Science.gov

Sample records for absorption coefficient decreases

  1. Linear and nonlinear optical absorption coefficients of spherical dome shells

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Liu, Guanghui; Huang, Lu; Zheng, Xianyi

    2015-08-01

    Linear and nonlinear optical absorption coefficients of spherical dome shells are theoretically investigated within analytical wave functions and numerical quantized energy levels. Our results show that the inner radius, the outer radius and the cut-off angle of spherical dome shells have great influences on linear and nonlinear optical absorption coefficients as well as the total optical absorption coefficients. It is found that with the increase of the inner radius and the outer radius, linear and nonlinear optical absorption coefficients exhibit a blueshift and a redshift, respectively. However, with the increase of the cut-off angle, linear and nonlinear optical absorption coefficients do not shift. Besides, the resonant peaks of linear and nonlinear optical absorption coefficients climb up and then decrease with increasing the cut-off angle. The influences of the incident optical intensity on the total optical absorption coefficients are studied. It is found that the bleaching effect occurs at higher incident optical intensity.

  2. Radiometer gives true absorption and emission coefficients

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1977-01-01

    Novel radiometer, unaffected by scattering and polarization, measures true absorption and emmission coefficients for arbitrary mixture of gases and polluting particles. It has potential astronomical, meteorological, and environmental applications, such as determination of radiative heat budget, aerosol relative concentration, and morphology of cloud, haze, and fog formations. Data and temperature can be coupled directly to small computer for online calculation of radiation coefficients.

  3. Determination of absorption coefficients of thin films

    SciTech Connect

    Lodenquai, J.F. )

    1994-08-01

    The equations that are usually presented as those used to determine the absorption coefficients of materials in film form based on measurements of transmission and reflection coefficients are fundamentally incorrect. These equations omit a multiplicative factor arising from the complex nature of the refractive indices of the materials. This factor enters explicitly into the relationship between the transmission and reflection coefficients for such materials and is not necessarily close to unity, although in practice this factor can be approximated by unity at least in the infrared through the optical range of wavelengths.

  4. Inversion of instantaneous equivalent absorption coefficient and its application

    SciTech Connect

    Weihua, W. )

    1992-01-01

    Absorption coefficient is an important parameter for reservoir description. The major troubles in extracting absorption coefficient from seismic data are amplitude and waveform distortions; they greatly restrict the inversion which is based on reflection amplitude variation or reflection frequency variation. This paper presents a new method which avoids amplitude and uses waveform variation gradient in wave propagation to make the inversion of absorption coefficient. Apparent absorption coefficient and pseudo absorption coefficient are adopted so as to remove the influence which the waveform distortion due to thin bed tuning brings to absorption coefficient extraction. The final instantaneous equivalent absorption coefficient, a true absorption coefficient which reflects real absorptive character of a seismic medium, can be obtained by subtracting the pseudo absorption coefficient (inversely calculated using maximum entropy) from the apparent absorption coefficient the authors have calculated.

  5. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  6. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  7. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  8. Effect of applied mechanical stress on absorption coefficient of compounds

    NASA Astrophysics Data System (ADS)

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-01

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al2O3, CaCO3, ZnO2, SmO2 and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  9. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  10. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  11. Oxalic acid decreases calcium absorption in rats

    SciTech Connect

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-11-01

    Calcium absorption from salts and foods intrinsically labeled with /sup 45/Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO/sub 3/ and CaCl/sub 2/ than from CaC/sub 2/O/sub 4/ (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach.

  12. [Influencing factors in measuring absorption coefficient of suspended particulate matters].

    PubMed

    Yu, Xiao-long; Shen, Fang; Zhang, Jin-fang

    2013-05-01

    Absorption coefficient of suspended particulate matters in natural water is one of the key parameters in ocean color remote sensing. In order to study the influencing factors that affect the measurement, a series of experiments were designed to measure samples using transmittance method (T method), transmittance-reflectance method (T-R method) and absorptance method (A method). The results shows that absorption coefficient measured by the A method has a much lower error compared to the T method and T-R method due to influencing factors,such as filter-to-filter variations, water content of the filter, and homogeneity of filter load and so on. Another factor influence absorption coefficient is path-length amplification induced by multiple scattering inside the filter. To determine the path-length amplification, the true absorption was measured by AC-s (WetLabs). The linear fitting result shows that the mean path-length amplification is much higher for the A method than that of the T-R method and the T method (4.01 versus 2.20 and 2.32), and the corresponding correlation coefficient are 0.90, 0.87 and 0.80. For the A method and the T-R method, higher correlation coefficients are calculated when using polynomial fitting, and the value are 0.95 and 0.94. Analysis of the mean relative error caused by different influencing factors indicates that path-length amplification is the largest error source in measuring the absorption coefficient. PMID:23914523

  13. Absorption coefficients of a hydrogen plasma for laser radiation

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The formalism for the calculation of the absorption of radiation by a hydrogen plasma at common laboratory conditions is summarized. The hydrogen plasma absorption coefficient for laser radiation has been computed for a wide range of electron densities and temperatures (10,000-40,000 K). The results of this computation are presented in a graphical form that permits a determination of the absorption coefficient for the following laser wavelengths: 0.176, 0.325, 0.337, 0.442, 0.488, 0.515, 0.633, 0.694, 1.06, 1.15, 2.36, 3.39, 5.40 and 10.6 microns. The application of these results and laser radiation absorption measurements to plasma diagnostics is discussed briefly.

  14. Trigonometric Pade approximants for functions with regularly decreasing Fourier coefficients

    SciTech Connect

    Labych, Yuliya A; Starovoitov, Alexander P

    2009-08-31

    Sufficient conditions describing the regular decrease of the coefficients of a Fourier series f(x)=a{sub 0}/2 + {sigma} a{sub n} cos kx are found which ensure that the trigonometric Pade approximants {pi}{sup t}{sub n,m}(x;f) converge to the function f in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.

  15. Scattering and absorption coefficients of silica-doped alumina aerogels.

    PubMed

    Fu, Tairan; Tang, Jiaqi; Chen, Kai; Zhang, Fan

    2016-02-01

    Alumina-based aerogels are especially useful in many applications due to their excellent stability at high temperatures. This study experimentally analyzed the radiative properties of silica-doped alumina aerogels through spectral directional-hemispherical measurements for wavelengths of 0.38-25 μm. The silica-doped alumina aerogel samples were prepared with a 1.4∶1 molar ratio of silica to alumina. A two-flux model was used to describe the radiation propagation in a 1D scattering absorbing sample to derive expressions for the normal-hemispherical transmittances and reflectances based on the transport approximation. The normal-hemispherical transmittances and reflectances were measured at various spectral wavelengths and sample thicknesses using the integrating sphere method. The spectral absorption and transport scattering coefficients of silica-doped alumina aerogels were then determined from the measured normal-hemispherical data. The absorption and transport scattering coefficients of silica-doped alumina aerogels are (0.1  cm-1, 36  cm-1) and (0.1  cm-1, 112  cm-1) for wavelengths of 0.38-8.0 μm. The spectral transport scattering coefficient varies in the opposite direction from the spectral absorption coefficient for various wavelengths. The radiative properties for silica and alumina aerogels were quite different for the absorption coefficient for wavelengths of 2.5-8.0 μm and for the transport scattering coefficient for wavelengths of 0.38-2.5 and 3.5-6.0 μm. The measured radiative properties were used to predict the spectral normal-hemispherical reflectance and transmittance of the silica-doped alumina aerogels for various sample thicknesses and wavelengths. The predicted values do not change for the sample thicknesses greater than a critical value. The analysis provides valuable reference data for alumina aerogels for high-temperature applications. PMID:26836071

  16. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Jiang, Huabei

    2013-02-01

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data—up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  17. Absorption-coefficient-determination method for particulate materials.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1994-07-01

    A method is presented for determining the optical absorption coefficient, or the imaginary refractive index, of particulate material that has been collected from aerosols or hydrosols by means of filtration. The method, based on the Kubelka-Munk theory of diffuse reflectance, is nondestructive and requires no other knowledge of the sample than the amount present, the specific gravity, and an estimate of the real index of refraction. The theoretical development of the method is discussed along with an analysis of photometric and gravimetric errors. We test the method by comparing results obtained for powdered didymium glass with measurements made before the glass was crushed. An example of the method's application to the determination of the absorption coefficient of atmospheric dust at UV, visible, and near-IR wavelengths is also presented. PMID:20935789

  18. A high absorption coefficient DL-MPP imitating owl skin

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Zhao, Zhan; Kong, Deyi; Wu, Shaohua; Du, Lidong; Fang, Zhen

    2012-11-01

    This paper proposes a high absorption coefficient micro-perforated panel (MPP) imitating owl skin structure for acoustic noise reduction. Compared to the traditional micro-perforated panel, this device has two unique characteristics-simulating the owl skin structure, its radius of perforated apertures even can be as small as 55μ, and its material is silicon and fabricated by micro-electrical mechanical system (MEMS) technology; So that its absorption coefficients of acoustic noise for normal incidence sound wave whose frequencies arrange from 1.5 kHz to 6.0 kHz are all above 0.8 which is the owl's hunts sensitivity frequency band. Double leaf MPP fabricated by MEMS technology is an absolutely bionic success in functional-imitation.

  19. Optimization of the acoustic absorption coefficients of certain functional absorbents

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  20. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  1. Photosensitizer absorption coefficient modeling and necrosis prediction during Photodynamic Therapy.

    PubMed

    Salas-García, Irene; Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2012-09-01

    The development of accurate predictive models for Photodynamic Therapy (PDT) has emerged as a valuable tool to adjust the current therapy dosimetry to get an optimal treatment response, and definitely to establish new personal protocols. Several attempts have been made in this way, although the influence of the photosensitizer depletion on the optical parameters has not been taken into account so far. We present a first approach to predict the spatio-temporal variation of the photosensitizer absorption coefficient during PDT applied to dermatological diseases, taking into account the photobleaching of a topical photosensitizer. This permits us to obtain the photons density absorbed by the photosensitizer molecules as the treatment progresses and to determine necrosis maps to estimate the short term therapeutic effects in the target tissue. The model presented also takes into account an inhomogeneous initial photosensitizer distribution, light propagation in biological media and the evolution of the molecular concentrations of different components involved in the photochemical reactions. The obtained results allow to investigate how the photosensitizer depletion during the photochemical reactions affects light absorption by the photosensitizer molecules as the optical radiation propagates through the target tissue, and estimate the necrotic tumor area progression under different treatment conditions. PMID:22704663

  2. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  3. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient. PMID:25967770

  4. Absorption coefficient at 10.6 microm in CdTe modulator crystals.

    PubMed

    Tucker, A W; Birnbaum, M; Montes, H; Fincher, C L

    1982-08-15

    The bulk and surface absorption coefficients of CdTe modulator crystals at 10.6 microm were compared with those of single-crystal KC1 and NaCl which served to calibrate the laser calorimeter. High-resistivity (>10(7) ohm/cm) CdTe crystals exhibited a bulk absorption coefficient of 0.0014 cm(-1). PMID:20396150

  5. FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases - Implications for laser remote sensing

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Grant, W. B.

    1984-01-01

    The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

  6. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  7. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  8. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  9. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  10. Absorption of laser radiation in a H-He plasma. I - Theoretical calculation of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The theory for calculating the absorption of laser radiation by hydrogen is outlined for the temperatures and pressures of common laboratory plasmas. Nonhydrogenic corrections for determining the absorption by helium are also included. The coefficients for the absorption of He-Ne laser radiation at the wavelengths of 0.633, 1.15, and 3.39 microns in a H plasma is presented for temperatures in the range from 10,000 to 40,000 K and electron number densities in the range from 10 to the 15th power to 10 to the 18th power per cu cm. The total absorption of a H-He plasma calculated from this theory is compared with the measured absorption. The theoretical composition of the H-He absorption is analyzed with respect to the significant absorption processes, inverse bremsstrahlung, photoionization, resonance excitation, and photodetachment.

  11. Theoretical calculations of nonlinear refraction and absorption coefficients of doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2014-12-01

    In this study, we present the first theoretical predictions concerning the nonlinear refractive and absorptive properties of the doped graphene in which the Fermi energy {{E}F} of charge carriers (noninteracting massless Dirac fermions) is controlled by an external gate voltage. We base our study on the original perturbation theory technique developed by Genkin and Mednis (1968 Sov. Phys. JETP 27 609) for calculating the nonlinear-optical (NLO) response coefficients of bulk crystalline semiconductors with partially filled bands. Using a simple tight-binding model for the π-electron energy bands of graphene, we obtain analytic expressions for the nonlinear refractive index {{n}2}(ω ) and the nonlinear absorption coefficient {{α }2}(ω ) of the doped graphene at photon energies above twice the value of the Fermi energy (\\hbar ω \\gt 2{{E}F}). We show that in this spectral region, both the nonlinear refraction ant the nonlinear absorption are determined predominantly by the combined processes which simultaneously involve intraband and interband motion of π-electrons. Our calculations indicate that extremely large negative values of n2 (of the order of -{{10}-6} cm2 W-1) can be achieved in the graphene at a relatively low doping level (of about 1012 cm-2) provided that the excitation frequency slightly exceeds the threshold frequency corresponding to the onset of interband transitions. With a further increase of the radiation frequency, the {{n}2}(ω ) becomes positive and begins to decrease in its absolute magnitude. The peculiar frequency dispersion of n2 and a negative sign of the {{α }2} (absorption bleaching), as predicted by our theory, suggest that the doped graphene is a prospective NLO material to be used in practical optical switching applications.

  12. Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria

    NASA Astrophysics Data System (ADS)

    de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald

    2003-06-01

    We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.

  13. Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Emami, Farzin; Nozhat, Najmeh

    2014-07-01

    A new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nano bi-pyramids in order to achieve maximum absorption coefficient spectrum. In binary TLBO, a group of learners consisting of a matrix with binary entries controls the presence ('1') or the absence ('0') of nanoparticles in the array. Simulation results show that absorption coefficient strongly depends on the localized position of plasmonic nanoparticles. Non-periodic structures have more appropriate response in term of absorption coefficient. This approach is useful in optical applications such as solar cells and plasmonic nano antenna.

  14. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  15. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  16. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Neusüß, Christian; Wendisch, Manfred; Stratmann, Frank; Koziar, Christian; Keil, Andreas; Wiedensohler, Alfred; Ebert, Martin

    2002-11-01

    Comparisons between measured and calculated aerosol scattering, backscattering, and absorption coefficients were made based on in situ, ground-based measurements during the Melpitz INTensive (MINT) and Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) field studies. Furthermore, airborne measurements made with the same type of instruments are reviewed and compared with the ground-based measurements. Agreement between measured and calculated values is on the order of ±20% for scattering and backscattering coefficients. A sensitivity analysis showed a large influence on the calculated particle scattering and backscattering coefficients resulting from sizing uncertainties in the measured number size distributions. Measured absorption coefficients were significantly smaller than the corresponding calculated values. The largest uncertainty for the calculated absorption coefficients resulted from the size-dependent fraction of elemental carbon (EC) of the aerosol. A correction for the measured fractions of EC could significantly improve the agreement between measured and calculated absorption coefficients. The overall uncertainty of the calculated values was investigated with a Monte Carlo method by simultaneously and randomly varying the input parameters of the calculations, where the variation of each parameter was bounded by its uncertainty. The measurements were mostly found to be within the range of uncertainties of the calculations, with uncertainties for the calculated scattering and backscattering coefficients of about ±20% and for the absorption coefficients of about ±30%. Thus, to increase the accuracy of calculated scattering, backscattering, and absorption coefficients, it is crucial to further reduce the error in particle number size distribution measurement techniques. In addition, further improvement of the techniques for measuring absorption coefficients and further investigation of the measurement of the fraction of EC of the aerosol is

  17. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  18. Experimental measurements of the spectral absorption coefficient of pure fused silica optical fibers.

    PubMed

    Moore, Travis J; Jones, Matthew R

    2015-02-20

    Knowledge of the spectral absorption coefficient of fused silica optical fibers is important in modeling heat transfer in the processes and applications in which these fibers are used. An experimental method used to measure the spectral absorption coefficient of optical fibers is presented. Radiative energy from a blackbody radiator set at different temperatures is directed through the optical fibers and into an FTIR spectrometer. Spectral instrument response functions are calculated for different fiber lengths. The ratios of the slopes of the instrument response functions for the different lengths of fibers are used to solve for the spectral absorption coefficient of the fibers. The spectral absorption coefficient of low OH pure fused silica optical fibers is measured between the wavelengths 1.5 and 2.5 μm. PMID:25968202

  19. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. PMID:25241360

  20. Absorption of laser radiation in a H-He plasma. II - Experimental measurement of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Stallcop, J. R.; Presley, L.

    1974-01-01

    The absorption coefficients of 0.633-, 1.15-, and 3.39-micron laser radiation for a homogeneous H-He plasma have been measured in the temperature range from 12.2 to 21.7 (x 1000 K) and in the electron number density range 0.45 to 6.5 (x 10 to the 17th power per cu cm). Good agreement is found between the experimentally determined total absorption for each of the wavelengths and that calculated from theory. Furthermore, because the 3.39-micron absorption is dominated by inverse bremsstrahlung, while the 0.633-micron absorption is dominated by photoionization and resonance absorption, the experiment indicates a correct assessment by the theory of these individual absorption mechanisms.

  1. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  2. Satellite Retrieval of the Absorption Coefficient of Phytoplankton Phycoerythrin Pigment: Theory and Feasibility Status

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Lyon, Paul E.; Swift, Robert N.; Yungel, James K.

    1999-12-01

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual big three inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM) detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the satellite

  3. Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.; Ishihara, M.; Tsujita, K.; Hirota, K.; Irisawa, K.; Kitagaki, M.; Fujita, M.; Kikuchi, M.

    2012-02-01

    In photo-acoustic (PA) imaging, valuable medical applications based on optical absorption spectrum such as contrast agent imaging and blood oxygen saturation measurement have been investigated. In these applications, there is an essential requirement to determine optical absorption coefficients accurately. In present, PA signal intensities have been commonly used to determine optical absorption coefficients. This method achieves practical accuracy by combining with radiative transfer analysis. However, time consumption of radiative transfer analysis and effects of signal generation efficiencies were problems of this method. In this research, we propose a new method to determine optical absorption coefficients using continuous wavelet transform (CWT). We used CWT to estimate instantaneous frequencies of PA signals which reflects optical absorption distribution. We validated the effectiveness of CWT in determination of optical absorption coefficients through an experiment. In the experiment, planar shaped samples were illuminated to generate PA signal. The PA signal was measured by our fabricated PA probe in which an optical fiber and a ring shaped P(VDFTrFE) ultrasound sensor were coaxially aligned. Optical properties of samples were adjusted by changing the concentration of dye solution. Tunable Ti:Sapphire laser (690 - 1000 nm) was used as illumination source. As a result, we confirmed strong correlation between optical absorption coefficients of samples and the instantaneous frequency of PA signal obtained by CWT. Advantages of this method were less interference of light transfer and signal generation efficiency.

  4. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  5. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  6. Correlation analysis of optical absorption cross section and rate coefficient measurements in reacting systems

    SciTech Connect

    Hessler, J.P.; Ogren, P.J.

    1992-08-31

    A technique was developed for determining relative importance and correlation between reactions making up a complex kinetic system. This technique was used to investigate measurements of optical absorption cross sections and the correlation between cross sections and measured rate coefficients. It is concluded that (1) species, initial conditions, and temporal regions may be identified where cross sections may be measured without interference from the kinetic behavior of the observed species and (2) experiments designed to measure rate coefficients will always be correlated with the absorption cross section of the observed species. This correlation may reduce the accuracy of rate coefficient measurements.

  7. A reverberation room round robin on the determination of absorption coefficients

    NASA Astrophysics Data System (ADS)

    Kath, U.

    In ten reverberation rooms with very different volumes and different room shapes, the absorption coefficients for mineral fiber mat were measured. The particular feature of this round robin was that the absorption material was much thicker than in other similar experiments and that it was measured not only with an area of 12 sq m on the floor, but also as a complete surface covering of a small wall in order to avoid the edge effect. The decay curves were evaluated in at least two institutions and the absorption coefficients were calculated using the Eyring equation. The absorption coefficients were quite dispersed from one room to another and also from one-third octave band to the adjacent ones. Errors due to change are small, thus one is dealing with systematic errors.

  8. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  9. Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film

    SciTech Connect

    Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.

    2015-06-24

    We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.

  10. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  11. Pinoresinol of olive oil decreases vitamin D intestinal absorption.

    PubMed

    Goncalves, Aurélie; Margier, Marielle; Tagliaferri, Camille; Lebecque, Patrice; Georgé, Stéphane; Wittrant, Yohann; Coxam, Véronique; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2016-09-01

    Enriching oils, such as olive oil, could be one solution to tackle the worldwide epidemic of vitamin D deficiency and to better fit with omega 3 (DHA) recommendations. However, data regarding the interactions occurring at the intestinal level between vitamin D and phenols from olive oil are scarce. We first determined the effect of polyphenols from a virgin olive oil, and a virgin olive oil enriched with DHA, on vitamin D absorption in rats. We then investigated the effects of 3 main olive oil phenols (oleuropein, hydroxytyrosol and pinoresinol) on vitamin D uptake by Caco-2 cells. The presence of polyphenols in the olive oil supplemented with DHA inhibited vitamin D postprandial response in rats (-25%, p<0.05). Similar results were obtained with a mix of the 3 polyphenols delivered to Caco-2 cells. However, this inhibitory effect was due to the presence of pinoresinol only. As the pinoresinol content can highly vary between olive oils, the present results should be taken into account to formulate an appropriate oil product enriched in vitamin D. PMID:27041321

  12. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  13. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  14. Methane Absorption Coefficients in the 750-940 nm region derived from Intracavity Laser Absorption Spectral Measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.

    2002-09-01

    The absorption spectrum of methane has been recorded in the visible to near-IR region using the intracavity laser spectroscopy technique. Spectra are recorded at high spectral resolution for narrow overlapping intervals in the region for room and 77 K temperature methane samples. After spectra are deconvolved for the instrument function, absorption coefficients are derived. These will be presented (750-940 nm for room temperature methane; 850-920 nm for 77 K methane) and compared with results reported by other workers. Future work in this area also will be indicated. Support from NASA's Planetary Atmospheres Program (NAG5-6091 and a Major Equipment Grant) is gratefully acknowledged.

  15. Measurement of nanofluids absorption coefficient by Moiré deflectometry technique

    NASA Astrophysics Data System (ADS)

    Madanipour, Khosro; Koohian, Ataollah; Shahrabi Farahani, Shahrzad

    2015-05-01

    Nanoparticles exhibit many unique and interesting optical properties which make them very useful in biomedical applications. In order to employ NPs for disease treatment, comprehensive knowledge of their important properties is crucial. One of these parameters is absorption coefficient. In this work, absorption coefficient of a nanofluid (Au nanoparticles in water) is measured by using Moiré deflectometry technique. Two laser beams are used: a comparatively high intensity laser beam as interacting beam and a low intensity as a probe beam. This method is fast, easy and nonscanning, also insensitive to vibrations.

  16. In vivo light fluence correction for determination of tissue absorption coefficient using Multispectral Optoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.

    2016-03-01

    Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.

  17. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens. PMID:27256895

  18. Trigonometric Padé approximants for functions with regularly decreasing Fourier coefficients

    NASA Astrophysics Data System (ADS)

    Labych, Yuliya A.; Starovoitov, Alexander P.

    2009-08-01

    Sufficient conditions describing the regular decrease of the coefficients of a Fourier series f(x)=a_0/2+\\sum a_n\\cos{kx} are found which ensure that the trigonometric Padé approximants \\pi^t_{n,m}(x;f) converge to the function f in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.

  19. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  20. Photoacoustic measurements of black carbon light absorption coefficients in Irbid city, Jordan.

    PubMed

    Hamasha, Khadeejeh M; Arnott, W Patrick

    2010-07-01

    There is a need to recognize air pollution levels by particles, especially in developing countries such as Jordan where data are scarce due to the absence of routine monitoring of ambient air quality. This study aims at studying the air quality in different locations at Irbid, Jordan through the measurement and analysis of the time series of black carbon light absorption coefficients (B (abs)). Black carbon light absorption coefficients were measured with a photoacoustic instrument at a wavelength of 870 nm. The measurements were conducted during July 2007 at six sites in Irbid city, Jordan. Comparisons of black carbon concentrations at various locations were conducted to understand where values tend to be largest. The average value of B (abs) of all sites was 40.4 Mm(-1). The largest value of B (abs) was 61.2 Mm(-1) at Palestine Street which is located at a very crowded street in a highly populated region in the city center. The lowest value was 14.1 Mm(-1) at Thirtieth Street which is located at a main street in an open plain region in the east of the city. The black carbon light absorption coefficients fluctuate above a background level (transported black carbon from the neighboring states), which are almost identical at all sampling sites. The light absorption coefficients will be used as a benchmark in later years as combustion efficiencies and population patterns change. PMID:19479334

  1. The average ion model. Computation of the absorption and emission coefficients in hot plasmas

    NASA Astrophysics Data System (ADS)

    Gauthier, Jean-Claude; Geindre, Jean-Paul

    1988-06-01

    A program was developed to evaluate the emission and absorption plasma coefficient variations as a function of the density, temperature and the atomic number of the specimen. The treatment is simplified because of the reduced number of characteristic frequencies which are necessary for the hydrodynamic code. The approach is less efficient when applied to high Z atoms.

  2. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  3. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  4. Effects of combined scattering and absorption coefficients on laser speckle contrast imaging values

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2015-03-01

    Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering particles results in a reduction in global and regional speckle contrast. A variety of parameters can affect the calculated contrast values in LSCI techniques, including the optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of blood is of interests, optical properties are influenced by hematocrit levels. In this work we considered the combined effects of both the scattering and absorption coefficients on LSCI measurements on a flow phantom. Fluid phantoms consisting of various concentrations of neutrally buoyant ~10 micron microspheres and India ink mixed with DI water were formulated to mimic the optical properties of whole blood with various levels of hematocrit. In these flow studies, it was found that an increase in μa and/or μs led to a decrease in contrast values when all other experimental parameters were held constant. The observed reduction in contrast due to optical property changes could easily be confused with a contrast reduction due to increased flow velocity. These results suggest that optical properties need to be considered when using LSCI to make flow estimates.

  5. Temperature- and pressure-dependent absorption coefficients for CO2 and O2 at 193 nm

    NASA Astrophysics Data System (ADS)

    Hartinger, K. T.; Nord, S.; Monkhouse, P. B.

    Absorption of laser radiation at 193 nm by CO2 and O2 was studied at a series of different temperatures up to 1273 K and pressures up to 1 bar. The spectrum for CO2 was found to be broadband, so that absorption could be fitted to a Beer-Lambert law. On the other hand, the corresponding O2 spectrum is strongly structured and parameterisation requires a more complex relation, depending on both temperature and the product (pressure × absorption path length). In this context, the influence of spectral structure on the resulting spectrally integrated absorption coefficients is discussed. Using the fitting parameters obtained, effective transmissions at 193 nm can be calculated for a wide range of experimental conditions. As an illustration of the practical application of these data, the calculation of effective transmission for a typical industrial flue gas is described.

  6. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  7. Absorption Coefficients of Particulate Matter off the Southwest Coast of Europe: A Contribution to Validation of the MERIS Sensor

    NASA Astrophysics Data System (ADS)

    Goela, P.; Icely, J.; Cristina, S.; Newton, A.

    2010-12-01

    Variability of particulate absorption coefficients was studied off the south-west coast of Portugal, as part of a validation exercise for the Medium Resolution Image Spectrometer Sensor. Regular sampling campaigns occurred at three stations on a transect from inshore to offshore to compare fluctuations in these coefficients at the local scale. Transmittance-reflectance method with sodium hypochlorite bleaching was used to determine absorption coefficients for phytoplankton and non-algal particles. Photosynthetic pigment concentrations were determined by High Performance Liquid Chromatography. Results show that the absorption of light by particulate matter is almost totally dependent on the phytoplankton, with no significant contribution from non-algal particles, both in coastal and oceanic waters. Specific phytoplankton coefficients show significant fluctuations between seasons and stations, ranging from 0.012 to 0.038 at 678 nm. Particulate absorption is dominant over dissolved absorption. The variations in the coefficients of absorption are analysed as a function of species assemblages.

  8. Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wichmann, Janine; Janssen, Nicole A. H.; van der Zee, Saskia; Brunekreef, Bert

    Population studies indicate that study participants living near major roads are more prone to chronic respiratory symptoms, lung function decrements and hospital admissions for asthma. The majority of the studies used proxy measures, such as distance to major roads or traffic intensity in the surroundings of the home. Few studies have communicated findings of concurrently performed measurements of outdoor, indoor and personal air pollution in urban streets with high- and low-traffic density. Measuring light absorption or reflectance of particulate matter (PM) collected on filters is an alternative method to determine elemental carbon, a marker for particles produced by incomplete combustion, compared to expensive and destructive analytical methods. This study sets out to test the null hypothesis that there is no difference in personal and indoor filter absorption coefficients for participants living along busy and quiet roads in Amsterdam. In one study we measured personal and indoor absorption coefficients in a sample of adults (50-70 years) and, in another study, the indoor levels in a population of adults (50-70 years) and school children (10-12 years). In the first study, the ratios of personal and indoor absorption coefficients in homes along busy roads compared with homes on quiet streets were significantly higher by 29% for personal measurements ( n=16 days, p<0.001), and by 19% for indoor measurements ( n=20, p<0.001), while in the second study, the ratio for the indoor measurements was higher by 26% ( n=25 days, p<0.05). Exposure differences between homes along busy compared to homes along quiet streets remained and significant after adjustment for potential indoor sources (such as cooking and use of unvented heating appliances). This study therefore provides tentative support for the use of the type of road as proxy measure for indoor and personal absorption coefficient measurements in epidemiological studies due to the limitations of the study.

  9. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  10. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-07-01

    We derived the absorption coefficient (μ a) and the reduced scattering coefficient (μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  11. A new photoacoustic method based on the modulation of the light induced absorption coefficient

    NASA Astrophysics Data System (ADS)

    Engel, S.; Wenisch, C.; Müller, F. A.; Gräf, S.

    2016-04-01

    The present study reports on a new photoacoustic (PA) measurement method that is suitable for the investigation of light induced absorption effects including e.g. excited state absorption. Contrary to the modulation of the radiation intensity used in conventional PA-methods, the key principle of this novel setup is based on the modulation of the induced absorption coefficient by light. For this purpose, a pump-probe setup with a pulsed pump laser beam and a continuous probe laser beam is utilized. In this regime, the potential influence of heat on the PA-signal is much smaller when compared to arrangements with pulsed probe beam and continuous pump beam. Beyond that, the negative effect of thermal lenses can be neglected. Thus, the measurement technique is well-suited for materials exhibiting a strong absorption at the pump wavelength. The quantitative analysis of the induced absorption coefficient was achieved by the calibration of the additional PA-signal caused by the continuous probe laser to the PA-signal resulting from the pulsed pump laser using thallium bromoiodide (KRS-5) as sample material.

  12. Measurements of the optical absorption coefficient of Ar8+ ion implanted silicon layers using the photothermal radiometry and the modulated free carrier absorption methods

    NASA Astrophysics Data System (ADS)

    Chrobak, Ł.; Maliński, M.; Pawlak, M.

    2014-11-01

    This paper presents a method of the measurement of the optical absorption coefficient of the Ar8+ ions implanted layers in the p-type silicon substrate. The absorption coefficient is calculated using a value of the attenuation of amplitudes of a photothermal radiometry (PTR) and/or a modulation free carrier absorption (MFCA) signals and the implanted layer thickness calculated by means of the TRIM program. The proposed method can be used to indicate the amorphization of the ions implanted layers.

  13. Absorption coefficients of GeSn extracted from PIN photodetector response

    NASA Astrophysics Data System (ADS)

    Ye, Kaiheng; Zhang, Wogong; Oehme, Michael; Schmid, Marc; Gollhofer, Martin; Kostecki, Konrad; Widmann, Daniel; Körner, Roman; Kasper, Erich; Schulze, Jörg

    2015-08-01

    In this paper the optical absorption of the GeSn PIN photodetector was investigated. The vertical GeSn PIN photodetectors were fabricated by molecular beam epitaxy (MBE) and dry etching. By means of current density-voltage (J-V) and capacity-voltage (C-V) measurements the photodetector device was characterized. The absorption coefficients of GeSn material were finally extracted from the optical response of PIN structure. With further direct bandgap analysis the influences of device structure was proved negligible.

  14. Heat/Mass Transfer Coefficients of an Absorber in Absorption Refrigeration System

    NASA Astrophysics Data System (ADS)

    Fujita, Isamu; Hihara, Eiji

    This paper presents a new method to calculate heat and mass transfer coefficients applicable to the vertical tube or plate type absorber of absorption refrigeration system. Conventional method for calculating the coefficients using logarithmic mean temperature/ concentration differences is criticized for its lacking in the theoretical rationality and usually giving untrue values except some limited situations such that temperature of the solution can be assumed to change linearly along the heat transfer surface. The newly introduced method, which is intended to overcome this difficulty, is verified by numerical simulation and is accompanied by an example applied to the experimental results.

  15. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  16. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  17. Effective infrared absorption coefficient for photothermal radiometric measurements in biological tissues.

    PubMed

    Majaron, Boris; Milanic, Matija

    2008-01-01

    Although photothermal radiometric (PTR) measurements commonly employ broad-band signal acquisition to increase the signal-to-noise ratio, all reported studies apply a fixed infrared (IR) absorption coefficient to simplify the involved signal analysis. In samples with large spectral variation of micro(lambda) in mid-IR, which includes most biological tissues, the selection of the effective IR absorption coefficient value (micro(eff)) can strongly affect the accuracy of the result. We present a novel analytical approach for the determination of optimal micro(eff) from spectral properties of the sample and radiation detector. In extensive numerical simulations of pulsed PTR temperature profiling in human skin using three common IR radiation detectors and several acquisition spectral bands, we demonstrate that our approach produces viable values micro(eff). Two previously used analytical estimations perform much worse in the same comparison. PMID:18182701

  18. Determination of RW3-to-water mass-energy absorption coefficient ratio for absolute dosimetry.

    PubMed

    Seet, Katrina Y T; Hanlon, Peta M; Charles, Paul H

    2011-12-01

    The measurement of absorbed dose to water in a solid-phantom may require a conversion factor because it may not be radiologically equivalent to water. One phantom developed for the use of dosimetry is a solid water, RW3 white-polystyrene material by IBA. This has a lower mass-energy absorption coefficient than water due to high bremsstrahlung yield, which affects the accuracy of absolute dosimetry measurements. In this paper, we demonstrate the calculation of mass-energy absorption coefficient ratios, relative to water, from measurements in plastic water and RW3 with an Elekta Synergy linear accelerator (6 and 10 MV photon beams) as well as Monte Carlo modeling in BEAMnrc and DOSXYZnrc. From this, the solid-phantom-to-water correction factor was determined for plastic water and RW3. PMID:21960410

  19. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    NASA Astrophysics Data System (ADS)

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-02-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab.

  20. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media.

    PubMed

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  1. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  2. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  3. AN INTERCOMPARISON CF THE INTEGRATING PLATE AND THE LASER TRANSMISSION METHODS FOR DETERMINATION OF AEROSOL ABSORPTION COEFFICIENTS

    SciTech Connect

    Sadler, M.; Charlson, R.J.; Rosen, H.; Novakov, T.

    1980-07-01

    The absorption coefficients determined by the integrating plate method and the laser transmission method are found to be comparable and highly correlated. Furthermore, a high correlation is found between these absorption coefficients and the carbon content of the aerosol in urbanized regions.

  4. Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.

    1992-01-01

    Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.

  5. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  6. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  7. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGESBeta

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  8. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  9. Diffusion Coefficients of Water and Leachables in Methacrylate-based Crosslinked Polymers using Absorption Experiments

    PubMed Central

    Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette

    2012-01-01

    The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592

  10. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  11. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

    NASA Astrophysics Data System (ADS)

    Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.

    2015-10-01

    In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.

  12. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Burns, David T.; Salvat, Francesc

    2012-04-01

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for 192Ir and 60Co gamma-ray spectra. The aim of this work was to establish ‘an envelope of uncertainty’ based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µen/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, uc, for the µen/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For 60Co and 192Ir, uc is approximately 0.1%. The Type B uncertainty analysis for the ratios of µen/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µen/ρ)graphite,air and (µen/ρ)graphite,water are 1.5%, and 0.5% for (µen/ρ)water,air, decreasing gradually down to uc = 0.1% for the three µen/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well with those of Hubbell (1977 Rad. Res

  13. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  14. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    PubMed

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. PMID:24972796

  15. A feasibility study on monitoring the evolution of apparent diffusion coefficient decrease during thermal ablation

    PubMed Central

    Plata, Juan C.; Holbrook, Andrew B.; Marx, Michael; Salgaonkar, Vasant; Jones, Peter; Pascal-Tenorio, Aurea; Bouley, Donna; Diederich, Chris; Sommer, Graham; Pauly, Kim Butts

    2015-01-01

    Purpose: Evaluate whether a decrease in apparent diffusion coefficient (ADC), associated with loss of tissue viability (LOTV), can be observed during the course of thermal ablation of the prostate. Methods: Thermal ablation was performed in a healthy in vivo canine prostate model (N = 2, ages: 5 yr healthy, mixed breed, weights: 13–14 kg) using a transurethral high-intensity ultrasound catheter and was monitored using a strategy that interleaves diffusion weighted images and gradient-echo images. The two sequences were used to measure ADC and changes in temperature during the treatment. Changes in temperature were used to compute expected changes in ADC. The difference between expected and measured ADC, ADCDIFF, was analyzed in regions ranging from moderate hyperthermia to heat fixation. A receiver operator characteristic (ROC) curve analysis was used to select a threshold of detection of LOTV. Time of threshold activation, tLOTV, was compared with time to reach CEM43 = 240, tDOSE. Results: The observed relationship between temperature and ADC in vivo (2.2%/ °C, 1.94%–2.47%/ °C 95% confidence interval) was not significantly different than the previously reported value of 2.4%/ °C in phantom. ADCDIFF changes after correction for temperature showed a mean decrease of 25% in ADC 60 min post-treatment in regions where sufficient thermal dose (CEM43 > 240) was achieved. Following our ROC analysis, a threshold of 2.25% decrease in ADCDIFF for three consecutive time points was chosen as an indicator of LOTV. The ADCDIFF was found to decrease quickly (1–2 min) after reaching CEM43 = 240 in regions associated with heat fixation and more slowly (10–20 min) in regions that received slower heating. Conclusions: Simultaneous monitoring of ADC and temperature during treatment might allow for a more complete tissue viability assessment of ablative thermal treatments in the prostate. ADCDIFF decreases during the course of treatment may be interpreted as loss of

  16. The Possibilities to Decrease the Coefficient of Friciton Between Head and Socket of the Endoprosthesis of Hip Joint

    NASA Astrophysics Data System (ADS)

    Haringová, Andrea; Stračár, Karol; Prikkel, Karol

    2014-12-01

    The article deals with the question of physical parameters that could positively influence the overall lifetime of hip joint endoprosthesis. As the important physical parameter it was selected the coefficient of friction. The contribution offers possibilities how to decrease the coefficient of friction and experimentally test these assumptions

  17. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  18. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  19. A comparison of methods for the measurement of the absorption coefficient in natural waters

    NASA Technical Reports Server (NTRS)

    Pegau, W. Scott; Cleveland, Joan S.; Doss, W.; Kennedy, C. Dan; Maffione, Robert A.; Mueller, James L.; Stone, R.; Trees, Charles C.; Weidemann, Alan D.; Wells, Willard H.

    1995-01-01

    In the spring of 1992 an optical closure experiment was conducted at Lake Pend Orielle, Idaho. A primary objective of the experiment was to compare techniques for the measurement of the spectral absorption coefficent and other inherent optical properties of natural waters. Daily averages of absorption coefficents measured using six methods are compared at wavelengths of 456, 488, and 532 nm. Overall agreement was within 40% at 456 nm and improved with increasing wavelength to 25% at 532 nm. These absorption measurements were distributed over the final 9 days of the experiement, when bio-optical conditions in Lake Pend Oreille (as indexed by the beam attenuation coefficent c(sub p)(660) and chlorophyll a fluorescence profiles) were representative of those observed throughout the experiment. However, profiles of stimulated chlorophyll a fluorescence and beam transmission showed that bio-optical properties in the lake varied strongly on all time and space scales. Therefore environmental variabilty contributed significantly to deviations between daily mean absorption coefficients measured using the different techniques.

  20. Mesure de coefficients d'absorption de plasmas créés par laser nanoseconde

    NASA Astrophysics Data System (ADS)

    Thais, F.; Chenais-Popovics, C.; Eidmann, K.; Bastiani, S.; Blenski, T.; Gilleron, F.

    2005-06-01

    La mesure des coefficients d'absorption dans les plasmas chauds est particulièrement utile dans le domaine de la fusion par confinement inertiel ainsi que dans divers contextes en astrophysique. Le développement des calculs de physique atomique qui y sont associés repose sur des hypothèses qu'il est nécessaire de vérifier dans la plus large gamme possible de conditions physiques. Nous présentons ici la méthode de mesure et d'analyse employée en nous appuyant sur l'exemple des cibles multicouches nickel/aluminium.

  1. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  2. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  3. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  4. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  5. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  6. Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1972-01-01

    A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.

  7. Spectral variation of the infrared absorption coefficient in pulsed photothermal profiling of biological samples.

    PubMed

    Majaron, Boris; Verkruysse, Wim; Tanenbaum, B Samuel; Milner, Thomas E; Nelson, J Stuart

    2002-06-01

    Pulsed photothermal radiometry can be used for non-invasive depth profiling of optically scattering samples, including biological tissues such as human skin. Computational reconstruction of the laser-induced temperature profile from recorded radiometric signals is sensitive to the value of the tissue absorption coefficient in the infrared detection band (muIR). While assumed constant in reported reconstruction algorithms, muIR of human skin varies by two orders of magnitude in the commonly used 3-5 microm detection band. We analyse the problem of selecting the effective absorption coefficient value to be used with such algorithms. In a numerical simulation of photothermal profiling we demonstrate that results can be markedly impaired, unless the reconstruction algorithm is augmented by accounting for spectral variation muIR(lambda). Alternatively, narrowing the detection band to 4.5-5 microm reduces the spectral variation muIR(lambda) to a level that permits the use of the simpler, unaugmented algorithm. Implementation of the latter approach for depth profiling of port wine stain birthmarks in vivo is presented and discussed. PMID:12108776

  8. Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments

    NASA Astrophysics Data System (ADS)

    Markushev, D. D.; Ordonez-Miranda, J.; Rabasović, M. D.; Galović, S.; Todorović, D. M.; Bialkowski, S. E.

    2015-06-01

    The open-cell photoacoustic signal measured in the transmission configuration for aluminum thin plates with thicknesses of 280 μm, 197 μm, and 112 μm is experimentally and theoretically analyzed, in the 20 Hz-7 kHz modulation frequency range. It is shown that the observed differences between the predictions of the standard thermoelastic model and the experiment data of both the amplitude and phase of the photoacoustic signal can be overcome by considering the aluminum samples coated with a thin layer of black paint as volume-absorber materials. This new approach provides a quite good agreement with the obtained experimental data, in the whole frequency range, and yields an effective absorption coefficient of (16 ± 2) mm-1, for a 280 μm-thick sample. The introduction of the finite absorption coefficient led to the correct ratio between the thermal diffusion and thermoelastic components of the photoacoustic signal. Furthermore, it is found that the "volume-absorber" approach accurately describes the behavior of the amplitude, but not that of the phase recorded for a 112 μm-thick sample, due to its relatively strong thermoelastic bending, which is not considered by this theory. Within the approximation of the small bending, the proposed "volume-absorber" model provides a reliable description of the photoacoustic signal for Al samples thicker than 112 μm, and extends the applicability of the classical "opaque" approach.

  9. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Zhang, Zhongmin; Mou, Sen; Xiao, Bo

    2015-05-01

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity.

  10. Absorption Spectra and Absorption Coefficients for Methane in the 750-940 nm region obtained by Intracavity Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.; Cao, H.

    2000-10-01

    Methane spectral features are prominent in the reflected sunlight spectra from the outer planets and some of their major satellites and can provide useful information on the atmospheres of those bodies. Methane bands occurring in the visible to near-IR region are particularly important because for many of these planetary bodies, methane bands occurring in the IR are saturated. Spectral observations of these bodies also are being made at increasingly higher resolution. In order to interpret the planetary spectra, laboratory data for methane obtained at appropriate sample conditions and spectral resolution are required. Since the visible to near-IR spectrum of methane is intrinsically weak, sensitive techniques are required to perform the laboratory measurements. We have employed the intracavity laser spectroscopy (ILS) technique to record methane spectrum in the visible to near-IR region. New results for room temperature methane in the 10,635 - 13,300 cm-1 region and for liquid nitrogen temperature (77 K) methane in the 10,860 - 11,605 cm-1 region will be presented. Spectra throughout the more strongly absorbing sections will be shown. These spectra are acquired at a resolution of 400,000 - 500,000 and are calibrated using iodine reference spectra acquired from an extra-cavity cell at nearly the same time as when the methane data are recorded. From the spectra, absorption coefficients are determined and these are presented as averages over 1 Å and 1 cm-1 intervals. In order to obtain the results, spectra are deconvolved for the instrument function using a Fourier transform technique. The validity of the approach is verified from studies of isolated oxygen lines in the A band occurring around 760 nm. Good agreement is observed between the intensity values determined from the FT deconvolution and integration method and those derived by fitting the observed line profiles to Voigt line-shapes convoluted with the instrument function. The methane results are compared

  11. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962

  12. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry. PMID:27139871

  13. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database). PMID:25090334

  14. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  15. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum. PMID:1886936

  16. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

    PubMed

    De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger

    2016-02-23

    Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid. PMID:26786064

  17. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz.

    PubMed

    Chen, Jian; Chen, Yunqing; Zhao, Hongwei; Bastiaans, Glenn J; Zhang, X-C

    2007-09-17

    We have investigated the absorption spectra of seventeen explosives and related compounds (ERCs) by using terahertz time-domain spectroscopy in the 0.1-2.8 THz region. Most of these substances show characteristic absorption features in this frequency range. The measured absorption coefficients of these ERCs form a database, which is of great importance for biochemical, defense and security related applications. PMID:19547570

  18. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  19. Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Li, Z.; Nemtchinov, V.; Cherukuri, A.

    1994-01-01

    Spectral absorption-coefficients (cross-sections) kappa(sub nu) (/cm/atm) have been measured in the 7.62, 8.97, and 12.3 micrometer bands of HCFC-22 (CHClF2) and the 10.6 micrometer bands of SF6 employing a high-resolution Fourier-transform spectrometer. Temperature and total pressure have been varied to simulate conditions corresponding to tropospheric and stratospheric layers in the atmosphere. The kappa(sub nu) are compared with values measured by us previously using a tunable diode laser spectrometer and with the appropriate entries in HITRAN and GEISA, two of the databases known to the atmospheric scientist. The measured absolute intensities of the bands are compared with previously published values.

  20. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup. PMID:16650447

  1. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  2. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  3. Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn

    NASA Astrophysics Data System (ADS)

    Wu, J.; Hong, H.; Shang, S.; Dai, M.; Lee, Z.

    2007-05-01

    We examined the temporal and spatial variabilities of phytoplankton absorption coefficients (αphλ)) and their relationships with physical processes in the northern South China Sea from two cruise surveys during spring (May 2001) and late autumn (November 2002). A large river plume induced by heavy precipitation in May stimulated a phytoplankton bloom on the inner shelf, causing significant changes in the surface water in αph values and B/R ratios (αph(440)/αph(675)). This was consistent with the observed one order of magnitude elevation of chlorophyll α and a shift from a pico/nano dominated phytoplankton community to one dominated by micro-algae. At the seasonal level, enhanced vertical mixing due to strengthened northeast monsoon in November has been observed to result in higher surface αph(675) (0.002-0.006 m-1 higher) and less pronounced subsurface maximum on the outer shelf/slope in November as compared that in May. Measurements of αph and B/R ratios from three transects in November revealed a highest surface αph(675) immediately outside the mouth of the Pearl River Estuary, whereas lower αph(675) and higher B/R ratios were featured in the outer shelf/slope waters, demonstrating the respective influence of the Pearl River plume and the oligotrophic nature of South China Sea water. The difference in spectral shapes of phytoplankton absorption (measured by B/R ratios and bathochromic shifts) on these three transects infers that picoprocaryotes are the major component of the phytoplankton community on the outer shelf/slope rather than on the inner shelf. In addition, a regional tuning of the phytoplankton absorption spectral model (Carder et al., 1999) demonstrated a greater spatial variation than seasonal variation in the lead parameter a0(λ). These results suggest that phytoplankton absorption properties in a coastal region such as the northern South China Sea are complex and region-based parameterization is mandatory in order for remote sensing

  4. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  5. Laboratory measurements of the ozone absorption coefficient in the wavelength region 339 to 362 nm at different temperatures

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide; Fiocco, Giorgio

    1987-06-01

    Instrumentation for the absolute measurement of the ozone absorption coefficient in the Huggins bands at different temperatures was set up. Ozone is produced with an electrical discharge and stored cryogenically; differential absorption measurements are carried out in a slowly evolving mixture of ozone and molecular oxygen. Results in the region 339 to 362 nm at temperatures between minus 30 and plus 40 C are reported. Results support Katayama's (1979) model of the transitions giving rise to the Huggins absorption bands of ozone. For measurements of atmospheric ozone profiles by DIAL techniques, the results on the temperature dependence of the absorption coefficient at the wavelength corresponding to the third harmonic of an NdYAG laser are stressed.

  6. Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Seuntjens, J. P.

    1999-01-01

    For low-energy (up to 150 kV) x-rays, the ratio of mass-energy absorption coefficients for water to air, , and the backscatter factor B are used in the conversion of air kerma, measured free-in-air, to water kerma on the surface of a water phantom. For clinical radiotherapy, similar conversion factors are needed for the determination of the absorbed dose to biological tissues on (or near) the surface of a human body. We have computed the ratios and B factor ratios for different biological tissues including muscle, soft tissue, lung, skin and bone relative to water. The ratios were obtained by integrating the respective mass-energy absorption coefficients over the in-air primary photon spectra. We have also calculated the ratios at different depths in a water phantom in order to convert the measured in-phantom water kerma to the absorbed dose to various biological tissues. The EGS4/DOSIMETER Monte Carlo code system has been used for the simulation of the energy fluence at different depths in a water phantom irradiated by a kilovoltage x-ray beam of variable beam quality (HVL: 0.1 mm Al-5 mm Cu), field size and source-surface distance (SSD). The same code was also used in the calculation of the B factor ratios, soft tissue to water and bone to water. The results show that the B factor for bone differs from the B factor for water by up to 20% for a 100 kV beam (HVL: 2.65 mm Al) with a 100 field. On the other hand, the difference in the B factor between water and soft tissue is insignificant (well within 1% generally). This means that the B factors for water may be directly used to

  7. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  8. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  9. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1997-03-01

    Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The model was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.

  10. Re-evaluation of pulsed photothermal radiometric profiling in samples with spectrally varied infrared absorption coefficient.

    PubMed

    Majaron, Boris; Milanic, Matija

    2007-02-21

    Spectral variation of the sample absorption coefficient in mid-infrared (muIR) demands caution in photothermal radiometric measurements, because a constant muIR is regularly assumed in inverse analysis of the acquired signals. Adverse effects of such approximation were recently demonstrated in numerical simulations of pulsed photothermal radiometric (PPTR) temperature profiling in soft biological tissues, utilizing a general-purpose optimization code in the reconstruction process. We present here an original reconstruction code, which combines a conjugate gradient minimization algorithm with non-negativity constraint to the sought temperature vector. For the same test examples as in the former report (hyper-Gaussian temperature profiles, InSb detector with 3-5 microm acquisition band, signal-to-noise ratio SNR=300) we obtain markedly improved reconstruction results, both when using a constant value mueff and when the spectral variation muIR(lambda) is accounted for in the analysis. By comparing the results, we find that the former approach introduces observable artefacts, especially in the superficial part of the profile (z<100 microm). However, the artefacts are much less severe than previously reported and are almost absent in the case of a deeper, single-lobed test profile. We demonstrate that the observed artefacts do not result from sub-optimal selection of mueff, and that they vary with specific realizations of white noise added to the simulated signals. The same holds also for a two-lobed test profile. PMID:17264372

  11. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. I. Homogeneous solids

    NASA Astrophysics Data System (ADS)

    Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín

    2011-08-01

    Modulated photothermal radiometry (PTR) has been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector. The amplitude and phase of the PTR voltage is recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we test the ability of modulated PTR to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the PTR signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam, the heat losses, and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, covering the whole range from transparent to opaque, confirm the validity of the method. In Part II of this work, the method is extended to multilayered materials.

  12. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  13. An empirical determination of the dust mass absorption coefficient, κd, using the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Clark, Christopher J. R.; Schofield, Simon P.; Gomez, Haley L.; Davies, Jonathan I.

    2016-06-01

    We use the published photometry and spectroscopy of 22 galaxies in the Herschel Reference Survey to determine that the value of the dust mass absorption coefficient κd at a wavelength of 500 μm is kappa _{500} = 0.051^{+0.070}_{-0.026} m^{2 kg^{-1}}. We do so by taking advantage of the fact that the dust-to-metals ratio in the interstellar medium of galaxies appears to be constant. We argue that our value for κd supersedes that of James et al. - who pioneered this approach for determining κd - because we take advantage of superior data, and account for a number of significant systematic effects that they did not consider. We comprehensively incorporate all methodological and observational contributions to establish the uncertainty on our value, which represents a marked improvement on the oft-quoted `order-of-magnitude' uncertainty on κd. We find no evidence that the value of κd differs significantly between galaxies, or that it correlates with any other measured or derived galaxy properties. We note, however, that the availability of data limits our sample to relatively massive (109.7 < M⋆ < 1011.0 M⊙), high metallicity (8.61 < [ 12 + log_{10} fracOH ] < 8.86) galaxies; future work will allow us to investigate a wider range of systems.

  14. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  15. Determination of the diffusion length and the optical self absorption coefficient using EBIC model

    NASA Astrophysics Data System (ADS)

    Guermazi, S.; Guermazi, H.; Mlik, Y.; El Jani, B.; Grill, C.; Toureille, A.

    2001-10-01

    We have developed a model of calculation of the induced current due to an electron beam. The expression for the electron beam induced current (EBIC) with an extended generation profile is obtained via the resolution of a steady state continuity equation by the Green function method, satisfying appropriated boundary conditions to the physical model. The generation profile takes into account the lateral diffusion, the effect of defects, dislocations and recombination surfaces besides the number of absorbed electrons and that of diffuse electrons as a function of the depth. In the case of a Schottky diode Au/GaAs obtained by metalorganic vapour phase epitaxy (MOVPE) method, the theoretical induced current profile is compared to the experimental one and to theoretical profiles whose analytical expressions are given by van Roosbroeck and Bresse. The minority carriers diffusion length L_n = 2 μm and the optical self-absorption coefficient a=0.034 μm^{-1} can be deduced from the experimental current profile, measured by scanning electron microscopy. The theoretical curve, obtained from the proposed model is in a good agreement with the experimental one for surface recombination velocity 10^6 cm s^{-1} except for distances far from the depletion layer (x_0 > 2.3 μm) where the photocurrent produced by the multiple process of the reabsorbed recombination radiation is preponderant. Our results are in agreement with those obtained by other experimental techniques on the same samples.

  16. Decreased cyclosporin A absorption after treatment with GoLytely lavage solution in rats.

    PubMed

    Santa, T; Nishihara, K; Horie, S; Kotaki, H; Sawada, Y; Kawabe, K; Iga, T

    1994-07-01

    Recently we observed a case in which the cyclosporin A absorption decreased after treatment with GoLytely lavage solution in a kidney transplant patient. In this study, we confirmed the decrease of the blood concentration of cyclosporin A after oral administration by GoLytely (Macrogol 3350) based on experiments with rats. The peak blood cyclosporin A concentration, and the area under the blood drug concentration-time curve from 0 to 24 h in the GoLytely-administered group were significantly lower than the control group. In the case of gastrointestinal dysfunction such as diarrhoea, or in treatment with laxatives such as GoLytely lavage solution, whole blood cyclosporin levels must be carefully monitored, and intravenous cyclosporin A may be more suitable for providing adequate immunosuppression. PMID:7996392

  17. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds. PMID:11487809

  18. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  19. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  20. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  1. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-12-01

    Absorbing aerosols can significantly modulate short-wave solar radiation in the atmosphere, affecting regional and global climate. The aerosol absorption coefficient (AAC) is an indicator that assesses the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption Ångström exponent (AAE) in the urban area of Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the seven-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which result in consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in the urban area of Nanjing, which is much lower than that in Pearl River Delta and the same as in rural areas (Lin'an) in Yangtze River Delta. The AAC in the urban area of Nanjing shows strong seasonality (diurnal variations); it is high in cold seasons (at rush hour) and low in summer (in the afternoon). It also shows synoptic and quasi-2-week cycles in response to weather systems. Its frequency distribution follows a typical log-normal pattern. The 532 nm AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72 % of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollution. Air masses flowing from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable than from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly occur in summer, likely due to high relative humidity (RH) in the season. AAC increases with increasing AAE at a fixed aerosol loading. The RH

  2. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-06-01

    Absorbing aerosols can significantly modulate shortwave solar radiation in the atmosphere, affecting regional and global climate. Aerosol absorption coefficient (AAC) is an indicator to assess the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption angstrom exponent (AAE) in urban Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the 7-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which show consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in urban Nanjing, which is much lower than that in Pearl River Delta and as the same as that in rural areas (Lin'an) in Yangtze River Delta. The AAC in urban Nanjing shows strong seasonality (diurnal variations), high in cold seasons (at rush hours) and low in summer (in afternoon). It also show synoptic and quasi-two-week cycles in response to weather systems. Its frequency distribution follows a typical lognormal pattern. The 532 nm-AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72% of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollutions. Air masses from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable compared to that from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly appear in summer in response to the relative humidity (RH). AAC increases with increasing AAE at a fixed aerosol loading. The RH-AAC relationship is more complex. Overall, AAC peaks around RH values

  3. Anomalous atmospheric spectral features between 300 and 310 nm interpreted in light or new ozone absorption coefficient measurements

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Bass, A. M.

    1982-01-01

    Real structure is revealed, by an analysis of continuous scan data from the solar backscattered UV instrument on Nimbus 7, in the backscattered atmospheric albedo region between 300 and 310 nm where spectral anomalies have been reported in ground-based observation. The spectral anomalies are explainable as structure at the 1-5% level in the ozone absorption coefficient, as measured by Bass and Paur (1981). The new absorption coefficient measurements are judged to approach the 1%-level of accuracy in atmospheric radiation calculation, which should resolve discrepancies between different Dobson wavelength pairs and between different instruments and permit the more accurate analysis of such second-order effects as NO emission, SO2 absorption in polluted atmospheres, and Raman scattering effects.

  4. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  5. How to measure and predict the molar absorption coefficient of a protein.

    PubMed Central

    Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T.

    1995-01-01

    The molar absorption coefficient, epsilon, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring epsilon for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319-326] and is based on data from Edelhoch [1967, Biochemistry 6:1948-1954]). The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average epsilon values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the epsilon values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average epsilon values for the proteins are less than the epsilon values measured in any of the solvents. For Tyr, the average epsilon values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured epsilon values for 80 proteins, the epsilon at 280 nm of a folded protein in water, epsilon (280), can best be predicted with this equation: epsilon (280) (M-1 cm-1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125) These epsilon (280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict epsilon. PMID:8563639

  6. I-scan thermal lens experiment in the pulse regime for measuring two-photon absorption coefficient

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Echevarria, L.; Fernandez, A.

    2007-09-01

    We present a new pump-probe mode-mismatched thermal lens method for pulse excitation aimed to the measurement of nonlinear absorption coefficient in optical materials. We develop a theoretical model based on the Fresnel diffraction approximation and their predictions are verified experimentally with samples of Rhodamine 6G and Rhodamine B in ethanol solution. The principal advantage of this technique is that it does not require any mechanical movement during measurement. Below we perform the new type of thermal lens experiment in the pulse regime for the measurement of nonlinear absorption coefficient in transparent samples and we demonstrate the validity of theoretical predictions using an alternative method to the classical thermal lens technique.

  7. Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption.

    PubMed

    Lawniczak, Michał; Hul, Oleh; Bauch, Szymon; Seba, Petr; Sirko, Leszek

    2008-05-01

    We present the results of an experimental and numerical study of the distribution of the reflection coefficient P(R) and the distributions of the imaginary P(v) and the real P(u) parts of the Wigner reaction K matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modeled by optical potentials. The distribution of the reflection coefficient P(R) and the distributions of the reaction K matrix were obtained from measurements and numerical calculations of the scattering matrix S of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory. PMID:18643145

  8. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  9. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  10. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  11. Temperature anomaly of the coefficient of ultrasonic absorption by electrons of hybridized states of cobalt impurities in mercury selenide

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, I. V.; Okulov, V. I.; Gudkov, V. V.; Mayakin, V. Yu.; Sarychev, M. N.; Andriichuk, M. D.; Paranchich, L. D.

    2015-05-01

    The effects of the interaction of ultrasound with donor d electrons of cobalt impurity atoms at low concentrations in mercury selenide crystals have been investigated. The temperature dependences of the electronic contribution to the absorption coefficient at a frequency of 53 MHz in crystals with cobalt concentrations from 1018 to 1020 cm-3 and in the undoped crystal have been observed experimentally. It has been found that crystals with impurities are characterized by an anomalous nonmonotonic temperature dependence of the absorption coefficient of the slow transverse wave in a narrow temperature range near 10 K. A smooth monotonic temperature dependence has been observed for longitudinal and fast transverse waves. Based on the developed theoretical interpretation, it has been established that the anomaly in the temperature dependence of the absorption coefficient of a slow transverse wave is associated with the hybridization of impurity d states in the conduction band of the crystal. A comparison of the theoretical and experimental dependences has made it possible to determine the parameters characterizing the hybridized electronic states.

  12. Mass Absorption Coefficient of Tungsten and Tantalum, 1450 eV to 2350 eV: Experiment, Theory, and Application

    PubMed Central

    Levine, Zachary H.; Grantham, Steven; Tarrio, Charles; Paterson, David J.; McNulty, Ian; Levin, T. M.; Ankudinov, Alexei L.; Rehr, John J.

    2003-01-01

    The mass absorption coefficients of tungsten and tantalum were measured with soft x-ray photons from 1450 eV to 2350 eV using an undulator source. This region includes the M3, M4, and M5 absorption edges. X-ray absorption fine structure was calculated within a real-space multiple scattering formalism; the predicted structure was observed for tungsten and to a lesser degree tantalum as well. Separately, the effects of dynamic screening were observed as shown by an atomic calculation within the relativistic time-dependent local-density approximation. Dynamic screening effects influence the spectra at the 25 % level and are observed for both tungsten and tantalum. We applied these results to characterize spatially-resolved spectra of a tungsten integrated circuit interconnect obtained using a scanning transmission x-ray microscope. The results indicate tungsten fiducial markers were deposited into silica trenches with a depths of 50 % and 60 % of the markers’ heights.

  13. Backscattering and absorption coefficients for electrons: Solutions of invariant embedding transport equations using a method of convergence

    SciTech Connect

    Figueroa, C.; Brizuela, H.; Heluani, S. P.

    2014-05-21

    The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types of approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.

  14. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  15. Measuring the acoustic absorption coefficient in biological tissue specimens using ultrasonic phase conjugation

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Zelenova, Z. V.; Brysev, A. P.

    2014-03-01

    Acoustic absorption has been measured in a series of biological tissue specimens—porcine muscle, renal and fat tissues—by the standard insert-substitution method, as well as by ultrasonic phase conjugation. Comparison of the experimental results and revealed differences confirm the promise of using phase conjugate waves to measure acoustic losses in biological objects. It is demonstrated that in inhomogeneous tissues, the phase conjugation method makes it possible to obtain a more reliable estimate of dissipative losses.

  16. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  17. Absorption coefficients and band strengths for the 703 nm and 727 bands of methane at 77 K

    SciTech Connect

    O`Brien, J.J.; Singh, K.

    1996-12-31

    The technique of intracavity laser spectroscopy has been used to obtain methane absorption spectra for the vibrational overtone bands that occur around 703 nm and 727 nm. Absorption coefficients for the 690-742 nm range have been obtained for a sample temperature of 77 K at a spectral resolution of <0.02 cm{sup -1}. A new method of data analysis is utilized in obtaining the results. It involves deconvolving the many ILS spectral profiles that comprise the absorption bands and summing the results. Values averaged over 1 cm{sup -1} and 1 {Angstrom} intervals are provided. Band strengths also are obtained. The total intensities of the 703 and 727 nm bands are in reasonable agreement with previous laboratory determinations which were obtained for relatively high pressures of methane at room temperature using lower spectral resolution. The methane bands appear in the reflected sunlight spectra from the outer planets. Results averaged over 1 nm intervals are compared with other laboratory studies and with those derived from observations of the outer planets. The band profiles differ considerably from other laboratory results but are in good accord with the planetary observations. Laboratory spectra of methane at appropriate conditions are required for the proper interpretation of the observational data. Absorption spectra can provide some of the most sensitive diagnostic data on the atmospheres of those bodies.

  18. Whistler Emission and Absorption Coefficients from AN Anisotropic, Multi-Component Plasma Including Dielectric Response

    NASA Astrophysics Data System (ADS)

    Leid, Terrence Vincent

    The emission of electron cyclotron radiation parallel to the magnetic field direction near the fundamental frequency from a fully ionized, multi-component plasma, is investigated for finite (omega)(,p)/(omega)(,c) within the Klimontovich formalism. Each species may have T(,(PARLL)) different from T(,(PERP)) and may possess a loss cone. We use a bi- maxwellian with an analytic loss cone for each component. In addition, the source function for a multi-component plasma is calculated. We find that for a Maxwellian distribution function the emission coefficient is that of a system of shielded charges. It is shown that only in the case of a tenuous Maxwellian plasma is the source function the Rayleigh-Jeans blackbody intensity. For the case of the Maxwellian we present experimental evidence for finite density emission, (omega)('2)(,p)/(omega)('2) >> (beta). We have constructed a computer code that solves the radiative transfer equation. The resulting power spectra are used as an aid in extracting from experimental data the temperature and density of the various components of the TMX-Upgrade end cell plasma. The code compares both the Ellis-Tsakiris scheme for computing the emission coefficient for a multi-component plasma and the finite density multi -component emission coefficient. The Ellis- Tsakiris scheme estimates the emission coefficient by assuming. that each species radiates independently of each other.('1) Results are presented for the case of the TMX -Upgrade tandem mirror device. ('1)R. F. Ellis and G. D. Tsakiris, Nucl. Fusion 23, 1115 (1984).

  19. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  20. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    NASA Astrophysics Data System (ADS)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  1. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors

    NASA Astrophysics Data System (ADS)

    Mihajlov, A. A.; Srećković, V. A.; Sakan, N. M.

    2015-12-01

    The electron-ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities and temperatures. The relevant quantum mechanical method of the calculation of the corresponding spectral coefficient processes is described and discussed. The results obtained for the plasmas with the electron densities from 1014 c m -3 to 2ṡ1019 c m -3 and temperatures from 5ṡ103 K to 3ṡ104 K in the wavelength region 100 nm< λ<3000 nm are presented. Also, these results can be of interest for different laboratory plasmas.

  2. Absorption coefficients of the methane-nitrogen binary ice system: Implications for Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Grundy, W. M.; Tegler, S. C.; Bergonio, J. M.

    2015-06-01

    The methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983. Sov. J. Low Temp. Phys. 9, 94-98) indicates that at temperatures relevant to the surfaces of icy dwarf planets like Pluto, two phases contribute to the methane absorptions: nitrogen saturated with methane N2 ‾ :CH4 and methane saturated with nitrogen CH4 ‾ :N2 . No optical constants are available so far for the latter component limiting construction of a proper model, in compliance with thermodynamic equilibrium considerations. New optical constants for solid solutions of methane diluted in nitrogen (N2 :CH4) and nitrogen diluted in methane (CH4 :N2) are presented at temperatures between 40 and 90 K, in the wavelength range 1.1-2.7 μm at different mixing ratios. These optical constants are derived from transmission measurements of crystals grown from the liquid phase in closed cells. A systematic study of the changes of methane and nitrogen solid mixtures spectral behavior with mixing ratio and temperature is presented.

  3. Systematic study of Ge1-xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics

    NASA Astrophysics Data System (ADS)

    Tran, Huong; Du, Wei; Ghetmiri, Seyed A.; Mosleh, Aboozar; Sun, Greg; Soref, Richard A.; Margetis, Joe; Tolle, John; Li, Baohua; Naseem, Hameed A.; Yu, Shui-Qing

    2016-03-01

    The absorption coefficient and refractive index of Ge1-xSnx alloys (x from 0% to 10%) were characterized for the wavelength range from 1500 to 2500 nm via spectroscopic ellipsometry at room temperature. By applying physical models to fit the obtained data, two empirical formulae with extracted constants and coefficients were developed: (1) Absorption coefficient. The absorption regarding Urbach tail, indirect and direct bandgap transitions were comprehensively taken into account; (2) refractive index. The Sellmeier coefficients associated with dispersion relationship were extracted. In these formulae, the Sn composition and strain percentage were the input parameters, by inputting which the spectral absorption coefficient and spectral refractive index can be obtained. Since the absorption coefficient is key information to determine the performance of the photodetectors including operation wavelength range, responsivity, and specific detectivity, and the refractive index is very useful for the design of the anti-reflection coating for photodetectors and the layer structure for waveguides, the developed formulae could simplify the optoelectronic device design process due to their parameter-based expressions.

  4. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    SciTech Connect

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb{sub 2}O{sub 3}-SbPO{sub 4} were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n{sub 2}, of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n{sub 2} was observed by adding lead oxide to the Sb{sub 2}O{sub 3}-SbPO{sub 4} composition. Large values of n{sub 2}{approx_equal}10{sup -14} cm{sup 2}/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications.

  5. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Bernard, François; Fleming, Eric L.; Burkholder, James B.

    2015-07-01

    HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH + HCFC-133a reaction was measured between 233 and 379 K and is given by k(T) = (9.32 ± 0.8) × 10-13 exp(-(1296 ± 28)/T), where k(296 K) was measured to be (1.10 ± 0.02) × 10-14 (cm3 molecule-1 s-1) (2σ precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240 nm at 213-323 K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90) years and 0.017 (±0.001), respectively, where the ranges are based solely on the 2σ uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100 year time horizon.

  6. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  7. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.

  8. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  9. Mineral Specific IR Molar Absorption Coefficients for Routine Water Determination in Olivine, SiO2 polymorphs and Garnet

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Koch-Mueller, M.; Reichart, P.; Rhede, D.; Thomas, R.

    2007-12-01

    Conventionally applied Infrared (IR) calibrations [1, 2] for quantitative water analyses in solids are established on hydrous minerals and glasses with several wt% water. These calibrations are based on a negative correlation between the IR molar absorption coefficient (ɛ) for water and the mean wavenumber of the corresponding OH pattern. The correlation reflects the dependence of the OH band position on the appropriate O- H...O distances and thereby the magnitude of the dipole momentum which is proportional to the band intensity. However, it has been observed that these calibrations can not be adopted to nominally anhydrous minerals (NAMs) [3].To study the potential dependence of ɛ on structure and chemistry in NAMs we synthesized olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g. quartz, coesite and stishovite with B3++H+=Si4+ and/or Al3++H+=Si4+ substitutions. Experiments were performed with water in excess in piston cylinder and multi-anvil presses. Single crystal IR spectra demonstrate that we successfully managed to seperate generally complex OH patterns as e.g. observed in natural quartz and synthetic coesite. We quantified sample water contents of both natural samples and our run products by applying proton-proton-scattering [4], confocal microRaman spectroscopy [5] and Secondary Ion mass spectrometry. Resulting water concentrations were used to calculate new mineral specific ɛs. For olivine with the mean wavenumber of 3517 cm-1 we determined an ɛ value of 41,000±5,000 lmol-1H2Ocm-2. Quantification of olivine with the mean wavenumber of 3550 cm-1 in contrast resulted in an ɛ value of 47,000±1,000 lmol-1H2Ocm-2. Taking into account previous studies [6, 7] there is evidence to suggest a linear wavenumber dependent correlation for olivine, where ɛ increases with decreasing wavenumber. In case of the SiO2 system it turns out that the magnitude of ɛ within one structure type is independent of the liable OH point defect and

  10. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  11. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  12. Influence of Diffraction Effects on the Result of Measuring the Absorption Coefficient of Ultrasound in Weakly Absorbing Liquids by the Pulse Method

    NASA Astrophysics Data System (ADS)

    Shatsky, A. V.

    2016-08-01

    We consider the problem of the influence of diffraction effects on the result of measuring the absorption coefficient of ultrasound in weakly absorbing liquids by the pulse method. Diffraction attenuation of an ultrasonic signal in a measuring cell using solid-state delay lines is calculated. It is shown that the use of delay lines of the ultrasonic signal leads to a considerable distortion of the measured absorption coefficient in the low-frequency range from the true value and can either overestimate or underestimate the results.

  13. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.

    PubMed

    Prisutova, Jevgenija; Horoshenkov, Kirill; Groby, Jean-Philippe; Brouard, Bruno

    2014-12-01

    The measurement of acoustic material characteristics using a standard impedance tube method is generally limited to the plane wave regime below the tube cut-on frequency. This implies that the size of the tube and, consequently, the size of the material specimen must remain smaller than a half of the wavelength. This paper presents a method that enables the extension of the frequency range beyond the plane wave regime by at least a factor of 3, so that the size of the material specimen can be much larger than the wavelength. The proposed method is based on measuring of the sound pressure at different axial locations and applying the spatial Fourier transform. A normal mode decomposition approach is used together with an optimization algorithm to minimize the discrepancy between the measured and predicted sound pressure spectra. This allows the frequency and angle dependent reflection and absorption coefficients of the material specimen to be calculated in an extended frequency range. The method has been tested successfully on samples of melamine foam and wood fiber. The measured data are in close agreement with the predictions by the equivalent fluid model for the acoustical properties of porous media. PMID:25480044

  14. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  15. Simultaneous Measurement of Thermal Diffusivity and Optical Absorption Coefficient of Solids Using PTR and PPE: A Comparison

    NASA Astrophysics Data System (ADS)

    Fuente, R.; Mendioroz, A.; Apiñaniz, E.; Salazar, A.

    2012-11-01

    Modulated photothermal radiometry (PTR) and a modulated photopyroelectric (PPE) technique have been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector (PTR) or the electric voltage produced by a pyroelectric sensor in contact with the sample (PPE). The amplitude and phase of both photothermal signals are recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we compare the ability of modulated PTR and PPE to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the photothermal signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, transparent and opaque, good and bad thermal conductors, confirm the validity of the method. The advantages and disadvantages of both techniques are discussed.

  16. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients.

    PubMed Central

    Kruckeberg, A L; Neuhaus, H E; Feil, R; Gottlieb, L D; Stitt, M

    1989-01-01

    1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The

  17. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature. PMID:11538441

  18. Broadband Measurement of Black Carbon Absorption and Scattering Coefficients using a Supercontinuum Integrated Photoacoustic and Nephelometer Instrument

    NASA Astrophysics Data System (ADS)

    sharma, N.; Arnold, I. J.; Moosmuller, H.; Arnott, P.; Mazzoleni, C.

    2012-12-01

    the Desert Research Institute, measuring absorption and scattering coefficients of kerosene soot and sodium chloride aerosols. As a reference system we used a commercial three-wavelength photoacoustic-nephelometer instrument (DMT Inc.). Here, we present the results of this laboratory intercomparison.

  19. Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Schwemmer, G.; Gentry, B.; Giver, L. P.

    1979-01-01

    Intensities and N2 collision-broadening coefficients are measured for 62 water vapor absorption lines between 715 and 732 nm potentially applicable to laser remote sensing of atmospheric water vapor. Absolute line strengths and widths were determined from spectra corrected for instrument resolution, air-path absorption and Lorentz and Doppler broadening for pure water vapor and water vapor-nitrogen mixtures in a multipass absorption cell with a base path length of 25 m (White cell). Line strengths are observed to range from 4 x 10 to the -25th to 4 x 10 to the -23rd kayser/molecule per sq cm, and collision broadening coefficients are found to be approximately equal to 0.1 kayser/atm.

  20. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  1. Pain-mediated altered absorption and metabolism of ibuprofen: an explanation for decreased serum enantiomer concentration after dental surgery

    PubMed Central

    Jamali, Fakhreddin; Kunz-Dober, Cornelia M

    1999-01-01

    Aims Rapid onset of analgesia is essential in the treatment of acute pain. There is evidence that conditions of stress cause delayed and decreased pain relief from oral analgesic products through impaired absorption. The aim was to determine the effect of surgery for removal of wisdom teeth on the plasma concentration-time profile of ibuprofen enantiomers. Methods Racemic ibuprofen, 200 mg in one group (n=7) and 600 mg in another group (n=7) was administered 1 week before (control) and again after (test) surgical removal of wisdom teeth. Serum concentrations of ibuprofen enantiomers were measured for 6 h. Results During the control phase, S- and R-ibuprofen concentrations were within the suggested therapeutic range. Surgery resulted in a 2 h delay in the mean time to peak concentration, significant decreases in serum ibuprofen concentration following both doses, and a fall to sub-optimal serum concentrations following the 200 mg dose. During the first 2 h after the 200 mg dose, dental extraction resulted in a significant reduction of the area under serum drug concentration (AUC (0, 2 h) mg l−1 h) from 5.6±2.9 to 1.6±1.8 (P<0.01) and from 5.5±3.0 to 2.1±2.0 (P<0.05) for S and R-ibuprofen, respectively. Similar observations were made following the 600 mg dose for AUC (0, 2 h) of S-ibuprofen (from 14.2±6.1 to 7.2±5.5 mg l−1 h, P<0.05) with no significant difference for R-ibuprofen (from 14.4±9.5 to 5.8±7.1). AUC (0, 6 h) was also significantly reduced by surgery. The pattern of stereoselectivity in serum ibuprofen concentration was reversed by surgery such that the S enantiomer was predominant in the control phase but not in the post-surgery phase, which is suggestive of reduced metabolic chiral inversion. Conclusions Surgery for wisdom tooth removal resulted in substantial decreases in the serum concentration of ibuprofen enantiomers and a prolongation in the time to peak concentration. Reduced absorption and altered metabolism are the likely cause of

  2. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  3. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Pawlak, M.

    2015-01-01

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 1014-1017 cm-3.

  4. Acceptor End-Capped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for High-Efficiency Organic Solar Cells.

    PubMed

    Yuan, Liu; Lu, Kun; Xia, Benzheng; Zhang, Jianqi; Wang, Zhen; Wang, Zaiyu; Deng, Dan; Fang, Jin; Zhu, Lingyun; Wei, Zhixiang

    2016-07-01

    Acceptor end-capping of oligomeric conjugated molecules is found to be an effective strategy for simultaneous spectral broadening, extinction coefficient enhancement, and energy level optimization, resulting in profoundly enhanced power conversion efficiencies (of 9.25% and 8.91%) compared to the original oligomers. This strategy is effective in overcoming the absorption disadvantage of oligomers and small molecules due to conjugation limitation. PMID:27172541

  5. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.

    PubMed

    Abbas Ghaleb, Khalil; Georges, Joseph

    2006-01-01

    Two-photon absorption of the solvent under pulsed-laser excitation at 266 nm produces a high background thermal lens signal interfering with the analyte signal. Discrimination of both solvent and analyte signals along with calibration of the photothermal response has allowed the determination of the two-photon absorption coefficient of ethanol. The obtained value, 3.0x10(-10) cm W-1, is close to the literature values obtained from transmittance measurements using picosecond or femtosecond laser pulses. PMID:16454917

  6. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  7. Long-pathlength infrared absorption measurements in the 8- to 14-{mu}m atmospheric window: Self-broadening coefficient data

    SciTech Connect

    Kulp, T.J.; Shinn, J.

    1995-04-01

    The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 {mu}m, this absorption can be attributed primarily to water vapor. It consists of (1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the v{sub 2} rovibrational band (at the high-wavenumber boundary of the window); and (2) the water vapor continuum absorption. The goal of our project has been to improve our quantitative and physical understanding of both of these absorption processes. Specifically, our immediate aims are to fill gaps in the experimental radiative transfer databases pertaining to the line parameters (i.e., line intensities and broadening coefficients) and to the self- and foreign-broadened water vapor continuum. To accomplish our goals, we have made long-pathlength absorption measurements using a Fourier transform infrared spectrometer (FTIR) (for the continuum and line measurements, at low resolution) and a tunable diode laser absorption spectrometer (TDLAS) (for the line measurements, at high resolution). These measurements were made on gas samples contained in a 400-m maximum pathlength Horn Pimentel multipass cell designed and constructed for this project.

  8. Exponential Sum Absorption Coefficients of Phosphine from 2750 to 3550/cm for Application to Radiative Transfer Analyses on Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.

    2006-01-01

    PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.

  9. Some new methods of determining and studying the absorptivity of a medium and the generalized angular coefficients of radiation

    NASA Technical Reports Server (NTRS)

    Surinov, Y. A.; Sosnovyy, N. V.

    1975-01-01

    Local and average radiation functions, which represent purely geometric characteristics of the radiating system, are used to determine the absorptivity in a system of bodies separated by an attenuating medium.

  10. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  11. A neural network-based four-band model for estimating the total absorption coefficients from the global oceanic and coastal waters

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Cui, Tingwei; Quan, Wenting

    2015-01-01

    this study, a neural network-based four-band model (NNFM) for the global oceanic and coastal waters has been developed in order to retrieve the total absorption coefficients a(λ). The applicability of the quasi-analytical algorithm (QAA) and NNFM models is evaluated by five independent data sets. Based on the comparison of a(λ) predicted by these two models with the field measurements taken from the global oceanic and coastal waters, it was found that both the QAA and NNFM models had good performances in deriving a(λ), but that the NNFM model works better than the QAA model. The results of the QAA model-derived a(λ), especially in highly turbid waters with strong backscattering properties of optical activity, was found to be lower than the field measurements. The QAA and NNFM models-derived a(λ) could be obtained from the MODIS data after atmospheric corrections. When compared with the field measurements, the NNFM model decreased by a 0.86-24.15% uncertainty (root-mean-square relative error) of the estimation from the QAA model in deriving a(λ) from the Bohai, Yellow, and East China seas. Finally, the NNFM model was applied to map the global climatological seasonal mean a(443) for the time range of July 2002 to May 2014. As expected, the a(443) value around the coastal regions was always larger than the open ocean around the equator. Viewed on a global scale, the oceans at a high latitude exhibited higher a(443) values than those at a low latitude.

  12. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  13. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications. PMID:27045783

  14. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm

    NASA Astrophysics Data System (ADS)

    Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.

    2016-06-01

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  15. Characterization of penetration depth as a function of optical fiber separation at various absorption and scatter coefficients for a noninvasive metabolic sensor

    NASA Astrophysics Data System (ADS)

    DeMilo, Charles; Brukilacchio, Thomas; Soller, Babs R.; Soyemi, Olusola

    2004-06-01

    A visible-near IR (500-1,000nm) fiber optic sensor is under development that is intended to non-invasively assess muscle metabolism through the measurement of tissue pH and oxygen partial pressure. These parameters are calculated from the spectra of hemoglobin and myoglobin in muscle. The sensor consists of transmit (illumination) fibers and receive (detection) fibers that are coupled to a spectrometer. Light from the probe must penetrate below the surface of the skin and into a 5-10mm thick layer of muscle. A study was conducted to quantify the relationship between transmit and receive fiber separation and sensor penetration depth below the surface of the skin. A liquid phantom was created to replicate the absorption (μa) and reduced scatter coefficient (μs') profiles typically found in human blood and tissue. The phantom consisted of a solution of Intralipid and India ink in the appropriate concentrations to achieve desired reduced scatter coefficient and absorption profiles. The reduced scatter coefficient of the liquid phantom was achieved to an accuracy of +/-10% compared to previously published data. A fixed illumination fiber and translatable detector fiber were placed in the liquid phantom, and the fiber separation was varied from 3-40mm. Values of μa and μs' varied from 0.03-0.40 cm-1 and 5.0-15.0 cm-1 respectively. Results from the experiment demonstrate a strong correlation between penetration depth and fiber separation. Additionally, it was found that penetration depth was not substantially influenced by absorption and scatter concentration. As signal-to-noise is an important parameter in many non-invasive biomedical applications, the relative signal as a function of fiber separation was determined to follow an exponential relationship.

  16. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  17. Determination of mass attenuation coefficient by numerical absorption calibration with Monte-Carlo simulations at 59.54 keV

    NASA Astrophysics Data System (ADS)

    Degrelle, D.; Mavon, C.; Groetz, J.-E.

    2016-04-01

    This study presents a numerical method in order to determine the mass attenuation coefficient of a sample with an unknown chemical composition at low energy. It is compared with two experimental methods: a graphic method and a transmission method. The method proposes to realise a numerical absorption calibration curve to process experimental results. Demineralised water with known mass attenuation coefficient (0.2066cm2g-1 at 59.54 keV) is chosen to confirm the method. 0.1964 ± 0.0350cm2g-1 is the average value determined by the numerical method, that is to say less than 5% relative deviation compared to more than 47% for the experimental methods.

  18. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    NASA Astrophysics Data System (ADS)

    Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  19. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Evans, R. D.; Labow, G. J.; Oltmans, S. J.

    2005-05-01

    The Dobson spectrophotometer is the primary standard instrument for ground-based measurements of total column ozone. The accuracy of its data depends on the knowledge of ozone absorption coefficients used for data reduction. We document an error in the calculations that led to the set of absorption coefficients currently recommended by the World Meteorological Organisation (WMO). This error has little effect because an empirical adjustment was applied to the original calculations before the coefficients were adopted by WMO. We provide evidence that this adjustment was physically sound. The coefficients recommended by WMO are applied in the Dobson network without correction for the temperature dependence of the ozone absorption cross sections. On the basis of data measured by Dobson numbers 80 and 82, which were operated by the National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory at the South Pole, we find that omission of temperature corrections may lead to systematic errors in Dobson ozone data of up to 4%. The standard Dobson ozone retrieval method further assumes that the ozone layer is located at a fixed height. This approximation leads to errors in air mass calculations, which are particularly relevant at high latitudes where ozone measurements are performed at large solar zenith angles (SZA). At the South Pole, systematic errors caused by this approximation may exceed 2% for SZAs larger than 80°. The bias is largest when the vertical ozone distribution is distorted by the "ozone hole" and may lead to underestimation of total ozone by 4% at SZA = 85° (air mass 9). Dobson measurements at the South Pole were compared with ozone data from a collocated SUV-100 UV spectroradiometer and Version 8 overpass data from NASA's Total Ozone Mapping Spectrometer (TOMS). Uncorrected Dobson ozone values tend to be lower than data from the two other instruments when total ozone is below 170 Dobson units or SZAs are larger than

  20. Normalized-constraint method for minimizing interparameter cross-talk in reconstructed images of spatially heterogeneous scattering and absorption coefficients

    NASA Astrophysics Data System (ADS)

    Pei, Yaling; Graber, Harry L.; Barbour, Randall L.

    2001-06-01

    In this report, we present a method to reduce the cross-talk problem in optical tomography. The method described is an extension of a previously reported perturbation formulation related to relative detector values, and employs a weight matrix scaling technique together with a constrained CGD method for imaging reconstruction. Results from numerical and experimental studies using DC measurement data demonstrate that the approach can effectively isolate absorption and scattering heterogeneities, even for complex combinations of perturbations in optical properties. The derive method is remarkably stable to errors originating from an insufficiently accurate estimate of properties of the reference medium.

  1. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  2. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  3. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  4. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Nmira, F.

    2016-03-01

    The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.

  5. Airborne Measurements of Scattering and Absorption Coefficients in the Planetary Boundary Layer above the Po Valley, Italy, during the PEGASOS Campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Weingartner, E.; Gysel, M.; Tillmann, R.; Mentel, T. F.; Decesari, S.; Marinoni, A.; Gobbi, G. P.; Fierli, F.; Cairo, F.; Bucci, S.; Zanatta, M.; Größ, J.; Baltensperger, U.

    2014-12-01

    Aerosol particles influence the Earth's radiation budget by interacting with the incoming sunlight. The chemical composition and size of aerosol particles determine their potential to scatter and absorb radiation as well as their capability to take up water (Zieger et al., 2011). If particles are hygroscopic their optical properties will be altered at enhanced relative humidities (RH) due to the increase in size and change in index of refraction. It is known that RH but also the chemical composition of aerosols change with altitude (Morgan et al., 2010) which makes it very important to investigate optical properties at different heights. Within the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) a set of instruments was installed on a Zeppelin to investigate changes of light scattering and absorption in the planetary boundary layer. In order to obtain the scattering properties, Mie calculations were performed for size distributions recorded with SMPS (scanning mobility particle sizer) and WELAS (optical size spectrometer). The index of refraction and the hygroscopicity of the aerosol particles were measured with the white-light humidified optical particle spectrometer (WHOPS). These measurements further allowed studying the RH-dependence of the optical properties. Moreover, a seven wavelength portable aethalometer was employed to determine the light absorption properties of the aerosol. In this work we will present vertical profiles of scattering and absorption coefficients measured during Zeppelin flights of the PEGASOS campaigns in Italy in 2012. Additionally comparisons with ground based measurements from nephelometers and aethalometers, as well as remote sensing results will be shown. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171.P. Zieger et al., Comparison of ambient aerosol

  6. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  7. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.

    PubMed

    Greening, Gage J; Istfan, Raeef; Higgins, Laura M; Balachandran, Kartik; Roblyer, Darren; Pierce, Mark C; Muldoon, Timothy J

    2014-01-01

    Optical phantoms are used in the development of various imaging systems. For certain applications, the development of thin phantoms that simulate the physical size and optical properties of tissue is important. Here, we demonstrate a method for producing thin phantom layers with tunable optical properties using poly(dimethylsiloxane) (PDMS) as a substrate material. The thickness of each layer (between 115 and 880 μm) was controlled using a spin coater. The reduced scattering and absorption coefficients were controlled using titanium dioxide and alcohol-soluble nigrosin, respectively. These optical coefficients were quantified at six discrete wavelengths (591, 631, 659, 691, 731, and 851 nm) at varying concentrations of titanium dioxide and nigrosin using spatial frequency domain imaging. From the presented data, we provide lookup tables to determine the appropriate concentrations of scattering and absorbing agents to be used in the design of PDMS-based phantoms with specific optical coefficients. In addition, heterogeneous phantoms mimicking the layered features of certain tissue types may be fabricated from multiple stacked layers, each with custom optical properties. These thin, tunable PDMS optical phantoms can simulate many tissue types and have broad imaging calibration applications in endoscopy, diffuse optical spectroscopic imaging, and optical coherence tomography, etc. PMID:25387084

  8. The in vitro permeability coefficient and short-term absorption rates for vinyl toluene using human cadaver skin mounted in a static diffusion cell model.

    PubMed

    Fasano, William J; Baer, Kevin N

    2006-01-01

    Vinyl toluene is one of several methylstyrene monomers that provide improved performance in resins for specialty paints, hydrocarbon resins for adhesives, specialty polymers, and unsaturated polyester resins. The purpose of this study was to determine a permeability coefficient (Kp) and short-term absorption rate for vinyl toluene using human cadaver skin mounted in an in vitro static diffusion cell model with an exposure area of 0.64 cm2. For the Kp determination, vinyl toluene was applied at a rate of 100 microL/cm2 to 6 skin replicates representing 4 human subjects. Serial receptor fluid samples were collected at 1, 2, 4, 8, 12, 24, 36, and 48 h postapplication and analyzed for vinyl toluene by HPLC-UV. Based on the slope at steady-state (203.3 microg cm(-2) h(-1) +/- 120.0 microg cm(-2) h(-1)) and the concentration of the applied dose of vinyl toluene, taken as its density (894,600 microg/cm3), the Kp was calculated to be 2.27 x 10(-4) cm/h (+/-1.34 x 10(-4) cm/h). For the short-term absorption experiments, 12 skin replicates representing 3 human subjects were employed. Following 10- and 60-min exposures to a finite dose of vinyl toluene (10 microL/cm2), the respective short-term absorption rates were calculated to be 66.0 (+/-29.9) and 104.2 (+/-63.0) microg cm(-2) h(-1). These data provide industrial hygienists and safety personnel values to estimate the amount of vinyl toluene that may be absorbed via the dermal exposure route, given a variety of exposure scenarios, and the time it takes (skin absorption time) to reach a body burden equal to the Occupational Safety and Health Administrative permissible exposure level (OSHA PEL) or ACGIH TLV. PMID:16455589

  9. Mean absorption coefficient of H2O-air-MgCl2/CaCl2/NaCl thermal plasmas

    NASA Astrophysics Data System (ADS)

    Hannachi, R.; Cressault, Y.; Salem, D.; Teulet, Ph; Béji, L.; Ben Lakhdar, Z.

    2012-12-01

    Under the local thermodynamic equilibrium hypothesis, the mean absorption coefficients (MACs) were calculated for H2O-air-MgCl2/CaCl2/NaCl thermal plasmas in a temperature range from 300 to 30 000 K and at atmospheric pressure. The MACs were computed under the hypothesis of isothermal plasmas which allows a good description of the radiation absorbed in cold regions. In this study, we took into account the absorption radiation resulting from the atomic continuum, molecular continuum, atomic lines and some molecular bands. Free-free transitions (bremsstrahlung) and free-bound (electron-ion recombination and electron attachment) or bound-free transitions in terms of absorption were considered for the calculation of atomic continuum. For bound-bound transitions, natural, resonance, van der Waals, Stark and Doppler effects were taken into account for the line broadenings while the escape factors were used to treat the self-absorption of the resonance lines. Molecular continuum was considered for the main molecules (H2, O2, N2, OH, NO, H2O, N2O, NO2, O3, NO3 and N2O5) whereas we studied only diatomic systems O2, N2, NO and N_2^+ for the absorption of molecular bands. The influence of the proportion of MgCl2, CaCl2 or NaCl in a water-air mixture was analysed as the effect of the strong self-absorbed resonance lines of the alkaline salts (Ca, Ca+, Na, Na+, Mg, Mg+, Cl and Cl+). Our results show that a low concentration of alkaline salts (less than 1% in molar proportions) in the plasma increased the MACs at low temperatures (T < 10 000 K) due to the resonance lines mainly localized in the near-UV and visible spectral regions in opposition to hydrogen, oxygen or nitrogen species for which 90% of them exist in ultraviolet. In addition to the atomic and molecular continuum, the absorption radiation of molecular bands is important at low temperatures.

  10. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Vodacek, Anthony; Swift, Robert N.; Yungel, James K.; Blough, Neil V.

    1995-10-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed

  11. Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential

    NASA Astrophysics Data System (ADS)

    Mandal, Arkajit; Sarkar, Sucharita; Ghosh, Arghya Pratim; Ghosh, Manas

    2015-12-01

    We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise.

  12. Comparison of the light absorption coefficient and carbon measures for remote aerosols: An independent analysis of data from the IMPROVE network—I

    NASA Astrophysics Data System (ADS)

    Huffman, H. Dale

    Using the IMPROVE network aerosol data from rural or remote sites across the United States, the ratio of the optically measured light absorption coefficient ( σa) to the elemental carbon measured by Thermal/Optical Reflectance (TOR) analysis consistently indicates an absorption efficiency that is twice the accepted value of 10m 2g -1. Correlations between σa and the TOR carbon strongly suggest that the discrepancy is due to an underevaluation of light-absorbing carbon rather than to an overestimation of σa or a real, higher value of the absorption efficiency. In particular, past doubts about the accuracy and precision of the IMPROVE σa measurement are here shown to be unsupported by the IMPROVE data. The large empirical correction that is applied to this σa measurement, for multiple scattering effects due to filter mass loading, is given a new explanation as the effect of an increasing forward scattering fraction as sample thickness increases. The old explanation of shadowing by overlying particles in the sample is rejected as having just the opposite effect to that needed to explain the correction. The use of a diffuse source rather than a laser beam is indicated as a way to avoid the large empirical correction of σa. Modelling of the light absorption by TOR carbon measurements, at twelve remote sites over a wide portion of the western United States, suggests the following errors in the current interpretation of TOR analysis for these sites: (1) The pyrolysis correction, based upon optical reflectance monitoring, appears to be largely wrong; and (2) The carbon evolving between 450 and 550°C in a pure helium atmosphere, currently interpreted as organic and therefore non-light-absorbing, appears to be as strongly light-absorbing as elemental carbon. However, the present analysis indicates that for a large majority (˜90%) of samples the light-absorbing carbons, as reinterpreted herein, are not only measured accurately by TOR, they are also reasonably well

  13. An inversion model based on salinity and remote sensing reflectance for estimating the phytoplankton absorption coefficient in the Saint Lawrence Estuary

    NASA Astrophysics Data System (ADS)

    Montes-Hugo, Martin; Xie, Huxiang

    2015-10-01

    The inversion of individual inherent optical properties (IOPs) is very challenging in optically complex waters and within the violet spectral range (i.e., 380-450 nm) due to the strong light attenuation caused by chromophoric dissolved organic matter, nonalgal particulates, and phytoplankton. Here we present a technique to better discriminate light absorption contributions due to phytoplankton based on a hybrid model (QAA-hybrid) that combines regional Saint Lawrence System estimates of IOPs derived from a quasi-analytical algorithm (hereafter QAA-SLE) and empirical relationships between salinity and IOPs. Preliminary results in the Saint Lawrence System during May 2000 and April 2001 showed that QAA-hybrid estimates of phytoplankton absorption coefficient at 443 nm have a smaller bias with respect to in situ measurements (root-mean-square deviation, RMSD = 0.156) than those derived from QAA-SLE (RMSD = 0.341). These results were valid for surface waters (i.e., 0-5 m depth) of the lower estuary with a salinity and chlorophyll-a concentration range of 22-28 psu and 2.1-13.8 mg m-3, respectively.

  14. Measurement of mass attenuation coefficients in some Cr, Co and Fe compounds around the absorption edge and the validity of the mixture rule

    NASA Astrophysics Data System (ADS)

    Turgut, U.; Simsek, O.; Büyükkasap, E.

    2007-08-01

    The total mass attenuation coefficients for elements Cr, Co and Fe and compounds CrCl_{2}, CrCl_{3}, Cr_{2}(SO_{4})_{3}K_{2}SO_{4}\\cdot24H_{2}O, CoO, CoCl_{2}, Co(CH_{3}COO)_{2}, FePO_{4}, FeCl_{3}\\cdot6H_{2}O, Fe(SO_{4})_{2}NH_{4}\\cdot12H_{2}O were measured at different energies between 4.508 and 14.142 keV using secondary excitation method. Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr were chosen as secondary exciters. 59.5 keV γ-rays emitted from a ^{241}Am annular source were used to excite a secondary exciter and K_{α}(K-L_{3}, L_{2}) lines emitted by the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. It was observed that mixture rule method is not a suitable method for determination of the mass attenuation coefficients of compounds, especially at an energy that is near the absorption edge. The obtained values were compared with theoretical values.

  15. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    SciTech Connect

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.

  16. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    PubMed

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection. PMID:26321474

  17. Hypolipidemic Effect of a Blue-Green Alga (Nostoc commune) Is Attributed to Its Nonlipid Fraction by Decreasing Intestinal Cholesterol Absorption in C57BL/6J Mice.

    PubMed

    Ku, Chai Siah; Kim, Bohkyung; Pham, Tho X; Yang, Yue; Weller, Curtis L; Carr, Timothy P; Park, Young-Ki; Lee, Ji-Young

    2015-11-01

    We previously demonstrated that Nostoc commune var. sphaeroids Kützing (NO), a blue-green alga (BGA), exerts a hypolipidemic effect in vivo and its lipid extract regulates the expression of genes involved in cholesterol and lipid metabolism in vitro. The objective of this study was to investigate whether the hypolipidemic effect of NO is attributed to an algal lipid or a delipidated fraction in vivo compared with Spirulina platensis (SP). Male C57BL/6J mice were fed an AIN-93M diet containing 2.5% or 5% of BGA (w/w) or a lipid extract equivalent to 5% of BGA for 4 weeks to measure plasma and liver lipids, hepatic gene expression, intestinal cholesterol absorption, and fecal sterol excretion. Plasma total cholesterol (TC) was significantly lower in 2.5% and 5% NO-fed groups, while plasma triglyceride (TG) levels were decreased in the 5% NO group compared with controls. However, neither NO organic extract (NOE) nor SP-fed groups altered plasma lipids. Hepatic mRNA levels of sterol regulatory element-binding protein 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), carnitine palmitoyltransferase-1α, and acyl-CoA oxidase 1 were induced in 5% NO-fed mice, while there were no significant changes in hepatic lipogenic gene expression between groups. NO, but not NOE and SP groups, significantly decreased intestinal cholesterol absorption. When HepG2 cells and primary mouse hepatocytes were incubated with NOE and SP organic extract (SPE), there were marked decreases in protein levels of HMGR, low-density lipoprotein receptor, and fatty acid synthase. In conclusion, the nonlipid fraction of NO exerts TC and TG-lowering effects primarily by inhibiting intestinal cholesterol absorption and by increasing hepatic fatty acid oxidation, respectively. PMID:26161942

  18. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  19. Evaluation of Compton attenuation and photoelectric absorption coefficients by convolution of scattering and primary functions and counts ratio on energy spectra

    PubMed Central

    Ashoor, Mansour; Asgari, Afrouz; Khorshidi, Abdollah; Rezaei, Ali

    2015-01-01

    Purpose: Estimation of Compton attenuation and the photoelectric absorption coefficients were explored at various depths. Methods: A new method was proposed for estimating the depth based on the convolution of two exponential functions, namely convolution of scattering and primary functions (CSPF), which the convolved result will conform to the photopeak region of energy spectrum with the variable energy-window widths (EWWs) and a theory on the scattering cross-section. The triple energy-windows (TEW) and extended triple energy-windows scatter correction (ETEW) methods were used to estimate the scattered and primary photons according to the energy spectra at various depths due to a better performance than the other methods in nuclear medicine. For this purpose, the energy spectra were employed, and a distinct phantom along with a technetium-99 m source was simulated by Monte Carlo method. Results: The simulated results indicate that the EWW, used to calculate the scattered and primary counts in terms of the integral operators on the functions, was proportional to the depth as an exponential function. The depth will be calculated by the combination of either TEW or ETEW and proposed method resulting in the distinct energy-window. The EWWs for primary photons were in good agreement with those of scattered photons at the same as depths. The average errors between these windows for both methods TEW, and ETEW were 7.25% and 6.03% at different depths, respectively. The EWW value for functions of scattered and primary photons was reduced by increasing the depth in the CSPF method. Conclusions: This coefficient may be an index for the scattering cross-section. PMID:26170567

  20. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.

    PubMed

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike

    2015-04-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance. PMID:25632025

  1. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption

    PubMed Central

    Agné, Alisa M.; Baldin, Jan-Peter; Benjamin, Audra R.; Orogo-Wenn, Maria C.; Wichmann, Lukas; Olson, Kenneth R.; Walters, Dafydd V.

    2015-01-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5–50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance. PMID:25632025

  2. Influence of vitamin D and estrogen receptor gene polymorphisms on calcium absorption: BsmI predicts a greater decrease during energy restriction.

    PubMed

    Chang, B; Schlussel, Y; Sukumar, D; Schneider, S H; Shapses, S A

    2015-12-01

    Low calcium absorption is associated with low bone mass and fracture. In this study, we use gold standard methods of fractional calcium absorption (FCA) to determine whether polymorphisms of intestinal receptors, vitamin D receptor (VDR) and estrogen receptor α (ESR1), influence the response to energy restriction. Fractional calcium absorption was measured using dual stable isotopes ((42)Ca and (43)Ca) in women given adequate calcium and vitamin D and examined at baseline and after 6 weeks of energy restriction or no intervention. After genotyping, the relationship between VDR and ESR1 genotypes/haplotypes and FCA response was assessed using several genetic models. One-hundred and sixty-eight women (53 ± 11 years of age) were included in this analysis. The ESR1 polymorphisms, PvuII and XbaI and VDR polymorphisms (TaqI, ApaI) did not significantly influence FCA. The BB genotype of the VDR polymorphism, BsmI, was associated with a greater decrease in FCA than the Bb/bb genotype. Multiple linear regression showed that the BsmI polymorphism or the VDR haplotype, BAt, in addition to changes in weight and vitamin D intake explained ~16% of the variation in changes in FCA. In conclusion, the reduction in calcium absorption due to energy restriction is greatest for those with the BB genotype. Previous candidate gene studies show that VDR polymorphisms are associated with higher risk for osteoporosis, and the current study supports the notion that the BsmI polymorphism in intestinal VDR may be contributing to alterations in bone health. PMID:26165414

  3. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

    PubMed

    Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru

    2006-12-21

    Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the

  4. K-shell absorption jump factors and jump ratios in elements between Tm ( Z = 69) and Os ( Z = 76) derived from new mass attenuation coefficient measurements

    NASA Astrophysics Data System (ADS)

    Kaya, Necati; Tıraşoğlu, Engin; Apaydın, Gökhan; Aylıkcı, Volkan; Cengiz, Erhan

    2007-08-01

    The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2O 3, Yb 2O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time.

  5. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  6. Green tea extract decreases starch digestion and absorption from a test meal in humans: a randomized, placebo-controlled crossover study

    PubMed Central

    Lochocka, Klaudia; Bajerska, Joanna; Glapa, Aleksandra; Fidler-Witon, Ewa; Nowak, Jan K.; Szczapa, Tomasz; Grebowiec, Philip; Lisowska, Aleksandra; Walkowiak, Jaroslaw

    2015-01-01

    Green tea is known worldwide for its beneficial effects on human health. However, objective data evaluating this influence in humans is scarce. The aim of the study was to assess the impact of green tea extract (GTE) on starch digestion and absorption. The study comprised of 28 healthy volunteers, aged 19 to 28 years. In all subjects, a starch 13C breath test was performed twice. Subjects randomly ingested naturally 13C-abundant cornflakes during the GTE test (GTE 4 g) or placebo test. The cumulative percentage dose recovery (CPDR) was significantly lower for the GTE test than for the placebo test (median [interquartile range]: 11.4% [5.5–15.5] vs. 16.1% [12.7–19.5]; p = 0.003). Likewise, CPDR expressed per hour was considerably lower in each point of the measurement. In conclusion, a single dose of green tea extract taken with a test meal decreases starch digestion and absorption. PMID:26226166

  7. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  8. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.

    PubMed

    Stadler, H; Klock, E; Skritek, P; Mach, R L; Zerobin, W; Farnleitner, A H

    2010-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n>800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated. PMID:20962406

  9. Imaging of highly turbid media by the absorption method

    NASA Astrophysics Data System (ADS)

    Contini, Daniele; Liszka, Heather; Sassaroli, Angelo; Zaccanti, Giovanni

    1996-05-01

    The results of a study on imaging that is based on the absorption method are presented. This method is based on attenuation measurements carried out in the presence of a sufficiently high absorption coefficient by the use of a continuous-wave source. The benefit of absorption on image quality comes from the strong attenuation of photons traveling along long trajectories. When the absorption coefficient is increased, the received energy decreases, but the mean path length of received photons decreases. The effect of increasing the absorption coefficient is similar to that of decreasing the gating time when the time-gating technique is used. Experimental results showed that the spatial resolution obtained with the absorption technique is similar to that obtained with the time-gating technique. method, spatial resolution, turbid media.

  10. Absorption coefficient, transition probability, and collision-broadening frequency of dimethylether at He-Xe laser 3.51-micron wavelength

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Wang, S. C.

    1970-01-01

    Absorptivity, transition probability and collision broadening frequency of dimethylether at 3.51 micron He-Xe laser wavelength, noting pressure dependence, transition lifetime and saturation intensity

  11. A linear relationship between the Hall carrier concentration and the effective absorption coefficient measured by means of photothermal radiometry in IR semi-transparent n-type CdMgSe mixed crystals

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Maliński, M.; Firszt, F.; Pelzl, J.; Ludwig, A.; Marasek, A.

    2014-03-01

    In this work we demonstrate the ability to measure the effective infrared absorption coefficient in semiconductors by a photothermal infrared radiometry (PTR) experiment, and its correlation with the Hall carrier concentration. The amplitude and phase of the PTR signal were measured for Cd1-xMgxSe mixed crystals, with the magnesium content varying from x = 0 to x = 0.15. The PTR experiments were performed at room temperature in thermal reflection and transmission configurations using a mercury cadmium telluride infrared detector. The PTR data were analyzed in the frame of the one-dimensional heat transport model for infrared semi-transparent crystals. Based on the variation of the normalized PTR phase and amplitude on the modulation frequency, the thermal diffusivity and the effective infrared absorption coefficient were obtained by fitting the theoretical expression to experimental data and compared with the Hall carrier concentration determined by supplementary Hall experiments. A linear relationship between the effective infrared absorption coefficient and the Hall carrier concentration was found which is explained in the frame of the Drude theory. The uncertainty of the measured slope was 6%. The value of the slope depends on (1) the sample IR absorption spectrum and (2) the spectral range of the infrared detector. It has to be pointed out that this method is suitable for use in an industrial environment for a fast and contactless carrier concentration measurement. This method can be used for the characterization of other semiconductors after a calibration procedure is carried out. In addition, the PTR technique yields information on the thermal properties in the same experiment.

  12. Ergot alkaloids from endophyte-infected tall fescue decrease reticulo-ruminal epithelial blood flow and volatile fatty acid absorption from a washed reticulorumen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen. Steers (n = 8) were pair-fed alfalfa cubes and received ground endophyte-infected tall fescue seed (E+; 0.015 mg ergovaline•kg BW-1•d-1) or endophyte-free tall fescue seed (E-) via r...

  13. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    SciTech Connect

    Dakhlaoui, Hassen

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)

  14. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  15. Dual-energy X-ray analysis using synchrotron computed tomography at 35 and 60 keV for the estimation of photon interaction coefficients describing attenuation and energy absorption.

    PubMed

    Midgley, Stewart; Schleich, Nanette

    2015-05-01

    A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV. PMID:25931101

  16. High levels of dietary unsaturated fat decrease alpha-tocopherol content of whole body, liver, and plasma of chickens without variations in intestinal apparent absorption.

    PubMed

    Villaverde, C; Baucells, M D; Manzanilla, E G; Barroeta, A C

    2008-03-01

    An experiment was designed to assess the effect of dietary unsaturated fat inclusion level on alpha-tocopherol apparent absorption and deposition in broiler chickens at 2 ages (20 and 39 d). The dietary fat was a mixture of linseed and fish oil, rich in polyunsaturated fatty acids (PUFA). The experimental treatments were the result of 4 levels of supplementation with alpha-tocopheryl acetate (0, 100, 200, and 400 mg/kg; E0, E100, E200, and E400 treatments, respectively) and 4 dietary oil inclusion levels (2, 4, 6, and 8%; O2, O4, O6, and O8 treatments respectively). Almond husk was used as an energy dilutor in the high-fat diets. Apparent absorption of total fatty acids was high in all treatments averaging 88% and was higher with high fat dietary inclusion level. alpha-Tocopheryl acetate hydrolysis and apparent absorption of alpha-tocopherol were similar in both ages and were not affected by fat inclusion level, except for a reduction of the absorption in the low-fat diet (O2) in the E100 treatment at 20 d of age. Despite this lack of differences in hydrolysis and absorption, higher-fat PUFA diets induced lower concentrations of free alpha-tocopherol in the excreta, at high alpha-tocopherol doses, suggesting an increase in the destruction of alpha-tocopherol by lipid oxidation in the gastrointestinal tract. Similarly, total and hepatic alpha-tocopherol deposition was lower in the birds fed high-PUFA diets in the E200- and E400-supplemented birds, possibly due to a destruction of vitamin E when protecting these PUFA from lipid peroxidation. alpha-Tocopherol concentration in liver and, to a lesser extent, in plasma was a useful indicator of the degree of response of this vitamin to different factors that can affect its bioavailability; however, in the present experiment, CV were too high to use liver and plasma concentrations as estimators of total body vitamin E. PMID:18281576

  17. EXTENSION OF THE INVERSE ADDING-DOUBLING METHOD TO THE MEASUREMENT OF WAVELENGTH-DEPENDENT ABSORPTION AND SCATTERING COEFFICIENTS OF BIOLOGICAL SAMPLES

    SciTech Connect

    Allegood, M.S.; Baba, J.S.

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.

  18. Salmon Protamine Decreases Serum and Liver Lipid Contents by Inhibiting Lipid Absorption in an In Vitro Gastrointestinal Digestion Model and in Rats.

    PubMed

    Hosomi, Ryota; Miyauchi, Kazumasa; Yamamoto, Daiki; Arai, Hirofumi; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-10-01

    Protamine has been used as an antiheparin drug and a natural preservative in various food products. However, limited studies have evaluated the physicochemical and functional properties of protamine. Hence, we assessed the mechanisms underlying the inhibition of lipid absorption following salmon protamine intake in in vitro and in vivo studies. In initial experiments, a salmon protamine hydrolyzate (PH) was prepared using in vitro simulated gastrointestinal digestion suppressed pancreatic lipase activity and micellar cholesterol solubility. This PH had higher bile acid-binding capacity and emulsion breakdown activity than casein hydrolyzate and l-arginine. However, the hypolipidemic functions of protamine were dramatically reduced by pancreatin digestion. In further experiments, groups of male Wistar rats were fed an AIN-93G diet containing 5% (wt/wt) salmon protamine or a protamine amino acid mixture. After 4 wk of feeding with experimental diets, reductions in serum and liver triacylglycerol (TAG) and cholesterol contents were observed in the presence of protamine, reflecting inhibition of TAG, cholesterol, and bile acid absorption. These data suggest that the formation of insoluble PH-bile acid complexes is critical before the bile acid-binding capacity is reduced. Therefore, dietary salmon protamine may ameliorate lifestyle-related diseases such as hyperlipidemia and obesity. PMID:26352573

  19. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  20. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  1. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  2. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  3. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  4. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  5. The emission coefficient of uranium plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.

  6. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of CF3CH2F (HFC-134a).

    PubMed

    González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José

    2015-04-01

    CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under

  7. [THE EFFECT OF SATINS: ACTIVATION OF LIPOLYSIS AND ABSORPTION BY INSULIN-DEPENDED CELLS LIPOPROTEINS OF VERY LOW DENSITY, INCREASING OF BIO-AVAILABILITY OF POLYENOIC FATTY ACIDS AND DECREASING OF CHOLESTEROL OF LIPOPROTEINS OF LOW DENSITY].

    PubMed

    Titov, V N; Malyshev, P P; Amelyushkina, V A; Aripovsky, A V; Smirnov, G P; Polevaya, T Yu; Kabo, S I; Kukhartchuk, V V

    2015-10-01

    The Russian cardiologic R&D production complex of Minzdrav of Russia, 121552 Moscow, Russia The statins are synthetic xenobiotics alien to animal cells. They are unlikely capable to manifest pleiotropic effect. It is feasible to evaluate effect of statins by stages: a) initially a specific inhibition of synthesis of cholesterol alcohol; b) further indirect activation of hydrolysis of triglycerides in lipoproteins of very low density; c) nonspecific activation of cells' receptor absorption of palmitic and oleic lipoproteins of very low density and then d) linoleic and linolenic lipoproteins of low density with all polyenoic fatty acids. On balance, statins activate absorption ofpolyenoic fatty acids by cells. Just they manifest physiological, specific pleiotropic effect. The statins inhibit synthesis of pool of cholesterol alcohol-lipoproteins of very low density condensed between phosphatidylcholines in polar mono-layer phosphatidylcholines+cholesterol alcohol on surface oftriglycerides. The low permeability of mono-layer separates substrate-triglycerides in lipoproteins of very low density and post-heparin lipoprotein lipase in hydrophilic blood plasma. The higher is ratio cholesterol alcohol/phosphatidylcholines in mono-layer of lipoproteins of very low density the slower is lipolysis, formation of ligand lipoproteins of very low density and their absorption by cells under apoB-100-endocytosis. The statins normalize hyperlipemia by force of a) activation of absorption oflipoproteins of very low density by insulin-depended cells and b) activation of absorption of lipoproteins of low density by all cells, increasing of bio-availability of polyenoic fatty acids, activation of apoB-100-endocytosis. The limitation in food of content of palmitic saturated fatty acid and increasing of content of ω-3 polyenoic fatty acids improve "bio-availability" of polyenoic fatty acids and their absorption by cells and also decreases cholesterol alcohol/phosphatidylcholines and

  8. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    SciTech Connect

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu; John, Honey

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  9. Removal of OH Absorption Bands Due to Pyrohydrolysis Reactions in Fluoride-Containing Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keiji

    1997-05-01

    The purpose of this study is to decrease and to remove OH ions and H2O in borosilicate glasses. Fluoride-containing borosilicate glasses followed by dry-air-bubbling showed the significant decrease of OH absorption bands around 3500 cm-1. The decrease of OH absorption bands was elucidated by the use of pyrohydrolysis reactions in these glasses where fluoride ions react with OH ions or H2O during melting. The rates of the decrease of OH absorption bands substantially depend on high valence cations of fluorides. Particularly, the decrease rates of OH absorption coefficients were in the order of ZrF4-containing glass>AlF3-containing glass>ZnF2-containing glass. ZrF4-containing glass treated by dry-air-bubbling showed a good capability to remove OH absorption band. Fluoride-containing glasses showed the low flow point in comparison with fluoride-free glasses.

  10. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  11. Characteristic of Absorption Heat Transfer using LiBr+LiI Solution

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige

    LiBr-H20 absorption chiller is widely used in Japan, and many research have been made for absorption characteristic in terms of enhancing heat transfer. Another study have been performed for widening working range with higher crystallization limits, and it was reported that adding LiI salt to LiBr-H20 working fluid provide about 5 [mass%] higher crystallization limit under the condition of absorption pressure range. It is necessary to reveal absorption heat transfer performance to utilize this working fluid pair for absorption chiller. In this study absorption heat transfer characteristic was investigated for horizontal and vertical tube. As a result, it was found that heat transfer coefficient increased as mass flow rate of solution increased and mass concentration of solution decrease and that these characteristic were almost the same as LiBr solution, though this solution gave slightly less heat transfer coefficient than LiBr solution.

  12. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  13. Magnetic field control of the intraband optical absorption in two-dimensional quantum rings

    SciTech Connect

    Olendski, O.; Barakat, T.

    2014-02-28

    Linear and nonlinear optical absorption coefficients of the two-dimensional semiconductor ring in the perpendicular magnetic field B are calculated within independent electron approximation. Characteristic feature of the energy spectrum are crossings of the levels with adjacent nonpositive magnetic quantum numbers as the intensity B changes. It is shown that the absorption coefficient of the associated optical transition is drastically decreased at the fields corresponding to the crossing. Proposed model of the Volcano disc allows to get simple mathematical analytical results, which provide clear physical interpretation. An interplay between positive linear and intensity-dependent negative cubic absorption coefficients is discussed; in particular, critical light intensity at which additional resonances appear in the total absorption dependence on the light frequency is calculated as a function of the magnetic field and levels' broadening.

  14. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  15. Extension of depth-resolved reconstruction of attenuation coefficients in optical coherence tomography for slim samples

    NASA Astrophysics Data System (ADS)

    Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael

    2015-12-01

    Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.

  16. Measurement of the absorption of nonlinear crystals used for high-average-power frequency doubling

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Seidel, Stefan

    1997-07-01

    The absorption coefficients of nonlinear crystals for fundamental and second harmonic wave are of great importance for high average power second harmonic generation. A practical method to measure low absorption coefficients for high average power second harmonic generation. A practical method to measure low absorption coefficients is to use an interferometric laser calorimeter with high power lasers. Therefore Q-switched Nd:YAG laser systems with intracavity second harmonic generation are used. The measurements are made with optical powers up to 300 W and 45 W, respectively. Because of the high power, the resolution limit for the absorption coefficients is 0.001 percent/cm. The absorption coefficients of KTP and LBO crystals of different manufacturers are determined. The results are used for a numerical model which takes into account the decrease of conversion efficiency due to thermal effects caused by the absorption of laser power in the nonlinear crystal. This model describes saturation effects which appear in the range of 100 W in the green using a KTP crystal. A new idea for compensation of thermal effects will be presented.

  17. Higher Order Macro Coefficients in Periodic Homogenization

    NASA Astrophysics Data System (ADS)

    Conca, Carlos; San Martin, Jorge; Smaranda, Loredana; Vanninathan, Muthusamy

    2011-09-01

    A first set of macro coefficients known as the homogenized coefficients appear in the homogenization of PDE on periodic structures. If energy is increased or scale is decreased, these coefficients do not provide adequate approximation. Using Bloch decomposition, it is first realized that the above coefficients correspond to the lowest energy and the largest scale. This naturally paves the way to introduce other sets of macro coefficients corresponding to higher energies and lower scales which yield better approximation. The next task is to compare their properties with those of the homogenized coefficients. This article reviews these developments along with some new results yet to be published.

  18. Nonlinear Interaction of Elliptical Laser Beam with Collisional Plasma: Effect of Linear Absorption

    NASA Astrophysics Data System (ADS)

    Keshav, Walia; Sarabjit, Kaur

    2016-01-01

    In the present work, nonlinear interaction of elliptical laser beam with collisional plasma is studied by using paraxial ray approximation. Nonlinear differential equations for the beam width parameters of semi-major axis and semi-minor axis of elliptical laser beam have been set up and solved numerically to study the variation of beam width parameters with normalized distance of propagation. Effects of variation in absorption coefficient and plasma density on the beam width parameters are also analyzed. It is observed from the analysis that extent of self-focusing of beam increases with increase/decrease in plasma density/absorption coefficient.

  19. Results of measurement of radio wave absorption in the ionosphere by the AI method

    NASA Technical Reports Server (NTRS)

    Korinevskaya, N. A.

    1972-01-01

    Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.

  20. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  1. Determining the Gruneisen coefficient for liquids using the PAZ-scan technique

    NASA Astrophysics Data System (ADS)

    Dantiste, Olivier A.

    Measurement of Gruneisen coefficient is utterly important in developing efficient molecular photoacoustic (PA) contrast agents. It is one of the two parameters that describes how efficient a molecule is in transforming optical energy into sound, the other being absorption coefficient. Using the PAZ-scan technique, the Gruneisen coefficient was obtained for various samples and the values are compared with standard techniques. In a PAZ-scan, the sample is translated through the path of a focused laser beam in small steps while the generated PA signal is recorded. The incident intensity is optimum at the focal point and decreases gradually on either side of the focus. As such, the absorption and the PA signal varies according to the sample properties. Therefore at positions away from the focal point, the incident intensities are weak and the PA signal varies linearly with intensity. A plot of the PA signal versus the intensity is used to obtain the Gruneisen coefficient. Using this technique, the Gruneisen coefficients for crystal violet in two different solvents, food coloring dyes that are dissolved in water were determined. Results show that the linear part of the PAZ-scan can be used to determine the Gruneisen coefficient for liquids.

  2. Visible absorption spectrum of liquid ethylene

    PubMed Central

    Nelson, Edward T.; Patel, C. Kumar N.

    1981-01-01

    The visible absorption spectrum of liquid ethylene at ≈ 108 K from 5500 Å to 7200 Å was measured by using a pulsed tunable dye laser, immersed-transducer, gated-detection opto-acoustic spectroscopy technique. The absorption features show the strongest band with an absorption coefficient of ≈2 × 10-2 cm-1 and the weakest band with an absorption coefficient of ≈1 × 10-4 cm-1. Proposed assignments of the observed absorption peaks involve combinations of overtones of local and normal modes of vibration of ethylene. PMID:16592978

  3. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin. PMID:17294811

  4. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan

    PubMed Central

    Shawahna, R.; Rahman, NU.

    2011-01-01

    Background and the purpose of the study Partition coefficients (log D and log P) and molecular surface area (PSA) are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators. Methods Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D6.0), and PSA. Results Metoprolol's log P, log D6.0, and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol's log P, log D6.0 and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D6.0 correlated well (81%) with Caco-2 permeability (Papp). Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS). Of these, 57 (42.2%), 28 (20.7%), 44 (32.6%), and 6 (4.4%) were class I, II, III and IV respectively. Conclusion Log D6.0 showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol. PMID:22615645

  5. On the emission coefficient of uranium plasmas.

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.

  6. Diffuse reflection coefficient of a stratified sea.

    PubMed

    Haltrin, V I

    1999-02-20

    A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous sea with arbitrary inherent optical properties this equation is solved analytically. For an inhomogeneous sea it is solved approximately for any arbitrary stratification. The resulting equation expresses the diffuse reflection coefficient of the sea through vertical profiles of absorption and backscattering coefficients, bottom albedo, and sea depth. The results of calculations with this equation are compared with Monte Carlo computations. It was found that the precision of this approach is in the range of 15%. PMID:18305694

  7. Coefficients for Interrater Agreement.

    ERIC Educational Resources Information Center

    Zegers, Frits E.

    1991-01-01

    The degree of agreement between two raters rating several objects for a single characteristic can be expressed through an association coefficient, such as the Pearson product-moment correlation. How to select an appropriate association coefficient, and the desirable properties and uses of a class of such coefficients--the Euclidean…

  8. Optical absorption components of light-modulated absorption spectrum of CdS

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Long, E. R.

    1975-01-01

    The amplitude and decay coefficient of light-induced modulation of absorption (LIMA) was measured as a function of wavelength from 535 to 850 nm for single-crystal CdS. The decay coefficient exhibited a discontinuous resonance at 710 nm which was due to the overlap and cancellation of two opposing absorption changes. A method was developed to separate these opposing absorption changes using the measured decay coefficients. The discrete-level-to-band energy for one absorption change was found to be 1.64 eV. An improved model was developed which contains two associated levels in the band gap separated by 0.32 eV.

  9. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  10. Changes in scattering and absorption during curing of denta-resin composites: silorane and nanocomposite

    NASA Astrophysics Data System (ADS)

    del Mar Pérez, Maria; Ghinea, Razvan; Ionescu, Ana-Maria; de la Cruz Cardona, Juan

    2011-05-01

    Photocured polymers are widely used in dental applications. The optical properties of the dental composites change during curing; the appearance of the composites also changes. Recently, a new silorane-based composite resin and dental nanocomposite have been introduced. However, research regarding the effect of the silorane monomers or the size filler on appearance after curing of the resin composite is limited. This work aims to examine the optical properties of silorane-based composite and nanocomposite, in terms of scattering and absorption during curing. Six dimethacrylate-based dental resin composite (five universal and one nanocomposite) and one silorane-based dental resin composite (all shades A2 and T) were studied. The curing irradiance was 1100mW/cm2. The spectral reflectance of 1mm thick composite samples against white and black backgrounds were measured both before and after curing, and were converted to scattering and absorption coefficients using the Kubelka-Munk Theory. Both for pre and post-curing dental resin composites, the Albedo coefficient (K/S) shows that absorption prevails over the scattering for short wavelengths while for medium and large wavelengths, the scattering becomes more important, except for the T shade of the nanocomposite. After curing, the scattering and absorption values decreased for both types of materials. Changes in the absorption coefficient values should be caused by changes in the camphorquinone (CQ) absorption, whereas the scattering changes found should be directly attributable to index of refraction changes of the resin during curing.

  11. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  12. Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material

    NASA Astrophysics Data System (ADS)

    Groenhuis, R. A. J.; ten Bosch, J. J.

    1981-05-01

    During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.

  13. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  14. Variability of the propagation coefficients due to rain for microwave links in southern Africa

    NASA Astrophysics Data System (ADS)

    Mulangu, C. T.; Afullo, T. J.

    2009-06-01

    We use the Mie scattering approach and the dielectric model of Liebe to determine the propagation coefficients and rain attenuation distribution for four locations in Botswana, southern Africa, using R0.01 = 68.9 mm/h for Gaborone, R0.01 = 137.06 mm/h for Selebi-Phikwe, R0.01 = 86.87 mm/h for Francistown, and R0.01 = 64.4 mm/h for Kasane over the frequency range of 1-1000 GHz. The results show that the extinction coefficients depend more strongly on temperature at lower frequencies than at higher frequencies for lognormal distribution. The absorption coefficient is significant but decreases exponentially with rain temperature at lower microwave frequencies. The application of the proposed model with various distributions is corroborated using practical results for Durban in South Africa.

  15. Diffusion coefficients of several aqueous alkanolamine solutions

    SciTech Connect

    Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)

    1993-07-01

    In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.

  16. The influence of water mixtures on the dermal absorption of glycol ethers

    SciTech Connect

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M. . E-mail: F.M.Williams@ncl.ac.uk

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.

  17. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  18. Research on absorption test methods of Yb-doped double cladding fiber

    NASA Astrophysics Data System (ADS)

    Wang, Pupu; Li, Rundong; Rong, Liang; Ji, Wei; Gao, Yankun; Jiang, Cong; Gu, Shaoyi

    2016-01-01

    Absorption coefficient is a very useful feature for active fiber. In fiber laser system, the length of active fiber is chosen according to absorption coefficient. And the length of fiber can directly influence the feature of fiber laser. Therefore, how to obtain an accurate absorption coefficient is very important. Because fiber exists re-emission in typical absorption band pumped by power. It is difficult to accurately measure absorption coefficient. The absorption coefficients of Yb-doped double cladding fiber at 975 nm measured by several methods were compared. In conclusion, for the fibers with same length pumped by white light, the absorption coefficient is the highest when cutback only once. Meanwhile, when fibers with different length were measured by the same method, the absorption coefficient is inversely proportional to optical fiber length.

  19. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  20. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  1. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2000-07-01

    Reliable knowledge of the complex x-ray form factor [Re(f ) and f″] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety, and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 to 3 keV x-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of nonrelativistic wave functions, and the lack of appropriate convergence of wave functions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft x-ray regions. The high-energy limitations of the current approach are also illustrated. The energy range covered is 0.1 to 10 keV. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general, experimental data are not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future.

  2. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  3. Photoelectric absorption cross sections with variable abundances

    NASA Technical Reports Server (NTRS)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  4. Percutaneous absorption of several chemicals, some pesticides included, in the red-winged blackbird

    USGS Publications Warehouse

    Rogers, J.G., Jr.; Cagan, R.H.; Kare, M.R.

    1974-01-01

    Percutaneous absorption in vivo through the skin of the feet of the red-winged blackbird (Agelaius phoeniceus) has been investigated. Absorption after 18-24 hours exposure to 0.01 M solutions of salicylic acid, caffeine, urea, 2,4-D, dieldrin, diethylstilbesterol, and DDT was measured. Of these, only DDT and diethylstilbesterol were not absorbed to a measurable degree. The solvents ethanol, dimethylsulfoxide (DMSO), and vegetable oil were compared with water in their effects on the absorption ofcaffeine, urea, and salicylic acid. Ethanol, DMSO,and oil each decreased percutaneous absorption of salicylic acid. DMSO increased absorption of caffeine, and ethanol had no effect on it. Neither DMSO nor ethanol affected penetration of urea. Partition coefficients (K) (epidermis/water) were determined for all seven penetrants. Compounds with higher values of K showed lower percutaneous absorption. These findings suggest that K may be useful to predict percutaneous absorption in vivo. It appears unlikely that percutaneous absorption contributes greatly to the body burden of 2,4-D and dieldrin in A. phoeniceus.

  5. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed

    2016-05-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).

  6. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  7. Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers

    SciTech Connect

    Lumeau, Julien; Glebova, Larissa; Glebov, Leonid B.

    2011-10-20

    Volume Bragg gratings (VBGs) in photothermorefractive (PTR) glass are widely used for laser beam control including high-power laser systems. Among them, spectral beam combining based on VBGs is one of the most promising. Achieving 100+ kW of combined laser beams requires the development of PTR glass and VBGs with an extremely low absorption coefficient and therefore methods of its measurement. This paper describes the calorimetric method that was developed for measuring a low absorption coefficient in PTR glass and VBGs. It is based on transmission monitoring of the intrinsic Fabry-Perot interferometer produced by the plane-parallel surfaces of the measured optical elements when heated by high-power laser radiation. An absorption coefficient at 1085 nm as low as 5x10{sup -5} cm{sup -1} is demonstrated in pristine PTR glass while an absorption coefficient as low as 1x10{sup -4} cm{sup -1} is measured in high-efficiency reflecting Bragg gratings with highest purity. The actual level of absorption in PTR glass allows laser beam control at the 10 kW level, while the 100 kW level would require active cooling and/or decreasing the absorption in PTR Bragg gratings to a value similar to that in virgin PTR glass.

  8. Bounding the Bogoliubov coefficients

    SciTech Connect

    Boonserm, Petarpa; Visser, Matt

    2008-11-15

    While over the last century or more considerable effort has been put into the problem of finding approximate solutions for wave equations in general, and quantum mechanical problems in particular, it appears that as yet relatively little work seems to have been put into the complementary problem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on parametric amplification and the related quantum phenomenon of particle production (as encoded in the Bogoliubov coefficients), or bounds on transmission and reflection coefficients. Modifying and streamlining an approach developed by one of the present authors [M. Visser, Phys. Rev. A 59 (1999) 427-438, (arXiv:quant-ph/9901030)], we investigate this question by developing a formal but exact solution for the appropriate second-order linear ODE in terms of a time-ordered exponential of 2x2 matrices, then relating the Bogoliubov coefficients to certain invariants of this matrix. By bounding the matrix in an appropriate manner, we can thereby bound the Bogoliubov coefficients.

  9. Leaf water absorption and desorption functions for three turfgrasses

    NASA Astrophysics Data System (ADS)

    Liang, Xi; Su, Derong; Yin, Shuxia; Wang, Zhi

    2009-09-01

    SummaryPlant leaf can absorb water when the leaf is in contact with water. This happens when the rainfall is intercepted by plant leaves, where the intercepted part of rain remains on the leaf surface. When the intercepted water is either absorbed or subsequently evaporated into the atmosphere, the plant leaves can dissipate water through the desorption process until the plant is dry or rewatered. In this paper, two symptomatic models in the form of exponential functions for leaf water absorption and leaf water desorption were derived and validated by experimental data using leaves of three turfgrasses (Tall fescue, Perennial ryegrass and Kentucky bluegrass). Both the models and measured data showed that the rate of leaf water absorption was high at the low initial leaf water content and then gradually leveled off toward the saturated leaf water content. The rate of leaf water desorption was high at the high initial leaf water content then decreased drastically over time toward zero. The different plant leaves showed different exponents and other parameters of the functions which indicate the difference of plant species. Both the absorption and desorption rates were relatively higher for the Kentucky bluegrass and lower for the Tall fescue and Perennial ryegrass. The concept of specific leaf area ( SLA) was used to understand the saturated leaf water content ( C s) of the three turfgrasses. Linear relationships were found between C s and SLA. The leaf water absorption and desorption functions are useful for deriving physiological parameters of the plant such as permanent wilting leaf water content, naturally irreducible leaf water content, exponential leaf water absorption coefficient, and exponential leaf desorption coefficient, as well as for evaluating the effects of rainfall interception on plant growth and water use efficiency.

  10. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-04-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the visible. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the Ångström exponent for absorption, defined as the negative slope of absorption vs. wavelength in a log-log plot. At the pasture site, about 70% of the Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest Ångström exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with Ångström exponents below 1.0. This finding suggests that biogenic aerosols from Amazonia may have a weak spectral dependence for absorption, contradicting our expectations of biogenic particles behaving as brown carbon. Nevertheless, additional measurements should be taken in the future, to provide a complete picture of biogenic aerosol absorption spectral characteristics from different seasons and geographic locations. The

  11. Sensitivity of room acoustic parameters to changes in scattering coefficients

    NASA Astrophysics Data System (ADS)

    Rathsam, Jonathan; Wang, Lily M.

    2001-05-01

    This project uses the room acoustics computer modeling program, ODEON, to investigate the sensitivity of room acoustic parameters to changes in scattering coefficients. Particularly, the study is interested in determining if the results from certain room models are more sensitive to scattering coefficients than from other models, due to their geometry or absorption characteristics. If so, how can one quantify a model's susceptibility to being sensitive to scattering? Various models of three real spaces in Omaha, Nebraska are tested. The predicted reverberation, clarity, and spaciousness parameters are compared at various receiver locations, while the scattering coefficient of all surfaces is varied from 0 to 0.1, 0.3, 0.5, and 0.8. The resulting data are analyzed by frequency according to the (1) average absorption of the room; (2) magnitude variation of absorption within the room; (3) spatial distribution of absorption within the room; and (4) level of model detail. Initial results indicate that parameters studied may show more sensitivity to scattering coefficients in models that have a wider range of absorption values, more disparate distribution of absorption, and lower detail level. Various schemes that include these aspects are proposed for computing a model's sensitivity to changes in scattering.

  12. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  13. [Oat growth and cation absorption characteristics under salt and alkali stress].

    PubMed

    Fan, Yuan; Ren, Chang-Zhong; Li, Pin-Fang; Ren, Tu-Sheng

    2011-11-01

    This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stresses was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat. PMID:22303664

  14. Geometric absorption of electromagnetic angular momentum

    NASA Astrophysics Data System (ADS)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  15. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  16. The effects of stage absorption on reverberation times in opera house seating areas.

    PubMed

    Jeon, Jin Yong; Kim, Jae Ho; Ryu, Jong Kwan

    2015-03-01

    The effects of stage absorption on reverberation times in opera houses were investigated using computer simulations and scale model measurements. The reverberation time (RT) was measured in stalls seating with and without variable stage elements (e.g., fly curtains, side curtains, cycloramas, and stage sets). The absorption coefficients of the walls and ceiling of the stage houses were varied accordingly. It was found that variable stage elements have a significant influence on reverberation times in seating areas, particularly for a reverberant stage house, due to the low absorption of the walls and ceiling in the stage house. It was also found that the absorption coefficients of the walls and ceiling should be over 0.5 to avoid RT decreases of over 10% due to the absorption of the variable stage elements. In addition, coupled room effects were investigated both with and without variable stage elements and the results show that double slope was not found in the opera houses investigated in this study. PMID:25786925

  17. Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Fortner, E.; Onasch, T. B.; Taylor, J. W.; Flynn, M.; Coe, H.; Kreidenweis, S. M.

    2014-11-01

    We present laboratory measurements of biomass-burning aerosol light-scattering and light absorption coefficients at 405, 532, and 781 nm and investigate their relationship with aerosol composition and fuel type. Aerosol composition measurements included nonrefractory components measured by a high-resolution aerosol mass spectrometer (AMS), composition of refractory black carbon-containing particles by a soot particle aerosol mass spectrometer (SP-AMS), and refractory black carbon measured by a single-particle soot photometer (SP2). All measurements were performed downstream of a thermal denuder system to probe the effects of nonrefractory material on observed optical properties. The fires studied emitted aerosol with a wide range of optical properties with some producing more strongly light-absorbing particles (single-scattering albedo or SSA at 781 nm = 0.4) with a weak wavelength dependence of absorption (absorption Ångström exponent or AAE = 1-2) and others producing weakly light-absorbing particles (SSA at 781 nm ~1) with strong wavelength dependence of absorption (AAE ~7). Removal of nonrefractory material from the particles by the thermal denuder system led to substantial (20-80%) decreases in light absorption coefficients, particularly at shorter wavelengths, reflecting the removal of light-absorbing material that had enhanced black carbon absorption in internally mixed untreated samples. Observed enhancements of absorption by all mechanisms were at least factors of 1.2-1.5 at 532 nm and 781 nm as determined from the heated samples. A mass absorption cross-section-based approach indicated larger enhancements, particularly at shorter wavelengths.

  18. Distribution of reflection coefficients in absorbing chaotic microwave cavities.

    PubMed

    Méndez-Sánchez, R A; Kuhl, U; Barth, M; Lewenkopf, C H; Stöckmann, H-J

    2003-10-24

    The distribution of reflection coefficients P(R) for chaotic microwave cavities with time-reversal symmetry is investigated in different absorption and antenna coupling regimes. For all regimes the agreement between experimental distributions and random-matrix theory predictions is very good, provided both the antenna coupling T(a) and the wall absorption strength T(w) are taken into account in an appropriate way. These parameters are determined by independent experimental quantities. PMID:14611349

  19. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  20. Infrared absorption modeling of VOx microbolometer

    NASA Astrophysics Data System (ADS)

    Aggoun, Mehdi; Jiang, Jianliang; Khan, M. K.

    2015-08-01

    The absorption model plays an important role in the design of the microbolometer structure regarding the determination of the optimum thickness of the structure layers. Moreover, the infrared absorption depends on the wavelength of the radiation and the material properties. In this paper, we presented an Infrared absorption model with absorption coefficient of 96% at maximum absorption wavelength of 9.89μm which is very close to the expected value 10μm. This model was established by using MATLAB so that the simulation of the infrared absorption of the VOx microbolometer could be accomplished. In order to confirm the role of this modeling in the design of the device structure, comparison with other structures is also studied in this paper.

  1. Absorption spectra of CdSe-ZnS core-shell quantum dots at high photon energies: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amlan; Ghosh, Sandip

    2014-11-01

    Absorption spectra of CdSe-ZnS core-shell quantum dot (QD) ensembles, with average core diameters ranging from 2.6 nm to 7.2 nm have been obtained using both transmission and photoluminescence excitation measurements. In agreement with previous reports, the absorption coefficient at energies ≃1 eV above the effective bandgap increases monotonically as in bulk solids. A simple effective-mass spherical core-shell potential model cannot explain the relatively high absorption at higher energies. The calculated electron and hole radial envelope wavefunctions show asymmetry due to the core-shell structure. It leads to normally symmetry-disallowed transitions acquiring a weak oscillator strength, with their number and strength increasing with energy. A phenomenological model that invokes normally disallowed transitions in general is shown to reproduce the absorption spectrum at higher energies quite well. The oscillator strength scaling factor for such transitions increases with decrease in QD size, consistent with expectations.

  2. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  3. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  4. In-vivo absorption properties of algal pigments

    NASA Astrophysics Data System (ADS)

    Bidigare, Robert R.; Ondrusek, Michael E.; Morrow, John H.; Kiefer, Dale A.

    1990-09-01

    Estimates of the in vivo specific absorption coefficients (m2 mg'; 400-750 nm, 2 nm intervals) for the major algal pigment groups (chlorophylls, carotenoids and phycobilins) are presented. "Unpackaged" absorption coefficients were initially obtained by measuring the absorption properties of pure pigment standards spectrophotometrically and "shifting" their absorption maxima to match in vivo positions. Two approaches for estimating the phytoplankton absorption coefficient (spectral reconstruction and spectral decomposition) are compared by linear regression analysis, incorporating concurrent measurements of particulate absorption and pigmentation performed in the Sargasso Sea. Results suggest that "pigment package" effects are minimal for natural assemblages of open-oceanic phytoplankton and that accessory pigments do not always co-vary with chlorophyll a over depth and time.

  5. Coherent manipulation of absorption by intense fields in four level ladder system

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Dasgupta, Shubhrangshu

    2016-05-01

    Nonlinear optical processes attributed to the dependence of the susceptibility of the medium on the input fluence can be remarkably manipulated by the quantum interference and coherence. One of these processes, the optical bistability (OB), that refers to the possibilities of two stable outputs for the same input fields, can also be modified by quantum coherence. Further, the nonlinear dependence of the absorption on the power of the input light gives rise to interesting processes like saturable absorption (SA) and reverse saturable absorption (RSA). While the SA corresponds to the decrease in the absorption coefficient with the increase of intensity of input light, the RSA corresponds to otherwise, that finds applications in optical limiting. We show, using a four-level Ladder system, how a control field manipulates these processes for an intense probe field applied in the excited state transition. The nonlinear absorption increases whereas the threshold of OB decreases in presence of a control field. We further delineates how the control field and the decay rates modifies SA and RSA. The control of these processes find applications in optical switching, optical limiting and optical communications.

  6. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  7. The isolation of prophyra-334 from marine algae and its UV-absorption behavior

    NASA Astrophysics Data System (ADS)

    Zhaohui, Zhang; Xin, Gao; Tashiro, Yuri; Matsukawa, Shingo; Ogawa, Hiroo

    2005-12-01

    Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ɛ) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23×104. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60°C in 24 h, meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.

  8. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  9. Calbindins decreased after space flight

    NASA Technical Reports Server (NTRS)

    Sergeev, I. N.; Rhoten, W. B.; Carney, M. D.

    1996-01-01

    Exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca2+ metabolism, yet the cellular and molecular mechanisms leading to these changes are poorly understood. Calbindins, vitamin D-dependent Ca2+ binding proteins, are believed to have a significant role in maintaining cellular Ca2+ homeostasis. In this study, we used biochemical and immunocytochemical approaches to analyze the expression of calbindin-D28k and calbindin-D9k in kidneys, small intestine, and pancreas of rats flown for 9 d aboard the space shuttle. The effects of microgravity on calbindins in rats from space were compared with synchronous Animal Enclosure Module controls, modeled weightlessness animals (tail suspension), and their controls. Exposure to microgravity resulted in a significant and sustained decrease in calbindin-D28k content in the kidney and calbindin-D9k in the small intestine of flight animals, as measured by enzyme-linked immunosorbent assay (ELISA). Modeled weightlessness animals exhibited a similar decrease in calbindins by ELISA. Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in the kidney and the small intestine, and the expression of insulin in pancreas. There was a large decrease of immunoreactivity in renal distal tubular cell-associated calbindin-D28k and in intestinal absorptive cell-associated calbindin-D9k of space flight and modeled weightlessness animals compared with matched controls. No consistent difference in pancreatic insulin immunoreactivity between space flight, modeled weightlessness, and controls was observed. Regression analysis of results obtained by quantitative ICC and ELISA for space flight, modeled weightlessness animals, and their controls demonstrated a significant correlation. These findings after a short-term exposure to microgravity or modeled weightlessness suggest that a decreased expression of calbindins

  10. Clindamycin Phosphate Absorption from Nanoliposomal Formulations through Third-Degree Burn Eschar

    PubMed Central

    Ghaffari, Azadeh; Manafi, Ali; Moghimi, Hamid Reza

    2015-01-01

    BACKGROUND It has been shown that topical nanoliposomal formulations improve burn healing process. On the other hand, it has been shown that liposomal formulations increase drug deposition in the normal skin while decrease their systemic absorption; there is not such data available for burn eschar. Present investigation studies permeation of clindamycin phosphate (CP) through burn eschar from liposomal formulations to answer this question. In this investigation, permeation of CP through fully hydrated third-degree burn eschar was evaluated using solution, normal nanoliposomes and ultradeformable nanoliposomes. METHODS Liposomal CP were prepared by thin-film hydration and characterized in terms of size, size distribution, zeta potential, encapsulation efficiency and short-time stability. Then the effect of liposomal lipid concentration on CP absorption was investigated. RESULTS The permeability coefficient ratio (liposome/solution) and permeation lag-time ratio (liposome/solution) of CP through burn eschar at 20 Mm lipid concentration were 0.81±0.21 and 1.19±1.30 respectively, indicating the retardation effects of liposomes. Data also showed that increasing liposomal lipid concentration from 20 to 100 mM, clindamycin permeation decreased by about 2 times. There was no difference between normal liposome and ultradeformable liposome in terms of clindamycin absorption. CONCLUSION Nanoliposomes could decrease trans-eschar absorption of CP, in good agreement with normal skin data, and might indicate CP deposition in the eschar tissue. PMID:26284183

  11. Drag Coefficient of Hexadecane Particles

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  12. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    PubMed

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. PMID:26574100

  13. Effects of crossed electric and magnetic fields on the interband optical absorption spectra of variably spaced semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Zuleta, J. N.; Reyes-Gómez, E.

    2016-05-01

    The interband optical absorption spectra of a GaAs-Ga1-xAlxAs variably spaced semiconductor superlattice under crossed in-plane magnetic and growth-direction applied electric fields are theoretically investigated. The electronic structure, transition strengths and interband absorption coefficients are analyzed within the weak and strong magnetic-field regimes. A dramatic quenching of the absorption coefficient is observed, in the weak magnetic-field regime, as the applied electric field is increased, in good agreement with previous experimental measurements performed in a similar system under growth-direction applied electric fields. A decrease of the resonant tunneling in the superlattice is also theoretically obtained in the strong magnetic-field regime. Moreover, in this case, we found an interband absorption coefficient weakly dependent on the applied electric field. Present theoretical results suggest that an in-plane magnetic field may be used to tune the optical properties of variably spaced semiconductor superlattices, with possible future applications in solar cells and magneto-optical devices.

  14. Absorption removal of sulfur dioxide by falling water droplets in the presence of inert solid particles

    NASA Astrophysics Data System (ADS)

    Liu, I.-Hung; Chang, Ching-Yuan; Liu, Su-Chin; Chang, I.-Cheng; Shih, Shin-Min

    An experimental analysis of the absorption removal of sulfur dioxide by the free falling water droplets containing the inert solid particles is presented. The wheat flour powder is introduced as the inert solid particles. Tests with and without the flour powder in the water droplets are examined. The mass fluxes and mass transfer coefficients of SO 2 for the cases with and without the flour powder are compared to elucidate the effects of the inert solid particles contained in the water droplets on the gas absorption. The results indicate aignificant difference between the two cases for the concentrations of the flour powder in the absorbent droplets ( Cs) within the ranges of the experimental conditions, namely 0.1 to 10 wt% flour powder in the absorbent droplets. In general, the inert solid particles of the flour powder as the impurities in the water droplets tend to decrease the SO 2 absorption rate for the experimental absorption system under investigation. Various values of Cs cause various levels of the interfacial resistance and affect the gas absorption rate. The interfacial resistance is recognized by introducing an interfacial mass transfer coefficient ks with its reciprocal being proportional to the magnitude of the interfacial resistance. The values of 1/ ks may be computed by the use of the equation 1/ ks=(1/ KOLs-1/ KOL), where KOLs and KOL are the overall liquid-phase mass transfer coefficients with and without the inert solid particles, respectively. The values of ks with Cs of 0.1 to 10 wt% are about 0.295-0.032 cms -1 for absorbing 1000-3000 ppmv SO 2 with the water droplets. This kind of information is useful for the SO 2 removal and the information of acid rain that the impurities of the inert solid particles contaminate the water droplets.

  15. Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2016-08-01

    The model that considers the nonideality of aqueous solutions of electrolytes with allowance for independent contributions of hydration of ions of various types and electrostatic interactions was substantiated using the cluster ion model. The empirical parameters in the model equations were found to be the hydrophilic and hydrophobic hydration numbers of ions in the standard state and the dispersion of their distribution over the stoichiometric coefficients. A mathematically adequate description of the concentration dependences of the osmotic coefficients and average ion activity coefficients of electrolytes was given for several systems. The difference in the rate of the decrease in the hydrophilic and hydrophobic hydration numbers of ions leads to extremum concentration dependences of the osmotic coefficients, which were determined by other authors from isopiestic data for many electrolytes and did not find explanation.

  16. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  17. Large reverse saturable absorption under weak continuous incoherent light

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Totani, Kenro; Yamashita, Takashi; Adachi, Chihaya; Vacha, Martin

    2014-10-01

    In materials showing reverse saturable absorption (RSA), the optical absorbance increases as the power of the light incident on them increases. To date, RSA has only been observed when very intense light sources, such as short-pulse lasers, are used. Here, we show that hydroxyl steroidal matrices embedding properly designed aromatic molecules as acceptors and transition-metal complexes as donors exhibit high RSA on exposure to weak incoherent light at room temperature and in air. Accumulation by photosensitization of long-lived room-temperature triplet excitons in acceptors with a large triplet-triplet absorption coefficient allows a nonlinear increase in absorbance also under low-power irradiation conditions. As a consequence, continuous exposure to weak light significantly decreases the transmittance of thin films fabricated with these compounds. These optical limiting properties may be used to protect eyes and light sensors from exposure to intense radiation generated by incoherent sources and for other light-absorption applications that have not been realized with conventional RSA materials.

  18. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  19. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  20. Quadrature formulas for Fourier coefficients

    NASA Astrophysics Data System (ADS)

    Bojanov, Borislav; Petrova, Guergana

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives.

  1. Gold analysis by the gamma absorption technique.

    PubMed

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  2. Poor permeability and absorption affect the activity of four alkaloids from Coptis.

    PubMed

    Cui, Han-Ming; Zhang, Qiu-Yan; Wang, Jia-Long; Chen, Jian-Long; Zhang, Yu-Ling; Tong, Xiao-Lin

    2015-11-01

    Coptidis rhizoma (Coptis) and its alkaloids exert various pharmacological functions in cells and tissues; however, the oral absorption of these alkaloids requires further elucidation. The present study aimed to examine the mechanism underlying the poor absorption of alkaloids, including berberine (BER), coptisine (COP), palmatine (PAL) and jatrorrhizine (JAT). An ultra‑performance liquid chromatography (UPLC) method was validated for the determination of BER, COP, PAL and JAT in the above experimental medium. In addition, the apparent oil‑water partition coefficient (Po/w); apparent permeability coefficient (Papp), determined using a parallel artificial membrane permeability assay (PAMPA) plate; membrane retention coefficient (R %); and effect of P‑glycoprotein (P‑gp) inhibitor on the Papp of the four alkaloids were investigated. The intestinal absorption rate constant (Ka) and absorption percentage (A %) of the four alkaloids were also determined. The results of the present study demonstrated that the Po/w of the four alkaloids in 0.1 mol·l‑1 HCl medium was significantly higher (P<0.01), compared with those of the alkaloids in phosphate buffer (pH 7.4). The Papp of BER was 1.0‑1.2x10‑6 cm·s‑1, determined using a PAMPA plate, and the Papp of BER, COP, PAL and JAT decreased sequentially. The concentrations of the four alkaloids on the apical‑to‑basolateral (AP‑BL) surface and the basolateral‑to‑apical (BL‑AP) surface increased in a linear manner, with increasing concentrations between 10 and 100 µmol. In addition, the transportation of BER on the BL‑AP surface was significantly faster (P<0.01), compared with that on the AP‑BL surface and, following the addition of verpamil (a P‑gp inhibitor), the Papp (AP‑BL) of the four alkaloids increased, whereas the Papp (BL‑AP) was significantly decreased (P<0.01). The rat intestinal perfusion experiment demonstrated that the four alkaloids were poorly absorbed; however, the Ka of BER

  3. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  4. Influence of Brown Carbon Aerosols on Absorption Enhancement and Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Shamjad, Puthukkadan; Nand Tripathi, Sachchida; Kant Pathak, Ravi; Hallquist, Mattias

    2015-04-01

    This study presents aerosol mass and optical properties measured during winter-spring months (February-March) of two consecutive years (2013-2014) from Kanpur, India located inside Gangetic Plain. Spectral absorption and scattering coefficients (405, 532 and 781 nm) of both atmospheric and denuded (at 300° C) is measured using a 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Ratio between the atmospheric and denuded absorption is reported as enhancement in absorption (Eabs). Eabs values shows presence of large quantities of Brown Carbon (BrC) aerosols in the location. Diurnal trend of Eabs shows similar patterns at 405 and 532 nm. But at 781 nm Eabs values increased during day time (10:00 to 18:00) while that 405 and 532 nm decreased. Positive Matrix Analysis (PMF) of organic aerosols measured using HR-ToF-AMS shows factors with different trends with total absorption. Semi-volatile factor (SV-OOA) show no correlation with absorption but other factors such as Low-volatile (LV-OOA), Hydrocarbon (HOA) and Biomass burning (BBOA) organic aerosols shows a positive trend. All factors shows good correlation with scattering coefficient. Also a strong dependence of absorption is observed at 405 and 532 nm and a weak dependence at 781 nm is observed during regression analysis with factors and mass loading. We also present direct radiative forcing (DRF) calculated from measured optical properties due to total aerosol loading and only due to BrC. Total and BrC aerosol DRF shows cooling trends at top of atmosphere (TOA) and surface and warming trend in atmosphere. Days with biomass burning events shows increase in magnitude of DRF at atmosphere and surface up to 30 % corresponding to clear days. TOA forcing during biomass burning days shows increase in magnitude indicating change from negative to less negative.

  5. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  6. The relativistic Doppler broadening of the line absorption profile

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R.; Nikogosian, A.

    1982-06-01

    The classical results of Doppler broadening of the line absorption profile are generalized to a relativistic gas in thermal equilibrium by taking into account the relativistic variance of the volume absorption coefficients of the gas, as derived by L. H. Thomas. This variance produces a small correction, even in the non-relativistic approximation.

  7. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

    2005-01-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

  8. RADIONUCLIDE RISK COEFFICIENT UNCERTAINTY REPORT

    EPA Science Inventory

    EPA has published excess cancer risk coefficients for the US population in Federal Guidance Report 13 (FGR 13). FGR 13 gives separate risk coefficients for food ingestion, water ingestion, inhalation, and external exposure for each of over 800 radionuclides. Some information on...

  9. Standardized Discriminant Coefficients: A Rejoinder.

    ERIC Educational Resources Information Center

    Mueller, Ralph O.; Cozad, James B.

    1993-01-01

    Although comments of D.J. Nordlund and R. Nagel are welcomed, their arguments are not sufficient to accept the recommendation of using total variance estimates to standardize canonical discriminant function coefficients. If standardized coefficients are used to help interpret a discriminant analysis, pooled within-group variance estimates should…

  10. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    NASA Astrophysics Data System (ADS)

    Jalali, Majid; Mohammadi, Ali

    2008-05-01

    The compounds Na 2B 4O 7, H 3BO 3, CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  11. Does clozapine decrease smoking?

    PubMed

    de Leon, Jose; Diaz, Francisco J; Josiassen, Richard C; Cooper, Thomas B; Simpson, George M

    2005-06-01

    McEvoy et al.'s study in 1999, which used cotinine levels but had limited power, suggested that clozapine treatment may be associated with a mild smoking decrease (particularly when plasma clozapine levels are > 150 ng/ml). Some naturalistic studies also suggest that clozapine treatment may be associated with a mild smoking decrease. The present study included 38 schizophrenic daily smokers from a double-blind clozapine trial. Five analyses were tested for significant decreases in plasma cotinine levels from a haloperidol baseline to: (1) the end of clozapine trials regarding clozapine doses (100, 300 or 600 mg/day), (2) the end of the clozapine trial where the highest plasma clozapine level was achieved, (3) the end of the clozapine trial where a clozapine level in the 150-450 ng/ml range was achieved, (4) the end of the first clozapine trial regardless of clozapine dose, and (5) the end of the last clozapine trial in the study. The first and straightforward analysis by dose showed no clozapine effects on smoking. The second and the third analyses (an attempt to mimic the design by McEvoy et al. [McEvoy, J.P., Freudenreich, O., Wilson, W.H., 1999. Smoking and therapeutic response to clozapine in patients with schizophrenia. Biol. Psychiat. 46, 125-129.]) also indicated that there was not a significant effect of clozapine on smoking. The fourth and five analyses were also negative. None of the five analyses in our clozapine trial demonstrated that clozapine had major effects on smoking. This study cannot rule out that in some subjects, clozapine treatment may be associated with a small decrease in smoking. New prospective longitudinal studies using repeated cotinine and clozapine levels are needed to explore whether clozapine may reduce smoking in some patients. PMID:15951089

  12. Absorption of nitric oxide into aqueous solutions of ferrous chelates accompanied by instantaneous reaction

    SciTech Connect

    Demmink, J.F.; Gils, I.C.F. van; Beenackers, A.A.C.M.

    1997-11-01

    The absorption of nitric oxide (NO) into aqueous solutions of ferrous chelates of nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), and diethylenetriaminepentaacetic acid (DTPA) was studied in a stirred cell reactor. The absorption leads to stable ferrous NO chelates. Due to the high reaction rate, in combination with the relatively high P{sub NO} applied, the absorption rate is strongly affected by mass transfer limitation only. By applying penetration theory, the ratio of the diffusion coefficients of ferrous chelates and NO was determined. At elevated T, (D{sub Fe(II)chelate}/D{sub NO}){sup 1/2} decreases due to the unusual T-dependency of D{sub NO}. For ferrous NTA, the formation of the ferrous NO chelate is accompanied by pH effects that can be understood from iron chelate chemistry. In the case of ferrous NTA, pH < 5, or an excess of ligand, these effects lead to local pH gradients at the gas-liquid interface, that substantially affect the NO absorption rates. Kinetic data from the literature on the absorption of NO into ferrous chelates were evaluated using the mass transfer parameters determined. These kinetic data are often unreliable.

  13. [Effects of temperature on the ultraviolet absorption characteristics of SO2].

    PubMed

    Zheng, Hai-Ming; Jin, Wei-Jia

    2013-03-01

    Absorption spectrum of SO2 is obtained under the condition of room temperature and atmosphere pressure. The spectrum is composed of banded structure superimposed on a continuum. The continuum structure comes from the transition of SO2 molecule from the ground electronic state to the higher dense rovibronic energy levels, and the banded one comes from the transition of B1B1<--X1A1. The symmetric stretch and bend vibration frequencies are obtained from the banded structure. They are omega1 =(665+/-29) cm-1 and omega2 = (448+/-17) cm-1, respectively. Measuring the absorption spectra of SOz at different temperature, it was also found that the configuration of the spectra is similar. But the absorption cross-section decreases with the increase in temperature. The absorption cross-section corresponding to the absorption peaks varies with temperature in the manner of cube. But the rate coefficients are different. So the effect of temperature on the measurement results must be considered when we use the technique of DOAS for the detection of SO2. PMID:23705452

  14. Cost benefit analysis and energy savings of using compression and absorption chillers for air conditioners in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Shekarchian, M.; Moghavvemi, M.; Motasemi, F.; Mahlia, T. M. I.

    2012-06-01

    The electricity consumption growth has increased steadily in the recent decade which is a great concern for the environment. Increasing the number of high-rise air-conditioned buildings and the rapid use of electrical appliances in residential and commercial sectors are two important factors for high electricity consumption. This paper investigates the annual energy required for cooling per unit area and the total energy cost per unit area for each type of air conditioning systems in hot and humid climates. The effects of changing the coefficient of performance (COP) of absorption chillers on cost saving was also investigated in this study. The results showed that using absorption chillers for cooling will increase the amount of energy consumption per unit area; however the energy cost per unit area will decrease. In addition this research indicates that for each 0.1 increment in COP of absorption chillers, there is about 500 USD/m2 saved cost.

  15. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  16. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  17. Absorption refrigeration machine driven by solar heat

    NASA Astrophysics Data System (ADS)

    Keizer, C.; Liem, S. H.

    1980-04-01

    A mathematical model of a single and a two stage solar absorption refrigeration system is developed in which data of collectors and weather data can be implicated. The influence of the generator, the absorber efficiencies, and the cooling temperature on the coefficient of performance (COP) of a single and two stage absorption refrigeration process are investigated. For low generator temperatures the absorber efficiency has more influence on COP than the generator efficiency. Only spectral selective double window and high performance collectors can be used for air cooled solar absorption refrigeration systems at an evaporator temperature of -5 C. It is concluded that a water cooled solar absorption refrigeration system in combination with a solar tapwater installation for household use can be achieved with 6 to 8 square meters high performance collector area.

  18. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested. PMID:17759145

  19. Thermoelectric and Seebeck coefficients of granular metals.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Materials Science Division; California State Univ.

    2009-01-01

    In this work we present a detailed study and derivation of the thermopower and thermoelectric coefficient of nanogranular metals at large tunneling conductance between the grains, g{sub T} >> 1. An important criterion for the performance of a thermoelectric device is the thermodynamic figure of merit which is derived using the kinetic coefficients of granular metals. All results are valid at intermediate temperatures, E{sub c} >> T/g{sub T} > {delta}, where {delta} is the mean energy-level spacing for a single grain and E{sub c} is its charging energy. We show that the electron-electron interaction leads to an increase in the thermopower with decreasing grain size and discuss our results in light of future generation thermoelectric materials for low-temperature applications. The behavior of the figure of merit depending on system parameters such as grain size, tunneling conductance, and temperature is presented.

  20. Conversion coefficients of the isomeric state in {sup 72}Br

    SciTech Connect

    Briz, J. A.; Borge, M. J. G.; Maira, A.; Perea, A.; Tengblad, O.; Agramunt, J.; Algora, A.; Estevez, E.; Nacher, E.; Rubio, B.; Fraile, L. M.; Deo, A.; Farrelly, G.; Gelletly, W.; Podolyak, Z.

    2010-04-26

    In order to determine the Gamow-Teller strength distribution for the N Z nucleus {sup 72}Kr an experiment was performed with a Total Absorption Gamma Spectrometer. To fully accomplish this task it is crucial to determine the multipolarity of the low energy transitions as the spin-parity of the daughter ground state has been debated. This is done by experimental determination of the conversion coefficients. Preliminary results for the multipolarity and conversion coefficients of the transition connecting the isomeric state at 101 keV with the {sup 72}Br ground state are presented.

  1. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  2. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1. PMID:27607297

  3. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  4. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  5. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  6. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  7. Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, H.; Chang, C.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-05-01

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same order of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.

  8. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  9. Reactive sticking coefficients of silane on silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1988-09-15

    Reactive sticking coefficients (RSCs) were measured for silane and disilane on polycrystalline silicon for a wide range of temperature and flux (pressure) conditions. The data were obtained from deposition rate measurements using molecular beam scattering and a very low pressure cold wall reactor. The RSCs have non-Arrhenius temperature dependences and decreases with increasing flux at low (710/sup 0/) temperatures. A simple model involving dissociative adsorption of silane is consistent with these results. The results are compared with previous studies of the SiH/sub 4//Si(s) reaction.

  10. Definition and analysis of the lineshape matching coefficient in diode-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Pan, Bailiang; Yang, Jing; Qian, Aiqing; Jiao, Jian

    2014-12-01

    For diode-pumped alkali lasers (DPALs), the matching of lineshape between D2 absorption line and pump light greatly affects the properties of laser output; however, there is rare theoretical study on the quantitative description of the lineshape matching coefficient. In this paper, we put forward a formula to describe the lineshape matching coefficient that represents the matching degree between D2 absorption line and pump light. Dependences of the matching coefficient and optical-optical efficiency on the linewidth ratio between D2 absorption line and pump light, and the center frequency shift of pump light caused by mode hopping are calculated and compared with experimental results in literatures. Results show the definition of lineshape matching coefficient can provide an effective way to improve the pump efficiency of DPALs.

  11. Experimental study of the light absorption in sea water by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Velásquez, A.; Sira, E.; Silva, S.; Cabrera, H.

    2016-01-01

    Thermal lens spectroscopy is well known as highly sensitive technique enabling measurements of low absorption and concentration determination of various compounds. The optical absorption coefficients of doubly distilled water and samples of water from different places of the open Ocean and different coastal regions have been measured at 532.8 nm wavelength using this technique. The method enables sensitive, rapid and reproducible determination of small variations of the absorption coefficient which are related with small trace contaminations in sea water.

  12. On the errors in measuring the particle density by the light absorption method

    SciTech Connect

    Ochkin, V. N.

    2015-04-15

    The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.

  13. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  14. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  15. Transport coefficients of heavy baryons

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.

    2016-08-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.

  16. Ultraschall-Geschwindigkeit und-Absorption in Bi-In-Schmelzen /Ultrasonic Velocity and Absorption in Bi-In-melts

    NASA Astrophysics Data System (ADS)

    Bek, R.; Steeb, S.

    1981-02-01

    Using the pulse-echo method the ultrasonic velocity and absorption was measured with Bi-In-melts in the temperature range from liquidus up to more than 600 °C. The frequencies used reached from 10 MHz up to 130 MHz. Within the experimental accuracy no frequency dependence of the absorption coefficient α/f2 could be detected. An excess absorption can be observed, which for the molten elements can be explained by fluctuations of the packing density. For the molten alloys additionally concentration fluctuations play an important role. Thus an understanding of the temperature dependency of the ultrasonic velocity and absorption can be achieved.

  17. Modification of Einstein A Coefficient in Dissipative Gas Medium

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Cao, Hui; Qin, Ke-Cheng

    1996-01-01

    Spontaneous radiation in dissipative gas medium such as plasmas is investigated by Langevin equations and the modified Weisskopf-Wigner approximation. Since the refractive index of gas medium is expected to be nearly unity, we shall first neglect the medium polarization effect. We show that absorption in plasmas may in certain case modify the Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for relatively low temperature plasmas and also a pit in the A coefficient-temperature curves. In the next, the effect of medium polarization is taken into account in addition. To our surprise, its effect in certain case is quite significant. The dispersive curves show different behaviors in different region of parameters.

  18. Analysis of internal conversion coefficients

    PubMed

    Coursol; Gorozhankin; Yakushev; Briancon; Vylov

    2000-03-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z = 30 to Z = 103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10 < or = Z < or = 104, Special Report of Leningrad Nuclear Physics Institute; Rosel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations. PMID:10724406

  19. Seebeck coefficient of one electron

    SciTech Connect

    Durrani, Zahid A. K.

    2014-03-07

    The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.

  20. ABSORPTION OF p MODES BY THIN MAGNETIC FLUX TUBES

    SciTech Connect

    Jain, Rekha; Hindman, Bradley W.; Braun, Doug C.; Birch, Aaron C.

    2009-04-10

    We study the interaction between p modes and the many magnetic fibrils that lace the solar convection zone. In particular, we investigate the resulting absorption of p-mode energy by the fibril magnetic field. Through mechanical buffeting, the p modes excite tube waves on the magnetic fibrils-in the form of longitudinal sausage waves and transverse kink waves. The tube waves propagate up and down the magnetic fibrils and out of the p-mode cavity, thereby removing energy from the incident acoustic waves. We compute the absorption coefficient associated with this damping mechanism and model the absorption that would be observed for magnetic plage. We compare our results to the absorption coefficient that is measured using the local-helioseismic technique of ridge-filtered holography. We find that, depending on the mode order and the photospheric boundary conditions, we can achieve absorption coefficients for simulated plage that exceed 50%. The observed increase of the absorption coefficient as a function of frequency is reproduced for all model parameters.

  1. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  2. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming.

    PubMed

    Pack, Eun Chul; Lee, Seung Ha; Kim, Chun Huem; Lim, Chae Hee; Sung, Dea Gwan; Kim, Mee Hye; Park, Ki Hwan; Lim, Kyung Min; Choi, Dal Woong; Kim, Suhng Wook

    2014-01-01

    Because of global warming, the quantity of naturally generated mercury (Hg) will increase, subsequently methylation of Hg existing in seawater may be enhanced, and the content of metal in marine products rise which consequently results in harm to human health. Studies of the effects of temperatures on Hg absorption have not been adequate. In this study, in order to observe the effects of temperature changes on Hg absorption, inorganic Hg or methylmercury (MeHg) was added to water tanks containing loaches. Loach survival rates decreased with rising temperatures, duration, and exposure concentrations in individuals exposed to inorganic Hg and MeHg. The MeHg-treated group died sooner than the inorganic Hg-exposed group. The total Hg and MeHg content significantly increased with temperature and time in both metal-exposed groups. The MeHg-treated group had higher metal absorption rates than inorganic Hg-treated loaches. The correlation coefficients for temperature elevation and absorption were significant in both groups. The results of this study may be used as basic data for assessing in vivo hazards from environmental changes such as climate warming. PMID:25343296

  3. Saturnian trapped radiation and its absorption by satellites and rings - The first results from Pioneer 11

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Bastian, T. S.; Chenette, D. L.; Lentz, G. A.; Mckibben, R. B.; Pyle, K. R.; Tuzzolino, A. J.

    1980-01-01

    Preliminary results from Pioneer 11 concerning the acceleration and trapping of charged particles in the magnetic field of Saturn are reported. The identification and measurement of the intensities and spectra of charged particle species was performed by an experiment including four charged particle sensor systems, within 20 Saturn radii of the planet. Increases in the intensity of 0.5- to 1.8-MeV protons within 15 Saturn radii indicate the trapping and acceleration of particles in the dipole field region, while a decrease in proton intensity between seven and four Saturn radii is attributed to absorption by Dione and Enceladus and possibly ring material as well. Proton and electron intensity distributions are found to be axially symmetric within four Saturn radii, indicating a centered dipole aligned with the planetary rotation axis. Trapped radiation absorption at the orbit of Mimas is analyzed to obtain an upper limit of 4 x 10 to the -8th Saturn radii-squared/sec to the inward diffusion coefficient; an absorption-like feature observed at L = 2.5 is attributed to a previously unidentified satellite of diameter less than 200 km and semimajor axis 2.51 Saturn radii. Radiation absorption by the newly discovered F ring was also observed, however beneath the A, B and C rings a low flux of high-energy electrons was detected.

  4. Ozone absorption into excised porcine and sheep tracheae by a bolus-response method.

    PubMed

    Ben-Jebria, A; Hu, S C; Kitzmiller, E L; Ultman, J S

    1991-12-01

    The absorption of ozone (O3) into excised porcine and sheep tracheae was characterized by a bolus-response experiment in which a bolus with a peak O3 concentration of 1 ppm was rapidly injected into a steadily flowing airstream entering the trachea. Using a fast-responding chemiluminescent analyzer of our design, the O3 concentration curves at the proximal end (i.e., the bolus input) and at the distal end (i.e., the response) of the trachea were monitored. Each concentration curve was numerically integrated, and the fraction of O3 absorbed in the trachea was obtained by subtracting from unity the ratio of the response integral to the bolus input integral. Average values of ozone-absorbed fraction decreased from about 0.50 to 0.15 at increasing airflows from 50 to 200 ml/sec. A diffusion theory that includes the effects of bulk convection, axial dispersion, and first-order absorption was developed to relate the fractional absorption to an overall mass transfer coefficient (K). The results indicate that K is independent of airflow, suggesting that the diffusion resistance in mucus is much greater than that in the gas phase. The time-weighted integrals of the concentration curves were also computed, allowing the mean residence time of O3 in the trachea (delta tau) to be determined. As predicted by the diffusion theory, delta tau was inversely related to the rate of O3 absorption. PMID:1769361

  5. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of

  6. Integer Solutions of Binomial Coefficients

    ERIC Educational Resources Information Center

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  7. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  8. Tables of the coefficients A

    NASA Technical Reports Server (NTRS)

    Chandra, N.

    1974-01-01

    Numerical coefficients required to express the angular distribution for the rotationally elastic or inelastic scattering of electrons from a diatomic molecule were tabulated for the case of nitrogen and in the energy range from 0.20 eV to 10.0 eV. Five different rotational states are considered.

  9. Estimating the Polyserial Correlation Coefficient.

    ERIC Educational Resources Information Center

    Bedrick, Edward J.; Breslin, Frederick C.

    1996-01-01

    Simple noniterative estimators of the polyserial correlation coefficient are developed by exploiting a general relationship between the polyserial correlation and the point polyserial correlation to give extensions of the biserial estimators of K. Pearson (1909), H. E. Brogden (1949), and F. M. Lord (1963) to the multicategory setting. (SLD)

  10. Super-Resonant Intracavity Coherent Absorption

    NASA Astrophysics Data System (ADS)

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.

    2016-07-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

  11. Super-Resonant Intracavity Coherent Absorption

    PubMed Central

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; De Natale, P.; Gagliardi, G.

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  12. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  13. Iron, lead, and cobalt absorption: similarities and dissimilarities

    SciTech Connect

    Barton, J.C.; Conrad, M.E.; Holland, R.

    1981-01-01

    Using isolated intestinal segments in rats, the absorption of iron, lead, and cobalt was increased in iron deficiency and decreased in iron loading. Similarly, the absorption of these metals was decreased in transfusional erythocytosis, after intravenous iron injection and after parenteral endotoxin injection. Acute bleeding or abbreviated intervals of dietary iron deprivation resulted in increased iron absorption from isolated intestinal segments and in intact animals, while the absorption of lead and cobalt was unaffected. These results suggest that the specificity of the mucosal metal absorptive mechanism is either selectively enhanced for iron absorption by phlebotomy or brief periods of dietary iron deprivation, or that two or more mucosal pathways for iron absorption may exist.

  14. Heat exchange model in absorption chamber of water-direct-absorption-typed laser energy meter

    NASA Astrophysics Data System (ADS)

    Feng Wei, Ji; Qun Sun, Li; Zhang, Kai; Hu, XiaoYang; Zhou, Shan

    2015-04-01

    The interaction between laser and water flow is very complicated in the absorption chamber of a high energy laser (HEL) energy meter which directly uses water as an absorbing medium. Therefore, the heat exchange model cannot be studied through traditional methods, but it is the most important factor to improve heat exchange efficiency in the absorption chamber. After the exchanges of heat and mass were deeply analyzed, experimental study and numerical fitting were brought out. The original testing data of laser power and water flow temperature at one moment were utilized to calculate those at the next moment, and then the calculated temperature curve was compared with the measured one. If the two curves matched well, the corresponding coefficient was obtained. Meanwhile, numerous experiments were performed to study the effects of laser power, duration, focal spot scale, and water flow rate on heat exchange coefficient. In addition, the relationship between water phase change and heat exchange was analyzed. The heat exchange coefficient was increased by optimizing the construction of the absorption chamber or increasing water flow rate. The results provide the reference for design of water-direct-absorption-typed HEL energy meters, as well as for analysis of the interaction between other similar lasers and water flow.

  15. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  16. Intestinal Absorption and Metabolism of Epimedium Flavonoids in Osteoporosis Rats.

    PubMed

    Zhou, Jing; Ma, Yi Hua; Zhou, Zhong; Chen, Yan; Wang, Ying; Gao, Xia

    2015-10-01

    Herba Epimdii is a traditional Chinese medicine used to treat osteoporosis. Its main pharmacological ingredients are flavonoids. In previous studies conducted in healthy animals, we showed that epimedium flavonoids could be hydrolyzed into secondary glycosides or aglycon by intestinal flora or enzymes, thereby enhancing their absorption and antiosteoporosis activity. To study the medicine in the pathologic state, epimedium flavonoids were incubated with intestinal mucosa and feces in vitro and intestinal perfusion in situ to explore the differences in absorption and metabolism between sham and osteoporosis rats. For osteoporosis rats, the hydrolysis rates of icariin, epimedin A, epimedin B, and epimedin C incubated with intestinal flora for 1 hour were reduced by 0.19, 0.26, 0.19, and 0.14, respectively, compared with that in sham rats. Hydrolysis rates were reduced by 0.21, 0.24, 0.08, and 0.31 for icariin, epimedin A, epimedin B, and epimedin C incubated with duodenal enzymes for 1 hour and by 0.13, 0.09, 0.07, and 0.47 for icariin, epimedin A, epimedin B, and epimedin C incubated with jejunum enzymes, respectively, compared with the sham group. In addition, the apparent permeability coefficient and elimination percentage of the four epimedium flavonoids in the duodenum, jejunum, ileum, and colon decreased by 29%-44%, 32%-50%, 40%-56%, and 27%-53% compared with that in sham rats, respectively. The main metabolites of the four epimedium flavonoids were the same for the two groups after intestinal perfusion, or flora and enzyme incubation. In conclusion, the amount and activity of intestinal flora and enzymes changed in ovariectomized rats, which affected the intestinal absorption and hydrolysis of epimedium flavonoids whose structures contain 7-glucose. PMID:26135008

  17. Optical absorption in ion-implanted lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Seager, C.H.; Land, C.E.

    1984-08-15

    Optical absorption measurements have been performed on unmodified and on ion-implanted lead lanthanum zirconate titanate ceramics using the photothermal deflection spectroscopy technique. Bulk absorption coefficients depend on the average grain size of the material while the absorption associated with the ion-damaged layers does not. The damage-induced surface absorptance correlates well with the photosensitivity observed in implanted PLZT devices, supporting earlier models for the enhanced imaging efficiency of the materials.

  18. Effect of migraine attacks on paracetamol absorption.

    PubMed Central

    Tokola, R A; Neuvonen, P J

    1984-01-01

    The absorption of effervescent paracetamol (1000 mg) was investigated in nine female patients during a migraine attack and in the same patients when headache free. Migraine attack decreased (P less than 0.05) the areas under the serum paracetamol concentration-time curves (AUC) of 0-2 h, 0-4 h and 0-6 h and the peak serum concentration. The severity of nausea correlated significantly with the decrease in the AUC values. Our results support findings of delayed gastric emptying in migraine attacks. Both a delay and an impairment of drug absorption may follow. PMID:6529526

  19. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  20. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  1. The effect of aniline derivatives on absorption of fluid, glucose and sodium in isolated duodenal segments from rats.

    PubMed

    Diener, M; Bridges, R J; Büch, H P

    1986-12-01

    Paracetamol (5-15 mmol X l-1), phenacetin (1-3 mmol X l-1) and acetanilide (5-20 mmol X l-1) enhanced fluid, glucose and sodium absorption of isolated duodenal segments from rats. In a high concentration paracetamol (30 mmol X l-1) and acetanilide (25 mmol X l-1) inhibited these parameters. The coupling coefficient of 2:1 in sodium-glucose cotransport was not changed under the influence of the aniline derivatives. Phlorizin (10(-5) mol X l-1) completely abolished the stimulatory effect of these drugs. Also in presence of 3-O-methylglucose instead of glucose in the perfusion medium a paracetamol dependent increase in fluid absorption was seen, whereas the absorption of mannitol was unchanged. The results suggest, that the increase in sodium and fluid absorption caused by aniline derivatives is due to the stimulation of active glucose transport. A cytotoxic effect may explain the decrease of absorption at high concentrations of these substances. PMID:3821942

  2. Light-induced changes in subband absorption in a-Si:H using photoluminescence absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, S. Q.; Taylor, P. C.; Nitta, S.

    1991-08-01

    We have used the photoluminescence (PL) generated in a thin-film sample of a-Si:H to probe low absorption levels by measuring the absorption of the PL as it travels down the length of the film in a waveguide mode. This technique, which we have called PL absorption spectroscopy of PLAS, allows the measurement of values of the absorption coefficient α down to about 0.1 cm-1. Because this technique probes the top and bottom surfaces of the a-Si:H sample, it is important to separate surface from bulk absorption mechanisms. An improved sample geometry has been employed to facilitate this separation. One sample consisted of an a-Si1-xNix:H/a-Si:H/ a-Si1-xNx:H/NiCr layered structure where the silicon nitride layers served as the cladding layers for the waveguide. In a second sample the a-Si:H layer was interrupted near the middle for two separate, thin (100 Å) layers of a-Si1-xNx:H in order to check for the importance of the absorption at the silicon/silicon nitride interfaces in these PLAS measurements. Changes in the below-gap absorption on light soaking were examined using irradiation from an Ar+ laser (5145 Å, ˜200 mW/cm2 for 5.5 hours at 300 K). The silicon/silicon nitride interface is responsible for an absorption which has a shoulder near 1.2 eV while the bulk a-Si:H absorption exhibits no such shoulder. The metastable, optically-induced increase in the below gap absorption appears to come entirely from the bulk of the a-Si:H. These low temperature PLAS measurements are compared with those obtained at 300 K by photothermal deflection spectroscopy.

  3. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  4. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  5. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  6. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  7. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  8. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  9. Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009.

    PubMed

    Sabetghadam, Samaneh; Ahmadi-Givi, Farhang

    2014-01-01

    Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90% are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km(-1), respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM10, SO2, and NO2 concentration, while negative correlation exists between the extinction and T, WS, and O3, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44% of the extinction is from suspended particles, 3% is from air molecules, about 5% is from NO2 absorption, 0.35% is from RH, and approximately 48% is unaccounted for, which may represent errors in the data as

  10. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  11. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  12. Absorption of water and lubricating oils into porous nylon

    NASA Technical Reports Server (NTRS)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  13. Comparison of absorption after inhalation and instillation of uranium octoxide.

    PubMed

    Pellow, P G D; Hodgson, S A; Hodgson, A; Rance, E; Ellender, M; Guilmette, R A; Stradling, G N

    2003-01-01

    Values for the absorption parameters were compared after inhalation or intratracheal instillation of 1.5 microm mass median aerodynamic diameter (MMAD) 233U3O8 particles into the lungs of HMT strain rats. The two sets of parameter values were similar, as were the calculated dose coefficients and predicted biokinetics for workers. Hence the inhalation and instillation techniques can probably both be used to generate values of the absorption parameters for U3O8. PMID:14526937

  14. Constraining the Drag Coefficients of Meteors in Dark Flight

    NASA Technical Reports Server (NTRS)

    Carter, R. T.; Jandir, P. S.; Kress, M. E.

    2011-01-01

    Based on data in the aeronautics literature, we have derived functions for the drag coefficients of spheres and cubes as a function of Mach number. Experiments have shown that spheres and cubes exhibit an abrupt factor-of-two decrease in the drag coefficient as the object slows through the transonic regime. Irregularly shaped objects such as meteorites likely exhibit a similar trend. These functions are implemented in an otherwise simple projectile motion model, which is applicable to the non-ablative dark flight of meteors (speeds less than .+3 km/s). We demonstrate how these functions may be used as upper and lower limits on the drag coefficient of meteors whose shape is unknown. A Mach-dependent drag coefficient is potentially important in other planetary and astrophysical situations, for instance, in the core accretion scenario for giant planet formation.

  15. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  16. The temperature dependence of collision-induced absorption by oxygen near 6 microns

    NASA Technical Reports Server (NTRS)

    Orlando, John J.; Tyndall, Geoffrey S.; Nickerson, Karen E.; Calvert, Jack G.

    1991-01-01

    Coefficients for oxygen absorption in the infrared induced by collisions with O2 and N2 are reported over the range 1400-1800/cm and 225-356 K. These coefficients are used to calculate the absorption for O2 in air as a function of temperature and wavenumber, and comparisons are made with previous determinations. In addition, structured absorption features superimposed on the broad collision-induced absorption band, which were observed at all temperatures studied, are interpreted in terms of the presence of (O2)2 and O2-N2 van der Waals molecules.

  17. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  18. Epidermal melanin absorption in human skin

    NASA Astrophysics Data System (ADS)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin

  19. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the

  20. Air broadening coefficients for the ν3 band of hydroperoxyl radicals

    NASA Astrophysics Data System (ADS)

    Minamida, Maya; Tonokura, Kenichi

    2014-11-01

    Using mid-infrared laser absorption spectroscopy, we investigated the room-temperature pressure broadening coefficients for hydroperoxyl radicals (HO2) in nitrogen and oxygen over the 1060.0-1065.5 cm-1 range of the ν3 band. The HO2 radicals were produced by flash photolysis of a chlorine/1,4-cyclohexadiene/oxygen mixture. The 20 measured absorption profiles were analyzed with Voigt functions. Air broadening coefficients were estimated from the nitrogen- and oxygen-broadening results and compared with previous results. We discuss the dependence of air broadening on rotational states.

  1. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  2. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  3. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  5. Development of a High Performance and Compact Absorber for Absorption Refrigerator

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Nomura, Tomohiro; Iyota, Hiroyuki; Uedono, Norio

    Absorption experiments were conducted to investigate an effect of tube pitch for a conventional horizontal smooth copper tubes type absorber. A test absorber that consists of 9 horizontal smooth tubes was built. Each tube had an outside diameter of 15.9mm and a length of 0.2m. Also, the absorber can be changed its tube pitch from 16.0mm to 31.7mm. N-octanol was used as a surfactant. Temperature distributions of a falling film of aqueous lithium bromide, cooling water and heat transfer tubes' surfaces were measured minutely. And, the behaviors of the solution flow both on the horizontal tubes and in the space among them were observed by using a high speed video camera. With measured data, refrigerating capacity, overall heat transfer coefficient, temperature effectiveness and absorption effectiveness were determined. The results showed the refrigerating capacity increased with decreasing the tube pitch. And, real overall heat transfer coefficients of the tube bundle were determined by using the local temperature distributions at the tube bundle. They became 50% larger than that of conventional calculation method. Consequently, it was conc1uded that the full contact arrangement of the smooth tubes is the best feature of the conventional horizontal tube type absorber.

  6. Quantitative materials analysis of micro devices using absorption-based thickness measurements

    NASA Astrophysics Data System (ADS)

    Sim, L. M.; Wog, B. S.; Spowage, A. C.

    2006-01-01

    Preliminary work in designing an X-ray inspection machine with the capability of providing quantitative thickness analysis based on absorption measurements has been demonstrated. This study attempts to use the gray levels data to investigate the nature and thickness of occluded features and materials within devices. The investigation focused on metallic materials essential to semiconductor and MEMS technologies such as tin, aluminium, copper, silver, iron and zinc. The materials were arranged to simulate different feature thicknesses and sample geometries. The X-ray parameters were varied in-order to modify the X-ray energy spectrum with the aim of optimising the measurement conditions for each sample. The capability of the method to resolve differences in thicknesses was found to be highly dependent on the material. The thickness resolution with aluminium was the poorest due to its low radiographic density. The thickness resolutions achievable for silver and tin were significantly better and of the order of 0.015 mm and 0.025 mm respectively. From the linear relationship between the X-ray attenuation and sample thickness established, the energy dependent linear attenuation coefficient for each material was determined for a series of specific energy spectra. A decrease in the linear attenuation coefficient was observed as the applied voltage and thickness of the material increased. The results provide a platform for the development of a novel absorption-based thickness measurement system that can be optimised for a range of industrial applications.

  7. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  8. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  9. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-07-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  10. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-04-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  11. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  12. Measurements of thermal accommodation coefficients.

    SciTech Connect

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  13. Optical absorption of nanoporous silicon: quasiparticle band gaps and absorption spectra

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    2013-03-01

    Silicon is an earth-abundant material of great importance in semiconductors electronics, but its photovoltaic applications are limited by the low absorption coefficient in the visible due to its indirect band gap. One strategy to improve the absorbance is to perforate silicon with nanoscale pores, which introduce carrier scattering that enables optical transitions across the indirect gap. We used density functional and many-body perturbation theory in the GW approximation to investigate the electronic and optical properties of porous silicon for various pore sizes, spacings, and orientations. Our calculations include up to 400 atoms in the unit cell. We will discuss the connection of the band-gap value and absorption coefficient to the underlying nanopore geometry. The absorption coefficient in the visible range is found to be optimal for appropriately chosen nanopore size, spacing, and orientation. Our work allows us to predict porous-silicon structures that may have optimal performance in photovoltaic applications. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  14. Measurements of spectral attenuation coefficients in the lower Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.

    1983-01-01

    The spectral transmission was measured for water samples taken in the lower Chesapeake Bay to allow characterization of several optical properties. The coefficients of total attenuation, particle attenuation, and absorption by dissolved organic matter were determined over a wavelength range from 3500 A to 8000 A. The data were taken over a 3 year period and at a number of sites so that an indication of spatial and temporal variations could be obtained. The attenuations determined in this work are, on the average, 10 times greater than those obtained by Hulburt in 1944, which are commonly accepted in the literature for Chesapeake Bay attenuation.

  15. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  16. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  17. Free-Carrier Absorption in Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    The absorption of light by free carriers in semiconductors such as silicon results in intraband electron or hole excitations, and competes with optical transitions across the band gap. Free-carrier absorption therefore reduces the efficiency of optoelectronic devices such as solar cells because it competes with the generation of electron-hole pairs. In this work, we use first-principles calculations based on density functional theory to investigate direct and phonon-assisted free-carrier absorption in silicon. We determine the free-carrier absorption coefficient as a function of carrier concentration and temperature and compare to experiment. We also identify the dominant phonon modes that contributing to phonon-assisted free-carrier absorption processes, and analyze the results to evaluate the impact of this loss mechanism on the efficiency of silicon solar cells. This research was supported by the National Science Foundation CAREER award through Grant No. DMR-1254314. Computational resources were provided by the DOE NERSC facility.

  18. Light absorption and electrical transport in Si:O alloys for photovoltaics

    SciTech Connect

    Mirabella, S.; Crupi, I.; Miritello, M.; Simone, F.; Di Martino, G.; Di Stefano, M. A.; Di Marco, S.; Priolo, F.

    2010-11-15

    Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 deg. C. Boron implantation (30 keV, 3-30x10{sup 14} B/cm{sup 2}) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 deg. C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell.

  19. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  20. Influence of electrically induced refraction and absorption on the measurement of spin current by pockels effect in GaAs

    SciTech Connect

    Liu, Houquan; She, Weilong

    2015-03-14

    The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.

  1. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C. PMID:27152992

  2. Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae.

    PubMed

    Peng, Tong; Lu, Xiao-lan; Su, Rong-guo; Zhang, Dong-mei

    2015-09-01

    Four kinds of diatom (Chaetoceros curvisetus, Phaeodactylum tricornutum, Nitzschia closterium f. minutissima and Navicula halophile) and two kinds of dinoflagellates (Prorocentrum donghaiense and Gymnodinium) were cultured under laboratory conditions. Variations of optical properties of chromophoric dissolved organic matter (CDOM) were studied with absorption and fluorescence excitation-emission matrix spectroscopy(EEM) during growth of marine microalgae in incubation experiment. Absorption spectrum revealed absorption coefficient a(355) (CDOM absorption coefficients at 355 nm) of 6 kinds of marine microalgae above increased by 64.8%, 242.3%, 535.1%, 903.2%, 836% and 196.4%, respectively. Simultaneously, the absorption spectral slope (Sg), determined between 270 and 350 nm, representing the size of molecular weight of CDOM and humic-like composition, decreased by 8.7%, 34.6%, 39.4%, 53.1%, 46.7%, and 35.7%, respectively. Applying parallel factor analysis (PARAFAC) together with EEM got four components of CDOM: C1(Ex/Em=350(260) nm/450 nm), C2 (Ex/Em=260(430) nm/525 nm), C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm), which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f. minutissima and Navicula halophile. In incubation experiment, fluorescence intensity of these four components during growth of Nitzschia closterium f. minutissima increased by, respectively, 8.68, 24.9, 7.19 and 39.8 times, and those of Navicula halophile increased by 2.64, 0.07, 4.39 and 12.4 times, respectively. Significant relationships were found between the fluorescence intensity of four components of CDOM, a(355) and Sg. All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased, but these two parameters changed more obviously of the diatom than those of dinoflagellate; the proportion of humic-like components in the composition of CDOM

  3. Statistical process control for AR(1) or non-Gaussian processes using wavelets coefficients

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Tiplica, T.; Kobi, A.

    2015-11-01

    Autocorrelation and non-normality of process characteristic variables are two main difficulties that industrial engineers must face when they should implement control charting techniques. This paper presents new issues regarding the probability distribution of wavelets coefficients. Firstly, we highlight that wavelets coefficients have capacities to strongly decrease autocorrelation degree of original data and are normally-like distributed, especially in the case of Haar wavelet. We used AR(1) model with positive autoregressive parameters to simulate autocorrelated data. Illustrative examples are presented to show wavelets coefficients properties. Secondly, the distributional parameters of wavelets coefficients are derived, it shows that wavelets coefficients reflect an interesting statistical properties for SPC purposes.

  4. Ratios of internal conversion coefficients

    SciTech Connect

    Raman, S.; Ertugrul, M.; Nestor, C.W. . E-mail: CNestorjr@aol.com; Trzhaskovskaya, M.B.

    2006-03-15

    We present here a database of available experimental ratios of internal conversion coefficients for different atomic subshells measured with an accuracy of 10% or better for a number of elements in the range 26 {<=} Z {<=} 100. The experimental set involves 414 ratios for pure and 1096 ratios for mixed-multipolarity nuclear transitions in the transition energy range from 2 to 2300 keV. We give relevant theoretical ratios calculated in the framework of the Dirac-Fock method with and without regard for the hole in the atomic subshell after conversion. For comparison, the ratios obtained within the relativistic Hartree-Fock-Slater approximation are also presented. In cases where several ratios were measured for the same transition in a given isotope in which two multipolarities were involved, we present the mixing ratio {delta} {sup 2} obtained by a least squares fit.

  5. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  6. Lyman-α Absorption from Heliotail ENAs

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Izmodenov, Vladislav V.

    2010-12-01

    The energetic neutral atoms (ENAs) that the Interstellar Boundary Explorer (IBEX) is currently studying are messengers from the termination shock and beyond. Ultraviolet spectra from the Hubble Space Telescope (HST) provide another way to study these ENAs, which are capable of producing detectable absorption signatures in HST Lyman-α spectra of nearby stars. This broad, shallow absorption is only observed within 20° of the downwind direction. Only the lengthy downwind lines of sight through the long heliotail build up enough column density of ENAs to yield detectable absorption. The absorption therefore represents the first real observational detection of the heliotail. We try to connect ENA fluxes observed by IBEX with the Lyman-α absorption observed by HST. In the downwind direction, IBEX observes ENA fluxes that increase towards lower energies, at least to 0.2 keV, but consistency with the HST measurements seems to require that the ENA fluxes at least flatten if not decrease below 0.2 keV. The ``ribbon'' of ENAs detected by IBEX is not detected in Lyman-α absorption, which may be a problem for any explanation of the ribbon that proposes a source beyond our heliosphere.

  7. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  8. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber

    NASA Astrophysics Data System (ADS)

    Shakeri, Alireza; Ghasemian, Ali

    2010-04-01

    This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.

  9. Heat and mass transfer characteristics of absorption of R134a into DMAC in a horizontal tube absorber

    NASA Astrophysics Data System (ADS)

    Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.

    2009-10-01

    In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.

  10. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  11. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  12. Enhanced absorption cycle computer model. Final report

    SciTech Connect

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperatures boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorptions systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H{sub 2}O triple-effect cycles, LiCl-H{sub 2}O solar-powered open absorption cycles, and NH{sub 3}-H{sub 2}O single-effect and generator-absorber heat exchange cycles. An appendix contains the User`s Manual.

  13. Wavelength and energy dependent absorption of unconventional fuel mixtures

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.

  14. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  15. Absorption of visible radiation by aerosols in the volcanic plume of mount st. Helens.

    PubMed

    Ogren, J A; Charlson, R J; Radke, L F; Domonkos, S K

    1981-02-20

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10(-7) per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter. PMID:17740397

  16. X-Ray Attenuation and Absorption for Materials of Dosimetric Interest

    National Institute of Standards and Technology Data Gateway

    SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access)   Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.

  17. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Charlson, R. J.; Radke, L. F.; Domonkos, S. K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10 to the minus 7 per meter at a wavelength of 0.55 micron, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter

  18. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    SciTech Connect

    Ogren, J.A.; Charlson, R.J.; Radke, L.F.; Domonkos, S.K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposhere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10-7 per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  19. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  20. Direct determination of absorption anisotropy in colloidal quantum rods

    NASA Astrophysics Data System (ADS)

    Kamal, John Sundar; Gomes, Raquel; Hens, Zeger; Karvar, Masoumeh; Neyts, Kristiaan; Compernolle, Sien; Vanhaecke, Frank

    2012-01-01

    We propose a direct method to determine absorption anisotropy of colloidal quantum rods. In this method, the rods are aligned in solution by using an alternating electric field and we measure simultaneously the resulting average change in absorption. We show that a frequency window for the electric field exists in which the change in absorbance as a function of field strength can be analyzed in terms of the quantum-rod dipole moment and the absorption coefficient for light that is polarized parallel or perpendicular to the long axis of the rod. The approach is verified by measuring the absorbance change of CdSe rods at 400 nm as a function of field strength, where we demonstrate excellent agreement between experiment and theory. This enables us to propose improved values for the CdSe quantum-rod extinction coefficient. Next, we analyze CdSe/CdS dot-in-rods and find that the absorption of the first exciton transition is fully anisotropic, with a vanishing absorption coefficient for light that is polarized perpendicularly to the long axis of the rods.

  1. Microwave peak absorption frequency of liquid

    NASA Astrophysics Data System (ADS)

    Han, Guangze; Chen, Mingdong

    2008-09-01

    Microwave-assisted extraction is a new effective method which has practical applications in many fields. Microwave heating is one of its physical mechanisms, and it also has the characteristic of selectivity. When the applied microwave frequency equals a certain absorption frequency of the material (or specific component), the material will intensively absorb microwave energy. This is also known as resonant absorption, and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work, dynamic hydrogen bond energy was included in molecular activation energy; with the liquid cell model, the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and relaxation time, the expression of microwave peak absorption frequency as a function of the material physical structure, rotational inertia and electrical dipole moment of molecules was established. These theoretical formulas were applied to water and benzene, and the calculated results agree fairly well with the experimental data. This work can not only deepen the study of the interaction between microwave and material, but also provide a possible guide for the experiment of microwave-assisted extraction.

  2. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  3. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  4. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  5. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  6. Non-Absorbable Gas Behavior in the Absorber/Evaporator of a Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional numerical study on non-absorbable gas behavior in the absorber/evaporator of an absorption chiller has been performed. In the present study, the effect of the pitch-to-diameter ratio of a cylinder bundle in the absorber was highlighted. From the results, a sudden decrease of the overall heat transfer coefficient of the absorber was observed at a certain mean concentration of non-absorbable gas for each pitch-to-diameter ratio. Such a critical concentration was also found to decrease as the pitch-to- diameter ratio increased. The sudden decrease occurs due to the sudden disappearance of recirculating region, which is formed between the absorber and the evaporator, and where most of non-absorbable gas stays when it exists. As the pitch-to-diameter ratio increases, the recirculating region becomes weak because the velocity of the high velocity region supporting the recirculating flow decreases. Then, the critical mean concentration of non-absorbable gas is found to decrease as pitch-to-ratio increases.

  7. M-Bonomial Coefficients and Their Identities

    ERIC Educational Resources Information Center

    Asiru, Muniru A.

    2010-01-01

    In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.

  8. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  9. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  10. Monochromatic calculations of atmospheric radiative transfer due to molecular line absorption

    NASA Technical Reports Server (NTRS)

    Chou, M.-D.; Kouvaris, L.

    1986-01-01

    Sensitivity studies related to the effects of line cutoff, spectral resolution, and temperature and pressure interpolations in radiative transfer have been performed so that a data set of absorption coefficients for water vapor, CO2, and O3 may be created efficiently. Results show that computations of absorption coefficients are affected only slightly by cutting a line off at a wave number 190 times the Lorentz half width from the center, or equivalently, cutting off 0.33 percent of the line intensity from the wings. To achieve a relative cooling rate error smaller than 2 percent, it is sufficient to precompute the absorption coefficient at three temperatures (210, 250, and 290 K) and 19 pressures with Delta (log 10 p) = 0.2. The absorption coefficient at other conditions can be interpolated linearly with pressure and exponentially with a quadratic in temperature. For the spectral resolution the absorption coefficients can be adequately computed at 0.01, 0.002, 0.005, and 0.025/cm intervals in the thermal water vapor, the CO2 and O3 bands, and the solar water vapor bands, respectively, which limits the error to only a few percent in the cooling and heating rates. Using the precomputed absorption coefficients, repeated monochromatic calculations of atmospheric heating/cooling rates for radiation model developments and for comparison with less detailed calculations are no longer difficult.

  11. Analysis of Sabine and Eyring equations and their application to concert hall audience and chair absorption.

    PubMed

    Beranek, Leo L

    2006-09-01

    Historically, two equations have been used for predicting reverberation times, Sabine and Eyring. A precise means is presented for determining Eyring absorption coefficients alpha(eyring) when the Sabine coefficients alpha(sabine) are known, and vice versa. Thus, either formula can be used provided the absorption coefficients for the Sabine formula are allowed to exceed 1.0. The Sabine formula is not an approximation to the Eyring equation and is not a shortcoming. Given low reverberation times, the ratio of alpha(sabine) to alpha(eyring) may become greater than 2.0. It is vital that, for correct prediction of reverberation times, the absorption coefficients used in either formula must have been determined in spaces similar in size and shape, with similar locations of high absorption (audience) areas, and with similar reverberation times. For concert halls, it is found that, when the audience area (fully occupied) and midfrequency reverberation time are postulated, the hall volume is directly proportional to the audience absorption coefficient. Approximately 6% greater room volumes are needed when choosing nonrectangular versus classical-rectangular shaped halls and approximately 10% greater volumes when choosing heavily upholstered versus medium upholstered chairs. Determinations of audience sound absorption coefficients are presented, based on published acoustical and architectural data for 20 halls. PMID:17004464

  12. Unusually high sound absorption in topological interlocking materials

    NASA Astrophysics Data System (ADS)

    Estrin, Yuri; Molotnikov, Andrey; Carlesso, Mateus

    2015-04-01

    Topological interlocking materials are a new class of architectured materials, which have a range of unusual mechanical and acoustic properties. We present a novel approach for combating noise pollution based on the concept of topological interlocking. Specifically, we propose to segment monolithic plates into an assembly of topologically interlocked building blocks and show experimentally that this leads to a spectacular increase of the sound absorption coefficient over that in the original material, as exemplified by ceramics. Measurements of the airflow resistance confirmed the primary role of segmentation in enhancing sound absorption capability of the material in the audible frequency range. The absorption coefficient was further boosted by design of the material itself. The new material design proposed poses some interesting challenges to theory of sound wave propagation in heterogeneous media.

  13. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  14. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  15. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration. PMID:9277520

  16. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    EPA Science Inventory

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  17. Dust extinction and absorption: the challenge of porous grains

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Henning, Th.; Dubkova, D. N.

    2006-01-01

    In many models of dusty objects in space the grains are assumed to be composite or fluffy. However, the computation of the optical properties of such particles is still a very difficult problem. We analyze how the increase of grain porosity influences basic features of cosmic dust - interstellar extinction, dust temperature, infrared bands and millimeter opacity. It is found that an increase of porosity leads to an increase of extinction cross sections at some wavelengths and a decrease at others depending on the grain model. However, this behaviour is sufficient to reproduce the extinction curve in the direction of the star σ Sco using current solar abundances. In the case of the star ζ Oph our model requires larger amounts of carbon and iron in the dust-phase than is available. Porous grains can reproduce the flat extinction across the 3 - 8 μm wavelength range measured for several lines of sight by ISO and Spitzer. Porous grains are generally cooler than compact grains. At the same time, the temperature of very porous grains becomes slightly larger in the case of the EMT-Mie calculations in comparison with the results found from the layered-sphere model. The layered-sphere model predicts a broadening of infrared bands and a shift of the peak position to larger wavelengths as porosity grows. In the case of the EMT-Mie model variations of the feature profile are less significant. It is also shown that the millimeter mass absorption coefficients grow as porosity increases with a faster growth occurring for particles with Rayleigh/non-Rayleigh inclusions. As a result, for very porous particles the coefficients given by two models can differ by a factor of about 3.

  18. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  19. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.

  20. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  1. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  2. ZINC ABSORPTION BY INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  3. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  4. Analysis of absorption and scattering spectra for assessing apple fruit internal quality after harvest and storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical absorption and scattering properties are useful for quantifying light interaction with plant tissue, as well as for quality assessment of horticultural products. The aim of this research was to measure the absorption and reduced scattering coefficient spectra of two cultivars of apple (Malus...

  5. Stratospheric infrared continuum absorptions observed by the ATMOS instrument

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Namkung, J. S.; Farmer, C. B.; Norton, R. H.

    1989-01-01

    A quantitative analysis of infrared continuum absorption features observed in ATMOS/Spacelab 3 (1985) spectra of the lower stratosphere is reported. Continuous absorption produced primarily by the collision-induced fundamental vibration-rotation band of O2 and to a lesser extent by the superposition of H2O far line wings has been observed in the 1400 to 1800/cm interval below tangent heights of about 25 km. Continuum optical depths measured in microwindows nearly free of atmospheric line absorption are 0.78 + or - 0.06 times those calculated with the O2 absorption coefficients of Timofeyev and Tonkov (1978). Transmittance measurements in microwindows between 2395 and 2535/cm have been used to study continuous absorption from the collision induced fundamental vibration-rotation band of N2 and the far wings of strong CO2 lines. The measured transmittances have been analyzed to derive best fit absorption coefficients for the N2 pressure-induced band at lower stratospheric temperatures (about 210 K).

  6. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    NASA Astrophysics Data System (ADS)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  7. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  8. Microwave and optical saturable absorption in graphene.

    PubMed

    Zheng, Zhiwei; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun

    2012-10-01

    We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band. PMID:23188285

  9. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions.

    PubMed

    Gajjar, Rachna M; Kasting, Gerald B

    2014-11-15

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each (14)C-radiolabed compound were tested - 5, 10, 20, and 40μLcm(-2), corresponding to specific doses ranging in mass from 5.0 to 63mgcm(-2). The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, Ksc, and modest changes to the diffusion coefficients, Dsc, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. PMID:25283951

  10. X-ray Absorption Improvement of Single Wall Carbon Nanotube through Gadolinium Encapsulation

    NASA Astrophysics Data System (ADS)

    Alimin; Narsito, I.; Kartini; Santosa, S. J.

    2016-02-01

    X-ray absorption improvement of single-wall carbon nanotube (SWCNT) through gadolinium (Gd) encapsulation has been studied. The liquid phase adsorption using ethanol has been performed for the doping treatment. The Gd-doped SWCNT (Gd@SWCNT) was characterized by nitrogen adsorption isotherms, Raman spectroscopy, Transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. A relatively high residual weight of Gd@SWCNT compared to non-doped SWCNT (n-SWCNT) indicated that Gd has been doped in the nanotube. Even though Gd nanoparticles could not be observed clearly by TEM image, however, a significant decrease of nitrogen uptakes at low pressure and RBM (Radial Breathing Mode) upshift of Raman spectra of Gd@SWCNT specimen suggest that the metal nanoparticles might be encapsulated in the internal tube spaces of the nanotube. It was found that Gd-doped in the SWCNT increased significantly mass attenuation coefficient of the nanotube.

  11. Study of sub band gap absorption of Sn doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  12. Study of sub band gap absorption of Sn doped CdSe thin films

    SciTech Connect

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  13. Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Parinaz; Soltani-Vala, Ali; Barvestani, Jamal

    2016-06-01

    In this paper, the influence of impurity parameters on the electron energy spectrum and absorption coefficients in a parabolic quantum dot and in the presence of Rashba spin-orbit interaction subjected to a perpendicular magnetic field is studied. The impurity potential is approximated by a Gaussian form. We have shown that in the both cases of a repulsive and attractive Gaussian impurity, the absorption coefficients are strongly affected by the decay length. These coefficients show blue (red) shift as the decay length of repulsive (attractive) impurity is increased. The dependence of the absorption coefficients on the impurity position is also examined for different polarizations. Our results show that the absorption coefficient has local maximum (minimum) for a given value of impurity position for Y-polarized (X-polarized) light.

  14. Entropy production moment closures and effective transport coefficients

    NASA Astrophysics Data System (ADS)

    Christen, Thomas; Kassubek, Frank

    2014-09-01

    If transport of a given (classical, fermionic, or bosonic) particle species in media is described by a Boltzmann transport equation (BTE), it is often expedient to solve this BTE in the framework of a moment expansion of the particle distribution function, while an exact solution or simulation of the problem with real material properties and complex geometries is unpractical or even unfeasible. Whereas for local thermal equilibrium (LTE) the well-known hydrodynamic equations for the densities of the conserved quantities are derived from the BTE, for non-LTE it is not obvious how to define moments and to close the truncated hierarchy of partial differential equations for these moments. This paper reviews a closure based on entropy production rate minimization, which is applicable to incoherent transport of independent particles in non-LTE interacting with an LTE-medium. The BTE is then linear, includes emission-absorption and elastic scattering processes, and is equivalent to radiative transfer equations. In a large range from diffusive (opaque media) to ballistic (transparent media) transport behaviour, the closure provides useful mean transport coefficients that are exact in the LTE limit, in contrast to the often used maximum entropy moment closure. After an introduction into the underlying theory for massive and wave-like particles, two illustrative examples are discussed. First, the two-moment approximation of radiative heat transfer is reviewed and effective absorption coefficients and the Eddington factor are calculated for a real absorption spectrum. Secondly, the approach is applied to semi-classical electric transport in mesoscopic systems and is shown to provide the correct conductance of a quasi-one-dimensional ballistic conductor with elastic scattering.

  15. A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement

    NASA Astrophysics Data System (ADS)

    Drysdale, Graeme Robert

    A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and

  16. Empirical evidence for site coefficients in building code provisions

    USGS Publications Warehouse

    Borcherdt, R.D.

    2002-01-01

    Site-response coefficients, Fa and Fv, used in U.S. building code provisions are based on empirical data for motions up to 0.1 g. For larger motions they are based on theoretical and laboratory results. The Northridge earthquake of 17 January 1994 provided a significant new set of empirical data up to 0.5 g. These data together with recent site characterizations based on shear-wave velocity measurements provide empirical estimates of the site coefficients at base accelerations up to 0.5 g for Site Classes C and D. These empirical estimates of Fa and Fnu; as well as their decrease with increasing base acceleration level are consistent at the 95 percent confidence level with those in present building code provisions, with the exception of estimates for Fa at levels of 0.1 and 0.2 g, which are less than the lower confidence bound by amounts up to 13 percent. The site-coefficient estimates are consistent at the 95 percent confidence level with those of several other investigators for base accelerations greater than 0.3 g. These consistencies and present code procedures indicate that changes in the site coefficients are not warranted. Empirical results for base accelerations greater than 0.2 g confirm the need for both a short- and a mid- or long-period site coefficient to characterize site response for purposes of estimating site-specific design spectra.

  17. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    SciTech Connect

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-11

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  18. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-01

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  19. Tracheoesophageal fistula length decreases over time.

    PubMed

    Jiang, Nancy; Kearney, Ann; Damrose, Edward J

    2016-07-01

    The objectives of this study were to demonstrate that the length of the tracheoesophageal voice prosthesis changes over time and to determine whether the prosthesis length over time increased, decreased, or showed no predictable change in size. A retrospective chart review was performed at a tertiary care referral center. Patients who underwent either primary or secondary tracheoesophageal puncture between January 2006 and August 2014 were evaluated. Patients were excluded if the tracheoesophageal prosthesis size was not consistently recorded or if they required re-puncturing for an extruded prosthesis. Data analyzed included patient demographics and the length of the tracheoesophageal voice prosthesis at each change. A total of 37 patients were identified. The mean age was 64 years. Seventy-six percent were male. 24 % underwent primary tracheoesophageal puncture and 76 % underwent secondary tracheoesophageal puncture. The length of the prosthesis decreased over time (median Kendall correlation coefficient = -0.60; mean = -0.44) and this correlation between length and time was significant (p = 0.00085). Therefore, in conclusion, tracheoesophageal prosthesis length is not constant over time. The tracheoesophageal wall thins, necessitating placement of shorter prostheses over time. Patients with a tracheoesophageal voice prosthesis will require long-term follow-up and repeat sizing of their prosthesis. Successful tracheoesophageal voicing will require periodic reevaluation of these devices, and insurers must, therefore, understand that long-term professional care will be required to manage these patients and their prostheses. PMID:26951219

  20. The Sampling Distribution of the Kristof Reliability Coefficient, the Feldt Coefficient, and Guttman's Lambda-2

    ERIC Educational Resources Information Center

    Sedere, M. U.; Feldt, Leonard S.

    1977-01-01

    Two new reliability coefficients have been derived for situations in which a test must be divided into parts of unequal length. This report summarizes a study of the statistical bias and the standard errors of these coefficients and compares them to Guttman's lambda coefficients and Cronbach's alpha coefficient. (Author/JKS)

  1. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  2. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  3. Attenuation coefficients for water quality trading.

    PubMed

    Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin

    2014-06-17

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio. PMID:24866482

  4. Reactive sticking coefficients of silane on silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1987-01-01

    We have investigated the reaction of room-temperature silane and disilane on a hot polycrystalline silicon surface using both a collision-free molecular beam and a very low pressure CVD cell. Reactive sticking coefficients were obtained from deposition rate data over a wide range of temperatures and silane (disilane) fluxes. The RSCs are substantially less than one, ranging from 6 x 10/sup -5/ to 4 x 10/sup -2/. For silane we observed curved Arrhenius plots with slopes decreasing from approx.60 kcal mol/sup -1/ at low temperatures to approx.2 kcal mol/sup -1/ at higher temperatures. The RSCs are independent of flux (pressure) at 1040/sup 0/C, but vary as flux to the approx.-1/2 power at 710/sup 0/C. A model comprised of a dissociative adsorption mechanism with competing associative desorption and reaction was found to give reasonable agreement. For disilane, we observed RSCs that were roughly ten times higher than those for silane. We also observed a curved Arrhenius plot and a flux dependence at 710/sup 0/C for disilane. 22 refs., 5 figs.

  5. Quantitative imaging of airway liquid absorption in cystic fibrosis.

    PubMed

    Locke, Landon W; Myerburg, Michael M; Markovetz, Matthew R; Parker, Robert S; Weber, Lawrence; Czachowski, Michael R; Harding, Thomas J; Brown, Stefanie L; Nero, Joseph A; Pilewski, Joseph M; Corcoran, Timothy E

    2014-09-01

    New measures are needed to rapidly assess emerging treatments for cystic fibrosis (CF) lung disease. Using an imaging approach, we evaluated the absorptive clearance of the radiolabeled small molecule probe diethylene triamine penta-acetic acid (DTPA) as an in vivo indicator of changes in airway liquid absorption. DTPA absorption and mucociliary clearance rates were measured in 21 patients with CF (12 adults and nine children) and nine adult controls using nuclear imaging. The effect of hypertonic saline on DTPA absorption was also studied. In addition, in vitro studies were conducted to identify the determinants of transepithelial DTPA absorption. CF patients had significantly increased rates of DTPA absorption compared with control subjects but had similar mucociliary clearance rates. Treatment with hypertonic saline resulted in a decrease in DTPA absorption and an increase in mucociliary clearance in 11 out of 11 adult CF patients compared with treatment with isotonic saline. In vitro studies revealed that ∼ 50% of DTPA absorption can be attributed to transepithelial fluid transport. Apically applied mucus impedes liquid and DTPA absorption. However, mucus effects become negligible in the presence of an osmotic stimulus. Functional imaging of DTPA absorption provides a quantifiable marker of immediate response to treatments that promote airway surface liquid hydration. PMID:24743971

  6. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  7. The calculation of ionospheric absorption with modern computers

    NASA Astrophysics Data System (ADS)

    Scotto, Carlo; Settimi, Alessandro

    2014-10-01

    New outcomes are proposed for ionospheric absorption starting from the Appleton-Hartree formula, in its complete form. The range of applicability is discussed for the approximate formulae, which are usually employed in the calculation of non-deviative absorption coefficient. These results were achieved by performing a more refined approximation that is valid under quasi-longitudinal (QL) propagation conditions. The more refined QL approximation and the usually employed non-deviative absorption are compared with that derived from a complete formulation. Their expressions, nothing complicated, can usefully be implemented in a software program running on modern computers. Moreover, the importance of considering Booker’s rule is highlighted. A radio link of ground range D = 1000 km was also simulated using ray tracing for a sample daytime ionosphere. Finally, some estimations of the integrated absorption for the radio link considered are provided for different frequencies.

  8. Exploring the origin of high optical absorption in conjugated polymers.

    PubMed

    Vezie, Michelle S; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dörling, Bernhard; Ashraf, Raja Shahid; Goñi, Alejandro R; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C; Campoy-Quiles, Mariano; Nelson, Jenny

    2016-07-01

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure. PMID:27183327

  9. Radiation flux enhancement and absorption in thin films

    SciTech Connect

    Dixit, V.; Lodenquai, J.; Mctavish, J.

    1984-03-01

    Flux enhancement of (solar) radiation in dielectric thin films with textured upper surfaces and diffuse, perfectly reflecting lower surfaces is investigated. In the case of a completely rough surface, considered as a set of randomly oriented smooth microscopic surfaces or facets, the flux enhancement is shown to be n-squared in the absence of absorption, where n is the refractive index of the film. In cases when the upper surface is not completely rough but may be approximated by a set of facets whose orientations follow a Gaussian distribution, the enhancement is studied numerically and is found to be generally less than n-squared. Absorption is examined, and a general expression for the absorption efficiency of the thin film is derived. Numerical results for efficiency versus absorption coefficient are presented. 8 references.

  10. Generalized Landauer equation: absorption-controlled diffusion processes.

    PubMed

    Godoy, S; García-Colín, L S; Micenmacher, V

    1999-05-01

    The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal, free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of particles, such as neutrons, moving through a weak absorbing media, Landuer's formula is modified due to the absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In this latter case one may therefore speak of absorption-controlled diffusive processes. PMID:11969603

  11. Chaotic systems with absorption.

    PubMed

    Altmann, Eduardo G; Portela, Jefferson S E; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D(q) obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D(1) in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results. PMID:24138240

  12. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  13. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale.

    PubMed

    Liaparinos, P F

    2015-11-21

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study

  14. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale

    NASA Astrophysics Data System (ADS)

    Liaparinos, P. F.

    2015-11-01

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient {{m}\\text{ext}} and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm-1, and (iii) percentage probability of light absorption p% in the range 10-4-10-2. Results showed that the {{m}\\text{ext}} coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the {{m}\\text{ext}} coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the {{m}\\text{ext}} parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to

  15. [Intestinal absorption of aloe-emodin using single-passintestinal perfusion method in rat].

    PubMed

    Wang, Jinrong; Wang, Ping; Yang, Yongmao; Meng, Xianli; Zhang, Yan

    2011-09-01

    The intestinal absorption of aloe-emodin was investigated using the single pass intestinal perfusion (SPIP) technique in S/D rats. SPIP was performed in each isolated segment of the intestine (i.e., duodenum, jejunum, ileum and colon) and the different concentrations inhibitor group of P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP2) with the concentrations of aloe-emodin (0.238 mg x L(-1)) at a flow rate of 0.28 mL x min(-1). The effective absorption rate constant (Ka) and apparent absorption coefficient (Papp) of aloe-emodin for each segment were determined before and after treated with different concentrations of inhibitors of P-gp and MRP2 respectively. Aloe-emodin exhibits a high intestinal permeability except the the ileum, indicative that the compounds are well absorbed. Decreases of Ka and Papp values in the duodenum, jejunum, colon and ileum, furthermore, the duodenum has significant increased compared with the ileum, there are have no significant difference in other isolated region of the intestine. Compared with the group which have no inhibitor of P-gp, the Ka and Papp were significantly increased in inhibitor of P-gp groups. Compared with the group of no inhibitor of MRP2, the Ka and Papp were significantly increased in inhibitor of MRP2 groups with the highest and the middle concentration. The results suggested that the inhibitors of P-gp and MRP2 all can promote the intestinal absorption of aloe-emodin. PMID:22121810

  16. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared.

    PubMed

    Klein, C A; Miller, R P; Stierwalt, D L

    1994-07-01

    Chemically vapor-deposited zinc selenide exhibits outstanding properties in the infrared and has been established as a prime material for transmissive optics applications. Here we present and discuss data relating to the surface and the bulk absorption forward-looking infrared- (FLIR-) grade chemically vapor-deposited ZnSe, at wavelengths (2-20 µm) and temperatures (100-500 K) of current interest.

    This investigation is based on both spectral emittance measurements and infrared transmission spectroscopy performed in the context of a systems development program. Surface effects can be detected at wavelengths of up to 14 µm and usually predominate at wavelengths of less than 8 µm. Fractional surface absorptions are temperature independent from approximately 200 to 400 K and can be fitted to a Fourier series, at wavelengths ranging from 3.5 to 13.5 µm. The bulk absorption coefficient (βv) is strongly dependent on temperature as well as wavelength, but it can be approximated by a bivariate polynomial expressin that yields recommended values. At wavelengths λ ≲ 10 µm, βv decreases with increasing temperature; it is shown that a wavelength-independent Debye-Waller factor provides a correct description of the temperature dependence, thus pointing to infrared-active localized modes. At wavelengths λ ≳ 14 µm, βv increases with temperature and exhibits temperature dependencies (T(1.7), T(2.6)) that reflect three- and four-phonon summation processes. Finally, an analysis of the temperature dependence of βv at 10.6 µm demonstrates that the intrinsic lattice dynamical contribution to bulk absorption at this wavelength should be close to 4 × 10(-4) cm(-1), in accord with the results of earlier laser calorimetry tests performed on exceptionally pure laser-grade chemically vapor-deposited ZnSe.

    PMID:20935788

  17. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  18. Coupling coefficient of gain-guided lasers

    NASA Technical Reports Server (NTRS)

    Katz, J.; Kapon, E.; Lindsey, C.; Margalit, S.; Yariv, A.

    1984-01-01

    An analytical model is presented for the coupling coefficient for two gain-guided coupled waveguides, e.g., semiconductor laser arrays. A common parabolic gain distribution is assumed for the lasers, and the effective dielectric constant distribution is approximated in terms of the bulk refraction index, wavelength, power filling factor, and the antiguiding factor. The fundamental mode is then formulated and used in an integral for the coupling coefficient. The dependence of the coefficient of various waveguide parameters is described.

  19. Computation of virial coefficients from integral equations.

    PubMed

    Zhang, Cheng; Lai, Chun-Liang; Pettitt, B Montgomery

    2015-06-01

    A polynomial-time method of computing the virial coefficients from an integral equation framework is presented. The method computes the truncated density expansions of the correlation functions by series transformations, and then extracts the virial coefficients from the density components. As an application, the method was used in a hybrid-closure integral equation with a set of self-consistent conditions, which produced reasonably accurate virial coefficients for the hard-sphere fluid and Gaussian model in high dimensions. PMID:26049482

  20. Computation of virial coefficients from integral equations

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Lai, Chun-Liang; Pettitt, B. Montgomery

    2015-06-01

    A polynomial-time method of computing the virial coefficients from an integral equation framework is presented. The method computes the truncated density expansions of the correlation functions by series transformations, and then extracts the virial coefficients from the density components. As an application, the method was used in a hybrid-closure integral equation with a set of self-consistent conditions, which produced reasonably accurate virial coefficients for the hard-sphere fluid and Gaussian model in high dimensions.