrocycles presented in this report showed that the ΔHOMO > ΔLUMO condition is maintained in all cases, and these observations were in good agreement with the DFT calculations.

  9. Systematic approach to conformational sampling for assigning absolute configuration using vibrational circular dichroism.

    PubMed

    Sherer, Edward C; Lee, Claire H; Shpungin, Joseph; Cuff, James F; Da, Chenxiao; Ball, Richard; Bach, Richard; Crespo, Alejandro; Gong, Xiaoyi; Welch, Christopher J

    2014-01-23

    Systematic methods that speed-up the assignment of absolute configuration using vibrational circular dichrosim (VCD) and simplify its usage will advance this technique into a robust platform technology. Applying VCD to pharmaceutically relevant compounds has been handled in an ad hoc fashion, relying on fragment analysis and technical shortcuts to reduce the computational time required. We leverage a large computational infrastructure to provide adequate conformational exploration which enables an accurate assignment of absolute configuration. We describe a systematic approach for rapid calculation of VCD/IR spectra and comparison with corresponding measured spectra and apply this approach to assign the correct stereochemistry of nine test cases. We suggest moving away from the fragment approach when making VCD assignments. In addition to enabling faster and more reliable VCD assignments of absolute configuration, the ability to rapidly explore conformational space and sample conformations of complex molecules will have applicability in other areas of drug discovery.

  10. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    SciTech Connect

    Mini, S.M. |; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of {approx}2.5{mu}{sub B} per interface Pd atom.

  11. Absorption dichroism of monolayer 1T‧-MoTe2 in visible range

    NASA Astrophysics Data System (ADS)

    Han, Gang Hee; Keum, Dong Hoon; Zhao, Jiong; Shin, Bong Gyu; Song, Seunghyun; Bae, Jung Jun; Lee, Jubok; Kim, Jung Ho; Kim, Hyun; Moon, Byoung Hee; Lee, Young Hee

    2016-09-01

    Among various transition metal dichalcogenides, MoTe2 has drawn attention due to its capability of robust phase engineering between semiconducting (2H) and semi-metallic distorted octahedral (1T‧) phase. In particular, 1T‧-MoTe2 has been predicted to have intriguing physics such as quantum spin Hall insulator, large magnetoresistance, and superconductivity. Recent progress showed weak antilocalization behavior in 1T‧-MoTe2 which is the one of representative characteristics in topological insulator. Here, we grow centimeter-scale monolayer 1T‧-MoTe2 on SiO2/Si substrate via chemical vapordeposition and demonstrate dichroism in visible range. Ribbon-like 1T‧-MoTe2 flakes were initially nucleated randomly on SiO2 substrate and at a later stage merged to form a continuous monolayer film over the entire substrate. Each flake revealed one dimensional Mo-Mo dimerization feature and anisotropic absorption behavior in visible range (400-600 nm). This allowed us to detect the grain boundary due to stark contrast difference among flakes in different orientations.

  12. Circular dichroism, magnetic knots, and the spectropolarimetry of the cosmic microwave background

    SciTech Connect

    Giovannini, Massimo

    2010-01-15

    When the last electron-photon scattering takes place in a magnetized environment, the degree of circular polarization of the outgoing radiation depends upon the magnetic field strength. After deriving the scattering matrix of the process, the generalized radiative transfer equations are deduced in the presence of the relativistic fluctuations of the geometry and for all the four brightness perturbations. The new system of equations is solved under the assumption that the incident radiation is not polarized. The induced V-mode polarization is analyzed both analytically and numerically. The corresponding angular power spectra are calculated and compared with the measured (or purported) values of the linear polarizations (i.e. E mode and B mode) as they arise in the concordance model and in its neighboring extensions. Possible connections between the V-mode polarization of the cosmic microwave background and the topological properties of the magnetic flux lines prior to equality are outlined and briefly explored in analogy with the physics of magnetized sunspots.

  13. Cyclotron Splittings in the Plasmon Resonances of Electronically Doped Semiconductor Nanocrystals Probed by Magnetic Circular Dichroism Spectroscopy.

    PubMed

    Hartstein, Kimberly H; Schimpf, Alina M; Salvador, Michael; Gamelin, Daniel R

    2017-04-10

    A fundamental understanding of the rich electronic structures of electronically doped semiconductor nanocrystals is vital for assessing the utility of these materials for future applications from solar cells to redox catalysis. Here, we examine the use of magnetic circular dichroism (MCD) spectroscopy to probe the infrared localized surface plasmon resonances of p-Cu2-xSe, n-ZnO, and tin-doped In2O3 (n-ITO) nanocrystals. We demonstrate that the MCD spectra of these nanocrystals can be analyzed by invoking classical cyclotron motions of their excess charge carriers, with experimental MCD signs conveying the carrier types (n or p) and experimental MCD intensities conveying the cyclotron splitting magnitudes. The experimental cyclotron splittings can then be used to quantify carrier effective masses (m*), with results that agree with bulk in most cases. MCD spectroscopy thus offers a unique measure of m* in free-standing colloidal semiconductor nanocrystals, raising new opportunities to investigate the influence of various other synthetic or environmental parameters on this fundamentally important electronic property.

  14. Combined Time-Resolved X-ray Magnetic Circular Dichroism and Ferromagnetic Resonance Studies of Magnetic Alloys and Multilayers (invited)

    SciTech Connect

    Arena,D.; Vescovo, E.; Kao, C.; Guan, Y.; Bailey, W.

    2007-01-01

    We present measurements of element- and time-resolved ferromagnetic resonance (FMR) in magnetic thin films at gigahertz frequencies via an implementation of time-resolved x-ray magnetic circular dichroism (TR-XMCD). By combining TR-XMCD and FMR, using a rf excitation that is phase locked to the photon bunch clock, the dynamic response of individual layers or precession of individual elements in an alloy can be measured. The technique also provides extremely accurate measurements of the precession cone angle (to 0.1{sup o}) and the phase of oscillation (to 2{sup o}, or {approx}5 ps at 2.3 GHz). TR-XMCD combined with FMR can be used to study the origins of precessional damping by measuring the relative phase of dissimilar precessing magnetic moments. We have used the technique to measure the response of specific elements and separate layers in several alloys and structures, including a single Ni{sub 81}Fe{sub 19} layer, a pseudo-spin-valve structure (Ni{sub 81}Fe{sub 19}/Cu/Co{sub 93}Zr{sub 7}), magnetic bilayers consisting of low damping (Co{sub 93}Zr{sub 7}) and high damping (Tb-doped Ni{sub 81}Fe{sub 19}) layers joined across a common interface, and elemental moments in Tb-doped Ni{sub 81}Fe{sub 19}.

  15. X-ray magnetic circular dichroism and reflection anisotropy spectroscopy Kerr effect studies of capped magnetic nanowires

    SciTech Connect

    Cunniffe, J. P.; McNally, D.E.; Liberati, M.; Arenholz, E.; McGuinness, C.; McGilp, J. F.

    2010-03-02

    Aligned Co wires grown on Pt(997) under ultra-high vacuum conditions have been capped successfully by the epitaxial growth of Au monolayers (ML) at room temperature. The samples were kept under vacuum except when transferring between apparatus or when making some of the measurements. No degradation of the Co wires was detected during the measurements. The magneto-optic response of the system was measured using X-ray magnetic circular dichroism (XMCD) at the Co L{sub 2,3} edge and reflection anisotropy spectroscopy (RAS) at near normal incidence, which is sensitive to the normal component of the out-of-plane magnetization via the Kerr effect (MOKE). Capping the wires significantly impacts their magnetic properties. Comparison of the magneto-optic response of the system at X-ray and optical energies reveals small differences that are attributed to the induced moment in the Pt substrate and Au capping layer not picked up by the element specific XMCD measurements. The sensitivity of RAS-MOKE is sufficient to allow the determination of the easy axis direction of the capped wires to within a few degrees. The results for a 6-atom-wide Co wire sample, capped with 6 ML of Au, are consistent with the capped wires possessing perpendicular magnetization.

  16. Evaluation of cathepsin B activity for degrading collagen IV using a surface plasmon resonance method and circular dichroism spectroscopy.

    PubMed

    Shoji, Atsushi; Kabeya, Mitsutaka; Ishida, Yuuki; Yanagida, Akio; Shibusawa, Yoichi; Sugawara, Masao

    2014-07-01

    Evaluation of cathepsin B activities for degrading collagen IV and heat-denatured collagen IV (gelatin) were performed by surface plasmon resonance (SPR) and circular dichroism (CD) measurements. The optimal pH of cathepsin B activity for degrading each substrate was around 4.0. The ΔRU(15 min), which is a decrease in the SPR signal at 15 min after injection of cathepsin B, was smaller for collagen IV than for heat-denatured collagen IV owing to the presence of triple-helical conformation. An unstable nature of the triple-helical conformation of collagen IV at pH 4.0 was shown by the CD study. Degrading collagen IV by cathepsin B was facilitated owing to a local unwinding of the triple-helical conformation caused by proteolytic cleavage of the non-helical region. The concentration dependence of the initial velocity for degrading collagen IV by cathepsin B at pH 4.0 was biphasic, showing that cathepsin B at low concentration exhibits exopeptidase activity, while the enzyme at high concentration exhibits endopeptidase activity. The kinetic parameters for the exopeptidase activity of cathepsin B toward collagen IV and heat-treated collagen IV were evaluated and discussed in terms of the protease mechanism.

  17. Analysis of Secondary Structure and Self-Assembly of Amelogenin by Variable Temperature Circular Dichroism and Isothermal Titration Calorimetry

    PubMed Central

    Lakshminarayanan, Rajamani; Yoon, Il; Hegde, Balachandra G.; Daming, Fan; Du, Chang; Moradian-Oldak, Janet

    2009-01-01

    Amelogenin is a proline-rich enamel matrix protein known to play an important role in the oriented growth of enamel crystals. Amelogenin self-assembles to form nanospheres and higher order structures mediated by hydrophobic interactions. This study aims to obtain a better insight into the relationship between primary-secondary structure and self-assembly of amelogenin by applying computational and biophysical methods. Variable temperature circular dichroism studies indicated that under physiological pH recombinant full-length porcine amelogenin contains unordered structures in equilibrium with polyproline type II (PPII) structure, the latter being more populated at lower temperatures. Increasing the concentration of rP172 resulted in the promotion of folding to an ordered β-structured assembly. Isothermal titration calorimetry dilution studies revealed that, at all temperatures, self-assembly is entropically driven due to the hydrophobic effect and the molar heat of assembly (ΔHA) decreases with temperature. Using a computational approach, a profile of domains in the amino acid sequence that have a high propensity to assemble and to have PPII structures has been identified. We conclude that the assembly properties of amelogenin are due to complementarity between the hydrophobic and PPII helix prone regions. PMID:19274734

  18. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    NASA Astrophysics Data System (ADS)

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-01

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  19. Dumbbell-type fullerene-steroid hybrids: a join experimental and theoretical investigation for conformational, configurational, and circular dichroism assignments.

    PubMed

    Ruíz, Alberto; Morera-Boado, Cercis; Almagro, Luis; Coro, Julieta; Maroto, Enrique E; Herranz, María Ángeles; Filippone, Salvatore; Molero, Dolores; Martínez-Álvarez, Roberto; Garcia de la Vega, José M; Suárez, Margarita; Martín, Nazario

    2014-04-18

    New [60]fullerene-steroid conjugates (4-6) have been synthesized by 1,3-dipolar cycloaddition and Bingel-Hirsch cyclopropanation reactions from suitably functionalized epiandrosterone and [60]fullerene. Since a new stereocenter is created in the formation of the Prato monoaduct, two different diastereomers were isolated by HPLC (4, 5) whose absolute configurations were assigned according to the highly reliable "sector rule" on fullerenes. A further reaction of the malonate-containing diastereomer 5 with a second C60 molecule has afforded dumbbell fullerene 6 in which the two fullerene units are covalently connected through an epiandrosterone moiety. The new compounds have been spectroscopically characterized and their redox potentials, determined by cyclic voltametry, reveal three reversible reduction waves for hybrids 4 and 5, whereas these signals are split in dumbbell 6. Theoretical calculations at semiempirical (AM1) and single point B3LYP/6-31G(d) levels have predicted the most stable conformations for the hybrid compounds (4-6), showing the importance of the chlorine atom on the D ring of the steroid. Furthermore, TDDFT calculations have allowed assignments of the experimentally determined circular dichroism (CD) of the [60]fullerene-steroid hybrids based on the sign and position of the Cotton effects, despite the exceptionally large systems under study.

  20. The amide III vibrational circular dichroism band as a probe to detect conformational preferences of alanine dipeptide in water.

    PubMed

    Mirtič, Andreja; Merzel, Franci; Grdadolnik, Jože

    2014-07-01

    The conformational preferences of blocked alanine dipeptide (ADP), Ac-Ala-NHMe, in aqueous solution were studied using vibrational circular dichroism (VCD) together with density functional theory (DFT) calculations. DFT calculations of three most representative conformations of ADP surrounded by six explicit water molecules immersed in a dielectric continuum have proven high sensitivity of amide III VCD band shape that is characteristic for each conformation of the peptide backbone. The polyproline II (PII ) and αR conformation of ADP are associated with a positive VCD band while β conformation has a negative VCD band in amide III region. Knowing this spectral characteristic of each conformation allows us to assign the experimental amide III VCD spectrum of ADP. Moreover, the amide III region of the VCD spectrum was used to determine the relative populations of conformations of ADP in water. Based on the interpretation of the amide III region of VCD spectrum we have shown that dominant conformation of ADP in water is PII which is stabilized by hydrogen bonded water molecules between CO and NH groups on the peptide backbone.

  1. Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study

    NASA Astrophysics Data System (ADS)

    Yuan, Lixia; Liu, Min; Liu, Guiqin; Li, Dacheng; Wang, Zhengping; Wang, Bingquan; Han, Jun; Zhang, Min

    2017-02-01

    Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.

  2. X-ray magnetic circular dichroism study of epitaxial magnetite ultrathin film on MgO(100)

    SciTech Connect

    Liu, W. Q.; Xu, Y. B. E-mail: rzhang@nju.edu.cn; Song, M. Y.; Lin, J. G.; Maltby, N. J.; Li, S. P.; Samant, M. G.; Parkin, S. S. P.; Bencok, P.; Steadman, Paul; Dobrynin, Alexey; Zhang, R. E-mail: rzhang@nju.edu.cn

    2015-05-07

    The spin and orbital magnetic moments of the Fe{sub 3}O{sub 4} epitaxial ultrathin film synthesized by plasma assisted simultaneous oxidization on MgO(100) have been studied with X-ray magnetic circular dichroism. The ultrathin film retains a rather large total magnetic moment, i.e., (2.73 ± 0.15) μ{sub B}/f.u., which is ∼70% of that for the bulk-like Fe{sub 3}O{sub 4}. A significant unquenched orbital moment up to 0.54 ± 0.05 μ{sub B}/f.u. was observed, which could come from the symmetry breaking at the Fe{sub 3}O{sub 4}/MgO interface. Such sizable orbital moment will add capacities to the Fe{sub 3}O{sub 4}-based spintronics devices in the magnetization reversal by the electric field.

  3. TD-DFT investigation of the magnetic circular dichroism spectra of some purine and pyrimidine bases of nucleic acids.

    PubMed

    Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Santoro, Fabrizio; Improta, Roberto; Coriani, Sonia

    2015-05-28

    We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200-300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nucleic acids uracil, thymine, and cytosine, using the B3LYP and CAM-B3LYP functionals. Solvent effects are investigated within the polarizable continuum model and by inclusion of explicit water molecules. In general, the computed spectra are found to be in good agreement with the experimental ones, apart from some overall blue shifts. Both the pseudo-A term shape of the MCD spectra of the purines and the B term shape of the spectra of pyrimidine bases are reproduced. Our calculations also correctly reproduce the reversed phase of the MCD bands in purine compared to that of its derivatives present in nucleic acids. Solvent effects are sizable and system specific, but they do not in general alter the qualitative shape of the spectra. The bands are dominated by the bright π → π* transitions, and our calculations in solution nicely reproduce their energy differences, improving the estimates obtained in the gas phase. Shoulders are predicted for purine and uracil due to n → π* excitations, but they are too weak to be observed in the experiment.

  4. Enhanced biocatalysis mechanism under microwave irradiation in isoquercitrin production revealed by circular dichroism and surface plasmon resonance spectroscopy.

    PubMed

    Gong, An; Zhu, Dan; Mei, Yi-Yuan; Xu, Xiao-Hui; Wu, Fu-An; Wang, Jun

    2016-04-01

    An efficient and rapid process for isoquercitrin production by hesperidinase-catalyzed hydrolysis of rutin was successfully developed under microwave irradiation detecting the affinity by circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy. A maximum isoquercitrin yield of 91.5±2.7% was obtained in 10min with the conditions of 10g/L hesperidinase, 2g/L rutin, 30°C and microwave power density 88.9W/L. Enzymatic reaction rate and Vm/Km in the microwave reactor were 6.34-fold higher than in a continuous flow microreactor and 1.24-fold higher than in a biphasic system. CD and SPR analysis results also showed that hesperidinase has a better selectivity and affinity (3.3-fold than in a batch reactor) to generate isoquercitrin under microwave irradiation. Microwave irradiation greatly improved the reaction efficiency and productivity, leading to a more positive economical assessment. The binding affinity indicates the presence of strong multivalent interactions between rutin and hesperidinase under microwave irradiation.

  5. Conformational analysis of apolipoprotein A-I and E-3 based on primary sequence and circular dichroism.

    PubMed Central

    Nolte, R T; Atkinson, D

    1992-01-01

    The primary and secondary structure of human plasma apolipoprotein A-I and apolipoprotein E-3 have been analyzed to further our understanding of the secondary and tertiary conformation of these proteins and the structure and function of plasma lipoprotein particles. The methods used to analyze the primary sequence of these proteins used computer programs: (a) to identify repeated patterns within these proteins on the basis of conservative substitutions and similarities within the physicochemical properties of each residue; (b) for local averaging, hydrophobic moment, and Fourier analysis of the physicochemical properties; and (c) for secondary structure prediction of each protein carried out using homology, statistical, and information theory based methods. Circular dichroism was used to study purified lipid-protein complexes of each protein and quantitate the secondary structure in a lipid environment. The data from these analyses were integrated into a single secondary structure prediction to derive a model of each protein. The sequence homology within apolipoproteins A-I, E-3, and A-IV is used to derive a consensus sequence for two 11 amino acid repeating sequences in this family of proteins. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 8 PMID:1477274

  6. Comparative circular dichroism studies of an anti-fluorescein monoclonal antibody (Mab 4-4-20) and its derivatives.

    PubMed

    Tetin SYu; Mantulin, W W; Denzin, L K; Weidner, K M; Voss, E W

    1992-12-08

    This study presents circular dichroism (CD) spectra of a high-affinity monoclonal anti-fluorescein antibody (Mab 4-4-20), its Fab fragments, and corresponding single-chain antibody (SCA). In the region 200-250 nm, the differences in the CD spectra between these proteins reflect the uneven distribution of chromophores (tryptophan and tyrosine) rather than a major conformational change. On the basis of near-UV CD spectra, binding of the hapten fluorescein to these protein antibodies elicits an increased asymmetry in the microenvironment of the chromophoric residues in contact with the hapten and also perturbs the interface between VL and VH domains. The hapten-binding site provides a chiral microenvironment for fluorescein that elicits a pronounced induced fluorescein CD spectrum in both the visible and UV regions. In contrast to the parent molecules, SCA is thermolabile. Our results demonstrate that (1) UV CD spectra are useful for assessing the chromophoric microenvironment in the binding portion of antibodies and (2) the extrinsic fluorescein hapten CD spectra provide information about the interaction of hapten with the binding pocket.

  7. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase.

    PubMed

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-28

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  8. Microscopic Magnetic Properties of the Itinerant Metamagnet UCoAl by X-ray Magnetic Circular Dichroism

    NASA Astrophysics Data System (ADS)

    Combier, Tristan; Palacio-Morales, Alexandra; Sanchez, Jean-Pierre; Wilhelm, Fabrice; Pourret, Alexandre; Brison, Jean-Pascal; Aoki, Dai; Rogalev, Andrei

    2017-02-01

    The itinerant metamagnet UCoAl has been investigated by high field X-ray magnetic circular dichroism (XMCD) at the U M4,5 and Co K edges. The orbital and spin moments of U at 2.1 K for H || c applied below and above the first order metamagnetic transition field (HM) have been determined. The magnetism of UCoAl is dominated by the U moment. There is no evidence for any change of the orbital to spin moment ratio (˜-2.05) across HM and within the ferromagnetic phase up to 17 T. The possibility of a Fermi surface reconstruction at HM remains an open option. XMCD at the Co K-edge reveals the presence of a small Co 4p-orbital moment parallel to the macroscopic magnetization. In addition, the Co 3d-moment is estimated to be at most 0.1 μB at 17 T. The similar field dependence of the U and Co magnetizations indicates that the Co moment is induced by the U moment.

  9. Dimethyl Sulfoxide Induced Destabilization and Disassembly of Various Structural Variants of Insulin Fibrils Monitored by Vibrational Circular Dichroism.

    PubMed

    Zhang, Ge; Babenko, Viktoria; Dzwolak, Wojciech; Keiderling, Timothy A

    2015-12-15

    Dimethyl sulfoxide (DMSO) induced destabilization of insulin fibrils has been previously studied by Fourier transform infrared spectroscopy and interpreted in terms of secondary structural changes. The variation of this process for fibrils with different types of higher-order morphological structures remained unclear. Here, we utilize vibrational circular dichroism (VCD), which has been reported to provide a useful biophysical probe of the supramolecular chirality of amyloid fibrils, to characterize changes in the macroscopic chirality following DMSO-induced disassembly for two types of insulin fibrils formed under different conditions, at different reduced pH values with and without added salt and agitation. We confirm that very high concentrations of DMSO can disaggregate both types of insulin fibrils, which initially maintained a β-sheet conformation and eventually changed their secondary structure to a disordered form. The two types responded to varying concentrations of DMSO, and disaggregation followed different mechanisms. Interconversion of specific insulin fibril morphological types also occurred during the destabilization process as monitored by VCD. With transmission electron microscopy, we were able to correlate the changes in VCD sign patterns to alteration of morphology of the insulin fibrils.

  10. Unraveling the thermodynamics and kinetics of RNA assembly: surface plasmon resonance, isothermal titration calorimetry, and circular dichroism.

    PubMed

    Hoogstraten, Charles G; Sumita, Minako; White, Neil A

    2014-01-01

    The mechanisms and driving forces of the assembly of RNA tertiary structure are a topic of much current interest. In several systems, including our own work in the docking transition of the hairpin ribozyme, intramolecular RNA tertiary folding has been converted into an intermolecular binding event, allowing the full power of contemporary biophysical techniques to be brought to bear on the analysis. We review the use of three such methods: circular dichroism to isolate the binding of multivalent cations coupled to tertiary assembly, surface plasmon resonance to determine the rates of association and dissociation, and isothermal titration calorimetry to dissect the thermodynamic contributions to RNA assembly events. We pay particular attention to practical aspects of these studies, such as careful preparation of samples with fixed free concentrations of cations in order to avoid errors due to ion depletion effects that are common in RNA systems. Examples of applications from our own work with the hairpin ribozyme are shown. Distinctions among the data handling procedures for the various techniques used and solution conditions encountered are also discussed.

  11. Unique biphasic band shape of the visible circular dichroism of bacteriorhodopsin in purple membrane

    PubMed Central

    Cassim, Joseph Y.

    1992-01-01

    Over a decade and a half ago, when the first visible membrane suspension circular dichroic (CD) spectrum of the purple membrane (PM) was presented, two mechanisms were proposed to account for the observed biphasic shaped CD band: (a) excitonic interactions among the retinals of the sole protein bacteriorhodopsin (bR) in the crystalline structure of the PM, and (b) combination of CD bands with opposite rotational strengths due to a retinal-apoprotein heterogeneity of the bR molecules or due to two possible close-lying long-wavelength transitions of the retinal of the bR with opposite rotational strengths. Since that time, an impressive body of experimental and theoretical evidence has been accumulated, mostly consistent with an exciton model but many at serious odds with any heterogeneity or multiple transition model. Recently, a number of articles have appeared reporting analyses of new experimental observations which are proposed to cast serious doubts on the viability of the exciton model, and therefore, may revive the heterogeneity or multiple transition model as an explanation for the unique shape of the CD band of the PM. The intent of this article is to demonstrate that if all observations found in literature baring on this question are considered in toto and in a consistent manner, they can be interpreted without exception by excitons, and furthermore, that there is no plausible evidence available to warrant the revival of the heterogeneity or multiple transition model as an explanation for the unique shape of the biphasic CD band of the PM. PMID:19431860

  12. Perpendicular magnetic anisotropy and the reorientation transition of the magnetization in CeH2/Fe multilayers probed by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Arend, M.; Felsch, W.; Krill, G.; Delobbe, A.; Baudelet, F.; Dartyge, E.; Kappler, J.-P.; Finazzi, M.; San Miguel-Fuster, A.; Pizzini, S.; Fontaine, A.

    1999-02-01

    The transition of the magnetization of multilayers [CeH2(x Å)/Fe(16 Å)]×n, x=10, 16, 25, from planar to perpendicular orientation at low temperatures is explained on a microscopic basis by performing angle- and temperature-dependent measurements of x-ray magnetic circular dichroism at the 2p absorption edge of Fe and at the 2p and 3d absorption edges of Ce. The 3d orbital magnetic moment in the Fe sublayers is considerably enhanced with respect to bulk bcc Fe and distinctly larger parallel to the layer normal than perpendicular to it. The Ce 4f states in these structures are well localized. The 4f magnetic moment is oriented along the layer normal due to a strong single-ion anisotropy resulting from crystal-field effects. The spin-split 3d states of Fe induce magnetic order on the Ce 5d states via hybridization and spin-orbit coupling, even on ions more distant from the interface. By intra-atomic 5d-4f exchange coupling the 4f states become magnetically polarized, with increasing strength toward low temperature. Together with the 5d-mediated 4f-3d coupling and the crystal-field induced single-ion 4f anisotropy this leads to a perpendicular orientation of the Fe 3d moment at low temperature. Hence the Ce 4f states are the motor of the reorientation transition of the multilayer magnetization. The 4f-5d exchange interaction in the hydrided Ce sublayers affects dramatically the spectral shape of the dichroic Ce 5d spectra and, at low temperature, the ratio of the integrated signals at the L2 and L3 edges.

  13. Investigation of the complexation between quinidine carbamate and the enantiomers of 3-chloro-1-phenyl-propanol by circular dichroism and UV spectroscopy

    SciTech Connect

    Guiochon, Georges A; Asnin, Leonid

    2006-04-01

    UV and circular dichroism spectroscopic measurements showed that the molecular interactions in hexane/ethyl-acetate solutions between dihydroquinidine tert-butylcarbamate, used as a model for the quinidine carbamate chiral selector (QD), and 3-chloro-1-phenyl-propanol are too weak to affect the corresponding spectra of these compounds. The weak interactions between QD and 3-chloro-1-phenyl-propanol are probably masked by the formation of self-associated dimeric structures in solution.

  14. Strength by joining methods: combining synthesis with NMR, IR, and vibrational circular dichroism spectroscopy for the determination of the relative configuration in hemicalide.

    PubMed

    De Gussem, Ewoud; Herrebout, Wouter; Specklin, Simon; Meyer, Christophe; Cossy, Janine; Bultinck, Patrick

    2014-12-22

    The relative configuration of a key subunit of hemicalide, a recently isolated, highly bioactive marine natural product having potent antiproliferative activity against a panel of human cancer cell lines, was assigned by combining stereocontrolled synthesis of model substrates with NMR, IR, and vibrational circular dichroism (VCD) spectroscopy. The assignment of the absolute configuration of asymmetric carbon center C42 in two structurally complex epimeric substructures containing six stereocenters by VCD analysis illustrates the power and reliability of combining methods.

  15. X-ray magnetic circular dichroism measurements using an X-ray phase retarder on the BM25 A-SpLine beamline at the ESRF

    PubMed Central

    Boada, Roberto; Laguna-Marco, María Ángeles; Gallastegui, Jon Ander; Castro, Germán R.; Chaboy, Jesús

    2010-01-01

    Circularly polarized X-rays produced by a diamond X-ray phase retarder of thickness 0.5 mm in the Laue transmission configuration have been used for recording X-ray magnetic circular dichroism (XMCD) on the bending-magnet beamline BM25A (SpLine) at the ESRF. Field reversal and helicity reversal techniques have been used to carry out the measurements. The performance of the experimental set-up has been demonstrated by recording XMCD in the energy range from 7 to 11 keV. PMID:20400827

  16. Electronic circular dichroism of highly conjugated π-systems: breakdown of the Tamm-Dancoff/configuration interaction singles approximation.

    PubMed

    Bannwarth, Christoph; Grimme, Stefan

    2015-04-16

    We show that the electronic circular dichroism (ECD) of delocalized π-systems represents a worst-case scenario for Tamm-Dancoff approximated (TDA) linear response methods. We mainly consider density functional theory (TDA-DFT) variants together with range-separated hybrids, but the conclusions also apply for other functionals as well as the configuration interaction singles (CIS) approaches. We study the effect of the TDA for the computation of ECD spectra in some prototypical extended π-systems. The C76 fullerene, a chiral carbon nanotube fragment, and [11]helicene serve as model systems for inherently chiral, π-chromophores. Solving the full linear response problem is inevitable in order to obtain accurate ECD spectra for these systems. For the C76 fullerene and the nanotube fragment, TDA and CIS approximated methods yield spectra in the origin-independent velocity gauge formalism of incorrect sign which would lead to the assignment of the opposite (wrong) absolute configuration. As a counterexample, we study the ECD of an α-helix polypeptide chain. Here, the lowest-energy transitions are dominated by localized excitations within the individual peptide units, and TDA methods perform satisfactorily. The results may have far-reaching implications for simple semiempirical methods which often employ TDA and CIS for huge molecules. Our recently presented simplified time-dependent DFT approach proves to be an excellent low-cost linear response method which together with range-separated density functionals like ωB97X-D3 produces ECD spectra in very good agreement with experiment.

  17. Surface plasmon resonance and circular dichroism characterization of cucurbitacins binding to serum albumins for early pharmacokinetic profiling.

    PubMed

    Fabini, Edoardo; Fiori, Giovana Maria Lanchoti; Tedesco, Daniele; Lopes, Norberto Peporine; Bertucci, Carlo

    2016-04-15

    Cucurbitacins are a group of tetracyclic triterpenoids, known for centuries for their anti-cancer and anti-inflammatory properties, which are being actively investigated over the past decades in order to elucidate their mechanism of action. In perspective of being used as therapeutic molecules, a pharmacokinetic characterization is crucial to assess the affinity toward blood carrier proteins and extrapolate distribution volumes. Usually, pharmacokinetic data are first collected on animal models and later translated to humans; therefore, an early characterization of the interaction with carrier proteins from different species is highly desirable. In the present study, the interactions of cucurbitacins E and I with human and rat serum albumins (HSA and RSA) were investigated by means of surface plasmon resonance (SPR)-based optical biosensing and circular dichroism (CD) spectroscopy. Active HSA and RSA sensor chip surfaces were prepared through an amine coupling reaction protocol, and the equilibrium dissociation constants (Kd) for the different cucurbitacins-serum albumins complexes were then determined by SPR analysis. Further information on the binding of cucurbitacins to serum albumins was obtained by CD competition experiments with biliverdin, a specific marker binding to subdomain IB of HSA. SPR data unveiled a previously unreported binding event between CucI and HSA; the determined binding affinities of both compounds were slightly higher for RSA with respect to HSA, even though all the compounds can be ranked as high-affinity binders for both carriers. CD analysis showed that the two cucurbitacins modify the binding of biliverdin to serum albumins through opposite allosteric modulation (positive for HSA, negative for RSA), confirming the need for caution in the translation of pharmacokinetic data across species.

  18. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    PubMed Central

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  19. Location and dynamics of tryptophan in transmembrane alpha-helix peptides: a fluorescence and circular dichroism study.

    PubMed

    de Foresta, Béatrice; Tortech, Ludovic; Vincent, Michel; Gallay, Jacques

    2002-06-01

    Amphiphilic and hydrophobic peptides play a key role in many biological processes. We have developed a reference system for evaluating the insertion of such peptides bearing Trp fluorescent reporter groups into membrane mimetic systems. This system involves a set of six 25-amino acid synthetic peptides that are models of transmembrane alpha-helices. They are Lys-flanked polyLeu sequences, each containing a single Trp residue at a different position (P i, with i=3, 5, 7, 9, 11 and 13). These peptides were inserted into micelles of a non-ionic detergent, dodecylmaltoside (DM). We analyzed this system by use of circular dichroism and steady-state and time-resolved fluorescence in combination with Trp quenching with two brominated DM analogs. We found significant variations in the Trp emission maximum according to its position in each peptide (from 327 to 313 nm). This is consistent with the radial insertion of the peptides within DM micelles. We observed characteristic patterns of fluorescence quenching of these peptides in mixed micelles of DM, with either 7,8-dibromododecylmaltoside (BrDM) or 10,11-dibromoundecanoylmaltoside (BrUM), that reflect differences in the accessibility of the Trp residue to the bromine atoms located on the detergent acyl chain. In the isotropic reference solvent, methanol, the alpha-helix content was high and identical (approximately 76%) for all peptides. In DM micelles, the alpha-helix content for P9 to P13 was similar to that in methanol, but slightly lower for P3 to P7. The fluorescence intensity decays were heterogeneous and depended upon the position of the Trp. The Trp dynamics of each peptide are described by sub-nanosecond and nanosecond rotational motions that were significantly lower than those observed in methanol. These results, which precisely describe structural, dynamic and microenvironment parameters of peptide Trp in micelles according to its depth, should be useful for describing the interactions of peptides of biological

  20. Solution Behavior and Interaction of Pepsin with Carnitine Based Cationic Surfactant: Fluorescence, Circular Dichroism, and Calorimetric Studies.

    PubMed

    Ghosh, Subhajit; Dolai, Subhrajyoti; Patra, Trilochan; Dey, Joykrishna

    2015-10-01

    The present work reports the pH-induced conformational changes of pepsin in solution at room temperature. The conformational change makes the protein surface active. The protein was found to be present in the partially denatured state at pH 8 as well as at pH 2. The fluorescence probe and circular dichroism (CD) spectra suggested that the most stable state of pepsin exists at pH 5. The binding affinities of pepsin in its native and denatured states for a D,L-carnitine-based cationic surfactant (3-hexadecylcarbamoyl-2-hydroxypropyl)trimethylammonium chloride (C16-CAR) were examined at very low concentrations of the surfactant. The thermodynamics of the binding processes were investigated by use of isothermal titration calorimetry. The results were compared with those of (3-hexadecylcarbamoylpropyl)trimethylammonium chloride (C16-PTAC), which is structurally similar to C16-CAR, but without the secondary -OH functionality near the headgroup. None of the surfactants were observed to undergo binding with pepsin at pH 2, in which it exists in the acid-denatured state. However, both of the surfactants were found to spontaneously bind to the most stable state at pH 5, the partially denatured state at pH 8, and the alkaline denatured state at pH 11. Despite the difference in the headgroup structure, both of the surfactants bind to the same warfarin binding site. Interestingly, the driving force for binding of C16-CAR was found to be different from that of C16-PTC at pH ≥ 5. The steric interaction of the headgroup in C16-CAR was observed to have a significant effect on the binding process.

  1. Ag(I)-mediated homo and hetero pairs of guanosine and cytidine: Monitoring by circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Goncharova, Iryna

    2014-01-01

    Ag(I)-containing compounds are attractive as antibacterial and antifungal agents. The renewed interest in the application of silver(I) compounds has led to the need for detailed knowledge of the mechanism of their action. One of the possible ways is the coordination of Ag(I) to G-C pairs of DNA, where Ag+ ions form Ag(I)-mediated base pairs and inhibit the transcription. Herein, a systematic chiroptical study on silver(I)-mediated homo and mixed pairs of the C-G complementary-base derivatives cytidine(C) and 5‧-guanosine monophosphate(G) in water is presented. Ag(I)-mediated homo and hetero pairs of G and C and their self-assembled species were studied under two pH levels (7.0 and 10.0) by vibrational (VCD) and electronic circular dichroism(ECD). VCD was used for the first time in this field and showed itself to be a powerful method for obtaining specific structural information in solution. Based on results of the VCD experiments, the different geometries of the homo pairs were proposed under pH 7.0 and 10.0. ECD was used as a diagnostic tool to characterize the studied systems and as a contact point between the previously defined structures of the metal or proton mediated pairs of nucleobases and the systems studied here. On the basis of the obtained data, the formation of the self-assembled species of cytidine with a structure similar to the i-motif structure in DNA was proposed at pH 10.0.

  2. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism.

    PubMed

    Iovescu, Alina; Băran, Adriana; Stîngă, Gabriela; Cantemir-Leontieş, Anca Ruxandra; Maxim, Monica Elisabeta; Anghel, Dan Florin

    2015-12-01

    The study systematically investigates aqueous mixtures of fixed bovine serum albumin (BSA) and various ethoxylated nonionic surfactants belonging to a homologous series or not. Mono-disperse tetra-(C12E4), hexa-(C12E6) and octa-ethyleneglycol mono-n-dodecyl ether (C12E8), and poly-disperse eicosa-ethyleneglycol mono-n-tetradecyl ether (C14EO20) are respectively employed. Fluorescence and circular dichroism measurements are performed at surfactant/protein molar ratios (rm)s lower and higher than one. We aim to get new insights into the binding mechanism of these species and to differentiate among the interaction abilities of these surfactants. The relative magnitude of the binding thermodynamic parameters by fluorescence, and the increase of α-helix prove that hydrogen bonding drives the interaction next to the hydrophobic attraction. C12En (n=4,6,8) develop more H bonds with the albumin than C14EO20 owing to a zigzag conformation of their short ethyleneoxide chains. Among the homologous surfactants, C12E6 has a slightly stronger interaction with BSA due to a maximal number of H bonds at a minimal hindering. Static fluorescence and dynamic fluorescence indicate an inter-conversion between the tryptophan (Trp) rotamers which happens around the surfactants critical micellar concentration. For C14EO20, the meander conformation of the polar group determines a less evident conversion of the Trp rotamers and smaller α-helix rise. Binding isotherms of the homologous surfactants and the fluorescence quenching mechanism by C12E6 are also provided.

  3. Stereospecific ligands and their complexes. Part XIX. Synthesis, characterization, circular dichroism and antimicrobial activity of oxalato and malonato-(S,S)-ethylenediamine-N,N‧-di-2-(3-methyl)butanoato-chromate(III) complexes

    NASA Astrophysics Data System (ADS)

    Ilić, Dragoslav; Jevtić, Verica V.; Radojević, Ivana D.; Vasić, Sava M.; Stefanović, Olgica D.; Čomić, Ljiljana R.; Vasojević, Miorad M.; Jelić, Miodrag Ž.; Koval'chuk, Tatyana V.; Loginova, Natalia V.; Trifunović, Srećko R.

    2013-10-01

    The s-cis-[Cr(S,S-eddv)L]-complexes (1,2) (S,S-eddv = (S,S)-ethylenediamine-N,N‧-di-2-(3-methyl)butanoato ion; L = oxalate or malonate ion) were prepared. The complexes were purified by ion-exchange chromatography. The geometry of the complexes has been supposed on the basis of the infrared and electronic absorption spectra, and the absolute configurations of the isolated s-cis-[Cr(S,S-eddv)L]-complexes have been predicted on the basis of their circular dichroism (CD) spectra. Also, the results of thermal decomposition have been discussed. Antimicrobial activity of the prepared complexes (1-4) was investigated against 28 species of microorganisms. Testing was performed by microdilution method and minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) have been determined. Complexes demonstrated in generally low antibacterial and antifungal activity.

  4. Itinerant ferromagnetism in the As 4p conduction band of Ba0.6K0.4Mn2As2 identified by x-ray magnetic circular dichroism

    DOE PAGES

    Ueland, B. G.; Pandey, Abhishek; Lee, Y.; ...

    2015-05-27

    In this study, x-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba0.6K0.4Mn2As2 show that the ferromagnetism below TC ≈ 100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below TC, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that themore » previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.« less

  5. Contribution of light scattering to the circular dichroism of deoxyribonucleic acid films, deoxyribonucleic acid-polylysine complexes, and deoxyribonucleic acid particles in ethanolic buffers

    SciTech Connect

    Maestre, M.F.; Reich, C.

    1980-01-01

    The contribution of scattering to the circular dichroism (CD) of DNA films with twisted structures, DNA-polylysine complexes, and condensed DNA aggregates in ethanolic buffers of defined salt concentrations has been studied by the use of novel measuring techniques. These techniques include fluorscat cuvettes, fluorescence-detected circular dichroism (FDCD) methods, backscattering capturing devices, and beam-mounted goniometer detectors. The result of the experimental measurement is that DNA films can be made which have very large ellipticities or CD at sharp specific wavelengths. The sign of these ellipticities is related to the handedness of the twists, with a right-handed twist producing large positive rotations and a left-handed one producing negative rotations. The film shows nodal angles at which the interaction with light is minimal. The scattering patterns of both films, DNA-polylysine particles and DNA-EtOH condensates, show that the main interaction is light scattering produced by a resonance phenomenon similar to that produced in cholestric liquid crystals and twisted-nematic liquid crystals. It is proposed that the so-called psi-type CD spectrum is a manifestation of a side-by-side packing of DNA molecules with a long-range twisting order whose helical parameters match the helical parameter of circularly polarized light at specific resonance or critical wavelengths. Application of the Bragg law for cholesteric liquid crystals gives the periodicity of the long-range ordered structures. 9 figures.

  6. Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation

    SciTech Connect

    Kanai, Shun; Tsujikawa, Masahito; Shirai, Masafumi; Miura, Yoshio; Matsukura, Fumihiro Ohno, Hideo

    2014-12-01

    We study the spin and orbital magnetic moments in Ta/Co{sub 0.4}Fe{sub 0.4}B{sub 0.2}/MgO by x-ray magnetic circular dichroism measurements as well as first-principles calculations, in order to clarify the origin of the perpendicular magnetic anisotropy. Both experimental and theoretical results show that orbital magnetic moment of Fe is more anisotropic than that of Co with respect to the magnetization direction. The anisotropy is larger for thinner CoFeB, indicating that Fe atoms at the interface with MgO contribute more than Co to the observed perpendicular magnetic anisotropy.

  7. Time-resolved demagnetization of Co2MnSi observed using x-ray magnetic circular dichroism and an ultrafast streak camera.

    PubMed

    Opachich, Y P; Comin, A; Bartelt, A F; Young, A T; Scholl, A; Feng, J; Schmalhorst, J; Shin, H J; Engelhorn, K; Risbud, S H; Reiss, G; Padmore, H A

    2010-04-21

    The demagnetization dynamics of the Heusler alloy Co(2)MnSi was studied using picosecond time-resolved x-ray magnetic circular dichroism. The sample was excited using femtosecond laser pulses. In contrast to the sub-picosecond demagnetization of the metal ferromagnet Ni, substantially slower demagnetization with a time constant of 3.5 ± 0.5 ps was measured. This could be explained by a spin-dependent band gap inhibiting the spin-flip scattering of hot electrons in Co(2)MnSi, which is predicted to be half-metallic. A universal demagnetization time constant was measured across a range of pump power levels.

  8. Vibrational circular dichroism (VCD) chiral assignment of atropisomers: application to γ-aminobutyric acid (GABA) modulators designed as potential anxiolytic drugs.

    PubMed

    Pivonka, Don E; Wesolowski, Steven S

    2013-04-01

    Atropisomers exist when axial chirality is present as a result of conformationally restricted rotation around a single bond. The interconversion rate of the individual atropisomers is critical to the assessment of chiral stability of a drug throughout scale-up, development, production, and storage as well as in vivo pharmacokinetics. We describe the application of vibrational circular dichroism spectroscopy coupled with quantum mechanics simulations to assign the absolute axial chirality and measure the racemization half-life of a series of potential anxiolytic drugs that act as γ-aminobutyric acid modulators.

  9. A rapid alternative to X-ray crystallography for chiral determination: case studies of vibrational circular dichroism (VCD) to advance drug discovery projects.

    PubMed

    Wesolowski, Steven S; Pivonka, Don E

    2013-07-15

    The absolute stereochemistry of chiral drugs is usually established via X-ray crystallography. However, vibrational circular dichroism (VCD) spectroscopy coupled with quantum mechanics simulations offers a rapid alternative to crystallography and is readily applied to both crystalline and non-crystalline samples. VCD is an effective complement to X-ray analysis of drug candidates, and it can be used as a high-throughput means of assessing absolute stereochemistry at all phases of the discovery process (hundreds of assignments per year). The practical implementation (or fee-for-service outsourcing) of VCD and selected case studies are illustrated with an emphasis on providing utility and impact to pharmaceutical discovery programs.

  10. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  11. Perpendicular magnetic anisotropy at the interface between ultrathin Fe film and MgO studied by angular-dependent x-ray magnetic circular dichroism

    SciTech Connect

    Okabayashi, J.; Koo, J. W.; Mitani, S.; Sukegawa, H.; Takagi, Y.; Yokoyama, T.

    2014-09-22

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3d{sub z}{sup 2} and O 2p{sub z} states.

  12. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials

    SciTech Connect

    Artemyev, Anton N.; Müller, Anne D.; Demekhin, Philipp V.; Hochstuhl, David

    2015-06-28

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules.

  13. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton N.; Müller, Anne D.; Hochstuhl, David; Demekhin, Philipp V.

    2015-06-01

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules.

  14. [Oligonucleotides and their analogs. II. Spectra of the circular dichroism of dinucleoside phosphate analogs containing 4-thiouracil].

    PubMed

    Kritsyn, A M; Mikhaĭlov, S N; Stepanov, S V; Florent'ev, V L

    1978-01-01

    The dinucleoside phosphates analogues APpSU, SUPpA and UPpSU have been synthesised by direct thionation of DNP analogues, containing cytosine. The structure of compounds prepared was proved by UV- and PMR-spectra. The CD spectra of the DNP analogues were examined. It has been demonstrated that the "induced" dichroism contribution in the Cotton-effect of DNP was substantial in the case of stacking conformations and negligible for unstacking conformations.

  15. Synthesis of enantiopure oxorhenium(V) and arylimidorhenium(V) "3 + 2" Schiff base complexes. X-ray diffraction, cyclic voltammetry, UV-vis, and circular dichroism characterizations.

    PubMed

    Béreau, V M; Khan, S I; Abu-Omar, M M

    2001-12-17

    Two new oxorhenium(V) and two new arylimidorhenium(V) complexes of the Schiff base ligands 2-hydroxybenzaldehyde-((1R,2S)-1-amino-2-indanol)imine (1) (H(2)L(1)) and 3-(1-adamantyl)-2-hydroxy-5-methylbenzaldehyde-((1R,2S)-1-amino- 2-indanol)imine (2) (H(2)L(2)) have been prepared from the reaction of the precursor Re(O)(PPh(3))(2)Cl(3), Re(NC(6)H(5))(PPh(3))(2)Cl(3), or Re(NC(6)H(4)OCH(3))(PPh(3))(2)Cl(3) and the free ligands H(2)L(1,2). The complexes Re(O)(HL(1))(L(1)) (3), Re(O)(HL(2))(L(2)) (4), Re(NC(6)H(5))(HL(1))(L(1)) (5), and Re(NC(6)H(4)OCH(3))(HL(1))(L(1)) (6) have been isolated and fully characterized by IR, (1)H NMR, circular dichroism, LRMS-FAB, and elemental analysis. All the complexes have a chiral center at rhenium. A single enantiomer is obtained in all cases. Suitable crystals of 3 and 5 were used in X-ray structural determinations. Crystal data: (3) C(32)H(27)N(2)O(5)Re.CH(2)Cl(2), orthorhombic, P2(1)2(1)2(1), a = 9.5599(16) A, b = 9.9579(16) A, c = 31.712(5) A, V = 3018.9(9) A(3), T = 100(2) K, Z = 4. (5) C(40)H(38)N(3)O(5)Re, monoclinic, P2(1), a = 9.286(3) A, b = 18.759(6) A, c = 9.957(3) A, beta = 102.817(6) degrees, V = 1691.3(10) A(3), T = 100(2) K, Z = 2. The major characteristic of these complexes is the presence of two coordination modes for the Schiff base ligands on rhenium, a tridentate ligand (noted L(1,2)) and another bidentate ligand (noted HL(1,2)). In the latter, the -OH group of the indanol is free and tilts away from the coordination sphere. X-ray structural analyses in conjunction with circular dichroism were used to assign the absolute configuration at rhenium (C). Cyclic voltammetry, UV-vis, and circular dichroism data are presented and discussed. The complexes were found to be highly stable and to resist reduction even when treated with organic phosphanes.

  16. Nuclear velocity perturbation theory for vibrational circular dichroism: An approach based on the exact factorization of the electron-nuclear wave function

    SciTech Connect

    Scherrer, Arne; Agostini, Federica; Gross, E. K. U.; Sebastiani, Daniel; Vuilleumier, Rodolphe

    2015-08-21

    The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similar to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.

  17. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-01

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  18. A high-performance liquid chromatography-electronic circular dichroism online method for assessing the absolute enantiomeric excess and conversion ratio of asymmetric reactions.

    PubMed

    Zhang, Xiang; Wang, Mingchao; Li, Li; Yin, Dali

    2017-03-02

    Asymmetric reactions often need to be evaluated during the synthesis of chiral compounds. However, traditional evaluation methods require the isolation of the individual enantiomer, which is tedious and time-consuming. Thus, it is desirable to develop simple, practical online detection methods. We developed a method based on high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) that simultaneously analyzes the material conversion ratio and absolute optical purity of each enantiomer. In particular, only a reverse-phase C18 column instead of a chiral column is required in our method because the ECD measurement provides a g-factor that describes the ratio of each enantiomer in the mixtures. We used our method to analyze the asymmetric hydrosilylation of β-enamino esters, and we discussed the advantage, feasibility, and effectiveness of this new methodology.

  19. A high-performance liquid chromatography with circular dichroism detector for determination of stereochemistry of 6, 9-oxygen bridge dibenzocyclooctadiene lignans from kadsura coccinea.

    PubMed

    Zhu, Hui; Xu, Liang; Yang, Shi-Lin; Li, He-Ran

    2015-10-01

    The stereochemistry of two 6, 9-oxygen bridge dibenzocyclooctadiene lignans from Kadsura coccinea, are difficult to separate and very unstable. The present study was designed to develop a high-performance liquid chromatography using circular dichroism detection for the analysis of the stereochemistry. A new 6, 9-oxygen bridge dibenzocyclooctadiene lignans named Kadsulignan Q was firstly found with an S-biphenyl configuration. The other compound was identified as Kadsulignan L with an R- biphenyl configuration. In order to obtain kinetic data on their reversible interconversion, the stability was measured at different deuterated solvents such as deuterated methanol, deuterated chloroform and deuterated dimethylsulfoxide. The lignans were more unstable and converted more easily in deuterated methanol than in deuterated chloroform and deuterated dimethylsulfoxide.

  20. Common Origin of the Circular-dichroism Pattern in ARPES of SrTiO3 and CuxBi2Se3

    SciTech Connect

    Bell, Christopher

    2011-08-19

    We investigate circular dichroism in the angular distribution (CDAD) of photoelectrons from SrTiO{sub 3}:Nb and Cu{sub x}Bi{sub 2}Se{sub 3} recorded by 7-eV laser ARPES. In addition to the well-known node that occurs in CDAD when the incidence plane matches the mirror plane of the crystal, we show that another type of node occurs when the mirror plane of the crystal is vertical to the incidence plane and the electronic state is two dimensional. The flower-shaped CDAD's occurring around the Fermi level of SrTiO{sub 3}:Nb and around the Dirac point of Cu{sub x}Bi{sub 2}Se{sub 3} are explained on equal footings. A surface-state-to-surface-resonance transition is indicated for the topological state of Cu{sub x}Bi{sub 2}Se{sub 3}.

  1. Calculation of the magnetic circular dichroism B term from the imaginary part of the Verdet constant using damped time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Krykunov, Mykhaylo; Seth, Michael; Ziegler, Tom; Autschbach, Jochen

    2007-12-01

    A time-dependent density functional theory (TDDFT) formalism with damping for the calculation of the magnetic optical rotatory dispersion and magnetic circular dichroism (MCD) from the complex Verdet constant is presented. For a justification of such an approach, we have derived the TDDFT analog of the sum-over-states formula for the Verdet constant. The results of the MCD calculations by this method for ethylene, furan, thiophene, selenophene, tellurophene, and pyrrole are in good agreement with our previous theoretical sum-over-states MCD spectra. For the π →π* transition of propene, we have obtained a positive Faraday B term. It is located between the two negative B terms. This finding is in agreement with experiment in the range of 6-8eV.

  2. Effects of freezing and the cryoprotectant lactobionic acid in the structure of GlnK protein evaluated by circular dichroism (CD) and isothermal titration calorimetry (ITC).

    PubMed

    Misugi, Cíntia Tiemi; Savi, Lizandra Kamradt; Iwankiw, Patrícia Kanczewski; Masson, Maria Lucia; de Oliveira, Marco Aurélio Schüler; Igarashi-Mafra, Luciana; Mafra, Marcos Rogério

    2017-01-01

    Freezing is a widely applied method in food preservation. The technique has negative effects on sensory and textural properties of some foods. In this study the effects of the freeze-thaw process and lactobionic acid (LBA) as a cryoprotectant on GlnK protein solution were evaluated by circular dichroism (CD) analysis and isothermal titration calorimetry (ITC). The freeze-thaw cycles caused changes in GlnK conformation and interactions with small ligands (adenosine triphosphate, ATP). CD assay demonstrated changes in the molar ellipticity values of the samples subjected to freezing, indicating conformational changes to the GlnK protein. Additionally, ITC analysis indicated that the freeze-thaw process caused changes in the interaction properties of GlnK with its ligand ATP. LBA cryoprotectant activity was also evaluated and with both of the techniques it was demonstrated that the compound prevented the damage caused by the freeze-thaw process, thereby maintaining the characteristics of the samples.

  3. The Origin of Anomalous Electronic Circular Dichroism Spectra of [RuPt_2(tppz)_2Cl_2]^{4+} in Acetonitrile

    NASA Astrophysics Data System (ADS)

    Yu, H. G.

    2013-06-01

    The [RuPt_2(tppz)_2Cl_2]^{4+} (tppz=2,3,5,6-tetra(2-pyridyl)pyrazine) is a potential material for water photo-oxidation to produce oxygen molecules. Recent experiments found that it has anomalous electronic circular dichroism (ECD) spectra in acetonitrile. In order to explain the ECD spectra, we have carried out a detailed study using a hybrid density functional theory (DFT), together with the Stuttgart/Dresden effective core potentials (MWB) for the metal and P atoms. The solvation effects in acetonitrile were taken into account in terms of the conductor polarizable continuum model (C-PCM) with the universal force field (UFF) approach. The UV-vis spectra of the complexes were calculated using the time-dependent DFT (TDDFT) method on the optimized geometry of individual system. In this talk, we will discuss the DFT/TDDFT calculations and propose a mechanism for the abnormal ECD spectra.

  4. A vibrational circular dichroism approach to the determination of the absolute configurations of flavorous 5-substituted-2(5H)-furanones.

    PubMed

    Nakahashi, Atsufumi; Yaguchi, Yoshihiro; Miura, Nobuaki; Emura, Makoto; Monde, Kenji

    2011-04-25

    Sotolon (1) and maple furanone (2) are naturally occurring chiral furanones. These 5-substituted-2(5H)-furanones are industrially significant aroma compounds due to their characteristic organoleptic properties and extraordinarily low odor thresholds. Each enantiomer of 1 and 2 was successfully obtained by preparative enantioselective supercritical fluid chromatography. The absolute configuration of 1 was confirmed as (R)-(-)-1 and (S)-(+)-1 by adopting the vibrational circular dichroism (VCD) approach. The absolute configuration of 2, which has remained ambiguous since its discovery in 1957, was determined as (R)-(+)-2 and (S)-(-)-2 for the first time by the VCD technique. Surprisingly, the signs of the optical rotation of 2 are opposite of those of 1 regardless of their identical absolute configurations. This observation emphasizes the risk in absolute configurational assignments based on comparison of optical rotation signs of similar structures. Odor evaluation of the enantiomers of 2 revealed different odor intensities.

  5. Conformational change of a chiral Schiff base Ni(II) complex with a binaphthyl moiety: application of vibrational circular dichroism spectroscopy.

    PubMed

    Sato, Hisako; Mori, Yukie; Yamagishi, Akihiko

    2013-05-21

    Vibrational circular dichroism (VCD) spectroscopy was applied to study the structural change of a Ni(II) complex (denoted by [Ni(II)L]) with a chiral Schiff base ligand, (R)- or (S)-2,2'-bis(salicylideneamino)-1,1'-binaphthyl (denoted by H2L), in solution. The major signals in the mid-IR region were assigned on the basis of comparison with the DFT-calculated spectra. The complex transformed reversibly between the square-planar, tetrahedral and octahedral configurations, depending on solvents and temperature. The observed changes in the VCD peaks accompanying the transformation were analyzed in terms of the conformational change of the chiral ligand with a focus on the twisting angle in the Schiff base backbone and the dihedral angle of the binaphthyl group.

  6. End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy

    SciTech Connect

    Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi; Kishimizu, Yusuke; Kimura, Akio; Taniguchi, Masaki

    2012-12-15

    We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

  7. A high-performance liquid chromatography-electronic circular dichroism online method for assessing the absolute enantiomeric excess and conversion ratio of asymmetric reactions

    PubMed Central

    Zhang, Xiang; Wang, Mingchao; Li, Li; Yin, Dali

    2017-01-01

    Asymmetric reactions often need to be evaluated during the synthesis of chiral compounds. However, traditional evaluation methods require the isolation of the individual enantiomer, which is tedious and time-consuming. Thus, it is desirable to develop simple, practical online detection methods. We developed a method based on high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) that simultaneously analyzes the material conversion ratio and absolute optical purity of each enantiomer. In particular, only a reverse-phase C18 column instead of a chiral column is required in our method because the ECD measurement provides a g-factor that describes the ratio of each enantiomer in the mixtures. We used our method to analyze the asymmetric hydrosilylation of β-enamino esters, and we discussed the advantage, feasibility, and effectiveness of this new methodology. PMID:28252028

  8. A high-performance liquid chromatography-electronic circular dichroism online method for assessing the absolute enantiomeric excess and conversion ratio of asymmetric reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Wang, Mingchao; Li, Li; Yin, Dali

    2017-03-01

    Asymmetric reactions often need to be evaluated during the synthesis of chiral compounds. However, traditional evaluation methods require the isolation of the individual enantiomer, which is tedious and time-consuming. Thus, it is desirable to develop simple, practical online detection methods. We developed a method based on high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) that simultaneously analyzes the material conversion ratio and absolute optical purity of each enantiomer. In particular, only a reverse-phase C18 column instead of a chiral column is required in our method because the ECD measurement provides a g-factor that describes the ratio of each enantiomer in the mixtures. We used our method to analyze the asymmetric hydrosilylation of β-enamino esters, and we discussed the advantage, feasibility, and effectiveness of this new methodology.

  9. Time-and-state resolved spectroscopy, diffraction, and circular dichroism in core photoelectron emission from clean and oxygen-covered W(110)

    SciTech Connect

    Ynzunza, Ramon Xavier

    1998-10-01

    Several aspects of core-level photoelectron emission fi-om solid surfaces as excited by high-brightness variable-polarization synchrotrons radiation have been studied with a new beamline and experimental station at the Advanced Light Source in Berkeley. These include: resolution of different chemical states and site types via high-resolution photoelectron spectroscopy (PS), the use of state-resolved photoelectron difllaction (PD) to determine local atomic geometries, and the observation and analysis of circular dichroism (CD) effects in photoelectron diffraction. These methods have been applied to clean and oxygen-exposed surfaces of W(110). Full-solid-angle photoelectron diffraction from clean W(110) was measured, with the surface and bulk atoms being clearly resolved.

  10. Nuclear velocity perturbation theory for vibrational circular dichroism: An approach based on the exact factorization of the electron-nuclear wave function

    NASA Astrophysics Data System (ADS)

    Scherrer, Arne; Agostini, Federica; Sebastiani, Daniel; Gross, E. K. U.; Vuilleumier, Rodolphe

    2015-08-01

    The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similar to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.

  11. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  12. Valence-state Model of Strain-dependent Mn L2,3 X-ray Magnetic Circular Dichroism from Ferromagnetic Semiconductors

    SciTech Connect

    van der Laan, G.; Edmonds, K. W.; Arenholz, E.; Farley, N. R. S.; Gallagher, B. L.

    2010-03-30

    We present a valence-state model to explain the characteristics of a recently observed pre-edge feature in Mn L{sub 3} x-ray magnetic circular dichroism (XMCD) of ferromagnetic (Ga,Mn)As and (Al,Ga,Mn)As thin films. The prepeak XMCD shows a uniaxial anisotropy, contrary to the cubic symmetry of the main structures induced by the crystalline electric field. Reversing the strain in the host lattice reverses the sign of the uniaxial anisotropy. With increasing carrier localization, the prepeak height increases, indicating an increasing 3d character of the hybridized holes. Hence, the feature is ascribed to transitions from the Mn 2p core level to unoccupied p-d hybridized valence states. The characteristics of the prepeak are readily reproduced by the model calculation taking into account the symmetry of the strain-, spin-orbit-, and exchange-split valence states around the zone center.

  13. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    SciTech Connect

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-07

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  14. [Effect of pH on circular dichroism and Raman spectroscopy of secondary structure of beta-casein from Chinese human milk].

    PubMed

    Ren, Hao-wei; Zhang, Wan-shu; Li, Xiang-yi; Liu, Ning

    2015-02-01

    To obtain a structural basis for the beta-casein in Chinese human milk, structural transitions of the beta-casein in response to variation of pH were investigated using Raman and circular dichroism (CD) spectroscopy. Both methods indicated that the secondary structures of beta-casein in the solution were induced by the pH. Secondary structural analysis of beta-casein by CD spectroscopy yielded 0.5%-2% alpha-helical, 16%-18% beta-sheet, 30%-34% beta-turn and 49%-51% random coil contents. Another result was that as pH increases, these structures change. Several distinct transitions were observed by circular dichroism in alpha-helix at pH 8 and pH 10. Raman spectrum also showed random coil as the major secondary structure in native beta-casein, for the characteristic band of the beta-casein amide I was at 1662 cm(-1): Calculations from I850/I830 suggested that the tyrosine residues of beta-casein tended to "exposure". CD and Raman spectra both showed that at neutral and alkaline pH the beta-casein existed predominantly in random coil conformation, and the proportion of alpha-helix was higher at pH 8 than under other pH conditions. Over the range of pH studied, the sheet and turn areas remained relatively constant, and in the condition of pH 8, the content of alpha-helical was higher than in the other pH conditions.

  15. Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detected by circular dichroism

    SciTech Connect

    Garab, G.; Leegood, R.C.; Walker, D.A.; Sutherland, J.C.; Hind, G.

    1988-04-05

    Light-induced changes in circular dichroism (CD) were studied in thylakoids isolated from spinach. The following features of CD responses occurring in the time range of 10 s to 1-3 min were noted: (i) The kinetics and relative amplitudes of the responses are similar over broad spectral ranges surrounding the major CD bands, i.e., between 670 and 760 nm and between 480 and 550 nm. This applies not only to randomly oriented samples but also to magnetically aligned membranes having markedly different CD spectra in the dark. (ii) Photosystem I is much more effective than photosystem II and can drive a 40-80% decrease in CD signal relative to the dark control level. (iii) Photosystem I driven changes are fully inhibited by nigericin or NH/sub 4/Cl but are largely insensitive to gramicidin. CD changes driven by photosystem II, on the other hand, are sensitive to all of these reagents. (iv) The CD responses can be shown to originate in circular differential scattering rather than in circular differential absorbance. They can also be distinguished from light-induced, nonpolarized scattering changes. The data are qualitatively evaluated with respect to the theory of circular differential scattering of large helically organized macroaggregates, the size of which is commensurate with the wavelength of the measuring beam. The observed decrease of the large CD signal is ascribed to a partial loss of macrohelicity in the light-harvesting chlorophyll a/b protein complex, in response to a proton gradient and/or surface electrical field generated most effectively by photosystem I.

  16. Magnetic structures of FeTiO{sub 3}-Fe{sub 2}O{sub 3} solid solution thin films studied by soft X-ray magnetic circular dichroism and ab initio multiplet calculations

    SciTech Connect

    Hojo, H. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Fujita, K. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Matoba, T.; Tanaka, K.; Ikeno, H.; Mizoguchi, T.; Tanaka, I.; Nakamura, T.; Takeda, Y.; Okane, T.

    2014-03-17

    The solid solutions between ilmenite (FeTiO{sub 3}) and hematite (α-Fe{sub 2}O{sub 3}) have recently attracted considerable attention as a spintronic material due to their interesting magnetic and electrical properties. In this study, the electronic and magnetic structures of epitaxially grown 0.6FeTiO{sub 3}·0.4Fe{sub 2}O{sub 3} solid solution thin films were investigated by combining x-ray absorption near-edge structure (XANES), x-ray magnetic circular dichroism (XMCD) for two different crystallographic projections, and first-principles theoretical calculations. The Fe L-edge XANES and XMCD spectra reveal that Fe is in the mixed-valent Fe{sup 2+}–Fe{sup 3+} states while Fe{sup 2+} ions are mainly responsible for the magnetization. Moreover, the experimental Fe L-edge XANES and XMCD spectra change depending on the incident x-ray directions, and the theoretical spectra explain such spectral features. We also find a large orbital magnetic moment, which can originate the magnetic anisotropy of this system. On the other hand, although the valence state of Ti was interpreted to be 4+ from the Ti L-edge XANES, XMCD signals indicate that some electrons are present in the Ti-3d orbital, which are coupled antiparallel to the magnetic moment of Fe{sup 2+} ions.

  17. {sup 57}Fe Moessbauer and x-ray magnetic circular dichroism study of magnetic compensation of the rare-earth sublattice in Nd{sub 2-x}Ho{sub x}Fe{sub 14}B compounds

    SciTech Connect

    Chaboy, J.; Piquer, C.; Plugaru, N.; Bartolome, F.; Laguna-Marco, M. A.

    2007-10-01

    We present here a study of the magnetic properties of the Nd{sub 2-x}Ho{sub x}Fe{sub 14}B series. The macroscopic properties of these compounds evolve continuously from those of Nd{sub 2}Fe{sub 14}B to those of Ho{sub 2}Fe{sub 14}B as Ho gradually replaces Nd. The system shows a compensation of the rare-earth sublattice magnetization for a critical concentration, x{sub c}=0.55, that is reflected into the anomalous behavior of both macroscopic and microscopic magnetic probes. The combined analysis of magnetization, {sup 57}Fe Moessbauer spectroscopy and Fe K-edge x-ray magnetic circular dichroism (XMCD) measurements suggests that the origin of the anomalous magnetic behavior found at x{sub c}=0.55 is mainly due to the Ho sublattice. Moreover, the analysis of the Fe K-edge XMCD signals reveal the presence of a rare-earth contribution, reflecting the coupling of the rare-earth and Fe magnetic moments, which can lead to the possibility of disentangling the magnetic behavior of both Fe and R atoms using a single absorption edge.

  18. Circular Dichroism Measurements of Thiophenophanes and Binaphthyl-Descendants in the VUV-Region with a Recent Facility at HASYLAB

    NASA Astrophysics Data System (ADS)

    Schiller, Jörg; Lagier, Horst; Klein, Aldfrid; Hormes, Josef; Vögtle, Fritz; Aigner, Arno; Thomessen, Rolf

    1987-04-01

    For the first time solutions of binaphthyl-derivatives, menthylesters of a helical skeleton of the cyclophane type and combinations of these structure units have been measured in an absorption type CD experiment between 200 nm and 160 nm using synchrotron radiation as a continuum light source. Assignments of exciton chirality were made according to the CD exciton coupling mechanism. In the case of the well known 1Bb transition the combined units neither do change their chirality nor do they develop strong exciton coupling between themselves. Below 200 nm two new transitions had been accessed: CD data allow to distinguish between the X → C and the X → D transition which strongly overlap in the absorption spectra. By comparison of acetonitril and hexafluoro-iso-propanol solution data they could be determined as a Rydberg transition and a molecular valence transition, the latter showing a bisignate CD Cotton effect.

  19. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  20. Element-specific magnetization reversal in Fe/Ce multilayers:. a study by X-ray magnetic circular dichroism and the magneto-optic Kerr effect

    NASA Astrophysics Data System (ADS)

    Münzenberg, M.; Arend, M.; Felsch, W.; Pizzini, S.; Fontaine, A.; Neisius, T.; Pascarelli, S.

    2000-10-01

    Fe/Ce multilayers are magnetically soft with coercive fields of a few Oersteds. In this artificial system, the itinerant 5d electrons of Ce are magnetically polarized by hybridization with the spin-split 3d states of Fe. To obtain an insight into the magnetization reversal process, the element selectivity of X-ray magnetic circular dichroism was used to measure the magnetization of the Ce-5d electrons as a function of an applied magnetic field. Comparison with the magnetization curves studied by the magneto-optic Kerr effect, which averages over the whole system, revealed that the coercivity in the hysteresis of the ordered Ce-5d moments is reduced by 50%. We propose that this is an effect of the magnetically disturbed interface or of the complex non-collinear magnetic structure of the Ce layers detected by recent experiments of X-ray resonant magnetic scattering. The results are compared to the X-ray dichroic and Kerr hysteresis loops of the multilayers Fe/La/Ce/La and Fe/CeH 2- δ. These systems are magnetically harder and their coercivities are identical.

  1. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    SciTech Connect

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magnetic orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.

  2. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism.

    PubMed

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J Zaluzec, Nestor; Leifer, Klaus

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magnetic orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.

  3. Step-induced in-plane orbital anisotropy in FeNi films on Cu(111) probed by magnetic circular x-ray dichroism

    NASA Astrophysics Data System (ADS)

    Cherifi, S.; Boeglin, C.; Stanescu, S.; Deville, J. P.; Mocuta, C.; Magnan, H.; Le Fèvre, P.; Ohresser, P.; Brookes, N. B.

    2001-11-01

    The effects of nanostructured magnetic Fe65Ni35 films deposited on a vicinal Cu(111) single-crystal surface on the magnetic anisotropy have been studied using magnetic circular x-ray dichroism (MCXD) at the Fe L2,3 edges. In the one-dimensional (1D) limit a large dipolar out-of-plane anisotropy is evidenced with in-plane isotropic magnetic moments. After the 1D coalescence the orbital moment shows a more complex behavior depending on the in-plane direction of saturation. We show that MCXD is strongly sensitive to in-plane orbital anisotropy for the 1D stripes. We demonstrate the importance of the step induced in-plane anisotropy by measuring the orbital magnetic moment dependence as a function of the in-plane azimuth angle. In the submonolayer regime an in-plane magnetic anisotropy is observed related to the step decoration growth mode. In the thickness range of 2-4 equivalent monolayers, 2D coalescence induces a strong in-plane magnetic anisotropy of the magnetic orbital moment. The microscopic origin of the strong in-plane variation of ML has been attributed to magnetocrystalline effects. Strained films give rise to an in-plane magnetic anisotropy energy up to 2 meV/at., which is larger than those measured out of the plane (0-1 meV/at.).

  4. Tryptophan environment, secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lablab: fluorescence and circular dichroism spectroscopic studies.

    PubMed

    Sultan, Nabil Ali Mohammed; Rao, Rameshwaram Nagender; Nadimpalli, Siva Kumar; Swamy, Musti J

    2006-07-01

    Fluorescence and circular dichroism spectroscopic studies were carried out on the galactose-specific lectin from Dolichos lablab seeds (DLL-II). The microenvironment of the tryptophan residues in the lectin under native and denaturing conditions were investigated by quenching of the intrinsic fluorescence of the protein by a neutral quencher (acrylamide), an anionic quencher (iodide ion) and a cationic quencher (cesium ion). The results obtained indicate that the tryptophan residues of DLL-II are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains residing close to at least some of the tryptophan residues under the experimental conditions. Analysis of the far UV CD spectrum of DLL-II revealed that the secondary structure of the lectin consists of 57% alpha-helix, 21% beta-sheet, 7% beta-turns and 15% unordered structures. Carbohydrate binding did not significantly alter the secondary and tertiary structures of the lectin. Thermal unfolding of DLL-II, investigated by monitoring CD signals, showed a sharp transition around 75 degrees C both in the far UV region (205 nm) and the near UV region (289 nm), which shifted to ca. 77-78 degrees C in the presence of 0.1 M methyl-beta-D-galactopyranoside, indicating that ligand binding leads to a moderate stabilization of the lectin structure.

  5. Origin of anomalous electronic circular dichroism spectrum of RuPt2(tppz)2Cl2(PF6)4 in acetonitrile.

    PubMed

    Yu, Hua-Gen

    2014-07-24

    We report a theoretical study of the structures, energetics, and electronic spectra of the Pt(II)/Ru(II) mixed-metal complex RuPt2(tppz)2Cl2(PF6)4 (tppz = 2,3,5,6-tetra(2-pyridyl)pyrazine) in acetonitrile. The hybrid B3LYP density functional theory and its TDDFT methods were used with a complete basis set (CBS) extrapolation scheme and a conductor polarizable continuum model (C-PCM) for solvation effects. Results showed that the trinuclear complex has four types of stable conformers and/or enantiomers. They are separated by high barriers owing to the repulsive H/H geometrical constraints in tppz. A strong entropy effect was found for the dissociation of RuPt2(tppz)2Cl2(PF6)n in acetonitrile. The UV-visible and emission spectra of the complex were also simulated. They are in good agreement with experiments. In this work we have largely focused on exploring the origin of anomalous electronic circular dichroism (ECD) spectra of the RuPt2(tppz)2Cl2(PF6)4 complex in acetonitrile. As a result, a new mechanism has been proposed together with a clear illustration by using a physical model.

  6. Interaction of bovine serum albumin (BSA) with novel gemini surfactants studied by synchrotron radiation scattering (SR-SAXS), circular dichroism (CD), and nuclear magnetic resonance (NMR).

    PubMed

    Gospodarczyk, W; Szutkowski, K; Kozak, M

    2014-07-24

    The interaction of three dicationic (gemini) surfactants-3,3'-[1,6-(2,5-dioxahexane)]bis(1-dodecylimidazolium) chloride (oxyC2), 3,3'-[1,16-(2,15-dioxahexadecane)]bis(1-dodecylimidazolium) chloride (oxyC12), and 1,4-bis(butane)imidazole-1-yl-3-dodecylimidazolium chloride (C4)--with bovine serum albumin (BSA) has been studied by the use of small-angle X-ray scattering (SAXS), circular dichroism (CD), and (1)H nuclear magnetic resonance diffusometry. The results of CD studies show that the conformation of BSA was changed dramatically in the presence of all studied surfactants. The greater decrease (from 56 to 24%) in the α-helical structure of BSA was observed for oxyC2 surfactant. The radii of gyration estimated from SAXS data varied between 3 and 26 nm for the BSA/oxyC2 and BSA/oxyC12 systems. The hydrodynamic radius of the BSA/surfactant system estimated from NMR diffusometry varies between 5 and 11 nm for BSA/oxyC2 and 5 and 8 nm for BSA/oxyC12.

  7. Theoretical study of magnetic properties and x-ray magnetic circular dichroism of the ordered Fe{sub 0.5}Pd{sub 0.5} alloy

    SciTech Connect

    Galanakis, I.; Ostanin, S.; Alouani, M.; Dreysse, H.; Wills, J. M.

    2000-01-01

    A detailed theoretical study of magnetic and structural properties of Fe{sub 0.5}Pd{sub 0.5} ordered face-centered tetragonal (fct) alloy, using both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA), is presented. The total energy surface as a function of the lattice parameters a and c shows a long valley where stable structures may exist. Our calculation using the GGA predicts a magnetic phase transition from perpendicular to parallel magnetization as a function of the lattice parameter, whereas LSDA favors always the [001] magnetization axis for all values of the lattice parameters. The spin and orbital magnetic moments and x-ray magnetic circular dichroism spectra are calculated for the easy [001] and the hard [100] magnetization axis and for three sets of experimental lattice parameters, and are compared to the available experimental results on these films. A supercell calculation for a 4 monolayer Fe{sub 0.5}Pd{sub 0.5} thin film produced similar results. While the spin magnetic moments are in fair agreement with experiment, the orbital magnetic moments are considerably underestimated. To improve the agreement with experiment we included an atomic orbital polarization term; however, the computed orbital moments scarcely changed. (c) 2000 The American Physical Society.

  8. Measuring magnetisation reversal in micron-sized Nd2Fe14B single crystals by microbeam x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Sugawara, Akira; Ueda, Kazuhiro; Nakayama, T.; Lee, N.; Yamamoto, H.

    2016-10-01

    Magnetisation reversal of micron-sized Nd2Fe14B single crystals with magnetisation as weak as 10-9 emu (1 µm size) was studied. Single-crystal specimens (cylinders with diameter and height of 1 to 6 µm) were prepared by focused-ion beam so that both the magnetic easy and hard axes were included in the basal plane. Their magnetic hysteresis loops were measured when they were rotated with respect to the cylindrical axis by using microbeam hard-x-ray magnetic circular dichroism (XMCD) under transmission geometry. It was found that coercivity is inversely proportional to the cosine of the angle between the magnetocrystalline easy axis and magnetic-field direction and that the magnetisation reversal is dominated by domain-wall pinning in two different modes. One is related to penetration of the reversed domain nucleated in a subsurface soft layer into the bulk hard phase, of which the hysteresis loops exhibit a single-stage abrupt jump in magnetization. The other mode is pinning of the walls within the bulk grain, of which the hysteresis loops exhibit a plateau. The multi-domain structure associated with the pinning was confirmed by XMCD mapping. The proposed method fills the gap between conventional bulk magnetic measurement and submicron-scale electrical-transport measurement for nanofabricated thin films and/or fine particles. It is expected to provide new insights into elemental magnetisation processes in micron-scale regions.

  9. Circular dichroism, molecular modeling, and serology indicate that the structural basis of antigenic variation in foot-and-mouth disease virus is [alpha]-helix formation

    SciTech Connect

    France, L.L.; Piatti, P.G.; Newman, J.F.E.; Brown, F. ); Toth, I.; Gibbons, W.A. )

    1994-08-30

    Seven antigenic variants obtained from a single field isolate of foot-and-mouth disease virus, serotype A12, differ only at residues 148 and 153 in the immunodominant loop of viral protein VP1. Synthetic peptides corresponding to the region 141-160 are highly immunogenic. UV circular dichroism shows that (i) in aqueous solution of the peptides are nearly identical, but in 100% trifluoroethanol they display helix-forming properties which correlate well with their serological crossreactivities for anti-peptide sera, and (ii) these properties are insensitive to substitutions at position 153, except for proline, but are highly sensitive to substitutions at position 148. This pattern can be explained by the effects of these substitutions on the amphiphilic character and positions of helices postulated in the region 146-156. Molecular models indicate that residues 147, 148, 150, 151, 153-155, and 157 are most likely to interact with residues of the antibody paratopes. The data are consistent with the existence of an inverse [gamma]-turn around Pro-153, and a [beta]-turn at the cell-attachment site at residues 145-147. 31 refs., 5 figs.

  10. Application of supervised Kohonen map and counter propagation neural network for classification of nucleic acid structures based on their circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Ghobadi, Mohadeseh Zarei; Kompany-Zareh, Mohsen

    2014-11-01

    One of the most popular instrumental methods to detect the DNA structure is circular dichroism. Specific experimental conditions are required to form different structures of DNA. However, there is the possibility of different structures establishing in the similar circumstance. So, methods development to improve the classification and prediction of structures using their spectra information are needed. To this end, we applied unsupervised (PCA) and supervised (PLS-DA, SKN, and CPNN) approaches to classify CD spectra dataset of different DNA sequences (random coil (ss-DNA), duplex, hairpin, reversed and normal triplex, parallel and antiparallel G-quadruplex, and i-motif). The main part of this work concentrates on the application of artificial neural networks and weight analysis to obtain more classification and prediction accuracy. For this purpose, the trained network was run 10 times, and the average weights were taken. Also, weight analysis was done for the prediction of mixture samples include different structures. The results prove that new method of weights analysis based on SKN and CPNN is useful for classification of complicated data such as different types of DNA structures.

  11. Influence of bovine serum albumin on the secondary structure of interferon alpha 2b as determined by far UV circular dichroism spectropolarimetry.

    PubMed

    Johnston, Michael J W; Nemr, Kayla; Hefford, Mary A

    2010-03-01

    Many therapeutic biologics are formulated with excipients, including the protein excipient human serum albumin (HSA), to increase stability and prevent protein aggregation and adsorption onto glass vials. One biologic formulated with albumin is interferon alpha-2b (IFN alpha-2b). As is the case with other therapeutic biologics, the increased structural complexity of IFN alpha-2b compared to a small molecule drug requires that both the correct chemical structure (amino acid sequence) and also the correct secondary and tertiary structures (3 dimensional fold) be verified to assure safety and efficacy. Although numerous techniques are available to assess a biologic's primary, secondary and tertiary structures, difficulties arise when assessing higher order structure in the presence of protein excipients. In these studies far UV circular dichroism spectropolarimetry (far UV-CD) was used to determine the secondary structure of IFN alpha-2b in the presence of a protein excipient (bovine serum albumin, BSA). We demonstrated that the secondary structure of IFN alpha-2b remains mostly unchanged at a variety of BSA to IFN alpha-2b protein ratios. A significant difference in alpha helix and beta sheet content was noted when the BSA to IFN alpha-2b ratio was 5:1 (w/w), suggesting a potential conformational change in IFN alpha-2b secondary structure when BSA is in molar excess.

  12. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    PubMed Central

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus

    2015-01-01

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magnetic orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features. PMID:26278134

  13. Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism

    SciTech Connect

    Nakamura, T.; Yasui, A.; Kotani, Y.; Iwai, H.; Akiya, T.; Ohkubo, T.; Hono, K.; Hirosawa, S.; Gohda, Y.

    2014-11-17

    We have investigated the magnetism of the grain boundary (GB) phase in a Nd{sub 14.0}Fe{sub 79.7}Cu{sub 0.1}B{sub 6.2} sintered magnet using soft x-ray magnetic circular dichroism (XMCD) at the Fe L{sub 2,3}-edges. Soft XMCD spectra were measured from the fractured surface that was confirmed to be covered with a thin GB phase by Auger electron spectroscopy. The magnetic moment of Fe in the GB phase was estimated to be m{sub GB}=1.4 μ{sub B} at 30 °C using the sum rule analysis for XMCD spectra, which is 60% of that of Fe in the Nd{sub 2}Fe{sub 14}B compound. The temperature dependence of m{sub GB} evaluated with reference to Fe in the Nd{sub 2}Fe{sub 14}B phase indicated that the Curie temperature of the GB phase is more than 50 °C lower compared to that of Nd{sub 2}Fe{sub 14}B.

  14. Orbital and spin moments of 5 to 11 nm Fe{sub 3}O{sub 4} nanoparticles measured via x-ray magnetic circular dichroism

    SciTech Connect

    Cai, Y. P.; Chesnel, K. Trevino, M.; Westover, A.; Turley, S.; Harrison, R. G.; Hancock, J. M.; Scherz, A.; Reid, A.; Wu, B.; Graves, C.; Wang, T.; Liu, T.; Dürr, H.

    2014-05-07

    The orbital and spin contributions to the magnetic moment of Fe in Fe{sub 3}O{sub 4} nanoparticles were measured using X-ray magnetic circular dichroism (XMCD). Nanoparticles of different sizes, ranging from 5 to 11 nm, were fabricated via organic methods and their magnetic behavior was characterized by vibrating sample magnetometry (VSM). An XMCD signal was measured for three different samples at 300 K and 80 K. The extracted values for the orbital and spin contributions to the magnetic moment showed a quenching of the orbital moment and a large spin moment. The calculated spin moments appear somewhat reduced compared to the value expected for bulk Fe{sub 3}O{sub 4}. The spin moments measured at 80 K are larger than at 300 K for all the samples, revealing significant thermal fluctuations effects in the nanoparticle assemblies. The measured spin moment is reduced for the smallest nanoparticles, suggesting that the magnetic properties of Fe{sub 3}O{sub 4} nanoparticles could be altered when their size reaches a few nanometers.

  15. Interactions of the organogold(III) compound Aubipyc with the copper chaperone Atox1: a joint mass spectrometry and circular dichroism investigation.

    PubMed

    Marzo, Tiziano; Scaletti, Federica; Michelucci, Elena; Gabbiani, Chiara; Pescitelli, Gennaro; Messori, Luigi; Massai, Lara

    2015-12-01

    The so called "copper trafficking system" in mammalian cells is primarily devoted to the regulation of copper transport and homeostasis. This system, now well characterized, consists of a few strictly interconnected proteins that assist copper entrance inside cells and then promote metal transfer and delivery to essential copper-dependent cellular proteins (Boal and Rosenzweig 2009a; Banci et al., Mol Life Sci 67:2563-2589, 2010). Yet, the "copper trafficking system" may also facilitate the entrance inside cells of non-physiological metal species such as clinically established platinum drugs. ESI and MALDI MS methods are exploited here to characterize the interactions occurring between the experimental anticancer organogold(III) drug, Aubipyc, and the copper chaperone Atox1, a key protein of the copper trafficking system. The nature of the adducts that are formed when reacting Aubipyc with Atox1 is elucidated in detail. Characterization of the Aubipyc/Atox1 system is further supported by circular dichroism experiments. Binding competitions with mercury and bismuth ions were also explored. The relevance and the biological implications of the present results are discussed.

  16. Magnetocrystalline Anisotropy of Magnetic Grains in Co80Pt20:Oxide Thin Films Probed by X-ray Magnetic Circular Dichroism

    SciTech Connect

    Zhang, W.; Morton, S. A.; Wong, P. K. J.; Arenholz, E.; Lu, B.; Cheng, T. Y.; Xu, Y. B.; Laan, G. van der; Hu, X.F

    2011-01-12

    Using angle-dependent x-ray magnetic circular dichroism, we have measured magnetic hysteresis loops at the Co L2,3 edges of oxide-doped Co80Pt20 thin films. The magnetocrystalline anisotropy energy (MAE) of the Co atoms, which is the main source of the magnetocrystalline anisotropy of the CoPt magnetic grains, has been determined directly from these element-specific hysteresis loops. When the oxide volume fraction (OVF) is increased from 16.6% to 20.7%, the Co MAE has been found to decrease from 0.117 meV/atom to 0.076 meV/atom. While a larger OVF helps one to achieve a smaller grain size, it reduces the magnetocrystalline anisotropy, as demonstrated unambiguously from the direct Co MAE measurements. Our results suggest that those Co80Pt20:oxide films with an OVF between 19.1% and 20.7% are suitable candidates for high-density magnetic recording.

  17. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    DOE PAGES

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; ...

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magneticmore » orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.« less

  18. The axial ligands of heme in cytochromes: a near-infrared magnetic circular dichroism study of yeast cytochromes c, c1, and b and spinach cytochrome f.

    PubMed

    Simpkin, D; Palmer, G; Devlin, F J; McKenna, M C; Jensen, G M; Stephens, P J

    1989-10-03

    Room temperature near-infrared magnetic circular dichroism and low-temperature electron paramagnetic resonance measurements have been used to characterize the ligands of the heme iron in mitochondrial cytochromes c, c1, and b and in cytochrome f of the photosynthetic electron transport chain. The MCD data show that methionine is the sixth ligand of the heme of oxidized yeast cytochrome c1; the identify of this residue is inferred to be the single conserved methionine identified from a partial alignment of the available cytochrome c1 amino acid sequences. A different residue, which is most likely lysine, is the sixth heme ligand in oxidized spinach cytochrome f. The data for oxidized yeast cytochrome b are consistent with bis-histidine coordination of both hemes although the possibility that one of the hemes is ligated by histidine and lysine cannot be rigorously excluded. The neutral and alkaline forms of oxidized yeast cytochrome c have spectroscopic properties very similar to those of the horse heart proteins, and thus, by analogy, the sixth ligands are methionine and lysine, respectively.

  19. Salts employed in hydrophobic interaction chromatography can change protein structure - insights from protein-ligand interaction thermodynamics, circular dichroism spectroscopy and small angle X-ray scattering.

    PubMed

    Komaromy, Andras Z; Kulsing, Chadin; Boysen, Reinhard I; Hearn, Milton T W

    2015-03-01

    Key requirements of protein purification by hydrophobic interaction chromatography (HIC) are preservation of the tertiary/quaternary structure, maintenance of biological function, and separation of the correctly folded protein from its unfolded forms or aggregates. This study examines the relationship between the HIC retention behavior of hen egg white lysozyme (HEWL) in high concentrations of several kosmotropic salts and its conformation, assessed by circular dichroism (CD) spectroscopy. Further, the physicochemical properties of HEWL in the presence of high concentrations of ammonium sulfate, sodium chloride and magnesium chloride were investigated by small angle X-ray scattering (SAXS) at different temperatures. Radii of gyration were extrapolated from Guinier approximations and the indirect transform program GNOM with protein-protein interaction and contrast variation taken into account. A bead model simulation provided information on protein structural changes using ab initio reconstruction with GASBOR. These results correlated to the secondary structure content obtained from CD spectroscopy of HEWL. These changes in SAXS and CD data were consistent with heat capacity ΔCp -values obtained from van't Hoff plot analyses of the retention data. Collectively, these insights enable informed decisions to be made on the choice of chromatographic conditions, leading to improved separation selectivity and opportunities for innovative column-assisted protein refolding methods.

  20. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    SciTech Connect

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-21

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q{sub y} transition dipole moments in Chl b homodimers is larger by about 9{sup ∘} than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  1. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    NASA Astrophysics Data System (ADS)

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-01

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  2. The optical properties of CuA in bovine cytochrome c oxidase determined by low-temperature magnetic-circular-dichroism spectroscopy.

    PubMed

    Greenwood, C; Hill, B C; Barber, D; Eglinton, D G; Thomson, A J

    1983-11-01

    The visible-near-i.r.-region m.c.d. (magnetic-circular-dichroism) spectrum recorded at low temperature in the range 450-900 nm is reported for oxidized resting mammalian cytochrome c oxidase. M.c.d. magnetization curves determined at different wavelengths reveal the presence of two paramagnetic species. Curves at 576, 613 and 640 nm fit well to those expected for an x,y-polarized haem transition with g values of 3.03, 2.21 and 1.45, i.e. cytochrome a3+. The m.c.d. features at 515, 785 and 817 nm magnetize as a S = 1/2 paramagnet with average g values close to 2, and simulated m.c.d. magnetization curves obtained by using the observed g values of CuA2+, i.e. 2.18, 2.03 and 1.99, fit well to the experimental observations. The form of the m.c.d. magnetization curve at 466 nm is curious, but it can be explained if CuA2+ and cytochrome a3+ contribute with oppositely signed bands at this wavelength. By comparing the m.c.d. spectrum of the enzyme with that of extracted haem a-bisimidazole complex it has been possible to deconvolute the m.c.d. spectrum of CuA2+, which shows transitions throughout the spectral region from 450 to 950 nm. The m.c.d.-spectral properties of CuA2+ were compared with those of a well-defined type I blue copper centre in azurin isolated from Pseudomonas aeruginosa. The absolute intensities of the m.c.d. signals at equal fields and temperatures for CuA2+ are 10-20-fold greater than those for azurin. The optical spectrum of CuA2+ strongly suggests an assignment as a d9 ion rather than Cu(I) bound to a thiyl radical.

  3. Combination of chemometrically assisted voltammetry, calorimetry, and circular dichroism as a new method for the study of bioinorganic substances: application to selenocystine metal complexes.

    PubMed

    Gusmão, Rui; Prohens, Rafel; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2012-02-01

    Selenium-containing compounds play an important role in antioxidant defense systems, binding to toxic metals, preventing their uptake into cells, and thus protecting cells from metal-induced formation of reactive oxygen species. Here, we present a proposal for a relatively new method as a complement to the more usual methods used in selenium studies. A systematic study of the metal-binding properties of selenocystine (SeCyst) in the presence of divalent metal cations (Cd, Co, Hg, Ni, and Zn) is reported. Isothermal titration calorimetry provides thermodynamic parameters of the systems. Titrations produced curves that could be fit reasonably well to the one set of sites model. The data clearly demonstrate that one M(2+) binds one SeCyst molecule, and the stable M(SeCyst) complex is formed under these conditions. The order of the SeCyst binding constant for the metal ions is Hg(2+) > Cd(2+) ~ Zn(2+) > Ni(2+)> Co(2+). Cadmium ion was selected as a modulator for the behavior of SeCyst in the presence of a nonessential metal, and zinc was selected for the case of an essential element. These interactions of SeCyst with Cd(2+) and Zn(2+), either individually or combined, were studied in aqueous buffered solutions at physiological pH by differential pulse polarography and circular dichroism spectroscopy. Furthermore, recently developed chemometric tools were applied to differential pulse polarography data obtained in mixtures of SeCyst and glutathione in the presence of Cd(2+) at physiological pH.

  4. Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy.

    PubMed

    Tóth, Tünde N; Rai, Neha; Solymosi, Katalin; Zsiros, Ottó; Schröder, Wolfgang P; Garab, Győző; van Amerongen, Herbert; Horton, Peter; Kovács, László

    2016-09-01

    Macro-organisation of the protein complexes in plant thylakoid membranes plays important roles in the regulation and fine-tuning of photosynthetic activity. These delicate structures might, however, undergo substantial changes during isolating the thylakoid membranes or during sample preparations, e.g., for electron microscopy. Circular-dichroism (CD) spectroscopy is a non-invasive technique which can thus be used on intact samples. Via excitonic and psi-type CD bands, respectively, it carries information on short-range excitonic pigment-pigment interactions and the macro-organisation (chiral macrodomains) of pigment-protein complexes (psi, polymer or salt-induced). In order to obtain more specific information on the origin of the major psi-type CD bands, at around (+)506, (-)674 and (+)690nm, we fingerprinted detached leaves and isolated thylakoid membranes of wild-type and mutant plants and also tested the effects of different environmental conditions in vivo. We show that (i) the chiral macrodomains disassemble upon mild detergent treatments, but not after crosslinking the protein complexes; (ii) in different wild-type leaves of dicotyledonous and monocotyledonous angiosperms the CD features are quite robust, displaying very similar excitonic and psi-type bands, suggesting similar protein composition and (macro-) organisation of photosystem II (PSII) supercomplexes in the grana; (iii) the main positive psi-type bands depend on light-harvesting protein II contents of the membranes; (iv) the (+)506nm band appears only in the presence of PSII-LHCII supercomplexes and does not depend on the xanthophyll composition of the membranes. Hence, CD spectroscopy can be used to detect different macro-domains in the thylakoid membranes with different outer antenna compositions in vivo.

  5. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory.

    PubMed

    Welch, William R W; Kubelka, Jan; Keiderling, Timothy A

    2013-09-12

    Infrared (IR), Raman, and vibrational circular dichroism (VCD) spectral variations for different β-sheet structures were studied using simulations based on density functional theory (DFT) force field and intensity computations. The DFT vibrational parameters were obtained for β-sheet fragments containing nine-amides and constrained to a variety of conformations and strand arrangements. These were subsequently transferred onto corresponding larger β-sheet models, normally consisting of five strands with ten amides each, for spectral simulations. Further extension to fibril models composed of multiple stacked β-sheets was achieved by combining the transfer of DFT parameters for each sheet with dipole coupling methods for interactions between sheets. IR spectra of the amide I show different splitting patterns for parallel and antiparallel β-sheets, and their VCD, in the absence of intersheet stacking, have distinct sign variations. Isotopic labeling by (13)C of selected residues yields spectral shifts and intensity changes uniquely sensitive to relative alignment of strands (registry) for antiparallel sheets. Stacking of multiple planar sheets maintains the qualitative spectral character of the single sheet but evidences some reduction in the exciton splitting of the amide I mode. Rotating sheets with respect to each other leads to a significant VCD enhancement, whose sign pattern and intensity is dependent on the handedness and degree of rotation. For twisted β-sheets, a significant VCD enhancement is computed even for sheets stacked with either the same or opposite alignments and the inter-sheet rotation, depending on the sense, can either further increase or weaken the enhanced VCD intensity. In twisted, stacked structures (without rotation), similar VCD amide I patterns (positive couplets) are predicted for both parallel and antiparallel sheets, but different IR intensity distributions still enable their differentiation. Our simulation results prove useful

  6. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: importance of non-secular contributions.

    PubMed

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-21

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9(∘) than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  7. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism.

    PubMed

    Goncharova, Iryna; Orlov, Sergey; Urbanová, Marie

    2013-01-01

    The locations of three bilirubin (BR)-binding sites with different affinities were identified as subdomains IB, IIA and IIIA for five mammalian serum albumins (SAs): human (HSA), bovine (BSA), rat, (RSA), rabbit (RbSA) and sheep (SSA). The stereoselectivity of a high-affinity BR-binding site was identified in the BR/SA=1/1 system by circular dichroism (CD) spectroscopy, the sites with low affinity to BR were analyzed using difference CD. Site-specific ligand-competition experiments with ibuprofen (marker for subdomain IIIA) and hemin (marker for subdomain IB) did not reveal any changes for the BR/SA=1/1 system and showed a decrease of the bound BR at BR/SA=3/1. Both sites were identified as sites with low affinity to BR. The correlation between stereoselectivity and the arrangement of Arg-Lys residues indicated similarity between the BR-binding sites in subdomain IIIA for all of the SAs studied. Subdomain IB in HSA, BSA, SSA and RbSA has P-stereoselectivity while in RSA it has M-selectivity toward BR. A ligand-competition experiment with gossypol shows a decrease of the CD signal of bound BR for the BR/SA=1/1 system as well as for BR/SA=3/1. Subdomain IIA was assigned as a high-affinity BR-binding site. The P-stereoselectivity of this site in HSA (and RSA, RbSA) was caused by the right-hand localization of charged residues R257/R218-R222, whereas the left-hand orientation of R257/R218-R199 led to the M-stereoselectivity of the primary binding site in BSA (and SSA).

  8. Real time observation of proteolysis with Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy: Watching a protease eat a protein

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2011-06-01

    Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.

  9. Expedient synthesis of novel pregnane-NSAIDs prodrugs, XRD, stereochemistry of their C-20 derivatives by circular dichroism, conformational analysis, their DFT and TD-DFT studies

    NASA Astrophysics Data System (ADS)

    Singh, Ranvijay Pratap; Sharma, Sonia; Kant, Rajni; Amandeep; Singh, Praveer; Sethi, Arun

    2016-02-01

    Four novel pregnane-NSAIDs prodrugs 3β-(2-(6-methoxynaphthalene-2yl) propionoxy)-16α-methoxy-pregn-5-ene-20-one (3), 16α-methoxy-pregn-5-ene-20-one-3yl-2(4-iso butyl phenyl) propanoate (4), 3β-(2-(6-methoxynaphthalene-2yl) propionoxy) 20-hydroxy-16α-methoxy-pregn-5-ene (5) and 20-hydroxy-16α-methoxy-pregn-5-ene-20-one-3yl-2(4-iso butyl phenyl) propanoate (6) have been synthesized. They were analyzed experimentally by spectroscopic techniques like 1H, 13C NMR, FT-IR, UV-visible spectroscopy, mass spectrometry and correlated by theoretical calculations. The structure and conformations of 3 was established by single crystal X-ray diffraction, which crystallized in orthorhombic form having P212121 space group. Absolute configuration of C-20 hydroxy derivatives 5 and 6 was established by circular dichroism (CD) analysis. Conformational analysis of 5 was carried out to determine the most stable conformation. The electronic properties, such as frontier orbitals, band gap energies, oscillator strength and wavelength have been calculated using time dependent density functional theory (TD-DFT). The vibrational wavenumbers have been calculated using DFT method and assigned with the help of potential energy distribution (PED). Global and local reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule. First hyperpolarizability (β0) of synthesized compounds has been computed to evaluate non-linear optical (NLO) response. Molecular electrostatic potential (MEP) for synthesized compounds have also been determined to check their electrophilic or nucleophilic reactivity as well as reaction path.

  10. Biomolecular and structural analyses of cauliflower-like DNAs by ultraviolet, circular dichroism, and fluorescence spectroscopies in comparison with natural DNA.

    PubMed

    Gill, Pooria; Ranjbar, Bijan; Saber, Reza; Khajeh, Khosro; Mohammadian, Mehdi

    2011-07-01

    Cauliflower-like DNAs are stem-loop DNAs that are fabricated periodically in inverted repetitions from deoxyribonucleic acid phosphates (dNTPs) by loop-mediated isothermal amplification (LAMP). Cauliflower-like DNAs have ladder-shape behaviors on gel electrophoresis, and increasing the time of LAMP leads to multiplying the repetitions, stem-loops, and electrophoretic bands. Cauliflower-like DNAs were fabricated via LAMP using two loop primers, two bumper primers, dNTPs, a λ-phage DNA template, and a Bst DNA polymerase in 75- and 90-min periods. These times led to manufacturing two types of cauliflower-like DNAs with different contents of inverted repetitions and stem-loops, which were clearly indicated by two comparable electrophoresis patterns in agarose gel. LAMP-fabricated DNAs and natural dsB-DNA (salmon genomic DNA) were dialyzed in Gomori phosphate buffer (10 mM, pH 7.4) to be isolated from salts, nucleotides, and primers. Dialyzed DNAs were studied using UV spectroscopy, circular dichroism spectropolarimetry, and fluorescence spectrophotometry. Structural analyses indicated reduction of the molecular ellipticity and extinction coefficients in comparison with B-DNA. Also, cauliflower-like DNAs demonstrated less intrinsic and more extrinsic fluorescence in comparison with natural DNA. The overwinding and lengthening of the cauliflower-like configurations of LAMP DNAs led to changes in physical parameters of this type of DNA in comparison with natural DNA. The results obtained introduced new biomolecular characteristics of DNA macromolecules fabricated within a LAMP process and show the effects of more inverted repeats and stem-loops, which are manufactured by lengthening the process.

  11. Controlled cobalt doping in the spinel structure of magnetosome magnetite: new evidences from element- and site-specific X-ray magnetic circular dichroism analyses.

    PubMed

    Li, Jinhua; Menguy, Nicolas; Arrio, Marie-Anne; Sainctavit, Philippe; Juhin, Amélie; Wang, Yinzhao; Chen, Haitao; Bunau, Oana; Otero, Edwige; Ohresser, Philippe; Pan, Yongxin

    2016-08-01

    The biomineralization of magnetite nanocrystals (called magnetosomes) by magnetotactic bacteria (MTB) has attracted intense interest in biology, geology and materials science due to the precise morphology of the particles, the chain-like assembly and their unique magnetic properties. Great efforts have been recently made in producing transition metal-doped magnetosomes with modified magnetic properties for a range of applications. Despite some successful outcomes, the coordination chemistry and magnetism of such metal-doped magnetosomes still remain largely unknown. Here, we present new evidences from X-ray magnetic circular dichroism (XMCD) for element- and site-specific magnetic analyses that cobalt is incorporated in the spinel structure of the magnetosomes within Magnetospirillum magneticum AMB-1 through the replacement of Fe(2+) ions by Co(2+) ions in octahedral (Oh) sites of magnetite. Both XMCD at Fe and Co L2,3 edges, and energy-dispersive X-ray spectroscopy on transmission electron microscopy analyses reveal a heterogeneous distribution of cobalt occurring either in different particles or inside individual particles. Compared with non-doped one, cobalt-doped magnetosome sample has lower Verwey transition temperature and larger magnetic coercivity, related to the amount of doped cobalt. This study also demonstrates that the addition of trace cobalt in the growth medium can significantly improve both the cell growth and the magnetosome formation within M. magneticum AMB-1. Together with the cobalt occupancy within the spinel structure of magnetosomes, this study indicates that MTB may provide a promising biomimetic system for producing chains of metal-doped single-domain magnetite with an appropriate tuning of the magnetic properties for technological and biomedical applications.

  12. Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states.

    PubMed

    Bandara, D M Indika; Sono, Masanori; Bruce, Grant S; Brash, Alan R; Dawson, John H

    2011-12-01

    Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (<20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg(+)-N(ω)-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O(2) states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg(+)-N(ω)-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC.

  13. Magnetic circular dichroism studies of the active site heme coordination sphere of exogenous ligand-free ferric cytochrome c peroxidase from yeast: effects of sample history and pH.

    PubMed

    Pond, A E; Sono, M; Elenkova, E A; McRee, D E; Goodin, D B; English, A M; Dawson, J H

    1999-09-30

    Electronic absorption and magnetic circular dichroism (MCD) spectroscopic data at 4 degrees C are reported for exogenous ligand-free ferric forms of cytochrome c peroxidase (CCP) in comparison with two other histidine-ligated heme proteins, horseradish peroxidase (HRP) and myoglobin (Mb). In particular, we have examined the ferric states of yeast wild-type CCP (YCCP), CCP (MKT) which is the form of the enzyme that is expressed in and purified from E. coli, and contains Met-Lys-Thr (MKT) at the N-terminus, CCP (MKT) in the presence of 60% glycerol, lyophilized YCCP, and alkaline CCP (MKT). The present study demonstrates that, while having similar electronic absorption spectra, the MCD spectra of ligand-free ferric YCCP and CCP (MKT) are somewhat varied from one another. Detailed spectral analyses reveal that the ferric form of YCCP, characterized by a long wavelength charge transfer (CT) band at 645 nm, exists in a predominantly penta-coordinate state with spectral features similar to those of native ferric HRP rather than ferric Mb (His/water hexa-coordinate). The electronic absorption spectrum of ferric CCP (MKT) is similar to those of the penta-coordinate states of ferric YCCP and ferric HRP including a CT band at 645 nm. However, its MCD spectrum shows a small trough at 583 nm that is absent in the analogous spectra of YCCP and HRP. Instead, this trough is similar to that seen for ferric myoglobin at about 585 nm, and is attributed (following spectral simulations) to a minor contribution (< or = 5%) in the spectrum of CCP (MKT) from a hexa-coordinate low-spin species in the form of a hydroxide-ligated heme. The MCD data indicate that the lyophilized sample of ferric YCCP (lambda CT = 637 nm) contains considerably increased amounts of hexa-coordinate low-spin species including both His/hydroxide and bis-His species. The crystal structure of a spectroscopically similar sample of CCP (MKT) (lambda CT = 637 nm) solved at 2.0 A resolution is consistent with His

  14. Theoretical Analysis of the Unusual Vicinal Effects on Electronic Circular Dichroism Spectra of Cobalt(III) Complexes with ED3A-Type and Related Ligands

    NASA Astrophysics Data System (ADS)

    Wang, Yuekui; Zhang, Chunxia

    2014-07-01

    To investigate the origin of unusual N-vicinal effects, the geometries of the two series of cobalt(III) complexes, [Co(ED3A-type)(X)]-(X = CN-, NO2-) and [Co(EDDS-type)]-, with the pentadentate ethylenediamine-N;N;N0-triacetate (ED3A), hexadentate (S,S)-ethylenediamine-N;N0-dissuccinate (EDDS), and their N-alkyl-substituted ligands in aqueous solution have been optimized at the DFT/B3P86/6-311++G(2d,p) level of theory. Based on the optimized geometries, the excitation energies and rotational strengths have been calculated using the time dependent density functional theory (TDDFT) method with the same functional and basis set. The optimized geometries and calculated electronic circular dichroism (ECD) curves are in good agreement with the observed ones. Based on this agreement, the characteristics of usual and unusual N-vicinal effects as well as the related chiral stereochemistry phenomena have been discussed. To reveal the origin of the unusual N-vicinal effects, a novel calculation scheme has been proposed, which permits efficiently assessing the contribution of the octahedral core to the optical activities of the chelates. The results show that the substituent effects and conformational relaxation effects make opposite contributions to the overall N-vicinal effects with the former being dominant. The unusual N-vicinal effects originate from the negligible chirality of the octahedral core in the unsubstituted [Co(ED3A)(X)]-chelates. For this reason, their optical activity is dominated by the asymmetric nitrogens and behaves different from the normal cases. The unusual vicinal effects observed in the N-alkyl-substituted ED3A-type chelates reflect an increase in the contribution of the octahedral core to their optical activity, which recovers the ECD spectra from the special cases to the normal ones. These findings provide some insight into the unusual N-vicinal effects as well as the chiroptical properties of the chelates.

  15. Extending students' practice of metacognitive regulation strategies in the undergraduate chemistry laboratory and investigation of Pb2+ binding to calmodulin with circular dichroism and molecular dynamics modeling

    NASA Astrophysics Data System (ADS)

    Valencia Navarro, Laura N.

    The following dissertation was composed of two projects in chemistry education and benchwork/computational biochemistry. The chemistry education research explored students' practice of metacognitive strategies while solving open-ended laboratory problems when engaged in an instructional environment, the Science Writing Heuristic (SWH), that was characterized as supporting metacognitive regulation strategy use. Through in-depth interviews with students, results demonstrated that students in the SWH environment, compared to non-SWH students, used metacognitive strategies to a greater degree and to a greater depth when solving open-ended laboratory problems. As students engaged in higher levels of metacognitive regulation, their elective use of peers became a prominent path for supporting the practice of metacognitive strategies. Students claimed that the structure of the SWH weekly laboratory experiments improved their ability to solve open-ended lab problems. This research not only provided a lens into students' descriptions of their regulation strategy practices in the laboratory, but it also supported that the way that a laboratory environment is arranged can affect these regulation strategy practices and their transfer to new situations. In the biochemical study on the binding of Pb2+ to calmodulin (CaM), data was acquired via circular dichroism (CD) and molecular dynamics modeling. CD signal data indicated a unique signal from Pb-CaM and a significantly smaller ratio theta208/theta222 for Pb-CaM than Ca-CaM. An analysis of secondary structure content indicated that alpha-helical structure decreased and random coil structure increased when CaM was saturated with Pb2+ compared to Ca2+ saturated CaM. A molecular dynamics simulation of Pb2+ binding to CaM showed that Pb2+ ions bound to sites outside of the known canonical binding sites including the linker region, and indicated change in secondary structure. These results support the theory of opportunistic binding

  16. Elucidating the Role of the Proximal Cysteine Hydrogen Bonding Network in Ferric Cytochrome P450cam and corresponding mutants using Magnetic Circular Dichroism Spectroscopy†

    PubMed Central

    Galinato, Mary Grace I.; Spolitak, Tatyana; Ballou, David P.; Lehnert, Nicolai

    2011-01-01

    Although there has been extensive research on various Cytochrome P450s, especially Cyt P450cam, there is much to be learned about the mechanism of how its functional unit, a heme b ligated by an axial cysteine, is finely tuned for catalysis by its second coordination sphere. Here we study how the hydrogen bonding network affects the proximal cysteine and the Fe-S(Cys) bond in ferric Cyt P450cam. This is accomplished using low-temperature magnetic circular dichroism (MCD) spectroscopy on wild-type (wt) Cyt P450cam, and on the mutants Q360P (pure ferric high-spin at low temperature) and L358P with which the “Cys pocket” has been altered (by removing amino acids involved in the hydrogen bonding network), and Y96W (pure ferric low-spin). The MCD spectrum of Q360P reveals fourteen electronic transitions between 15200 and 31050 cm-1. Variable-temperature variable-field (VTVH) saturation curves were used to determine the polarizations of these electronic transitions, with respect to in-plane (xy) and out-of-plane (z) polarization relative to the heme. The polarizations, oscillator strengths, and TD-DFT calculations were then used to assign the observed electronic transitions. In the lower energy region, prominent bands at 15909 and 16919 cm-1 correspond to porphyrin (P) → Fe charge transfer (CT) transitions. The band at 17881 cm-1 has distinct sulfur S(π)→ Fe CT contributions. The Q band is observed as a pseudo A-term (derivative shape) at 18604 and 19539 cm-1. In the case of the Soret band, the negative component of the expected pseudo A-term is split into two features due to mixing with another π → π* and potentially a P → Fe CT excited state. These features are observed at 23731, 24859, and 25618 cm-1. Most importantly, the broad, prominent band at 28570 cm-1 is assigned to the S(σ)→ Fe CT transition, whose intensity is generated through a multitude of CT transitions with strong iron character. For wt, Q360P, and L358P, this band occurs at 28724

  17. Investigation of human serum albumin (HSA) binding specificity of certain photosensitizers related to pyropheophorbide-a and bacteriopurpurinimide by circular dichroism spectroscopy and its correlation with in vivo photosensitizing efficacy.

    PubMed

    Chen, Yihui; Miclea, Razvan; Srikrishnan, Thamarapu; Balasubramanian, Sathyamangalam; Dougherty, Thomas J; Pandey, Ravindra K

    2005-07-01

    A series of pyropheophorbide-a and bacteriopurpurinimides were investigated to understand the correlation between HSA (site II) binding affinity and in vivo photosensitizing activity. In our study, photosensitizers that bound to site II of HSA produced a significant difference in the circular dichroism spectra of the corresponding complexes, especially at Soret band region of the photosensitizers. Our results suggest that CD spectroscopy of the photosensitizer-HSA complexes could be a valuable tool in screening new photosensitizers before evaluating them for in vivo efficacy.

  18. Strain Effect on the Absorption Threshold Energy of Silicon Circular Nanowires

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Bahramiyan, H.

    2016-01-01

    In this work, the influence of strain on threshold energy of absorption in Silicon circular nanowires is investigated. For this purpose, we first have used the density functional theory (DFT) to calculate the electron and hole effective masses. Then, we have obtained absorption threshold energy with two different procedures, DFT and effective mass approximation (EMA). We have also obtained the band structures of Si nanowires both DFT and EMA. The results show that: i) the expansive strain increases the hole effective mass while compressive strain increases the electron effective mass, ii) the electron and hole effective masses reduce with decreasing the wire size, iii) the absorption threshold energy decreases by increasing strain for compressive and tensile strain and its behavior as a function of strain is approximately parabolic, iv) the absorption threshold energy (for all sizes) obtained using EMA is greater than the DFT results.

  19. Electronic and magnetic properties of off-stoichiometric Co{sub 2}Mn{sub β}Si/MgO interfaces studied by x-ray magnetic circular dichroism

    SciTech Connect

    Singh, V. R.; Verma, V. K.; Ishigami, K.; Shibata, G.; Fujimori, A.; Koide, T.; Miura, Y.; Shirai, M.; Ishikawa, T.; Li, G.-F.; Yamamoto, M.

    2015-05-28

    We have studied the electronic and magnetic states of Co and Mn atoms at the interface of the Co{sub 2}Mn{sub β}Si (CMS)/MgO (β = 0.69, 0.99, 1.15, and 1.29) magnetic tunnel junction (MTJ) by means of x-ray magnetic circular dichroism. In particular, the Mn composition (β) dependences of the Mn and Co magnetic moments were investigated. The experimental spin magnetic moments of Mn, m{sub spin}(Mn), derived from x-ray magnetic circular dichroism weakly decreased with increasing Mn composition β in going from Mn-deficient to Mn-rich CMS films. This behavior was explained by first-principles calculations based on the antisite-based site-specific formula unit (SSFU) composition model, which assumes the formation of only antisite defect, not vacancies, to accommodate off-stoichiometry. Furthermore, the experimental spin magnetic moments of Co, m{sub spin}(Co), also weakly decreased with increasing Mn composition. This behavior was consistently explained by the antisite-based SSFU model, in particular, by the decrease in the concentration of Co{sub Mn} antisites detrimental to the half-metallicity of CMS with increasing β. This finding is consistent with the higher tunnel magnetoresistance ratios which have been observed for CMS/MgO/CMS MTJs with Mn-rich CMS electrodes.

  20. Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media.

    PubMed

    Kim, Seulong; Kim, Kihong

    2016-01-25

    It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization.

  1. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    PubMed Central

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2–6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate. PMID:27629800

  2. Impact of energy-related pollutants on chromosome structure. Progress report, January 1-December 31, 1980. IQUID COLUMN CHROMATOGRAPHY; ABSORPTION SPECTRA; COMPUTER CODES; DICHROISM; EQUIPMENT INTERFACES; MICROPROCESSORS; SPECTROPHOTOMETERS; ; CARBON 13; COMPLEXES; NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Not Available

    1980-01-01

    Methods for rapidly analyzing methylated and ethylated nucleosides and bases by high pressure liquid chromatography were investigated. Deoxyribonucleotides were alkylated with alkyl iodides and dialkyl sulfates. Several unreported products of the reactions of methyl and ethyl iodide in dimethylsulfoxide were found and are being characterized. The Cary 219 UV-Vis spectrophotometer was interfaced to a microcomputer and several utility programs were written. Preliminary absorption and circular dichroism studies of the binding of ethidium to DNA and nucleosome cores showed binding to cores to be quite different from binding to DNA. Free radical and additional reactions of bisulfite with DNA in chromatin were examined. Free radical attack was minimal. Some conversion of cytosine to uracil was noted, but protein crosslinking to DNA was not detected. The first valid natural abundance /sup 13/C nmr spectra of double-stranded DNA and double-stranded DNA complexed with ethidium were obtained. These spectra suggested that DNA undergoes considerable internal motion. The data show that 13-C nmr studies of the conformational and motional properties of native DNA and of complexes of native DNA with small molecules are practical and promising. Studies of subnucleosomes derived from nucleosomes were completed. Based on these studies, a model of the linear arrangement of histone C-terminal and N-terminal chain regions along nucleosome DNA was proposed. The use of staphylococcal protease to probe histone conformations in nucleosomes was explored. Preliminary data indicate that H3 is much more susceptible to protease than other core histones, and is cleaved in its hydrophobic domain. A procedure for fractionating chromatin was alos developed. (ERB)

  3. Absorption and scattering by bispheres, quadspheres, and circular rings of spheres and their equivalent coated spheres.

    PubMed

    Heng, Ri-Liang; Sy, Ki Cheong; Pilon, Laurent

    2015-01-01

    This study demonstrates that the absorption and scattering cross sections and asymmetry factor of randomly oriented and optically soft bispheres, quadspheres, and circular rings of spheres, with either monodisperse or polydisperse monomers, can be approximated by an equivalent coated sphere with identical volume and average projected area. This approximation could also apply to the angle-dependent scattering matrix elements for monomer size parameter less than 0.1. However, it quickly deteriorated with increasing monomer number and/or size parameter. It was shown to be superior to previously proposed approximations considering a volume equivalent homogeneous sphere and a coated sphere with identical volume and surface area. These results provide a rapid and accurate way of predicting the radiation characteristics of bispheres, quadspheres, and rings of spheres representative of various unicellular and multicellular cyanobacteria considered for producing food supplements, biofuels, and fertilizers. They could also be used in inverse methods for retrieving the monomers' optical properties, morphology, and/or concentration.

  4. Determination of light absorption, scattering and anisotropy factor of a highly scattering medium using backscattered circularly polarized light

    NASA Astrophysics Data System (ADS)

    Xu, M.; Alrubaiee, M.; Gayen, S. K.; Alfano, R. R.

    2007-02-01

    The absorption coefficient, the scattering coefficient and the anisotropy factor of a highly scattering medium are determined using the diffuse reflectance of an obliquely incident beam of circularly polarized light. This approach determines both the anisotropy factor and the cutoff size parameter for the fractal continuous scattering medium such as biological tissue and tissue phantoms from depolarization of the backscattered light.

  5. Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria.

    PubMed

    Furumaki, Shu; Vacha, Frantisek; Habuchi, Satoshi; Tsukatani, Yusuke; Bryant, Donald A; Vacha, Martin

    2011-05-04

    Chlorosomes are light-harvesting antennae of photosynthetic bacteria containing large numbers of self-aggregated bacteriochlorophyll (BChl) molecules. They have developed unique photophysical properties that enable them to absorb light and transfer the excitation energy with very high efficiency. However, the molecular-level organization, that produces the photophysical properties of BChl molecules in the aggregates, is still not fully understood. One of the reasons is heterogeneity in the chlorosome structure which gives rise to a hierarchy of structural and energy disorder. In this report, we for the first time directly measure absorption linear dichroism (LD) on individual, isolated chlorosomes. Together with fluorescence-detected three-dimensional LD, these experiments reveal a large amount of disorder on the single-chlorosome level in the form of distributions of LD observables in chlorosomes from wild-type bacterium Chlorobaculum tepidum . Fluorescence spectral parameters, such as peak wavelength and bandwidth, are measures of the aggregate excitonic properties. These parameters obtained on individual chlorosomes are uncorrelated with the observed LD distributions and indicate that the observed disorder is due to inner structural disorder along the chlorosome long axis. The excitonic disorder that is also present is not manifested in the LD distributions. Limiting values of the LD parameter distributions, which are relatively free of the effect of structural disorder, define a range of angles at which the excitonic dipole moment is oriented with respect to the surface of the two-dimensional aggregate of BChl molecules. Experiments on chlorosomes of a triple mutant of Chlorobaculum tepidum show that the mutant chlorosomes have significantly less inner structural disorder and higher symmetry, compatible with a model of well-ordered concentric cylinders. Different values of the transition dipole moment orientations are consistent with a different molecular level

  6. Itinerant ferromagnetism in the As 4p conduction band of Ba0.6K0.4Mn2As2 identified by x-ray magnetic circular dichroism

    SciTech Connect

    Ueland, B. G.; Pandey, Abhishek; Lee, Y.; Sapkota, A.; Choi, Y.; Haskel, D.; Rosenberg, R. A.; Lang, J. C.; Harmon, B. N.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.

    2015-05-27

    In this study, x-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba0.6K0.4Mn2As2 show that the ferromagnetism below TC ≈ 100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below TC, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.

  7. Plastocyanin conformation: an analysis of its near ultraviolet absorption and circular dichroic spectra

    SciTech Connect

    Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.

    1986-04-01

    The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at approx.295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport.

  8. Spin and orbital magnetic moments of Fe and Co in Co/Fe and Fe/Co multilayers on Si from L2,3 edge X-ray Magnetic Circular Dichroism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vemuru, Krishnamurthy; Rosenberg, Richard; Mankey, Gary

    Nanostructured FeCo thin films are interesting for magnetic recording applications due to their high saturation magnetization, high Curie temperature and low magnetocrystalline anisotropy. It is desirable to know how the magnetism is modified by the nanostructrure. We report Fe L 2 , 3 edge and Co L2 , 3 edge x-ray magnetic circular dichroism (XMCD) investigations of element specific spin and orbital magnetism of Fe and Co in two multilayer samples: (S1) Si/SiO2/[Co 0.8 nm/Fe 1.6 nm]x32/W (2nm) and (S2) Si/SiO2/[Co 1.6 nm/Fe 0.8 nm]x32/W (2nm) thin films at room temperature. Sum rule analysis of XMCD at Fe L2 , 3 edge in sample S1 shows that the orbital moment of Fe is strongly enhanced and the spin moment is strongly reduced as compared to the values found in bulk Fe. Details of sum rule analysis will be presented to compare and contrast spin magnetic moments and orbital magnetic moments of Fe and Co in the two multilayer samples. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  9. Configuration at C-25 in 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol excreted by patients with cerebrotendinous xanthomatosis: circular dichroism and 13C-NMR studies.

    PubMed

    Dayal, B; Salen, G; Toome, V; Tint, G S

    1986-12-01

    The configuration at C-25 in 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha,25,26-pentol isolated from the bile and feces of patients with cerebrotendinous xanthomtosis (CTX) was determined from the lanthanide-induced circular dichroism (CD) Cotton effects and 13C-NMR measurements. Under anhydrous conditions, CD spectra of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha,25,26-pentol in the presence of Eu(fod)3 exhibited a large induced negative Cotton effect at 320 nm. On the basis of the empirical rule (primary-tertiary-alpha-diols) in which R compounds have positive Cotton effects and S compounds have negative Cotton effects at 320 nm, it was concluded that 25,26-pentol has the 1,2,glycol structure with C-25 having the S-configuration. This assignment was based upon comparison with model compounds, 25(R and S),26-dihydroxy cholesterols and 25(R and S),26-dihydroxy cholecalciferols whose single-crystal X-ray structure and 13C-NMR studies have been performed. It is suggested that these data may be helpful to clarify the stereospecificity of the hydroxylation of the terminal methyl group of the cholesterol side chain in CTX.

  10. X-ray magnetic circular dichroism for Co{sub x}Fe{sub 4−x}N (x = 0, 3, 4) films grown by molecular beam epitaxy

    SciTech Connect

    Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Suemasu, Takashi; Zhu, Siyuan; Kimura, Akio; Takeda, Yukiharu; Saitoh, Yuji

    2014-05-07

    We evaluated orbital (m{sub orb}) and spin magnetic moments (m{sub spin}) of Co{sub x}Fe{sub 4−x}N (x = 0, 3, 4) epitaxial thin films grown by molecular beam epitaxy using x-ray magnetic circular dichroism, and discussed the dependence of these values on x. Site-averaged m{sub spin} value of Fe atoms was deduced to be 1.91 μ{sub B} per atom, and that of Co atoms to be 1.47 μ{sub B} per atom in Co{sub 3}FeN at 300 K. These values are close to 1.87 μ{sub B} per Fe atom in Fe{sub 4}N and 1.43 μ{sub B} per Co atom in Co{sub 4}N, respectively. This result implies that the Fe and Co atoms in the Co{sub 3}FeN films were located both at corner and face-centered sites in the anti-perovskite lattice. Spin magnetic moments per unit cell were decreased linearly with increasing x in Co{sub x}Fe{sub 4−x}N. This tendency is in good agreement with theory predicted by the first-principle calculation.

  11. Systematic study on the TD-DFT calculated electronic circular dichroism spectra of chiral aromatic nitro compounds: A comparison of B3LYP and CAM-B3LYP

    NASA Astrophysics Data System (ADS)

    Komjáti, Balázs; Urai, Ákos; Hosztafi, Sándor; Kökösi, József; Kováts, Benjámin; Nagy, József; Horváth, Péter

    2016-02-01

    B3LYP is one of the most widely used functional for the prediction of electronic circular dichroism spectra, however if the studied molecule contains aromatic nitro group computations may fail to produce reliable results. A test set of molecules of known stereochemistry were synthesized to study this phenomenon in detail. Spectra were computed by B3LYP and CAM-B3LYP functionals with 6-311 ++G(2d,2p) basis set. It was found that the range separated CAM-B3LYP gives better predictions than B3LYP for all test molecules. Fragment population analysis revealed that the nitro groups form highly localized molecule orbitals but the exact composition depends on the functional. CAM-B3LYP allows sufficient spatial overlap between the nitro group and distant parts of the molecule, which is necessary for the accurate description of excited states especially for charge transfer states. This phenomenon and the synthesized test molecules can be used to benchmark theoretical methods as well as to help the development of new functionals intended for spectroscopical studies.

  12. Determination of a low-level percent enantiomer of a compound with no ultraviolet chromophore using vibrational circular dichroism (VCD): enantiomeric purity by VCD of a compound with three chiral centers.

    PubMed

    Kott, Laila; Petrovic, Jelena; Phelps, Dean; Roginski, Robert; Schubert, Jared

    2014-01-01

    The chiral configuration of three of the four chiral centers in the investigational drug MLN4924 is locked by an intermediate (1S,2S,4R)-4-amino-2-(hydroxymethyl)cyclopentanol (designated as INT1a). The intermediate INT1a is a key component to the molecule, but its multiple chiral centers and lack of chromophore make it challenging to analyze for chiral purity of the desired enantiomer when it is contaminated with a small amount of its undesired enantiomer. Vibrational circular dichroism (VCD) is a technique that uses the infrared (IR) regions of the electromagnetic spectrum and as INT1a contains IR active groups, we considered using VCD to determine the chiral purity of INT1a. Since the VCD spectra of enantiomers are of equal intensity and opposite in sign, it was possible to construct calibration curves to detect the presence of low levels of this compound in the presence of its enantiomer. By normalizing the observed intensities of the VCD signals with the observed IR spectra, a partial least squares model was constructed having a root mean squared error of cross validation of 0.46% absolute over a range of 97 to 99.9% pure enantiomer (or 97-99.8% enantiomeric excess). This work demonstrates that VCD can be used for the low-level detection of a compound in the presence of its enantiomer and thus eliminates the need for an ultraviolet chromophore and chromatographic separation of the two enantiomers.

  13. Systematic study on the TD-DFT calculated electronic circular dichroism spectra of chiral aromatic nitro compounds: A comparison of B3LYP and CAM-B3LYP.

    PubMed

    Komjáti, Balázs; Urai, Ákos; Hosztafi, Sándor; Kökösi, József; Kováts, Benjámin; Nagy, József; Horváth, Péter

    2016-02-15

    B3LYP is one of the most widely used functional for the prediction of electronic circular dichroism spectra, however if the studied molecule contains aromatic nitro group computations may fail to produce reliable results. A test set of molecules of known stereochemistry were synthesized to study this phenomenon in detail. Spectra were computed by B3LYP and CAM-B3LYP functionals with 6-311++G(2d,2p) basis set. It was found that the range separated CAM-B3LYP gives better predictions than B3LYP for all test molecules. Fragment population analysis revealed that the nitro groups form highly localized molecule orbitals but the exact composition depends on the functional. CAM-B3LYP allows sufficient spatial overlap between the nitro group and distant parts of the molecule, which is necessary for the accurate description of excited states especially for charge transfer states. This phenomenon and the synthesized test molecules can be used to benchmark theoretical methods as well as to help the development of new functionals intended for spectroscopical studies.

  14. Dichroism in Helicoidal Crystals.

    PubMed

    Cui, Xiaoyan; Nichols, Shane M; Arteaga, Oriol; Freudenthal, John; Paula, Froilanny; Shtukenberg, Alexander G; Kahr, Bart

    2016-09-21

    Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils.

  15. Analytical modeling of photon absorption coefficient in mono and bilayer circular graphene quantum dots for light absorber applications

    NASA Astrophysics Data System (ADS)

    Tamandani, Shahryar; Darvish, Ghafar

    2017-02-01

    We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved

  16. The nature of the circular-dichoric spectra of complexes between ribonuclease A and nucleotides.

    PubMed Central

    Dudkin, S M; Karabashyan, L V; Karpeisky, M Y; Mikhailov, S N; Padyukova, N S; Sakharovsky, V G

    1977-01-01

    The circular-dichroism and proton-magnetic-resonance spectra of complexes of ribonuclease A with dihydrouridine 3'-phosphate, 2'- and 3'-CMP, arabinosyl-3'-CMP, 1-(2-hydroxyethyl)cytosine 2'-phosphate and 1-(3-hydroxypropyl)cytosine 3'-phosphate were studied. Comparison of the results shows that non-additivity of the circular-dichroic spectrum of an enzyme-nucleotide complex may be due to: (a), alteration of the circular dichroic spectrum of the nucleotide under the influence of the asymmetric protein matrix (induced dichroism), and (b) a change in the nucleotide conformation. The contribution of each of the two factors was estimated to calculate the circular-dichoroic spectra of 2'-CMP and 3'-CMP in complex with ribonuclease A. 3'-CMP in this complex was characterized by negative circular dichroism in the long-wavelength absorption band of the nucleotide, whereas 2'-CMP was characterized by positive circular dichroism. Since both nucleotides in the complex are known to be in an anti conformation, it follows that even small changes in the conformation considerably modify the circular-dichroic spectrum of the nucleotide in complex with the enzyme. PMID:603635

  17. DEIMOS: a beamline dedicated to dichroism measurements in the 350-2500 eV energy range.

    PubMed

    Ohresser, P; Otero, E; Choueikani, F; Chen, K; Stanescu, S; Deschamps, F; Moreno, T; Polack, F; Lagarde, B; Daguerre, J-P; Marteau, F; Scheurer, F; Joly, L; Kappler, J-P; Muller, B; Bunau, O; Sainctavit, Ph

    2014-01-01

    The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisée de Lumière à Energie Intermédiaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350-2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy. The main end-station consists in a cryo-magnet with 2 split coils providing a 7 T magnetic field along the beam or 2 T perpendicular to the beam with a controllable temperature on the sample from 370 K down to 1.5 K.

  18. DEIMOS: A beamline dedicated to dichroism measurements in the 350–2500 eV energy range

    SciTech Connect

    Ohresser, P. Otero, E.; Choueikani, F.; Chen, K.; Stanescu, S.; Deschamps, F.; Moreno, T.; Polack, F.; Lagarde, B.; Daguerre, J.-P.; Marteau, F.; Scheurer, F.; Joly, L.; Muller, B.; Kappler, J.-P.; Bunau, O.; Sainctavit, Ph.

    2014-01-15

    The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisée de Lumière à Energie Intermédiaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350–2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy. The main end-station consists in a cryo-magnet with 2 split coils providing a 7 T magnetic field along the beam or 2 T perpendicular to the beam with a controllable temperature on the sample from 370 K down to 1.5 K.

  19. Theoretical Prediction of Vibrational Circular Dichroism Spectra

    DTIC Science & Technology

    1990-01-01

    1988). 19. J. S. Alper and M. A . Lowe, J. Chem. Phys. 121, 189-97 (1988). 20. A . L . Lehninger , "Biochemistry",Worth Publishers, New York (1970). -43- ...dipole transition moments for the 0-* 1 vibrational transition is given by; <oI(g)O l >,=(h/2wj)/y2EPI Sx x (2) Aa <o I t ,, t > i= -(2h w 1/ M a S .i (3...8217, Department of Chemistry, Carnegie- Mellon University, Pittsburgh, PA (1984). 10. W. J. Hehre, L . Radom, P. von R. Schleyer and J. A . Pople, "Ab Initio

  20. Detection of circular polarization in light scattered from photosynthetic microbes

    PubMed Central

    Sparks, William B.; Hough, James; Germer, Thomas A.; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T.; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F. Duccio; Martin, William

    2009-01-01

    The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches. PMID:19416893

  1. Induced chirality-at-metal and diastereoselectivity at Δ/Λ-configured distorted square-planar copper complexes by enantiopure Schiff base ligands: combined circular dichroism, DFT and X-ray structural studies.

    PubMed

    Enamullah, Mohammed; Uddin, A K M Royhan; Pescitelli, Gennaro; Berardozzi, Roberto; Makhloufi, Gamall; Vasylyeva, Vera; Chamayou, Anne-Christine; Janiak, Christoph

    2014-02-28

    Bidentate enantiopure Schiff base ligands, (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminato-κ(2)N,O, diastereoselectively yield Δ/Λ-chiral four-coordinated, non-planar Cu(N^O)2 complexes [Ar = C6H5 R/S-L1, m-C6H4OMe R-L2, p-C6H4OMe R/S-L3, and p-C6H4Br R/S-L4]. Two N,O-chelate ligands coordinate to the copper(II) atom in distorted square-planar mode, and induce metal-centered Δ/Λ-chirality at the copper atom in the C2-symmetric complexes. In the solid state, the R-L1 (or R-L4) ligand chirality diastereoselectively induces a Λ-Cu configuration in Λ-Cu-R-L1 (or Λ-Cu-R-L4), the S-L1 ligand a Δ-Cu configuration in Δ-Cu-S-L1, forming enantiopure crystals upon crystallization. Conversely, the R-L2 ligand combines both Λ/Δ-Cu-R-L2 as a diastereomeric pair in the crystals. In solution, electronic circular dichroism (CD) spectra show full or partial diastereoselectivity towards Λ-Cu for R ligands and towards Δ-Cu for S ligands. The electronic CD spectra measured on all complexes obtained from R ligands (or S ligands), e.g. Cu-R-L1, Cu-R-L2, Cu-R-L3, and Cu-R-L4 (or Cu-S-L1, Cu-S-L3, and Cu-S-L4), show consistent spectral features. TDDFT calculations of the electronic CD spectra for the diastereomers Λ-Cu-R-L1 and Δ-Cu-R-L1 suggest that the CD spectra are largely dominated by the configuration at the metal center (Λ vs. Δ). The experimental CD spectrum of Cu-R-L1 agrees well with the one calculated for the Λ-Cu-R-L1 configuration. Cyclic voltammetry of Cu-R-L1 reveals a quasi-reversible redox wave corresponding to one-electron transfer for the [Cu(II)L2](0)/[Cu(I)L2](-1) couple in acetonitrile. DSC analyses for the complexes show an exothermic peak between 377 and 478 K (ΔH = -12 to -43 kJ mol(-1)), corresponding to a phase transformation from distorted square-planar/tetrahedral to regular tetrahedral geometry on heating.

  2. Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs.

    PubMed

    Said, Mohammed El-Amin; Vanloot, Pierre; Bombarda, Isabelle; Naubron, Jean-Valère; Dahmane, El Montassir; Aamouche, Ahmed; Jean, Marion; Vanthuyne, Nicolas; Dupuy, Nathalie; Roussel, Christian

    2016-01-15

    An unprecedented methodology was developed to simultaneously assign the relative percentages of the major chiral compounds and their prevailing enantiomeric form in crude essential oils (EOs). In a first step the infrared (IR) and vibrational circular dichroism (VCD) spectra of the crude essential oils were recorded and in a second step they were modelized as a linear weighted combination of the IR and VCD spectra of the individual spectra of pure enantiomer of the major chiral compounds present in the EOs. The VCD spectra of enantiomer of known enantiomeric excess shall be recorded if they are not yet available in a library of VCD spectra. For IR, the spectra of pure enantiomer or racemic mixture can be used. The full spectra modelizations were performed using a well known and powerful mathematical model (least square estimation: LSE) which resulted in a weighting of each contributing compound. For VCD modelization, the absolute value of each weighting represented the percentage of the associate compound while the attached sign addressed the correctness of the enantiomeric form used to build the model. As an example, a model built with the non-prevailing enantiomer will show a negative sign of the weighting value. For IR spectra modelization, the absolute value of each weighting represented the percentage of the compounds without of course accounting for the chirality of the prevailing enantiomers. Comparison of the weighting values issuing from IR and VCD spectra modelizations is a valuable source of information: if they are identical, the EOs are composed of nearly pure enantiomers, if they are different the chiral compounds of the EOs are not in an optically pure form. The method was applied on four samples of essential oil of Artemisia herba-alba in which the three major compounds namely (-)-α-thujone, (+)-β-thujone and (-)-camphor were found in different proportions as determined by GC-MS and chiral HPLC using polarimetric detector. In order to validate the

  3. Ab Initio Study of the Electric Dipole Transition Moment for the Electronic X to C Transition in Acetylene: Theoretical Predictions of the Absorption and Magnetic Circular Dichroism Intensities

    DTIC Science & Technology

    1990-12-01

    Electronic Structure Theory, Modem Theoretical Chemistry III. H. F. Schaefer III (ed.), New York: Plenum Press, 1977. Gedanken, A ., and 0. Schnepp. "The...Reserve Univ. Div. of Aerospace Sciences ATfN: J. lien Cleveland, OH 44135 Cornell University Department of Chemistry A TfN: T . A . Cool Baker...Laboratory Ithaca, NY 14853 University of Delaware A 1TN: T. Brill Chemistry Department Newark, DE 19711 1 University of Florida Dept. of

  4. Photoinduced ferrimagnetic systems in Prussian blue analogues C(I)xCo4[Fe(CN)6]y (C(I) = alkali cation). 4. Characterization of the ferrimagnetism of the photoinduced metastable state in Rb1.8Co4[Fe(CN)6]3.3-13H2O by K edges X-ray magnetic circular dichroism.

    PubMed

    Champion, G; Escax, V; Cartier Dit Moulin, C; Bleuzen, A; Villain, F; Baudelet, F; Dartyge, E; Verdaguer, M

    2001-12-19

    In Part 2 of this work, the electronic and local structure of the photoinduced metastable magnetic state of the Prussian blue analogue Rb1.8Co4[Fe(CN)6]3.3-13H2O were characterized. To determine directly the relative orientation of the magnetic moments of Co(II) and Fe(III) ions in the metastable state, and the nature of the exchange interaction between them, we performed X-ray magnetic circular dichroism (XMCD) experiments at the cobalt and iron K edges. We present the first direct experimental evidence of the antiferromagnetic interaction between the cobalt and the iron ions, leading to the ferrimagnetism of the photoinduced metastable state.

  5. Novel approach for non-invasive glucose sensing using vibrational contrast CD absorption measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Tovar, Carlos; Hokr, Brett; Petrov, Georgi I.

    2016-03-01

    Noninvasive glucose sensing is a Holy Grail of diabetes mellitus management. Unfortunately, despite a number of innovative concepts and a long history of continuous instrumental improvements, the problem remains largely unsolved. Here we propose and experimentally demonstrate the first successful implementation of a novel strategy based on vibrational overtone circular dichroism absorption measurements. Such an approach uses a short-wavelength infrared excitation (1000-2000 nm), which takes the advantage of lower light scattering and intrinsic chemical contrast provided by the chemical structure of D-glucose molecule. We model the propagation of circular polarized light in scattering medium using Monte Carlo simulations to show the feasibility of such approach in turbid medium and demonstrate the proof of principle using optical detection. We also investigate the possibility of using ultrasound detection through circular dichroism absorption measurements to achieve simple and sensitive glucose monitoring.

  6. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    PubMed

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  7. Analysis of the near-ultraviolet absorption and circular dichroic spectra of parsley plastocyanin for the effects of pH and copper center conformation changes.

    PubMed

    Durell, S R; Gross, E L; Draheim, J E

    1988-11-15

    The absorption and circular dichroic (CD) spectra of parsley plastocyanin (PC) were measured in order to determine the effects of changes in primary amino acid sequence on both the copper center and protein components of the PC molecule. The near-ultraviolet (uv) absorption and CD spectra of parsley PC were found to be qualitatively similar to those of spinach, poplar, and lettuce PC, except for the near-uv CD spectrum of the reduced form at low pH (ca. pH 5.0). The CD spectrum of reduced parsley PC in the 250-265 nm wavelength region changes from positive to negative ellipticity upon reduction of pH, and is characterized by a pKa value of 5.7. This pKa value is the same as that for the protonation of the histidine 87 copper ligand, observed by NMR, and the change in conformation of the copper center. Similar processes are believed to occur in the other PC species at lower pH values. Thus, the pH-dependent perturbations of the near-uv CD spectra of reduced PC are interpreted as due to transitions in the reduced copper center. The increase in the near-uv absorption spectrum of reduced PC can be divided into pH-independent and pH-dependent portions. The pH-independent portion resembles the absorption spectrum of tetrahedral Cu(I) metallothionein, suggesting the presence of Cu(I)-Cys 84 and/or Cu(I)-Met 92 charge transfer transitions in the near-uv absorption spectra of reduced PC. The pH dependence of the absorption spectrum changes and the pH difference absorption spectrum indicate that tyrosine residues may contribute to at least a part of the pH-dependent portion of the absorption increase of reduced PC.

  8. Magnetic x-ray dichroism in ultrathin epitaxial films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of high resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.

  9. Light extinction and absorption by arbitrarily oriented finite circular cylinders by use of geometrical path statistics of rays.

    PubMed

    Xu, Min

    2003-11-20

    From the geometrical path statistics of rays in an anomalous-diffraction theory (ADT) [Opt. Lett. 28, 179 (2003)] closed-form expressions for the geometrical path distribution of rays and analytical formulas for the optical efficiencies of finite circular cylinders oriented in an arbitrary direction with respect to the incident light are derived. The characteristics of the shapes of the cylinders produce unique features in the geometrical path distributions of the cylinders compared with spheroids. Gaussian ray approximations, which depend only on the mean and the mean-squared geometrical paths of rays, of the optical efficiencies of finite circular cylinders and spheroids are compared with the exact optical efficiencies in ADT. The influence of the difference in shape between cylinders and spheroids on the optical efficiencies in ADT is illustrated by their respective geometrical path distributions of rays.

  10. Characterization of magnetic domain walls using electron magnetic chiral dichroism.

    PubMed

    Che, Ren Chao; Liang, Chong Yun; He, Xiang; Liu, Hai Hua; Duan, Xiao Feng

    2011-04-01

    Domain walls and spin states of permalloy were investigated by electron magnetic chiral dichroism (EMCD) technique in Lorentz imaging mode using a JEM-2100F transmission electron microscope. EMCD signals from both Fe and Ni L3,2 edges were detected from the Bloch lines but not from the adjacent main wall. The magnetic polarity orientation of the circular Bloch line is opposite to that of the cross Bloch line. The orientations of Fe and Ni spins are parallel rather than antiparallel, both at the cross Bloch line and circular Bloch line.

  11. Atomistic modeling of IR action spectra under circularly polarized electromagnetic fields: toward action VCD spectra.

    PubMed

    Calvo, Florent

    2015-03-01

    The nonlinear response and dissociation propensity of an isolated chiral molecule, camphor, to a circularly polarized infrared laser pulse was simulated by molecular dynamics as a function of the excitation wavelength. The results indicate similarities with linear absorption spectra, but also differences that are ascribable to dynamical anharmonic effects. Comparing the responses between left- and right-circularly polarized pulses in terms of dissociation probabilities, or equivalently between R- and S-camphor to a similarly polarized pulse, we find significant differences for the fingerprint C = O amide mode, with a sensitivity that could be sufficient to possibly enable vibrational circular dichroism as an action technique for probing molecular chirality and absolute conformations in the gas phase.

  12. Applications of soft x-ray magnetic dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, G.

    2013-04-01

    Applications of x-ray magnetic circular and linear dichroism (XMCD and XMLD) are reviewed in the soft x-ray region, covering the photon energy range 0.4-2 keV, which includes important absorption edges such as the 3d transition metal L2,3 and rare earth M4,5. These techniques enable a broad range of novel and exciting studies such as on the electronic properties and magnetic ordering of novel nanostructured systems. XMCD has a sensitivity better than 0.01 monolayer (at the surface) and due to simple detection methods, such as electron yield and fluorescence yield, it has become a workhorse technique in physics and materials science. It is the only element-specific technique able to distinguish between the spin and orbital parts of the magnetic moments. The applications are vast, e.g., in x-ray holographic imaging, XMCD gives a spatial resolution of tens of nm. While many studies in the past were centered on physics, more recently new applications have emerged in areas such as chemistry, biology and earth and environmental sciences. For instance, XMCD allows the determination of the cation occupations in spinels and other ternary oxides. In scanning transmission x-ray microscopy (STXM), XMCD enables us to map biogenic magnetite redox changes resulting in a surprising degree of variation on the nanoscale. Another recent development is ferromagnetic resonance (FMR) detected by time-resolved XMCD which opens the door to element-, site- and layer-specific dynamical measurements. By exploiting the time structure of the pulsed synchrotron radiation from the storage ring the relative phase of precession in the individual magnetic layers of a multilayer stack can be determined.

  13. A circular dichroism study of undegraded human ceruloplasmin.

    PubMed

    Noyer, M; Putnam, F W

    1981-06-09

    The CD spectrum of human ceruloplasmin (Cp) has been studied between pH 6.90 and 12.00 in the far-ultraviolet, near-ultraviolet, and visible light regions. The spectrum in the far-ultraviolet region showed that undegraded holo and apo single-chain ceruloplasmin and a cleaved ceruloplasmin preparation have a low content of alpha helix but a high content of beta and unordered structure. A conformational transition accompanied by a decrease in beta and an increase in unordered structure occurred at pH 11.10 for intact ceruloplasmin. This transition probably involved the ionization of buried tyrosines, as shown by the increase of a near-ultraviolet band at 250 nm. The copper atoms may contribute to the stability of the native structure since the conformational transition occurred at a low pH value (10.50) in the case of apoceruloplasmin. The apo-Cp also presented a more intense CD band at 292 nm, suggesting the presence of tryptophan(s) near the environment of copper(s) in the molecule where no tyrosine residue seems to be involved. The spectrum between 320 and 700 nm of intact and cleaved Cp was resolved into six Gaussian bands which were assigned to type-1 copper atoms. Important changes in only two of these bands upon pH increase (bands III at 541 nm and VII at 322 nm) confirmed the nonequivalence of the two blue coppers in human ceruloplasmin.

  14. Rotation and dichroism associated with microwave propagation in chiral composite samples

    SciTech Connect

    Umari, M.H.; Varadan, V.V.; Varadan, V.K. )

    1991-10-01

    Experimental results are presented on the angle of rotation and the axial ratio (dichroism) associated with the propagation of microwave waves in chiral composite samples (a phenomenon akin to optical rotation and optical dichroism). In the experiments the chiral composite samples tested were made in the form of planar slabs and consisted of low loss dielectric matrix materials in which miniature copper springs of left only, right only, or an equal mixture of left and right handedness were randomly distributed and oriented. The normally incident wave was linearly polarized. In the chiral sample the linearly polarized wave decomposes into left and right circularly polarized waves which propagate with different speeds and different attenuations leading to an elliptically polarized transmitted wave whose orientation (electromagnetic rotation) and axial ratio (dichroism) are proportional to the concentration of springs. Rotation and dichroism are shown to be zero in the equichiral samples. 10 refs.

  15. Circular Coinduction

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  16. Chiral optical fields: a unified formulation of helicity scattered from particles and dichroism enhancement.

    PubMed

    Nieto-Vesperinas, Manuel

    2017-03-28

    We establish a general unified formulation which, using the optical theorem of electromagnetic helicity, shows that dichorism is a phenomenon arising in any scattering-or diffraction-process, elastic or not, of chiral electromagnetic fields by objects either chiral or achiral. It is shown how this approach paves the way to overcoming well-known limitations of standard circular dichroism, like its weak signal or the difficulties of using it with magnetodielectric particles. Based on the angular spectrum, representation of optical fields with only right circular or left circular plane waves, we introduce beams with transverse elliptic polarization and possessing a longitudinal component. Then, our formulation for general optical fields shows how to enhance the extinction rate of incident helicity (and therefore the dichroism signal) versus that of energy of the light scattered or emitted by a particle, or vice versa.This article is part of the themed issue 'New horizons for nanophotonics'.

  17. Zero-field dichroism in the solar chromosphere.

    PubMed

    Sainz, R Manso; Bueno, J Trujillo

    2003-09-12

    We explain the linear polarization of the Ca ii infrared triplet observed close to the edge of the solar disk. In particular, we demonstrate that the physical origin of the enigmatic polarizations of the 866.2 and 854.2 nm lines lies in the existence of atomic polarization in their metastable (2)D(3)(/2, 5/2) lower levels, which produces differential absorption of polarization components (dichroism). To this end, we have solved the problem of the generation and transfer of polarized radiation by taking fully into account all the relevant optical pumping mechanisms in multilevel atomic models. We argue that "zero-field" dichroism may be of great diagnostic value in astrophysics.

  18. Excitation dynamics in Phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory.

    PubMed

    Novoderezhkin, Vladimir I; Doust, Alexander B; Curutchet, Carles; Scholes, Gregory D; van Grondelle, Rienk

    2010-07-21

    We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex.

  19. The infrared dichroism of transmembrane helical polypeptides.

    PubMed Central

    Axelsen, P H; Kaufman, B K; McElhaney, R N; Lewis, R N

    1995-01-01

    Polarized attenuated total internal reflectance techniques were applied to study the infrared dichroism of the amide I transition moment in two membrane-bound peptides that are known to form oriented transmembrane helices: gramicidin A in a supported phospholipid monolayer and Ac-Lys2-Leu24-Lys2-amide (L24) in oriented multibilayers. These studies were performed to test the ability of these techniques to determine the orientation of these peptides, to verify the value of optical parameters used to calculate electric field strengths, to examine the common assumptions regarding the amide I transition moment orientation, and to ascertain the effect of surface imperfections on molecular disorder. The two peptides exhibit marked differences in the shape and frequency of their amide I absorption bands. Yet both peptides are highly ordered and oriented with their helical axes perpendicular to the membrane surface. In the alpha-helix formed by L24, there is evidence for a mode with type E1 symmetry contributing to amide I, and the amide I transition moment must be more closely aligned with the peptide C=O (< 34 degrees) than earlier studies have suggested. These results indicate that long-standing assumptions about the orientation of amide I in a peptide require some revision, but that in general, infrared spectroscopy yields reliable information about the orientation of membrane-bound helical peptides. Images FIGURE 1 PMID:8599683

  20. Dichroism measurements in forensic fibre examination. Part 2 - dyed polyamide, wool and silk fibres.

    PubMed

    De Wael, K; Vanden Driessche, T

    2011-12-01

    A number of dyed polyamide, wool and silk samples were examined with plane polarized light on their dichroic behavior by optical light microscopy (OLM) and microspectrophotometry with plane polarized light (MSP-PPL). It was found that most of these acid dyed peptidic fibres possess dichroism, but these are weaker than the effects previously described for polyester fibres. The small effects may be not observed, especially for wool, but these can be measured using MSP-PPL. In the three peptidic fibre classes, for the first time, a so called "inverse dichroism" is observed which appears in the absorption spectra as a hyperchromic effect.

  1. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  2. Spiral plasmonic nanoantennas as circular polarization transmission filters.

    PubMed

    Bachman, K A; Peltzer, J J; Flammer, P D; Furtak, T E; Collins, R T; Hollingsworth, R E

    2012-01-16

    We present simulation and experimental results for easily fabricated spiral plasmonic antenna analogues providing circular polarization selectivity. One circular polarization state is concentrated and transmitted through a subwavelength aperture, while the opposite circular state is blocked. The spectral bandwidth, efficiency, and extinction ratios are tunable through geometric parameters. Integration of such structures onto a focal plane array in conjunction with linear micropolarizers enables complete Stokes vector imaging, that, until now, has been difficult to achieve. An array of these structures forms a plasmonic metamaterial that exhibits high circular dichroism.

  3. Pulsed electric linear dichroism of triphenylmethane dyes adsorbed on montmorillonite K10 in aqueous media

    SciTech Connect

    Yamaoka, Kiwamu; Sasai, Ryo

    2000-05-01

    Electric linear dichroism (ELD) spectra of two cationic triphenylmethane dyes, crystal violet (CV) and malachite green (MG), bound to sodium montmorillonite K10 (MK-10) were studied at 20 C in aqueous media at two mixing ratios, D/S, of 0.10 and 0.24 in the 700- to 400 nm wavelength region and in the applied electric field strength range between 0 and 3 kV/cm. The specific parallel and perpendicular dichroism ({Delta}A{sub {parallel}}/A and {Delta}A{sub {perpendicular}}/A) spectra of dye-adsorbed MK-10 suspension were measured at a fixed field strength with an apparatus equipped with a 512-channel photodiode array detector. By changing the field strength over a wide range, a series of the reduced dichroism values of the bound dyes were measured at a fixed wavelength. By fitting these dichroism values to theoretical orientation functions, the intrinsic reduced dichroism ({Delta}A/A){sub int} spectra at the limiting high fields (ELD spectrum) were determined for CV and MG bound to MK-10. No appreciable difference was observed at the two D/S values. The ELD spectra of these bound dyes are undulatory but never constant, throughout their absorption region; thus, the dye plane does not lie flatly either on the surface or between layers of MK-10 particle.

  4. Measurement of dichroism in aligned molecules

    NASA Astrophysics Data System (ADS)

    Lavorel, B.; Babilotte, Ph.; Karras, G.; Billard, F.; Hertz, E.; Faucher, O.

    2016-10-01

    We present dichroism measurements in molecules prealigned with a short and intense laser pulse, using a balanced detection and a pump-probe scheme. The birefringence signal is recorded under the same irradiation conditions along with the dichroism one. Our results show that the dichroism signal is of comparable order of magnitude as the one originating from birefringence and reflects the degree of alignment. The balanced detection scheme directly provides an heterodyne signal for both birefringence and dichroism. Experiments are first conducted in air and then in pure nitrogen and carbon dioxide gases. A general approach allows us to explain the temporal shape of the dichroic response and to extract the imaginary part of the polarizability anisotropy. Furthermore, a simple model invoking the finite response time of the molecule to the probe excitation provides a complementary perspective. Using this model, the phase shift between the oscillations of the probe electric field and the induced polarization can be estimated. We find that the phase shift corresponds to a time delay of about 130 as (10-18s) in both molecules. Calculation of the energy flow between the probe field and the molecules taking into account the phase shift is compared to the experimental data.

  5. Flow dichroism in critical colloidal fluids

    SciTech Connect

    Lenstra, T. A. J.; Dhont, J. K. G.

    2001-06-01

    Due to long-range correlations and slow dynamics of concentration fluctuations in the vicinity of the gas-liquid critical point, shear flow is very effective in distorting the microstructure of near-critical fluids. The anisotropic nature of the shear-field renders the microstructure highly anisotropic, leading to dichroism. Experiments on the dichroic behavior can thus be used to test theoretical predictions on microstructural order under shear flow conditions. We performed both static and dynamic dichroism and turbidity measurements on a colloid-polymer mixture, existing of silica spheres (radius 51 nm) and polydimethylsiloxane polymer (molar weight 204 kg/mol). Sufficiently far away from the critical point, in the mean-field region, the experimental data are in good agreement with theory. Very close to the critical point, beyond mean field, for which no theory exists yet, an unexpected decrease of dichroism on approach of the critical point is observed. Moreover, we do not observe critical slowing down of shear-induced dichroism, right up to the critical point, in contrast to the turbidity.

  6. Measurements of axisymmetric temperature and H2O concentration distributions on a circular flat flame burner based on tunable diode laser absorption tomography

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; Liu, Jianguo; He, Yabai; Yang, Chenguang; Chen, Bing; Wei, Min; Yao, Lu; Zhang, Guangle

    2016-10-01

    In this paper, the reconstruction of axisymmetric temperature and H2O concentration distributions in a flat flame burner is realized by tunable diode laser absorption spectroscopy (TDLAS) and filtered back-projection (FBP) algorithm. Two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1) are selected as line pair for temperature measurement, and time division multiplexing technology is adopted to scan this two H2O absorption transitions simultaneously at 1 kHz repetition rate. In the experiment, FBP algorithm can be used for reconstructing axisymmetric distributions of flow field parameters with only single view parallel-beam TDLAS measurements, and the same data sets from the given parallel beam are used for other virtual projection angles and beams scattered between 0° and 180°. The real-time online measurements of projection data, i.e., integrated absorbance both for pre-selected transitions on CH4/air flat flame burner are realized by Voigt on-line fitting, and the fitting residuals are less than 0.2%. By analyzing the projection data from different views based on FBP algorithm, the distributions of temperature and concentration along radial direction can be known instantly. The results demonstrate that the system and the proposed innovative FBP algorithm are capable for accurate reconstruction of axisymmetric temperature and H2O concentration distribution in combustion systems and facilities.

  7. Dual circular polarization gaps in helix photonic metamaterials.

    PubMed

    Kao, Tzu-Hung; Chien, Lung-Yu Chang; Hung, Yu-Chueh

    2015-09-21

    Chiral structures exhibit strong interactions with circularly polarized light, and have been demonstrated to show many polarization-dependent properties. Various chiral structures exhibit some level of circular dichroism, where right-handed and left-handed circularly polarized waves experience different transmission. In this study, we use a dielectric helix array as a model system to examine the interactions of circularly polarized light with helical structures. Our results show that circular polarization band gaps can be formed in a dielectric helix array not only by light having the same handedness with the structure but also by light with the opposite handedness, resulting from additional chiral motifs induced by the arrangement of helices. Dual polarization band gaps can thus be tailored by varying the geometrical parameters, and circular-polarization dependent properties can be manipulated for optoelectronic devices and applications.

  8. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays

    NASA Astrophysics Data System (ADS)

    Sessoli, Roberta; Boulon, Marie-Emmanuelle; Caneschi, Andrea; Mannini, Matteo; Poggini, Lorenzo; Wilhelm, Fabrice; Rogalev, Andrei

    2015-01-01

    Magneto-chiral dichroism is a non-reciprocal--that is, directional--effect observed in magnetized chiral systems, featuring an unbalanced absorption of unpolarized light depending on the direction of the magnetization. Despite the fundamental interest in a phenomenon breaking both parity and time-reversal symmetries, magneto-chiral dichroism is one of the least investigated aspects of light-matter interaction most likely because of the weakness of the effect in most reported experiments. Here we have exploited the element selectivity of hard X-ray radiation to investigate the magneto-chiral properties of enantiopure crystals of two isostructural molecular helicoidal chains comprising either cobalt(II) or manganese(II) ions. A strong magneto-chiral dichroism, with Kuhn asymmetry of the order of a few per cent, has been observed in the cobalt chains system, whereas it is practically absent for the manganese derivative. The spectral features of the X-ray magneto-chiral dichroism signal differ significantly from the natural and magnetic dichroic contributions and have been rationalized here using the multipolar expansion of matter-radiation interaction.

  9. Investigation of magneto-induced linear dichroism of magnetic fluid.

    PubMed

    Du, Bobo; Yang, Dexing; Bai, Yang; Yuan, Yuan; Mao, Dong; Zhang, Wending; She, Xiaoyang

    2017-01-20

    A fiber-optic component is fabricated with etched fiber coated by magnetic fluid (MF) for its evanescent field to be modulated by the MF. The magneto-induced linear dichroism of the MF is investigated under different temperatures with the component. The experimental results show that the MF possesses weak linear dichroism (maximum of 2.37% at 25°C) caused by its sparse magneto-induced chains. Considering the relationships between the linear dichroisms and temperature, there is a transition point of magnetic field at ∼4  mT. Up to ∼4  mT, the linear dichroisms decrease with the temperature; however, for higher magnetic field strengths, the linear dichroisms increase with the temperature. Interestingly, a small initial linear dichroism (up to 0.255% at 5°C) without magnetic field is also observed.

  10. Probing excitation delocalization in supramolecular chiral stacks by means of circularly polarized light: experiment and modeling.

    PubMed

    Spano, Frank C; Meskers, Stefan C J; Hennebicq, Emanuelle; Beljonne, David

    2007-06-06

    Photoexcitations in helical aggregates of a functionalized, chiral oligophenylenevinylene (MOPV) are described going beyond the Born-Oppenheimer approximation, in the form of dressed (polaronic) Frenkel excitons. This allows for accurate modeling of the experimentally observed wavelength dependence of the circular polarization in fluorescence, which directly probes the non-adiabatic nature of the electron-vibration (EV) coupling in this system. The fluorescence photon is emitted from a nuclear geometry in which one MOPV and its two nearest neighbors have a nuclear equilibrium that differs appreciably from the ground state due to the presence of the excited state. The absorption and emission band shape and the circular dichroism are consistent with a coherence range of the emitting excitation of approximately two neighboring molecules. Random fluctuations in the zero-order excited-state energy of the MOPVs (disorder) limit the exciton delocalization and can be described by a Gaussian distribution of energies with a width sigma=0.12 eV and a spatial correlation length l0 approximately 5 molecules. We find that disorder and EV coupling act synergistically in localizing the emitting exciton to a single MOPV in the aggregate with 95% probability.

  11. Thermal behavior of long wavelength absorption transitions in Spirulina platensis photosystem I trimers.

    PubMed Central

    Cometta, A; Zucchelli, G; Karapetyan, N V; Engelmann, E; Garlaschi, F M; Jennings, R C

    2000-01-01

    In photosystem I trimers of Spirulina platensis a major long wavelength transition is irreversibly bleached by illumination with high-intensity white light. The photobleaching hole, identified by both absorption and circular dichroism spectroscopies, is interpreted as the inhomogeneously broadened Q(y) transition of a chlorophyll form that absorbs maximally near 709 nm at room temperature. Analysis of the mean square deviation of the photobleaching hole between 80 and 300 K, in the linear electron-phonon frame, indicates that the optical reorganization energy is 52 cm(-1), four times greater than that for the bulk, short-wavelength-absorbing chlorophylls, and the inhomogenous site distribution bandwidth is close to 150 cm(-1). The room temperature bandwidth, close to 18.5 nm, is dominated by thermal (homogeneous) broadening. Photobleaching induces correlated circular dichroism changes, of opposite sign, at 709 and 670 nm, which suggests that the long wavelength transition may be a low energy excitonic band, in agreement with its high reorganization energy. Clear identification of the 709-nm spectral form was used in developing a Gaussian description of the long wavelength absorption tail by analyzing the changing band shape during photobleaching using a global decomposition procedure. Additional absorption states near 720, 733, and 743 nm were thus identified. The lowest energy state at 743 nm is present in substoichiometric levels at room temperature and its presence was confirmed by fluorescence spectroscopy. This state displays an unusual increase in intensity upon lowering the temperature, which is successfully described by assuming the presence of low-lying, thermally populated states. PMID:11106627

  12. Voltage-controlled magnetic anisotropy in Fe|MgO tunnel junctions studied by x-ray absorption spectroscopy

    SciTech Connect

    Miwa, Shinji Matsuda, Kensho; Tanaka, Kazuhito; Goto, Minori; Suzuki, Yoshishige; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-10-19

    In this study, voltage-controlled magnetic anisotropy (VCMA) in Fe|MgO tunnel junctions was investigated via the magneto-optical Kerr effect, soft x-ray absorption spectroscopy, and magnetic circular dichroism spectroscopy. The Fe|MgO tunnel junctions showed enhanced perpendicular magnetic anisotropy under external negative voltage, which induced charge depletion at the Fe|MgO interface. Despite the application of voltages of opposite polarity, no trace of chemical reaction such as a redox reaction attributed to O{sup 2−} migration was detected in the x-ray absorption spectra of the Fe. The VCMA reported in the Fe|MgO-based magnetic tunnel junctions must therefore originate from phenomena associated with the purely electric effect, that is, surface electron doping and/or redistribution induced by an external electric field.

  13. Note: Derivation of two-photon circular dichroism—Addendum to “Two-photon circular dichroism” [J. Chem. Phys. 62, 1006 (1975)

    SciTech Connect

    Friese, Daniel H.

    2015-09-07

    This addendum shows the detailed derivation of the fundamental equations for two-photon circular dichroism which are given in a very condensed form in the original publication [I. Tinoco, J. Chem. Phys. 62, 1006 (1975)]. In addition, some minor errors are corrected and some of the derivations in the original publication are commented.

  14. Spin-induced polarizations and nonreciprocal directional dichroism of the room-temperature multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Fishman, Randy S.; Lee, Jun Hee; Bordács, Sándor; Kézsmárki, István; Nagel, Urmas; Rõõm, Toomas

    2015-09-01

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as nonreciprocal directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the nonreciprocal directional dichroism in BiFeO3 is dominated by the spin-current polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the nonreciprocal directional dichroism observed for magnetic field along [1 ,-1 ,0 ] . Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 behaves as a room-temperature optical diode at certain frequencies in the gigahertz to terahertz range. Our work demonstrates that an analysis of the nonreciprocal directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.

  15. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO3

    DOE PAGES

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; ...

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization andmore » is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less

  16. X-ray magnetic dichroism in (Zn,Mn)O diluted magnetic semiconductors: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Mazur, D. V.; Germash, L. P.

    2012-06-01

    The electronic structure of (Zn,Mn)O diluted magnetic semiconductors was investigated theoretically from first principles by using the fully-relativistic Dirac linear muffin-tin orbital band structure method with the local spin-density approximation (LSDA) and the LSDA+ U approach. The X-ray magnetic circular dichroism (XMCD) spectra at the Mn, Zn, and O K and Mn L 2,3 edges were investigated theoretically from first principles. The origin of the XMCD spectra in these compounds was examined. The effect of oxygen vacancy atoms was found to be crucial for the X-ray magnetic dichroism at the Mn L 2,3 edges. The calculated results are compared with available experimental data.

  17. Z-form DNA specific binding geometry of Zn(II) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin probed by linear dichroism spectroscopy.

    PubMed

    Gong, Lindan; Jang, Yoon Jung; Kim, Jinheung; Kim, Seog K

    2012-08-16

    Zn(II) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (ZnTMPyP) produced a unique linear dichroism (LD) spectrum when forming a complex with Z-form poly[d(G-C)(2)]. The spectrum was characterized by a large positive wavelength-dependent LD signal in the Soret absorption region. The magnitudes of LD in both the DNA and Soret band increased as the [porphyrin]/[DNA base] ratio increased and were larger by 20-40 times compared to the negative LD of the ZnTMPyP bound to B-form poly[d(G-C)(2)] and poly[d(A-T)(2)]. The angles calculated from LD were respectively 49° and 42° for B(x) and B(y) transitions of the porphyrin with respect to the local helix axis of Z-form poly[d(G-C)(2)]. The appearance of the unique LD spectrum for the Z-form poly[d(G-C)(2)] complex was accompanied by a bisignate circular dichroism spectrum in the Soret region, whose magnitude was proportional to the square of the porphyrin concentration, suggesting a stacking interaction between Z-form poly[d(G-C)(2)]-bound ZnTMPyP with other bound ZnTMPyP. From these observations, a conceivable binding mode of ZnTMPyP to Z-form poly[d(G-C)(2)] complex was proposed, in which ZnTMPyP binds at the major groove or across the groove. In contrast with Z-form poly[d(G-C)(2)], ZnTMPyP binds to poly[d(A-T)(2)] in a monomeric manner with the angles of 57° and 59° for the two porphyrin's transition moments with respect to the local polynucleotide helix axis. The polarized spectral properties of ZnTMPyP bound to B-form poly[d(G-C)(2)] coincide with the intercalated nonmetallic TMPyP, namely, a negative CD signal in the Soret band and a negative wavelength-dependent reduced LD signal, with a magnitude larger than that in the DNA absorption region in spite of its axial ligands.

  18. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  19. A magnetizing system for dichroism measurements in soft x-ray emission excited by synchrotron radiation

    SciTech Connect

    Dallera, C.; Ghiringhelli, G.; Braicovich, L.

    1996-02-01

    We present the design and performance of a magnetic circuit suitable for magnetizing solid samples in the measurements of soft x-ray emission dichroism excited by synchrotron radiation. The system allows a variety of samples to be magnetized and satisfies the rather stringent geometrical constraints due to the need for minimizing the effect of photon self-absorption by the sample. The magnetic circuit is ultrahigh vacuum compatible, can reach about 2800 G, and allows fine adjustment of sample position. {copyright} {ital 1996 American Institute of Physics.}

  20. Dichroism measurements in forensic fibre examination Part 1--Dyed polyester fibres.

    PubMed

    De Wael, K; Vanden Driessche, T

    2011-06-01

    One hundred and twenty dyed polyester samples were examined with plane polarized light on their dichroic behaviour by optical light microscopy (OLM) and microspectrophotometry in the visible range (MSP Vis). It was found that most of these disperse dyed polyester fibres possess a strong dichroism, which fall into two broad categories. Either a decrease of intensity (hypochromic effect) or a change of hue (hypsochromic or bathochromic shift of absorption bands) is noted. These dichroic effects are related to the orientation of the dye structure with respect to the polymer chains.

  1. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  2. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments.

    PubMed Central

    Parrado, J.; Conejero-Lara, F.; Smith, R. A.; Marshall, J. M.; Ponting, C. P.; Dobson, C. M.

    1996-01-01

    Streptococcus equisimilis streptokinase (SK) is a bacterial protein of unknown tertiary structure and domain organization that is used extensively to treat acute myocardial infarction following coronary thrombosis. Six fragments of SK were generated by limited proteolysis with chymotrypsin and purified. NMR and CD experiments have shown that the secondary and tertiary structure present in the native molecule is preserved within all fragments, except the N-terminal fragment SK7. NMR spectra demonstrate the presence in SK of three structurally autonomous domains and a less structured C-terminal "tail." Cleavage within the N-terminal domain generates an N-terminal fragment, SK7, which remains noncovalently associated with the remainder of the molecule; in isolation, SK7 adopts an unfolded conformation. The abilities of these fragments to induce active site formation within human plasminogen upon formation of their heterodimeric complex were assayed. The lowest mass SK fragment exhibiting Plg-dependent activator activity was shown to be SK27 (mass 27,000, residues 147-380), which contains both central and C-terminal domains, although this activity was reduced approximately 6,000-fold relative to that of full-length SK. The activity of a 36,000 mass fragment, SK36 (residues 64-380), which differs from SK27 in possessing a portion of the N-terminal domain, was reduced to 0.1-1.0% of that of SK. Other fragments (masses 7,000, 11,000, 16,000, 17,000, 25,000, and 26,000), representing either single domains or single domains extended by portions of other domains, were inactive. However, SK7 (residues 1-63), at a 100-fold molar excess concentration, greatly potentiated the activities of SK27 and SK36, by up to 50- and > 130-fold, respectively. These findings demonstrate that all of SK's three domains are essential for native-like SK activity. The central and C-terminal domains mediate plasminogen-binding and active site-generating functions, whereas the N-terminal domain mediates an activity-potentiating function. PMID:8845759

  3. Rapid chemical synthesis and circular dichroism properties of some 2'-5'-linked oligoriboadenylates.

    PubMed Central

    Markham, A F; Porter, R A; Gait, M J; Sheppard, R C; Kerr, I M

    1979-01-01

    Specific synthesis of some oligoadenylates including A2'p5'A2'p5'Ap(2'), the 2'-phosphorylated oligoribonucleotide core of the recently discovered protein synthesis inhibitor pppA2'p5'A2'p5'A is described using a novel solid-phase method. The CD spectra of A2'p5'Ap(2'), A2'p5'A2'p5'Ap(2') and A2'p5'A2'p5'A (derived by treatment of the phosphorylated synthetic trimer with E. coli alkaline phosphatase) are presented. Comparison of the latter spectrum with that of A2'p5'A2'p5'A obtained similarly from a biologically derived sample of pppA2'p5'A2'p5'A provides further evidence that this molecule is in fact the first naturally-occurring 2'-5'-linked oligoribonucleotide. PMID:379823

  4. Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of absolute configuration (AC) is one of the most challenging features in the structure elucidation of chiral natural products, especially those with complex structures. With revolutionary advancements in the area of quantum chemical calculations of chiroptical spectroscopy over the pa...

  5. The search for circular dichroism in high-Tc superconductors (abstract)

    NASA Astrophysics Data System (ADS)

    Lyons, K. B.; Kwo, J.; Dillon, J. F., Jr.; Espinosa, G. P.; McGlashan-Powell, M.; Ramirez, A. P.; Schneemeyer, L. F.

    1991-04-01

    Stimulated by recent predictions of broken time reversal symmetry in cuprate superconductors, we have carried out a study of the polar Kerr ellipticity (the ellipticity of normally reflected light with the incident beam linearly polarized) for various cuprate materials, both superconducting and nonsuperconducting. The technique used employs a rotating half-wave retardation plate in order to discriminate against linear polarization effects. The results reveal a signature of a nonzero polar Kerr ellipticity which appears on cooling near 200 K in a variety of superconducting materials, and which is not observed in the corresponding insulating compounds. In this talk, in addition to summarizing these results, we plan to discuss the measurement technique itself in some detail. Measurements on both thin films and bulk samples will be discussed, together with a variety of tests on unrelated materials, which serve to eliminate various possible experimental artifacts.

  6. Towards the Limits of Vibrational Circular Dichroism Spectroscopy: VCD Spectra of Some Alkyl Vinylethers.

    PubMed

    Zinna, Francesco; Pescitelli, Gennaro

    2016-02-01

    Three alkyl vinylethers from our collection of chiral samples were investigated through VCD spectroscopy, in combination with Density Functional Theory (DFT) calculations. Despite the simplicity of the compounds, reproducing all the spectral features is an involved task, since the many significantly populated conformers contribute to the total VCD spectrum with bands which often have opposite signatures. Nevertheless, we show that certain bands can be satisfactorily reproduced by calculation and therefore they may be employed for the determination of absolute configuration in these and similar compounds, for which no simple alternative method is available.

  7. Theoretical Prediction of Vibrational Circular Dichroism of Hexoses in Linear Form

    DTIC Science & Technology

    1992-06-01

    A . L . Lehninger , Biochemistry, Worth Publishers, New...IL)p I *G(/f)>]g (6) N 0 =Zke8p (7) = <( a *CIiGQ)/aX..) L I (a8*G(FZ,,HO)/aHP)H..O> (8) 10\\0 -(i /4hc)7,Xp.,(Zke)Rj. (9) where A = the nuclear geometry...J. Chem. Phys. 90, 3204-13 (1989). 8. P. L . Polavarapu, B. A . Hess, Jr., L . J. Schaad, D. 0. Henderson, L . P. Fontana, H. E. Smith, L . A . Nafie, T.

  8. On the existence of Jones birefringence and Jones dichroism.

    PubMed

    Arteaga, Oriol

    2010-05-01

    We claim that the so-called Jones birefringence and Jones dichroism effects, understood as new optical phenomena of difficult experimental observation, cannot be deduced from Jones publications and were proposed due to a misinterpretation of his original work.

  9. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGES

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  10. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  11. Home Sewage Disposal. Special Circular 212.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Site requirements, characteristics and preparation are outlined for a variety of alternatives such as elevated sand mounds, sand-lined beds and trenches, and oversized absorption area. Diagrams indicating construction…

  12. Broadening and shifting of the methanol 119 {mu}m gain line of linear and circular polarization by collision with chiral molecules

    SciTech Connect

    J.S. Bakos; G. Djotyan; Zsuzsa Soerlei; J. Szigeti; D. K. Mansfield; J. Sarkozi

    2000-06-21

    Evidence of circular dichroism has been observed in the spectral properties of a gas of left-right symmetric molecules. This dichroism comes about as the result of collisions of the symmetric molecules with left-right asymmetric molecules introduced as a buffer gas. In this sense, the dichroism can be said to have been transferred from the chiral buffer molecules to the symmetric, non-chiral molecules of the background vapor. This transferred dichroism appears as broadening in the gain line of the symmetric molecule which is asymmetric with respect to the right or left handedness of a circularly polarized probe. The broadening of the 119 {mu}m line of the methanol molecule was observed using infrared-far infrared double resonance spectroscopy.

  13. Mn l3,2 x-ray absorption spectroscopy and magnetic circulardichroism in ferromagnetic ga1-xmnxp

    SciTech Connect

    Stone, P.R.; Scarpulla, M.A.; Farshchi, R.; Sharp, I.D.; Beeman,J.W.; Yu, K.M.; Arenholz, E.; Denlinger, J.; Haller, E.E.; Dubon, O.D.

    2007-07-26

    We have measured the X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edges in ferromagnetic Ga{sub 1-x}Mn{sub x}P films for 0.018 {le} x {le} 0.042. Large XMCD asymmetries at the L{sub 3} edge indicate significant spin-polarization of the density of states at the Fermi energy. The spectral shapes of the XAS and XMCD are nearly identical with those for Ga{sub 1-x}Mn{sub x}As indicating that the hybridization of Mn d states and anion p states is similar in the two materials. Finally, compensation with sulfur donors not only lowers the ferromagnetic Curie temperature but also reduces the spin polarization of the hole states.

  14. Linear dichroism, produced by thermo-electric alignment of silver nanoparticles on the surface of ion-exchanged glass

    NASA Astrophysics Data System (ADS)

    Nahal, Arashmid; Shapoori, Kiyanoosh

    2009-06-01

    A heated Ag +-doped glass is subjected to an external constant uniform electric field ( Eo > 250 V/cm) parallel to its surface. Absorption spectra studies by linear polarized light imply the induction of a linear dichroism in the samples, after the above-mentioned thermo-electrical process. It is found that the increase in the temperature (400 °C ≤ T ≤ 600 °C), results in the formation of neutral silver multimers and clusters on the samples. Dichroism is the result of simultaneous application of the steady uniform electric field and heating. That is, the process aligns the produced silver nanoparticles along the applied electric field ( Eo) during the aggregation of silver nano-clusters via dipole-dipole interaction, leading to the formation of chain-like conductive structures.

  15. [Circular migration in Indonesia].

    PubMed

    Mantra, I B

    1979-12-01

    The author examines circular migration in Indonesia, with primary focus on the 1970s. It is found that circular, or repeated return migration, generally occurs over short distances and for short periods and is more frequent than lifetime migration. The relationships between improvements in the national transport system, access to labor force opportunities in both the formal and informal sectors of the economy, and circular migration are discussed.

  16. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-ray

    PubMed Central

    Sessoli, Roberta; Boulon, Marie-Emmanuelle; Caneschi, Andrea; Mannini, Matteo; Poggini, Lorenzo; Wilhelm, Fabrice; Rogalev, Andrei

    2014-01-01

    Magneto-chiral dichroism (MχD) is a non-reciprocal, i. e. directional, effect observed in magnetised chiral systems featuring an unbalanced absorption of unpolarised light depending on the direction of the magnetisation. Despite the fundamental interest in a phenomenon breaking both parity and time reversal symmetries, MχD is one of the least investigated aspects of light-matter interaction because of the weakness of the effect in most reported experiments. Here we have exploited the element selectivity of hard X-ray radiation to investigate the magneto-chiral properties of enentiopure crsytals of two isostructural molecular helicoidal chains comprising Cobalt(II) and Manganese (II) ions, respectively. A strong magneto-chiral dichroism, with Kuhn asymmetry of the order of a few percent, has been observed in the Cobalt chain system, while it is practically absent for the Manganese derivative. The spectral features of the XMχD signal differ significantly from the natural and magnetic dichroic contributions and have been here rationalized using the simple multipolar expansion of matter-radiation interaction. PMID:25729401

  17. Magneto-chiral dichroism measurements using a pulsed electromagnet

    NASA Astrophysics Data System (ADS)

    Hattori, Shingo; Yamamoto, Yusuke; Miyatake, Tomohiro; Ishii, Kazuyuki

    2017-04-01

    A system for measuring magneto-chiral dichroism (MChD) under strong magnetic fields using a pulsed electromagnet was constructed. We succeeded in observing a relatively intense MChD signal for chiral J-aggregates of a zinc chlorin at 5 T using this measurement system. This study will be useful for observing weak MChD signals of various organic molecules.

  18. Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi2Sr2CaCu2O8+δ superconductor

    DOE PAGES

    He, Junfeng; Mion, Thomas R.; Gao, Shang; ...

    2016-10-31

    Unraveling the nature of pseudogap phase in high-temperature superconductors holds the key to understanding their superconducting mechanisms and potentially broadening their applications via enhancement of their superconducting transition temperatures. Angle-resolved photoemission spectroscopy (ARPES) experiments using circularly polarized light have been proposed to detect possible symmetry breaking state in the pseudogap phase of cuprates. Here, the presence (absence) of an electronic order which breaks mirror symmetry of the crystal would in principle induce a finite (zero) circular dichroism in photoemission. Different orders breaking reflection symmetries about different mirror planes can also be distinguished by the momentum dependence of the measured circularmore » dichroism.« less

  19. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO3

    SciTech Connect

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; Kezsmarki, Istvan; Nagel, Urmas; Room, Toomas

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.

  20. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32

    PubMed Central

    Kummer, K.; Fondacaro, A.; Jimenez, E.; Velez-Fort, E.; Amorese, A.; Aspbury, M.; Yakhou-Harris, F.; van der Linden, P.; Brookes, N. B.

    2016-01-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  1. Transition-moment directions of selected carbocyanines from emission anisotropy and linear dichroism measurements in uniaxially stretched polymer films

    NASA Astrophysics Data System (ADS)

    Synak, Anna; Bojarski, Piotr

    2005-12-01

    Based on the Kawski-Gryczyński method the values of angle between absorption and fluorescence transition moments of carbocyanines are given. This method is applied to the linear molecules: 3,3'-diethylthiacyanine iodide (DTTHCI), diethyloxacarbocyanine iodide (DOCI), 3,3'-diethyl-9-methylthiacarbocyanine iodide (MDTCI), diethylthiacarbocyanine iodide (DTCI) and 3,3'-diethyloxadicarbocyanine iodide (DODCI). Similarly located transition moments polarized approximately along the long axis of DTTHCI, DOCI, MDTCI, DTCI and DODCI are responsible for absorption and fluorescence ( β ⩽ 10°), when exciting in the long wavelength absorption band. The results are compared with relevant data obtained from linear dichroism measurements, energy migration data in partly ordered films and general Perrin formula.

  2. Electronic states of the fluorophore 9,10-bis(phenylethynyl)anthracene (BPEA). A synchrotron radiation linear dichroism investigation

    NASA Astrophysics Data System (ADS)

    Thulstrup, Peter W.; Jones, Nykola C.; Hoffmann, Søren V.; Spanget-Larsen, Jens

    2013-02-01

    The electronic transitions of 9,10-bis(phenylethynyl)anthracene (BPEA) were investigated by synchrotron radiation linear dichroism (SRLD) spectroscopy in the range 20 000-58 000 cm-1 (500-170 nm) on molecular samples aligned in stretched polyethylene. The investigation was supported by variable temperature spectroscopy and by quantum chemical calculations in the LCOAO and TD-DFT models. The combined experimental and theoretical evidence leads to characterization of several previously unobserved transitions and provides a revised polarization analysis of the visible absorption band of BPEA.

  3. Applications of circularly polarized photons at the ALS with a bend magnet source

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High {Tc} Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements.

  4. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    DTIC Science & Technology

    2014-12-08

    element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal...investigating chirality -sensitive light–matter inter- actions. It enables studies of chiral molecules using photoelectron circular dichroism1, ultrafast...of the significantly suppressed 3m harmonics is also chiral , with the same helicity as the 3m + 1 harmonics. This observation agrees with the

  5. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  6. Circular Intensity Differential Scattering of chiral molecules

    SciTech Connect

    Bustamante, C.J.

    1980-12-01

    In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.

  7. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL.

    PubMed

    Nahon, Laurent; de Oliveira, Nelson; Garcia, Gustavo A; Gil, Jean-François; Pilette, Bertrand; Marcouillé, Olivier; Lagarde, Bruno; Polack, François

    2012-07-01

    DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1

  8. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  9. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  10. Compact waveguide circular polarizer

    SciTech Connect

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  11. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-10-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits.

  12. Enhanced insulin absorption from sublingual microemulsions: effect of permeation enhancers.

    PubMed

    Patil, Nilam H; Devarajan, Padma V

    2014-12-01

    Microemulsions of insulin (50 IU/mL) comprising permeation enhancers were formulated for sublingual delivery. Circular dichroism (CD) spectra indicated conformational stability, while chemical stability was confirmed by high-performance liquid chromatography (HPLC). CD spectra of insulin in combination with permeation enhancers revealed attenuation of molar ellipticity at 274 nm in the order TCTP > TC-AOT > TC > TC-NMT > Sol P > insulin solution. The molar ellipticity ratios at 208/222 nm confirmed dissociation of insulin in the microemulsions with the same rank order. Matrix-assisted laser diffraction ionization mass spectra (MALDI) revealed a significant shift in intensity signals towards monomer and dimers with a substantially high ratio of monomers, especially in the presence of the TCTP and TC-AOT. Permeation through porcine sublingual mucosa correlated with the dissociation data. A high correlation between the ratio of molar ellipticity at 208/222 nm and serum glucose levels (r (2) > 0.958) and serum insulin levels (r (2) > 0.952) strongly suggests the role of dissociation of insulin on enhanced absorption. While all microemulsions revealed a reduction in serum glucose levels and increase in serum insulin levels, significant differences were observed with the TCTP and TC-AOT microemulsions. High pharmacological availability >60 % and bioavailability >55 % compared to subcutaneous insulin at a low dose of 2 IU/kg appears highly promising. The data clearly suggests the additional role of the permeation enhancers on dissociation of insulin on enhanced sublingual absorption from the microemulsions.

  13. Circular Fibonacci gratings.

    PubMed

    Gao, Nan; Zhang, Yuchao; Xie, Changqing

    2011-11-01

    We introduce circular Fibonacci gratings (CFGs) that combine the concept of circular gratings and Fibonacci structures. Theoretical analysis shows that the diffraction pattern of CFGs is composed of fractal distributions of impulse rings. Numerical simulations are performed with two-dimensional fast Fourier transform to reveal the fractal behavior of the diffraction rings. Experimental results are also presented and agree well with the numerical results. The fractal nature of the diffraction field should be of great theoretical interest, and shows potential to be further developed into practical applications, such as in laser measurement with wideband illumination.

  14. Macroorganization of Chlorophyll a/b light-harvesting complex in thylakoids and aggregates: information from circular differential scattering

    SciTech Connect

    Garab, G.; Faludi-Daniel, A.; Sutherland, J.C.; Hind, G.

    1988-04-05

    Circular dichroism (CD) and magnetic circular dichroism (MCD) spectra were recorded for spinach thylakoids and for isolated, aggregated chlorophyll a/b light-harvesting pigment-protein complex, in random and magnetically aligned states of orientation at room and low temperatures. The shape and magnitude of the CD signal of most bands strongly depended on the orientation of the thylakoid membranes or the aggregated pigment-protein complex. In both thylakoids and aggregated light-harvesting complexes, however, the MCD spectra of the two different orientations were almost identical. Random and magnetically aligned samples exhibited anomalous, large CD signals outside the bands of pigment absorbance. Lack of similarity between the corresponding MCD and CD spectra showed that the large CD signals are not produced as a distortion of CD of absorbance by light scattering. Instead, these anomalous spectral features are believed to originate in differential selective scattering of circularly polarized light. The results lead to the conclusion that the light-harvesting pigment-protein complex in thylakoid grana forms a helical macroarray with dimensions commensurate with the wavelengths of the anomalous circular dichroism signals. A hypothesis is put forward suggesting a role for these macrodomains in granal organization.

  15. Non-reciprocal directional dichroism in the AFM phase of BiFeO3 at THz frequencies

    NASA Astrophysics Data System (ADS)

    Nagel, Urmas; Rõõm, T.; Farkas, D.; Szaller, D.; Bordács, S.; Kézsmárki, I.; Engelkamp, H.; Ozaki, Y.; Tomiaki, Y.; Ito, T.; Fishman, Randy S.

    We did THz absorption spectroscopy of BiFeO3 single crystals in the AFM phase, where the spin cycloid is destroyed in magnetic fields between 18 T and 32 T in Voigt geometry at 1.6 K. If B0 ∥ [ 1 1 0 ] , we see strong directional dichroism (DD) of absorption of the magnon mode with light propagating along the direction of the ferroelectric polarization k ∥ P ∥ [ 111 ] and eω ∥ [ 1 1 0 ] , bω ∥ [ 1 1 2 ] . The sign of DD can be reversed (i) by reversing the direction of B0 or (ii) by flipping the sample, thus reversing the propagation direction of light. The observed effect is caused by the strong magneto-electric coupling in the collinear AFM phase. Research sponsored by the Estonian Ministry of Education and Research (IUT23-3).

  16. Steady-state and transient polarized absorption spectroscopy of photosystem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus.

    PubMed

    Schlodder, Eberhard; Shubin, Vladimir V; El-Mohsnawy, Eithar; Roegner, Matthias; Karapetyan, Navassard V

    2007-06-01

    Core antenna and reaction centre of photosystem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(-), 683-685(-), 696-697(-), and 711(-) nm are a common feature of used PSI complexes. The 77 K CD spectra of the trimeric PS I complexes exhibit also low amplitude components around 736 nm for A. platensis and 720 nm for T. elongatus attributed to red-most chlorophylls. The LD measurements indicate that the transition dipole moments of the red-most states are oriented parallel to the membrane plane. The formation of P700(+)A(1)(-) or (3)P700 was monitored by time-resolved difference absorbance and LD spectroscopy to elucidate the spectral properties of the PS I reaction centre. The difference spectra give strong evidence for the delocalization of the excited singlet states in the reaction centre. Therefore, P700 cannot be considered as a dimer but should be regarded as a multimer of the six nearly equally coupled reaction centre chlorophylls in accordance with structure-based calculations. On the basis of the results presented in this work and earlier work in the literature it is concluded that the triplet state is localized most likely on P(A), whereas the cation is localized most likely on P(B).

  17. Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi2Sr2CaCu2O8+δ superconductor

    SciTech Connect

    He, Junfeng; Mion, Thomas R.; Gao, Shang; Myers, Gavin T.; Arita, Masashi; Shimada, Kenya; Gu, G. D.; He, Rui -Hua

    2016-10-31

    Unraveling the nature of pseudogap phase in high-temperature superconductors holds the key to understanding their superconducting mechanisms and potentially broadening their applications via enhancement of their superconducting transition temperatures. Angle-resolved photoemission spectroscopy (ARPES) experiments using circularly polarized light have been proposed to detect possible symmetry breaking state in the pseudogap phase of cuprates. Here, the presence (absence) of an electronic order which breaks mirror symmetry of the crystal would in principle induce a finite (zero) circular dichroism in photoemission. Different orders breaking reflection symmetries about different mirror planes can also be distinguished by the momentum dependence of the measured circular dichroism.

  18. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  19. Wiimote Experiments: Circular Motion

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-03-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.

  20. Copyright Basics. Circular 1.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. Copyright Office.

    This circular answers some of the questions that are frequently asked about copyright, a form of protection provided by the laws of the United States to authors of "original works of authorship" including library, dramatic musical, artistic, and certain other intellectual works. The Copyright Act of 1976 (title 17 of the United States…