Li, Xiaoqi; Jiang, Huabei
2013-02-21
We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.
Absorption Coefficient of Alkaline Earth Halides.
1980-04-01
levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...of as can be achieved through improved crystal growing techniques and surface polishing. 2.5. Urbach’s Rule A central question for the development of...high absorption levels , inaccuracies progressively increasing with decreasing absorption level , a natural consequence of decreasing in instrumental
Absorption coefficient instrument for turbid natural waters.
Friedman, E; Poole, L; Cherdak, A; Houghton, W
1980-05-15
An instrument has been developed that directly measures the multispectral absorption coefficient of turbid natural water. The design incorporates methods for compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in background light level. When used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Optical absorption coefficients of pure water
NASA Astrophysics Data System (ADS)
Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.
2002-10-01
The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.
Absorption coefficient instrument for turbid natural waters
NASA Astrophysics Data System (ADS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-05-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Absorption coefficient instrument for turbid natural waters
NASA Technical Reports Server (NTRS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-01-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.
NASA Astrophysics Data System (ADS)
Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.
2007-12-01
aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.
Determination of optical absorption coefficient with focusing photoacoustic imaging.
Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R
2012-06-01
Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.
Effect of applied mechanical stress on absorption coefficient of compounds
Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.
2015-08-28
The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.
[Experimental determination of the absorption coefficients of biological tissues].
Kovtun, A V; Kondrat'ev, V S; Terekhov, D V
1980-01-01
Procedure is presented for studying the coefficient of biological tissue absorption of radiation with the wavelength lambda = 1.06 mkm. The absorption coefficient is determined by the temperature values of biological tissue experimentally measured with thermopairs. The coherent radiation current falls on the surface of biological tissue. A mathematical model is formulated for biological tissue heating with radiation. Solution of Furier equation obtained by means of Green function is given. Using the relationship found, the energy absorbed by the biological tissue was calculated and the absorption coefficient of radiation with lambda - 1.06 mkm was determined. The results were analysed and the error of the obtained values of absorption coefficients of biological tissues under study were determined.
Continuum Absorption Coefficient of Atoms and Ions
NASA Technical Reports Server (NTRS)
Armaly, B. F.
1979-01-01
The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.
Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.
Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K
2014-06-05
In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.
NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS
Leung, Po Kin; Gammie, Charles F.; Noble, Scott C. E-mail: gammie@illinois.edu
2011-08-10
Magnetobremsstrahlung (MBS) emission and absorption play a role in many astronomical systems. We describe a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function. Along the way we provide an accurate scheme for evaluating Bessel functions of high order. We use our scheme to evaluate the accuracy of earlier fitting formulae and approximations. We also provide an accurate fitting formula for mildly relativistic (kT/(m{sub e}c{sup 2}) {approx}> 0.5) thermal electron emission (and therefore absorption). Our scheme is too slow, at present, for direct use in radiative transfer calculations but will be useful for anyone seeking to fit emission or absorption coefficients in a particular regime.
Methane Absorption Coefficients for the Jovian Planets and Titan
NASA Astrophysics Data System (ADS)
Karkoschka, Erich; Tomasko, M. G.
2009-09-01
We combined 11 data sets of methane transmission measurements within 0.4-5.5 micrometer wavelength in order to better understand the variation of methane absorption with temperature and pressure for conditions in the atmospheres of the Jovian planets and Titan. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere (Tomasko et al. 2008, PSS 56, 624). We present the data with a refined analysis. The last data set consists of Hubble Space Telescope images of Jupiter taken in 2005 and 2007 as Ganymede started to be occulted by Jupiter. Using Ganymede as a light source, we probed Jupiter's stratosphere with large methane pathlengths. Below 1000 nm wavelength, we find methane absorption coefficients generally similar to those by Karkoschka (1998, Icarus 133, 134). We added descriptions of temperature and pressure dependence, which are typically small in this wavelength range. Data in this wavelength range are consistent with each other, except between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the Jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data are consistent with Irwin's model of the pressure dependence of methane absorption. However, when large extrapolations were needed, such as from laboratory data above 200 K to Titan's temperatures near 80 K, Irwin's model of temperature dependence predicts absorption coefficients up to 100 times lower than measured by Huygens. We combined Irwin's and Huygens' data to obtain more reliable methane absorption coefficients for the temperatures in the atmospheres of the Jovian planets and Titan. This research was supported by NASA grants NAG5-12014 and NNX08AE74G.
Vapor-Phase Infrared Absorptivity Coefficient of HN1
2013-08-01
infrared spectrometer GC gas chromatography HD sulfur mustard HeNe helium–neon (laser) HgCdTe mercury–cadmium–telluride detector HN1, HN2, HN3...coefficient of the compound. 15. SUBJECT TERMS Vapor phase Saturator cell Infrared (IR) HN1 Vapor pressure Nitrogen mustard Vesicant...9 1 VAPOR-PHASE INFRARED ABSORPTIVITY COEFFICIENT OF HN1 1. INTRODUCTION The nitrogen mustards (HN1, HN2, and HN3) are similar to
Ozone absorption coefficients' role in Dobson instrument ozone measurement accuracy
NASA Astrophysics Data System (ADS)
Basher, R. E.
1982-11-01
The differences of 10% or more between the laboratory measurements of UV absorption coefficients by different investigators indicate accuracies that are quite inadequate for current needs in the measurement of atmospheric ozone. The standard band-integrated set of coefficients now used with the Dobson instrument are mutually consistent to about 2%, but their absolute accuracy is still in question. The accurate calculation of band-integrated coefficients must take account of their dependence on source spectral irradiance, atmospheric spectral transmittance, mean ozone temperature, and instrument spectral transmittance. A careful examination shows that Komhyr's (1980) case for an error of about +5% in the standard Dobson AD ozone estimation is subject to large uncertainties and certain lacks of independence. The obvious solution to this accuracy problem lies in better laboratory measurements of ozone absorption.
Field testing of sound absorption coefficients in a classroom
NASA Astrophysics Data System (ADS)
Pettyjohn, Steve
2005-09-01
Formal procedures for determining the sound absorption coefficients of materials installed in the field do not exist. However, the U.S. Air Force requested such tests to prove that the sound-absorbing material used in classrooms at Beale AFB in Marysville, CA, met the specified NRC of 0.80. They permitted the use of two layers of 0.5-in. fiberboard or 1-in.-thick fiberglass panels to meet the specified NRC rating. Post-construction tests showed reverberation times longer than expected. Unrealistic sound-absorption coefficients for room finish materials had to be used with the Sabine equation to achieve agreement between the measured and predicted reverberation time. By employing the Fitzroy equation and generally published absorption coefficients for ceiling tile, carpet, and fiberboard, the model provided excellent agreement with the measured reverberation times. The NRC of the fiberboard was computed to be 0.35, agreeing with published data. Since this did not meet project specifications, the Fitzroy model was used to learn the type and quantity of material needed to meet design goals. Follow-up tests showed good agreement between the predicted and measured reverberation times with material added, and project specifications were met. Results are also compared with the requirements of ANSI 12.60.
NASA Astrophysics Data System (ADS)
Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.
2016-03-01
Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.
Optimization of the acoustic absorption coefficients of certain functional absorbents
NASA Technical Reports Server (NTRS)
Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.
1974-01-01
The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.
A method for monitoring nuclear absorption coefficients of aviation fuels
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Shen, Chih-Ping
1989-01-01
A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.
Measurement of Acoustic Attenuation and Absorption Coefficients using Thermometry
NASA Astrophysics Data System (ADS)
Morris, Hugh; Rivens, Ian; Shaw, Adam; ter Haar, Gail
2007-05-01
Accurate knowledge of both the attenuation and the absorption coefficient of tissue are required when planning an optimal high intensity focused ultrasound treatment. A novel technique for simple measurement of this parameters has been developed in which a thin-film thermocouple (TFT) is placed between two layers of tissue of different thicknesses. The sample can be rotated about an axis through the junction of the TFT so that it can be insonated from either side leaving the tissue adjacent to the junction unchanged, but changing the overlying thickness. The attenuation and absorption coefficients can be calculated from the heating curves measured in the two orientations. Experiments have been carried out in both tissue mimicking material (TMM) and in ex vivo liver tissue. Weakly focused transducers, resonant at 1.05 MHz, 2.4 MHz and 3.55 MHz were used at free-field spatial peak intensities of 9-14 W/cm2. The temperature rise was measured as a function of time using a TFT. These thermocouples are not subject to the viscous heating artefact that is common to other thermocouple devices and so are advantageous for this purpose. Alignment was achieved with a 3D automated gantry system, which was controlled with specialised software. Timing and data acquisition were also controlled with this software. All experiments were carried out in degassed water. Results for TMM and degassed excised bovine liver are presented.
Measurements of the absorption coefficient of stratospheric aerosols
NASA Technical Reports Server (NTRS)
Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.
1981-01-01
The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.
Photon absorption potential coefficient as a tool for materials engineering
NASA Astrophysics Data System (ADS)
Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole
2016-09-01
Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and
Crowell, Ed; Wang, Gufeng; Cox, Jason; Platz, Charles P; Geng, Lei
2005-03-01
Correlation coefficient mapping has been applied to intrinsic fluorescence spectra of colonic tissue for the purpose of cancer diagnosis. Fluorescence emission spectra were collected of 57 colonic tissue sites in a range of 4 physiological conditions: normal (29), hyperplastic (2), adenomatous (5), and cancerous tissues (21). The sample-sample correlation was used to examine the ability of correlation coefficient mapping to determine tissue disease state. The correlation coefficient map indicates two main categories of samples. These categories were found to relate to disease states of the tissue. Sensitivity, selectivity, predictive value positive, and predictive value negative for differentiation between normal tissue and all other categories were all above 92%. This was found to be similar to, or higher than, tissue classification using existing methods of data reduction. Wavelength-wavelength correlation among the samples highlights areas of importance for tissue classification. The two-dimensional correlation map reveals absorption by NADH and hemoglobin in the samples as negative correlation, an effect not obvious from the one-dimensional fluorescence spectra alone. The integrity of tissue was examined in a time series of spectra of a single tissue sample taken after tissue resection. The wavelength-wavelength correlation coefficient map shows the areas of significance for each fluorophore and their relation to each other. NADH displays negative correlation to collagen and FAD, from the absorption of emission or fluorescence resonance energy transfer. The wavelength-wavelength correlation map for the decay set also clearly shows that there are only three fluorophores of importance in the samples, by the well-defined pattern of the map. The sample-sample correlation coefficient map reveals the changes over time and their impact on tissue classification. Correlation coefficient mapping proves to be an effective method for sample classification and cancer
Highlighting material structure with transmission electron diffraction correlation coefficient maps.
Kiss, Ákos K; Rauch, Edgar F; Lábár, János L
2016-04-01
Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast.
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the Ni
Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry
NASA Technical Reports Server (NTRS)
Cartwright, D. E.; Ray, R. D.; Sanchez, B. V.
1991-01-01
Maps and tables for the global ocean tides, 69 degree N to 68 degree S, derived from two years of Geosat altimetry are presented. Global maps of local and Greenwich admittance of the (altimetric) ocean tide, and maps of amplitude and Greenwich phase lag of the ocean tide are shown for M(sub 2), S(sub 2), N(sub 2), O(sub 1), and K(sub 1). Larger scale maps of amplitude and phases are also shown for regional areas of special interest. Spherical harmonic coefficients of the ocean tide through degree and order 8 are tabulated for the six major constituents.
NASA Astrophysics Data System (ADS)
Moseev, D.; Laqua, H. P.; Marsen, S.; Marushchenko, N.; Stange, T.; Braune, H.; Gellert, F.; Hirsch, M.; Hoefel, U.; Knauer, J.; Oosterbeek, J. W.; Turkin, Y.; The Wendelstein 7-X Team
2017-03-01
The efficiency of electron cyclotron heating is determined by the microwave absorption of the plasma. Good microwave absorption is also crucial for the machine safety. In this paper we present a method of evaluating the microwave absorption coefficient from stray radiation measurements. The discussed method is computationally simple and can be applied potentially in real time. Evolution of the second harmonic extraordinary mode (X2) microwave absorption coefficient in Wendelstein 7-X during the start-up phase is presented, as well as an estimate of the absorption coefficient for the second harmonic ordinary mode (O2) wave.
Computer Map Typing - Optimizing the Correlation Coefficient Threshold,
the procedures which would be employed in the preparation of each catalog. This paper addresses only one of these questions; ’What correlation ... coefficient threshold provides the best of map types.’ The choice of an appropriate threshold value is, at best, a compromise. This paper shows that a
NASA Technical Reports Server (NTRS)
Molina, L. T.; Grant, W. B.
1984-01-01
The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.
Dynamic absorption coefficients of CAR and non-CAR resists at EUV
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin
2016-03-01
The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.
Variable-coefficient extended mapping method for nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Xia, Tiecheng
2008-03-01
In this Letter, a variable-coefficient extended mapping method is proposed to seek new and more general exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients and ( 2+1)-dimensional Nizhnik-Novikov-Veselov equations. As a result, many new and more general exact solutions are obtained including Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the proposed method provides a very effective and powerful mathematical tool for solving a great many nonlinear evolution equations in mathematical physics.
Study of the absorption coefficient in layers of a semiconductor laser heterostructure
Veselov, D A; Pikhtin, N A; Lyutetskiy, A V; Nikolaev, D N; Slipchenko, S O; Sokolova, Z N; Shamakhov, V V; Shashkin, I S; Voronkova, N V; Tarasov, I S
2015-07-31
A method of studying the absorption coefficient in layers of semiconductor lasers is proposed. Using lasers based on MOVPE-grown separate-confinement heterostructures with a broadened waveguide, the absorption coefficient is investigated under pulsed current pumping. It is found that when the pump current flows through the laser in question, an additional internal optical absorption arises in the heterostructure layers. It is shown that an increase in the pump current density up to 20 kA cm{sup -2} leads to an increase in absorption up to 2.5 cm{sup -1}. The feasibility of studying free-carrier absorption in the active region is demonstrated. (lasers)
Measurement of the absorption coefficient using the sound-intensity technique
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.
Mapping crop coefficients in irrigated areas from Landsat TM images
NASA Astrophysics Data System (ADS)
D'Urso, Guido; Menenti, Massimo
1995-11-01
It is well known that reflectance of Earth surface largely depends upon amount of biomass, crop type, development stage, ground coverage. The knowledge of these parameters -- together with groundbased meteorological data -- allows for the estimate of crop water requirements and their spatial distribution. Recent research has shown the possibility of using multispectral satellite images in combination with other information for mapping crop coefficients in irrigated areas. This approach is based on the assumption that crop coefficients (Kc) are greatly influenced by canopy development and vegetation fractional ground cover; since these parameters directly affect the reflectance of cropped areas, it is possible to establish a correlation between multispectral measurements of canopies reflectance and the corresponding Kc values. Within this frame, two different approaches may be applied: (1) definition of spectral classes corresponding to different crop coefficient values and successive supervised classification for the derivation of crop coefficients maps; (2) use of analytical relationships between the surface reflectance and the corresponding values of vegetation parameters, i.e., the leaf area index, the albedo and the surface roughness, needed for the calculation of the potential evapotranspiration according to the combination type equation. The two different techniques are discussed with reference to the results of their application to specific case-studies. The aim of this report is to illustrate the suitability of remote sensing techniques as an operational tool for assessing crop water demand at regional scale.
Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria
NASA Astrophysics Data System (ADS)
de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald
2003-06-01
We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.
Absorption coefficients for water vapor at 193 nm from 300 to 1073 K
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.
1993-01-01
Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.
NASA Astrophysics Data System (ADS)
Presser, Cary
2012-05-01
A laser-heating technique, referred as the laser-driven thermal reactor, was used in conjunction with laser transmissivity measurements to determine the absorption coefficient of particle-laden substrates (e.g., quartz-fiber filters). The novelty of this approach is that it analyzes a wide variety of specific samples (not just filtered samples) and overcomes measurement issues (e.g., absorption enhancement) associated with other filter-based particle absorption techniques. The absorption coefficient was determined for nigrosin-laden, quartz-fiber filters and the effect of the filter on the absorption measurements was estimated when compared to the isolated nigrosin results. The isolated nigrosin absorption coefficient compared favorably with Lorenz-Mie calculations for an idealized polydispersion of spherical particles (based on a measured nigronsin/de-ionized water suspension size distribution) dispersed throughout a volume equivalent to that of the nigrosin-laden filter. To validate the approach, the absorption coefficient of a nigrosin/de-ionized water suspension was in good agreement with results obtained from an ultraviolet/visible spectrometer. In addition, the estimated imaginary part of the refractive index from the Lorenz-Mie calculations compared well with literature values and was used to estimate the absorption coefficient of optically opaque packed nigrosin.
Visible and Near Infrared Absorption Coefficients of Kaolinite and Related Clays.
propagation of light. This work is intended to provide a quantitative estimate of the absorption coefficient of kaolinite clays by application of a method based on the Kubelka - Munk theory of diffuse reflectance.
A method for determination mass absorption coefficient of gamma rays by Compton scattering.
El Abd, A
2014-12-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.
Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K
1999-12-20
Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the
Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.
ERIC Educational Resources Information Center
Ouseph, P. J.; And Others
1982-01-01
Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…
Determination of absorption coefficients in AlInP lattice matched to GaAs
NASA Astrophysics Data System (ADS)
Cheong, J. S.; Ng, J. S.; Krysa, A. B.; Ong, J. S. L.; David, J. P. R.
2015-10-01
The absorption properties of Al0.52In0.48P have been investigated near the fundamental absorption edge by measuring the photocurrent as a function of wavelength in a series of PIN and NIP diodes. Modelling of the photocurrent in these structures enables the absorption coefficients to be determined accurately over a wide dynamic range, which allows the direct and indirect band-gap to be determined.
ERIC Educational Resources Information Center
Cordon, Gabriela B.; Lagorio, M. Gabriela
2007-01-01
A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.
Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns
NASA Technical Reports Server (NTRS)
May, R. D.; Molina, L. T.; Webster, C. R.
1988-01-01
A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.
Determination of molar absorption coefficients of organic compounds adsorbed in porous media.
Ciani, Andrea; Goss, Kai-Uwe; Schwarzenbach, René P
2005-12-01
The kinetics of direct photochemical transformations of organic compounds in light absorbing and scattering media has been sparsely investigated. This is mostly due to the experimental difficulties to assess the major parameters: light intensity in porous media, the reaction quantum yield and the molar absorption coefficient of the adsorbed compound, epsilon(i) (lambda). Here, we propose a method for the determination of the molar absorption coefficient of compounds adsorbed to air-dry surfaces using the Kubelka-Munk model for the description of radiative transfer. To illustrate the method, the molar absorption coefficients of three compounds, i.e. 4-nitroanisole (PNA), the herbicide trifluralin and the flame retardant decabromodiphenyl ether (DecaBDE), were determined on air-dry kaolinite. The measured diffuse reflectance spectra were evaluated with the Kubelka-Munk model and with previously determined Kubelka-Munk absorption and scattering coefficients (k and s), for kaolinite. For all compounds the maximum absorption band was found to be red shifted and the corresponding epsilon(i) (lambda) values were significantly greater than those determined in solvents. Together with the absorption and scattering coefficient of the medium, the measured epsilon(i) (lambda) can be used to determine the quantum yield of the photochemical reaction in this medium from experimentally determined reaction kinetics.
Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang
2012-04-01
Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.
NASA Astrophysics Data System (ADS)
Fry, Patrick M.; Sromovsky, L. A.
2009-09-01
Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film
Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.
2015-06-24
We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.
Mehnati, Parinaz; Jafari Tirtash, Maede; Zakerhamidi, Mohammad Sadegh; Mehnati, Parisa
2016-01-01
Background Blood concentrations and oxygen saturation levels are important biomarkers for breast cancer diagnosis. Objectives In this study, the absorption coefficient of hemoglobin (Hb) was used to distinguish between normal and abnormal breast tissue. Materials and Methods A near-infrared source (637 nm) was transmitted from major and minor vessels of a breast phantom containing 2×, 4× concentrations of oxy- and deoxy-Hb. The absorption coefficients were determined from spectrometer (SM) and powermeter (PM) data. Results The absorption coefficients were 0.075 ± 0.026 cm-1 for oxygenated Hb (normal) in major vessels and 0.141 ± 0.023 cm-1 at 4× concentration (abnormal) with SM, whereas the breast absorption coefficients were 0.099 ± 0.017 cm-1 for oxygenated Hb (normal) in minor vessels and 0.171 ± 0.005 cm-1 at 4× concentrations with SM. A comparison of the data obtained using a SM and a PM was not significant statistically. Conclusion The study of the absorption coefficient data of different concentrations of Hb in normal and abnormal breasts via the diffusion of near-infrared light is a valuable method and has the potential to aid in early detection of breast abnormalities with SM and PM in major and minor vessels. PMID:27895869
NASA Astrophysics Data System (ADS)
Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.
2011-04-01
Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.
Minority carrier diffusion lengths and absorption coefficients in silicon sheet material
NASA Technical Reports Server (NTRS)
Dumas, K. A.; Swimm, R. T.
1980-01-01
Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.
NASA Astrophysics Data System (ADS)
Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.
2016-08-01
The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.
A numerical study of a method for measuring the effective in situ sound absorption coefficient.
Kuipers, Erwin R; Wijnant, Ysbrand H; de Boer, André
2012-09-01
The accuracy of a method [Wijnant et al., Proc. of ISMA 31, Leuven, Belgium (2010), Vol. 31] for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assumption, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields.
Measurement of optical absorption coefficient of bio-tissue at 532nm wavelength
NASA Astrophysics Data System (ADS)
Huang, Chuyun; Li, Zhengjia; Yao, Yucheng; He, Yanyan
2007-05-01
Laser technology has succeeded in medical application. High power 532nm laser has applied in prostate ablation and other clinic application. To understand optical property of bio-tissue at 532nm wavelength, a method of monitoring surface temperature was used to measure absorption coefficient of gall-stone, porcine liver and canine prostate. The absorption coefficient of gall-stone is about 62cm -1 at 532nm wavelength, and those of porcine liver and canine prostate are about 13cm -1 and 5.4cm -1, respectively. These results help to understand the optical property of bio-tissue and offer theoretic reference for optical dosimetry in clinic application.
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin
2016-07-01
The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.
NASA Astrophysics Data System (ADS)
Ladhaf, Bibifatima M.; Pawar, Pravina P.
2015-04-01
We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.
Determination of Absorption and Scattering Coefficients for Nonhomogeneous Media: II. Experiment.
prepared from a glass of known absorption coefficient variation. The new model produces an accuracy inprovement up to a factor of 2.5 over the Kubelka ... Munk theory. Off-axis scattering measurements were made with improved instrumentation between 0.33 and 2.7 micrometers. The model was then applied to
Nelson, N B; Prézelin, B B
1993-11-20
Measuring the absolute absorption of suspensions of absorbing particles with unknown scattering characteristics is not possible in conventional spectrophotometers or in integrating spheres that have the sample located outside the sphere. A method for the calibration and use of an integrating sphere with a centrally located sample to measure absolute absorption coefficients of scattering suspensions is presented. Under the tested conditions the integrating sphere used in this study was insensitive to changes in the scattering coefficient of the sample but had a nonlinear response to increasing absorption of the sample, which could be corrected with an empirically derived function. This response was analyzed by using a Monte Carlo simulation, and results indicated that amplification of the absorption signal was primarily due to photons reflected from the sphere surface and the baffle reentering the cuvette. The calibration procedure described here may be generally applicable to spheres of different configurati n. An example of the use of the sphere for determining the absorption and scattering coefficients of marine phytoplankton samples is presented.
NASA Astrophysics Data System (ADS)
Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.
2014-09-01
Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.
Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming
2013-07-01
In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state.
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
NASA Astrophysics Data System (ADS)
Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.
2015-07-01
MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.
Karsten, A E; Singh, A; Karsten, P A; Braun, M W H
2013-02-01
An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.
Dawn Grand Map Vesta Neutron Absorption V1.0
NASA Astrophysics Data System (ADS)
Prettyman, T. H.
2014-06-01
A global map of a unitless compositional parameter, delta-C_perpendicular (DCP), and propagated 1-sigma uncertainties is provided. DCP varies linearly with the macroscopic thermal neutron absorption cross section of Vesta's regolith. An equation for converting tabulated DCP values to absorption units is provided in this document. DCP was determined from thermal and epithermal neutron counting rates measured by the NASA Dawn mission's Gamma Ray and Neutron Detector (GRaND) while in low altitude mapping orbit, about 210 km from Vesta's surface. The measurements are representative of Vesta's bulk regolith composition to depths of a few decimeters with a spatial resolution of about 300-km full-width-at-half-maximum of arc length on the surface. The methods used to determine neutron absorption are described by PRETTYMANETAL2013.
NASA Astrophysics Data System (ADS)
Goela, P.; Icely, J.; Cristina, S.; Newton, A.
2010-12-01
Variability of particulate absorption coefficients was studied off the south-west coast of Portugal, as part of a validation exercise for the Medium Resolution Image Spectrometer Sensor. Regular sampling campaigns occurred at three stations on a transect from inshore to offshore to compare fluctuations in these coefficients at the local scale. Transmittance-reflectance method with sodium hypochlorite bleaching was used to determine absorption coefficients for phytoplankton and non-algal particles. Photosynthetic pigment concentrations were determined by High Performance Liquid Chromatography. Results show that the absorption of light by particulate matter is almost totally dependent on the phytoplankton, with no significant contribution from non-algal particles, both in coastal and oceanic waters. Specific phytoplankton coefficients show significant fluctuations between seasons and stations, ranging from 0.012 to 0.038 at 678 nm. Particulate absorption is dominant over dissolved absorption. The variations in the coefficients of absorption are analysed as a function of species assemblages.
Parameterization of the Mie Extinction and Absorption Coefficients for Water Clouds.
NASA Astrophysics Data System (ADS)
Mitchell, David L.
2000-05-01
It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: 1) internal reflection/refraction, 2) photon tunneling, and 3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR.The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Qabs and Qext, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, abs and ext. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for abs and ext were generally 10% for the effective radius range in water clouds of 5-30 m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.
Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy
NASA Astrophysics Data System (ADS)
Penprase, Bryan Edward
2017-01-01
Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.
Thin-film absorption coefficients by attenuated-total-reflection spectroscopy.
Holm, R T; Palik, E D
1978-02-01
The application of attenuated-total-reflection spectroscopy to the measurement of the absorption coefficient of thin films is presented. For low absorption the sensitivity of ATR is discussed in terms of the concept of an effective thickness. Both the case in which the refractive index of the film is higher and the case in which it is lower than that of the ATR trapezoid are considered. Experimental ATR data for antireflection-coating materials for laser windows is analyzed and compared with calorimetric data.
Measurement and calculation of the sound absorption coefficient of pine wood charcoal
NASA Astrophysics Data System (ADS)
Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo
2013-10-01
Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.
Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping
2016-01-01
A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418
Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.
1992-01-01
Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.
Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data
NASA Astrophysics Data System (ADS)
Karkoschka, Erich; Tomasko, Martin G.
2010-02-01
We use 11 data sets of methane transmission measurements within 0.4-5.5 μm wavelength to model the methane transmission for temperature and pressure conditions in the jovian planets. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere ( Tomasko et al., 2008b, PSS 56, 624), and we provide a refined analysis. The last data set is a set of new Jupiter images by the Hubble Space Telescope to measure atmospheric transmission with Ganymede as the light source. Below 1000 nm wavelength, our resulting methane absorption coefficients are generally close to those by Karkoschka (1998, Icarus 133, 134), but we add descriptions of temperature and pressure dependence. One remaining inconsistency occurs between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data also confirm Irwin's model of extrapolation to Titan's lower pressures. However, their model of extrapolation to Titan's lower temperatures predicts absorption coefficients up to 100 times lower than measured by Huygens. For each of ˜3700 wavelengths, we present a temperature dependence that is consistent with all laboratory data and the Huygens data. Since the Huygens data probe similar temperatures as many observations of Saturn, Uranus, Neptune, and Titan, our methane model will allow more reliable radiative transfer models for their atmospheres.
The influence of surface preparation on the absorption coefficient of laser radiation
NASA Astrophysics Data System (ADS)
Kurp, Piotr; Mucha, Zygmunt; Mulczyk, Krystian; Gradoń, Ryszard; Trela, Paweł
2016-12-01
The absorption coefficient of the surface of a workpiece is of importance in laser treatment, particularly in the treatment where the temperature of an element must be strictly controlled. Laser surface treatment (such as hardening, metallic glazing) and laser forming can be primarily included in this type of technology. In another case, surface temperature must be precisely controlled, especially if structural changes are to be avoided. There are a number of ways to increase the absorption coefficient of the surface of an element. Since the laser forming is the research subject of the authors of the presented paper, it was necessary to determine the absorption coefficient for the different surfaces preparation of workpieces. Raw surface, oxidized surface, sandblasted surface, black enamel covered surface and waterglass covered surface were examined, respectively. The experiment was performed using a CO2 laser with a head for a surface treatment which generates a rectangular beam of dimensions 2x20 mm, and the samples were made of X5CrNi18-10 stainless steel.
Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review
NASA Technical Reports Server (NTRS)
Grant, William B.
1990-01-01
Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.
Dependence of dose coefficients for inhaled 239Pu on absorption parameters.
Suzuki, K; Sekimoto, H; Ishigure, N
2001-01-01
With regard to dissolution of particles in the respiratory tract after inhalation, the International Commission on Radiological Protection (ICRP) has classified all radionuclides into only three types according to the chemical form of compounds, and default values of absorption parameters are proposed for each type. However, it is just a simplification to estimate doses for practical use, and there is a possibility of unfitness in such an assortment. A code has been developed to reproduce the ICRP's dose coefficients for 239Pu, which is one of the most important elements for occupational exposure. By using this code, the respective absorption parameters were modified, and the effect owing to these changes evaluated. It was shown consequently that changes of absorption parameters do not greatly influence the effective doses of 239Pu for workers.
Khalifah, Peter
2015-02-01
The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less
Two-photon interband absorption coefficients in tungstate and molybdate crystals
NASA Astrophysics Data System (ADS)
Lukanin, V. I.; Karasik, A. Ya.
2015-02-01
Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.
Khalifah, Peter
2015-02-01
The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θ_{D} of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.
Parameterization of the Mie extinction and absorption coefficients for water clouds
Mitchell, D.L.
2000-05-01
It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: (1) internal reflection/refraction, (2) photon tunneling, and (3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR. The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Q{sub abs} and Q{sub ext}, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, {beta}{sub abs} and {beta}{sub ext}. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for {beta}{sub abs} and {beta}{sub ext} were generally {le}10% for the effective radius range in water clouds of 5--30 {micro}m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.
Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Spilker, Thomas R.
1995-01-01
A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging
Parker, K; Morrison, G
2016-08-01
Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.
Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette
2012-01-01
The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592
Sound absorption coefficient in situ: an alternative for estimating soil loss factors.
Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina
2015-01-01
The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field.
NASA Astrophysics Data System (ADS)
Yin, Yan; Chen, Yu; Wang, Weiwei; Yan, Jiade; Qian, Ling; Tong, Yaoqing; Lin, Zhenyi
2008-08-01
The absorption and scattering coefficients of atmospheric aerosols were continuously measured with a Photoacoustic Soot Spectrometer (PASS, DMT Inc. USA) at a suburb site of Nanjing, one of the regions experiencing rapid industrialization in China. The measurements were carried out during autumn and winter 2007. A preliminary analysis of the data shows that, the scattering coefficient, Bscat, is two to ten times larger than the absorption coefficient, Babs, implying that the aerosols formed/emitted in this area are more scattering than previous assumed, and can be more important in cooling the Earth-atmosphere system. The results also indicate that the absolute values of both parameters are very much dependent on the meteorological conditions, such as wind speed and direction, fog, rain, etc. as well as the time of the day. Higher values often appear at nighttimes when wind is weak, especially when a temperature inverse layer is present near the surface. Higher values of Bscat and Babs were also observed under hazy and foggy weather conditions or when wind is blown from east, where a large industrial zone is located. Simultaneous measurements of the number concentrations, chemical compositions, and size distributions of aerosol particles are used to explain the characteristics of the changes in Bscat and Babs.
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.
2016-11-01
The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.
Effect of sealants of the sound absorption coefficients of acoustical friable insulating materials
NASA Astrophysics Data System (ADS)
Wayman, J. L.; Lory, M. K.
1984-10-01
Acoustical friable insulating materials (AFIM), which often in the past contained asbestos, have been used for sound control since the mid 1930's. Because of their widespread use and the ease of fiber dissemination, friable asbestos materials are considered to be the major source of asbestos fiber contamination in the indoor environment. Encapsulation of asbestos materials with a commercial sealant product is one of several methods used to control potential asbestos exposure in rooms. A sealant product that preserves most of the acoustical properties of the material is preferred in this usage. AFIM sample materials were treated with 6 types of sealants and the effects on normally incident absorption coefficients from 100 to 2500 Hz were measured using a fixed, dual-microphone technique. Penetrating type sealants were found to have a less detrimental effect on sound absorption than those of a bridging type.
The effective air absorption coefficient for predicting reverberation time in full octave bands.
Wenmaekers, R H C; Hak, C C J M; Hornikx, M C J
2014-12-01
A substantial amount of research has been devoted to producing a calculation model for air absorption for pure tones. However, most statistical and geometrical room acoustic prediction models calculate the reverberation time in full octave bands in accordance with ISO 3382-1 (International Organization for Standardization, 2009). So far, the available methods that allow calculation of air absorption in octave bands have not been investigated for room acoustic applications. In this paper, the effect of air absorption on octave band reverberation time calculations is investigated based on calculations. It is found that the approximation method, as described in the standard ANSI S1.26 (American National Standards Institute, 1995), fails to estimate accurate decay curves for full octave bands. In this paper, a method is used to calculate the energy decay curve in rooms based on a summation of pure tones within the band. From this decay curve, which is found to be slightly concave upwards, T20 and T30 can be determined. For different conditions, an effective intensity attenuation coefficient mB ;eff for the full octave bands has been calculated. This mB ;eff can be used for reverberation time calculations, if results are to be compared with T20 or T30 measurements. Also, guidelines are given for the air absorption correction of decay curves, measured in a scale model.
The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.
Fornasini, P; Grisenti, R
2014-10-28
The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.
NASA Astrophysics Data System (ADS)
Thomas, S. M.
2015-12-01
Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior
2007-05-21
samples were collected with 1.7 L Niskin bottles mounted on a rosette equipped with a SBE19 CTD which provides temperature and salinity data. Samples were...21 November is 2002) on board R/V Yanping I1. Figure 1 shows the stations for CTD surveys and ab- sorption sampling . The 2001 cruise involved one...were sampled in both cruise legs for absorption coefficients (the second sampling is annotated as Sta. 6’ and Sta. 2’, respectively). 1559 Our sample
Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm
NASA Astrophysics Data System (ADS)
Bristow, Alan D.; Rotenberg, Nir; van Driel, Henry M.
2007-05-01
The degenerate two-photon absorption coefficient β and Kerr nonlinearity n2 are measured for bulk Si at 300K using 200fs pulses with carrier wavelength of 850<λ<2200nm for which indirect gap transitions occur. With a broad peak near the indirect gap and maximum value of 2±0.5cm/GW, the dispersion of β compares favorably with theoretical calculations of Garcia and Kalyanaraman [J. Phys. B 39, 2737 (2006)]. Within our wavelength range, n2 varies by a factor of 4 with a peak value of 1.2×10-13cm2/W at λ =1800nm.
Vapor-Phase Absorptivity Coefficient of Ethyl N,N-Dimethylphosphoramidocyanidate
2010-01-01
diluted in solvent by gas chromotography -mass spectrometry (GC-MS) indicated 3.4% triethyl phosphate (TEPO), as well ə% each of 0-ethyl-N,N-dimethyl...absorptivity coefficient of the chemical warfare agent ethyl N,N-dimethyl- phosphoramidocyanidate ( GA ) in the mid-infrared (4000-550 cm"’) at a...spectral resolution of 0.125 cm"’. The GA used in the feedstock was purified by fractional distillation and analyzed by nuclear magnetic resonance and
NASA Technical Reports Server (NTRS)
Harward, C. N.
1977-01-01
Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.
NASA Astrophysics Data System (ADS)
Gaudette, Richard J.; Brooks, Dana H.; Di Marzio, Charles A.; Kilmer, Misha E.; Miller, Eric L.; Gaudette, Thomas; Boas, David A.
2000-04-01
We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two `object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error.
Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum
NASA Technical Reports Server (NTRS)
Krascella, N. L.
1972-01-01
A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.
NASA Astrophysics Data System (ADS)
André, Frédéric; Solovjov, Vladimir; Vaillon, Rodolphe; Lemonnier, Denis
2013-07-01
The generalized k-moment method is formulated in terms of Cutteridge-Devyatov polynomials (CDP). In this novel approach, the moments involved are spectral averages of integer powers of the logarithm of the absorption coefficient. The technique to obtain k-distributions from those generalized moments is detailed both theoretically and from a practical point of view. Its outputs are afterward assessed against reference data in several test cases of increasing complexity. Indeed, the first ones involve single lines in the Lorentz, Doppler and Voigt regimes. The most sophisticated situations investigated in this work concern applications of the method to high resolution LBL data for pure CO2 at temperatures between 300K and 2300K and at atmospheric pressure. In any case, the CDP solution to the generalized k-moment problem is found to provide very accurate results. The present technique outperforms our previous approach to k-moment modeling of the cumulative distribution of absorption coefficients of gases that were based on first, second, first inverse and logarithmic moments, in all the situations investigated. Equations required to apply the model are provided in the paper, both over narrow bands and the full spectrum.
Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval
NASA Technical Reports Server (NTRS)
Alford, John A., II
2012-01-01
We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.
Hoche, S; Hussein, M A; Becker, T
2015-03-01
The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.
Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.
Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt
2016-04-10
A method for measuring the absorption coefficient μ_{a} of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3 mm^{-1}<μ_{a}<1.55 mm^{-1}) and 1.0 vol.% (1.0 mm^{-1}<μ_{a}<4.0 mm^{-1}) concentrations with 1 vol.% (μs'≈1.4 mm^{-1}) and 10 vol.% (μs'≈14 mm^{-1}) Intralipid dilutions. The low concentrations give μ_{a} and μ_{s} values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μ_{a} values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μ_{a} values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.
De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger
2016-02-23
Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.
The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno
2015-06-01
A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol
2014-01-01
Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level. PMID:24675836
Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol; Yoon, Junghee
2014-01-01
Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level.
Yin, Lu; Wang, Qiang; Zhang, Qizhi; Jiang, Huabei
2007-09-01
We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.
Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A
2012-01-31
We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.
Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water
NASA Astrophysics Data System (ADS)
Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.
1998-07-01
We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.
The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.
2017-01-01
In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.
Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric
2006-07-01
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.
Measurement of acoustic absorption coefficient with phase-conjugate ultrasonic waves
NASA Astrophysics Data System (ADS)
Smagin, N. V.; Krutyansky, L. M.; Brysev, A. P.; Bunkin, F. V.
2011-07-01
Experimental results on measurements of the acoustic absorption coefficient in test objects that were obtained with two methods, i.e., a standard insert-substitution method and a modification thereof using phase-conjugate waves, are given. Samples of gelatin and biological tissue in vitro (porcine muscle fibers) were used as test objects. Gelatin objects were manufactured that were both homogeneous and with inhomogeneities in the form of a rough surface or inclusions (air bubbles) distributed over the volume. A rough surface leads mainly to phase distortions of a probe beam, while bubble inclusions cause additional field scattering. For all homogeneous samples, both compared methods produce identical results. In the case of inhomogeneous samples including biological tissues, absorption measurement by a standard method may lead to significant errors. It is demonstrated that the use of properties of phase-conjugate waves provides an opportunity to eliminate almost completely the measurement error connected with phase distortions and reduce the error in the case of a medium with scatterers.
Lee, Joong Seok; Kim, Yoon Young; Kim, Jung Soo; Kang, Yeon June
2008-04-01
Optimal shape design of a two-dimensional poroelastic acoustical foam is formulated as a topology optimization problem. For a poroelastic acoustical system consisting of an air region and a poroelastic foam region, two different physical regions are continuously changed in an iterative design process. To automatically account for the moving interfaces between two regions, we propose a new unified model to analyze the whole poroelastic acoustical foam system with one set of governing equations; Biot's equations are modified with a material property interpolation from a topology optimization method. With the unified analysis model, we carry out two-dimensional optimal shape design of a poroelastic acoustical foam by a gradient-based topology optimization setting. The specific objective is the maximization of the absorption coefficient in low and middle ranges of frequencies with different amounts of a poroelastic material. The performances of the obtained shapes are compared with those of well-known wedge shapes, and the improvement of absorption is physically interpreted.
Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak
Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang
2014-02-12
Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.
IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite
NASA Astrophysics Data System (ADS)
Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Smyth, J. R.; Frost, D. J.
2009-12-01
Raman spectroscopy, combined with the ‘Comparator technique’ has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the ‘Comparator technique’ to provide ɛ-values for a set of synthetic Fe-free and Fe-bearing (Fo90) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth’s lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth’s deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3127, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3172 cm-1 and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3109 cm-1 an ɛ-value of 170000 ± 51000 L cm-2 / molH2O was determined. For a Fo90 sample with the mean wavenumber of 3132 cm-1 the value was calculated to be 123000 ± 37000 L cm-2 / molH2O. The latter two values are in good agreement with the data from the linear calibration of ~159000 L cm-2 / molH2O and ~153000 L cm-2
NASA Astrophysics Data System (ADS)
Tamandani, Shahryar; Darvish, Ghafar
2017-02-01
We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.
2016-03-01
A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.
NASA Astrophysics Data System (ADS)
Kienle, Alwin; Lilge, Lothar; Patterson, Michael S.; Hibst, Raimund; Steiner, Rudolf; Wilson, Brian C.
1996-05-01
The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm-1 and absorption coefficients between 0.002 and 0.1 mm -1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam. Carlo, neural network.
NASA Astrophysics Data System (ADS)
Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.
2014-12-01
Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence
NASA Technical Reports Server (NTRS)
Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.
2006-01-01
PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.
Goodman, W A; Goorsky, M S
1995-06-20
We engineered a factor-of-4 reduction in the bulk absorption coefficient over the 2.6-to-3.0-µm bandwidth in single-crystal Czochralski silicon optics for high-energy infrared lasers with high-temperature annealing treatments. Defect engineering adapted from the integrated circuit industry has been used to reduce the absorption coefficient across the 1.5-to-5-µm bandwidth for substrates up to 5 cm thick. A high-temperature oxygen-dispersion anneal dissolves precipitates and thermal donors that are present in the as-grown material. The process has been verified experimentally with Fourier transform infrared spectroscopy, infrared laser calorimetry, and Hall measurements. Reduction of the absorption coefficient results in less substrate heating and thermal distortion of the optical surface. The process is appropriate for other silicon infrared optics applications such as thermal-imaging systems, infrared windows, and spectrophotometers.
NASA Technical Reports Server (NTRS)
Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.
1990-01-01
A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.
Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )
1990-05-01
A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.
Effects of combined scattering and absorption coefficients on laser speckle contrast imaging values
NASA Astrophysics Data System (ADS)
Khaksari, Kosar; Kirkpatrick, Sean J.
2015-03-01
Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering particles results in a reduction in global and regional speckle contrast. A variety of parameters can affect the calculated contrast values in LSCI techniques, including the optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of blood is of interests, optical properties are influenced by hematocrit levels. In this work we considered the combined effects of both the scattering and absorption coefficients on LSCI measurements on a flow phantom. Fluid phantoms consisting of various concentrations of neutrally buoyant ~10 micron microspheres and India ink mixed with DI water were formulated to mimic the optical properties of whole blood with various levels of hematocrit. In these flow studies, it was found that an increase in μa and/or μs led to a decrease in contrast values when all other experimental parameters were held constant. The observed reduction in contrast due to optical property changes could easily be confused with a contrast reduction due to increased flow velocity. These results suggest that optical properties need to be considered when using LSCI to make flow estimates.
Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients
Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki
2011-09-15
In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.
Noise-driven optical absorption coefficients of impurity doped quantum dots
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas
2016-01-01
We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.
Effects of nanosilver on sound absorption coefficients in solid wood species.
Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib
2016-06-01
Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Lewis, M.; Petre, R.
1983-01-01
Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.
Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E
2001-01-01
In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds.
Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...
Wang, J.; Zhang, X. Yu, L.; Zhao, X.
2014-12-15
In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.
Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro
2011-11-21
Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.
NASA Astrophysics Data System (ADS)
Millán-Núñez, Eduardo; Sieracki, Michael E.; Millán-Núñez, Roberto; Lara-Lara, José Rubén; Gaxiola-Castro, Gilberto; Trees, Charles C.
2004-03-01
In recent years, experts of optical hydrology have shown great interest in the variability of the specific absorption coefficient of light by phytoplankton (aph*). This parameter is important and necessary for comparing in situ bio-optical and satellite optical measurements. Such comparisons are needed for detecting primary productivity at a mesoscale level. At present, however, the parameters used in algorithms for predicting productivity are global averages. To avoid this bias, we measured the spatial-temporal variability of aph* as part of the Jan-01 Investigaciones Mexicanas de la Corriente de California cruise along the southern California Current. We observed median values of 0.041 m2 (mg chlorophyll a (Chl a))-1 at 440 nm and 0.015 at 674 nm, with significant differences between inshore and offshore stations. In general, the stations located in the area of Bahía Vizcaíno, with oceanographic conditions favorable for the growth of phytoplankton, showed lower values of the aph* . The nano-microphytoplankton (>5 μm) community comprised of 26 diatom genera with mean abundance values of the 19.5×103 cells l-1. Nitzschia closterium, a pennate diatom, was almost uniform throughout the study region. Flow cytometry measurements indicated that the picoplankton (<5 μm) community consisted of two prokaryotes, Prochlorococcus (mean 3.6×106 cells l-1) and Synechococcus (mean 10.4×106 cells l-1), and a mixture of picoeukaryotes (mean 6.5×106 cells l-1). Analyses of Chl and carotenoid pigments determined by high-performance liquid chromatographic confirmed the presence of the divinyl Chl a characteristic of Prochlorococcus. The nano-micro- and picoplankton were 82% and 18% of total phytoplankton biomass (μg C l-1), respectively. In general, we concluded that the phytoplankton community structure and biomass on this cruise showed conditions similar to oligotrophic systems.
NASA Astrophysics Data System (ADS)
Busch, T. A.; Nugent, R. E.
2003-10-01
In situ testing determined the insertion loss ( IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements. Insertion loss ( IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL. Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed
Danilov, A A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A
2006-01-01
A method for experimental determination of optical characteristics of a highly-dispersive medium (radiation scattering and absorption coefficients) is described. The method is based on two mathematical models of ultrashort laser pulse propagation through a highly-dispersive medium (HDM), an axial model and a diffusion model. Milk dissolved in water was used as HDM. Dependences of optical characteristics of HDM on the concentration of milk in water are obtained. The limits of applicability of the axial and diffusion models to media with different scattering and absorption characteristics are determined.
The absorption coefficient of the liquid N2 2.15-micron band and application to Triton
NASA Technical Reports Server (NTRS)
Grundy, William M.; Fink, Uwe
1991-01-01
The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.
Navarro, Juan M; Escolano, José; Cobos, Maximo; López, José J
2013-03-01
The diffusion equation model was used for room acoustic simulations to predict the sound pressure level and the reverberation time. The technical literature states that the diffusion equation method accurately models the late portion of the room impulse response if the energy is sufficiently scattered. This work provides conclusions on the validity of the diffusion equation model for rooms with homogeneous dimensions in relation to the scattering coefficients of the boundaries. A systematic evaluation was conducted out to determine the ranges of the absorption and scattering coefficient values that result in low noticeable differences between the predictions from a geometrical acoustic model and those from the diffusion equation model.
NASA Astrophysics Data System (ADS)
Dowell, M.
2006-12-01
Chlorophyll-a specific absorption (aph*) is a parameter used in bio-optical and primary production models and its coefficients are usually assumed to be constant. However, it has been documented in previous studies that these coefficients vary significantly due to pigmentation and "the package effect" which are a function of the taxonomic composition and the physiological state of the algal population. As part of the Coastal Ocean Observing Center (COOC) at the University of New Hampshire, HPLC pigments and phytoplankton absorption measurements were taken from water samples collected within the Gulf of Maine from 2004-2006. These data were then partitioned spatially, temporally, seasonally, and by other classification criteria. Spectral aph* means were generated for all partitions within each classification method. The results were used to parameterize province-specific bio-optical models for a regional algorithm. The separation of aph* means into different classes captured the effects of taxonomy and the package effect by reducing aph* variability.
NASA Technical Reports Server (NTRS)
Varanasi, Prasad
1992-01-01
Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.
NASA Technical Reports Server (NTRS)
Calvin, Wendy M.
1990-01-01
Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 microns. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO2 than can be obtained from the method used here.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Fillius, W.
1976-01-01
The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.
RV-coefficient and its significance test in mapping brain functional connectivity
NASA Astrophysics Data System (ADS)
Zhang, Hui; Tian, Jie; Li, Jun; Zhao, Jizheng
2009-02-01
The statistic of RV-coefficient is a good substitute for the Pearson correlation coefficient to measure the temporal similarity of two local brain regions. However, the hypothesis test of RV-coefficient is a hard problem which limits its application. This paper discussed the problem in details. Since the distribution of RV-coefficient is unknown, we do not know a critical p-value to statistically test its significance. We proposed a new strategy to test the significance of RV calculated from fMRI. In order to approximate the p-value, we elicited the first two moments of the population permutation distribution of RV; we then derived a formula to more closely approximate the normal distribution with these transformed statistics. These transformations of statistics are suggested for a precise approximation to the permutational p-value even under large number of observations. This strategy of test can greatly reduce the computational complexity and avoid "calculation catastrophe", we then use the statistic of RV to extract the map of functional connectivity from fMRI and test its significance with the strategy proposed here.
Chen, Sheng-Hui; Wang, Hsuan-Wen; Chang, Ting-Wei
2012-03-12
Considering the Mott-Davis density of state model and Rayleigh scattering effect, we present an approach to model the absorption profile of microcrystalline silicon thin films in this paper. Maxwell-Garnett effective medium theory was applied to analyze the absorption curves. To validate the model, several experimental profiles have been established and compared with those results from the model. With the assistance of the genetic algorithm, our results show that the absorption curves from the model are in good agreement with the experiments. Our findings also indicate that, as the crystal volume fraction increases, not only do the defects in amorphous silicon reduce, but the bulk scattering effect is gradually enhanced as well.
Ritter, André; Anton, Gisela; Weber, Thomas
2016-01-01
A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography. PMID:27695126
Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.
2005-03-01
The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.
Uranyl ion: A convenient standard for transient molar absorption coefficient measurements
Bakac, A.; Burrows, H.D.
1997-12-01
Transient absorption spectra of an aqueous solution of uranyl sulfate have been measured in the ultraviolet and visible spectra. The excited uranyl ion may be a convenient standard for actinometry and photoacoustic calorimetry. (AIP) {copyright} {ital 1997} {ital Society for Applied Spectroscopy}
Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong
2017-02-20
Intersubband absorption properties of lattice-matched BGaN/AlN quantum well (QW) structures grown on AlN substrate are theoretically investigated using an effective mass theory considering the nonparabolicity of the conduction band. These results are compared with those of GaN/AlN QW structures. The intersubband absorption coefficient of the BGaN/AlN QW structure is shown to be enhanced significantly, compared to that of the conventional GaN/AlN QW structure. This can be explained by the fact that the BGaN/AlN QW structure exhibits larger intersuband dipole moment and quasi-Fermi-level separation than the GaN/AlN QW structure, due to the increase in the carrier confinement by a larger internal field. We expect that the BGaN/AlN QW structure with a high absorption coefficient can be used for telecommunication applications at 1.55 µm under the lattice-matched condition, instead of the conventional GaN/AlN QW structure with the large strain.
Real-time HF Radio Absorption Maps Incorporating Riometer and Satellite Measurements
NASA Astrophysics Data System (ADS)
Rogers, Neil; Honary, Farideh; Warrington, Mike; Stocker, Alan; Danskin, Donald
2016-04-01
A real-time model of HF radio propagation conditions is being developed as a service for aircraft communications at high latitudes. An essential component of this is a real-time map of the absorption of HF (3-30 MHz) radio signals in the D-region ionosphere. Empirical, climatological Polar Cap Absorption (PCA) models in common usage cannot account for day-to-day variations in ionospheric composition and are inaccurate during the large changes in recombination rate at twilight. However, parameters of such models may be optimised using an age-weighted regression to absorption measurements from riometers in Canada and Scandinavia. Such parameters include the day- and night-time sensitivity to proton flux as measured on a geostationary satellite (GOES). Modelling the twilight transition as a linear or Gauss error function over a range of solar-zenith angles (χl < χ < χu) is found to provide greater accuracy than 'Earth shadow' methods (as applied in the Sodankylä Ionospheric Chemistry (SIC) model, for example) due to a more gradual ionospheric response for χ < 90° . The fitted χl parameter is found to be most variable, with smaller values (as low as 60°) post-sunrise compared with pre-sunset. Correlation coefficients of model parameters between riometers are presented and these provide a means of appropriately weighting individual riometer contributions in an assimilative PCA model. At times outside of PCA events, the probability of absorption in the auroral zones is related to the energetic electron flux inside the precipitation loss cone, as measured on the polar-orbiting POES satellites. This varies with magnetic local time, magnetic latitude and geomagnetic activity, and its relation to the real-time solar wind - magnetospheric coupling function [Newell et al., 2007] will be presented. Reference: Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10
NASA Astrophysics Data System (ADS)
Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.
2015-10-01
In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.
NASA Astrophysics Data System (ADS)
Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.
2015-09-01
Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.
Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.
1998-12-01
Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.
NASA Astrophysics Data System (ADS)
Mendonca, J.; Strong, K.; Sung, K.; Devi, V. M.; Toon, G. C.; Wunch, D.; Franklin, J. E.
2017-03-01
A quadratic-speed-dependent Voigt line shape (qSDV) with line mixing (qSDV+LM), together with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4, was used to retrieve total columns of CH4 from atmospheric solar absorption spectra. The qSDV line shape (Tran et al., 2013) [3] with line mixing (Lévy et al., 1992) [4] was implemented into the forward model of GFIT (the retrieval algorithm that is at the heart of the GGG software (Wunch et al., 2015) [5]) to calculate CH4 absorption coefficients. High-resolution laboratory spectra of CH4 were used to assess absorption coefficients calculated using a Voigt line shape and spectroscopic parameters from the atm line list (Toon, 2014) [6]. The same laboratory spectra were used to test absorption coefficients calculated using the qSDV+LM line shape with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4 and a Voigt line shape for lines that don't belong to the 2v3 band. The spectral line list for lines that don't belong to the 2v3 band is an amalgamation of multiple spectral line lists. We found that for the P, Q, and R branches of the 2v3 band, the qSDV+LM simulated the laboratory spectra better than the Voigt line shape. The qSDV+LM was also used in the spectral fitting of high-resolution solar absorption spectra from four ground-based remote sensing sites and compared to spectra fitted with a Voigt line shape. The average root mean square (RMS) residual for 131,124 solar absorption spectra fitted with absorption coefficients calculated using the qSDV+LM for the 2v3 band of CH4 and the new spectral line list for lines for lines that don't belong to the 2v3 band, was reduced in the P, Q, and R branches by 5%, 13%, and 3%, respectively when compared with spectra fitted using a Voigt line shape and the atm line list. We found that the average total column of CH4 retrieved from these 131,124 spectra, with the qSDV+LM was 1.1±0.3% higher than the retrievals performed using a
Kabi, Sanjib; Perera, A. G. Unil
2015-03-28
The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.
NASA Astrophysics Data System (ADS)
Minimala, N. S.; Peter, A. John
2013-02-01
Effects of magnetic field strength and the built-in electric fields on the exciton binding energy and the non-linear optical property such as absorption coefficients in a GaN/AlGaN wide band gap heterostructure are investigated. The internal fields due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Our results show that the optical absorption coefficients strongly depend on the internal fields and the applied magnetic field.
NASA Astrophysics Data System (ADS)
Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.
2016-04-01
In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.
NASA Astrophysics Data System (ADS)
Fukutomi, D.; Ishii, K.; Awazu, K.
2015-12-01
Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.
NASA Astrophysics Data System (ADS)
Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.
2014-12-01
Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.
NASA Astrophysics Data System (ADS)
Barik, A. R.; Adarsh, K. V.; Naik, Ramakanta; Sandeep, C. S. Suchand; Philip, Reji; Zhao, Donghui; Jain, Himanshu
2011-05-01
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way.
NASA Astrophysics Data System (ADS)
McKee, David; Röttgers, Rüdiger; Neukermans, Griet; Calzado, Violeta Sanjuan; Trees, Charles; Ampolo-Rella, Marina; Neil, Claire; Cunningham, Alex
2014-12-01
Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors. The copyright line for this article was changed on 16 JAN 2015 after original online publication.
NASA Astrophysics Data System (ADS)
Yu, Shao-De; Wu, Shi-Bin; Wang, Hao-Yu; Wei, Xin-Hua; Chen, Xin; Pan, Wan-Long; Hu, Jiani; Xie, Yao-Qin
2015-12-01
Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of weighted magnetic resonance imaging However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo . Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation. Project supported in part by the National High Technology Research and Development Program of China (Grant Nos. 2015AA043203 and 2012AA02A604), the National Natural Science Foundation of China (Grant Nos. 81171402, 61471349, and 81501463), the Innovative Research Team Program of Guangdong Province, China (Grant No. 2011S013), the Science and Technological Program for Higher Education, Science and Research, and Health Care Institutions of Guangdong Province, China (Grant No. 2011108101001), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310360), the Fundamental Research Program of Shenzhen City, China (Grant No. JCYJ20140417113430639), and Beijing Center for Mathematics and Information Interdisciplinary Sciences, China.
Effects of suspended sediment concentration on the absorption and scattering coefficients
NASA Astrophysics Data System (ADS)
Terrie, Gregory E.; Ladner, Sherwin; Gould, Richard A., Jr.
1997-02-01
The scattering coefficient (b) for the nearshore waters off the coast of North Carolina near Camp Lejeune is strongly influenced by suspended sediment concentration and total particulate cross-sectional area (xg). In-situ measurements of a and b were made using a WET Labs AC9 meter. Estimates of suspended sediment concentration and total particulate cross-sectional area were determined from laser particle size analyses of surface water samples. The SeaWiFS bio-optical algorithm was modified for Case II waters and used to estimate a and bb from remote sensing reflectance (Rrs). After conversion from backscattering (bb) to total scattering (b), modeled a and b values from the modified SeaWiFS algorithm were compared to the measured values. The differences between the measured and estimated values appear to be directly related to increases in suspended sediment concentration and xg. Correlations of about 0.90 were obtained for b vs xg and bb vs xg.
Li, Jun; Zhou, Xianming; Li, Jiabo
2008-12-01
An experimental method was developed to perform time-resolved, single-pass optical absorption measurements and to determine absorption coefficients of window materials under strong shock compression up to approximately 200 GPa. Experimental details are described of (i) a configuration to generate an in situ dynamic, bright, optical source and (ii) a sample assembly with a lithium fluoride plate to essentially eliminate heat transfer from the hot radiator into the specimen and to maintain a constant optical source within the duration of the experiment. Examples of measurements of optical absorption coefficients of several initially transparent single crystal materials at high shock pressures are presented.
Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M
2004-04-01
In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.
NASA Astrophysics Data System (ADS)
Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio
2016-04-01
The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.
NASA Astrophysics Data System (ADS)
Zhong, Min; Jang, Myoseon
2011-08-01
A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.
NASA Astrophysics Data System (ADS)
Osicka, Teresa; Freedman, Matthew T.; Ahmed, Farid
2006-03-01
Using CT images from the National Lung Screening Trial (NLST) of the National Cancer Institute (NCI), interpreted by radiologists at the Georgetown University, our goal was to investigate the feature extraction method using discrete wavelet transform (DWT) and to demonstrate their potential in distinguishing between benign and malignant nodule status. We analyzed multiple 2 mm thick slices of 40 subjects with benign nodules and 7 subjects with malignant nodules for a total of 112 and 78 slices, respectively. Data was analyzed in the region-of-interest (ROI) that included nodule and surrounding areas in three different-sized windows. A linear discriminant analysis (LDA) of wavelets coefficients was used for data analysis. In particular we examined discriminative power of the wavelet based features using Fisher LDA, and evaluated the classification results using decision matrix (DM) for matched sample (MS). For visualization we used 3-D Heat Maps, originally developed in MATLAB(R) (MathWorks, Natick, MA) for gene expression array analysis, modified to display the magnitude of similarities between cases under analysis. The use of DWT in the image pre-processing modules resulted in a significant improvement in discrimination between benign and malignant nodules. The results show better classification accuracy with the DWT based features, as compared to previously proposed classification features (p-values: 0.008, 0.022, and 0.039, depending on window size). The Heat Maps provide useful data visualization for further investigation as they have the ability to identify cases that should be further explored to understand why some of the benign nodules look similar to malignant in the wavelet domain.
Gaonkar, Harshavardhan Ashok; Kumar, Dinesh; Ramasubramaniam, Rajagopal; Roy, Arindam
2014-05-01
Efforts are underway to better understand the absorption properties of micro- and nano-sized particles due to their potential in various photonic applications. However, most of these particles exhibit strong scattering in the spectral regions of interest in addition to absorption. Due to strong interference from scattering, the absorption of these turbid samples cannot be directly measured using conventional spectroscopy techniques. The optical properties of these particles are also different from that of the bulk due to quantum confinement and plasmon resonance effects and cannot be inferred from their bulk properties. By measuring the total transmittance and total reflectance (diffuse and collimated) of turbid samples and using an empirical relation between the coefficients of the Kubelka-Munk and radiative transfer theories, we have demonstrated a method to calculate the absorption and reduced scattering coefficients of turbid samples. This method is capable of extracting the absorption coefficient of turbid samples with an error of 2%. Using this method, we have decoupled the specific absorption and specific reduced scattering coefficients of commercially available micro-sized iron oxide particles. The current method can be used to measure the optical properties of irregularly shaped particle dispersions, which are otherwise difficult to estimate theoretically.
Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru
2014-01-01
A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.
Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis
NASA Astrophysics Data System (ADS)
Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.
2017-01-01
In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1 × 1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5 × 1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.
NASA Technical Reports Server (NTRS)
Clark, Roger N.; Swayze, Gregg A.; Koch, Christopher; Ager, Cathy
1992-01-01
Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species.
NASA Astrophysics Data System (ADS)
Shori, Ramesh K.
The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second
Krska, Rudolf; Schubert-Ullrich, Patricia; Josephs, Ralf D; Emteborg, Håkan; Buttinger, Gerhard; Pettersson, Hans; van Egmond, Hans P; Schothorst, Ronald C; Macdonald, Susan; Chan, Danny
2007-07-01
This paper presents results from the European Commission-funded project Doncalibrant, the objective of which was to produce calibrators with certified mass fractions of the Fusarium toxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-Ac-DON), 15-acetyldeoxynivalenol (15-Ac-DON), and nivalenol (NIV), in acetonitrile. The calibrators, available in ampoules, were sufficiently homogeneous, with between-bottle variations (s (bb)) of less than 2%. Long-term stability studies performed at four different temperatures between -18 and 40 degrees C revealed no significant negative trends (at a confidence level of 95%). Molar absorptivity coefficients (in L mol(-1) cm(-1)) were determined for all four toxins (DON: 6805 +/- 126, NIV: 6955 +/- 205, 3-Ac-DON: 6983 +/- 141, 15-Ac-DON: 6935 +/- 142) on the basis of a mini-interlaboratory exercise. The overall uncertainty of the calibrators' target values for DON and NIV were evaluated on the basis of gravimetric preparation data and include uncertainty contributions from possible heterogeneity, storage, and transport. The Doncalibrant project resulted in the production of calibrators for DON (IRMM-315) and NIV (IRMM-316) in acetonitrile with certified mass fractions of 25.1 +/- 1.2 microg g(-1) and 24.0 +/- 1.1 microg g(-1), respectively. Both CRMs became commercially available from the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) at the beginning of 2007.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya
2015-03-01
Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.
A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift
NASA Astrophysics Data System (ADS)
Beuchert, T.; Markowitz, A. G.; Krauß, F.; Miniutti, G.; Longinotti, A. L.; Guainazzi, M.; de La Calle Pérez, I.; Malkan, M.; Elvis, M.; Miyaji, T.; Hiriart, D.; López, J. M.; Agudo, I.; Dauser, T.; Garcia, J.; Kreikenbohm, A.; Kadler, M.; Wilms, J.
2015-12-01
Context. The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of active galactic nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Aims: Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV broad line region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. Methods: We examine six Suzaku and 12 Swift observations from a 2008 campaign spanning five weeks. We use a model accounting for the complex spectral interplay of three absorbers with different levels of ionization. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR to X-ray spectral energy distribution (SED) to test for reddening by dust. Results: The 2008 absorption event is due to moderately-ionized (log ξ ~ 1.2-1.4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. Conclusions: The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.
Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C
1995-01-01
The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.
Mapping nanoscale absorption of femtosecond laser pulses using plasma explosion imaging.
Hickstein, Daniel D; Dollar, Franklin; Ellis, Jennifer L; Schnitzenbaumer, Kyle J; Keister, K Ellen; Petrov, George M; Ding, Chengyuan; Palm, Brett B; Gaffney, Jim A; Foord, Mark E; Libby, Stephen B; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M; Xiong, Wei
2014-09-23
We make direct observations of localized light absorption in a single nanostructure irradiated by a strong femtosecond laser field, by developing and applying a technique that we refer to as plasma explosion imaging. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Our method probes individual, isolated nanoparticles in vacuum, which allows us to observe how small variations in the composition, shape, and orientation of the nanostructures lead to vastly different light absorption. Here, we study four different nanoparticle samples with overall dimensions of ∼100 nm and find that each sample exhibits distinct light absorption mechanisms despite their similar size. Specifically, we observe subwavelength focusing in single NaCl crystals, symmetric absorption in TiO2 aggregates, surface enhancement in dielectric particles containing a single gold nanoparticle, and interparticle hot spots in dielectric particles containing multiple smaller gold nanoparticles. These observations demonstrate how plasma explosion imaging directly reveals the diverse ways in which nanoparticles respond to strong laser fields, a process that is notoriously challenging to model because of the rapid evolution of materials properties that takes place on the femtosecond time scale as a solid nanostructure is transformed into a dense plasma.
NASA Astrophysics Data System (ADS)
Berriman, Garth; Routley, Ben; Holdsworth, John; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul
2014-09-01
The composition and thickness of binary thin organic films is determined by measuring the optical absorption at multiple wavelengths across the film surface and performing a component analysis fit to absorption standards for the materials. The multiple laser wavelengths are focused onto the surface using microscope objectives and raster scanned across the film surface using a piezo-electric actuator X-Y stage. All of the wavelengths are scanned simultaneously with a frequency division multiplexing system used to separate the individual wavelength response. The composition values are in good quantitative agreement with measurements obtained by scanning transmission x-ray microscopy (STXM). This new characterization technique extends quantitative compositional mapping of thin films to thickness regimes beyond that accessible by STXM.
Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.
2011-04-28
The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.
Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.
2008-06-16
This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.
NASA Astrophysics Data System (ADS)
Allali, Karima; Bricaud, Annick; Claustre, Hervé
1997-01-01
Chlorophyll-specific absorption coefficients of particles, a*p(λ), and of phytoplankton, a*ph(λ), were determined using the glass-fiber filter technique along 150°W in the equatorial Pacific (13°S-1°N). A site-specific algorithm for correcting the path length amplification effect was derived from field measurements. Then a decomposition technique using the high-performance liquid chromatography pigment information and taking into account the package effect was used to partition a*ph into the contributions of photosynthetic pigments (a*ps) and nonphotosynthetic pigments (a*nps). Both a*ph and a*nps values were observed to decrease from the oligotrophic waters of the subequatorial area (13°-1°S) to the mesotrophic waters of the equatorial area (1°S-1°N) and from the surface to deep waters. The a*ph variations were primarily, but not exclusively, caused by changes in the concentrations of nonphotosynthetic pigments. The level of pigment packaging was also variable both horizontally and vertically, as a result of changes in populations and photoacclimation. In comparison with a*ph, a*ps exhibited a reduced range of variation with depth and along the latitudinal gradient. The variations in a*ps originating from the package effect were partly compensated by variations in the concentrations of photosynthetic pigments. We extended this analysis to include data collected in other areas with different trophic states. The a*ps values varied over a factor of 4 at 440 nm, instead of 8 for a*ph, for chlorophyll a concentrations covering 2 orders of magnitude (0.02-2 mg m-3). In agreement with a previous study performed off California with a different method [Sosik and Mitchell, 1995], we conclude that a*ps is less dependent on environmental parameters than a*ph. In addition, our results provide evidence that the variability in a*ps cannot be neglected. The use of a*ps instead of a*ph in light-photosynthesis models (in conjunction with a quantum yield for carbon fixation
NASA Technical Reports Server (NTRS)
Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.
1982-01-01
Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.
2012-09-01
bandwidth of the pulse. Using the standard laboratory and analysis methods of Sheik- Bahae et al., we obtain a two-photon absorption coefficient, β, of...organic thin-film materials deposited on various substrates. 15 6. References 1. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W. High...sensitivity, Single-beam n2 Measurements. Optics Letters 1989, 14 (17). 2. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W.; Wei, T-H; Hagan, D. J
NASA Technical Reports Server (NTRS)
Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.
2008-01-01
At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.
NASA Astrophysics Data System (ADS)
Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji
2012-02-01
A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.
Nader, Christelle Abou; Nassif, Rana; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie
2015-12-10
In this paper, we present the evolution of speckle pattern polarimetric parameters in response to controlled changes in scatterer sizes, proportions, and the absorption coefficient in media. The experimental study was performed on mixtures of polystyrene microspheres with dye in order to ensure biological medium-like properties. The speckle grain sizes and degrees of polarization for linear and circular light were monitored. We observed helicity flipping in the degree of circular polarization for small scatterer proportion around 25%. Furthermore, linear depolarization decreased slightly for media containing more small particles. Good agreement was shown with numerical results computed using a Monte Carlo simulation of polarized light taking into account our experimental configuration. Speckle grain size also evolves with the increase of small scatterers as well as the media absorption coefficient. Such variations of properties are encountered during fruit maturation, in tissues in precancerous stages, and any transformation that causes a modification in particle proportions and absorption coefficient in biological media. The computed parameters proved to be sensitive to these changes.
Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H
2012-12-21
For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.
NASA Astrophysics Data System (ADS)
Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh
2017-03-01
A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.
1975-07-01
coefficient. Diffuse reflectance spectroscopy, and in particular the Kubelka - Munk (K-M) theory, can provide such information. A convenient method for...34Uber Den Streukoeffizienten Der Kubelka - Munk -Theorie," Z. Naturforsch, 19a, 28. 3. J. B. Gillespie, J. D. Lindberg and L. S. Laude, 1975 " Kubelka ... Munk Optical Coefficients for a Barium Sulfate White Reflectance Standard," Appl. Opt. 14, 807. 4. F. Grum and G. W. Lucky, 1968, "Optical Sphere
Guo, Zijian; Hu, Song; Wang, Lihong V
2010-06-15
Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.
NASA Astrophysics Data System (ADS)
Baldassarre, L.; Giliberti, V.; Rosa, A.; Ortolani, M.; Bonamore, A.; Baiocco, P.; Kjoller, K.; Calvani, P.; Nucara, A.
2016-02-01
Infrared (IR) nanospectroscopy performed in conjunction with atomic force microscopy (AFM) is a novel, label-free spectroscopic technique that meets the increasing request for nano-imaging tools with chemical specificity in the field of life sciences. In the novel resonant version of AFM-IR, a mid-IR wavelength-tunable quantum cascade laser illuminates the sample below an AFM tip working in contact mode, and the repetition rate of the mid-IR pulses matches the cantilever mechanical resonance frequency. The AFM-IR signal is the amplitude of the cantilever oscillations driven by the thermal expansion of the sample after absorption of mid-IR radiation. Using purposely nanofabricated polymer samples, here we demonstrate that the AFM-IR signal increases linearly with the sample thickness t for t \\gt 50 nm, as expected from the thermal expansion model of the sample volume below the AFM tip. We then show the capability of the apparatus to derive information on the protein distribution in single cells through mapping of the AFM-IR signal related to the amide-I mid-IR absorption band at 1660 cm-1. In Escherichia Coli bacteria we see how the topography changes, observed when the cell hosts a protein over-expression plasmid, are correlated with the amide I signal intensity. In human HeLa cells we obtain evidence that the protein distribution in the cytoplasm and in the nucleus is uneven, with a lateral resolution better than 100 nm.
NASA Astrophysics Data System (ADS)
Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.
2016-06-01
Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.
Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C
2016-06-15
Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.
NASA Astrophysics Data System (ADS)
Sheng, Wang; Yun, Kang; Xianli, Li
2016-11-01
Within the quasi-one-dimensional effective potential model and effective mass approximation, we obtain the wavefunctions and energy eigenvalues of the ground (j = 1) and first 2 excited states (j = 2 and 3) of a donor impurity in a rectangular GaAs quantum dot in the presence of electric field. The donor impurity-related linear and nonlinear optical absorption as well as refractive index changes for the transitions j = 1-2 and j = 2-3 are investigated. The results show that the impurity position, incident optical intensity and electric field play important roles in the optical absorption coefficients and refractive index changes. We find that the impurity effect induces the blueshift for j = 1-2 and redshift for j = 3-2 in the absence of the electric field, but it leads to redshift for j = 1-2 and blueshift for j = 3-2 in the existence of the field. Also, the optical coefficient for the higher energy transitions j = 2-3 is insensitive to variation of impurity positions, while that for the low energy transition j = 1-2 depends significantly on the positions of impurity. In addition, the saturation and splitting phenomenon of the optical absorption are observed as the incident optical intensity increases. Project supported by the Science and Technology Project of Education Department of Heilongjiang Province of China (No. 12541070).
NASA Astrophysics Data System (ADS)
Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.
2015-01-01
Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.
Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Bizyaev, Dmitry; and others
2015-06-10
We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.
Compact x-ray microtomography system for element mapping and absorption imaging
Feldkamp, J. M.; Schroer, C. G.; Patommel, J.; Lengeler, B.; Guenzler, T. F.; Schweitzer, M.; Stenzel, C.; Dieckmann, M.; Schroeder, W. H.
2007-07-15
We have designed and built a compact x-ray microtomography system to perform element mapping and absorption imaging by exploiting scanning fluorescence tomography and full-field transmission microtomography, respectively. It is based on a low power microfocus tube and is potentially appropriate for x-ray diagnostics in space. Full-field transmission tomography yields the three-dimensional inner structure of an object. Fluorescence microtomography provides the element distribution on a virtual section through the sample. Both techniques can be combined for appropriate samples. Microradiography as well as fluorescence mapping are also possible. For fluorescence microtomography a small and intensive microbeam is required. It is generated using a polycapillary optic. Operating the microfocus tube with a molybdenum target at 12 W, a microbeam with a full width at half maximum lateral extension of 16 {mu}m and a flux of about 10{sup 8} photons/s is generated. As an example of application, this beam is used to determine the element distribution inside dried plant samples. For full-field scanning tomography, the x-ray optic is removed and the sample is imaged in magnifying projection onto a two-dimensional position sensitive detector. Depending on the sample size, a spatial resolution down to about 10 {mu}m is possible in this mode. The method is demonstrated by three-dimensional imaging of a rat humerus.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
NASA Technical Reports Server (NTRS)
Lee, Zhong-Ping; Carder, Kendall L.
2001-01-01
A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.
Baba, Justin S; Koju, Vijay; John, Dwayne O
2016-01-01
The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.
Ghysels, M; Durry, G; Amarouche, N
2013-04-15
By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.
Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru
2016-02-22
The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.
Park, Hyunjin; Green, Michael H
2014-03-28
In the existing compartmental models of human vitamin A metabolism, parameters related to the absorption of the isotopic oral dose have not been well identified. We hypothesised that fixing some poorly identified parameters related to vitamin A absorption would improve parameter identifiability and add statistical certainty to such models. In the present study, data for serum vitamin A kinetics in nine subjects given [2H8]retinyl acetate orally and a model with absorption fixed at 75 % were used to test this hypothesis. In addition to absorption efficiency, we fixed two other fractional transfer coefficients: one representing the initial processing of the ingested dose and the other representing the direct secretion of retinol bound to retinol-binding protein (RBP) from enterocytes into the plasma. The Windows version of Simulation, Analysis and Modeling software (WinSAAM) was used to fit serum tracer data v. time for each subject. Then, a population model was generated by WinSAAM's Extended Multiple Studies Analysis. All the parameters had fractional standard deviations < 0·5, and none of the pairs of parameters had a correlation coefficient >0·8 (accepted criteria for well-identified parameters). Similar to the values predicted by the original model, total traced mass for retinol was 1160 (sd 468) μmol, and the time for retinol to appear in the plasma bound to RBP was 31·3 (sd 4·4) h. In conclusion, we suggest that this approach holds promise for advancing compartmental modelling of vitamin A kinetics in humans when the dose must be administered orally.
Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
NASA Astrophysics Data System (ADS)
Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
NASA Astrophysics Data System (ADS)
Margerin, L.; Mayor, J.; Calvet, M.
2015-12-01
Among the physical processes that affect the amplitude of seismic waves, attenuation is one of the most poorly understood and undetermined factor. Two basic mechanisms control seismic attenuation in the crust: scattering by small-scale heterogeneities, and absorption of seismic energy by inelastic and irreversible processes. A number of techniques have been devised to retrieve attenuation information from the modeling of direct seismic waves emitted by earthquakes. However, a major issue with the use of ballistic signals lies in the fact that their amplitude is affected by multiple factors that are difficult to disentangle in practice: radiation pattern, focussing/defocussing or site effects. Moreover, since both scattering and absorption manifest themselves as an approximately exponential decay of direct wave amplitude with distance, it is not possible to separate their effects from attenuation measurements based on ballistic waves only. In this work, we propose a multiple scattering approach to map independently scattering and absorption properties of the crust using seismic coda waves. To this end, we introduce a model of energy transport of seismic energy known as radiative transfer and use perturbation theory to derive sensitivity kernels for the intensity detected in the coda. Numerical evaluation of these kernels demonstrates that coda waves possess distinct spatial sensitivities to absorption and scattering. These results pave the way for the development of a genuine tomographic approach to the mapping of absorption and scattering in the crust. Preliminary results on the absorption structure of the Alps in the 1-32 Hz frequency reveal some interesting correlations with the geology at spatial scales ranging from a few tens to a few thousand kilometers. Regions of high absorption delineate sedimentary structures such as basins, grabens and alluvial valleys while localized zones of weak absorption correlate with mantellic or plutonic intrusions such as the
2012-01-01
The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497
NASA Astrophysics Data System (ADS)
Vartanian, A. L.; Asatryan, A. L.; Vardanyan, L. A.
2017-03-01
We have investigated the influence of an image charge effect (ICE) on the energies of the ground and first few excited states of a hydrogen-like impurity in a spherical quantum dot (QD) in the presence of an external electric field. The oscillator strengths of transitions from the 1 s -like state to excited states of 2px and 2pz symmetries are calculated as the functions of the strengths of the confinement potential and the electric field. Also, we have studied the effect of image charges on linear and third-order nonlinear optical absorption coefficients and refractive index changes (RICs). The results show that image charges lead to the decrease of energies for all the hydrogen-like states, to the significant enhancement of the oscillator strengths of transitions between the impurity states, and to comparatively large blue shifts in linear, nonlinear, and total absorption coefficients and refractive index changes. Our results indicate that the total optical characteristics can be controlled by the strength of the confinement and the electric field.
Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M
2006-10-21
For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.
NASA Astrophysics Data System (ADS)
Conny, J. M.; Norris, G.
2007-12-01
In thermal-optical transmission analysis (TOT), laser light passing through a particle-laden filter is monitored while carbonaceous material is removed in several heating steps and measured by flame ionization detection. In a helium atmosphere, the laser signal is attenuated by the pyrolysis of organic carbon (OC). Later, while carbon is removed in an oxidizing atmosphere, the laser signal returns to its value prior to pyrolysis (split point), whereupon the amount of carbon equivalent to the native BC is measured. Since pyrolyzed OC may actually evolve beyond the split point, the specific absorption cross sections of pyrolyzed OC and native BC must be equivalent. Moreover, OC pyrolysis must be sufficient so that unpyrolyzed OC is not measured as BC beyond the split point. Using response surfaces models of the apparent specific absorption cross sections for pyrolyzed OC and what the instrument measures as native BC, we determined the thermal conditions for establishing the equivalence of the apparent cross sections while insuring sufficient pyrolysis of OC. In this way, we have optimized TOT for BC mass based on the Beer-Lambert Law but without the need for an absolute mass absorption coefficient (or an absolute attenuation coefficient) for BC. Optimal thermal conditions for the equivalence of the cross sections were indicated by the intersection of the response surfaces. Concurrently, optimal conditions for sufficient pyrolysis of OC were indicated by a plateau in the response surface for the BC cross section. Modeling was based on extensive analyses of PM2.5 samples collected from Atlanta, Los Angeles, and Seattle. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Esteves, Freddy; Moutinho, Carla; Matos, Carla
2013-06-01
Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.
NASA Technical Reports Server (NTRS)
Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.
2008-01-01
Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.
Ellingson, Benjamin M; Cloughesy, Timothy F; Lai, Albert; Mischel, Paul S; Nghiemphu, Phioanh L; Lalezari, Shadi; Schmainda, Kathleen M; Pope, Whitney B
2011-10-01
Diffusion imaging has shown promise as a predictive and prognostic biomarker in glioma. We assessed the ability of graded functional diffusion maps (fDMs) and apparent diffusion coefficient (ADC) characteristics to predict overall survival (OS) in recurrent glioblastoma multiforme (GBM) patients treated with bevacizumab. Seventy-seven patients with recurrent GBMs were retrospectively examined. MRI scans were obtained before and approximately 6 weeks after treatment with bevacizumab. Graded fDMs were created by registering datasets to each patient's pretreatment scan and then performing voxel-wise subtraction between post- and pretreatment ADC maps. Voxels were categorized according to the degree of change in ADC within pretreatment fluid-attenuated inversion recovery (FLAIR) and contrast-enhancing regions of interest (ROIs). We found that the volume of tissue showing decreased ADC within both FLAIR and contrast-enhancing regions stratified OS (log-rank, P < .05). fDMs applied to contrast-enhancing ROIs more accurately predicted OS compared with fDMs applied to FLAIR ROIs. Graded fDMs (showing voxels with decreased ADC between 0.25 and 0.4 µm(2)/ms) were more predictive of OS than traditional (single threshold) fDMs, and the predictive ability of graded fDMs could be enhanced even further by adding the ADC characteristics from the fDM-classified voxels to the analysis (log-rank, P < .001). These results demonstrate that spatially resolved diffusion-based tumor metrics are a powerful imaging biomarker of survival in patients with recurrent GBM treated with bevacizumab.
Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind
2014-07-28
We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.
NASA Astrophysics Data System (ADS)
Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.
2015-12-01
Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.
Baba, Justin S; Allegood, Marcus S
2008-01-01
Light interaction with biological tissue can be described using three parameters: the scattering and absorption coefficients (us and ua), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specific wavelengths, and simultaneously, would be beneficial for a variety of different biomedical applications. The goal of this project was to take a user-defined g-value and determine the remaining two parameters for a specified wavelength range for an integrating sphere with a collimated white light input source system. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW was used to write programs to automate: raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl's Inverse Adding-Doubling (IAD) C code execution, and computation of the optical properties based on the output from the IAD code. To allow data to be passed efficiently between LabVIEW and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms and determination of the absorption and scattering coefficients showed excellent agreement with theory for wavelengths were the user inputted single g-value was sufficiently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete system multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to study actual biological tissues for the purpose of deriving and refining models for light-tissue interactions.
Gao, Feifei; Wang, Yuan; Shi, Dong; Zhang, Jing; Wang, Mingkui; Jing, Xiaoyan; Humphry-Baker, Robin; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael
2008-08-13
We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached. Along with an acetonitrile-based electrolyte, the C101 sensitizer has already achieved a strikingly high efficiency of 11.0-11.3%, even under a preliminary testing. More importantly, based on a low volatility 3-methoxypropionitrile electrolyte and a solvent-free ionic liquid electrolyte, cells have corresponding >9.0% and approximately 7.4% efficiencies retained over 95% of their initial performances after 1000 h full sunlight soaking at 60 degrees C. With the aid of electrical impedance measurements, we further disclose that, compared to the cell with an acetonitrile-based electrolyte, a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter effective electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron lifetimes in the mesoporous titania film, explaining the photocurrent difference between these two type devices. This highlights the next necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes, facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.
Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko
2013-09-01
Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.
NASA Astrophysics Data System (ADS)
Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus
2016-04-01
Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m
Zogka, Antonia G; Mellouki, Abdelwahid; Romanias, Manolis N; Bedjanian, Yuri; Idir, Mahmoud; Grosselin, Benoit; Daële, Véronique
2016-11-17
The rate coefficients for the reactions of OH and Cl with 1-methoxy 2-propyl acetate (MPA) in the gas phase were measured using absolute and relative methods. The kinetic study on the OH reaction was conducted in the temperature (263-373) K and pressure (1-760) Torr ranges using the pulsed laser photolysis-laser-induced fluorescence technique, a low pressure fast flow tube reactor-quadrupole mass spectrometer, and an atmospheric simulation chamber/GC-FID. The derived Arrhenius expression is kMPA+OH(T) = (2.01 ± 0.02) × 10(-12) exp[(588 ± 123/T)] cm(3) molecule(-1) s(-1). The absolute and relative rate coefficients for the reaction of Cl with MPA were measured at room temperature in the flow reactor and the atmospheric simulation chamber, which led to k(Cl+MPA) = (1.98 ± 0.31) × 10(-10) cm(3) molecule(-1) s(-1). GC-FID, GC-MS, and FT-IR techniques were used to investigate the reaction mechanism in the presence of NO. The products formed from the reaction of MPA with OH and their yields were methyl formate (80 ± 7.3%), acetic acid (50 ± 4.8%), and acetic anhydride (22 ± 2.4%), while for Cl reaction, the obtained yields were 60 ± 5.4, 41 ± 3.8, and 11 ± 1.2%, respectively, for the same products. The UV absorption cross section spectrum of MPA was determined in the wavelength range 210-370 nm. The study has shown no photolysis of MPA under atmospheric conditions. The obtained results are used to derive the atmospheric implication.
Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A
2009-09-30
A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)
Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru
2006-12-21
Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the
Sánchez-Castaño, G; Ruíz-García, A; Bañón, N; Bermejo, M; Merino, V; Freixas, J; Garriguesx, T M; Plá-Delfina, J M
2000-11-01
A preliminary study attempting to predict the intrinsic absolute bioavailability of a group of antibacterial 6-fluoroquinolones-including true and imperfect homologues as well as heterologues-was carried out. The intrinsic absolute bioavailability of the test compounds, F, was assessed on permanently cannulated conscious rats by comparing the trapezoidal normalized areas under the plasma concentration-time curves obtained by intravenous and oral routes (n = 8-12). The high-performance liquid chromatography analytical methods used for plasma samples are described. Prediction of the absolute bioavailability of the compounds was based on their intrinsic rat gut in situ absorption rate constant, k(a). The working equation was: where T represents the mean absorbing time. A T value of 0.93 (+/-0.06) h provides the best correlation between predicted and experimentally obtained bioavailabilities (F' and F, respectively) when k(a) values are used (slope a = 1.10; intercept b = -0.05; r = 0.991). The k(a) values can also be expressed in function of the in vitro partition coefficients, P, between n-octanol and a phosphate buffer. In this case, theoretical k(a) values can be determined with the parameters of a standard k(a)/P correlation previously established for a group of model compounds. When P values are taken instead of k(a) values, reliable bioavailability predictions can also be made. These and other relevant features of the method are discussed.
MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION
Christian, Pierre; Loeb, Abraham
2015-11-20
The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.
NASA Astrophysics Data System (ADS)
De Siena, L.; Calvet, M.; Watson, K. J.; Jonkers, A. R. T.; Thomas, C.
2016-05-01
Frequency-dependent peak-delay times and coda quality factors have been used jointly to separate seismic absorption from scattering quantitatively in Earth media at regional and continental scale; to this end, we measure and map these two quantities at Mount St. Helens volcano. The results show that we can locate and characterize volcanic and geological structures using their unique contribution to seismic attenuation. At 3 Hz a single high-scattering and high-absorption anomaly outlines the debris flows that followed the 1980 explosive eruption, as deduced by comparison with remote sensing imagery. The flows overlay a NNW-SSE interface, separating rocks of significant varying properties down to 2-4 km, and coinciding with the St. Helens Seismic Zone. High-scattering and high-absorption anomalies corresponding to known locations of magma emplacement follow this signature under the volcano, showing the important interconnections between its feeding systems and the regional tectonic boundaries. With frequency increasing from 6 to 18 Hz the NNW-SSE tectonic/feeding trends rotate around an axis centered on the volcano in the direction of the regional-scale magmatic arc (SW-NE). While the aseismic high-scattering region WSW of the volcano shows no evidence of high absorption, the regions of highest-scattering and absorption are consistently located at all frequencies under either the eastern or the south-eastern flank of the volcanic edifice. From the comparison with the available geological and geophysical information we infer that these anomalies mark both the location and the trend of the main feeding systems at depths greater than 4 km.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Calvet, Marie; Watson, Keira J.; Jonkers, Art R. D.; Thomas, Christine
2016-04-01
Frequency-dependent peak-delay times and coda quality factors have been used jointly to separate seismic absorption from scattering quantitatively in Earth media at regional and lithospheric scale; to this end, we measure and map these two quantities at Mount St. Helens volcano. The results show that we can locate and characterise volcanic and geological structures using their unique contribution to seismic attenuation. At 3 Hz a single high-scattering and high-absorption anomaly outlines the debris flows that followed the 1980 explosive eruption, as deduced by comparison with remote sensing imagery. The flows overlay a NNW-SSE interface, separating rocks of significant varying properties down to 2-4 km, and coinciding with the Saint Helens Seismic Zone. High-scattering and high-absorption anomalies corresponding to known locations of magma emplacement follow this signature under the volcano, showing the important interconnections between its feeding systems and the regional tectonic boundaries. With frequency increasing from 6 to 18 Hz the NNW-SSE tectonic/feeding trends rotate around an axis centered on the volcano in the direction of the regional-scale magmatic arc (SW-NE). While the aseismic high-scattering region WSW of the volcano shows no evidence of high absorption, the regions of highest-scattering and absorption are consistently located at all frequencies under either the eastern or the south-eastern flank of the volcanic edifice. From the comparison with the available geological and geophysical information we infer that these anomalies mark both the location and the trend of the main feeding systems at depths greater than 4 km.
NASA Technical Reports Server (NTRS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-01-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
NASA Astrophysics Data System (ADS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-11-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
NASA Astrophysics Data System (ADS)
De Siena, Luca; Calvet, Marie; Thomas, Christine
2015-04-01
Knowing how seismic waves lose their energy in space and frequency is both critical for understating volcanic structures and important to detect eventual changes in their seismic and volcanic activity. We measure both the peak-delay time and the coda quality factor on seismic envelopes recorded at Mount St. Helens volcano between 2000 and 2003, just before its 2004 explosive eruption. By the 2D mapping of these two frequency-dependent quantities we obtain S-wave scattering and absorption maps in the pre-eruptive phase of the volcano. We use a 2D K-means cluster analysis to highlight correlations in the frequency-dependent spatial patterns and interpret the results in terms of tectonic and feeding structures. The transition between the high-velocity and high-scattering Siletz terrane and the low-velocity and high-absorption Cascade arc crust is a persistent signature in the entire frequency range. At high frequencies, we observe strong correlation between high-scattering, high-absorption, and high P-wave heterogeneity (this last tomographically derived between depths of 0 and 10 km). In our interpretation, this correlation is a direct consequence of resonance effects, induced by the presence of melt and fluid inclusions as well as residuals of previous eruptions. The area of maximum heterogeneity is located south-south-west of the central crater: the region shows selective high absorption characteristics at 6 Hz only. If this supports the presence of a previously-inferred aseismic magma chamber intersecting the south-south-western flank of the volcano, the selectivity suggests a depth extension of the magma chamber lower than 1 km. The most important high-scattering and high-absorption signature at high frequencies remains a NNW-SSE suture crossing the volcanic cone and parallel to the St. Helens Seismic Zone. The trend confirms the persistent major role of the main direction of regional structural stress in the uprise of magma/fluid filled materials in the first
Spatial mapping of greenhouse gases using laser absorption spectrometers at local scales of interest
Dobler, Jeremy
2015-09-22
This presentation provides and overview of the development off the GreenLITE system for spatial mapping of atmospheric CO2. The original system was developed for supporting MRV activities for ground carbon storage facilities and has since been expanded to cover larger areas and other applications.
Rea, A.H.; Tortorelli, R.L.
1997-01-01
This digital report contains two digital-map grids of data that were used to develop peak-flow regression equations in Tortorelli, 1997, 'Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 97-4202. One data set is a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, 'A statistical-topographic model for mapping climatological precipitation over mountainous terrain:' Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The second data set is a grid of generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 2,510 square miles in drainage area. This grid of skew coefficients is taken from figure 11 of Tortorelli and Bergman, 1985, 'Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 84-4358. To save disk space, the skew coefficient values have been multiplied by 100 and rounded to integers with two significant digits. The data sets are provided in an ASCII grid format.
Near infrared iron absorption bands: Applications to geologic mapping and mineral exploration
NASA Technical Reports Server (NTRS)
Rowan, L. C.
1972-01-01
A spectroscopic analysis of the difference in reflectance of iron-rich and iron-poor minerals was made. Attempts were made to use these minima contrast in geological mapping and metallic mineral exploration of large areas from near infrared and visible satellite images. Data cover pertinent laboratory spectroscopic investigations, applications of spectral differences to the discrimination of two important metamorphic rock types, and mineral exploration by aircraft in Beartooth Mountains, Montana.
MRI-based anatomical model of the human head for specific absorption rate mapping
Makris, Nikos; Angelone, Leonardo; Tulloch, Seann; Sorg, Scott; Kaiser, Jonathan; Kennedy, David
2009-01-01
In this study, we present a magnetic resonance imaging (MRI)-based, high-resolution, numerical model of the head of a healthy human subject. In order to formulate the model, we performed quantitative volumetric segmentation on the human head, using T1-weighted MRI. The high spatial resolution used (1 × 1 × 1 mm3), allowed for the precise computation and visualization of a higher number of anatomical structures than provided by previous models. Furthermore, the high spatial resolution allowed us to study individual thin anatomical structures of clinical relevance not visible by the standard model currently adopted in computational bioelectromagnetics. When we computed the electromagnetic field and specific absorption rate (SAR) at 7 Tesla MRI using this high-resolution model, we were able to obtain a detailed visualization of such fine anatomical structures as the epidermis/dermis, bone structures, bone-marrow, white matter and nasal and eye structures. PMID:18985401
Spatial mapping of greenhouse gases using laser absorption spectrometers at local scales of interest
NASA Astrophysics Data System (ADS)
Dobler, Jeremy; Zaccheo, T. S.; Blume, Nathan; Braun, Michael; Botos, Chris; Pernini, Timothy G.
2015-10-01
Over the past two years a new system capable of measuring the 2-D spatial distribution of atmospheric CO2 over areas on the order of 1 km2 and time scales of a few minutes, has been developed and demonstrated. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) - developed under a cooperative agreement with the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE) - attempts to improve monitoring capabilities of Ground Carbon Storage (GCS) sites. GreenLITE sensors are based on an intensity modulated continuous wave (IM-CW) approach developed at ITT (now part of Harris Corp.) in 2004. The GreenLITE system recently completed a remote deployment of nearly 4,000 hours at a GCS site in Illinois. It provided continuous, real-time spatial distribution maps of CO2 via an open web-based interface from February to August 2015. In early 2015 we began work on a new implementation of GreenLITE capable of providing similar measurements over a 25 km2 area and are planning to test the system over a 5 km range late summer 2015. If successful the system will be deployed in an urban environment late 2015, demonstrating the utility of real-time 2-D spatial mapping of CO2 concentrations at this scale. This paper will review the concept for this new measurement capability, including results from the 1 km system. Ultimately, the measurement concept can be adapted to other greenhouse gases such as CH4 and NO2.
NASA Astrophysics Data System (ADS)
Kir'yanov, Alexander V.; Barmenkov, Yuri O.
2006-07-01
We reply to the comment [R. Paschotta and A.C. Tropper, Opt. Express, to be published (2006)] on our recent work reporting a study of the cooperative absorption and emission in heavily-doped Ytterbium silica fibers and mechanisms of the fiber nonlinear transmission coefficient reduction due to the Ytterbium ion-pairs’ effect [A.V. Kir’yanov et al., Opt. Express, 14 (9), 3981 (2006)]. We provide some additional evidences for that our work hypotheses and conclusions.
Werts, Martinus H V; Raimbault, Vincent; Texier-Picard, Rozenn; Poizat, Rémi; Français, Olivier; Griscom, Laurent; Navarro, Julien R G
2012-02-21
A simple and versatile methodology has been developed for the simultaneous measurement of multiple concentration profiles of colourants in transparent microfluidic systems, using a conventional transmitted light microscope, a digital colour (RGB) camera and numerical image processing combined with multicomponent analysis. Rigorous application of the Beer-Lambert law would require monochromatic probe conditions, but in spite of the broad spectral bandwidths of the three colour channels of the camera, a linear relation between the measured optical density and dye concentration is established under certain conditions. An optimised collection of dye solutions for the quantitative optical microscopic characterisation of microfluidic devices is proposed. Using the methodology for optical concentration measurement we then implement and validate a simplified and robust method for the microfluidic measurement of diffusion coefficients using an H-filter architecture. It consists of measuring the ratio of the concentrations of the two output channels of the H-filter. It enables facile determination of the diffusion coefficient, even for non-fluorescent molecules and nanoparticles, and is compatible with non-optical detection of the analyte.
NASA Astrophysics Data System (ADS)
Shi, Zhong; Huang, Xuexiang; Hu, Tianjian; Tan, Qian; Hou, Yuzhuo
2016-10-01
Space teleoperation is an important space technology, and human-robot motion similarity can improve the flexibility and intuition of space teleoperation. This paper aims to obtain an appropriate kinematics mapping method of coupled Cartesian-joint space for space teleoperation. First, the coupled Cartesian-joint similarity principles concerning kinematics differences are defined. Then, a novel weighted augmented Jacobian matrix with a variable coefficient (WAJM-VC) method for kinematics mapping is proposed. The Jacobian matrix is augmented to achieve a global similarity of human-robot motion. A clamping weighted least norm scheme is introduced to achieve local optimizations, and the operating ratio coefficient is variable to pursue similarity in the elbow joint. Similarity in Cartesian space and the property of joint constraint satisfaction is analysed to determine the damping factor and clamping velocity. Finally, a teleoperation system based on human motion capture is established, and the experimental results indicate that the proposed WAJM-VC method can improve the flexibility and intuition of space teleoperation to complete complex space tasks.
Morgan, M.A.
1989-07-01
Potential energy surfaces for photorotamerization of two intramolecularly hydrogen-bonded molecules, o-hydroxybenzaldehyde (OHBA) and methyl salicylate (MS), isolated in cryogenic matrices have been spectroscopically mapped. In addition, the external heavy atom effect of krypton and xenon matrices on the coupling between the S{sub 1} and T{sub 1} surfaces of 4-(dimethylamino)benzonitrile has been examined. Heavy atom matrices are known to increase rates of spin-forbidden processes. The phosphorescence intensity of DMABN increases in krypton and xenon matrices, while the fluorescence intensity, and phosphorescence and fluorescence lifetimes, decrease. These effects are interpreted in terms of a model in which the phosphorescence rate constant increases 300-fold in xenon compared to argon, while the rate constants for intersystem crossing and nonradiative relaxation from the triplet state increase by factors of less than 5. Lifetime measurements in argon matrices doped with heavy atoms indicate that even one heavy atom neighbor has a significant effect on both singlet and triplet lifetimes. 78 refs., 35 figs., 15 tabs.
NASA Astrophysics Data System (ADS)
Hippensteele, Steven A.; Poinsatte, Philip E.
1993-08-01
In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.; Poinsatte, Philip E.
1993-01-01
In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence
NASA Astrophysics Data System (ADS)
Pedone, Maria; Aiuppa, Alessandro; Giudice, Gaetano; Grassa, Fausto; Chiodini, Giovanni; Valenza, Mariano
2014-05-01
Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in Volcanology are still limited to a few examples. Here, we explored the potentiality of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) to measurement of volcanic CO2 flux emissions. Our field tests were conducted at Campi Flegrei (near Pozzuoli, Southern Italy), where the GasFinder was used (during three campaigns in October 2012, January 2013 and May 2013) to repeatedly measure the path-integrated concentrations of CO2 along cross-sections of the atmospheric plumes of the two main fumarolic fields in the area (Solfatara and Pisciarelli). By using ad-hoc designed field-set-up and a tomographic post-processing routine, we resolved, for each of the 2 manifestations, the contour maps of CO2 concentrations in their atmospheric plumes, from the integration of which (and after multiplication by the plumes' transport speeds) the CO2 fluxes were finally obtained [1]. The so-calculated fluxes average of 490 tons/day, which agrees well with independent evaluations of Aiuppa et al. (2013) [2] (460 tons/day on average), and support a significant contribution of fumaroles to the total CO2 budget. The cumulative (fumarole [this study] +soil [2]) CO2 output from Campi Flegrei is finally evaluated at 1600 tons/day. The application of lasers to volcanic gas studies is still an emerging (though intriguing) research field, and requires more testing and validation experiments. We conclude that TDL technique may valuably assist CO2 flux quantification at a number of volcanic targets worldwide. [1] Pedone M. et al. (2013) Gold2013:abs:5563, Goldschmidt Conference, session 11a. [2] Aiuppa A. et al. (2013) Geochemistry Geophysics Geosystems. doi: 10.1002/ggge.20261. [3] Chiodini G. et al. (2010) Journal of Geophysical Research, Volume 115, B03205. doi:10.1029/2008JB006258.
NASA Astrophysics Data System (ADS)
Daneshvar, L.; Földes, T.; Buldyreva, J.; Vander Auwera, J.
2014-12-01
High resolution Fourier transform spectra of the 21102-00001 band of 12C16O2 near 3340 cm-1 have been recorded and analyzed to extract isolated-line intensities and collisional parameters, and first-order line-mixing coefficients. Voigt, hard-collision Rautian and Sobel'man, and quadratic-speed-dependent Voigt profiles have been used. The line-mixing coefficients measured for the three branches have also been evaluated using an Energy-Corrected Sudden approach employing a symmetric metric in the Liouville space. These coefficients compare very favorably with the experimental results and estimations with an algorithm available in the literature. Results of straightforward ECS-modeling of complete band shapes have been compared to the recorded spectra and future improvements of this model required at subatmospheric pressures have been outlined.
Bernarding, J; Braun, J; Hohmann, J; Mansmann, U; Hoehn-Berlage, M; Stapf, C; Wolf, K J; Tolxdorff, T
2000-01-01
Decreased, renormalized, or increased values of the calculated apparent diffusion coefficient (ADC) are observed in stroke models. A quantitative description of corresponding tissue states using ADC values may be extended to include true relaxation times. A histogram-based segmentation is well suited for characterizing tissues according to specific parameter combinations irrespective of the heterogeneity found for human healthy and ischemic brain tissues. In a new approach, navigated diffusion-weighted images and ADC maps were incorporated into voxel-based parameter sets of relaxation times (T1, T2), and T1- or T2-weighted images, followed by a supervised histogram-based analysis. Healthy tissues were segmented by incorporating T1 relaxation into the data set, ischemic regions by combining T2- or diffusion-weighted images with ADC maps. Mean values of healthy and pathologic tissues were determined, spatial distributions of the parameter vectors were visualized using color-encoded overlays. One to six days after stroke, ischemic regions exhibited reduced relative mean ADC values.
Kazemi, Mark; Silva, Matthew D; Li, Fuhai; Fisher, Marc; Sotak, Christopher H
2004-06-01
Stroke lesion-volume estimates derived from calculated water apparent diffusion coefficient (ADC) maps provide a quantitative surrogate end-point for investigating the efficacy of drug treatment or studying the temporal evolution of cerebral ischemia. Methodology is described for estimating ischemic lesion volumes in a rat model of permanent middle cerebral artery occlusion (MCAO) based on absolute and percent-reduction threshold values of the water ADC at 3 h post-MCAO. Volume estimates derived from average ADC (ADC(av)) maps were compared with those derived from post-mortem histological sections. Optimum ADC thresholds were established as those that provided the best correlation and one-to-one correspondence between ADC- and histologically derived lesion-volume estimates. At 3 h post-MCAO, an absolute-ADC(av) threshold of 47 x 10(-5) mm(2)/s (corresponding to a 33% reduction in ADC(av) based on a contralateral hemisphere comparison) provided the most accurate estimate of percent hemispheric lesion volume (%HLV). Experimental and data analysis issues for improving and validating the usefulness of DWI as a surrogate endpoint for the quantification of ischemic lesion volume are discussed.
Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara
2011-07-04
When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.
Dakhlaoui, Hassen
2015-04-07
In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)
Allegood, M.S.; Baba, J.S.
2008-01-01
Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; ...
2016-02-16
Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides newmore » insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less
Stock, S. R.; Barss, J.; Dahl, T.; Veis, A.; Almer, J. D.; De Carlo, F.
2003-05-01
In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.
The emission coefficient of uranium plasmas
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Campbell, H. D.; Mack, J. M.
1973-01-01
The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.
González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José
2015-04-01
CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under
Absorption Coefficient of Alkali Halides. Part I.
1979-03-01
442 LIAY OF ~:S42.~SON T111 ALiSON ,’FlON CU12rCIUNT OF .l~i~ FLUORIVIl: (iviunLvr Iiepcndcncu) (cort .i.j) S’t .~Ue Rne uhr~) ~clo Wvna,br n rt...al. [134j reported their results for the region from 0.170 to 0.197 um and Handi et al. [24] reported results for the range of 35 to 770 pm. Li (331...lection Spectra of Pure and Doped Potassium Iodide at Low Temperatures," Appl. Opt., 7(1), 161-5 (1968). L, __ 243 26. Vergnat, P., Claudel, J., Handi
Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa
2016-01-01
Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198
NASA Astrophysics Data System (ADS)
Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa
2016-02-01
Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.
NASA Astrophysics Data System (ADS)
Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph
2016-09-01
The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.
Mapping of the photoinduced electron traps in TiO₂ by picosecond X-ray absorption spectroscopy.
Rittmann-Frank, M Hannelore; Milne, Chris J; Rittmann, Jochen; Reinhard, Marco; Penfold, Thomas J; Chergui, Majed
2014-06-02
Titanium dioxide (TiO2) is the most popular material for applications in solar-energy conversion and photocatalysis, both of which rely on the creation, transport, and trapping of charges (holes and electrons). The nature and lifetime of electron traps at room temperature have so far not been elucidated. Herein, we use picosecond X-ray absorption spectroscopy at the Ti K-edge and the Ru L3-edge to address this issue for photoexcited bare and N719-dye-sensitized anatase and amorphous TiO2 nanoparticles. Our results show that 100 ps after photoexcitation, the electrons are trapped deep in the defect-rich surface shell in the case of anatase TiO2, whereas they are inside the bulk in the case of amorphous TiO2. In the case of dye-sensitized anatase or amorphous TiO2, the electrons are trapped at the outer surface. Only two traps were identified in all cases, with lifetimes in the range of nanoseconds to tens of nanoseconds.
Acoustic Absorption Characteristics of People.
ERIC Educational Resources Information Center
Kingsbury, H. F.; Wallace, W. J.
1968-01-01
The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…
Tuovinen, Timo; Rytty, Riikka; Moilanen, Virpi; Abou Elseoud, Ahmed; Veijola, Juha; Remes, Anne M.; Kiviniemi, Vesa J.
2017-01-01
Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in patients with brain atrophy. To encounter this problem, we used a coefficient of variation (CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in order to minimize brain volume effects between groups. The effects of these measures were compared to whole brain ICA dual regression results in Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD patients and 25 healthy controls were included. The quality of the data was controlled by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA (wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were conducted, both of which were performed both before and after data quality control. Decreased FC was detected in posterior DMN in the AD group and in the Salience network in the bvFTD group after combining CV quality control with gmICA. Before CV quality control, the decreased connectivity finding was not detectable in gmICA in neither of the groups. Same finding recurred when exclusion was based on randomization. The subjects excluded due to artifacts noticed in the CV maps had significantly lower temporal signal-to-noise ratio than the included subjects. Data quality measure CV is an effective tool in detecting artifacts from resting state analysis. CV reflects temporal dispersion of the BOLD signal stability and may thus be most helpful for spatial ICA, which has a blind spot in spatially correlating widespread artifacts. CV mapping in conjunction with gmICA yields results suiting previous findings both in AD and bvFTD. PMID:28119587
Optical absorption measurement system
Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.
1989-01-01
The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.
Marr, J. M.; Read, J.; Morris, A. O.; Perry, T. M.; Taylor, G. B.
2014-01-10
We obtained dual-polarization very long baseline interferometry observations at six frequencies of the compact symmetric object J0029 + 3457 and the compact symmetric object candidate J1324 + 4048. By comparing the three lower-frequency maps with extrapolations of the high-frequency maps, we produced maps of the optical depth as a function of frequency. The morphology of the optical-depth maps of J1324 + 4048 is strikingly smooth, suggestive of a foreground screen of absorbing gas. The spectra at the intensity peaks fit a simple free-free absorption (FFA) model, with χ{sub ν}{sup 2}≈2, better than a simple synchrotron self-absorption model, in which χ{sub ν}{sup 2}≈3.5--5.5. We conclude that the case for FFA in J1324 + 4048 is strong. The optical-depth maps of J0029 + 3457 exhibit structure, but the morphology does not correlate with that in the intensity maps. The fit of the spectra at the peaks to a simple FFA model yields χ{sub ν}{sup 2}≈1, but because the turnover is gradual, the fit is relatively insensitive to the input parameters. We find that FFA by a thin amount of gas in J0029 + 3457 is likely but not definitive. One compact feature in J0029 + 3457 has an inverted spectrum even at the highest frequencies. We infer this to be the location of the core and estimate an upper limit to the magnetic field of order 3 Gauss at a radius of order 1 pc. In comparison with maps from observations at earlier epochs, no apparent growth in either J1324 + 4048 or J0029 + 3457 is apparent, with upper limits of 0.03 and 0.02 mas yr{sup –1}, corresponding to maximum linear separation speeds of 0.6c and 0.4c.
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying -Zhong
2016-02-16
Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH_{3}NH_{3}PbI_{3}) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.
Hillyard, Patrick B.; Kuchibhatla, Satyanarayana V N T; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, Ponnusamy; Saraf, Laxmikant V.; Thevuthasan, Suntharampillai; Gaffney, Kelly J.
2009-09-29
We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that that the conduction band and valence band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.
NASA Astrophysics Data System (ADS)
Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.
2009-09-01
We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the OK edge and the CuL3 edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu3d and O2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the CuL3 - and OK -edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.
Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.
2010-05-02
We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.
The Mobile Atmospheric Pollutant Mapping (MAPM) System - A coherent CO2, DIAL system
NASA Technical Reports Server (NTRS)
Grant, William B.
1989-01-01
The hardware for the Mobile Atmospheric Pollutant Mapping System is described. Measurement results using the hardware are reported along with absorption coefficients and measurement sensitivities for a number of molecular species. The factor that limit measurement accuracy and range are considered.
Mapping Pesticide Partition Coefficients By Electromagnetic Induction
Technology Transfer Automated Retrieval System (TEKTRAN)
A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...
Results of measurement of radio wave absorption in the ionosphere by the AI method
NASA Technical Reports Server (NTRS)
Korinevskaya, N. A.
1972-01-01
Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.
Factor Scores, Structure Coefficients, and Communality Coefficients
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…
Patel, Raj B; Admire, Brittany; Yalkowsky, Samuel H
2015-01-01
The efficiency of the human intestinal absorption (HIA) of the 59 drugs which are marketed as salts is predicted using the rule of unity. Intrinsic aqueous solubilities and partition coefficients along with the drug dose are used to calculate modified absorption potential (MAP) values. These values are shown to be related to the fraction of the dose that is absorbed upon oral administration in humans (FA). It is shown that the MAP value can distinguish between drugs that are poorly absorbed (FA <0.5) and those that are well absorbed (FA ≥ 0.5). Inspection of the data as well as a receiver operative characteristic (ROC) plot shows that a single critical MAP value can be used for predicting efficient human absorption of drugs. This forms the basis of a simple rule of unity based solely on in vitro data for predicting whether or not a drug will be well absorbed at a given dose.
Wilson, F.H.; O'Leary, R. M.
1986-01-01
The accompanying maps and tables show analytical data and data analyses from rock samples collected in conjunction with geologic mapping in the Ugashik, Bristol Bay and western Karluck quadrangles from 1979 through 1981. This work was conducted under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP). A total of 337 samples were collected for analysis, primarily in areas of surficial alteration. The sample locations are shown on sheet 1: they are concentrated along the Pacific Ocean side of the area because the Bristol Bay lowlands part of the map is predominantly unconsolidated Quaternary deposits. Sample collection was by the following people, with their respective two letter identifying code shown in parentheses: W.H. Allaway (AY), J.E. Case (CE), D.P. Cox (CX), R.L. Detterman, (DT), T.G. Theodore (MK), F.H. Wilson (WS), and M.E. Yount (YB).
Reflective-tube absorption meter
NASA Astrophysics Data System (ADS)
Zaneveld, J. Ronald V.; Bartz, Robert; Kitchen, James C.
1990-09-01
The design and calibration of a proposed in situ spectral absorption meter is evaluated using a laboratory prototype. The design includes a silver coated (second-surface) glass tube, a tungsten light source (stabilized by means of optical feedback), a monochromator, and a solid state detector. The device measures the absorption coefficient plus a portion of the volume scattering function. Theoretical analyses and laboratory experiments which explore the magnitude and variation of the errors due to scattering and internal reflections are described. Similar analyses are performed on the Cary 1 18 Spectrophotometer to allow cross calibration. Algorithms to yield the abscrption coefficient and the zenith-sun diffuse attenuation coefficient are presented and evaluated. Simultaneous measurement of the beam attenuation or backscattering coefficient allows use of algoriThms with much narrower error bands. The various methods of obtaining absorption and diffuse attenuation values are compared. Procedures for using reverse osmosis filtration to produce a clean water calibration standard are described. An absorption spectrum for pure water is obtained. Development of the absorption meter is proceeding along two lines: 1) a two-wavelength side-by-side LED is being fabricated to allow an in situ chlorophyll a absorption meter to be constructed, and 2) scientific projects using a shipboard or laboratory flow.-through pumping system are being planned.
On the emission coefficient of uranium plasmas.
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Campbell, H. D.; Mack, J. M.
1973-01-01
The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.
Implications of NGA for NEHRP site coefficients
Borcherdt, Roger D.
2012-01-01
Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.
Subgap Absorption in Conjugated Polymers
DOE R&D Accomplishments Database
Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.
Computed survey spectra of 2-5 micron atmospheric absorption
NASA Astrophysics Data System (ADS)
Leslie, D. H.; Lebow, P. S.
1983-08-01
Computed high resolution survey spectra of atmospheric absorption coefficient vs wavenumber are presented covering the wavelength region 2-5 micrometers. The 1980 AFGL atmospheric absorption parameter compilation was employed with a mid-latitude, sea-level atmospheric model.
NASA Astrophysics Data System (ADS)
Wuhrer, R.; Moran, K.
2014-03-01
Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.
Modified Biserial Correlation Coefficients.
ERIC Educational Resources Information Center
Kraemer, Helena Chmura
1981-01-01
Asymptotic distribution theory of Brogden's form of biserial correlation coefficient is derived and large sample estimates of its standard error obtained. Its relative efficiency to the biserial correlation coefficient is examined. Recommendations for choice of estimator of biserial correlation are presented. (Author/JKS)
Debye–Waller coefficient of heavily deformed nanocrystalline iron1
Abdellatief, M.
2017-01-01
Synchrotron radiation X-ray diffraction (XRD) patterns from an extensively ball-milled iron alloy powder were collected at 100, 200 and 300 K. The results were analysed together with those using extended X-ray absorption fine structure, measured on the same sample at liquid nitrogen temperature (77 K) and at room temperature (300 K), to assess the contribution of static disorder to the Debye–Waller coefficient (B iso). Both techniques give an increase of ∼20% with respect to bulk reference iron, a noticeably smaller difference than reported by most of the literature for similar systems. Besides good quality XRD patterns, proper consideration of the temperature diffuse scattering seems to be the key to accurate values of the Debye–Waller coefficient. Molecular dynamics simulations of nanocrystalline iron aggregates, mapped on the evidence provided by XRD in terms of domain size distribution, shed light on the origin of the observed B iso increase. The main contribution to the static disorder is given by the grain boundary, while line and point defects have a much smaller effect. PMID:28381974
Near-infrared absorptions of monomethylhydrazine
NASA Technical Reports Server (NTRS)
Murray, Mark; Kurtz, Joe
1993-01-01
The peak absorption coefficients for two near-infrared absorptions of monomethylhydrazine, CH3-N2H3, (MMH) were measured. Absorption bands located at 1.524 micrometers (6560/cm), 1.557 micrometers (6423/cm), and 1.583 micrometers (6316/cm) are assigned to the Delta upsilon = 2 overtones of the infared N-H stretching fundamentals at 3317, 3245 and 3177/cm. An absorption band located at 1.04 micrometers (9620 +/- 100/cm) is assigned to the Delta upsilon = 3 overtone of one of these fundamentals. The peak absorption coefficients (alpha(sub 10)) at 1.524 micrometers (6560 +/- 20/cm) and 1.04 micrometers (9620 +/- 100/cm) are 31 x 10(exp -3) and 0.97 x 10(exp -3)/(cm atm), respectively. Uncertainties in these coefficients were estimated to be less than +/- 20% due primarily to uncertainties in the partial vapor pressure of MMH.
Ultraviolet absorption cross sections of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Lin, C. L.; Rohatgi, N. K.; Demore, W. B.
1978-01-01
Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.
NASA Astrophysics Data System (ADS)
Dobler, J. T.; Braun, M.; Blume, N.; McGregor, D.; Zaccheo, T. S.; Pernini, T.; Botos, C.
2014-12-01
We will present the development of the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE). GreenLITE consists of two laser based transceivers and a number of retro-reflectors to measure differential transmission (DT) of a number of overlapping chords in a plane over the site being monitored. The transceivers use the Intensity Modulated Continuous Wave (IM-CW) approach, which is a technique that allows simultaneous transmission/reception of multiple fixed wavelength lasers and a lock-in, or matched filter, to measure amplitude and phase of the different wavelengths in the digital domain. The technique was developed by Exelis and has been evaluated using an airborne demonstrator for the past 10 years by NASA Langley Research Center. The method has demonstrated high accuracy and high precision measurements as compared to an in situ monitor tracable to WMO standards, agreeing to 0.65 ppm +/-1.7 ppm. The GreenLITE system is coupled to a cloud-based data storage and processing system that takes the measured chord data, along with auxiliary data to retrieve an average CO2 concentration per chord and which combines the chords to provide an estimate of the spatial distribution of CO2 concentration in the plane. A web-based interface allows users to view real-time CO2 concentrations and 2D concentration maps of the area being monitored. The 2D maps can be differenced as a function of time for an estimate of the flux across the plane measured by the system. The system is designed to operate autonomously from semi-remote locations with a very low maintenance cycle. Initial instrument tests, conducted in June, showed signal to noise in the measured ratio of >3000 for 10 s averages. Additional local field testing and a quantifiable field testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, MT are planned for this fall. We will present details on the instrument and software tools that have been developed, along with results from the local
NASA Astrophysics Data System (ADS)
Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris
2005-03-01
Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.
Total and Partial Absorption Coefficients for a Nitrogen Plasma
2014-09-26
Boulder, CO 80309 ATTN: Dr. Arthur V. Phelps 43 0 - . .. > . v- . - . -, . . " )h A’ I , U’ C ’ -- o. • p Lawrence Berkeley Laboratory University of...Gerald N. Hays Dr. James Chang Dr. Michael G. Mazerakis RiJ University of California Physics Department Irvine, CA 92664 -ATTN: Dr. Gregory Benford Air
Absorption of CO laser radiation by NO
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Monat, J. P.; Kruger, C. H.
1976-01-01
The paper describes absorption calculations and measurements at selected infrared CO laser wavelengths which are nearly coincident with absorption lines in the fundamental vibration-rotation band of NO near 5.3 microns. Initial work was directed towards establishing the optimal CO laser-NO absorption line coincidence for high temperature applications. Measurements of the absorption coefficient at this optimal laser wavelength were carried out, first using a room-temperature absorption cell for high-temperature calculations and then using a shock tube, for the temperature range 630-4000 K, to validate the high temperature calculations.
Barsony, Mary; Wolf-Chase, Grace A.; Ciardi, David R.
2010-09-01
The outflow driven by the Class 0 protostar, IRAS 16253-2429, is associated with bipolar cavities visible in scattered mid-infrared light, which we refer to as the Wasp-Waist Nebula. InfraRed Spectometer (IRS) scan mapping with the Spitzer Space Telescope of a {approx}1' x 2' area centered on the protostar was carried out. The outflow is imaged in six pure rotational (0-0 S(2) through 0-0 S(7)) H{sub 2} lines, revealing a distinct, S-shaped morphology in all maps. A source map in the 11.3 {mu}m polycyclic aromatic hydrocarbon (PAH) feature is presented in which the protostellar envelope appears in absorption. This is the first detection of absorption in the 11.3 {mu}m PAH feature. Spatially resolved excitation analysis of positions in the blue- and redshifted outflow lobes, with extinction-corrections determined from archival Spitzer 8 {mu}m imaging, shows remarkably constant temperatures of {approx}1000 K in the shocked gas. The radiated luminosity in the observed H{sub 2} transitions is found to be 1.94 {+-} 0.05 x 10{sup -5} L{sub sun} in the redshifted lobe and 1.86 {+-} 0.04 x 10{sup -5} L{sub sun} in the blueshifted lobe. These values are comparable to the mechanical luminosity of the flow. By contrast, the mass of hot (T {approx} 1000 K) H{sub 2} gas is 7.95 {+-} 0.19 x 10{sup -7} M{sub sun} in the redshifted lobe and 5.78 {+-} 0.17 x 10{sup -7} M{sub sun} in the blueshifted lobe. This is just a tiny fraction, of order 10{sup -3}, of the gas in the cold (30 K), swept-up gas mass derived from millimeter CO observations. The H{sub 2} ortho/para ratio of 3:1 found at all mapped points in this flow suggests previous passages of shocks through the gas. Comparison of the H{sub 2} data with detailed shock models of Wilgenbus et al. shows the emitting gas is passing through Jump (J-type) shocks. Pre-shock densities of 10{sup 4} cm{sup -3{<=}} n {sub H{<=}} 10{sup 5} cm{sup -3} are inferred for the redshifted lobe and n {sub H{<=}} 10{sup 3} cm{sup -3} for the
Coefficients of Effective Length.
ERIC Educational Resources Information Center
Edwards, Roger H.
1981-01-01
Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)
Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.
1944-01-01
The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404
Rubin, Deborah C
2004-03-01
Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.
Gasoline-Water Distribution Coefficients of Xylidines
1943-06-01
sample calculated. The extinction (absorption) of light is related to the concentration of the absorbing group by the Beer - Lambert law. It was neceaaar...the use of a Beckman quartz spectrophotometer . Data obtained 1dth the spectzrograph were checzed with the spectrophotom- eter and were reproducible to...within 5 percent of the value of the distribution coefficient given, The use of the spectrophotometer greatly enhanced the speed with which the
Ceschin, Rafael; Kurland, Brenda F.; Abberbock, Shira R.; Ellingson, Benjamin M.; Okada, Hideho; Jakacki, Regina I.; Pollack, Ian F.; Panigrahy, Ashok
2015-01-01
Background and Purpose Immune response to cancer therapy may result in pseudoprogression, which can only be identified retrospectively and which may disrupt an effective therapy. This study assesses whether serial parametric response mapping (PRM, a voxel-by-voxel method of image analysis also known as functional diffusion mapping) analysis of ADC measurements following peptide-based vaccination may help prospectively distinguish progression from pseudoprogression in pediatric patients with diffuse intrinsic pontine gliomas. Materials and Methods From 2009–2012, 21 children age 4–18 with diffuse intrinsic pontine gliomas were enrolled in a serial peptide-based vaccination protocol following radiotherapy. DWI was acquired before immunotherapy and at six week intervals during vaccine treatment. Pseudoprogression was identified retrospectively based on clinical and radiographic findings, excluding DWI. Parametric response mapping was used to analyze 96 scans, comparing ADC measures at multiple time points (from first vaccine to up to 12 weeks after the vaccine was halted) to pre-vaccine baseline values. Log-transformed fractional increased ADC (fiADC), fractional decreased ADC (fdADC), and parametric response mapping ratio (fiADC/fdADC) were compared between patients with and without pseudoprogression, using generalized estimating equations with inverse weighting by cluster size. Results Median survival was 13.1 months from diagnosis (range 6.4–24.9 months). Four of 21 children (19%) were assessed as experiencing pseudoprogression. Patients with pseudoprogression had higher fitted average log-transformed parametric response mapping ratios (p=0.01) and fiADCs (p=0.0004), compared to patients without pseudoprogression. Conclusion Serial parametric response mapping of ADC, performed at multiple time points of therapy, may distinguish pseudoprogression from true progression in patients with diffuse intrinsic pontine gliomas treated with peptide-based vaccination
NASA Astrophysics Data System (ADS)
Samatham, Ravikant; Jacques, Steven L.
2013-02-01
Different techniques have been developed to determine the optical properties of turbid media, which include collimated transmission, diffuse reflectance, adding-doubling and goniometry. While goniometry can be used to determine the anisotropy of scattering (g), other techniques are used to measure the absorption coefficient and reduced scattering coefficient (μs(1-g)). But separating scattering coefficient (μs) and anisotropy of scattering from reduced scattering coefficient has been tricky. We developed an algorithm to determine anisotropy of scattering from the depth dependent decay of reflectance-mode confocal scanning laser microscopy (rCSLM) data. This report presents the testing of the algorithm on tissue phantoms with different anisotropies (g = 0.127 to 0.868, at 488 nm wavelength). Tissue phantoms were made from polystyrene microspheres (6 sizes 0.1-0.5 μm dia.) dispersed in both aqueous solutions and agarose gels. Three dimensional images were captured. The rCSLM-signal followed an exponential decay as a function of depth of the focal volume, R(z)ρexp(-μz) where ρ (dimensionless, ρ = 1 for a mirror) is the local reflectivity and μ [cm-1] is the exponential decay constant. The theory was developed to uniquely map the experimentally determined μ and ρ into the optical scattering properties μs and g. The values of μs and g depend on the composition and microstructure of tissues, and allow characterization of a tissue.
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor)
2015-01-01
A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.
JKTLD: Limb darkening coefficients
NASA Astrophysics Data System (ADS)
Southworth, John
2015-11-01
JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.
Asymptotics of loop quantum gravity fusion coefficients
NASA Astrophysics Data System (ADS)
Alesci, Emanuele; Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio
2010-05-01
The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in loop quantum gravity. In this paper we give a simple analytic formula of the Engle-Pereira-Rovelli-Livine fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2)L × SU(2)R semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.
Improved input parameters for diffusion models of skin absorption.
Hansen, Steffi; Lehr, Claus-Michael; Schaefer, Ulrich F
2013-02-01
To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.
X-Ray Attenuation Coefficients from 10 Kev to 100 Mev,
1957-04-30
fig. 1). A well- shielded detector measures the shells account for most of the absorption by this intensity of the trinsmitted beam, and any photon...narrow-beam measurements ----------------- 2 1.4. Combination of attenuation coefficients -------------------- 2 1.5. Energy absorption...thickness is increased measures the unlikely to be absorbed. Consequently, the ab- total probability of the interaction processes. sorption coefficient
Scanning measurement of Seebeck coefficient of a heated sample
Snyder, G. Jeffrey; Iwanaga, Shiho
2016-04-19
A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.
Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy
NASA Technical Reports Server (NTRS)
Steinfeld, J. I.
1975-01-01
Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.
Two-photon absorption in arsenic sulfide glasses
NASA Astrophysics Data System (ADS)
Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.
2016-10-01
The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.
Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.
1961-11-14
A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)
Castillo-Michel, Hiram A; Larue, Camille; Pradas Del Real, Ana E; Cotte, Marine; Sarret, Geraldine
2017-01-01
The increased use of engineered nanomaterials (ENMs) in commercial products and the continuous development of novel applications, is leading to increased intentional and unintentional release of ENMs into the environment with potential negative impacts. Particularly, the partition of nanoparticles (NPs) to waste water treatment plant (WWTP) sludge represents a potential threat to agricultural ecosystems where these biosolids are being applied as fertilizers. Moreover, several applications of ENMs in agriculture and soil remediation are suggested. Therefore, detailed risk assessment should be done to evaluate possible secondary negative impacts. The impact of ENMS on plants as central component of ecosystems and worldwide food supply is of primary relevance. Understanding the fate and physical and chemical modifications of NPs in plants and their possible transfer into food chains requires specialized analytical techniques. Due to the importance of both chemical and physical factors to consider for a better understanding of ENMs behavior in complex matrices, these materials can be considered a new type of analyte. An ideal technique should require minimal sample preparation, be non-destructive, and offer the best balance between sensitivity, chemical specificity, and spatial resolution. Synchrotron radiation (SR) techniques are particularly adapted to investigate localization and speciation of ENMs in plants. SR X-ray fluorescence mapping (SR-XFM) offers multi-elemental detection with lateral resolution down to the tens of nm, in combination with spatially resolved X-ray absorption spectroscopy (XAS) speciation. This review will focus on important methodological aspects regarding sample preparation, data acquisition and data analysis of SR-XFM/XAS to investigate interactions between plants and ENMs.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram
2015-01-01
The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.
High-Absorption-Efficiency Superlattice Solar Cells by Excitons
NASA Astrophysics Data System (ADS)
Nishinaga, Jiro; Kawaharazuka, Atsushi; Onomitsu, Koji; Horikoshi, Yoshiji
2013-11-01
The effect of excitonic absorption on solar cell efficiency has been investigated using solar cells with AlGaAs/GaAs superlattice structures. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption of bulk GaAs. Excitonic absorption shows strong and sharp peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of the superlattice solar cells are quite similar to the calculated absorption spectra considering the excitonic effect. The superlattice solar cells are confirmed to have high absorption coefficient compared with the GaAs and AlGaAs bulk solar cells. These results suggest that the enhanced absorption by excitons can increase the quantum efficiency of solar cells. This effect is more prominent for the solar cells with small absorption layer thicknesses.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Geometrical interpretation of optical absorption
Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L.; Montesinos-Amilibia, J. M.
2011-08-15
We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.
Asanuma, Taketoshi; Inanami, Osamu; Tabu, Kouichi; Waki, Kenji; Kon, Yasuhiro; Kuwabara, Mikinori
2004-04-08
The present experiments were carried out to provide direct in vivo evidence for the involvement of c-Jun N-terminal kinase (JNK) in the induction of ischemic brain injury. Malonate, which produces lesions similar to those of focal ischemia-reperfusion by a reversible inhibition of succinate dehydrogenase in mitochondria, was injected into the left striatum in the rat brain without or with the simultaneous injection of a cell permeable peptidic JNK inhibitor, (L)-HIV-TAT48-57-PP-JBD20. Two regions of malonate-induced brain injury were visualized as a hyperintense region with surrounding hypointense regions by apparent diffusion coefficient mapping magnetic resonance imaging. The JNK inhibitor significantly counteracted both hyper- and hypointense regions at the early stage of brain injury. Histological examination clarified that the inhibitor suppressed the induction of coagulation necrosis and spongy degeneration at early and late stages.
NASA Astrophysics Data System (ADS)
Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2013-03-01
We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.
Infrasound absorption by atmospheric clouds
NASA Astrophysics Data System (ADS)
Baudoin, Michael; Coulouvrat, Francois; Thomas, Jean-Louis
2010-05-01
A model is developed for the absorption of infrasound by atmospheric clouds made of a suspension of liquid water droplets within a gaseous mixture of water vapor and air. The model is based on the work of D.A. Gubaidullin and R.I. Nigmatulin [Int. J. Multiphase Flow, 26, 207-228, 2000], which is applied to atmospheric clouds. Three physical mechanisms are included : unsteady viscous drag associated with momentum transfers due to the translation of water droplets, unsteady thermal transfers between the liquid and gaseous phases, and mass transfers due to the evaporation or condensation of the water phase. For clouds, in the infrasonic frequency range, phase changes are the dominant mechanisms (around 1 Hz), while viscous and heat transfers become significant only around 100 Hz. Mass transfers involve two physical effects : evaporation and condensation of the water phase at the droplet surface, and diffusion of the water vapor within the gaseous phase. The first one is described through the Hertz-Knudsen-Langmuir theory based on kinetic theory. It involves a little known coefficient known as coefficient of accommodation. The second one is the classical Fick diffusion. For clouds, and unless the coefficient of accommodation is very small (far from the generally recommended value is close to one), diffusion is the main limiting effects for mass transfers. In a second stage, the sound and infrasound absorption is evaluated for various typical clouds up to about 4 km altitude. Above this altitude, the ice content of clouds is dominant compared to their water content, and the present model is not applicable. Cloud thickness, water content, and droplets size distribution are shown to be the major factors influencing the infrasound absorption. A variety of clouds have been analyzed. In most cases, it is shown that infrasound absorption within clouds is several orders larger than classical absorption (due to molecular relaxation of nitrogen and oxygen molecules in presence
Enhanced absorption cycle computer model
NASA Astrophysics Data System (ADS)
Grossman, G.; Wilk, M.
1993-09-01
Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.
Coefficient Alpha: A Reliability Coefficient for the 21st Century?
ERIC Educational Resources Information Center
Yang, Yanyun; Green, Samuel B.
2011-01-01
Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…
Coefficient adaptive triangulation for strongly anisotropic problems
D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.
1996-01-01
Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.
... Fact Sheets Fact Sheets En Español: Mapeo Genético Genetic Mapping What is genetic mapping? How do researchers ... genetic map? What are genetic markers? What is genetic mapping? Among the main goals of the Human ...
Triple effect absorption chiller utilizing two refrigeration circuits
DeVault, Robert C.
1988-01-01
A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.
Low-Absorption Liquid Crystals for Infrared Beam Steering
2014-10-17
goals are: ri~0.2 (at-tSilri),*? (at 1 kHz), and absorption coefficient B 5/cm. 15. SUBJECT TERMS Low absorption, MWIR, chlorinated liquid crystals...spectral region of interest by deuteration, fluorination and chlorination ; 2) Employing thin cell gap by choosing a high birefringence liquid crystal...mixture. First, we synthesized several chlorinated terphenyls and made a eutectic mixture showing a low absorption window in the region of 4-5|a.m
NASA Astrophysics Data System (ADS)
Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin
2017-03-01
We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.
Cytoplasmic hydrogen ion diffusion coefficient.
al-Baldawi, N F; Abercrombie, R F
1992-01-01
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134
Millimeter and submillimeter wave absorption by atmospheric pollutants and constituents
NASA Astrophysics Data System (ADS)
Kolbe, W. F.; Leskovar, B.
1981-10-01
Calculated absorption coefficients and rotational transition frequencies are given for a number of polar molecules of interest to pollution and energy research. The results, which are presented in graphical form for microwave frequencies up to 1400 GHz, illustrate the increased absorption line intensities occurring in the submillimeter region. For most species these absorption coefficients attain their maximum values in this region. Included in the calculations are the gases SO2, H2CO, O3, H2O, H2S, OCS, CO, NO, OH, SO, NH3, and CS. A discussion of the techniques currently available for the detection in the submillimeter region of these species is also given.
Phononic glass: a robust acoustic-absorption material.
Jiang, Heng; Wang, Yuren
2012-08-01
In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.
Radiative properties of the background aerosol: absorption component of extinction.
Clarke, A D; Charlson, R J
1985-07-19
The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested.
Sound absorption by clamped poroelastic plates.
Aygun, H; Attenborough, K
2008-09-01
Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.
Judd, Linda J.; Asquith, William H.; Slade, Raymond M.
1996-01-01
One technique to estimate generalized skew coefficients involved the use of regression equations developed for each of eight regions in Texas, and the other involved development of a statewide map of generalized skew coefficients. The weighted mean of the weighted mean standard errors of the regression equations for the eight regions is 0.36 log10 skew units, and the weighted mean standard error of the map is 0.35 log10 skew units. The technique based on the map is preferred for estimating generalized skew coefficients because of its smooth transition from one region of the State to another.
Functional constraints on phenomenological coefficients
NASA Astrophysics Data System (ADS)
Klika, Václav; Pavelka, Michal; Benziger, Jay B.
2017-02-01
Thermodynamic fluxes (diffusion fluxes, heat flux, etc.) are often proportional to thermodynamic forces (gradients of chemical potentials, temperature, etc.) via the matrix of phenomenological coefficients. Onsager's relations imply that the matrix is symmetric, which reduces the number of unknown coefficients is reduced. In this article we demonstrate that for a class of nonequilibrium thermodynamic models in addition to Onsager's relations the phenomenological coefficients must share the same functional dependence on the local thermodynamic state variables. Thermodynamic models and experimental data should be validated through consistency with the functional constraint. We present examples of coupled heat and mass transport (thermodiffusion) and coupled charge and mass transport (electro-osmotic drag). Additionally, these newly identified constraints further reduce the number of experiments needed to describe the phenomenological coefficient.
Ultraviolet (250-550 nm) absorption spectrum of pure water.
Mason, John D; Cone, Michael T; Fry, Edward S
2016-09-01
Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400 nm) and UV (<200 nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227 m^{-1}.
Wrong Signs in Regression Coefficients
NASA Technical Reports Server (NTRS)
McGee, Holly
1999-01-01
When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.
Aerosol Absorption Measurements in MILAGRO.
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.
2007-12-01
to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.
,
1992-01-01
An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.
Absorption of 9.6-micron CO2 laser radiation by CO2 at elevated temperatures
NASA Astrophysics Data System (ADS)
Robinson, A. M.
1983-03-01
Transitions in CO2 gas induced by the absorption of 9.6 micron laser radiation at higher temperatures were examined. Several lines of the 9.6 micron 0011-0012 transition at temperatures between 296-625 K were studied, and the absorption coefficient was determined as a function of temperature. Additional trials were run to define the relative optical broadening coefficients due to He and N2 for the R16-R22 and P16-P22 transitions. The values obtained for the coefficients and the percentage contribution to calculated absorption coefficient at 620 K are provided.
Comprehensive analysis of the optical Kerr coefficient of graphene
Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo
2016-08-25
We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.
Comprehensive analysis of the optical Kerr coefficient of graphene
Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo
2016-08-25
We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less
Comprehensive analysis of the optical Kerr coefficient of graphene
NASA Astrophysics Data System (ADS)
Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo
2016-08-01
We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S -matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. We also present a comparison of our theory with recent experimental and theoretical results.
Experimental determination of terahertz atmospheric absorption parameters
NASA Astrophysics Data System (ADS)
Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.
2015-05-01
The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high--resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.
Anomalous absorption of laser light on ion acoustic fluctuations
NASA Astrophysics Data System (ADS)
Rozmus, Wojciech; Bychenkov, Valery Yu.
2016-10-01
Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.
Subbarrier absorption in a stationary superlattice
NASA Technical Reports Server (NTRS)
Arutyunyan, G. M.; Nerkararyan, K. V.
1984-01-01
The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.
Monitoring of MOCVD reactants by UV absorption
Baucom, K.C.; Killeen, K.P.; Moffat, H.K.
1995-07-01
In this paper, we describe how UV absorption measurements can be used to measure the flow rates of metal organic chemical vapor deposition (MOCVD) reactants. This method utilizes the calculation of UV extinction coefficients by measuring the total pressure and absorbance in the neat reactant system. The development of this quantitative reactant flow rate monitor allows for the direct measurement of the efficiency of a reactant bubbler. We demonstrate bubbler efficiency results for TMGa, and then explain some discrepancies found in the TMAl system due to the monomer to dimer equilibrium. Also, the UV absorption spectra of metal organic and hydride MOCVD reactants over the wavelength range 185 to 400 nm are reported.
Atmospheric absorption cell characterization
NASA Astrophysics Data System (ADS)
1982-06-01
The measurement capability of the Avionics Laboratory IR Facility was used to evaluate an absorption cell that will be used to simulate atmospheric absorption over horizontal paths of 1 - 10 km in length. Band models were used to characterize the transmittance of carbon dioxide (CO2), nitrogen (N2), and nitrous oxide (N2O) in the cell. The measured transmittance was compared to the calculated values. Nitrous oxide is important in the 4 - 4.5 micron range in shaping the weak line absorption of carbon dioxide. The absorption cell is adequate for simulating atmospheric absorption over these paths.
Metrics for comparison of crystallographic maps
Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; Terwilliger, Thomas C.; Adams, Paul D.
2014-10-01
Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects, such as regions of high density, are of interest.
Formaldehyde Absorption toward W51
Kogut, A.; Smoot, G.F.; Bennett, C.L.; Petuchowski, S.J.
1988-04-01
We have measured formaldehyde (H{sub 2}CO) absorption toward the HII region complex W51A (G49.5-0.4) in the 6 cm and 2 cm wavelength rotational transitions with angular resolution of approximately 4 inch. The continuum HII region shows a large, previously undetected shell structure 5.5 pc along the major axis. We observe no H{sub 2}CO emission in regions of low continuum intensity. The absorption, converted to optical depth, shows a higher degree of clumping than previous maps at lower resolution. The good S/N of the maps allows accurate estimation of the complicated line profiles, showing some of the absorbing clouds to be quite patchy. We list the properties of the opacity spectra for a number of positions both in the clumps and in the more diffuse regions of the absorbing clouds, and derive column densities for the 1{sub 11} and 2{sub 12} rotational levels of ortho-formaldehyde.
NASA Technical Reports Server (NTRS)
Van Der Meer, Freek D.
1994-01-01
High-spectral resolution images (AVIRIS) of the cuprite mining area were used to evaluate atmospheric calibration algorithms and test several mineral mapping techniques. Four scene normalization techniques were used: (1) the flat-field method, (2) the internal average reflectance method, (3) the empirical line method, and (4) the atmospheric absorption removal method (ATREM). The algorithms were evaluated in terms of their spectral interpret- ability and their ability to remove both solar irradiance and atmospheric absorption features, noise, and artifacts. Noise was quantified by calculating the coefficient of variation of the spectra, and spectral interpretability was quantified by calcu- lating a difference spectrum (eg, laboratory spectrum minus pixel spectrum) for areas with known occurrences of clay minerals. These difference spectra were useful in evaluating the degree of removal of atmospheric features. The empirical line method produced the best calibration results. Mineral mapping as done using (1) color-composites of bands on the shoulders and centers of expected absorption features, (2) color-coded spectra, and (3) spectral angle mapping.
On the errors in measuring the particle density by the light absorption method
Ochkin, V. N.
2015-04-15
The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.
Sound absorption of metallic sound absorbers fabricated via the selective laser melting process
NASA Astrophysics Data System (ADS)
Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan
2017-01-01
The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.
Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules
NASA Technical Reports Server (NTRS)
Lang, Todd M.; Allen, John E., Jr.
1990-01-01
Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.
Nunes, O.A.C.
1985-09-15
The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.
Orthogonality of spherical harmonic coefficients
NASA Technical Reports Server (NTRS)
Mcleod, M. G.
1980-01-01
Orthogonality relations are obtained for the spherical harmonic coefficients of functions defined on the surface of a sphere. Following a brief discussion of the orthogonality of Fourier series coefficients, consideration is given to the values averaged over all orientations of the coordinate system of the spherical harmonic coefficients of a function defined on the surface of a sphere that can be expressed in terms of Legendre polynomials for the special case where the function is the sum of two delta functions located at two different points on the sphere, and for the case of an essentially arbitrary function. It is noted that the orthogonality relations derived have found applications in statistical studies of the geomagnetic field.
Modification of Einstein A Coefficient in Dissipative Gas Medium
NASA Technical Reports Server (NTRS)
Cao, Chang-Qi; Cao, Hui; Qin, Ke-Cheng
1996-01-01
Spontaneous radiation in dissipative gas medium such as plasmas is investigated by Langevin equations and the modified Weisskopf-Wigner approximation. Since the refractive index of gas medium is expected to be nearly unity, we shall first neglect the medium polarization effect. We show that absorption in plasmas may in certain case modify the Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for relatively low temperature plasmas and also a pit in the A coefficient-temperature curves. In the next, the effect of medium polarization is taken into account in addition. To our surprise, its effect in certain case is quite significant. The dispersive curves show different behaviors in different region of parameters.
Triplet extinction coefficients of some laser dyes. II
Pavlopoulos, T.G.; Golich, D.J.
1990-01-01
We measured the triplet extinction coefficients over the laser action spectral region of DODC, DMC, Sulforhodamine B, Rhodamine 575, Coumarin 523, Coumarin 521, Coumarin 504, Coumarin 498, Coumarin 490, LD466, bis-MSB, and BBO. We employed the different lines from an argon and a krypton ion cw laser for excitation. McClure's method was again employed to measure the triplet extinction coefficients. We provide a simplified derivation of McClure's equation. The triplet extinction coefficient of Rhodamine 575 was also measured by using the depletion method and improving it by reconstructing for true triplet-triplet (T-T) absorption. The ET value obtained is in good agreement with the one obtained by McClure's method.
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.
1987-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. The slug-injection and constant-rate injection methods of performing gas tracer desorption measurements are described. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients. (Author 's abstract)
Transport coefficients of gluonic fluid
Das, Santosh K.; Alam, Jan-e
2011-06-01
The shear ({eta}) and bulk ({zeta}) viscous coefficients have been evaluated for a gluonic fluid. The elastic, gg{yields}gg and the inelastic, number nonconserving, gg{yields}ggg processes have been considered as the dominant perturbative processes in evaluating the viscous coefficients to entropy density (s) ratios. Recently the processes: gg{yields}ggg has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The {eta} and {zeta} have been evaluated for gluonic fluid with the formula recently derived. At large {alpha}{sub s} the value of {eta}/s approaches its lower bound, {approx}1/4{pi}.
Seebeck coefficient of one electron
Durrani, Zahid A. K.
2014-03-07
The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.
Repasky, Kevin
2014-03-31
A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.
NASA Astrophysics Data System (ADS)
Wu, Di; Chen, Maosi; Wang, Qiao; Gao, Wei
2013-12-01
Blue algae and green algae are the dominant phytoplankton groups that contribute to the eutrophication and the water bloom in inland water of China. The absorption coefficients (spectra) of the algae, which do not change with its intrinsic optical characteristics and the observation geometry, are strictly additive quantities. The characteristics of the absorption spectra of the two algae are presented. The pure blue algae and the pure green algae cultured in the laboratory environment are diluted and mixed at ten volume ratios. The Quantitative Filter Technique was applied to measure their absorption spectra. The "hot-ethanol extraction" method was chosen to calculate their concentration of Chlorophyll a. The retrieval algorithm developed in this study extracts the mapping information between each individual alga and their Chlorophyll a concentration via Continuous Wavelet Transform, and retrieves the Chlorophyll a concentration of each alga in their mixture using a trust region optimizer. The results show that the retrieved and the measured Chlorophyll a concentrations of the blue algae and the green algae components in the ten mixture match well with the average relative error of 5.55%.
Visualization of biological texture using correlation coefficient images.
Sviridov, Alexander P; Ulissi, Zachary; Chernomordik, Victor; Hassan, Moinuddin; Gandjbakhche, Amir H
2006-01-01
Subsurface structural features of biological tissue are visualized using polarized light images. The technique of Pearson correlation coefficient analysis is used to reduce blurring of these features by unpolarized backscattered light and to visualize the regions of high statistical similarities within the noisy tissue images. It is shown that under certain conditions, such correlation coefficient maps are determined by the textural character of tissues and not by the chosen region of interest, providing information on tissue structure. As an example, the subsurface texture of a demineralized tooth sample is enhanced from a noisy polarized light image.
High temperature measurement of water vapor absorption
NASA Technical Reports Server (NTRS)
Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard
1985-01-01
An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.
NASA Astrophysics Data System (ADS)
Chang, Cheng; Xu, Wei; Chen-Wiegart, Yu-chen Karen; Wang, Jun; Yu, Dantong
2013-12-01
X-ray Absorption Near Edge Structure (XANES) imaging, an advanced absorption spectroscopy technique, at the Transmission X-ray Microscopy (TXM) Beamline X8C of NSLS enables high-resolution chemical mapping (a.k.a. chemical composition identification or chemical spectra fitting). Two-Dimensional (2D) chemical mapping has been successfully applied to study many functional materials to decide the percentages of chemical components at each pixel position of the material images. In chemical mapping, the attenuation coefficient spectrum of the material (sample) can be fitted with the weighted sum of standard spectra of individual chemical compositions, where the weights are the percentages to be calculated. In this paper, we first implemented and compared two fitting approaches: (i) a brute force enumeration method, and (ii) a constrained least square minimization algorithm proposed by us. Next, as 2D spectra fitting can be conducted pixel by pixel, so theoretically, both methods can be implemented in parallel. In order to demonstrate the feasibility of parallel computing in the chemical mapping problem and investigate how much efficiency improvement can be achieved, we used the second approach as an example and implemented a parallel version for a multi-core computer cluster. Finally we used a novel way to visualize the calculated chemical compositions, by which domain scientists could grasp the percentage difference easily without looking into the real data.
NASA Technical Reports Server (NTRS)
Chandra, N.
1974-01-01
Numerical coefficients required to express the angular distribution for the rotationally elastic or inelastic scattering of electrons from a diatomic molecule were tabulated for the case of nitrogen and in the energy range from 0.20 eV to 10.0 eV. Five different rotational states are considered.
Identities for generalized hypergeometric coefficients
Biedenharn, L.C.; Louck, J.D.
1991-01-01
Generalizations of hypergeometric functions to arbitrarily many symmetric variables are discussed, along with their associated hypergeometric coefficients, and the setting within which these generalizations arose. Identities generalizing the Euler identity for {sub 2}F{sub 1}, the Saalschuetz identity, and two generalizations of the {sub 4}F{sub 3} Bailey identity, among others, are given. 16 refs.
Effective Viscosity Coefficient of Nanosuspensions
NASA Astrophysics Data System (ADS)
Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.
2008-12-01
Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.
Integer Solutions of Binomial Coefficients
ERIC Educational Resources Information Center
Gilbertson, Nicholas J.
2016-01-01
A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…
NASA Technical Reports Server (NTRS)
1995-01-01
In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.
Super-Resonant Intracavity Coherent Absorption
NASA Astrophysics Data System (ADS)
Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.
2016-07-01
The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.
Models of filter-based particle light absorption measurements
NASA Astrophysics Data System (ADS)
Hamasha, Khadeejeh M.
Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model
Enhanced absorption in silicon metamaterials waveguide structure
NASA Astrophysics Data System (ADS)
Hamouche, Houria; Shabat, Mohammed M.
2016-07-01
Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.
Multi-parameter optical image interpretations based on self-organizing mapping
NASA Astrophysics Data System (ADS)
Klose, Christian D.; Klose, A. K.; Netz, U.; Scheel, A.; Beuthan, J.; Hielscher, Andreas H.
2008-02-01
We found that using more than one parameter derived from optical tomographic images can lead to better image classification results compared to cases when only one parameter is used.. In particular we present a multi-parameter classification approach, called self-organizing mapping (SOM), for detecting synovitis in arthritic finger joints based on sagittal laser optical tomography (SLOT). This imaging modality can be used to determine various physical parameters such as minimal absorption and scattering coefficients in an image of the proximal interphalengeal joint. Results were compared to different gold standards: magnet resonance imaging, ultra-sonography and clinical evaluation. When compared to classifications based on single-parameters, e.g., absorption minimum only, the study reveals that multi-parameter classifications lead to higher classification sensitivities and specificities and statistical significances with p-values <5 per cent. Finally, the data suggest that image analyses are more reliable and avoid ambiguous interpretations when using more than one parameter.
THE VISIBILITY OF MONOCHROMATIC RADIATION AND THE ABSORPTION SPECTRUM OF VISUAL PURPLE
Hecht, Selig; Williams, Robert E.
1922-01-01
1. After a consideration of the existing data and of the sources of error involved, an arrangement of apparatus, free from these errors, is described for measuring the relative energy necessary in different portions of the spectrum in order to produce a colorless sensation in the eye. 2. Following certain reasoning, it is shown that the reciprocal of this relative energy at any wave-length is proportional to the absorption coefficient of a sensitive substance in the eye. The absorption spectrum of this substance is then mapped out. 3. The curve representing the visibility of the spectrum at very low intensities has exactly the same shape as that for the visibility at high intensities involving color vision. The only difference between them is their position in the spectrum, that at high intensities being 48 µµ farther toward the red. 4. The possibility is considered that the sensitive substances responsible for the two visibility curves are identical, and reasons are developed for the failure to demonstrate optically the presence of a colored substance in the cones. The shift of the high intensity visibility curve toward the red is explained in terms of Kundt's rule for the progressive shift of the absorption maximum of a substance in solvents of increasing refractive index and density. 5. Assuming Kundt's rule, it is deduced that the absorption spectrum of visual purple as measured directly in water solution should not coincide with its position in the rods, because of the greater density and refractive index of the rods. It is then shown that, measured by the position of the visibility curve at low intensities, this shift toward the red actually occurs, and is about 7 or 8 µµ in extent. Examination of the older data consistently confirms this difference of position between the curves representing visibility at low intensities and those representing the absorption spectrum of visual purple in water solution. 6. It is therefore held as a possible hypothesis
Effect of morphology and solvent on two-photon absorption of nano zinc oxide
Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu; John, Honey
2013-05-15
Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.
Advanced regenerative absorption refrigeration cycles
Dao, Kim
1990-01-01
Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).
Solar absorption surface panel
Santala, Teuvo J.
1978-01-01
A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.
Rectal absorption of propylthiouracil.
Bartle, W R; Walker, S E; Silverberg, J D
1988-06-01
The rectal absorption of propylthiouracil (PTU) was studied and compared to oral absorption in normal volunteers. Plasma levels of PTU after administration of suppositories of PTU base and PTU diethanolamine were significantly lower compared to the oral route. Elevated plasma reverse T3 levels were demonstrated after each treatment, however, suggesting a desirable therapeutic effect at this dosage level for all preparations.
Transport coefficients of quantum plasmas
Bennaceur, D.; Khalfaoui, A.H. )
1993-09-01
Transport coefficients of fully ionized plasmas with a weakly coupled, completely degenerate electron gas and classical ions with a wide range of coupling strength are expressed within the Bloch transport equation. Using the Kohler variational principle the collision integral of the quantum Boltzmann equation is derived, which accounts for quantum effects through collective plasma oscillations. The physical implications of the results are investigated through comparisons with other theories. For practical applications, electrical and thermal conductivities are derived in simple analytical formulas. The relation between these two transport coefficients is expressed in an explicit form, giving a generalized Wiedemann-Franz law, where the Lorentz ratio is a dependent function of the coupling parameter and the degree of degeneracy of the plasma.
High temperature Seebeck coefficient metrology
Martin, J.; Tritt, T.; Uher, C.
2010-12-15
We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.
Consistent transport coefficients in astrophysics
NASA Technical Reports Server (NTRS)
Fontenla, Juan M.; Rovira, M.; Ferrofontan, C.
1986-01-01
A consistent theory for dealing with transport phenomena in stellar atmospheres starting with the kinetic equations and introducing three cases (LTE, partial LTE, and non-LTE) was developed. The consistent hydrodynamical equations were presented for partial-LTE, the transport coefficients defined, and a method shown to calculate them. The method is based on the numerical solution of kinetic equations considering Landau, Boltzmann, and Focker-Planck collision terms. Finally a set of results for the transport coefficients derived for a partially ionized hydrogen gas with radiation was shown, considering ionization and recombination as well as elastic collisions. The results obtained imply major changes is some types of theoretical model calculations and can resolve some important current problems concerning energy and mass balance in the solar atmosphere. It is shown that energy balance in the lower solar transition region can be fully explained by means of radiation losses and conductive flux.
Study of Dispersion Coefficient Channel
NASA Astrophysics Data System (ADS)
Akiyama, K. R.; Bressan, C. K.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.
2016-08-01
The issue of water pollution has worsened in recent times due to releases, intentional or not, of pollutants in natural water bodies. This causes several studies about the distribution of pollutants are carried out. The water quality models have been developed and widely used today as a preventative tool, ie to try to predict what will be the concentration distribution of constituent along a body of water in spatial and temporal scale. To understand and use such models, it is necessary to know some concepts of hydraulic high on their application, including the longitudinal dispersion coefficient. This study aims to conduct a theoretical and experimental study of the channel dispersion coefficient, yielding more information about their direct determination in the literature.
Portable vapor diffusion coefficient meter
Ho, Clifford K.
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
Petawatt laser absorption bounded
Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.
2014-01-01
The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656
UV laser long-path absorption spectroscopy
NASA Technical Reports Server (NTRS)
Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf
1994-01-01
Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive
Convection coefficients at building surfaces
NASA Astrophysics Data System (ADS)
Kammerud, R. C.; Altmayer, E.; Bauman, F. S.; Gadgil, A.; Bohn, M.
1982-09-01
Correlations relating the rate of heat transfer from the surfaces of rooms to the enclosed air are being developed, based on empirical and analytic examinations of convection in enclosures. The correlations express the heat transfer rate in terms of boundary conditions relating to room geometry and surface temperatures. Work to date indicates that simple convection coefficient calculation techniques can be developed, which significantly improve accuracy of heat transfer predictions in comparison with the standard calculations recommended by ASHRAE.
Polarization dependence of absorption by bound electrons in self-assembled quantum dots
NASA Astrophysics Data System (ADS)
Ameen, Tarek A.; El-Batawy, Yasser M.
2013-05-01
In this paper, the effects of the incident light polarization on the bound to continuum linear absorption coefficient of quantum dot devices have been investigated. The study is based on the effective mass theory and the Non Equilibrium Green's Function formalism. For the bound to continuum component of the absorption coefficient, both of in-plane and perpendicular polarization effects are studied for different sizes of conical quantum dots. Generally, decreasing the dot's dimensions results in an increase of the in-plane polarized light absorption and in moving the absorption peak towards longer wavelengths. On the other hand, decreasing the dot's dimensions results in a decrease of the perpendicularly polarized light absorption coefficient and in moving the absorption peak towards longer wavelengths.
,
2005-01-01
Discover a small sample of the millions of maps produced by the U.S. Geological Survey (USGS) in its mission to map the Nation and survey its resources. This booklet gives a brief overview of the types of maps sold and distributed by the USGS through its Earth Science Information Centers (ESIC) and also available from business partners located in most States. The USGS provides a wide variety of maps, from topographic maps showing the geographic relief and thematic maps displaying the geology and water resources of the United States, to special studies of the moon and planets.
An in silico skin absorption model for fragrance materials.
Shen, Jie; Kromidas, Lambros; Schultz, Terry; Bhatia, Sneha
2014-12-01
Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J(max)) - namely, 10%, 40%, and 80%. J(max) may be calculated by using QSAR models that determine octanol/water partition coefficient (K(ow)), water solubility (S) and permeability coefficient (K(p)). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied when fragrance material lack skin absorption data.
Geoghegan, Patrick J; Shen, Bo; Keinath, Christopher M.; Garrabrant, Michael A.
2016-01-01
Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.
NASA Astrophysics Data System (ADS)
Liu, Qing; Zhu, Jia-Min
2006-03-01
Variable-coefficient Sawada Kotere equation is researched. By the means of modified mapping method, we establish a mapping relation between the known solutions of elliptic functional equation and the unknown solutions of variable-coefficient Sawada Kotere equation. Based on the relation, we easily deduce abundant exact solutions of Jacobi elliptic function and of hyperbolic function to variable-coefficient Sawada Kotere equation. The merit of our method is that, without much extra effort, we circumvent integration and directly get the above all solutions in an uniform way.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
An inequality for longitudinal and transverse wave attenuation coefficients.
Norris, Andrew N
2017-01-01
Total absorption, defined as the net flux of energy out of a bounded region averaged over one cycle for time harmonic motion, must be non-negative when there are no sources of energy within the region. This passivity condition places constraints on the non-dimensional absorption coefficients of longitudinal and transverse waves, γL and γT, in isotropic linearly viscoelastic materials. Typically, γL, γT are small, in which case the constraints imply that coefficients of attenuation per unit length, αL, αT, must satisfy the inequality αL/αT≥4cT(3)/3cL(3) where cL, cT are the wave speeds. This inequality, which as far as the author is aware, has not been presented before, provides a relative bound on wave speed in terms of attenuation, or vice versa. It also serves as a check on the consistency of ultrasonic measurements from the literature, with most but not all of the data considered passing the positive absorption test.
Absorption of ultrasound waves during dynamic processes in disperse systems
NASA Astrophysics Data System (ADS)
Kol'tsova, I. S.; Khomutova, A. S.
2016-11-01
Measurements of ultrasound wave absorption are conducted at a frequency of 3 MHz in 3% suspensions of starch, gelatin, and lactose. It is shown that the dynamics of the additional ultrasound wave absorption coefficient in the suspensions carries information on the processes of swelling, dissolution, and the phase and structural periods occurring in the interaction of the disperse and dispersoid phases; it also reflects the influence of the temperature field on these processes.
Ultraviolet absorption spectra of metalorganic molecules diluted in hydrogen gas
NASA Astrophysics Data System (ADS)
Itoh, Hideo; Watanabe, Masanobu; Mukai, Seiji; Yajima, Hiroyoshi
1988-12-01
Ultraviolet absorption spectra of trimethyl gallium, triethyl gallium, and trimethyl aluminum diluted in hydrogen gas were measured as a function of the wavelength (185-350 nm) and the concentration of the molecules (4.8×10 -6 -1.6×10 -4 mol/liter). Their absorbances changed linearly with the concentration of the molecules, which allowed us to calculate the molar absorption coefficients of the molecules on the basis of the Beer-Lambert law.
Absorption of water and lubricating oils into porous nylon
NASA Technical Reports Server (NTRS)
Bertrand, P. A.
1995-01-01
Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.
Apparent diffusion coefficient of normal adrenal glands*
Teixeira, Sara Reis; Elias, Paula Condé Lamparelli; Leite, Andrea Farias de Melo; de Oliveira, Tatiane Mendes Gonçalves; Muglia, Valdair Francisco; Elias Junior, Jorge
2016-01-01
Objective To assess the feasibility and reliability of apparent diffusion coefficient (ADC) measurements of normal adrenal glands. Materials and methods This was a retrospective study involving 32 healthy subjects, divided into two groups: prepubertal (PreP, n = 12), aged from 2 months to 12.5 years (4 males; 8 females); and postpubertal (PostP, n = 20), aged from 11.9 to 61 years (5 males; 15 females). Diffusion-weighted magnetic resonance imaging (DW-MRI) sequences were acquired at a 1.5 T scanner using b values of 0, 20, 500, and 1000 s/mm2. Two radiologists evaluated the images. ADC values were measured pixel-by-pixel on DW-MRI scans, and automatic co-registration with the ADC map was obtained. Results Mean ADC values for the right adrenal glands were 1.44 × 10-3 mm2/s for the PreP group and 1.23 × 10-3 mm2/s for the PostP group, whereas they were 1.58 × 10-3 mm2/s and 1.32 × 10-3 mm2/s, respectively, for the left glands. ADC values were higher in the PreP group than in the PostP group (p < 0.05). Agreement between readers was almost perfect (intraclass correlation coefficient, 0.84-0.94; p < 0.05). Conclusion Our results demonstrate the feasibility and reliability of performing DW-MRI measurements of normal adrenal glands. They could also support the feasibility of ADC measurements of small structures. PMID:28057963
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Elvis, Martin
2004-01-01
The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.
Michael Goodchild recently gave eight reasons why traditional maps are limited as communication devices, and how interactive internet mapping can overcome these limitations. In the past, many authorities in cartography, from Jenks to Bertin, have emphasized the importance of sim...
LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions
NASA Astrophysics Data System (ADS)
Cristadoro, Giampaolo
2006-03-01
Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.
Zhang, Yunlin; Yin, Yan; Wang, Mingzhu; Liu, Xiaohan
2012-05-21
We investigated phytoplankton absorption properties of Lake Taihu, in the spring and summer of 2005 and 2006, and for 17 days studied laboratory cultures of Scenedesmus obliquus (chlorophyta) and Microcystis aeruginosa (cyanophyta) to determine the effect of phytoplankton community composition and cell size on the absorption properties. There were significant seasonal differences in phytoplankton community composition and absorption coefficients. In spring, the phytoplankton community was dominated by chlorophyta with large cells, whereas in summer was dominated by cyanophyta with small cells. Phytoplankton absorption coefficients increased significantly from spring to summer, with the increase in chlorophyll a (Chla) concentration. In addition, Chla-specific absorption coefficients increased with the phytoplankton community succession from chlorophyta to cyanophyta. In culture, the cells density of S. obliquus was generally lower than that of M. aeruginosa, and Chla concentrations of S. obliquus were significantly higher than those of M. aeruginosa. Correspondingly, the Chla-specific absorption coefficients of S. obliquus were significantly lower than those of M. aeruginosa. Significant exponential correlations were found between absorption and Chla-specific absorption coefficients and Chla concentration for S. obliquus and M. aeruginosa. In addition, we developed a model to predict absorption and Chla-specific absorption coefficients using Chla concentration and cell size when data from two species was grouped together. Field and experimental results both showed that the Chla-specific absorption coefficients of cyanophyta were significantly higher than those of chlorophyta. The variability in specific absorption can attributed to phytoplankton community composition, cell size and pigment composition. As phytoplankton community composition changed significantly with season in the lake, and as variation in the cell sizes and accessory pigments of the phytoplankton
,
1999-01-01
Maps become out of date over time. Maps that are out of date, however, can be useful to historians, attorneys, environmentalists, genealogists, and others interested in researching the background of a particular area. Local historians can compare a series of maps of the same area compiled over a long period of time to learn how the area developed. A succession of such maps can provide a vivid picture of how a place changed over time.
Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom
NASA Technical Reports Server (NTRS)
Stallcop, J. R.
1974-01-01
An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.
The temperature dependence of collision-induced absorption by oxygen near 6 microns
NASA Technical Reports Server (NTRS)
Orlando, John J.; Tyndall, Geoffrey S.; Nickerson, Karen E.; Calvert, Jack G.
1991-01-01
Coefficients for oxygen absorption in the infrared induced by collisions with O2 and N2 are reported over the range 1400-1800/cm and 225-356 K. These coefficients are used to calculate the absorption for O2 in air as a function of temperature and wavenumber, and comparisons are made with previous determinations. In addition, structured absorption features superimposed on the broad collision-induced absorption band, which were observed at all temperatures studied, are interpreted in terms of the presence of (O2)2 and O2-N2 van der Waals molecules.
Asteroid 951 Gaspra Near Infrared Mapping Spectrometer Radiance Data
NASA Astrophysics Data System (ADS)
Granahan, J. C., Jr.
2015-12-01
Five radiance spectra of asteroid 951 Gaspra have been archived in the Small Bodies Node of the NASA Planetary Data System [Granahan, 2014]. The radiance spectra were created from uncalibrated Galileo spacecraft Near Infrared Mapping Spectrometer files archived in the Imaging Node of the NASA Planetary Data System. The NASA Galileo spacecraft observed asteroid 951 Gaspra on October 29, 1991 with the Near Infrared Mapping Spectrometer (NIMS) at wavelengths ranging from 0.7 - 5.2 micrometers [Carlson et al., 1992]. The five radiance spectra consist of two 17, two 100, and one 329 spectral channel data sets. They record data that was acquired by NIMS at ranges between 27232.6 to 14723.8 kilometers from asteroid 951 Gaspra. The uncalibrated NIMS data were converted into radiance spectra using calibration coefficients obtained during the Galileo mission's first Earth encounter on December 8, 1990. The archived radiance spectral data is located at the URL (Universal Record Locator): http://sbn.psi.edu/pds/resource/gaspraspec.html and contains radiance, solar, incidence over flux, and data documentation. This archived data set contains a variety of spectral signatures. These signatures include absorptions near 1.0, 2.0, 2.8, 3.4, and 4.5 micrometers. The 1.0 and 2.0 micrometer features are indicators of olivine and pyroxene on the asteroid surface. The 2.8 micrometer feature has a shape similar to the combined spectra of multiple iron bearing phyllosilicates. The 3.4 micrometer feature is in the same location as absorptions created by a carbon-hydrogen bond. The 4.5 micrometer feature, present only in the 329 channel data set, corresponds in position to absorptions detected in sulfate minerals. Carlson, R. W., et al. (1992) Bull. of the A.A.S., 24, 932. Granahan, J. C. (2014), GO-A-NIMS-3-GASPRASPEC-V1.0, NASA Planetary Data System.
Grossman, G.
1982-06-16
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
Compounds affecting cholesterol absorption
NASA Technical Reports Server (NTRS)
Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)
2004-01-01
A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.
Soliton absorption spectroscopy
Kalashnikov, V. L.; Sorokin, E.
2010-01-01
We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755
Grossman, Gershon
1984-01-01
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
Solar selective absorption coatings
Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward
2003-10-14
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Solar selective absorption coatings
Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward
2004-08-31
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Intranasal absorption of oxymorphone.
Hussain, M A; Aungst, B J
1997-08-01
The nasal bioavailability of oxymorphone HCI was determined. Rats were surgically prepared to isolate the nasal cavity, into which a solution of oxymorphone was administered. A reference group of rats was administered oxymorphone HCl intravenously. Plasma oxymorphone concentrations were determined by HPLC. Nasal absorption was rapid, nasal bioavailability was 43%, and the iv and nasal elimination profiles were similar. Oxymorphone HCI appears to have the solubility, potency, and absorption properties required for efficient nasal delivery, which is an alternative to injections.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients.
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-03-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp.
Development of solar driven absorption air conditioners and heat pumps
NASA Astrophysics Data System (ADS)
Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.
1980-03-01
The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.
,
2008-01-01
The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.
High absorption efficiency of AlGaAs/GaAs superlattice solar cells
NASA Astrophysics Data System (ADS)
Nishinaga, Jiro; Kawaharazuka, Atsushi; Horikoshi, Yoshiji
2015-05-01
The effects of excitonic absorption on the solar cell efficiency have been investigated in solar cells with AlGaAs/GaAs superlattice absorption layers. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption coefficient. The excitonic absorption shows strong peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of superlattice solar cells at room temperature are reasonably well reproduced by simulations taking excitonic effects into account. The superlattice solar cells are confirmed to have a high absorbance and good temperature stability. The theoretical analysis of the experimental results confirms that the enhanced excitonic absorption in the superlattice absorption layers survives even at 100 °C, which is considered as the actual device temperature under realistic device operations.
Net Emission Coefficients for Copper and Iron Plasmas
NASA Astrophysics Data System (ADS)
Kassubek, Frank; Zilberberg, Oded; Doiron, Charles
2016-09-01
Radiative heat transfer is an important mechanism for heat transport in electrical arcs, e.g. in electrical switchgear. An exact description of this phenomenon is important (i) for the energy balance of the arc itself, and (ii) for the estimate of the escaping radiation that leads to evaporation of polymer nozzles; the evaporated material and its flow have a strong effect on the arcs. For low voltage arcs, the plasma composition within the arc is dominated by the contact material. In the present study, we compare copper and iron. Especially, we discuss the calculation of absorption and emission spectra and their characterisation by net emission coefficients. The latter describe well the effective power balance at the centre of the arc. We show that in addition to the net emission coefficients, it is important to characterise the radiation that is emitted from the arc core.
Seven-effect absorption refrigeration
DeVault, R.C.; Biermann, W.J.
1989-05-09
A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.
Seven-effect absorption refrigeration
DeVault, Robert C.; Biermann, Wendell J.
1989-01-01
A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.
Free-Carrier Absorption in Silicon from First Principles
NASA Astrophysics Data System (ADS)
Shi, Guangsha; Kioupakis, Emmanouil
The absorption of light by free carriers in semiconductors such as silicon results in intraband electron or hole excitations, and competes with optical transitions across the band gap. Free-carrier absorption therefore reduces the efficiency of optoelectronic devices such as solar cells because it competes with the generation of electron-hole pairs. In this work, we use first-principles calculations based on density functional theory to investigate direct and phonon-assisted free-carrier absorption in silicon. We determine the free-carrier absorption coefficient as a function of carrier concentration and temperature and compare to experiment. We also identify the dominant phonon modes that contributing to phonon-assisted free-carrier absorption processes, and analyze the results to evaluate the impact of this loss mechanism on the efficiency of silicon solar cells. This research was supported by the National Science Foundation CAREER award through Grant No. DMR-1254314. Computational resources were provided by the DOE NERSC facility.
Near-infrared optical coefficients of tumors and adjacent normal tissue
NASA Astrophysics Data System (ADS)
Laufer, Jan G.
2001-06-01
The absorption and reduced scattering coefficients of tumours of the human breast, liver and kidney and their normal surrounding tissue have been measured in vitro for the near-infrared wavelengths between 600 and 1000 nm as well as 1064 nm. The Monte Carlo inversion technique (Simpson et al) was used to determine the optical coefficients of tissue samples from measurements of the diffuse transmittance and reflectance. The measurements of the diffusely transmitted and reflected intensities were performed using a single integrating sphere 'comparison' method. Four post-mortem samples of both liver adenocarcinoma and normal liver tissue were obtained from one subject and four samples of both tumour and normal kidney tissue were obtained from another subject. Four samples of both breast tumour and normal tissue were obtained from two patients. The scattering coefficient of tumours was found in each case to be significantly higher than that of nondiseased tissue. The absorption coefficient of tumours was generally much smaller than those of normal tissue. The scattering coefficient of tumours was 20% to 200% higher depending on the type of cancer and the wavelength, while the absorption coefficient of tumours was as much as twenty times smaller compared to normal tissue.
Temperature Dependent Rate Coefficients for the OH + Pinonaldehyde Reaction
NASA Astrophysics Data System (ADS)
Davis, M. E.; Talukdar, R.; Notte, G.; Ellison, G. B.; Ravishankara, A. R.; Burkholder, J. B.
2005-12-01
The biogenic emission of monoterpenes is an important source of volatile organic compounds (VOCs) to the atmosphere, approximately 10% of the biogenic hydrocarbons emitted yearly. The oxidation of alpha-pinene, the most abundant monoterpene in the atmosphere, by OH leads to the formation of pinonaldehyde (3-acetyl-2,2-dimethyl-cyclobutyl-ethanal) as a major oxidation product formed in yields > 50%. The atmospheric oxidation of pinonaldehyde will impact radical cycling, ozone formation and air quality on a regional scale. Previous laboratory studies of the OH + pinonaldehyde rate coefficient have used relative rate methods and were limited to room temperature. The reported rate coefficients are in poor agreement with values ranging from 4.0 to 9.1 × 10-11 cm#3 molecule-1 s-1. In this study we have measured absolute rate coefficients to resolve these discrepancies and have extended the measurements to include the temperature dependence. The rate coefficient for the gas phase reaction of OH with pinonaldehyde was measured over the temperature range 297 to 374 K and between 55 and 96 Torr under pseudo first order conditions in OH. Laser-induced fluorescence (LIF) was used to monitor the OH radical which was produced by pulsed laser photolysis. The pinonaldehyde concentration was determined in situ using Fourier transform infrared (FTIR) and UV (185 nm) absorption spectroscopy. The rate coefficient for the OH + pinonaldehyde reaction will be presented. Our results will be compared with previous rate coefficient measurements and the discrepancies and the atmospheric implications of these measurements will be discussed.
NASA Technical Reports Server (NTRS)
Hoepffner, Nicolas; Sathyendranath, Shubha
1993-01-01
The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.
NASA Astrophysics Data System (ADS)
Hoepffner, Nicolas; Sathyendranath, Shubha
1993-12-01
The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.
Kato, Hideki
2014-07-01
Photon mass energy transfer coefficient is an essential factor when converting photon energy fluence into kinetic energy released per unit mass (kerma). Although mass attenuation coefficient and mass energy absorption coefficients can be looked up in databases, the mass energy transfer coefficient values are still controversial. In this paper, the photon mass energy transfer coefficients for elements Z=1-92 were calculated based on cross-sectional data for each photon interaction type. Mass energy transfer coefficients for 48 compounds and/or mixtures of dosimetric interest were calculated from coefficient data for elements using Bragg's additivity rule. We additionally developed software that can search these coefficient data for any element or substance of dosimetric interest. The database and software created in this paper should prove useful for radiation measurements and/or dose calculations.
Liu, Houquan; She, Weilong
2015-03-14
The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.
Cyclotron-absorption measurement of the runaway-electron distribution in a tokamak
Zvonkov, A.V.; Suvorov, E.V.; Timofeev, A.V.; Fraiman, A.A.
1983-03-01
The distribution function of runaway electrons in a tokamak can be determined in the slightly relativistic region from measurements of the absorption coefficient corresponding to electron cyclotron waves. The plasma should be probed in the vertical direction.
NASA Astrophysics Data System (ADS)
Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu
2015-10-01
Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.
NASA Astrophysics Data System (ADS)
Sobol, Emil N.; Sviridov, Alexander P.; Kitai, Moishe S.; Edwards, Glenn S.
2003-05-01
Like pure water, the water incorporated into cartilage and cornea tissue shows a pronounced dependence of the absorption coefficient on temperature. Alteration of the temperature by radiation with an IR free-electron laser was studied by use of a pulsed photothermal radiometric technique. A computation algorithm was modified to take into account the real IR absorption spectra of the tissue and the spectral sensitivity of the IR detector used. The absorption coefficients for several wavelengths within the 2.9- and 6.1- μm water absorption bands have been determined for various laser pulse energies. It is shown that the absorption coefficient for cartilage decreases at temperatures higher than 50 °C owing to thermal alterations of water-water and water-biopolymer interactions.
NASA Astrophysics Data System (ADS)
Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.
2009-10-01
In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.
Enhanced absorption cycle computer model. Final report
Grossman, G.; Wilk, M.
1993-09-01
Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperatures boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorptions systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H{sub 2}O triple-effect cycles, LiCl-H{sub 2}O solar-powered open absorption cycles, and NH{sub 3}-H{sub 2}O single-effect and generator-absorber heat exchange cycles. An appendix contains the User`s Manual.
Potassium emission absorption system. Topical report 12
Bauman, L.E.
1995-04-01
The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.
Tone-burst technique measures high-intensity sound absorption
NASA Technical Reports Server (NTRS)
Powell, J. G.; Van Houten, J. J.
1971-01-01
Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.
Wavelength and energy dependent absorption of unconventional fuel mixtures
NASA Astrophysics Data System (ADS)
Khan, N.; Saleem, Z.; Mirza, A. A.
2005-11-01
Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.
Effects of surface roughness and absorption on light propagation in graded-profile waveguides
Danilenko, S S; Osovitskii, A N
2011-06-30
This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)
Absorption of visible radiation by aerosols in the volcanic plume of mount st. Helens.
Ogren, J A; Charlson, R J; Radke, L F; Domonkos, S K
1981-02-20
Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10(-7) per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.
Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens
Ogren, J.A.; Charlson, R.J.; Radke, L.F.; Domonkos, S.K.
1981-01-01
Samples of particles from Mount St. Helens were collected in both the stratosphere and troposhere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10-7 per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.
X-Ray Attenuation and Absorption for Materials of Dosimetric Interest
National Institute of Standards and Technology Data Gateway
SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access) Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.
NASA Technical Reports Server (NTRS)
1994-01-01
A NASA Center for the Commercial Development of Space (CCDS) - developed system for satellite mapping has been commercialized for the first time. Global Visions, Inc. maps an area while driving along a road in a sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. Data is fed into a computerized geographic information system (GIS). The resulting amps can be used for tax assessment purposes, emergency dispatch vehicles and fleet delivery companies as well as other applications.
Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics.
Ourabah, Kamel; Tribeche, Mouloud
2014-06-01
Blackbody radiation is reconsidered using the counterpart of the Bose-Einstein distribution in the κ statistics arising from the Kaniadakis entropy. The generalized Planck radiation law is presented and compared to the usual law, to which it reduces in the limiting case κ→0. Effective Einstein's coefficients of emission and absorption are defined in terms of the Kaniadakis parameter κ. It is shown that the Kaniadakis statistics keeps unchanged the first Einstein coefficient A while the second coefficient B admits a generalized form within the present theoretical framework.
Measuring the scattering coefficient of turbid media from two-photon microscopy.
Sevrain, David; Dubreuil, Matthieu; Leray, Aymeric; Odin, Christophe; Le Grand, Yann
2013-10-21
In this paper, we propose a new and simple method based on two-photon excitation fluorescence (TPEF) microscopy to measure the scattering coefficient µ(s) of thick turbid media. We show, from Monte Carlo simulations, that µ(s) can be derived from the axial profile of the ratio of the TPEF signals epi-collected by the confocal and the non-descanned ports of a scanning microscope, independently of the anisotropy factor g and of the absorption coefficient µ(a) of the medium. The method is validated experimentally on tissue-mimicking optical phantoms, and is shown to have potential for imaging the scattering coefficient of heterogeneous media.
Ultraviolet Absorption by Secondary Organic Aerosols
NASA Astrophysics Data System (ADS)
Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.
2014-12-01
Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.
Standards for Standardized Logistic Regression Coefficients
ERIC Educational Resources Information Center
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
A Note on the Dynamic Correlation Coefficient.
1977-11-04
The use of the dynamic correlation coefficient as a test of spuriousness in longitudinal designs was examined. It was shown that given conditions of...spuriousness and perfect stationarity, the dynamic correlation coefficient was positively, rather than inversely, related to spuriousness. It was...recommended that the dynamic correlation coefficient not be used in the future as a test of spuriousness. (Author)
Soccer Ball Lift Coefficients via Trajectory Analysis
ERIC Educational Resources Information Center
Goff, John Eric; Carre, Matt J.
2010-01-01
We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…
M-Bonomial Coefficients and Their Identities
ERIC Educational Resources Information Center
Asiru, Muniru A.
2010-01-01
In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.
Grossman, Gershon; Perez-Blanco, Horacio
1984-01-01
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
NASA Astrophysics Data System (ADS)
Kunugi, Yoshifumi; Kashiwagi, Takao
Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.
Millimeter and submillimeter wave absorption by atmospheric pollutants and constituents
Kolbe, W.F.; Leskovar, B.
1981-10-01
Calculated absorption coefficients and rotational transition frequencies are given for a number of polar molecules of interest to pollution and energy research. The results, which are presented in graphical form for microwave frequencies up to 1400 GHz, illustrate the increased absorption line intensities occurring in the submillimeter region. For most species these absorption coefficients attain their maximum values in this region. Included in the calculations are the gases SO/sub 2/, H/sub 2/CO, O/sub 3/, H/sub 2/O, H/sub 2/S, OCS, CO, NO, OH, SO, NH/sub 3/, and CS. A discussion of the techniques currently available for the detection in the submillimeter region of these species is also given.
Coefficients of productivity for Yellowstone's grizzly bear habitat
Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy
2004-01-01
This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (< 100 m) or far away from forest/nonforest edges, and areas inside or outside of ungulate winter ranges. Densities of bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.
Coefficients of Productivity for Yellowstone's Grizzly Bear Habitat
Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy
2004-01-01
This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (<100 m) or far away from forest/nonforest edges, and areas inside or outside of ungulate winter ranges. Densities of bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.
Multi-mode interference revealed by two photon absorption in silicon rich SiO{sub 2} waveguides
Manna, S. E-mail: mattia.mancinelli@unitn.it; Ramiro-Manzano, F.; Mancinelli, M. E-mail: mattia.mancinelli@unitn.it; Turri, F.; Pavesi, L.; Ghulinyan, M.; Pucker, G.
2015-02-16
Photoluminescence (PL) from Si nanocrystals (NCs) excited by two-photon absorption (TPA) has been observed in Si nanocrystal-based waveguides fabricated by plasma enhanced chemical vapor deposition. The TPA excited photoluminescence emission resembles the one-photon excited photoluminescence arising from inter-band transitions in the quantum confined Si nanocrystals. By measuring the non-linear transmission of waveguides, a large TPA coefficient of β up to 10{sup −8 }cm/W has been measured at 1550 nm. These values of β depend on the Si NCs size and are two orders of magnitude larger than the bulk silicon value. Here, we propose to use the TPA excited visible PL emission as a tool to map the spatial intensity profile of the 1550 nm propagating optical modes in multimode waveguides. In this way, multimode interference has been revealed experimentally and confirmed through a finite element simulation.
Technology Transfer Automated Retrieval System (TEKTRAN)
Genome maps can be thought of much like road maps except that, instead of traversing across land, they traverse across the chromosomes of an organism. Genetic markers serve as landmarks along the chromosome and provide researchers information as to how close they may be to a gene or region of inter...
ERIC Educational Resources Information Center
DiSpezio, Michael A.
1991-01-01
Presented is a cooperative learning activity in which students assume different roles in an effort to produce a relief map of the ocean floor. Materials, procedures, definitions, student roles, and questions are discussed. A reproducible map for the activity is provided. (CW)
ERIC Educational Resources Information Center
Martin, Josh
2012-01-01
After accepting the principal position at Farmersville (TX) Junior High, the author decided to increase instructional rigor through question mapping because of the success he saw using this instructional practice at his prior campus. Teachers are the number one influence on student achievement (Marzano, 2003), so question mapping provides a…
ERIC Educational Resources Information Center
Geological Survey (Dept. of Interior), Reston, VA.
This curriculum packet about maps, with seven accompanying lessons, is appropriate for students in grades K-3. Students learn basic concepts for visualizing objects from different perspectives and how to understand and use maps. Lessons in the packet center on a story about a little girl, Nikki, who rides in a hot-air balloon that gives her, and…
ERIC Educational Resources Information Center
Technology & Learning, 2005
2005-01-01
Concept maps are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. Displaying information visually--in concept maps, word webs, or diagrams--stimulates creativity. Being able to think logically teaches…
ERIC Educational Resources Information Center
Harbour, Denise
2002-01-01
Explains collection mapping for library media collections. Discusses purposes for creating collection maps, including helping with selection and weeding decisions, showing how the collection supports the curriculum, and making budget decisions; and methods of data collection, including evaluating a collaboratively taught unit with the classroom…
Characteristic of Absorption Heat Transfer using LiBr+LiI Solution
NASA Astrophysics Data System (ADS)
Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige
LiBr-H20 absorption chiller is widely used in Japan, and many research have been made for absorption characteristic in terms of enhancing heat transfer. Another study have been performed for widening working range with higher crystallization limits, and it was reported that adding LiI salt to LiBr-H20 working fluid provide about 5 [mass%] higher crystallization limit under the condition of absorption pressure range. It is necessary to reveal absorption heat transfer performance to utilize this working fluid pair for absorption chiller. In this study absorption heat transfer characteristic was investigated for horizontal and vertical tube. As a result, it was found that heat transfer coefficient increased as mass flow rate of solution increased and mass concentration of solution decrease and that these characteristic were almost the same as LiBr solution, though this solution gave slightly less heat transfer coefficient than LiBr solution.
Second virial coefficients for chain molecules
Bokis, C.P.; Donohue, M.D. . Dept. of Chemical Engineering); Hall, C.K. . Dept. of Chemical Engineering)
1994-01-01
The importance of having accurate second virial coefficients in phase equilibrium calculations, especially for the calculation of dew points, is discussed. The square-well potentials results in a simple but inaccurate equation for the second virial coefficient for small, spherical molecules such as argon. Here, the authors present a new equation for the second virial coefficient of both spherical molecules and chain molecules which is written in a form similar to that for the square-well potential. This new equation is accurate in comparison to Monte Carlo simulation data on second virial coefficients for square-well chain molecules and with second virial coefficients obtained from experiments on n-alkanes.
[Light absorption by suspended particulate matter in Chagan Lake, Jilin].
Wang, Yuan-Dong; Liu, Dian-Wei; Song, Kai-Shan; Zhang, Bai; Wang, Zong-Ming; Jiang, Guang-Ji; Tang, Xu-Guang; Lei, Xiao-Chun; Wu, Yan-Qing
2011-01-01
Spectral characteristics and the magnitudes of light absorption by suspended particulate matter were determined by spectrophotometry in this optically complex Lake Chagan waters for the purpose of surveying the natural variability of the absorption coefficients to parameterize the bio-optical models for converting satellite or in-situ water reflectance signatures into water quality information. Experiments were carried out on seasonal frozen Lake Chagan, one representative inland case-2 water body in Northeast of China. Particulate absorption properties analyzed using the field data on July 15th and October 12th 2009 were measured using the quantitative filter technique to produce absorption spectra containing several fractions that could be attributed to two main optical active constituents (OACs) phytoplankton pigments and non-algal particulates (mineral sediments, and organic detritus). Results suggested that the suspended particulate matter (SPM) concentration was higher while phytoplankton biomass (chlorophyll-a concentration) was lower in July and that in October. The spectral shape of total suspended particulate matter resembled that of non-algal particulates which contributed greater than phytoplankton in total particulate absorption during both periods. An obvious absorption peak occurring at around 440 nm exhibited an increase in phytoplankton contribution in October. Non-algal particulate absorption at 440 nm (a(NAP) (440)) had better correlation with total suspended particulate matter concentration than that with chlorophyll-a over the two periods. Light absorption by phytoplankton pigments in the Chagan lake region was generally lower than that of non-algal components. Chl. a dominating phytoplankton pigment composition functioned exponentially with its absorption coefficients at 440 and 675 nm specifically, the average values of which in July were 0.146 8 m2 x mg(-1) and 0.050 3 respectively while in October they were 0.153 3 and 0.013 2 m2 x mg(-1
Technology Transfer Automated Retrieval System (TEKTRAN)
Optical absorption and scattering properties are useful for quantifying light interaction with plant tissue, as well as for quality assessment of horticultural products. The aim of this research was to measure the absorption and reduced scattering coefficient spectra of two cultivars of apple (Malus...
Approaches to a Quantitative Analytical Description of Low Frequency Sound Absorption in Sea Water,
1980-09-01
Liebermann (1948) found that the absorption coefficient, a, was frequency dependent in the range 100- 1000 kHz and could be attributed to perturbations due...Affecting the Attenuation of Low Frequency Sound in Sea Water", MRL Report No. R-782 (1979). 2. Liebermann , R.M., "Origin of Sound Absorption in Water
ERIC Educational Resources Information Center
Hamilton, M. W.
2007-01-01
A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…
Stratospheric infrared continuum absorptions observed by the ATMOS instrument
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Zander, R.; Namkung, J. S.; Farmer, C. B.; Norton, R. H.
1989-01-01
A quantitative analysis of infrared continuum absorption features observed in ATMOS/Spacelab 3 (1985) spectra of the lower stratosphere is reported. Continuous absorption produced primarily by the collision-induced fundamental vibration-rotation band of O2 and to a lesser extent by the superposition of H2O far line wings has been observed in the 1400 to 1800/cm interval below tangent heights of about 25 km. Continuum optical depths measured in microwindows nearly free of atmospheric line absorption are 0.78 + or - 0.06 times those calculated with the O2 absorption coefficients of Timofeyev and Tonkov (1978). Transmittance measurements in microwindows between 2395 and 2535/cm have been used to study continuous absorption from the collision induced fundamental vibration-rotation band of N2 and the far wings of strong CO2 lines. The measured transmittances have been analyzed to derive best fit absorption coefficients for the N2 pressure-induced band at lower stratospheric temperatures (about 210 K).
Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements
NASA Astrophysics Data System (ADS)
Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.
2015-07-01
Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are
Optoacoustic spectroscopy and its application to molecular and particle absorption
NASA Astrophysics Data System (ADS)
Trees, Charles C.; Voss, Kenneth J.
1990-09-01
Light absorption in the ocean has been the least studied optical property because of the difficulties in making accurate measurements. With the previously used techniques, large differences have been reported for the specific absorption coefficient of phytoplankton (cultures and natural assemblages). It is difficult to determine if the diversity in these values are methodological or a function of actual variations in absorption. With the renewed interest and activity in optoacoustic spectroscopy (OAS), which accurately measures absorption, some of these discrepancies should be resolved. In this method, as molecules and particles absorb light from a modulated source, they thermally expand and contract, thereby generating acoustic waves, at the modulation frequency, which are detected by a hydrophone. Optoacoustic spectroscopy is ideally suited for measuring dissolved organic material and particle absorptions because of its high sensitivity (105m1) and the egligible effect of scattered light. In this paper the instrumental design for an optoacoustic spectrophotometer (OAS), which pecifically measures phytoplankton absorption (420-S5Onm), is described. The spectral absorption of dissolved organic material and a phytoplankton culture is presented. OAS holds promise in being able to measure absorption without use of either filtration or concentration techniques.
Mapping Children--Mapping Space.
ERIC Educational Resources Information Center
Pick, Herbert L., Jr.
Research is underway concerning the way the perception, conception, and representation of spatial layout develops. Three concepts are important here--space itself, frame of reference, and cognitive map. Cognitive map refers to a form of representation of the behavioral space, not paired associate or serial response learning. Other criteria…
Neutron absorption constraints on the composition of 4 Vesta
Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Paplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Le Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.
2013-01-01
Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.
Neutron absorption constraints on the composition of 4 Vesta
NASA Astrophysics Data System (ADS)
Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Peplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.
2013-11-01
Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's "dark" hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.
A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement
NASA Astrophysics Data System (ADS)
Drysdale, Graeme Robert
A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and
Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian
2014-01-01
Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by
Leidinger, M; Fieberg, S; Waasem, N; Kühnemann, F; Buse, K; Breunig, I
2015-08-24
We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10(-4) cm(-1) up to 2 cm(-1). Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement.
Investigating bias in squared regression structure coefficients
Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273
Investigating bias in squared regression structure coefficients.
Nimon, Kim F; Zientek, Linda R; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients.
Gas-film coefficients for streams
Rathbun, R.E.; Tai, D.Y.
1983-01-01
Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.
1989-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.
69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...
69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL
Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran
NASA Astrophysics Data System (ADS)
Tayebi, Mohammad H.; Tangestani, Majid H.; Vincent, Robert K.; Neal, Devin
2014-10-01
This study applies Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the Mixture Tuned Matched Filtering (MTMF) algorithm to map the sub-pixel distribution of alteration minerals associated with the Masahim volcano, SE Iran for understanding the spatial relationship between alteration minerals and volcano facies. Investigations of the alteration mineralogy were conducted using field-spectroscopy, X-ray diffraction (XRD) analysis and ASTER Short Wave Infrared (SWIR) spectral data. In order to spectrally characterize the stratovolcano deposits, lithological units and alteration minerals, the volcano was divided into three facies: the Central, Proximal, and Medial-distal facies. The reflectance spectra of rock samples show absorption features of a number of minerals including white mica, kaolinite, montmorillonite, illite, goethite, hematite, jarosite, opal, and chlorite. The end-members of key alteration minerals including sericite (phyllic zone), kaolinite (argillic zone) and chlorite (propylitic zone) were extracted from imagery using the Pixel Purity Index (PPI) method and were used to map alteration minerals. Accuracy assessment through field observations was used to verify the fraction maps. The results showed that most prominent altered rocks situated at the central facies of volcano. The alteration minerals were discriminated with the coefficient of determination (R2) of 0.74, 0.81, and 0.68 for kaolinite, sericite, and chlorite, respectively. The results of this study have the potential to refine the map of alteration zones in the Masahim volcano.
Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate.
Buron, Jonas D; Mackenzie, David M A; Petersen, Dirch H; Pesquera, Amaia; Centeno, Alba; Bøggild, Peter; Zurutuza, Amaia; Jepsen, Peter U
2015-11-30
We demonstrate wafer-scale, non-contact mapping of essential carrier transport parameters, carrier mobility (µdrift), carrier density (Ns), DC sheet conductance (σdc), and carrier scattering time (τsc) in CVD graphene, using spatially resolved terahertz time-domain conductance spectroscopy. σdc and τsc are directly extracted from Drude model fits to terahertz conductance spectra obtained in each pixel of 10 × 10 cm^{2} maps with a 400 µm step size. σdc- and τsc-maps are translated into µdrift and Ns maps through Boltzmann transport theory for graphene charge carriers and these parameters are directly compared to van der Pauw device measurements on the same wafer. The technique is compatible with all substrate materials that exhibit a reasonably low absorption coefficient for terahertz radiation. This includes many materials used for transferring CVD graphene in production facilities as well as in envisioned products, such as polymer films, glass substrates, cloth, or paper substrates.
Absorption spectrometer balloon flight and iodine investigations
NASA Technical Reports Server (NTRS)
1970-01-01
A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.
Monte Carlo Simulation of the Optical Absorption of Hydrogenated Nanocrystalline Silicon Thin Films
NASA Astrophysics Data System (ADS)
Besahraoui, Fatiha; Sib, Jamal Dine; Bouizem, Yahia; Chahed, Larbi
2008-05-01
The optical absorption coefficient measured by Constant Photocurrent Method (CPM) for nanotextured silicon thin films is apparent affected by light scattering produced in these heterogeneous materials. A detailed Monte Carlo simulation of the absorption spectra and the random optical paths traveled by the scattered photons is presented for the case of nano-Si:H layers. The calculated values of apparent absorption coefficient and the mean optical path depend mainly on the variation of the included nanocrystallites fraction, which favors bulk light scattering phenomena. The particular structure of these materials is a key characteristic of efficient thin films solar cells.
ERIC Educational Resources Information Center
World Wildlife Fund, Washington, DC.
This document features a lesson plan that examines how maps help scientists protect biodiversity and how plants and animals are adapted to specific ecoregions by comparing biome, ecoregion, and habitat. Samples of instruction and assessment are included. (KHR)
Quantum absorption refrigerator.
Levy, Amikam; Kosloff, Ronnie
2012-02-17
A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power J(c) vanishes as J(c) ∝ T(c)(α), when T(c)→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.
Acoustic absorption by sunspots
NASA Technical Reports Server (NTRS)
Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.
1987-01-01
The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.
Metrics for comparison of crystallographic maps
Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; ...
2014-10-01
Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less
Bioacoustic Absorption Spectroscopy
2016-06-07
seas in co-operation with fisheries biologists. The first planned experiment will be in the seas off California in co-operation with the Southwest... Fisheries Science Center of NOAA’s National Marine Fisheries Service. These experiments will be designed to investigate the “signatures” of the two major...formulating environmental adaptation strategies for tactical sonars. Fisheries applications: These results suggest that bioacoustic absorptivity can be used to
Vehicular impact absorption system
NASA Technical Reports Server (NTRS)
Knoell, A. C.; Wilson, A. H. (Inventor)
1978-01-01
An improved vehicular impact absorption system characterized by a plurality of aligned crash cushions of substantially cubic configuration is described. Each consists of a plurality of voided aluminum beverage cans arranged in substantial parallelism within a plurality of superimposed tiers and a covering envelope formed of metal hardware cloth. A plurality of cables is extended through the cushions in substantial parallelism with an axis of alignment for the cushions adapted to be anchored at each of the opposite end thereof.
Hydrogen Absorption by Niobium.
1982-04-13
incorporate an independent means for ascertaining surface cleanliness (e.g. AES). The form of the absorption curve in Fig. 7 appears to agree with that...very interesting study and is well within the capabilities of the systen designed, if the surface cleanliness can be assured. Wire specimens have a...assessing surface cleanliness would be an important supporting technique for understanding the results of these measurements. The simple kinetic
Determining the Gruneisen coefficient for liquids using the PAZ-scan technique
NASA Astrophysics Data System (ADS)
Dantiste, Olivier A.
Measurement of Gruneisen coefficient is utterly important in developing efficient molecular photoacoustic (PA) contrast agents. It is one of the two parameters that describes how efficient a molecule is in transforming optical energy into sound, the other being absorption coefficient. Using the PAZ-scan technique, the Gruneisen coefficient was obtained for various samples and the values are compared with standard techniques. In a PAZ-scan, the sample is translated through the path of a focused laser beam in small steps while the generated PA signal is recorded. The incident intensity is optimum at the focal point and decreases gradually on either side of the focus. As such, the absorption and the PA signal varies according to the sample properties. Therefore at positions away from the focal point, the incident intensities are weak and the PA signal varies linearly with intensity. A plot of the PA signal versus the intensity is used to obtain the Gruneisen coefficient. Using this technique, the Gruneisen coefficients for crystal violet in two different solvents, food coloring dyes that are dissolved in water were determined. Results show that the linear part of the PAZ-scan can be used to determine the Gruneisen coefficient for liquids.
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on
Relic Neutrino Absorption Spectroscopy
Eberle, b
2004-01-28
Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.
,
2001-01-01
U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.
NASA Technical Reports Server (NTRS)
Batson, R. M.; Morgan, H. F.; Sucharski, Robert
1991-01-01
Semicontrolled image mosaics of Venus, based on Magellan data, are being compiled at 1:50,000,000, 1:10,000,000, 1:5,000,000, and 1:1,000,000 scales to support the Magellan Radar Investigator (RADIG) team. The mosaics are semicontrolled in the sense that data gaps were not filled and significant cosmetic inconsistencies exist. Contours are based on preliminary radar altimetry data that is subjected to revision and improvement. Final maps to support geologic mapping and other scientific investigations, to be compiled as the dataset becomes complete, will be sponsored by the Planetary Geology and Geophysics Program and/or the Venus Data Analysis Program. All maps, both semicontrolled and final, will be published as I-maps by the United States Geological Survey. All of the mapping is based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control on planets where framing cameras were used, is not feasible with the radar images of Venus, although an eventual shift of coordinate system to a revised spin-axis location is anticipated. This is expected to be small enough that it will affect only large-scale maps.
Recursive prescription for logarithmic jet rate coefficients
NASA Astrophysics Data System (ADS)
Gerwick, Erik
2013-11-01
We derive a recursion relation for the analytic leading logarithmic coefficients of a final state gluon cascade. We demonstrate the potential of our method by analytically computing the rate coefficients for the emission of up to 80 gluons in both the exclusive-kt (Durham) and generalized inclusive-kt class of jet algorithms. There is a particularly simple form for the ratios of resolved coefficients. We suggest potential applications for our method including the efficient generation of shower histories.
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
46 CFR 45.55 - Freeboard coefficient.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Freeboard coefficient. 45.55 Section 45.55 Shipping... § 45.55 Freeboard coefficient. (a) For ships less than 350 feet in length (L), the freeboard coefficient is P 1 in the formula: P 1=P+A[(L/D)-(L/D s)] where P is a factor, which is a function of...
Determination of Kubelka-Munk scattering and absorption coefficients by diffuse illumination.
Molenaar, R; ten Bosch, J J; Zijp, J R
1999-04-01
The Kubelka-Munk theory, although it provides an equation that relates the reflection of a sample under diffuse illumination to certain of its properties, does not take boundary reflectance into account. Boundary reflection is always present because there is always a difference between the refractive indices of the sample and of the surrounding medium. We describe how a half-sphere is used to achieve diffuse illumination, and we present and exemplify equations that correct for boundary reflection with measurements of four composite restorative dental materials. The refractive index of the sample is measured with a matching technique that employs a glycerol-water mixture. Edge loss errors are estimated.
1992-01-01
limited growth of Paviova lutheri , Chalup and Laws (1990) Conclusion found a more than twofold increase in 0ph It is evident that variability in the...if light ab- Pavlova lutheri . Limnol. Oceanogr. 35: 583-596. sorption is to be accurately related to C fix- CLEvEIAID, J. S., AND M. J. PERRY. 1987
Production of pure ozone by means of electric discharges for measuring absorption coefficients
NASA Astrophysics Data System (ADS)
Cacciani, Marco; Disarra, Alcide
1988-05-01
Ozone production methods and the main chemical reaction on which the methods are based are studied. The procedures discussed include electrical discharges at room temperature and at cryogenic temperatures. Photochemical reactions at 185 to 254 nm wavelength and 140 to 170 nm wavelength, electrolysis, and thermal decomposition. The prototype described works at oxygen pressures between 900 and 130 Torr and 77 K. The ozone produced in liquid phase is very pure. The stability is low, with risks of explosion.
NASA Astrophysics Data System (ADS)
Jacques, Steven L.; Glickman, Randolph D.; Schwartz, Jon A.
1996-05-01
This study determine the threshold radiant exposure from a 10-ns pulsed laser (532 nm) which caused bovine melanosomes to present various observable endpoints of disruption. The endpoints tested were (1) a visible region of clearing in a uniform field of melanosomes under a glass cover slip, (2) an audible sound, and (3) the increase in melanin photoreactivity due to photodisruption of melanosomes. The thresholds were tested for different starting temperatures by pre-equilibrating the melanosomes in aqueous solution at various temperatures. Lower temperatures required larger exposures to attain a given endpoint. The data suggest that bovine RPE melanosomes are about 4-fold denser in melanin content than cutaneous melanosomes.
Transmission and Absorption Coefficients for Ocular Media of the Rhesus Monkey
1978-12-01
studies that measured the entire ocular media in vivo or in vitro , we calculated a composite transmissivity curve for the eye, using the data from...the various components of the ocular media. His study determined the in- vivo thickness of the cornea, lens, anterior chamber, and vitreous body for...The animals involved in this study were procured, maintained, and used in accordance with the Animal Welfare Act of 1970 and the "Guide for the Care
VizieR Online Data Catalog: Absorption coefficient of polystyrene (Kanuchova+, 2010)
NASA Astrophysics Data System (ADS)
Kanuchova, Z.; Baratta, G. A.; Garozzo, M.; Strazzulla, G.
2010-08-01
The samples were irradiated in vacuum, at room temperature, with 200keV protons or 200-400keV argon ions. Before, during, and after irradiation diffuse reflectance spectra were acquired. Polystyrene films were also deposited on quartz substrates and irradiated while transmittance spectra were recorded. (2 data files).
Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field
NASA Astrophysics Data System (ADS)
Çakır, Bekir; Yakar, Yusuf; Özmen, Ayhan
2017-04-01
We have calculated the wavefunctions and energy eigenvalues of spherical quantum dot with infinite potential barrier inside uniform magnetic field. In addition, we have investigated the magnetic field effect on optical transitions between Zeeman energy states. The results are expressed as a function of dot radius, incident photon energy and magnetic field strength. The results present that, in large dot radii, the external magnetic field affects strongly the optical transitions between Zeeman states. In the strong spatial confinement case, energy level is relatively insensitive to the magnetic field, and electron spatial confinement prevails over magnetic confinement. Also, while m varies from -1 to +1, the peak positions of the optical transitions shift toward higher energy (blueshift).
Brillouin-scattering measurements of the acoustic absorption coefficient in liquid CS2
NASA Technical Reports Server (NTRS)
Coakley, R. W.; Detenbeck, R. W.
1975-01-01
High-resolution Brillouin spectra were recorded for light scattered at small angles from liquid CS2. The use of a single-mode He-Ne laser, locked in frequency to a Fabry-Perot interferometer, permitted measurements of line widths of the order of 10 MHz for frequencies in the range 300-1000 MHz. These measurements extend previous Brillouin line-width measurements at higher frequencies into the region where relaxation effects are dominant and connect the optical measurements with lower-frequency acoustical data.
On PAHs as interstellar grains - Infrared absorption coefficients. [polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Salisbury, D. W.; Allen, J. E., Jr.; Donn, B.; Khanna, R. K.; Moore, W. J.
1988-01-01
Consideration is given to the proposal that PAHs are the source of IR continuum and emission features and the visible diffuse bands. Absolute IR cross-sections have been obtained for eight PAHs. The results show that a thermal continuum is not consistent with the spectra obtained, and that an array of normal molecules shows a spectrum that is more complex than the observed spectrum. The cross-sections of the UV spectra are 2-3 orders of magnitude larger than those of the IR spectra. It is suggested that, to account for these observations, structure must be produced in the UV extinction curve.
Corrosion Problems in Absorption Chillers
ERIC Educational Resources Information Center
Stetson, Bruce
1978-01-01
Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)