Science.gov

Sample records for absorption coefficient spectra

  1. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  2. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Bernard, François; Fleming, Eric L.; Burkholder, James B.

    2015-07-01

    HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH + HCFC-133a reaction was measured between 233 and 379 K and is given by k(T) = (9.32 ± 0.8) × 10-13 exp(-(1296 ± 28)/T), where k(296 K) was measured to be (1.10 ± 0.02) × 10-14 (cm3 molecule-1 s-1) (2σ precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240 nm at 213-323 K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90) years and 0.017 (±0.001), respectively, where the ranges are based solely on the 2σ uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100 year time horizon.

  3. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  4. Converting Sabine absorption coefficients to random incidence absorption coefficients.

    PubMed

    Jeong, Cheol-Ho

    2013-06-01

    Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a sample and non-uniform intensity in the reverberation chambers under test. In this study, conversion methods from Sabine absorption coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model do not guarantee reliable estimations, particularly at frequencies below 250 Hz and beyond 2500 Hz.

  5. Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra.

    PubMed

    Curiel, Fernando; Vargas, William E; Barrera, Rubén G

    2002-10-01

    A spectral-projected gradient method and an extension of the Kubelka-Munk theory are applied to obtain the relevant parameters of the theory from measured diffuse reflectance spectra of pigmented samples illuminated with visible diffuse radiation. The initial estimate of the spectral dependence of the parameters, required by a recursive spectral-projected gradient method, was obtained by use of direct measurements and up-to-date theoretical estimates. We then tested the consistency of the Kubelka-Munk theory by repeating the procedure with samples of different thicknesses.

  6. High-resolution spectra and photoabsorption coefficients for carbon monoxide absorption bands between 94.0 nm and 100.4 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Stark, G.; Smith, P. L.; Parkinson, W. H.; Ito, K.

    1988-01-01

    Photoabsorption coefficients have been measured for the CO in interstellar clouds at a resolving power more than 20 times greater than previously obtainable. In order to facilitate comparisons, these data have been integrated over the same wavelength ranges as used in Letzelter et al. (1987). It is found that most of the results obtained for bands between 94.0 and 100.4 nm are larger than those of Letzelter; the discrepancy may be attributable to the difference between the resolving powers of the spectrometers used, because the saturation effects associated with low resolution can underestimate absorption coefficient values.

  7. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  8. Optical absorption coefficients of pure water

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.

    2002-10-01

    The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.

  9. Absorption coefficient instrument for turbid natural waters

    NASA Technical Reports Server (NTRS)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  10. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  11. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  12. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  13. Stability properties of wines by absorption spectra

    NASA Astrophysics Data System (ADS)

    Larena, A.; Vega, J.

    1986-03-01

    The temporal evolution of absorption spectra (370-700 nm) of different spanish wines has been studied by us under the influence of air presence, and the light exposition. In particular, we have exposed the wines to a magenta light. Nevertheless, the color coordinates of wine show a little relative variation (0.1-1 %)

  14. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  15. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices.

  16. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  17. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  18. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  19. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  20. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  1. [Influencing factors in measuring absorption coefficient of suspended particulate matters].

    PubMed

    Yu, Xiao-long; Shen, Fang; Zhang, Jin-fang

    2013-05-01

    Absorption coefficient of suspended particulate matters in natural water is one of the key parameters in ocean color remote sensing. In order to study the influencing factors that affect the measurement, a series of experiments were designed to measure samples using transmittance method (T method), transmittance-reflectance method (T-R method) and absorptance method (A method). The results shows that absorption coefficient measured by the A method has a much lower error compared to the T method and T-R method due to influencing factors,such as filter-to-filter variations, water content of the filter, and homogeneity of filter load and so on. Another factor influence absorption coefficient is path-length amplification induced by multiple scattering inside the filter. To determine the path-length amplification, the true absorption was measured by AC-s (WetLabs). The linear fitting result shows that the mean path-length amplification is much higher for the A method than that of the T-R method and the T method (4.01 versus 2.20 and 2.32), and the corresponding correlation coefficient are 0.90, 0.87 and 0.80. For the A method and the T-R method, higher correlation coefficients are calculated when using polynomial fitting, and the value are 0.95 and 0.94. Analysis of the mean relative error caused by different influencing factors indicates that path-length amplification is the largest error source in measuring the absorption coefficient.

  2. Measurement of the absorption coefficient of scattering liquid media by the calorimetric method

    NASA Astrophysics Data System (ADS)

    Butenin, A. V.; Kogan, B. Ya.

    2012-02-01

    Using the example of a number of hydrosols (gold nanorods and nanoshells, silver nanoshells, zinc phthalocyanine nanoparticles), we show that the absorption coefficient of a scattering liquid medium can be measured from its heating by a short-time laser irradiation. The degree of heating was determined from expansion of the liquid in an ampoule with a capillary (the principle of liquid thermometer). Irradiation was performed at a wavelength of 671 or 1069 nm. From the transmission of samples of hydrosols at these wave-lengths, the sum of the absorption and scattering coefficients has been determined. To measure the absorption spectra of scattering liquids by this method, a laser with a tunable radiation wavelength is required. In the case of monodisperse colloidal solutions, the method ensures the measurement of the absorption and scattering cross-section ratio of particles.

  3. Optical absorption spectra of pairs of small metal particles

    NASA Astrophysics Data System (ADS)

    Quinten, M.; Kreibig, U.; Schönauer, D.; Genzel, L.

    1985-06-01

    The influence of plasma resonance coupling in small Au particle pairs on their optical properties was calculated including retardation effects. The latter prove to be important for sizes above 15 nm. For pairs of smaller particles a Maxwell-Garnett formula is derived and absorption spectra are calculated explicitly. Comparison with optical absorption spectra measured on aggregated Au particle hydrosols, gives good agreement concerning the splitting up of the dipolar single-particle plasma resonance band.

  4. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  5. Scattering and absorption coefficients of silica-doped alumina aerogels.

    PubMed

    Fu, Tairan; Tang, Jiaqi; Chen, Kai; Zhang, Fan

    2016-02-01

    Alumina-based aerogels are especially useful in many applications due to their excellent stability at high temperatures. This study experimentally analyzed the radiative properties of silica-doped alumina aerogels through spectral directional-hemispherical measurements for wavelengths of 0.38-25 μm. The silica-doped alumina aerogel samples were prepared with a 1.4∶1 molar ratio of silica to alumina. A two-flux model was used to describe the radiation propagation in a 1D scattering absorbing sample to derive expressions for the normal-hemispherical transmittances and reflectances based on the transport approximation. The normal-hemispherical transmittances and reflectances were measured at various spectral wavelengths and sample thicknesses using the integrating sphere method. The spectral absorption and transport scattering coefficients of silica-doped alumina aerogels were then determined from the measured normal-hemispherical data. The absorption and transport scattering coefficients of silica-doped alumina aerogels are (0.1  cm-1, 36  cm-1) and (0.1  cm-1, 112  cm-1) for wavelengths of 0.38-8.0 μm. The spectral transport scattering coefficient varies in the opposite direction from the spectral absorption coefficient for various wavelengths. The radiative properties for silica and alumina aerogels were quite different for the absorption coefficient for wavelengths of 2.5-8.0 μm and for the transport scattering coefficient for wavelengths of 0.38-2.5 and 3.5-6.0 μm. The measured radiative properties were used to predict the spectral normal-hemispherical reflectance and transmittance of the silica-doped alumina aerogels for various sample thicknesses and wavelengths. The predicted values do not change for the sample thicknesses greater than a critical value. The analysis provides valuable reference data for alumina aerogels for high-temperature applications. PMID:26836071

  6. High resolution absorption coefficients for Freon-12. [by using tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Bair, C. H.; Williams, B.; Harward, C.

    1979-01-01

    The ultra high resolution absorption coefficients of the Q-branch of Freon-12 obtained with tunable diode laser spectroscopy are presented. Continuous spectra are presented from 1155/cm to 1163/cm, and absolute wavelength calibration was obtained using SO2 spectra as a standard and a 5 cm Ge etalon for relative calibration between SO2 lines. The Freon-12 data obtained at a pressure of 0.05 torr showed a rich and highly structured spectra, but with the exception of three isolated features, collisional broadening reduces the spectra to a structureless continuum for nitrogen pressures greater than 20 torr. The spectra at 1161/cm continue to exhibit structure at atmospheric pressure.

  7. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  8. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  9. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  10. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  11. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.

    PubMed

    Li, Xiaoqi; Jiang, Huabei

    2013-02-21

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  12. Absorption-coefficient-determination method for particulate materials.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1994-07-01

    A method is presented for determining the optical absorption coefficient, or the imaginary refractive index, of particulate material that has been collected from aerosols or hydrosols by means of filtration. The method, based on the Kubelka-Munk theory of diffuse reflectance, is nondestructive and requires no other knowledge of the sample than the amount present, the specific gravity, and an estimate of the real index of refraction. The theoretical development of the method is discussed along with an analysis of photometric and gravimetric errors. We test the method by comparing results obtained for powdered didymium glass with measurements made before the glass was crushed. An example of the method's application to the determination of the absorption coefficient of atmospheric dust at UV, visible, and near-IR wavelengths is also presented.

  13. Absorption-coefficient-determination method for particulate materials.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1994-07-01

    A method is presented for determining the optical absorption coefficient, or the imaginary refractive index, of particulate material that has been collected from aerosols or hydrosols by means of filtration. The method, based on the Kubelka-Munk theory of diffuse reflectance, is nondestructive and requires no other knowledge of the sample than the amount present, the specific gravity, and an estimate of the real index of refraction. The theoretical development of the method is discussed along with an analysis of photometric and gravimetric errors. We test the method by comparing results obtained for powdered didymium glass with measurements made before the glass was crushed. An example of the method's application to the determination of the absorption coefficient of atmospheric dust at UV, visible, and near-IR wavelengths is also presented. PMID:20935789

  14. A high absorption coefficient DL-MPP imitating owl skin

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Zhao, Zhan; Kong, Deyi; Wu, Shaohua; Du, Lidong; Fang, Zhen

    2012-11-01

    This paper proposes a high absorption coefficient micro-perforated panel (MPP) imitating owl skin structure for acoustic noise reduction. Compared to the traditional micro-perforated panel, this device has two unique characteristics-simulating the owl skin structure, its radius of perforated apertures even can be as small as 55μ, and its material is silicon and fabricated by micro-electrical mechanical system (MEMS) technology; So that its absorption coefficients of acoustic noise for normal incidence sound wave whose frequencies arrange from 1.5 kHz to 6.0 kHz are all above 0.8 which is the owl's hunts sensitivity frequency band. Double leaf MPP fabricated by MEMS technology is an absolutely bionic success in functional-imitation.

  15. Identification of THz absorption spectra of chemicals using neural networks

    NASA Astrophysics Data System (ADS)

    Shen, Jingling; Jia, Yan; Liang, Meiyan; Chen, Sijia

    2007-09-01

    Absorption spectra in the range from 0.2 to 2.6 THz of chemicals such as illicit drugs and antibiotics obtaining from Terahertz time-domain spectroscopy technique were identified successfully by artificial neural networks. Back Propagation (BP) and Self-Organizing Feature Map (SOM) were investigated to do the identification or classification, respectively. Three-layer BP neural networks were employed to identify absorption spectra of nine illicit drugs and six antibiotics. The spectra of the chemicals were used to train a BP neural network and then the absorption spectra measured in different times were identified by the trained BP neural network. The average identification rate of 76% was achieved. SOM neural networks, another important neural network which sorts input vectors by their similarity, was used to sort 60 absorption spectra from 6 illicit drugs. The whole network was trained by setting a 20×20 and a 16×16 grid, and both of them had given satisfied clustering results. These results indicate that it is feasible to apply BP and SOM neural networks model in the field of THz spectra identification.

  16. Absorption spectra of wide-gap semiconductors in their transparency region

    NASA Astrophysics Data System (ADS)

    Imangholi, Babak; Hasselbeck, Michael P.; Sheik-Bahae, Mansoor

    2003-11-01

    The linear absorption spectra of GaP, TiO 2, ZnSe, and ZnS are measured in their transparency range using a two-color, excite-probe Z-scan. ZnS has the lowest absorption coefficient (˜10 -5 cm -1) in the wavelength range 840-900 nm, making it an excellent material for use as a luminescence extracting lens in semiconductor laser cooling experiments. Direct observation of two-photon absorption in ZnSe using only low power, continuous laser beams is also reported.

  17. Demonstrating Absorption Spectra Using Commercially Available Incandescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.

    In introductory astronomy courses, I typically introduce the three types of spectra: continuous, absorption line, and emission line. It is standard practice to use an ordinary incandescent light bulb to demonstrate the production of a continuous spectrum, and gas discharge tubes to demonstrate the production of an emission line spectrum. The concept of an absorption spectrum is more difficult for students to grasp. A variety of commercially available light bulbs can be used to demonstrate absorption spectra. Here I discuss the use of specialty incandescent light bulbs to demonstrate the phenomenon of absorption of the continuous spectrum produced by a hot tungsten filament. The bulbs examined include the GE Reveal bulb, yellow anti-insect lights, colored party bulbs, and an incandescent "black light" bulb. The bulbs can be used in a lecture or laboratory setting.

  18. [Transient UV absorption spectra of artemisinin reacting with sodium hydroxide].

    PubMed

    Gao, Yan-Jun; Ping, Li; Yang, Li-Jun; Wang, Qi-Ming; Xue, Jun-Peng; Wu, Da-Cheng; Li, Rui-Xia

    2009-03-01

    UV absorption spectrum of artemisinin and transient absorption spectra of various concentrations of artemisinin reacting with sodium hydroxide were measured by using an intensified spectroscopic detector ICCD. The exposure time of each spectrum was 0.1 ms. Results indicate that artemisinin has an obvious UV absorption band centered at 212.52 nm and can react with sodium hydroxide easily. All absorption spectra of different concentrations of artemisinin reacting with sodium hydroxide have the similar changes, but the moment at which the changes happened is different. After adding sodium hydroxide into artemisinin in ethanol solution, there was a new absorption band centered at 288 nm appearing firstly. As reaction went on, the intensity of another absorption band centered at 260 nm increased gradually. At the end of the reaction, a continuous absorption band from 200 to 350 nm with the peak at 245 nm formed finally. No other transient absorption spectral data are available on the reaction of artemisinin with sodium hydroxide currently. The new spectral information obtained in this experiment provides very important experimental basis for understanding the properties of artemisinin reacting with alkaline medium and is useful for correctly using of artemisinin as a potential anticancer drug.

  19. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  20. IR absorption spectra of cellulose obtained from ozonated wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Autlov, S. A.; Kharlanov, A. N.; Bazarnova, N. G.; Lunin, V. V.

    2015-08-01

    The kinetic curves of ozone absorption by aspen wood were obtained. Processing of wood with peracetic acid gave cellulose samples. The yields of ozonated wood, water-soluble compounds, and cellulose were determined for the samples corresponding to different consumptions of ozone. The IR absorption spectra of wood and cellulose isolated from ozonated wood were analyzed. The supramolecular structure of cellulose can be changed by varying the conditions of wood ozonation.

  1. Size segregated light absorption coefficient of the atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Horvath, H.

    The light absorption coefficient of atmospheric aerosols in the visible can be determined by depositing the particles on a filter and measuring its "transmission" in a special optical arrangement. With an impactor with rotating impaction plates producing a homogeneous deposit, it is possible to extend this technique to size segregated aerosol samples. A simultaneous determination of the mass size distribution is possible. Test measurements with black carbon aerosol have shown the feasibility of this method. Samples of the atmospheric aerosol have been taken in and near Vienna, in Naples and near Bologna. The light absorption of the aerosol is always highest for particle diameters between 0.1 and 0.2 μm. Only in the humid environment of the Po valley it had a slightly larger peak size, whereas the size of the nonabsorbing particles increased considerably. The light absorption of the atmospheric aerosol is always higher in an urban environment. 'The mass absorption coefficient of the aerosol at all four locations was very similar, and completely different from values which could be. expected using effective refractive indices which are frequently used in models. Using the data measured in this work two alternate models for the effective refractive index and black carbon content of the aerosol are suggested: (a) a size-dependent refractive index, where the imaginary part varies from -0.25 for particles smaller than 30 nm to - 0.003 for particles larger than 2 μm; this could especially be applied if an internal mixing of the aerosol is to be expected, or (2) a size-dependent fraction of elemental carbon in the case of external mixing with 43% of carbon particles for sizes below 30 nm decreasing to 10% for sizes up to 0.4 μm.

  2. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  3. A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.

    2009-01-01

    In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…

  4. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  5. Absorption spectra of crystalline limestones experimentally deformed or tectonised

    NASA Astrophysics Data System (ADS)

    Cervelle, B.; ChayéD'Albissin, M.; Gouet, G.; Visocekas, R.

    1982-11-01

    Diffuse-reflectance spectra have been measured for a series of samples of Carrara marble experimentally deformed under different cylindrical stress ( P = 0, 100, 250, 500, 980 bars). The creation of point defects that results has been shown up classically by irradiation with β rays (40 krads), thus producing a typical blue coloration linked with the formation of colour centres. The diffuse-reflectance spectra, measured on powders with a microscope-spectrometer in the visible range (400-800 nm), allow the determination of the absorption spectra by means of the Kubelka-Munk function. These absorption spectra have been measured for each of the deformed samples, as well as for different fractions of a very deformed specimen subsequently heated at temperatures between 100 and 500° C for a fixed time. In the same way, tectonised crystalline limestones, of various origins, were studied without any other treatment than the irradiation with β rays. From this study the following preliminary conclusions have been drawn: (1) The absorption spectrum of an undeformed but merely irradiated specimen of crystalline limestone is practically monotonous, but in the deformed specimens a broad band of absorption appears, having a maximum at 620 nm with several shoulders, the chief of which is at 520 nm. (2) This absorption band shows the existence of colour centres, the density of which can be estimated relatively by means of the chromaticity coordinates x and y of the C.I.E. obtained from the diffuse-reflectance spectra (C.I.E. = Commission Internationale de l'Éclairage). (3) An overgrinding of calcite generates defects that have the same spectra as those produced during the experimental deformation. Consequently, in obtaining the powders of grain size 50-80 μm needed for the diffuse spectrometry, great care must be exercised. (4) For a given confining pressure, the defect density is proportional to the deformation rate. (5) One can calibrate the effect of the annealing of

  6. Photon absorption potential coefficient as a tool for materials engineering

    NASA Astrophysics Data System (ADS)

    Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole

    2016-09-01

    Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and

  7. Absorption spectra of HCFC-22 around 829/cm at atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients of HCFC-22 have been measured around 829/cm in the laboratory at various temperature-pressure combinations chosen to represent tangent heights (as in solar-occultation experiments) or layers in the atmosphere. The data measured employing the Doppler-limited spectra resolution (about 10 exp -4/cm) of a tunable diode laser spectrometer are free of instrumental distortion and are more practical in this case than the spectral line parameters adapted in conventional line-by-line procedures for analyzing atmospheric spectra. The present data obtained with N2 as the broadening gas are shown to be directly applicable to the real atmosphere.

  8. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    PubMed

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  9. Stopping-power and mass energy-absorption coefficient ratios for Solid Water.

    PubMed

    Ho, A K; Paliwal, B R

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration. PMID:3724702

  10. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  11. Infrared absorption spectra of metal carbides, nitrides and sulfides

    NASA Technical Reports Server (NTRS)

    Kammori, O.; Sato, K.; Kurosawa, F.

    1981-01-01

    The infrared absorption spectra of 12 kinds of metal carbides, 11 kinds of nitrides, and 7 kinds of sulfides, a total of 30 materials, were measured and the application of the infrared spectra of these materials to analytical chemistry was discussed. The measurements were done in the frequency (wave length) range of (1400 to 400/cm (7 to 25 mu). The carbides Al4C3, B4C, the nitrides AlN, BN, Si3N4, WB, and the sulfides Al2S3, FeS2, MnS, NiS and PbS were noted to have specific absorptions in the measured region. The sensitivity of Boron nitride was especially good and could be detected at 2 to 3 micrograms in 300 mg of potassium bromide.

  12. EPR and electronic absorption spectra of copper bearing turquoise mineral

    NASA Astrophysics Data System (ADS)

    Sharma, K. B. N.; Moorthy, L. R.; Reddy, B. J.; Vedanand, S.

    1988-10-01

    Electron paramagnetic resonance and optical absorption spectra of turquoise have been studied both at room and low temperatures. It is concluded from the EPR spectra that the ground state of Cu 2+ ion in turquoise is 2A g(d x2- y2) and it is sited in an elongated rhombic octahedron (D 2π). The observed absorption bands at 14970 and 18354 cm -1 are assigned at 2A g→ 2B 1 g( dx2- y2→ xy) and 2A g→[ su2B 3g(d x 2-y 2→d yz) respectively assuming D 2π symmetry which are inconsistent with EPR studies. The three bands in the NIR region are attributed to combinations of fundamental modes of the H 2O molecule present in the sample.

  13. Theoretical investigations of absorption and fluorescence spectra of protonated pyrene.

    PubMed

    Chin, Chih-Hao; Lin, Sheng Hsien

    2016-05-25

    The equilibrium geometry and 75 vibrational normal-mode frequencies of the ground and first excited states of protonated pyrene isomers were calculated and characterized in the adiabatic representation by using the complete active space self-consistent field (CASSCF) method. Electronic absorption spectra of solid neon matrixes in the wavelength range 495-415 nm were determined by Maier et al. and they were analyzed using time-dependent density functional theory calculations (TDDFT). CASSCF calculations and absorption and emission spectra simulations by one-photon excitation equations were used to optimize the excited and ground state structures of protonated pyrene isomers. The absorption band was attributed to the S0 → S1 electronic transition in 1H-Py(+), and a band origin was used at 20580.96 cm(-1). The displaced harmonic oscillator approximation and Franck-Condon approximation were used to simulate the absorption spectrum of the (1) (1)A' ← X[combining tilde](1)A' transition of 1H-Py(+), and the main vibronic transitions were assigned for the first ππ* state. It shows that the vibronic structures were dominated by one of the eight active totally symmetric modes, with ν15 being the most crucial. This indicates that the electronic transition of the S1((1)A') state calculated in the adiabatic representation effectively includes a contribution from the adiabatic vibronic coupling through Franck-Condon factors perturbed by harmonic oscillators. The present method can adequately reproduce experimental absorption and fluorescence spectra of a gas phase. PMID:27181017

  14. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  15. Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color

    NASA Astrophysics Data System (ADS)

    Johannessen, S. C.; Miller, W. L.; Cullen, J. J.

    2003-09-01

    The absorption of ultraviolet and visible radiation by colored or chromophoric dissolved organic matter (CDOM) drives much of marine photochemistry. It also affects the penetration of ultraviolet radiation (UV) into the water column and can confound remote estimates of chlorophyll concentration. Measurements of ocean color from satellites can be used to predict UV attenuation and CDOM absorption spectra from relationships between visible reflectance, UV attenuation, and absorption by CDOM. Samples were taken from the Bering Sea and from the Mid-Atlantic Bight, and water types ranged from turbid, inshore waters to the Gulf Stream. We determined the following relationships between in situ visible radiance reflectance, Lu/Ed (λ) (sr-1), and diffuse attenuation of UV, Kd(λ) (m-1): Kd(323nm) = 0.781[Lu/Ed(412)/Lu/Ed(555)]-1.07; Kd(338nm) = 0.604[Lu/Ed(412)/Lu/Ed(555)]-1.12; Kd(380 nm) = 0.302[Lu/Ed(412)/Lu/Ed(555)]-1.24. Consistent with published observations, these empirical relationships predict that the spectral slope coefficient of CDOM absorption increases as diffuse attenuation of UV decreases. Excluding samples from turbid bays, the ratio of the CDOM absorption coefficient to Kd is 0.90 at 323 nm, 0.86 at 338 nm, and 0.97 at 380 nm. We applied these relationships to SeaWiFS images of normalized water-leaving radiance to calculate the CDOM absorption and UV attenuation in the Mid-Atlantic Bight in May, July, and August 1998. The images showed a decrease in UV attenuation from May to August of approximately 50%. We also produced images of the areal distribution of the spectral slope coefficient of CDOM absorption in the Georgia Bight. The spectral slope coefficient increased offshore and changed with season.

  16. A method for normalization of X-ray absorption spectra

    SciTech Connect

    Weng, T.-C.; Waldo, G.S.; Penner-Hahn, J.E.

    2010-07-20

    Accurate normalization of X-ray absorption data is essential for quantitative analysis of near-edge features. A method, implemented as the program MBACK, to normalize X-ray absorption data to tabulated mass absorption coefficients is described. Comparison of conventional normalization methods with MBACK demonstrates that the new normalization method is not sensitive to the shape of the background function, thus allowing accurate comparison of data collected in transmission mode with data collected using fluorescence ion chambers or solid-state fluorescence detectors. The new method is shown to have better reliability and consistency and smaller errors than conventional normalization methods. The sensitivity of the new normalization method is illustrated by analysis of data collected during an equilibrium titration.

  17. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  18. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    SciTech Connect

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determined and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.

  19. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  20. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υmax-) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υmax- on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  1. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives.

    PubMed

    Masoud, Mamdouh S; Hagagg, Sawsan S; Ali, Alaa E; Nasr, Nessma M

    2012-08-01

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υ(max)(-)) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υ(max)(-) on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  2. Spectroscopic method for determination of the absorption coefficient in brain tissue.

    PubMed

    Johansson, Johannes D

    2010-01-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  3. Effects of compositional variation on absorption spectra of lunar pyroxenes

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Bell, P. M.; Mao, H. K.

    1978-01-01

    Polarized absorption spectra of lunar pyroxenes with a range of iron, calcium, magnesium, titanium and chromium contents were measured on polished, oriented single crystals; spectral data on pure synthetic FeSiO3 were also recorded. The bands at 1 and 2 microns were found to vary significantly in position with composition within the pyroxene quadrilateral; wavelengths increased with increasing calcium and iron. In the visible region, a weak band at 640 nm correlates in intensity with Cr2O3, but not with titanium as had been previously suggested. The 505-nm ferrous iron peak is a sharp doublet in most low-calcium pyroxenes but a singlet in augites. A peak at 475 nm and an intense absorption edge below 700 nm correlated with titanium content.

  4. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  5. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.

  6. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  7. The use of commercial glass as a potential gamma accidental dosimeter through the absorption spectra

    NASA Astrophysics Data System (ADS)

    Kharita, M. H.; Yousef, S.; Bakr, S.

    2012-05-01

    Various types of commercial glass (ordinary windows, cathode ray tubes, glass kitchenware) have been studied as potential accidental radiation dosimeters. The proposed method utilizes the changes in the glasses' absorption spectra as a result of irradiation. A 60Co gamma irradiation cell has been used to irradiate samples with doses ranging from 5 to 200 Gy. The transmittance was measured using a photospectrometer (UV-visible spectrometry). The results demonstrate that the transmittance spectra of most of the glass samples change in linear proportion to the exposure dose. Moreover, the study considers the fading effect on the absorption spectra of the irradiated samples for fading times up to 100 days at room temperature. The results of this work demonstrate that several widely used types of glass can be used as high-dose accidental dosimeters for doses ranging between 8 and 200 Gy. A reasonable calibration line can be established for any irradiated glass sample by heating, re-irradiating with standard doses and measuring the related absorption coefficient. Further investigations are needed to decrease the minimum detectable dose of the proposed method and to study the effect of glass composition on radiation response.

  8. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  9. Additions and corrections to the absorption coefficients of CO2 ice - Applications to the Martian south polar cap

    NASA Technical Reports Server (NTRS)

    Calvin, Wendy M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 microns. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO2 than can be obtained from the method used here.

  10. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  11. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  12. A Parallel Iterative Method for Computing Molecular Absorption Spectra.

    PubMed

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-09-14

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.

  13. Substitution effects on the absorption spectra of nitrophenolate isomers.

    PubMed

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-01

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  14. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  15. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  16. Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.

    2015-01-01

    Geant4 Monte Carlo code simulations were used to solve experimental and theoretical complications for calculation of mass energy-absorption coefficients of elements, air, and compounds. The mass energy-absorption coefficients for nuclear track detectors were computed first time using Geant4 Monte Carlo code for energy 1 keV-20 MeV. Very good agreements for simulated results of mass energy-absorption coefficients for carbon, nitrogen, silicon, sodium iodide and nuclear track detectors were observed on comparison with the values reported in the literatures. Kerma relative to air for energy 1 keV-20 MeV and energy absorption buildup factors for energy 50 keV-10 MeV up to 10 mfp penetration depths of the selected nuclear track detectors were also calculated to evaluate the absorption of the gamma photons. Geant4 simulation can be utilized for estimation of mass energy-absorption coefficients in elements and composite materials.

  17. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  18. Absorption Coefficients of the Methane-Nitrogen Binary Ice System: Implications for Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Grundy, W.; Tegler, S.; Bergonio, J.; Boehnhardt, H.; Barrera, L.

    2013-10-01

    Near infrared spectroscopic measurements of Pluto display methane (CH4) ice absorption bands shifted toward shorter wavelengths compared to the central wavelengths of pure CH4 obtained in the laboratory. This shift, described by Schmitt and Quirico (1992), occurs when CH4 is dissolved at low concentrations in a matrix of solid N2, and the magnitude of the shift varies from one CH4 band to another. This is the main argument behind the modeling analysis of Pluto’s spectra available in literature, employing pure CH4 and CH4 diluted at low concentrations in N2. However, the nitrogen-methane binary phase diagram generated from X-ray diffraction studies by Prokhvatilov & Yantsevich (1983) indicates that at temperatures relevant to the surfaces of icy dwarf planets, like Pluto, two phases contribute to the absorptions: methane ice saturated with nitrogen and nitrogen ice saturated with methane. No optical constants are available so far for the latter component, limiting this way the knowledge of the methane-nitrogen mixing ratio across and into the surface of Pluto and other dwarf planets. New infrared absorption coefficient spectra of CH4-I diluted in β-N2 and β-N2 diluted in CH4-I were measured at temperatures between 40 and 90 K, in the wavelength range 0.8-2.5 μm at different mixing ratios. The spectra were derived from transmission measurements of crystals grown from the liquid phase in closed cells. In particular, a systematic study of the changes in CH4:N2 mixtures spectral behavior with mixing ratio is presented for the first time, in order to understand whether the peak frequencies of the CH4-ice bands correlate with the amount of N2-ice. We report a linear trend of the blueshifts of the CH4-ice bands vs CH4 abundance. This trend varies from band to band, while it is fairly constant with temperature. These data are applied to interpret unpublished high dispersion H and K bands spectra of Pluto acquired with the NACO instrument at the ESO VLT on 27 June 2008

  19. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  20. Drag coefficient comparisons between observed and model simulated directional wave spectra under hurricane conditions

    NASA Astrophysics Data System (ADS)

    Fan, Yalin; Rogers, W. Erick

    2016-06-01

    In this study, Donelan, M.A., Babanin, A.V., Young, I.R., Banner, M.L., 2006. J. Phys. Oceanogr. 36, 1672-1688 source function is used to calculate drag coefficients from both the scanning radar altimeter (SRA) measured two dimensional wave spectra obtained during hurricane Ivan in 2004 and the WAVEWATCH III simulated wave spectra. The drag coefficients disagree between the SRA and model spectra mainly in the right/left rear quadrant of the hurricane where the observed spectra appear to be bimodal while the model spectra are single peaked with more energy in the swell frequencies and less energy in the wind sea frequencies. These results suggest that WAVEWATCH III is currently not capable of providing sensible stress calculations in the rear quadrants of the hurricane.

  1. Recording of absorption spectra by a three-beam integral technique with a tunable laser and external cavity

    SciTech Connect

    Korolenko, P V; Nikolaev, I V; Ochkin, V N; Tskhai, S N

    2014-04-28

    An integral method is considered for recording absorption using three laser beams transmitted through and reflected from an external cavity with the absorbing medium (R-ICOS). The method is the elaboration of a known single-beam ICOS method and allows suppression of the influence of radiation phase fluctuations in the resonator on recording weak absorption spectra. First of all, this reduces high-frequency instabilities and gives a possibility to record spectra during short time intervals. In this method, mirrors of the resonator may have moderate reflection coefficients. Capabilities of the method have been demonstrated by the examples of weak absorption spectra of atmospheric methane and natural gas in a spectral range around 1650 nm. With the mirrors having the reflection coefficients of 0.8–0.99, a spectrum can be recorded for 320 μs with the accuracy sufficient for detecting a background concentration of methane in atmosphere. For the acquisition time of 20 s, the absorption coefficients of ∼2×10{sup -8} cm{sup -1} can be measured, which corresponds to a 40 times less molecule concentration than the background value. (laser spectroscopy)

  2. Constraining The Reionization History With QSO Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. R.; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an Early Reionization Model (ERM) in which the intergalactic medium is reionized by PopIII stars at z~14, and (ii) a more standard Late Reionization Model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z~6. An example of simulated spectra is provided by FIG.1. From the analysis of current Lyα forest data at z<6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z>6, however, clear differences start to emerge which are best quantified by the dark gap width distribution. We find that 35 (zero) per cent of the lines of sight within 5.750Å in the rest frame of the QSO if re-ionization is not (is) complete at z>~6 (FIG.2). Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the lines of sight in the redshift range 6.0-6.6; in the same range, LRM predicts no peaks of width >0.8Å (FIG.3). We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z>6.

  3. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  4. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  5. Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria

    NASA Astrophysics Data System (ADS)

    de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald

    2003-06-01

    We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.

  6. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  7. Infrared absorption spectra of various doping states in cuprate superconductors

    SciTech Connect

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-02-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs.

  8. Infrared absorption spectra of various doping states in cuprate superconductors

    SciTech Connect

    Yonemitsu, K.; Bishop, A.R. ); Lorenzana, J. )

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs.

  9. Molecular structures and absorption spectra assignment of corrole NH tautomers.

    PubMed

    Beenken, Wichard; Presselt, Martin; Ngo, Thien H; Dehaen, Wim; Maes, Wouter; Kruk, Mikalai

    2014-02-01

    The individual absorption spectra of the two NH tautomers of 10-(4,6-dichloropyrimidin-5-yl)-5,15-dimesitylcorrole are assigned on the basis of the Gouterman four-orbital model and a quantum chemical TD-DFT study. The assignment indicates that the red-shifted T1 tautomer is the one with protonated pyrrole nitrogen atoms N(21), N(22) and N(23), whereas the blue-shifted T2 tautomer has pyrrole nitrogen atoms N(21), N(22) and N(24) protonated. A wave-like nonplanar distortion of the macrocycle in the ground state is found for both NH tautomers, with the wave axis going through the pyrroles containing N(22) and N(24). The 7C plane determined by the least-squares distances to the carbon atoms C1, C4, C5, C6, C9, C16, and C19 is suggested as a mean corrole macrocycle plane for the analysis of out-of-plane distortions. The magnitude of these distortions is distinctly different for the two NH tautomers, leading to substantial perturbations of their acid-base properties, which are rationalized by the interplay of the degree of out-of-plane distortion of the macrocycle as a whole and the tendency of the pyrrole nitrogen atoms toward pyramidalization, with the former leading to a basicity increase whereas the latter enhances the acidity.

  10. UV optical absorption spectra analysis of spodumene crystals from Brazil

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Watari, Kazunori; Mizukami, Akiyoshi; Bonventi, Waldemar; Ito, Amando Siuiti

    2007-04-01

    The spectral decomposition analysis was applied to the optical absorption spectra of spodumene crystals from the Brazilian eastern pegmatitic province. The analyzed samples were natural, treated at 400 °C for 24 h and those irradiated with γ rays of 60Co with doses up to 5 MGy. The attributions of the lines were made taking in account highly accurate quantum mechanical calculations. The heated sample had only three lines, which were not affected by irradiation. One of them at 7.58 eV was attributed to an oxygen vacancy defect and the other two at 5.07 and 4.64 eV to a peroxy-type defect. The analysis of the growth of the lines with the irradiation showed that they belong to two groups of defects. The first group of lines at 4.2, 5.3 and 5.9 eV was attributed to a silanone-type defect. The other group of lines at 1.36, 2.0, 2.6, 3.6 and 5.0 eV was attributed to a type of Mn 3+ defect. The natural and irradiated samples also showed a line at 2.3 eV, which was attributed to another type of diamagnetic Mn 3+ defect.

  11. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  12. Absorption spectra of typical space materials in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1981-01-01

    In order to develop a data base for potential optical degradation of space vacuum ultraviolet instruments, the collected volatile condensed material (CVCM) transmittance was measured in the wavelength region from 115 nm to 300 nm. The parent outgassing materials included: the adhesives, Ablebond 36-2, Trabond BB-2116, EA-9309, and Scotchweld 2216; the paints, Chemglaze Z-306, Z-306 over 9922 primer, Z-306 over AP-131 primer, Cat-A-Lac 463-3-8, 463-3-8 over primer, 3M Nextel 401-C10, and 401-C10 over 901-P1 primer; the resins, Fiberite 934, Solithane 113/C113-300 Formulation no. 1, and 113/C113-300 Formulation no. 8; the lubricants, Lube-Lok 4306 and RT/Duroid 5813; and the double-sided adhesive tape 3M-415. The effect of thermal vacuum conditioning of selected materials was also studied. The transmittance measurements were used to calculate the absorption coefficient for each of 28 different source materials versus wavelength.

  13. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry.

    PubMed

    Andreo, Pedro; Burns, David T; Salvat, Francesc

    2012-04-21

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for ¹⁹²Ir and ⁶⁰Co gamma-ray spectra. The aim of this work was to establish 'an envelope of uncertainty' based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µ(en)/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, u(c), for the µ(en)/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For ⁶⁰Co and ¹⁹²Ir, u(c) is approximately 0.1%. The Type B uncertainty analysis for the ratios of µ(en)/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µ(en)/ρ)(graphite,air) and (µ(en)/ρ)(graphite,water) are 1.5%, and 0.5% for (µ(en)/ρ)(water,air), decreasing gradually down to u(c) = 0.1% for the three µ(en)/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well

  14. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Neusüß, Christian; Wendisch, Manfred; Stratmann, Frank; Koziar, Christian; Keil, Andreas; Wiedensohler, Alfred; Ebert, Martin

    2002-11-01

    Comparisons between measured and calculated aerosol scattering, backscattering, and absorption coefficients were made based on in situ, ground-based measurements during the Melpitz INTensive (MINT) and Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) field studies. Furthermore, airborne measurements made with the same type of instruments are reviewed and compared with the ground-based measurements. Agreement between measured and calculated values is on the order of ±20% for scattering and backscattering coefficients. A sensitivity analysis showed a large influence on the calculated particle scattering and backscattering coefficients resulting from sizing uncertainties in the measured number size distributions. Measured absorption coefficients were significantly smaller than the corresponding calculated values. The largest uncertainty for the calculated absorption coefficients resulted from the size-dependent fraction of elemental carbon (EC) of the aerosol. A correction for the measured fractions of EC could significantly improve the agreement between measured and calculated absorption coefficients. The overall uncertainty of the calculated values was investigated with a Monte Carlo method by simultaneously and randomly varying the input parameters of the calculations, where the variation of each parameter was bounded by its uncertainty. The measurements were mostly found to be within the range of uncertainties of the calculations, with uncertainties for the calculated scattering and backscattering coefficients of about ±20% and for the absorption coefficients of about ±30%. Thus, to increase the accuracy of calculated scattering, backscattering, and absorption coefficients, it is crucial to further reduce the error in particle number size distribution measurement techniques. In addition, further improvement of the techniques for measuring absorption coefficients and further investigation of the measurement of the fraction of EC of the aerosol is

  15. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    SciTech Connect

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D{sub 7} is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  16. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.

  17. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  18. Constraining the reionization history with QSO absorption spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. Roy; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an early reionization model (ERM) in which the intergalactic medium is reionized by Pop III stars at z ~ 14, and (ii) a more standard late reionization model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z ~ 6. From the analysis of current Lyα forest data at z < 6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z > 6, however, clear differences start to emerge which are best quantified by the dark gap and peak width distributions. We find that 35 (0) per cent of the lines of sight (LOS) within 5.7 < z < 6.3 show dark gaps of widths >50Å in the rest frame of the QSO if reionization is not (is) complete at z >~ 6. Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the LOS in the redshift range 6.0-6.6 in the same range, LRM predicts no peaks of width >0.8Å. We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z > 6. We finally discuss strengths and limitations of our method.

  19. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    NASA Astrophysics Data System (ADS)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  20. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    PubMed

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. PMID:24840486

  1. Temperature dependence of the band-band absorption coefficient in crystalline silicon from photoluminescence

    NASA Astrophysics Data System (ADS)

    Nguyen, Hieu T.; Rougieux, Fiacre E.; Mitchell, Bernhard; Macdonald, Daniel

    2014-01-01

    The band-band absorption coefficient in crystalline silicon has been determined using spectral photoluminescence measurements across the wavelength range of 990-1300 nm, and a parameterization of the temperature dependence has been established to allow interpolation of accurate values of the absorption coefficient for any temperature between 170 and 363 K. Band-band absorption coefficient measurements across a temperature range of 78-363 K are found to match well with previous results from MacFarlane et al. [Phys. Rev. 111, 1245 (1958)], and are extended to significantly longer wavelengths. In addition, we report the band-band absorption coefficient across the temperature range from 270-350 K with 10 K intervals, a range in which most practical silicon based devices operate, and for which there are only sparse data available at present. Moreover, the absorption coefficient is shown to vary by up to 50% for every 10 K increment around room temperature. Furthermore, the likely origins of the differences among the absorption coefficient of several commonly referenced works by Green [Sol. Energy Mater. Sol. Cells 92, 1305 (2008)], Daub and Würfel [Phys. Rev. Lett. 74, 1020 (1995)], and MacFarlane et al. [Phys. Rev. 111, 1245 (1958)] are discussed.

  2. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  3. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  4. Determination of absorption coefficients in AlInP lattice matched to GaAs

    NASA Astrophysics Data System (ADS)

    Cheong, J. S.; Ng, J. S.; Krysa, A. B.; Ong, J. S. L.; David, J. P. R.

    2015-10-01

    The absorption properties of Al0.52In0.48P have been investigated near the fundamental absorption edge by measuring the photocurrent as a function of wavelength in a series of PIN and NIP diodes. Modelling of the photocurrent in these structures enables the absorption coefficients to be determined accurately over a wide dynamic range, which allows the direct and indirect band-gap to be determined.

  5. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  6. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  7. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro.

    PubMed

    Marchesini, R; Bertoni, A; Andreola, S; Melloni, E; Sichirollo, A E

    1989-06-15

    Optical properties of different human tissues in vitro have been evaluated by measuring extinction and absorption coefficients at 635- and 515-nm wavelengths and a scattering angular dependence at 635 nm. Extinction was determined by the on-axis attenuation of light transmitted through sliced specimens of various thicknesses. The absorption coefficient was determined by placing samples into an integrating sphere. The Henyey-Greenstein function was used for fitting experimental data of the scattering pattern. The purpose of this work was to contribute to the study of light propagation in mammalian tissues. The results show that, for the investigated tissues, extinction coefficients range from ~200 to 500 cm(-1) whereas absorption coefficients, depending on wavelength, vary from 0.2 to 25 cm(-1). Scattering is forward peaked with an average cosine of ~0.7.

  8. Comparison between different spectral models of the diffuse attenuation and absorption coefficients of seawater

    NASA Astrophysics Data System (ADS)

    Kopelevich, Oleg V.; Filippov, Yuri V.

    1994-10-01

    The goal of this work is to verify different spectral models of the diffuse attenuation and absorption coefficients of sea water and to work out a recommendation for their use. It is shown that the spectral models of the diffuse attenuation coefficient Kd((lambda) ) developed by Austin, Petzold, 1984 and by Volynsky, Sud'bin, 1992 correspond with each other, as well the models of Ivanov, Shemshura, 1973 and of Kopelevich, Shemshura, 1988 for calculation of the spectral absorption coefficient a((lambda) ) on the values of Kd((lambda) ). Theoretical foundation of the relation between a((lambda) ) and Kd((lambda) ) is given. The up-to-date physical model of the sea water light absorption is considered and checked by means of comparison with measured values of the attenuation coefficient at the ultraviolet and visible spectral ranges.

  9. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  10. Absorption spectra and photolysis of methyl peroxide in liquid and frozen water.

    PubMed

    Epstein, Scott A; Shemesh, Dorit; Tran, Van T; Nizkorodov, Sergey A; Gerber, R Benny

    2012-06-21

    Methyl peroxide (CH(3)OOH) is commonly found in atmospheric waters and ices in significant concentrations. It is the simplest organic peroxide and an important precursor to hydroxyl radical. Many studies have examined the photochemical behavior of gaseous CH(3)OOH; however, the photochemistry of liquid and frozen water solutions is poorly understood. We present a series of experiments and theoretical calculations designed to elucidate the photochemical behavior of CH(3)OOH dissolved in liquid water and ice over a range of temperatures. The molar extinction coefficients of aqueous CH(3)OOH are different from the gas phase, and they do not change upon freezing. Between -12 and 43 °C, the quantum yield of CH(3)OOH photolysis is described by the following equation: Φ(T) = exp((-2175 ± 448)1/T) + 7.66 ± 1.56). We use on-the-fly ab initio molecular dynamics simulations to model structures and absorption spectra of a bare CH(3)OOH molecule and a CH(3)OOH molecule immersed inside 20 water molecules at 50, 200, and 220 K. The simulations predict large sensitivity in the absorption spectrum of CH(3)OOH to temperature, with the spectrum narrowing and shifting to the blue under cryogenic conditions because of constrained dihedral motion around the O-O bond. The shift in the absorption spectrum is not observed in the experiment when the CH(3)OOH solution is frozen suggesting that CH(3)OOH remains in a liquid layer between the ice grains. Using the extinction coefficients and photolysis quantum yields obtained in this work, we show that under conditions with low temperatures, in the presence of clouds with a high liquid-water content and large solar zenith angles, the loss of CH(3)OOH by aqueous photolysis is responsible for up to 20% of the total loss of CH(3)OOH due to photolysis. Gas phase photolysis of CH(3)OOH dominates under all other conditions.

  11. Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film

    SciTech Connect

    Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.

    2015-06-24

    We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.

  12. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  13. Interpretation of NO2 absorption in twilight sky spectra

    NASA Astrophysics Data System (ADS)

    McMahon, B. B.

    1984-07-01

    A multiple scattering model has been developed to calculate nitrogen dioxide (NO2) absorption in the light from the zenith sky during twilight. Model studies show that this absorption is not very sensitive to the atmospheric temperature profile or to tropospheric NO2. The model was used to interpret some ground-based measurements of NO2 sky absorption. Values for the total stratospheric column amount vary from 2 to 12 x 10 to the 15th molec/sq cm, and the mean altitude of the stratospheric concentration profile is around 35 km. These observations are in broad agreement with those of other workers.

  14. Absorption spectra of graphene nanoribbons in a composite magnetic field

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Wu, M. F.; Hsieh, C. T.

    2015-10-01

    The low-frequency optical absorption properties of graphene nanoribbons in a composite magnetic field are investigated by using the gradient approximation. The spectral function exhibits symmetric delta-function like prominent peaks structure in a uniform magnetic field, and changes to asymmetric square-root divergent peaks structure when subjecting to a composite field. These asymmetric divergent peaks can be further classified into principal and secondary peaks. The spectral intensity and frequency of the absorption peaks depend sensitively on the strength and modulation period of the composite field. The transition channels of the absorption peaks are also analyzed. There exists an optical selection rule which is caused by the orthogonal properties of the sublattice wave functions. The evolution of the spectral frequency of the absorption peaks with the field strength is explored.

  15. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  16. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  17. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  18. Effects of lowly ionized ions on silicon K-shell absorption spectra

    NASA Astrophysics Data System (ADS)

    Wei, H. G.; Shi, J. R.; Liang, G. Y.; Wang, F. L.; Zhong, J. Y.; Zhao, G.

    2016-05-01

    Context. In both astrophysical and laboratory plasmas, K-shell absorption spectra have become powerful diagnostic tools to investigate electron density and temperature. These spectra are also widely used to verify the opacity codes in laboratory settings. Aims: We report the effects of the low ionization silicon ions, namely from Si I to Si V, which have rarely been considered in previous models, on the K-shell silicon absorption spectra. Methods: The Si K-shell atomic data were calculated with the flexible atomic code, which is a fully relativistic atomic program with configuration interaction taken into consideration. Detailed level accounting models were employed to calculate the absorption spectra. Results: We calculate the Si absorption spectra in local thermodynamic equilibrium conditions with temperature and density ranges of 20-70 eV and ~1020 cm-3 to ~1022 cm-3, respectively, and show the contributions of the lowly ionized ions to the K-shell absorption spectra of silicon. We also investigate the effects of the different atomic data on the absorption spectra. We find good agreement between our results and these from OPLIB. Conclusions: We find that the contributions from these lowly ionized ions cannot be neglected at relative low temperatures. Accurate experimental measurements are needed to benchmark the theoretical calculations.

  19. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  20. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  1. Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huabei

    2006-06-01

    We report on experimental demonstration of photoacoustic tomography for reconstructing the optical absorption coefficient images of heterogeneous media. Photoacoustic images are obtained from a series of tissuelike phantom experiments using a finite element-based reconstruction algorithm coupled with a scanning photoacoustic imaging system. The experimental results show that optical absorption images can be quantitatively reconstructed when the photon diffusion model is coupled with the Helmholtz photoacoustic wave equation.

  2. Determination of the Absorption Coefficient and Cloudiness Multiplicity Attenuation During the Gamma-Radiation Passage

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.

    2016-08-01

    The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.

  3. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  4. Calculation of conversion coefficients for clinical photon spectra using the MCNP code.

    PubMed

    Lima, M A F; Silva, A X; Crispim, V R

    2004-01-01

    In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1). PMID:15367760

  5. Vibronic Structures in Absorption and Fluorescence Spectra of Firefly Oxyluciferin in Aqueous Solutions.

    PubMed

    Hiyama, Miyabi; Noguchi, Yoshifumi; Akiyama, Hidefumi; Yamada, Kenta; Koga, Nobuaki

    2015-01-01

    To elucidate the factors determining the spectral shapes and widths of the absorption and fluorescence spectra for keto and enol oxyluciferin and their conjugate bases in aqueous solutions, the intensities of vibronic transitions between their ground and first electronic excited states were calculated for the first time via estimation of the vibrational Franck-Condon factors. The major normal modes, overtones and combination tones in absorption and fluorescence spectra are similar for all species. The theoretical full widths at half maximum of absorption spectra are 0.4-0.7 eV and those for the fluorescence spectra are 0.4-0.5 eV, except for phenolate-keto that exhibits exceptionally sharp peak widths due to the dominance of the 0-0' or 0'-0 band. These spectral shapes and widths explain many relevant features of the experimentally observed spectra. PMID:25946599

  6. Variability in the light absorption coefficients of phytoplankton, non-algal particles, and colored dissolved organic matter in a subtropical bay (Brazil)

    NASA Astrophysics Data System (ADS)

    Ferreira, Amabile; Ciotti, Áurea Maria; Coló Giannini, Maria Fernanda

    2014-02-01

    This study characterized the variability in magnitudes and spectral shapes of the absorption coefficients of phytoplankton, detritus, and colored dissolved organic matter (CDOM) in a dynamic bay (Santos Bay) in southeastern Brazil in response to the contributions of the main estuarine channel and large tide variations, therefore in different time scales. Two strategies were adopted: (1) monthly year-round sampling in the estuarine channel and Santos Bay and (2) sampling in Santos Bay during spring/neap tides and cold/warm months. Chlorophyll-a concentration and CDOM absorption were higher during warm (wet) months, while the relative contribution of organic and inorganic particles was driven by neap/spring tide cycles. Salinity partially accounted for changes in optical variables, especially for CDOM absorption and total suspended matter (TSM) during cold months and neap tides, respectively. The spectral shapes of detritus and CDOM absorption showed relatively little variability for the entire dataset and were not considered feasible for monitoring purposes. The spectral shape of phytoplankton absorption (index of cell size) varied broadly, with no remarkable dependence on the sampling conditions. Comparison of absorption coefficients measured by the Quantitative Filter Technique (QFT) and Transmittance Reflectance (TR) method showed higher phytoplankton coefficients toward longer visible wavelengths (flatter spectra) and shallower slopes of detritus absorption yielded by the TR method. Our results also suggest that measurements at the near red spectral region result from not only scattering signals but also non-algal particle absorption.

  7. Infrared absorption spectra of methylidene radicals in solid neon.

    PubMed

    Lu, Hsiao-Chi; Lo, Jen-Iu; Lin, Meng-Yeh; Peng, Yu-Chain; Chou, Sheng-Lung; Cheng, Bing-Ming; Ogilvie, J F

    2014-07-28

    Infrared absorption lines of methylidene--(12)C(1)H, (13)C(1)H, and (12)C(2)H--dispersed in solid neon at 3 K, recorded after photolysis of methane precursors with vacuum-ultraviolet light at 121.6 nm, serve as signatures of these trapped radicals.

  8. Data processing of absorption spectra from photoionized plasma experiments at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2010-10-15

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  9. Calculation of polarized IR absorption spectra for trans-1,4-polyisoprenes of various conformations

    NASA Astrophysics Data System (ADS)

    Abdulov, Kh. Sh.

    2008-07-01

    Polarized IR spectra for two conformations of trans-1,4-polyisoprene (α-and β-gutta-percha) were calculated. The IR dichroism of the absorption bands was calculated for both conformations. The computed results for polarized IR spectra and IR dichroism agree reasonably well with the respective experiment data.

  10. The absorption spectra of the complexes of uranium (VI) with some β-diketones

    USGS Publications Warehouse

    Feinstein, H.I.

    1956-01-01

    The absorption spectra of the complexes of uranium (VI) with four β-dike tones were determined under various conditions of pH, concentration of uranium, and alcohol concentration. Under optimum conditions, the maximum molar absorptivity (31,200) is obtained using 2-furoyltrifluoroacetone. This compares with about 4,000 and 19,000 for the thiocyanate and dibenzoylmethane complexes, respectively.

  11. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  12. Infrared absorption spectra of human malignant tumor tissues

    NASA Astrophysics Data System (ADS)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  13. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2011-09-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  14. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  15. Terahertz absorption spectra of oxidized polyethylene and their analysis by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Komatsu, Marina; Hosobuchi, Masashi; Xie, Xiaojun; Cheng, Yonghong; Furukawa, Yukio; Mizuno, Maya; Fukunaga, Kaori; Ohki, Yoshimichi

    2014-09-01

    Low-density polyethylene, either cross-linked or not, was oxidized and its absorption spectra were measured in the terahertz (THz) range and infrared range. The absorption was increased by the oxidation in the whole THz range. In accord with this, infrared absorption due to carbonyl groups appears. Although these results indicate that the increase in absorption is induced by oxidation, its attribution to resonance or relaxation is unclear. To clarify this point, the vibrational frequencies of three-dimensional polyethylene models with and without carbonyl groups were quantum chemically calculated. As a result, it was clarified that optically inactive skeletal vibrations in polyethylene become active upon oxidation. Furthermore, several absorption peaks due to vibrational resonances are induced by oxidation at wavenumbers from 20 to 100 cm-1. If these absorption peaks are broadened and are superimposed on each other, the absorption spectrum observed experimentally can be reproduced. Therefore, the absorption is ascribable to resonance.

  16. Two-dimensional (2D) correlation coefficient analyses of heavily overlapped near-infrared spectra.

    PubMed

    Sasić, Slobodan; Sato, Harumi; Shimoyama, Masahiko; Ozaki, Yukihiro

    2005-05-01

    Two-dimensional (2D) correlation coefficient analysis is employed to classify and characterize spectral variations among heavily overlapped near-infrared spectra of pellets and films of three kinds of polyethylene (PE), high-density (HD), low density (LD), and linear low-density (LLD) polyethylene, and five kinds of ivory signature seals. The sample-sample (SS) 2D correlation maps are used for classification while the wavenumber-wavenumber (WW) 2D correlation maps are used for determining spectral variation among the above materials. Both correlation maps are obtained by multiplying the original data with themselves. It is found that the NIR spectra of pellets and films of HD PE are clearly different from those of LD PE and LLD PE, while the NIR spectra of five kinds of ivory seals yield easily discernable squares in the SS correlation maps. The background variation is thought to be behind the differentiation of the PE samples because the WW correlation maps do not indicate appearance of new bands. The correlation results are compared with those of principal component analysis (PCA). This study is a novel application of 2D correlation coefficient analysis which reveals that a comprehensive description of demanding spectral systems is achievable by utterly simple mathematical means because 2D correlation maps are obtained via a single mathematical operation.

  17. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  18. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.

    PubMed

    Vilas, F; Gaffey, M J

    1989-11-10

    Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  19. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    PubMed

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  20. Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?

    PubMed

    Tian, Yuxi; Scheblykin, Ivan G

    2015-09-01

    Organometal halide (OMH) perovskites have attracted lots of attention over the last several years due to their very promising performance as the materials for solar cells and light-emitting devices. Photophysical processes in these hybrid organic-inorganic semiconductors are still heavily debated. To know precise absorption spectra is absolutely necessary for quantitative understanding of the fundamental properties of OMH perovskites. We show that to measure the absorption of perovskite materials correctly is a difficult task which could be easily overlooked by the community. Many of the published absorption spectra exhibit a characteristic step-like featureless shape due to light scattering, high optical density of individual perovskite crystals and poor coverage of the substrate. We show how to recognize these artifacts, to avoid them, and to use absorption spectra of films for estimation of the surface coverage ratio. PMID:27120683

  1. Autophaser: an algorithm for automated generation of absorption mode spectra for FT-ICR MS.

    PubMed

    Kilgour, David P A; Wills, Rebecca; Qi, Yulin; O'Connor, Peter B

    2013-04-16

    Phase correction of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry data allows the spectra to be presented in absorption mode. Absorption mode spectra offer superior mass resolving power (up to a factor of 2), mass accuracy, and sensitivity over the conventional magnitude mode. Hitherto, the use of absorption mode in FT-ICR mass spectrometry has required either specially adapted instrumentation or a manually intensive process of phase correction or has ignored the potentially significant effects of image charge and the associated frequency shifts. Here we present an algorithm that allows spectra recorded on unadapted FT-ICR mass spectrometers to be phase corrected, their baseline deviations removed, and then an absorption mode spectrum presented in an automated manner that requires little user interaction. PMID:23373960

  2. Autophaser: an algorithm for automated generation of absorption mode spectra for FT-ICR MS.

    PubMed

    Kilgour, David P A; Wills, Rebecca; Qi, Yulin; O'Connor, Peter B

    2013-04-16

    Phase correction of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry data allows the spectra to be presented in absorption mode. Absorption mode spectra offer superior mass resolving power (up to a factor of 2), mass accuracy, and sensitivity over the conventional magnitude mode. Hitherto, the use of absorption mode in FT-ICR mass spectrometry has required either specially adapted instrumentation or a manually intensive process of phase correction or has ignored the potentially significant effects of image charge and the associated frequency shifts. Here we present an algorithm that allows spectra recorded on unadapted FT-ICR mass spectrometers to be phase corrected, their baseline deviations removed, and then an absorption mode spectrum presented in an automated manner that requires little user interaction.

  3. Accurate convergence of transient-absorption spectra using pulsed lasers.

    PubMed

    Brazard, Johanna; Bizimana, Laurie A; Turner, Daniel B

    2015-05-01

    Transient-absorption spectroscopy is a common and well-developed technique for measuring time-dependent optical phenomena. One important aspect, especially for measurements using pulsed lasers, is how to average multiple data acquisition events. Here, we use a mathematical analysis method based on covariance to evaluate various averaging schemes. The analysis reveals that the baseline and the signal converge to incorrect values without balanced detection of the probe, shot-by-shot detection, and a specific method of averaging. Experiments performed with sub-7 fs pulses confirm the analytic results and reveal insights into molecular excited-state vibrational dynamics.

  4. Contributions of particle absorption to mass extinction coefficients (0.55-14microm) of soil-derived atmospheric dusts: erratum.

    PubMed

    Carlon, H R

    1980-04-01

    Mass extinction coefficients of soil-derived atmospheric dusts often are determined largely by the absorption (rather than scattering) by individual particles, especially at longer IR wavelengths. Under many conditions, reasonable estimates of mass extinction coefficients of dusts can be made from absorption coefficients without the need for detailed knowledge of particle optical constants to perform, e.g., Mie calculations. This paper discusses absorption coefficients of dusts in the visible and IR wavelengths and the physical mechanisms of dust aerosol generation determining that portion of extinction attributable to absorption in a given dust cloud. Some soils, especially clays, can produce dust clouds that are almost pure. absorbers at longer IR wavelengths.

  5. Contributions of particle absorption to mass extinction coefficients (0.55-14 microm) of soil-derived atmospheric dusts.

    PubMed

    Carlon, H R

    1980-03-01

    Mass extinction coefficients of soil-derived atmospheric dusts often are determined largely by the absorption (rather than scattering) by individual particles, especially at longer IR wavelengths. Under many conditions, reasonable estimates of mass extinction coefficients of dusts can be made from absorption coefficients without the need for detailed knowledge of particle optical constants to perform, e.g., Mie calculations. This paper discusses absorption coefficients of dusts in the visible and IR wavelengths and the physical mechanisms of dust aerosol generation determining that portion of extinction attributable to absorption in a given dust cloud. Some soils, especially clays, can produce dust clouds that are almost pure absorbers at longer IR wavelengths.

  6. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  7. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ∼ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  8. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  9. Absorption spectra and speciation of plutonium(VI) with phosphate

    SciTech Connect

    Weger, H.T.; Reed, D.

    1996-02-01

    Plutonium(VI)-phosphate species in aqueous solution, at pH < 2.4, formed two species: PuO{sub 2}H{sub 2}PO{sub 4}{sup +} (characterized by an 835 nm absorption band) and the solid phase PuO{sub 2}(H{sub 2}PO{sub 4}){sub 2}. The stability constant {beta} for the PuO{sub 2}H{sub 2}PO{sub 4}{sup +} species was determined to be log {beta} = 2.1 {+-} 0.1 (ionic strength = 0.6--0.9 M) and log {beta}{sup T} = 2.6 {+-} 0.15 (zero ionic strength). Four Pu(VI)-phosphate species (absorption bands at 842, 846, 857, and 866 nm) formed at pH = 2.4 to 12.2 and are characterized by polynuclear behavior, the formation of precipitates, and colloidal properties. The 842 and 846 nm species are believed to be [PuO{sub 2}(HPO{sub 4}){sub m}]{sub n} and [PuO{sub 2}(NaPO{sub 4}){sub m}]{sub n}. The 857 and 866 nm species area as yet unidentified. The speciation of plutonium with phosphate is of interest to radionuclide migration studies because phosphate is present in many groundwaters and may be used as an actinide getter in nuclear waste disposal. An actinide getter is a complexing agent that forms insoluble phases with actinides, thereby reducing their migration.

  10. Chemical Sensitivity of the Sulfur K-Edge X-ray Absorption Spectra of Organic Disulfides.

    PubMed

    Pickering, Ingrid J; Barney, Monica; Cotelesage, Julien J H; Vogt, Linda; Pushie, M Jake; Nissan, Andrew; Prince, Roger C; George, Graham N

    2016-09-22

    Sulfur K-edge X-ray absorption spectroscopy increasingly is used as a tool to provide speciation information about the sulfur chemical form in complex samples, with applications ranging from fossil fuels to soil science to health research. As part of an ongoing program of systematic investigations of the factors that affect the variability of sulfur K near-edge spectra, we have examined the X-ray absorption spectra of a series of organic symmetric disulfide compounds. We have used polarized sulfur K-edge spectra of single crystals of dibenzyl disulfide to confirm the assignments of the major transitions in the spectrum as 1s → (S-S)σ* and 1s → (S-C)σ*. We also have examined the solution spectra of an extended series of disulfides and show that the spectra change in a systematic and predictable manner with the nature of the external group. PMID:27571342

  11. Absorption spectra of shocked liquid CS/sub 2/

    SciTech Connect

    Dallman, J.C.

    1985-01-01

    The importance of shock initiation of high explosives (HE) was understood as early as 1863 when Alfred Nobel introduced the detonator as a means of detonating nitroglycerine. The critical pressure rise times required to achieve shock initiation and steady propagation of detonation are determined by the chemical and mechanical properties of an explosive. Although progress has been made in the understanding of the effects of mechanical properties, the detailed effects of high pressures on chemical reaction mechanisms are still only poorly understood. This paper reports the results of two experiments using CS/sub 2/, which is known to undergo electronic state transitions when shocked to high pressures. The goal of these experiments was to examine the known shock-generated expansion of CS/sub 2/ absorption bands while generating the shocks with a flyer plate system driven by high explosives.

  12. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  13. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  14. Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wichmann, Janine; Janssen, Nicole A. H.; van der Zee, Saskia; Brunekreef, Bert

    Population studies indicate that study participants living near major roads are more prone to chronic respiratory symptoms, lung function decrements and hospital admissions for asthma. The majority of the studies used proxy measures, such as distance to major roads or traffic intensity in the surroundings of the home. Few studies have communicated findings of concurrently performed measurements of outdoor, indoor and personal air pollution in urban streets with high- and low-traffic density. Measuring light absorption or reflectance of particulate matter (PM) collected on filters is an alternative method to determine elemental carbon, a marker for particles produced by incomplete combustion, compared to expensive and destructive analytical methods. This study sets out to test the null hypothesis that there is no difference in personal and indoor filter absorption coefficients for participants living along busy and quiet roads in Amsterdam. In one study we measured personal and indoor absorption coefficients in a sample of adults (50-70 years) and, in another study, the indoor levels in a population of adults (50-70 years) and school children (10-12 years). In the first study, the ratios of personal and indoor absorption coefficients in homes along busy roads compared with homes on quiet streets were significantly higher by 29% for personal measurements ( n=16 days, p<0.001), and by 19% for indoor measurements ( n=20, p<0.001), while in the second study, the ratio for the indoor measurements was higher by 26% ( n=25 days, p<0.05). Exposure differences between homes along busy compared to homes along quiet streets remained and significant after adjustment for potential indoor sources (such as cooking and use of unvented heating appliances). This study therefore provides tentative support for the use of the type of road as proxy measure for indoor and personal absorption coefficient measurements in epidemiological studies due to the limitations of the study.

  15. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra.

    PubMed

    Baldassarre, Maurizio; Li, Chenge; Eremina, Nadejda; Goormaghtigh, Erik; Barth, Andreas

    2015-01-01

    Infrared spectroscopy is a powerful tool in protein science due to its sensitivity to changes in secondary structure or conformation. In order to take advantage of the full power of infrared spectroscopy in structural studies of proteins, complex band contours, such as the amide I band, have to be decomposed into their main component bands, a process referred to as curve fitting. In this paper, we report on an improved curve fitting approach in which absorption spectra and second derivative spectra are fitted simultaneously. Our approach, which we name co-fitting, leads to a more reliable modelling of the experimental data because it uses more spectral information than the standard approach of fitting only the absorption spectrum. It also avoids that the fitting routine becomes trapped in local minima. We have tested the proposed approach using infrared absorption spectra of three mixed α/β proteins with different degrees of spectral overlap in the amide I region: ribonuclease A, pyruvate kinase, and aconitase. PMID:26184143

  16. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  17. A new photoacoustic method based on the modulation of the light induced absorption coefficient

    NASA Astrophysics Data System (ADS)

    Engel, S.; Wenisch, C.; Müller, F. A.; Gräf, S.

    2016-04-01

    The present study reports on a new photoacoustic (PA) measurement method that is suitable for the investigation of light induced absorption effects including e.g. excited state absorption. Contrary to the modulation of the radiation intensity used in conventional PA-methods, the key principle of this novel setup is based on the modulation of the induced absorption coefficient by light. For this purpose, a pump-probe setup with a pulsed pump laser beam and a continuous probe laser beam is utilized. In this regime, the potential influence of heat on the PA-signal is much smaller when compared to arrangements with pulsed probe beam and continuous pump beam. Beyond that, the negative effect of thermal lenses can be neglected. Thus, the measurement technique is well-suited for materials exhibiting a strong absorption at the pump wavelength. The quantitative analysis of the induced absorption coefficient was achieved by the calibration of the additional PA-signal caused by the continuous probe laser to the PA-signal resulting from the pulsed pump laser using thallium bromoiodide (KRS-5) as sample material.

  18. Simple Monte Carlo methods to estimate the spectra evaluation error in differential-optical-absorption spectroscopy.

    PubMed

    Hausmann, M; Brandenburger, U; Brauers, T; Dorn, H P

    1999-01-20

    Differential-optical-absorption spectroscopy (DOAS) permits the sensitive measurement of concentrations of trace gases in the atmosphere. DOAS is a technique of well-defined accuracy; however, the calculation of a statistically sound measurement precision is still an unsolved problem. Usually one evaluates DOAS spectra by performing least-squares fits of reference absorption spectra to the measured atmospheric absorption spectra. Inasmuch as the absorbance from atmospheric trace gases is usually very weak, with optical densities in the range from 10(-5) to 10(-3), interference caused by the occurrence of nonreproducible spectral artifacts often determines the detection limit and the measurement precision. These spectral artifacts bias the least-squares fitting result in two respects. First, spectral artifacts to some extent are falsely interpreted as real absorption, and second, spectral artifacts add nonstatistical noise to spectral residuals, which results in a significant misestimation of the least-squares fitting error. We introduce two new approaches to investigate the evaluation errors of DOAS spectra accurately. The first method, residual inspection by cyclic displacement, estimates the effect of false interpretation of the artifact structures. The second method applies a statistical bootstrap algorithm to estimate properly the error of fitting, even in cases when the condition of random and independent scatter of the residual signal is not fulfilled. Evaluation of simulated atmospheric measurement spectra shows that a combination of the results of both methods yields a good estimate of the spectra evaluation error to within an uncertainty of ~10%.

  19. Absorption coefficients of GeSn extracted from PIN photodetector response

    NASA Astrophysics Data System (ADS)

    Ye, Kaiheng; Zhang, Wogong; Oehme, Michael; Schmid, Marc; Gollhofer, Martin; Kostecki, Konrad; Widmann, Daniel; Körner, Roman; Kasper, Erich; Schulze, Jörg

    2015-08-01

    In this paper the optical absorption of the GeSn PIN photodetector was investigated. The vertical GeSn PIN photodetectors were fabricated by molecular beam epitaxy (MBE) and dry etching. By means of current density-voltage (J-V) and capacity-voltage (C-V) measurements the photodetector device was characterized. The absorption coefficients of GeSn material were finally extracted from the optical response of PIN structure. With further direct bandgap analysis the influences of device structure was proved negligible.

  20. New Absorption Spectra of CH_2 Near 780 NM

    NASA Astrophysics Data System (ADS)

    Xin, Ju; Wang, Zhong; Sears, Trevor J.

    2009-06-01

    The near infrared and visible spectrum (tilde{b}^1B_1 - tilde{a}^1A_1) of singlet CH_2 has been the subject of much study. However, the region between the red end of the visible part of the spectrum and about 800 nm has not been recorded since the pioneering work of Herzberg and Johns. We have remeasured the absorption spectrum between approximately 769 and 806 nm at near shot-noise-limited sensitivity and Doppler-limited resolution using a frequency-modulated extended cavity diode laser source. Rotational branches in 7 vibronic bands involving K_a = 0-4 have been assigned using known ground state combination differences. Most of them have not previously been observed and some reassignments of the Herzberg and Johns analysis have been made. Comparison with the most complete available calculated ro-vibronic energy level structure helped considerably in making the assignments, and the observed vibronic levels are assigned to levels of both tilde{a} and tilde{b} electronic character. The calculated energy levels show moderate, up to 10 cm^{-1}, apparently random, differences from the observed levels The new data will certainly help to refine the singlet potential and also provide additional avenues for future kinetics and dynamics studies of the radical. G. Herzberg and J. W. C. Johns Proc. R. Soc. London Ser. A, 295, 107 (1966) J. -P. Gu, G. Hirsch, R J Buenker, M. Brumm, G. Osmann, P. R. Bunker and P. Jensen J. Molec. Struc., 517-8, 247 (2000) Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Ju Xin acknowledges support from the Faculty and Student Teams program of the Educational Programs Department at Brookhaven National Laboratory.

  1. The effect of pathological processes on absorption and scattering spectra of samples of bile and pancreatic juice

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Magomedov, M. A.; Murtazaeva, A. A.; Medzhidov, R. T.

    2015-07-01

    Spectra of optical transmission coefficients and optical reflectance for bile and pancreatic juice samples were measured experimentally for different forms of pathologies of the pancreas within the range of 250-2500 nm. The absorption and scattering spectra, as well as the spectrum of the anisotropy factor of scattering, were determined based on the results obtained using the reverse Monte Carlo method. The surface morphology for the corresponding samples of the biological media was studied employing electron microscopy. The dynamics of the optical properties of the biological media was determined depending on the stage of the pathology. It has been demonstrated that the results of the study presented are in a good agreement with pathophysiological data and could supplement and broaden the results of conventional methods for diagnostics of the pancreas.

  2. Absorption spectra of two-level atoms interacting with a strong polychromatic pump field and an arbitrarily intense probe field

    NASA Astrophysics Data System (ADS)

    Yoon, Tai Hyun; Chung, Myung Sai; Lee, Hai-Woong

    1999-09-01

    A numerical method is introduced that solves the optical Bloch equations describing a two-level atom interacting with a strong polychromatic pump field with an equidistant spectrum and an arbitrarily intense monochromatic probe field. The method involves a transformation of the optical Bloch equations into a system of equations with time-independent coefficients at steady state via double harmonic expansion of the density-matrix elements, which is then solved by the method of matrix inversion. The solutions so obtained lead immediately to the determination of the polarization of the atomic medium and of the absorption and dispersion spectra. The method is applied to the case when the pump field is bichromatic and trichromatic, and the physical interpretation of the numerically computed spectra is given.

  3. Theoretical studies on absorption, emission, and resonance Raman spectra of Coumarin 343 isomers.

    PubMed

    Wu, Wenpeng; Cao, Zexing; Zhao, Yi

    2012-03-21

    The vibrationally resolved spectral method and quantum chemical calculations are employed to reveal the structural and spectral properties of Coumarin 343 (C343), an ideal candidate for organic dye photosensitizers, in vacuum and solution. The results manifest that the ground-state energies are dominantly determined by different placements of hydrogen atom in carboxylic group of C343 conformations. Compared to those in vacuum, the electronic absorption spectra in methanol solvent show a hyperchromic property together with the redshift and blueshift for the neutral C343 isomers and their deprotonated anions, respectively. From the absorption, emission, and resonance Raman spectra, it is found that the maximal absorption and emission come from low-frequency modes whereas the high-frequency modes have high Raman activities. The detailed spectra are further analyzed for the identification of the conformers and understanding the potential charge transfer mechanism in their photovoltaic applications.

  4. Separation of scattering and absorption contributions in UV/visible spectra of resonant systems.

    PubMed

    Micali, N; Mallamace, F; Castriciano, M; Romeo, A; Scolaro, L M

    2001-10-15

    Resonance light scattering (RLS) is a phenomenon due to an enhancement of the scattered light in close proximity to an absorption band. The effect is easily detectable in the case of strongly absorbing chromophores, which are able to interact, thus leading to large aggregates (Pasternack, R. F.; Collings, P. J. Science 1995, 269, 935). The measurement of absorption spectra from solutions containing such resonant systems can lead to misleading results. In this paper, a simple method is described to obtain absorption spectra of aggregated species with a fairly good correction of the scattering component. The RLS spectrum, obtained using a common spectrofluorimeter, is correlated to the extinction spectrum of the same sample, allowing for an estimation of the scattering contribution to the total extinction spectrum. The method has been successfully applied both on real samples containing aggregated chromophores, such as porphyrins, chlorophyll a and gold colloids, and by simulating extinction spectra.

  5. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  6. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  7. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  8. AN INTERCOMPARISON CF THE INTEGRATING PLATE AND THE LASER TRANSMISSION METHODS FOR DETERMINATION OF AEROSOL ABSORPTION COEFFICIENTS

    SciTech Connect

    Sadler, M.; Charlson, R.J.; Rosen, H.; Novakov, T.

    1980-07-01

    The absorption coefficients determined by the integrating plate method and the laser transmission method are found to be comparable and highly correlated. Furthermore, a high correlation is found between these absorption coefficients and the carbon content of the aerosol in urbanized regions.

  9. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  10. Quantum mechanical calculation of the collision-induced absorption spectra of N{sub 2}–N{sub 2} with anisotropic interactions

    SciTech Connect

    Karman, Tijs; Groenenboom, Gerrit C.; Avoird, Ad van der; Miliordos, Evangelos; Hunt, Katharine L. C.

    2015-02-28

    We present quantum mechanical calculations of the collision-induced absorption spectra of nitrogen molecules, using ab initio dipole moment and potential energy surfaces. Collision-induced spectra are first calculated using the isotropic interaction approximation. Then, we improve upon these results by considering the full anisotropic interaction potential. We also develop the computationally less expensive coupled-states approximation for calculating collision-induced spectra and validate this approximation by comparing the results to numerically exact close-coupling calculations for low energies. Angular localization of the scattering wave functions due to anisotropic interactions affects the line strength at low energies by two orders of magnitude. The effect of anisotropy decreases at higher energy, which validates the isotropic interaction approximation as a high-temperature approximation for calculating collision-induced spectra. Agreement with experimental data is reasonable in the isotropic interaction approximation, and improves when the full anisotropic potential is considered. Calculated absorption coefficients are tabulated for application in atmospheric modeling.

  11. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  12. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  13. Soft X-ray absorption excess in gamma-ray burst afterglow spectra: Absorption by turbulent ISM

    NASA Astrophysics Data System (ADS)

    Tanga, M.; Schady, P.; Gatto, A.; Greiner, J.; Krause, M. G. H.; Diehl, R.; Savaglio, S.; Walch, S.

    2016-10-01

    Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z> 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 cm-3) collisionally ionised ISM could produce UV/optical and soft X-ray absorbing column densities that differ by a factor of 10. However the UV/optical and soft X-ray absorbing column densities for such sightlines are 2-3 orders of magnitude lower in comparison to the GRB afterglow spectra. For those GRBs with a larger soft X-ray excess by up to an order of magnitude, the contribution in absorption from a turbulent ISM as considered here would ease the required conditions of additional absorbing components, such as the GRB circumburst medium and intergalactic medium.

  14. Theoretical study of absorption and fluorescence spectra of firefly luciferin in aqueous solutions.

    PubMed

    Hiyama, Miyabi; Akiyama, Hidefumi; Yamada, Kenta; Koga, Nobuaki

    2012-01-01

    The absorption and fluorescence spectra of firefly luciferin, which is an analog of oxyluciferin, are investigated by performing the density functional theory (DFT) calculations, especially focusing on the experimentally unassigned peaks. Time-dependent DFT calculations are performed for the excited states of firefly luciferin and its conjugate acids and bases. We find that (1) the peaks in the experimental absorption spectra correspond to the excited states of not only (6'O(-), 4COO(-)) and (6'OH, 4COO(-)), but also (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (2) the peaks in the experimental fluorescence spectra correspond to the excited states of not only (6'O(-), 4COO(-)), but also (6'OH, 4COO(-)), (6'O(-), 4COOH), (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (3) the unassigned peak near 400 nm in the experimental absorption spectra at pH 1 is assigned to the absorption from the equilibrium ground state to the first excited state of (6'OH, 3H(+), 4COOH); and (4) the unassigned peak at 610 nm in the experimental fluorescence spectra corresponds to the transition from the equilibrium first excited state to the ground state of (6'OH, 4COO(-)). PMID:22364397

  15. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  16. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGES

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  17. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-01-30

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages both in computational efficiency and in gaining an intuitive understanding of the effects of absorption on the diffraction data. A matrix of absorption coefficients calculated for μRproducts between 0 and 20 for diffraction angles θDof 0–90° were used to examine the influence of (1) capillary diameter and (2) sample density on the overall scattered intensity as a function of diffraction angle, where μ is the linear absorption coefficient for the sample andRis the capillary radius. On the basis of this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0–50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used and when the sample density is adjusted to be 3/(4μR) of its original density.

  18. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  19. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  20. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz

    2011-12-10

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  1. Absorption spectra and optical parameters of lithium-potassium sulphate single crystals

    NASA Astrophysics Data System (ADS)

    El-Fadl, A. Abu; Gaffar, M. A.; Omar, M. H.

    1999-09-01

    The optical transmittance and reflectance near the fundamental absorption region along the c- and a-axes of lithium potassium sulphate single crystal (LKS) are measured at room temperature. From the data the absorption coefficient ( α) and the optical band gap ( Eopt.g) were deduced. The type of transition was determined. The steepness parameter ( σ), the temperature dependence of the energy gap and the exciton energy ( E0) were also calculated. The extinction coefficient, the refractive index and both the real and imaginary parts of the dielectric permittivity were calculated as functions of the photon energy.

  2. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  3. Revised rate coefficients for H2 and H- destruction by realistic stellar spectra

    NASA Astrophysics Data System (ADS)

    Agarwal, Bhaskar; Khochfar, Sadegh

    2015-01-01

    Understanding the processes that can destroy H2 and H- species is quintessential in governing the formation of the first stars, black holes and galaxies. In this study, we compute the reaction rate coefficients for H2 photodissociation by Lyman-Werner photons (11.2-13.6 eV) and H- photodetachment by 0.76 eV photons emanating from self-consistent stellar populations that we model using publicly available stellar synthesis codes. So far, studies that include chemical networks for the formation of molecular hydrogen take these processes into account by assuming that the source spectra can be approximated by a power-law dependence or a blackbody spectrum at 104 or 105 K. We show that using spectra generated from realistic stellar population models can alter the reaction rates for photodissociation, kdi, and photodetachment, kde, significantly. In particular, kde can be up to ˜2-4 orders of magnitude lower in the case of realistic stellar spectra suggesting that previous calculations have overestimated the impact that radiation has on lowering H2 abundances. In contrast to burst modes of star formation, we find that models with continuous star formation predict increasing kde and kdi, which makes it necessary to include the star formation history of sources to derive self-consistent reaction rates, and that it is not enough to just calculate J21 for the background. For models with constant star formation rate, the change in shape of the spectral energy distribution leads to a non-negligible late-time contribution to kde and kdi, and we present self-consistently derived cosmological reaction rates based on star formation rates consistent with observations of the high-redshift Universe.

  4. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  5. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  6. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  7. Absorption Band Modeling in Reflectance Spectra: Availability of the Modified Gaussian Model

    NASA Astrophysics Data System (ADS)

    Sunshine, J. M.; Pieters, C. M.; Pratt, S. F.; McNaron-Brown, K. S.

    1999-03-01

    The modified Gaussian model, a physically based description of absorption bands in spectra, has been updated to provide compatibility with most computer systems. These new versions, written in MATLAB and IDL, are available at the RELAB Website (www.planetary.brown.edu).

  8. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  9. Absorption and Fluorescence Spectra of Poly(p-phenylenevinylene) (PPV) Oligomers: An ab Initio Simulation

    PubMed Central

    2014-01-01

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations. PMID:25415930

  10. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  11. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range.

    PubMed

    Wu, Xiaojun; Zhou, Chun; Huang, Wenqian Ronny; Ahr, Frederike; Kärtner, Franz X

    2015-11-16

    Optical rectification with tilted pulse fronts in lithium niobate crystals is one of the most promising methods to generate terahertz (THz) radiation. In order to achieve higher optical-to-THz energy efficiency, it is necessary to cryogenically cool the crystal not only to decrease the linear phonon absorption for the generated THz wave but also to lengthen the effective interaction length between infrared pump pulses and THz waves. However, the refractive index of lithium niobate crystal at lower temperature is not the same as that at room temperature, resulting in the necessity to re-optimize or even re-build the tilted pulse front setup. Here, we performed a temperature dependent measurement of refractive index and absorption coefficient on a 6.0 mol% MgO-doped congruent lithium niobate wafer by using a THz time-domain spectrometer (THz-TDS). When the crystal temperature was decreased from 300 K to 50 K, the refractive index of the crystal in the extraordinary polarization decreased from 5.05 to 4.88 at 0.4 THz, resulting in ~1° change for the tilt angle inside the lithium niobate crystal. The angle of incidence on the grating for the tilted pulse front setup at 1030 nm with demagnification factor of -0.5 needs to be changed by 3°. The absorption coefficient decreased by 60% at 0.4 THz. These results are crucial for designing an optimum tilted pulse front setup based on lithium niobate crystals.

  12. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    PubMed

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field.

  13. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    SciTech Connect

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-15

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of {+-}14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 {mu}m spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within {+-}25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  14. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure. PMID:27510989

  15. Calculation of Electronic Absorption Spectra with Account of Thermal Geometry Fluctuations

    NASA Astrophysics Data System (ADS)

    Guzha, Maris V.; Svitenkov, Andrew I.

    2016-08-01

    An influence of thermal fluctuations of molecule's geometry on calculated electronic-absorption Vis/Uv spectra is considered. Paper presents the quantum chemical modeling of the electronic-absorption spectra for the collection of graphene samples (44, 56, 60, 68 atoms). The calculations were performed by time dependent density functional theory (TDDFT) method in combination with molecular dynamics (MD) simulation at T=300 K. The noticeable changing of spectra relative to single point TDDFT calculation was discovered for two of four structures. We associate achieved results with perturbation of hydrogen and carbon atoms on the edges of the structures. We believe that suggested methodology will be useful in application engineering researches of novel molecules and molecular complexes.

  16. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure.

  17. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  18. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  19. Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Oltean, Mircea; Calborean, Adrian; Mile, George; Vidrighin, Mihai; Iosin, Monica; Leopold, Loredana; Maniu, Dana; Leopold, Nicolae; Chiş, Vasile

    2012-11-01

    Absorption spectra of PTCDI (3,4,9,10-perylene-tetracarboxylic-diimide) have been investigated in chloroform, N,N'-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). While no signature of assembled PTCDI molecules is observed in chloroform solution, distinct bands assigned to their aggregation have been identified in DMF and DMSO solutions. PTCDI monomers show very similar absorption patterns in chloroform and DMSO solutions. Experimental data, including the vibronic structure of the absorption spectra were explained based on the Franck-Condon approximation and quantum chemical results obtained at PBE0-DCP/6-31+G(d,p) level of theory. Geometry optimization of the first excited state leads to a nice agreement between the calculated adiabatic transition energies and experimental data.

  20. Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method.

    PubMed

    Yuan, Zhen; Wang, Qiang; Jiang, Huabei

    2007-12-24

    We describe a novel reconstruction method that allows for quantitative recovery of optical absorption coefficient maps of heterogeneous media using tomographic photoacoustic measurements. Images of optical absorption coefficient are obtained from a diffusion equation based regularized Newton method where the absorbed energy density distribution from conventional photoacoustic tomography serves as the measured field data. We experimentally demonstrate this new method using tissue-mimicking phantom measurements and simulations. The reconstruction results show that the optical absorption coefficient images obtained are quantitative in terms of the shape, size, location and optical property values of the heterogeneities examined.

  1. Measurement of the absorption coefficient of a glucose solution through transmission of light and polarymetry techniques

    NASA Astrophysics Data System (ADS)

    Yáñez M., J.

    2011-10-01

    Diabetes is a disease with no cure, but can be controlled to improve the quality of life of sufferers. Currently there are means to control, but this means they have the disadvantage that in order to measure the amount of glucose is necessary to take blood samples that are painful. This paper presents a system for measuring glucose using non-invasive optical techniques: using absorption spectroscopy and polarimetry technique. It shows the results obtained from experiments done on samples containing distilled water and different amounts of glucose to study the absorption coefficient of glucose with both techniques. Water is used because it is one of the main elements in the blood and interferes with glucose measurement. This experiment will develop a prototype to measure glucose through a non-invasive technique.

  2. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  3. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  4. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  5. Analysis of Gain and Absorption Spectra of Gallium Nitride-based Laser Diodes

    NASA Astrophysics Data System (ADS)

    Melo, Thiago

    Laser diodes (LDs) based on the III-Nitride material system, (Al,In,Ga)N, stand to satisfy a number of application needs, and their huge market segment has been further growing with the use of LDs for full color laser projection. All commercially available GaN-based devices are based on the conventional c-plane (polar) orientation of this material. However, strong polarization fields caused by strained quantum-well (QW) layers on c-plane induce the quantum-confined Stark effect (QCSE), which leads to reduced radiative recombination rate and are aggravated when more indium is added into the QW(s) in order to achieve longer wavelengths. A promising solution for this is the use of nonpolar and semipolar crystal growth orientations. Elimination or mitigation of polarization-related fields within the QWs grown along these novel orientations is observed and one expects increased radiative recombination rate and stabilization of the wavelength emission with respect to the injection current. In order to have more insights on the advantages of using the novel crystal orientations of the III-Nitride material system, we compare the gain of LD structures fabricated from c-plane, nonpolar and semipolar GaN substrates. Using thesegmented contact method, single-pass gain spectra of LD epitaxial structures at wafer level are compared for the different crystal orientations as well as the single-pass absorption coefficient spectrum of the active region material and its dependence on reversed bias. Experimental gain spectra under continuous-wave (CW) operation of actual industry LDs fabricated from c-plane and nonpolar/semipolar GaN-based materials emitting wavelengths in the visible are then presented, using the Hakki-Paoli technique at high resolution. Measurements of the transparency current density, total losses and differential modal gain curves up to threshold are analyzed and compared between nonpolar/semipolar and c-plane LDs in violet and blue spectral regions regions. In a

  6. Temperature and pH effects on myoglobin optical absorption spectra

    NASA Astrophysics Data System (ADS)

    Ciesielski, Wayne A.; Arakaki, Lorilee S. L.; Schenkman, Kenneth A.

    2005-03-01

    Myoglobin is an important intracellular oxygen transport molecule in muscle. Oxygen binding to myoglobin can be determined spectroscopically due to differences in absorption of oxymyoglobin and deoxymyoglobin. Myoglobin oxygenation can be used as a measure of intracellular oxygen tension in muscle. We sought to determine the effects of differences in temperature and pH on myoglobin absorption spectra in the near-infrared spectral region. Transmission spectra were taken of pure solutions of oxymyoglobin and deoxymyoglobin at 10°, 20°, 30°, and 40°C at pH values of 6.0, 7.0, and 8.0 (n=4). In second derivative spectra at 40°C, the deoxymyoglobin peak near 760 nm was shifted by 0.9-1.2 nm toward longer wavelengths relative to 10°C at constant pH. Differences in pH did not result in statistically significant shifts in this peak at constant temperature. Estimations of myoglobin saturation from myoglobin spectra with intermediate saturations were obtained by least squares (LS) and partial least squares (PLS) analyses. Both algorithms estimate myoglobin saturation with small root mean square errors (<1e-6) when component spectra and calibration set spectra are at the same temperature as test spectra (n=100). However, when spectra at 20°C or 40°C were used as component spectra in LS with test spectra at 30°C (all at pH 7.0), errors were 0.8% and 1.4%, respectively. PLS analysis of 30°C test spectra using 20°C or 40°C calibration set spectra yielded errors of 1.6% and 1.5%, respectively. When the PLS analysis is endpoint corrected, these errors become vanishingly small. These results demonstrate that peak shifts due to temperature are potential sources of error if calibration and test spectra differ by 10°C. These errors can be minimized by appropriate spectral analytic methods.

  7. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    PubMed

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications. PMID:27168298

  8. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    SciTech Connect

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław; Melikidze, George I.

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have put specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.

  9. C IV Broad Absorption Line Variability in QSO spectra from SDSS I-III Surveys

    NASA Astrophysics Data System (ADS)

    De Cicco, D.; Brandt, W. N.; Paolillo, M.; Grier, C. J.

    2016-08-01

    We present the results of our study of C IV broad absorption line (BAL) variability in the spectra of more than 1500 QSO's from several SDSS I-III surveys. Absorption lines in QSO spectra are due to outflowing winds which originate from the accretion disk, at a distance on the order of 1/100 - 1/10 pc from the central super-massive black hole (SMBH). Winds trigger the accretion mechanism onto the SMBH removing angular momentum from the disk and, since they evacuate gas from the host galaxy, they are believed to play a fundamental role in galaxy evolution. Absorption lines can be classified on the basis of their width and of the observed transitions, and their equivalent width can change on timescales from months to years, due to variations in the covering factor and/or in the ionization level. We analyzed the largest sample ever used for such kind of studies. We find that the fraction of disappearing BALs is three times larger than the one found in previous works. Strong evidence is found for a coordinated variability in spectra with multiple BAL troughs which may be interpreted in terms of disk-wind rotation, and/or variations in the physical status of the shielding gas. We also find that, in spectra with multiple BAL troughs, the disappearing ones are generally those with the highest central velocity.

  10. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    PubMed

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications.

  11. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  12. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-01

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  13. Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films.

    PubMed Central

    Muccio, D D; Cassim, J Y

    1979-01-01

    The absorption and circular dichroic (CD) spectra of purple membrane films in which the plane of the membranes is oriented perpendicular to the incident beam are compared with the solution spectra. This enables one to relate structural features of the purple membrane to a coordinate system as defined by a normal to the membrane plane and two mutually perpendicular in-plane axes. The film and solution absorption spectra were similar except for a relative depression in the 200 - 225-nm region of the film spectrum. However, the CD spectra showed significant differences in the visible region, where the biphasic band in the solution spectrum was replaced by a single positive band at 555 nm in the film spectrum and in the far ultraviolet region, where the 208-nm band was deleted from the film spectra of the native and regenerated membranes. Moreover, a small shoulder occurred at 208 nm in the film spectrum of the bleached membrane. The near ultraviolet spectra also showed differences, whereas the 317-nm band remained essentially the same for both spectra. Based on excitonic interpretations of the visible and far ultraviolet spectra the following conclusions were reached: (a) a relatively strong in-plane monomeric interaction occurs between te retinyl chromophore and apoprotein; (b) the helical axes of the native and regenerated membrane proteins are oriented primarily normal to the membrane plane; and (c) the helical axes of the bleached membrane proteins are tilted more in-plane than the axes of the native or regenerated membrane. Additional conclusions were that an interaction occurs between an in-plane magnetic dipole moment of the retinyl chromophore and probably an in-plane electric dipole moment of a nearby aromatic amino acid(s), and that although the membrane is anisotropic with respect to coupling between electric and magnetic moments of the aromatic amino acids, the transition dipole moments of the aromatic amino acids are not preferentially oriented in either

  14. S0 → Sn and S1 → Sn absorption spectra of thio-distyrylbenzenes

    NASA Astrophysics Data System (ADS)

    Baraldi, Ivan; Ginocchietti, Gabriella; Mazzucato, Ugo; Spalletti, Anna

    2007-08-01

    The molecular structures and the S0 → Sn and S1 → Sn absorption spectra of 1,4-distyrylbenzene and four thio-analogues, where the side phenyl rings are replaced by 2'-thienyl or 3'-thienyl groups and the central benzene ring is replaced by a 2,5-disubstituted thiophene ring, have been investigated by a combined theoretical and experimental approach. The rotational isomerism of these flexible molecules has been analyzed by ab initio quantum chemistry methodologies. The S0 → Sn one-photon absorption spectra and the S1 → Sn transient spectra have been calculated using the CS INDO S-CI and SDT-CI procedures. The calculations on conformational isomers indicate that the stable molecular structures are those where the quasi-single bonds of the vinylene groups have almost planar s-trans configuration. In the 1,4-compounds, there may be an equilibrium between two molecular forms of C2h and C2v symmetry in the model of planar conformations. As concerns the UV-vis absorption spectra, the importance of the cis band, as probe to investigate the molecular structure of the 2,5-compounds, has been pointed out, and the presence of an equilibrium between two rotamers in the compound bearing side 3'-thienyl groups has been confirmed. The S1 → Sn absorption spectra are interpretable only with configuration interaction calculations including the multiple excited configurations. In this respect, the role played by the H2 → L2 double excitation has been emphasized.

  15. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  16. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  17. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  18. Kramers-Kronig analysis of molecular evanescent-wave absorption spectra obtained by multimode step-index optical fibers.

    PubMed

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1996-07-20

    Spectral distortions that arise in evanescent-wave absorption spectra obtained with multimode step-index optical fibers are analyzed both theoretically and experimentally. Theoretical analysis is performed by the application of Kramers-Kronig relations to the real and the imaginary parts of the complex refractive index of an absorbing external medium. It is demonstrated that even when the extinction coefficient of the external medium is small, anomalous dispersion of that medium in the vicinity of an absorption band must be considered. Deviations from Beer's law, band distortions, and shifts in peak position are quantified theoretically as a function of the refractive index and the extinction coefficient of the external medium; the effect of bandwidth for both Lorentzian and Gaussian bands is also evaluated. Numerical simulations are performed for two types of sensing sections in commonly used plastic-clad silica optical fibers. These sensors include an unclad fiber in contact with a lower-index absorbing liquid and a fiber with the original cladding modified with an absorbing species. The numerical results compare favorably with those found experimentally with these types of sensing sections.

  19. Ab Initio Simulation of the Absorption Spectra of Photoexcited Carriers in TiO2 Nanoparticles.

    PubMed

    Nunzi, Francesca; De Angelis, Filippo; Selloni, Annabella

    2016-09-15

    We investigate the absorption spectra of photoexcited carriers in a prototypical anatase TiO2 nanoparticle using hybrid time dependent density functional theory calculations in water solution. Our results agree well with experimental transient absorption spectroscopy data and shed light on the character of the transitions. The trapped state is always involved, so that the SOMO/SUMO is the initial/final state for the photoexcited electron/hole absorption. For a trapped electron, final states in the low energy tail of the conduction band correspond to optical transitions in the IR, while final states at higher energy correspond to optical transitions in the visible. For a trapped hole, the absorption band is slightly blue-shifted and narrower in comparison to that of the electron, consistent with its deeper energy level in the band gap. Our calculations also show that electrons in shallow traps exhibit a broad absorption in the IR, resembling the feature attributed to conductive electrons in experimental spectra. PMID:27569530

  20. Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments

    NASA Astrophysics Data System (ADS)

    Markushev, D. D.; Ordonez-Miranda, J.; Rabasović, M. D.; Galović, S.; Todorović, D. M.; Bialkowski, S. E.

    2015-06-01

    The open-cell photoacoustic signal measured in the transmission configuration for aluminum thin plates with thicknesses of 280 μm, 197 μm, and 112 μm is experimentally and theoretically analyzed, in the 20 Hz-7 kHz modulation frequency range. It is shown that the observed differences between the predictions of the standard thermoelastic model and the experiment data of both the amplitude and phase of the photoacoustic signal can be overcome by considering the aluminum samples coated with a thin layer of black paint as volume-absorber materials. This new approach provides a quite good agreement with the obtained experimental data, in the whole frequency range, and yields an effective absorption coefficient of (16 ± 2) mm-1, for a 280 μm-thick sample. The introduction of the finite absorption coefficient led to the correct ratio between the thermal diffusion and thermoelastic components of the photoacoustic signal. Furthermore, it is found that the "volume-absorber" approach accurately describes the behavior of the amplitude, but not that of the phase recorded for a 112 μm-thick sample, due to its relatively strong thermoelastic bending, which is not considered by this theory. Within the approximation of the small bending, the proposed "volume-absorber" model provides a reliable description of the photoacoustic signal for Al samples thicker than 112 μm, and extends the applicability of the classical "opaque" approach.

  1. Theoretical electronic absorption and natural circular dichroism spectra of (-)-trans-cyclooctene

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Bondo; Koch, Henrik

    2000-02-01

    Using the random phase approximation and coupled cluster singles and doubles linear response theory in conjunction with two basis sets of augmented double-zeta quality and two nuclear geometries, we have calculated electronic absorption and natural circular dichroism spectra of (-)-trans-cyclooctene. We present a density functional theory optimized nuclear geometry whose ground state electric dipole moment and harmonic vibrational spectrum compare well with experimental data. The coupled cluster results obtained with this nuclear geometry are in good agreement with experimental electronic spectra, although the original interpretation of the most intense low-lying band as a π→π* transition is contradicted.

  2. Two-dimensional J-spectra with absorption-mode lineshapes

    NASA Astrophysics Data System (ADS)

    Pell, Andrew J.; Keeler, James

    2007-12-01

    Two-dimensional J-spectroscopy offers the possibility of a complete separation of chemical shifts and J-couplings. However, the usefulness of the experiment is considerably reduced by the fact that peaks in the spectra have the phase-twist lineshape. We present a simple new spectroscopic method for recording J-spectra in which the peaks are both in the absorption mode and retain their natural intensities, albeit at the cost of a considerable reduction in the signal-to-noise ratio. No special data-processing is required. The method is tested on quinine, and the steroid dehydroisoandrosterone.

  3. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  4. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  5. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum. PMID:1886936

  6. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum.

  7. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

    PubMed

    De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger

    2016-02-23

    Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.

  8. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra

    NASA Astrophysics Data System (ADS)

    Ponomarev, Yu. N.; Solodov, A. A.; Solodov, A. M.; Petrova, T. M.; Naumenko, O. V.

    2016-07-01

    A description of the spectroscopic complex at V.E. Zuev Institute of Atmospheric Optics, SB RAS, operating in a wide spectral range with high threshold sensitivity to the absorption coefficient is presented. Measurements of weak lines and nonselective spectra of CO2 and H2O were performed based on the built setup. As new application of this setup, positions and intensities of 152 weak lines of H2O were measured between 2400 and 2560 cm-1 with threshold sensitivity of 8.6×10-10 cm-1, and compared with available calculated and experimental data. Essential deviations between the new intensity measurements and calculated data accepted in HITRAN 2012 and GEISA 2015 forthcoming release are found.

  9. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  10. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    PubMed

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets. PMID:27343458

  11. Observationally determined Fe II oscillator strengths. [interstellar and quasar absorption spectra

    NASA Technical Reports Server (NTRS)

    Van Steenberg, M.; Shull, J. M.; Seab, C. G.

    1983-01-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  12. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    PubMed

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets.

  13. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes.

    PubMed

    Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T

    2006-01-21

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.

  14. Source brightness fluctuation correction of solar absorption Fourier Transform mid infrared spectra

    NASA Astrophysics Data System (ADS)

    Ridder, T.; Warneke, T.; Notholt, J.

    2011-01-01

    Solar absorption Fourier Transform infrared spectrometry is considered a precise and accurate method for the observation of trace gases in the atmosphere. The precision and accuracy of such measurements are dependent on the stability of the light source. Fluctuations in the source brightness reduce the precision and accuracy of the trace gas concentrations, but cannot always be avoided. Thus, a strong effort is made within the community to reduce the impact of source brightness fluctuations by applying a correction on the spectra following the measurements. So far, it could be shown that the precision and accuracy of CO2 total column concentrations could be improved by applying a source brightness fluctuation correction to spectra in the near infrared spectral region. The analysis of trace gas concentrations obtained from spectra in the mid infrared spectral region is fundamental. However, spectra below 2000 cm-1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents a source brightness fluctuation correction. Here, we show a method of source brightness fluctuation correction, which can be applied on spectra in the whole infrared spectral region including spectra measured with a MCT detector. We present a solution to remove the unknown offset in MCT interferograms allowing MCT spectra for an application of source brightness fluctuation correction. This gives an improvement in the quality of MCT spectra and we demonstrate an improvement in the retrieval of O3 profiles and total column concentrations. For a comparison with previous studies, we apply our source brightness fluctuation correction method on spectra in the near infrared spectral region and show an improvement in the retrieval of CO2 total column concentrations.

  15. Emission and absorption spectra of some bridged 1,5-benzodiazepines

    NASA Astrophysics Data System (ADS)

    Mellor, J. M.; Pathirana, R. N.; Stibbard, J. H. A.

    Absorption spectra in neutral and acidic media are reported for a series of bridged 1,5-benzodiazepines, which are unable to tautomerize. Comparison is made with non-bridged 1,5-benzodiazepines capable of tautomeric rearrangement. Both bridged and non-bridged 1,5-benzodiazepines are essentially non-fluorescent due to the "proximity effect" of interaction between singlet ηπ* and ππ* states of similar energy, a phenomenon previously recognised in six-membered nitrogen heterocycles.

  16. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  17. Measurements of niobium absorption spectra in plasmas with nearly full M-shell configurations

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; Harris, J. W. O.; Graham, P.; Davidson, S. J.; James, S. F.; Crowley, B. J. B.; Clark, E. L.; Smith, C. C.; Upcraft, L.

    2007-10-01

    A systematic study has been carried out on the changes in the L-shell absorption structure of niobium as a result of changing the population of the n = 3 shell from full to having vacancies in the 3d level. The niobium spectra were measured in the 2-3 keV frequency range, which spanned the 2p-nd transitions where 3 ≤ n ≤ 11. In addition to the detailed structure in these arrays the data also show 2s-4p and 2p-4s transitions and the bound-free L edge. The frequencies and widths of transition arrays, transmission between arrays, and the absorption due to the bound-free edge, can be seen in the data. The sample conditions were found from a combination of two-dimensional radiation-hydrodynamics calculations using the AWE NYM code and flux measurements using X-ray diodes, measurements of 1s-2p absorption spectra in aluminium and mixed aluminium/niobium samples. The electron temperature error, inferred from the modelling, is ±2 eV, with a density error of 30%. The data were recorded over the temperature range from ˜28 to 45 eV and show marked changes in the spectra over this range. The data were compared to spectra predicted by the AWE CASSANDRA [B.J.B. Crowley, J.W.O. Harris, J. Quant. Spectrosc. Radiat. Transfer 71 (2000) p. 257] opacity code. The calculated spectra were able to reproduce the measurements reasonably well. However, there are some differences in line positions that cannot be accounted for by gradients and there are differences in the array structure in the prediction and the measurements, with additional structure predicted but not seen in the measurements. There is also lower transmission on the blue side of the 2p-3d transition arrays compared to prediction.

  18. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    NASA Astrophysics Data System (ADS)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  19. [Study on the absorption and fluorescence spectra of ethylene glycol and glycerol].

    PubMed

    Xu, Hui; Zhu, Tuo; Yu, Rui-Peng

    2007-07-01

    The absorption and fluorescence spectra of ethylene glycol and glycerol solution induced by UV light were studied respectively in the present paper. The most intense absorption wavelength for both of them was located at 198 nm. Moreover, fluorescence was detected when induced by suitable UV light, and the corresponding fluorescence spectra were listed. But there is no obvious relationship found between the fluorescence intensity and the excited wavelength, and a further research should be done. From the first derivative fluorescence spectra of ethylene glycol, it was concluded that under the UV light of 210 nm, the variation speed for relative intensity proved to be the fastest. In contrast, when excited by 225 nm, the speed proved to be the slowest. In addition, based on the quantum calculation and the transition from HOMO to LUMO of electronics in one-dimensional quantum well, the authors attempted to give out the value of absorption wavelength. In consideration of the bond-length variety brought out by the chain processing, the error between the experimental and calculation values should be apprehensible, and the latter can serve as some reference value in theory.

  20. Hot Experimental Absorption Spectra of CH_4 in the Pentad and Octad Region

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Dulick, Michael; Bernath, Peter F.

    2014-06-01

    We present comprehensive line lists of CH_4 at high temperatures for the pentad and octad region (2400-5000 wn). These spectra improve on our previous emission measurements for this region by using a new quartz sample cell in conjunction with a tube furnace (pictured). Ten temperatures have been recorded from room temperature up to 1000°C and our technique involves the acquisition of four separate Fourier transform infrared spectra at each temperature, thus accounting for both the emission and absorption of the molecule and the cell. By combining these four spectra we obtain true transmission spectra of hot CH_4 in this region. Analysis of this set of spectra enables the production of a line list that includes the position, intensity and empirical lower state energy. Our spectra and line lists can be used directly to model planetary atmospheres and brown dwarfs. Hargreaves, R.J., Beale, C.A., Michaux, L., Irfan, M., & Bernath, P.F. 2012, ApJ, 757, 46

  1. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  2. Twin-peaks absorption spectra of excess electron in ionic liquids

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Kondoh, Takafumi; Yoshida, Yoichi; Takahashi, Kenji

    2014-07-01

    The solvated electron in room temperature ionic liquids (RTILs) has been the subject of several investigations and several reports exist on its nature and absorption spectrum. These studies concluded that the solvated electron exhibits an absorption spectrum peaking in the 1000-1400 nm region; a second absorption band peaking in the UV region has been assigned to the hole or dication radicals simultaneously formed in the system. Here we report on the fate of the excess electron in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, P14+/NTf2- using nanosecond pulse radiolysis. Scavenging experiments allowed us to record and disentangle the complex spectrum measured in P14+/NTf2-. We identified a bi-component absorption spectrum, due to the solvated electron, the absorption maxima located at 1080 nm and around 300 nm, as predicted by previous ab-initio molecular dynamics simulations for the dry excess electron. We also measured the spectra using different ionic liquids and confirmed the same feature of two absorption peaks. The present results have important implications for the characterization of solvated electrons in ionic liquids and better understanding of their structure and reactivity.

  3. Intelligent information extraction from reflectance spectra Absorption band positions. [application to laboratory and earth-based telescope spectra

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Jones, J. L.

    1986-01-01

    A multiple high-order derivative analysis algorithm has been developed which can automatically extract absorption band positions from low-quality reflectance spectra with little degredation of accuracy. Overlapping bands with comparable widths and intensities can be resolved whose centers are as close as 0.3-0.5 W, with safer resolution limits of 0.6-1.0 W band center separations suggested for overlapping bands that are dissimilar. The segment length for smoothing is continually adjusted to about 0.5 W to minimize signal distortion, and a spectral pattern recognition algorithm predicts the signal spectrum and calculates approximate W across the spectrum using its second derivative. A single-pass cubic spline is applied to the smoothed data, and a sliding segment sixth-order polynomial is fit to the spectrum, with the length of the segment being continuously locally adjusted to 1.0 W across the spectrum. Good reliability and consistency of the algorithm is demonstrated with application to laboratory and earth-based telescope spectra.

  4. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  5. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    PubMed

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols.

  6. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  7. Absorption spectra and photoresponse observation of Cu2O thin film photoanodes

    NASA Astrophysics Data System (ADS)

    Mani, Endri; Garuthara, Rohana

    2014-03-01

    Electrodeposition was used to deposit Cu2O thin films on ITO substrates. The deposited Cu2O films were characterized by photocurrent, absorption and reflectance spectroscopy. Photoresponse of the film clearly indicated n-type behavior of Cu2O in photoelectrochemical cells. The effects of chlorine doped photoanodes deposited in different solution pH on the magnitude of their photocurrent are studied. The low temperature absorption spectra of chlorine doped Cu2O films are found to depend on the solution pH in the range 10.0-7.5. Optical absorption spectra of Cu2O films were measured in the temperature range 79K - 295K. The Urbach's tail was observed for n-type conductive Cu2O films in the temperature range 79K to 295K. The Urbach's energy as a function of temperature for Cu2O films were studied. The results will be discussed with emphasis on the reflectance, absorption and photoresponse observation.

  8. Nonlinear fitting of absorption edges in K-edge densitometry spectra

    SciTech Connect

    Collins, M.; Hsue, Sin-Tao

    1997-11-01

    A new method for analyzing absorption edges in K-Edge Densitometry (KED) spectra is introduced. This technique features a nonlinear function that specifies the empirical form of a broadened K-absorption edge. Nonlinear fitting of the absorption edge can be used to remove broadening effects from the KED spectrum. This allows more data near the edge to be included in the conventional KED fitting procedure. One possible benefit is enhanced precision of measured uranium and plutonium concentrations. Because no additional hardware is required, several facilities that use KED may eventually benefit from this approach. Applications of nonlinear KED fitting in the development of the Los Alamos National Laboratory (LANL) hybrid K-edge/x-ray fluorescence (XRF) densitometer system are described.

  9. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, Sergey G.; Zhidkov, N. V.; Pinegin, A. V.; Suslov, N. A.

    2012-01-01

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 — 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s — 2p transitions in Al atoms and the 2p — 3d transitions in Ge atoms are presented.

  10. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  11. The effect of implanting boron on the optical absorption and electron paramagnetic resonance spectra of silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Stesmans, A.; Weeks, R. A.; Weller, R. A.

    2008-09-01

    Silica samples (type III, Corning 7940) were implanted with B using multiple energies to produce a layer ˜600 nm thick in which the concentration of B ranged from 0.034 to 2.04 at. %. Optical absorption spectra were measured from 1.8 to 6.5 eV. Electron paramagnetic resonance (EPR) measurements were generally made at ˜20.3 and 33 GHz for sample temperatures ranging from 77 to 100 K. Based on the EPR spectra three types of defects, namely, Eγ', the E'-type 73 G split doublet (E73'), and the peroxyradical (POR) were identified. No oxygen-associated hole centers (OHCs) nor specific B-associated paramagnetic defects were detected, not even at the largest B concentration of 2.04 at. %. Unlike previous assignments, there was no correlation between the 4.83 eV optical absorption band and the observed PORs. From these results, we infer that in addition to POR, there is at least one additional Si-related state absorbing in the 4.8-4.9 eV range that is likely diamagnetic. The 5.85 eV optical absorption band is found to be due to the Eγ' and E73' centers, with, in average, quite similar oscillator strengths inferred as before. Both the optical absorption and the electron spin resonance data can be satisfactorily explained without the need for specific B-associated defect site (s). As no OHCs are detected by ESR, these do not seem to make a detectable contribution to the optical spectra.

  12. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  13. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.

    PubMed

    Prisutova, Jevgenija; Horoshenkov, Kirill; Groby, Jean-Philippe; Brouard, Bruno

    2014-12-01

    The measurement of acoustic material characteristics using a standard impedance tube method is generally limited to the plane wave regime below the tube cut-on frequency. This implies that the size of the tube and, consequently, the size of the material specimen must remain smaller than a half of the wavelength. This paper presents a method that enables the extension of the frequency range beyond the plane wave regime by at least a factor of 3, so that the size of the material specimen can be much larger than the wavelength. The proposed method is based on measuring of the sound pressure at different axial locations and applying the spatial Fourier transform. A normal mode decomposition approach is used together with an optimization algorithm to minimize the discrepancy between the measured and predicted sound pressure spectra. This allows the frequency and angle dependent reflection and absorption coefficients of the material specimen to be calculated in an extended frequency range. The method has been tested successfully on samples of melamine foam and wood fiber. The measured data are in close agreement with the predictions by the equivalent fluid model for the acoustical properties of porous media.

  14. Energy and optical absorption spectra of endohedral metallofullerenes with Gd or Ho as strongly correlated π-electron systems

    NASA Astrophysics Data System (ADS)

    Bubnov, V. P.; Kareev, I. E.; Lobanov, B. V.; Murzashev, A. I.; Nekrasov, V. M.

    2016-08-01

    Isomerically pure endohedral metallofullerenes Gd@C82(C2v), Ho@C82( C 2 v ), and their monoanions have been synthesized and separated. The optical absorption spectra of solutions of obtained compounds in o-dichlorobenzene have been studied. Within the Hubbard model, the energy spectrum of isomer of C 2 v symmetry (no. 9) of fullerene C82 has been calculated. Based on the obtained spectrum, optical absorption spectra of endohedral metallofullerenes Gd@C82 and Ho@C82 and their monoanions have been simulated. The calculated optical absorption spectra have been compared with experimental ones; it has been found that qualitative agreement between them is observed.

  15. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  16. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  17. [Time resolved UV-Vis absorption spectra of quercetin reacting with various concentrations of sodium hydroxide].

    PubMed

    Yang, Li-Jun; Li, Ping; Gao, Yan-Jun; Li, Hui-Feng; Wu, Da-Cheng; Li, Rui-Xia

    2009-06-01

    A real time investigation of chemical reaction process of quercetin with various concentrations of sodium hydroxide was performed by using an intensified spectroscopic detector ICCD. The time resolved UV-Vis absorption spectra of 5 x 10(-5) mol x L(-1) quercetin respectively reacting with sodium hydroxide at concentrations of 2, 0.2, 0.1, 0.04 and 0.02 mol x L(-1) were acquired. A total of 200 spectra with the same exposure time of 0.1 ms for each spectrum but different time interval between two consecutive spectra were recorded for each reaction. The first 50 spectra have the time interval of 20 ms, the next 50 have 1 s, and the last 100 have 2 s. Results indicate that quercetin reacted with sodium hydroxide easily and there was an intermediate product formed during the reaction, with different concentrations of reactants, the changes of absorption bands were the same, but the moments at which the changes happened were different and the total reaction time was various from 1 s to 100 s. Spectra recorded showed the disappearing process of the typical bands centered at 254 and 374 nm of pure quercetin, the growing and disappearing processes of a new band centered at 427 nm of the intermediate product, and the growing process of the new band centered at 314 nm of the final product obviously. No other transient spectroscopic data are currently available on the reaction of quercrtin with sodium hydroxide, the results obtained in the present work provide useful experimental data for the study of the microscopic process of the reaction.

  18. Assignment of bacteriochlorophyll a ligation state from absorption and resonance raman spectra

    SciTech Connect

    Callahan, P.M.; Cotton, T.M.

    1987-11-11

    Absorption and Soret excitation resonance Raman (RR) spectra have been obtained for a series of coordination forms on monomeric bacteriochlorophyll a (BChl a). Strong and moderate intensity bands are observed in the RR spectrum at 1609 and 1530 cm/sup -1/ for five-coordinate species, which shift to 1595 and 1512 cm/sup -1/, respectively, in the six-coordinate form. These coordination-sensitive vibrations are independent of the nature of the axial ligand and are suggested to have significant C/sub a/ C/sub m/ character, while several other less intense coordination-sensitive bands at 1463, 1444, and 1375 cm/sup -1/ are considered to arise from C/sub b/C/sub b/ and C/sub a/N stretching vibrations. These coordination-sensitive RR bands were used to determine BChl a ligation state in the solvents used, and structure correlations based on absorption maxima have been developed. The Q/sub x/ absorption band position is sensitive not only to BChl a Mg/sup 2 +/ coordination number but also to the nature of the axial ligand, i.e., oxygen, sulfur, or nitrogen. Q/sub x/ maxima are observed at 570, 575-580, and 582 nm for five-coordinate oxygen, sulfur, and nitrogen ligands, respectively, and at 590-595 and 605-612 nm, for six-coordinate oxygen and nitrogen species, respectively. The Q/sub y/ absorption maximum is insensitive to coordination number changes but is dependent on the nature of the axial ligand: 770 nm for oxygen ligand(s) and 775 nm for nitrogen ligand(s). A similar series of absorption and Soret excitation RR spectra were obtained for the demetalated form of BChl a, BPheo a.

  19. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    USGS Publications Warehouse

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  20. Time variations of narrow absorption lines in high resolution quasar spectra

    NASA Astrophysics Data System (ADS)

    Boissé, P.; Bergeron, J.; Prochaska, J. X.; Péroux, C.; York, D. G.

    2015-09-01

    Aims: We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of five distant sources were assembled, for which two spectra are available, either VLT/UVES or Keck/HIRES, which were taken several years apart. Methods: We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behaviour of a broad variety of absorption line systems by sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lyα systems, as well as neutral gas within our own Galaxy. Results: Intervening absorption lines from Mg ii, Fe ii, or proxy species with lines of lower opacity tracing the same kind of (moderately ionised) gas appear in general to be remarkably stable (1σ upper limits as low as 10% for some components on scales in the range 10-100 au), even for systems at zabs ≈ ze. Marginal variations are observed for Mg ii lines towards PKS 1229-021 at zabs = 0.83032; however, we detect no systems that display any change as large as those reported in low resolution SDSS spectra. The lack of clear variations for low β Mg ii systems does not support the existence of a specific population of absorbers made of swept-up gas towards blazars. In neutral or diffuse molecular media, clear changes are seen for Galactic Na i lines towards PKS 1229-02 (decrease in N by a factor of four for one of the five components over 9.7 yr), corresponding to structure on a scale of about 35 au, in good agreement with known properties of the Galactic interstellar medium. Tentative variations are detected for H2J = 3 lines towards FBQS J2340-0053 at zabs = 2.05454 (≃35% change in column density, N, over 0.7 yr in the rest frame), suggesting

  1. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  2. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  3. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  4. Effect of solvent on absorption spectra of all-trans-{beta}-carotene under high pressure

    SciTech Connect

    Liu, W. L.; Zheng, Z. R.; Liu, Z. G.; Zhu, R. B.; Wu, W. Z.; Li, A. H.; Yang, Y. Q.; Dai, Z. F.; Su, W. H.

    2008-03-28

    The absorption spectra of all-trans-{beta}-carotene in n-hexane and carbon disulfide (CS{sub 2}) solutions are measured under high pressure at ambient temperature. The common redshift and broadening in the spectra are observed. Simulation of the absorption spectra was performed by using the time-domain formula of the stochastic model. The pressure dependence of the 0-0 band wavenumber is in agreement with the Bayliss theory at pressure higher than 0.2 GPa. The deviation of the linearity at lower pressure is ascribed to the reorientation of the solvent molecules. Both the redshift and broadening are stronger in CS{sub 2} than that in n-hexane because of the more sensitive pressure dependence of dispersive interactions in CS{sub 2} solution. The effect of pressure on the transition moment is explained with the aid of a simple model involving the relative dimension, location, and orientation of the solute and solvent molecules. The implication of these results for light-harvesting functions of carotenoids in photosynthesis is also discussed.

  5. The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    NASA Technical Reports Server (NTRS)

    Defrees, Doug J.; Miller, M. D.

    1989-01-01

    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations.

  6. Measurability of Kinetic Temperature from Metal Absorption-Line Spectra Formed in Chaotic Media

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Takahara, Fumio; Agafonova, Irina I.

    1999-06-01

    We present a new method for recovering the kinetic temperature of the intervening diffuse gas to an accuracy of 10%. The method is based on the comparison of unsaturated absorption-line profiles of two species with different atomic weights. The species are assumed to have the same temperature and bulk motion within the absorbing region. The computational technique involves the Fourier transform of the absorption profiles and the consequent entropy-regularized χ2-minimization (ERM) to estimate the model parameters. The procedure is tested using synthetic spectra of C+, Si+, and Fe+ ions. The comparison with the standard Voigt fitting analysis is performed, and it is shown that the Voigt deconvolution of the complex absorption-line profiles may result in estimated temperatures that are not physical. We also successfully analyze Keck telescope spectra of C II λ1334 and Si II λ1260 lines observed at the redshift z=3.572 toward the quasar Q1937-1009 by Tytler et al. Based in part on data obtained at the W. M. Keck Observatory, which is jointly operated by the University of California and the California Institute of Technology.

  7. Effects of Spectralon absorption on reflectance spectra of typical planetary surface analog materials.

    PubMed

    Zhang, Hao; Yang, Yazhou; Jin, Weidong; Liu, Chujian; Hsu, Weibiao

    2014-09-01

    Acquiring accurate visible and near-infrared (VisNIR) reflectance values of atmosphereless celestial bodies is very important in inferring the physical and geological properties of their surficial materials. When a calibration target with inherent non-trivial absorption features is used, the calibrated reflectance would essentially always contain spurious spectral features and the spectroscopic data may easily be misinterpreted if the artifact is not properly taken care of. We demonstrate with laboratory reflectance measurements that the VisNIR spectra of three typical planetary surface analog materials, lunar simulant JSC-1A, olivine and pyroxene grains, have an artificial peak at 2.1 µm when Spectralon-type plaque made of polytetrafluoroethylene is used as the calibration target in the NIR region. The degree of severity of this artifact is dependent on the strength of the 2.0 µm absorption feature of the mineral. Empirical methods are proposed to remove this artifact to bring the spectra close to that calibrated by a gold mirror which does not have any conspicuous absorption features in the NIR region. The correction methods may be applied to reflectance data acquired by the VisNIR imaging spectrometer onboard the Yutu Rover of the Chinese Chang'E 3 lunar mission which employed an onboard Spectralon-type calibration target. PMID:25321507

  8. Effects of Spectralon absorption on reflectance spectra of typical planetary surface analog materials.

    PubMed

    Zhang, Hao; Yang, Yazhou; Jin, Weidong; Liu, Chujian; Hsu, Weibiao

    2014-09-01

    Acquiring accurate visible and near-infrared (VisNIR) reflectance values of atmosphereless celestial bodies is very important in inferring the physical and geological properties of their surficial materials. When a calibration target with inherent non-trivial absorption features is used, the calibrated reflectance would essentially always contain spurious spectral features and the spectroscopic data may easily be misinterpreted if the artifact is not properly taken care of. We demonstrate with laboratory reflectance measurements that the VisNIR spectra of three typical planetary surface analog materials, lunar simulant JSC-1A, olivine and pyroxene grains, have an artificial peak at 2.1 µm when Spectralon-type plaque made of polytetrafluoroethylene is used as the calibration target in the NIR region. The degree of severity of this artifact is dependent on the strength of the 2.0 µm absorption feature of the mineral. Empirical methods are proposed to remove this artifact to bring the spectra close to that calibrated by a gold mirror which does not have any conspicuous absorption features in the NIR region. The correction methods may be applied to reflectance data acquired by the VisNIR imaging spectrometer onboard the Yutu Rover of the Chinese Chang'E 3 lunar mission which employed an onboard Spectralon-type calibration target.

  9. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  10. Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn

    NASA Astrophysics Data System (ADS)

    Wu, J.; Hong, H.; Shang, S.; Dai, M.; Lee, Z.

    2007-05-01

    We examined the temporal and spatial variabilities of phytoplankton absorption coefficients (αphλ)) and their relationships with physical processes in the northern South China Sea from two cruise surveys during spring (May 2001) and late autumn (November 2002). A large river plume induced by heavy precipitation in May stimulated a phytoplankton bloom on the inner shelf, causing significant changes in the surface water in αph values and B/R ratios (αph(440)/αph(675)). This was consistent with the observed one order of magnitude elevation of chlorophyll α and a shift from a pico/nano dominated phytoplankton community to one dominated by micro-algae. At the seasonal level, enhanced vertical mixing due to strengthened northeast monsoon in November has been observed to result in higher surface αph(675) (0.002-0.006 m-1 higher) and less pronounced subsurface maximum on the outer shelf/slope in November as compared that in May. Measurements of αph and B/R ratios from three transects in November revealed a highest surface αph(675) immediately outside the mouth of the Pearl River Estuary, whereas lower αph(675) and higher B/R ratios were featured in the outer shelf/slope waters, demonstrating the respective influence of the Pearl River plume and the oligotrophic nature of South China Sea water. The difference in spectral shapes of phytoplankton absorption (measured by B/R ratios and bathochromic shifts) on these three transects infers that picoprocaryotes are the major component of the phytoplankton community on the outer shelf/slope rather than on the inner shelf. In addition, a regional tuning of the phytoplankton absorption spectral model (Carder et al., 1999) demonstrated a greater spatial variation than seasonal variation in the lead parameter a0(λ). These results suggest that phytoplankton absorption properties in a coastal region such as the northern South China Sea are complex and region-based parameterization is mandatory in order for remote sensing

  11. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient.

  12. First-principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi

    2009-02-01

    We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.

  13. Absorption features in the 5-8 micron spectra of protostars

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.; Bregman, J.; Goebel, J.; Witteborn, F. C.; Dhendecourt, L. B.

    1984-01-01

    High signal-to-noise ratio spectra in the range of 5-8 microns of four sources embedded in molecular clouds are examined using low-temperature laboratory measurements of the 5-8-micron spectra of simple molecules and their mixtures. The absorption, apparent in all four sources, is characterized by highly distinct features ranging from two relatively narrow bands at 6.0 and 6.8 microns in W33A to a broad, shallow, and partially structured feature extending from 5.2 to 7.8 microns in Mon R2-IRS2, BN, and NGC2264. The first feature (W33A) is explained by the OH bending mode in H2O and the CH deformation modes in saturated hydrocarbons; while the second feature (Mon R2-IRS2-type) is explained by the presence of a mixture of saturated and unsaturated hydrocarbons possibly containing strongly electronegative groups.

  14. Ultrafast optical nonlinearity, electronic absorption, vibrational spectra and solvent effect studies of ninhydrin

    NASA Astrophysics Data System (ADS)

    Sajan, D.; Devi, T. Uma; Safakath, K.; Philip, Reji; Němec, Ivan; Karabacak, M.

    2013-05-01

    FT-IR, FT-Raman and UV-Vis spectra of the nonlinear optical molecule ninhydrin have been recorded and analyzed. The equilibrium geometry, bonding features, and harmonic vibrational wavenumbers have been investigated with the help of B3LYP density functional theory method. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. Solvent effects have been calculated using time-dependent density functional theory in combination with the polarized continuum model. Natural bond orbital analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule. Employing the open-aperture z-scan technique, nonlinear optical absorption of the sample has been studied in the ultrafast and short-pulse excitation regimes, using 100 fs and 5 ns laser pulses respectively. It is found that ninhydrin exhibits optical limiting for both excitations, indicating potential photonic applications.

  15. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption spectra to validate DFT EOS

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathleen; Martin, Laura; Fan, Hongyou; Kay, Jeffrey; Wixom, Ryan

    2015-06-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman/Electronic spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We will discuss changes in the electronic structure of HNS under pressure, validation of a DFT predicted equation of state (EOS), and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  16. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  17. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.

    PubMed

    Ghysels, M; Durry, G; Amarouche, N

    2013-04-15

    By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.

  18. Effects of domain size on x-ray absorption spectra of boron nitride doped graphenes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hua, Weijie; Wang, Bo-Yao; Pong, Way-Faung; Glans, Per-Anders; Guo, Jinghua; Luo, Yi

    2016-08-01

    Doping is an efficient way to open the zero band gap of graphene. The control of the dopant domain size allows us to tailor the electronic structure and the properties of the graphene. We have studied the electronic structure of boron nitride doped graphenes with different domain sizes by simulating their near-edge X-ray absorption fine structure (NEXAFS) spectra at the N K-edge. Six different doping configurations (five quantum dot type and one phase-separated zigzag-edged type) were chosen, and N K-edge NEXAFS spectra were calculated with large truncated cluster models by using the density functional theory with hybrid functional and the equivalent core hole approximation. The opening of the band gap as a function of the domain size is revealed. We found that nitrogens in the dopant boundary contribute a weaker, red-shifted π* peak in the spectra as compared to those in the dopant domain center. The shift is related to the fact that these interfacial nitrogens dominate the lowest conduction band of the system. Upon increasing the domain size, the ratio of interfacial atom decreases, which leads to a blue shift of the π* peak in the total NEXAFS spectra. The spectral evolution agrees well with experiments measured at different BN-dopant concentrations and approaches to that of a pristine h-BN sheet.

  19. Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra.

    PubMed

    Petit, Andrew S; Subotnik, Joseph E

    2015-09-01

    Whereas surface hopping is usually used to study populations and mean-field dynamics to study coherences, in two recent papers, we described a procedure for calculating dipole-dipole correlation functions (and therefore absorption spectra) directly from ensembles of surface hopping trajectories. We previously applied this method to a handful of one-dimensional model problems intended to mimic the gas phase. In this article, we now benchmark this new procedure on a set of multidimensional model problems intended to mimic the condensed phase and compare our results against other standard semiclassical methods. By comparison, we demonstrate that methods that include only dynamical information from one PES (the standard Kubo approaches) exhibit large discrepancies with the results of exact quantum dynamics. Furthermore, for model problems with nonadiabatic excited state dynamics but no quantized vibrational structure in the spectra, our surface hopping approach performs comparably to using Ehrenfest dynamics to calculate the electronic coherences. That being said, however, when quantized vibrational structures are present in the spectra but the electronic states are uncoupled, performing the dynamics on the mean PES still outperforms our present method. These benchmark results should influence future studies that use ensembles of independent semiclassical trajectories to model linear as well as multidimensional spectra in the condensed phase.

  20. Solvent effects on the S0 →S2 absorption spectra of β-carotene

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Long; Wang, De-Min; Zheng, Zhi-Ren; Li, Ai-Hua; Su, Wen-Hui

    2010-01-01

    Absorption spectra of β-carotene in 31 solvents are measured in ambient conditions. Solvent effects on the 0-0 band energy, the bandwidth, and the transition moment of the S0 → S2 transition are analysed. The discrepancies between published results of the solvent effects on the 0-0 band energy are explained by taking into account microscopic solute-solvent interactions. The contributions of polarity and polarizability of solvents to 0-0 band energy and bandwidth are quantitatively distinguished. The 0-0 transition energy of the S2 state at the gas phase is predicted to locate between 23000 and 23600 cm-1.

  1. Electronic properties and absorption spectra of ZnSnP2 using mBJ potential

    NASA Astrophysics Data System (ADS)

    Joshi, Ritu; Ahuja, B. L.

    2015-06-01

    We present the energy bands and density of states of ZnSnP2 using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP2 in photovoltaic and optoelectronic devices.

  2. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  3. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  4. On Different Absorption Components in the X-ray Spectra of the Intermediate Polar Systems

    NASA Astrophysics Data System (ADS)

    Balman, S.; Okcu, B.

    2014-07-01

    We present orbital phase-resolved spectroscopy of the Intermediate polars (IP) AO Psc, HT Cam, V1223 Sgr and XSS J0056+4548 using the XMM-Newton EPIC pn data. We detect increase of absorption by neutral hydrogen column density N_{H} during the phases corresponding to the orbital minima in a range ˜ (1.0-2.0)× 10^{22} cm^{-2}. AO Psc indicates spectral hardening in the soft plasma emission component. HT Cam, reveals an increase of N_{H} at the orbital minimum from 0.05× 10^{22} cm^{-2} to 0.13× 10^{22} cm^{-2}. These high N_{H} values are most likely a result of absorption by the bulge material at the accretion impact zone. We discuss implications of this interms of warmabsorbers in IPs and bulge temperatures. The four IPs reveal a second high absorption component that is constant over the orbital phase in a range (5.0-11.0)× 10^{22} cm^{-2}. We attribute this component to the accretion column/curtain. These results are in accordance with the orbital phase-resolved analysis presented in Pekon & Balman (2011) for EX Hya and (2012) for FO Aqr. We strongly suggest that absorption by the bulge at the accretion impact zone is a distinct component in the IP X-ray spectra.

  5. Galactic Soft X-ray Emission Revealed with Spectroscopic Study of Absorption and Emission Spectra

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, K.; Takei, Y.; Hagihara, T.; Yoshino, T.; Wang, Q. D.; Yao, Y.; McCammon, D.

    2010-03-01

    Spectroscopic study of Oxygen emission/absorption lines is a new tool to investigate the nature of the soft X-ray background. We investigated the emission spectra of 14 fields obtained by Suzaku, and detected OVII and OVIII lines separately. There is an almost isotropic OVII line emission with 2 LU intensity. As the attenuation length in the Galactic plane for that energy is short, that OVII emission should arise within 300 pc of our neighborhood. In comparison with the estimated emission measure for the local bubble, the most plausible origin of this component is the solar wind charge exchange with local interstellar materials. Another component presented from the correlation between the OVII and OVIII line intensity is a thermal emission with an apparent temperature of 0.2 keV with a field-to-field fluctuation of 10% in temperature, while the intensity varies about a factor of 4. By the combination analysis of the emission and the absorption spectra, we can investigate the density and the scale length of intervening plasma separately. We analyzed the Chanrdra grating spectra of LMC X-3 and PKS 2155-304, and emission spectra toward the line of sight by Suzaku. In both cases, the combined analysis showed that the hot plasma is not iso-thermal nor uniform. Assuming an exponential disk distribution, the thickness of the disk is as large as a few kpc. It suggests that there is a thick hot disk or hot halo surrounding our Galaxy, which is similar to X-ray hot haloes around several spiral galaxies.

  6. Modeling the absorption spectra of Er3+ and Yb3+ in a phosphate glass

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Sardar, Dhiraj K.; Zandi, Bahram; Hutchinson, J. Andrew; Trussell, C. Ward

    2003-10-01

    Absorption spectra of Er3+ and Yb3+ ions, codopants in a phosphate glass, are reported at 8 K and at wavelengths between 350 and 1600 nm. Detailed structure appearing in the spectra, associated with individual multiplet states, 2S+1LJ, of Er3+(4f11) and Yb3+(4f13) is interpreted using a ligand-field coordination sphere model to characterize the microscopic environment surrounding the rare earth ions in multiple sites. Inhomogeneous broadening of the spectra is likely due to different configurations of PO4 tetrahedra clustered about a caged rare earth ion in the amorphous host. Similarity between the Er3+ spectrum in the glass and in the spectrum of single-crystal LiErP4O12, where Er3+ occupies sites of C2 symmetry, suggests that an averaged site symmetry of C2 is a reasonable approximation for Er3+ and Yb3+ ions in the phosphate glass. Calculated splitting of multiplet states by the ligand-field cluster model are compared with energy levels derived from the observed absorption peaks and well-defined shoulders. Inhomogeneous broadening of the spectra limit the precision in establishing the energy of the multiplet splittings, but the analysis is useful for modeling studies of the Er:Yb:phosphate glass as an eye-safe laser (1.53 μm). The splitting of the Yb3+(4f13)2FJ states is determined using parameters obtained from the Er3+ set by means of the three-parameter theory. No adjustments were made to the Yb3+ parameters that predict multiplet splittings in reasonable agreement with experimental data.

  7. Laboratory measurements of the ozone absorption coefficient in the wavelength region 339 to 362 nm at different temperatures

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide; Fiocco, Giorgio

    1987-06-01

    Instrumentation for the absolute measurement of the ozone absorption coefficient in the Huggins bands at different temperatures was set up. Ozone is produced with an electrical discharge and stored cryogenically; differential absorption measurements are carried out in a slowly evolving mixture of ozone and molecular oxygen. Results in the region 339 to 362 nm at temperatures between minus 30 and plus 40 C are reported. Results support Katayama's (1979) model of the transitions giving rise to the Huggins absorption bands of ozone. For measurements of atmospheric ozone profiles by DIAL techniques, the results on the temperature dependence of the absorption coefficient at the wavelength corresponding to the third harmonic of an NdYAG laser are stressed.

  8. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  9. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  10. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  11. Mean glandular dose coefficients (D(g)N) for x-ray spectra used in contemporary breast imaging systems.

    PubMed

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z; Yaffe, Martin J; Seibert, J Anthony; Boone, John M

    2015-09-21

    To develop tables of normalized glandular dose coefficients D(g)N for a range of anode-filter combinations and tube voltages used in contemporary breast imaging systems. Previously published mono-energetic D(g)N values were used with various spectra to mathematically compute D(g)N coefficients. The tungsten anode spectra from TASMICS were used; molybdenum and rhodium anode-spectra were generated using MCNPX Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial half value layer (HVL) calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, D(g)N coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Eleven tables of normalized glandular dose (D(g)N) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published D(g)N values and were found to be on average less than 2% different than previously reported values.Over 200 pages of D(g)N coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values. PMID:26348995

  12. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  13. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  14. Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients

    SciTech Connect

    Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki

    2011-09-15

    In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.

  15. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.

  16. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  17. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens. PMID:27256895

  18. An empirical determination of the dust mass absorption coefficient, κd, using the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Clark, Christopher J. R.; Schofield, Simon P.; Gomez, Haley L.; Davies, Jonathan I.

    2016-06-01

    We use the published photometry and spectroscopy of 22 galaxies in the Herschel Reference Survey to determine that the value of the dust mass absorption coefficient κd at a wavelength of 500 μm is kappa _{500} = 0.051^{+0.070}_{-0.026} m^{2 kg^{-1}}. We do so by taking advantage of the fact that the dust-to-metals ratio in the interstellar medium of galaxies appears to be constant. We argue that our value for κd supersedes that of James et al. - who pioneered this approach for determining κd - because we take advantage of superior data, and account for a number of significant systematic effects that they did not consider. We comprehensively incorporate all methodological and observational contributions to establish the uncertainty on our value, which represents a marked improvement on the oft-quoted `order-of-magnitude' uncertainty on κd. We find no evidence that the value of κd differs significantly between galaxies, or that it correlates with any other measured or derived galaxy properties. We note, however, that the availability of data limits our sample to relatively massive (109.7 < M⋆ < 1011.0 M⊙), high metallicity (8.61 < [ 12 + log_{10} fracOH ] < 8.86) galaxies; future work will allow us to investigate a wider range of systems.

  19. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  20. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging.

    PubMed

    Bestvater, F; Spiess, E; Stobrawa, G; Hacker, M; Feurer, T; Porwol, T; Berchner-Pfannschmidt, U; Wotzlaw, C; Acker, H

    2002-11-01

    Two-photon absorption and emission spectra for fluorophores relevant in cell imaging were measured using a 45 fs Ti:sapphire laser, a continuously tuneable optical parametric amplifier for the excitation range 580-1150 nm and an optical multichannel analyser. The measurements included DNA stains, fluorescent dyes coupled to antibodies as well as organelle trackers, e.g. Alexa and Bodipy dyes, Cy2, Cy3, DAPI, Hoechst 33342, propidium iodide, FITC and rhodamine. In accordance with the two-photon excitation theory, the majority of the investigated fluorochromes did not reveal significant discrepancies between the two-photon and the one-photon emission spectra. However, a blue-shift of the absorption maxima ranging from a few nanometres up to considerably differing courses of the spectrum was found for most fluorochromes. The potential of non-linear laser scanning fluorescence microscopy is demonstrated here by visualizing multiple intracellular structures in living cells. Combined with 3D reconstruction techniques, this approach gives a deeper insight into the spatial relationships of subcellular organelles. PMID:12423261

  1. Plasmonic resonance absorption spectra in mid-infrared in an array of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Nader Esfahani, Nima; Hendrickson, Joshua R.; Cleary, Justin W.; Walker, Dennis E.; Chen, Kuei-Hsien; Chen, Li-Chyong; Mou, Shin

    2013-12-01

    We experimentally demonstrated graphene plasmon resonant absorption in mid-IR by utilizing an array of graphene nanoribbon resonators on SiO2 substrate. By tuning resonator width we probed the graphene plasmons with λp <= λ0/100 and plasmon resonances as high as 0.240 eV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra revealed plasmon dispersion as well as plasmon damping due to the interaction of graphene plasmons with the surface polar phonons in SiO2 substrate and intrinsic graphene optical phonons. Graphene nanoribbons with varying widths enabled us to identify the damping mechanisms of graphene plasmons and much reduced damping was observed when the plasmon resonance frequencies were close to the substrate polar phonon frequencies. Then, by direct ebeam exposure of graphene nanoresonators, we effectively changed the carrier density and caused red-shift of the plasmon spectra. This work will provide insight into light-sensitive, frequency-tunable photodetectors based on graphene's plasmonic excitations.

  2. Removal of Mars atmospheric gas absorption from Phobos-2/ISM spectra

    NASA Astrophysics Data System (ADS)

    Castronuovo, M. M.; Ulivieri, C.

    Infrared imaging spectrometer (ISM) is an imaging spectrometer in the range of the near infrared that flew onboard of Soviet probe Phobos 2 in 1989. Its first objective was to obtain information about the mineralogic composition of the soil of Mars and its satellite Phobos, and about the spatial and temporal variability of the Martian atmosphere. In the spectral range of the instrument 0.76-3.16 microns, the radiation emerging from Mars' atmosphere is almost entirely due to the solar radiation reflected by the soil. Therefore, independent knowledge of the spectral transmittance of the atmosphere allows us to eliminate the atmospheric effect from the ISM data and so to obtain the spectral signature of the planet soil. In the present work the Martian atmospheric transmittance has been computed using FASCODE and the spectral lines atlas HITRAN of AFGL. The atmospheric profile has been defined on the basis of the work of Moroz et al. Then, the convolution of the computed transmittance with the response functions of ISM has been carried out to obtain the atmospheric absorption from the measurements it is necessary to renormalize the transmittance computed with FASCODE so that the depth of the absorption bands is the same as that of the bands measured by ISM. Finally, dividing the measured spectra by the computed ones we obtain the spectra signature of Martian soil from which it is possible to deduce the mineralogical composition of the observed zones.

  3. Absorption spectra of e-beam-excited Ne, Ar, and Kr, pure and in binary mixtures.

    PubMed

    Levchenko, A O; Ustinovskii, N N; Zvorykin, V D

    2010-10-21

    A technique using the broadband emission of a laser plume as probe radiation is applied to record UV-visible (190-510 nm) absorption spectra of Ne, Ar, and Kr, pure and in binary mixtures under moderate e-beam excitation up to 1 MW/cm(3). In all the rare gases and mixtures, the absorption spectra show continuum related to Rg(2) (+) homonuclear ions [peaking at λ∼285, 295, and 320 nm in Ne, Ar, and Kr(Ar/Kr), respectively] and a number of atomic lines related mainly to Rg(∗)(ms) levels, where m is the lowest principal quantum number of the valence electron. In argon, a continuum related to Ar(2) (∗) (λ∼325 nm) is also recorded. There are also trains of narrow bands corresponding to Rg(2) (∗)(npπ (3)Π(g))←Rg(2) (∗)(msσ (3)Σ(u) (+)) transitions. All the spectral features mentioned above were reported in literature but have never been observed simultaneously. Although charge transfer to a homonuclear ion of the heavier additive is commonly believed to dominate in binary rare-gas mixtures, it is found in this study that in Ne/Kr mixture, the charge is finally transferred from the buffer gas Ne(2) (+) ion not to Kr(2) (+) but to heteronuclear NeKr(+) ion.

  4. Anisotropy of optical absorption spectra of rare-earth orthoaluminate DyAlO3

    NASA Astrophysics Data System (ADS)

    Valiev, U. V.; Gruber, J. B.; Rakhimov, Sh. A.; Nabelkin, O. A.

    2003-06-01

    The polarization spectra of optical absorption for the 4f-4f transition 6H15/2 6F3/2 and 6H15/2 6F5/2 in the rare-earth orthoaluminate DyAlO3 have been studied experimentally at the temperature T = 78 K. It has been shown that the non-trivial character of the polarization absorption spectra anisotropy for low temperatures can be explained by a contribution of the J-J mixing mechanism for the excited multiplets of the ground 4f(n) configuration of the Dy3+ ion in the low-symmetry crystalline field in the orthoaluminate structure. The results of numerical calculations of energies and wave functions of the Stark sublevels of the excited multiplets 6F3/2 and 6F5/2 are presented for the ground 4f9 configuration of the rare-earth Dy3+ ion in the crystalline field of Cs symmetry.

  5. A wavelet analysis for the X-ray absorption spectra of molecules

    SciTech Connect

    Penfold, T. J.; Tavernelli, I.; Rothlisberger, U.; Milne, C. J.; Abela, R.; Reinhard, M.; Nahhas, A. El; Chergui, M.

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  6. The nonlinear spectra of transneptunian objects: Evidence for organic absorption bands

    NASA Astrophysics Data System (ADS)

    Fraser, W.; Brown, M.; Emery, J.

    2014-07-01

    The reflectance spectra of small (D≲250 km) transneptunian objects (TNOs) are generally quite simple. Water-ice absorption is the only feature firmly detected on the majority of TNOs (Brown et al. 2012). Tentative detections of other materials have been presented (e.g., Barucci et al. 2011), but generally speaking, the spectra of small TNOs are nearly linear in the optical (0.5 < λ < 0.9 μ m; Fornasier et al. 2009) and NIR ranges (1.0 < λ < 1.5 μ m) with water-ice absorption apparent at longer wavelengths (Barkume et al. 2008). Each region is well described by a spectral slope, with the optical slope being typically redder than in the NIR (Hainaut and Delsanti, 2002, 2012). Here we present new spectral photometry of two TNOs which do not fit this simple prescription. We will present photometry of TNOs taken from HST during cycles 17 and 18. Unlike most objects, two TNOs do not exhibit linear optical spectra. Rather, they exhibit upward curvatures shortward of λ ˜ 1 μ m, with colors becoming redder with increasing wavelength. Previously published spectra and photometry exhibit similar optical shapes on a number of TNOs, including Borasisi, Pholus, Chariklo, Asbolus, and 2003 AZ_{84} (Romon-Martin et al. 2002, Alvarez-Candal et al. 2008, Fornasier 2009, Hainaut and Delsanti 2012). An interesting candidate for the upward curvature is complex C- and N-bearing hydrocarbons. These organic materials exhibit a broad absorption centered in the UV which is caused by a valence-conduction energy gap (see Moroz et al. 1998). The specific shape of the feature depends on the molecular structure of the organic material, with longer hydrocarbons generally producing wider absorptions. The assertion that the optical spectra of small TNOs are influenced by this hydrocarbon feature is reasonable as the feature is the general result of irradiation of simple organic H-, C-, and N-bearing materials, not dissimilar to that expected to occur on young TNOs (Brunetto et al. 2006

  7. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  8. Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Gerasimova, Yu. V.; Sofronova, S. N.; Gudim, I. A.; Oreshonkov, A. S.; Vtyurin, A. N.; Ivanenko, A. A.

    2016-01-01

    Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal in the spectral range of 30-1700 cm-1 have been measured at temperatures from 6 to 300 K. The experimental spectra have been analyzed based on the semiempirical calculation of the lattice dynamics and the analysis of correlation diagrams of borate complexes. No changes associated with structural phase transitions have been detected in the temperature range of measurements; the effect of magnetic ordering on the infrared absorption spectra has not been observed.

  9. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.

    PubMed

    Buck, D R; Savikhin, S; Struve, W S

    1997-01-01

    We describe simulations of absorption difference spectra in strongly coupled photosynthetic antennas. In the presence of large resonance couplings, distinctive features arise from excited-state absorption transitions between one- and two-exciton levels. We first outline the theory for the heterodimer and for the general N-pigment system, and we demonstrate the transition between the strong and weak coupling regimes. The theory is applied to Fenna-Matthews-Olson (FMO) bacteriochlorophyll a protein trimers from the green photosynthetic bacterium Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from the green bacterium Chlorobium tepidum.

  10. Absorption, fluorescence, and Raman spectra of mass-selected rhenium dimers in argon matrices

    NASA Astrophysics Data System (ADS)

    Hu, Zhendong; Dong, Jian-Guo; Lombardi, John R.; Lindsay, D. M.; Harbich, W.

    1994-07-01

    We report absorption, laser fluorescence, and Raman spectra for Re2 in an argon matrix prepared by the mass-selected ion deposition technique. The dirhenium absorption spectrum consists of seven band systems (A-G) extending from the near infrared into the ultraviolet region. For the A system (a simple vibrational progression), we find T0=10 817(1) cm-1, ωe=317.1(5) cm-1 and ωexe=1.0(1) cm-1. A Franck-Condon analysis of the A system intensities predicts that this state has a smaller equilibrium internuclear distance than the ground state (Δre=-0.073 Å), in violation of Badger's rule. The B system starts at 13 250 cm-1 and consists of four overlapping (and possibly perturbed) subsystems, whose average vibrational spacing is 270(11) cm-1. The C, D, E, and F systems (vibrational spacings in parentheses) are centered at 22 300 cm-1 (210 cm-1), 24 500 cm-1 (195 cm-1), 29 150 cm-1 (175 cm-1), and 32 900 cm-1 (160 cm-1), respectively. Weak fluorescence spectra, obtained upon laser excitation into the A system, were characterized by vibrational progressions to the dimer ground (X) state and to a low lying (X') state for which T0=357.6(5) cm-1 and ωe=332.3(2) cm-1. Raman and fluorescence progressions to the ground state were observed when the B system was excited. These data give ωe=337.9(49) cm-1 for the dimer ground state in good agreement with measurements from photodetachment spectra [J. Am. Chem. Soc. 108, 178 (1986)]. We propose likely assignments for the low lying electronic states of Re2 and discuss our results in terms of the bonding in the other group VIIB dimers, Mn2 and Tc2.

  11. Exciton-Like Behavior in Low-Energy Absorption Spectra of Simple Alloys

    NASA Astrophysics Data System (ADS)

    Bakshi, Mira Hemendraray

    The valence excitation (ns('2) (--->) nsnp) spectra of Mg, Zn, and Ca impurities at various concentrations in Li have been measured. Polarization modulation ellipsometry was used to determine the impurity-induced changes in real and imaginary parts of the dielectric function simultaneously, together with the differential reflectivity, in the energy range 1.5 - 4.5 eV. The most important result at sufficiently dilute alloy compositions, is that the system investigated display a distinct absorption peak above the Drude background. The height of this peak varies linearly with impurity content. The impurity-specific character of these spectral features points to exciton-like behavior at low-energy, arising from atomic-like excitations in which the electron and the hole linger together at the impurity site. Existing theories of alloy spectra do not explain these effects, because they do not include the Coulomb correlations between the interacting quasiparticles created in the optical event, or the way in which the interacting pair is confined to the impurity site by the mutual field. A remarkable added result of this research is that the exciton-like behavior can be followed with increasing impurity content, all the way to the pure Mg response, when it becomes the interband transition. This has led Kunz and Flynn to reformulate the theory of optical absorption including excited state interactions; and to apply the theory to the spectrum of pure Mg. The Coulomb interaction causes striking effects which are in generally good agreement with experiment. Zn-Li alloys behave differently. At an alloy composition for which Zn-Zn interactions become prevalent, the local, impurity-specific character of the spectrum disappears, leaving only a featureless Drude-like absorption. These results have provoked cluster calculations by Boisvert and Kunz, which predict the spectral shifts, and exhibit qualitatively similar persistence for Mg-Li, and broadening for Zn-Li.

  12. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  13. Stratospheric N(2)O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1).

    PubMed

    Rinsland, C P; Goldman, A; Murcray, F J; Murcray, D G; Smith, M A; Seals, R K; Larsen, J C; Rinsland, P L

    1982-12-01

    A nonlinear least-squares fitting procedure has been used to derive the stratospheric N(2)O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1). The atmospheric spectra were recorded during sunset from a float altitude of 33 km with the University of Denver 0.02-cm(-1) resolution interferometer near Alamogordo, N.M. (33 degrees N), on 10 Oct. 1979. The laboratory data were used to determine the N(2)O line intensities. The measurements indicate an N(2)O mixing ratio of 264 ppbv near 15 km decreasing to 155 ppbv near 28 km. PMID:20401069

  14. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Astrophysics Data System (ADS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-12-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  15. Phase speed spectra of transient eddy fluxes and critical layer absorption

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Held, Isaac M.

    1991-01-01

    Tropospheric zonal mean eddy fluxes of heat and momentum, and the divergence of the Eliassen-Palm flux, are decomposed into contributions from different zonal phase speeds. Data analyzed are the European Center for Medium Range Weather Forecasts operational global analyses covering 1980-1987. Eastward moving medium-scale waves (zonal waves 4-7) dominate the spectra of lower tropospheric heat fluxes in both hemispheres and all seasons. Upper tropospheric wave flux spectra are similar to the low level spectra in midlatitudes, but shift to slower zonal phase speeds as low latitudes are approached. The cause of this shift is the selective absorption of faster moving components in midlatitudes as the waves propagate meridionally. Latitude-phase speed distributions of eddy fluxes are constructed and compared to the zonal mean wind structure. These results demonstrate that upper tropospheric eddies break and decelerate the zonal mean flow approximately 10-20 deg in latitude away from their critical line (where phase speed equals zonal wind speed). Comparisons are also made with results from the middle stratosphere.

  16. Shape of the absorption and fluorescence spectra of condensed phases and transition energies.

    PubMed

    Lagos, Miguel; Paredes, Rodrigo

    2014-11-13

    General integral expressions for the temperature-dependent profile of the spectral lines of photon absorption and emission by atomic or molecular species in a condensed environment are derived with no other hypothesis than: (a) The acoustic vibrational modes of the condensed host medium constitute the thermodynamic energy reservoir at a given constant temperature, and local electronic transitions modifying the equilibrium configuration of the surroundings are multiphonon events, regardless of the magnitude of the transition energy. (b) Electron-phonon coupling is linear in the variations of the bond length. The purpose is to develop a theoretical tool for the analysis of the spectra, allowing us to grasp highly accurate information from fitting the theoretical line shape function to experiment, including those spectra displaying wide features. The method is illustrated by applying it to two dyes, Lucifer Yellow CH and Coumarin 1, which display fluorescence maxima of 0.41 and 0.51 eV fwhm. Fitting the theoretical curves to the spectra indicates that the neat excitation energies are 2.58 eV ± 2.5% and 3.00 eV ± 2.0%, respectively.

  17. Plastocyanin conformation: an analysis of its near ultraviolet absorption and circular dichroic spectra

    SciTech Connect

    Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.

    1986-04-01

    The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at approx.295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport.

  18. Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

    SciTech Connect

    Shokair, I.R.

    1997-09-01

    This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.

  19. Theoretical study on absorption and emission spectra of pyrrolo-C analogues

    NASA Astrophysics Data System (ADS)

    Liu, Hongxia; Liu, Jianhua; Yang, Yan; Li, Yan; Wang, Haijun

    2015-01-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of Pyrrolo-C (PyC) and its analogues which are modified via the conjugation or fusion of different aromatic ring to the PyC core. We also consider the effects of aqueous solution and base pairing. The results show that the fluorescent pyrrolo-C analogues can pair with guanosine to form stable H-bonded WC base pairs. The calculated absorption peaks of modified deoxyribonucleosides agree well with the measured data. The absorption and emission maxima of the pyrrolo-C analogues are greatly red shifted compared with nature C. The solvent effects can induce wavelength blue shift and increase the oscillator strengths in both the absorption and emission spectra. With regard to the WC base pairs, the B3LYP functional reveals that the lowest energy transitions of modified GC base pairs are charge transfer excitation while the CAM-B3LYP functional predicts that all the lowest transitions are localised on the pyrrolo-C analogues. The M062X and CAM-B3LYP functionals show good agreement with respect to both the value of the lowest energy transitions as well as the oscillator strengths.

  20. Quantitative comparisons of absorption cross-section spectra and integrated intensities of HFC-143a

    NASA Astrophysics Data System (ADS)

    Le Bris, Karine; Graham, Laura

    2015-01-01

    The integrated absorption cross-sections of HFC-143a (CH3CF3) differ substantially in the literature. This leads to an important uncertainty on the value of the radiative efficiency of this molecule. The ambiguity on the absorption cross-sections of HFC-143a is highlighted by the existence of two significantly different datasets in the HITRAN database. To solve the issue, we performed high-resolution Fourier transform infrared laboratory measurements of HFC-13a and compared the spectra with the two HITRAN datasets and with the data from the Pacific Northwest National Laboratory (PNNL). The experimental methods and data analysis techniques are examined and typical sources of errors are discussed. The integrated intensities of the main bands are compared to other literature values. It was found that the integrated absorption cross-section values in the highest range - around 13.8 ×10-17 cm .molecule-1 in the 570-1500 cm-1 spectral band - show the most consistency between authors.

  1. Absorption-Mode Fourier Transform Mass Spectrometry: The Effects of Apodization and Phasing on Modified Protein Spectra

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P. A.; Barrow, Mark P.; Lin, Cheng; O'Connor, Peter B.

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  2. Laboratory studies at high resolution of the infrared absorption spectra of a number of gases found in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hunt, R. H.

    1983-01-01

    The infrared absorption spectra of a number of gases found in planetary atmospheres were studied at high resolution. Absorption line measurements which can be of value for the interpretation of planetary spectra in terms of molecular abundances and conditions in the planetary atmospheres were provided. The high resolution spectra have yielded measurements of individual vibration rotation line parameters including positions, strengths, pressure broadened widths and, where assignments were unknown, the temperature sensitivity of the strengths. Such information allows the determinations of the absorption of a given molecular gas under planetary conditions of temperature and pressure and at the same time it provides the data necessary if the spectra are to be understood in terms of basic molecular theory. Thus this work has included spectral analysis in the form of line assignments as well as fitting of the data to Hamiltonian models. Such fitting is very useful in that it helps to confirm and extend the assignments.

  3. Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra.

    PubMed

    Qi, Yulin; Li, Huilin; Wills, Rebecca H; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P A; Barrow, Mark P; Lin, Cheng; O'Connor, Peter B

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  4. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  5. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  6. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  7. Calculation of vibrational and electronic excited state absorption spectra of arsenic-water complexes using density functional theory

    NASA Astrophysics Data System (ADS)

    Huang, L.; Lambrakos, S. G.; Shabaev, A.; Massa, L.

    2016-05-01

    Calculations are presented of vibrational and electronic excited-state absorption spectra for As-H2O complexes using density function theory (DFT) and time-dependent density functional theory (TD-DFT). DFT and TD-DFT can provide interpretation of absorption spectra with respect to molecular structure for excitation by electromagnetic waves at frequencies within the IR and UV-visible ranges. The absorption spectrum corresponding to excitation states of As-H2O complexes consisting of relatively small numbers of water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk system. DFT and TD-DFT calculated absorption spectra represent quantitative estimates that can be correlated with additional information obtained from laboratory measurements and other types of theory based calculations. The DFT software GAUSSIAN was used for the calculations of excitation states presented here.

  8. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  9. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-12-01

    Absorbing aerosols can significantly modulate short-wave solar radiation in the atmosphere, affecting regional and global climate. The aerosol absorption coefficient (AAC) is an indicator that assesses the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption Ångström exponent (AAE) in the urban area of Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the seven-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which result in consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in the urban area of Nanjing, which is much lower than that in Pearl River Delta and the same as in rural areas (Lin'an) in Yangtze River Delta. The AAC in the urban area of Nanjing shows strong seasonality (diurnal variations); it is high in cold seasons (at rush hour) and low in summer (in the afternoon). It also shows synoptic and quasi-2-week cycles in response to weather systems. Its frequency distribution follows a typical log-normal pattern. The 532 nm AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72 % of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollution. Air masses flowing from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable than from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly occur in summer, likely due to high relative humidity (RH) in the season. AAC increases with increasing AAE at a fixed aerosol loading. The RH

  10. A system coefficient approach for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures.

    PubMed

    Xia, X R; Baynes, R E; Monteiro-Riviere, N A; Riviere, J E

    2007-01-01

    A system coefficient approach is proposed for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures. The complicated molecular interactions are dissected into basic molecular interaction forces via Abraham's linear solvation energy relationship (LSER). The molecular interaction strengths of a chemical are represented by a set of solute descriptors, while those of a membrane/chemical mixture system are represented by a set of system coefficients. The system coefficients can be determined by using a set of probe compounds with known solute descriptors. Polydimethylsiloxane (PDMS) membrane-coated fibres and 32 probe compounds were used to demonstrate the proposed approach. When a solvent was added into the chemical mixture, the system coefficients were altered and detected by the system coefficient approach. The system coefficients of the PDMS/water system were (0.09, 0.49, -1.11, -2.36, -3.78, 3.50). When 25% ethanol was added into the PDMS/water system, the system coefficients were altered significantly (0.38, 0.41, -1.18, -2.07, -3.40, 2.81); and the solvent effect was quantitatively described by the changes in the system coefficients (0.29, -0.08, -0.07, 0.29, 0.38, -0.69). The LSER model adequately described the experimental data with a correlation coefficient (r(2)) of 0.995 and F-value of 1056 with p-value less than 0.0001.

  11. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  12. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  13. A test of the possibility of calculating absorption spectra by mixed quantum-classical methods

    NASA Astrophysics Data System (ADS)

    Haug, Kenneth; Metiu, Horia

    1992-10-01

    Some of the most efficient methods for studying systems having a large number of degrees of freedom treat a few degrees of freedom quantum mechanically and the remainder classically. Here we examine how these methods fare when used to calculate the cross section for photon absorption by a quantum system imbedded in a medium. To test the method, we study a model which has two degrees of freedom and mimicks the properties of a one-dimensional alkali atom-He dimer. We treat the electron motion quantum mechanically and the distance between the He atom and the alkali ion classically. Light absorption occurs because the electron is coupled to radiation. The calculation of the absorption cross section by quantum-classical methods fails rather dramatically-at certain frequencies, the absorption coefficient is negative. By comparing with exact quantum calculations, we show that this failure takes place because the time evolution of the classical variables influences the dynamics of the quantum degree of freedom through the Hamiltonian only; important information, which a fully quantum treatment would put in the wave function, is missing. To repair this flaw, we experiment with a method which uses a swarm of classical trajectories to generate a ``classical wave function.'' The results are encouraging, but require substantial computer time when the number of classical variables is large. We argue that in the limit of many classical degrees of freedom, accurate calculations can be performed by using the time-dependent Hartree method and treating some degrees of freedom by exact numerical methods (e.g., a fast Fourier transform procedure) and the others by Gaussian wave packets or any other propagation method that is accurate for a very short time. This procedure leads to a simple time domain picture of dephasing and line broadening in the case of a localized quantum system imbedded in a medium with heavy atoms.

  14. Constraints on Reionization and Source Properties from the Absorption Spectra of z > 6.2 Quasars

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Haiman, Zoltán

    2007-05-01

    We make use of hydrodynamical simulations of the intergalactic medium (IGM) to create model quasar absorption spectra. We compare these model spectra with the observed Keck spectra of three z>6.2 quasars with full Gunn-Peterson troughs: SDSS J1148+5251 (z=6.42), SDSS J1030+0524 (z=6.28), and SDSS J1623+3112 (z=6.22). We fit the probability density distributions (PDFs) of the observed Lyα optical depths (τα) with those generated from the simulation by exploring a range of values for the size of the quasar's surrounding H II region, RS; the volume-weighted mean neutral hydrogen fraction in the ambient IGM, x¯HI; and the quasar's ionizing photon emissivity, N˙Q. In order to avoid averaging over possibly large sight line-to-sight line fluctuations in IGM properties, we analyze each observed quasar independently. We find the following results for J1148+5251, J1030+0524, and J1623+3112: the best-fit sizes RS are 40, 41, and 29 (comoving) Mpc, respectively. For the later two quasars, the value is significantly larger than the radius corresponding to the wavelength at which the quasar's flux vanishes. These constraints are tight, with only ~10% uncertainties, comparable to those caused by redshift determination errors. The best-fit values of N˙Q are 2.1, 1.3, and 0.9×1057 s-1, respectively, with a factor of ~2 uncertainty in each case. Finally, the best-fit values of x¯HI are 0.16, 1.0, and 1.0, respectively. The uncertainty in the case of J1148+5251 is large, and x¯HI is not well constrained. However, for both J1030+0524 and J1623+3112, we find a significant lower limit of x¯HI>~0.033. Our method is different from previous analyses of the GP absorption spectra of these quasars, and our results strengthen the evidence that the rapid end stage of reionization is occurring near z~6.

  15. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  16. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory†

    PubMed Central

    Derricotte, Wallace D.; Evangelista, Francesco A.

    2015-01-01

    Orthogonality constrained density functional theory (OCDFT) is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree–Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine. PMID:25690350

  17. Electronic absorption spectra of linear and cyclic Cn+ n=7-9 in a neon matrix

    NASA Astrophysics Data System (ADS)

    Fulara, Jan; Shnitko, Ivan; Batalov, Anton; Maier, John P.

    2005-07-01

    The Cn+n=7-9 cations were produced by electron-impact ionization of perchloronaphthalene, mass selected, and their electronic absorption spectra in 6K neon matrices recorded. The linear and cyclic isomers of C7+ and C8+ are detected. Three systems of linear C7+ are observed with origin bands near 770, 332, and 309nm. The cyclic C7+ shows two transitions near 676 and 448nm. One system of linear C9+ is observed commencing at 371nm. Linear C8+ shows five dipole-allowed electronic transitions from the X˜Πg2 ground state, and the strongest ones have the origin bands at 890.8 and 308.1nm. Five electronic transitions of cyclic C8+ are also discernible.

  18. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2014-10-20

    We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by "averaging before log" with pulse-by-pulse ranging knowledge incorporated.

  19. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    NASA Astrophysics Data System (ADS)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements.

  20. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  1. Synthesis, Characterization, Absorption Spectra, and Luminescence Properties of Organometallic Platinum(II) Terpyridine Complexes.

    PubMed

    Arena, Giuseppe; Calogero, Giuseppe; Campagna, Sebastiano; Monsù Scolaro, Luigi; Ricevuto, Vittorio; Romeo, Raffaello

    1998-06-01

    A series of new organometallic platinum(II) complexes containing terdentate polypyridine ligands has been prepared and characterized. Their absorption spectra in 4:1 (v/v) MeOH/EtOH fluid solution at room temperature and luminescence in the same matrix at 77 K have been investigated. The new species are [Pt(terpy)Ph]Cl (3, terpy = 2,2':6',2"-terpyridine, Ph = phenyl), [Pt(Ph-terpy)Cl]Cl (4, Ph-terpy = 4'-phenyl-2,2':6',2"-terpyridine), [Pt(Ph-terpy)Me]Cl (5), and [Pt(Ph-terpy)Ph]Cl (6). The results have been compared with those for [Pt(terpy)Cl]Cl (1) and [Pt(terpy)Me]Cl (2). NMR data evidence that all the complexes but 3 and 6 oligomerize in solution leading to stacked species. The absorption spectra are dominated by moderately intense metal-to-ligand charge-transfer (MLCT) bands in the visible region and by intense ligand-centered (LC) bands in the UV region. All the compounds are luminescent in a 4:1 (v/v) MeOH/EtOH rigid matrix at 77 K, exhibiting a structured emission within the range 460-600 nm. This feature is assigned to formally (3)LC excited states which receive substantial contribution from closely lying (3)MLCT levels. Complexes 1, 2, 4, and 5 also exhibit a relatively narrow and unstructured luminescence band within the range 680-800 nm, which dominates the luminescence spectrum on increasing concentration and exciting at longer wavelengths. The band is assigned to a dsigma(metal) --> pi(polypyridine) ((3)MMLCT) state, originating from metal-metal interactions occurring in head-to-tail dimers (or polymers). A third broad band is shown by 1 and 4 under all concentration conditions and by 2 and 5 only in concentrated solutions and is attributed to excimeric species originating from pi-pi interactions due to stacking between polypyridine ligands.

  2. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  3. On the description of electromagnetic arbitrary shaped beams: The relationship between beam shape coefficients and plane wave spectra

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; Lock, James A.

    2015-09-01

    A strong effort has been devoted during the last three decades, and more, to the study of electromagnetic scattering of arbitrary shaped beams by particles. For this topic, the most important issue concerns the description of the illuminating beam as an expansion over a basis of functions. There are essentially two kinds of expansions that have been used: (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of plane wave spectra. In this paper, we provide a formal relationship between these two kinds of expansions.

  4. A reduced-scale railway noise barrier's insertion loss and absorption coefficients: comparison of field measurements and predictions

    NASA Astrophysics Data System (ADS)

    Busch, T. A.; Nugent, R. E.

    2003-10-01

    In situ testing determined the insertion loss ( IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements. Insertion loss ( IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL. Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed

  5. Use of the light absorption coefficient to monitor elemental carbon and PM2.5--example of Santiago de Chile.

    PubMed

    Gramsch, Ernesto; Ormeño, Isabel; Palma, Guillermo; Cereceda-Balic, Francisco; Oyola, Pedro

    2004-07-01

    The optical absorption coefficient, particulate matter with an aerodynamic diameter <2.5 microm, and elemental carbon (EC) have been measured simultaneously during winter and spring of 2000 in the western part of Santiago, Chile (Pudahuel district). The optical measurements were carried out with a low-cost instrument recently developed at the University of Santiago. From the data, a site-specific mass absorption coefficient of 4.45+/-0.01 m2/g has been found for EC. In addition, a mass absorption coefficient of 1.02+/-0.03 m2/g has been obtained for PM2.5. These coefficients can be used during the colder months (May-August) to obtain EC concentration or PM2.5 from a measurement of the light absorption coefficient (sigmaa). The high correlation that has been found between these variables indicates that sigmaa is a good indicator of the degree of contamination of urbanized areas. The data also show an increase in PM2.5 and EC concentration during winter and an increase in the ratio of EC to PM2.5. When the EC/PM2.5 ratio is calculated during rush hour (7:00 a.m.-11:00 a.m.) and during part of the night (9:00 p.m.-2:00 a.m.), it is found that the increase is caused by higher concentration levels of EC at night. These results suggest that the rise in the EC concentration is caused by emissions from heating and air mass transport of pollution from other parts of the city, while traffic contribution remains approximately constant.

  6. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.

    PubMed

    Wang, Y W; Hong, Byung Hee; Kim, Kwang S

    2005-04-21

    We introduced a simple chemical method to synthesize semimetal bismuth nanoparticles in N,N-dimethylformamide (DMF) by reducing Bi(3+) with sodium borohydride (NaBH(4)) in the presence of poly(vinylpyrroldone) (PVP) at room temperature. The size and dispersibility of Bi nanoparticles can be easily controlled by changing the synthetic conditions such as the molar ratio of PVP to BiCl(3) and the concentration of BiCl(3). The UV-visible absorption spectra of Bi nanoparticles of different diameters are systematically studied. The surface plasmon peaks broaden with the increasing molar ratio of PVP to BiCl(3) as the size of bismuth nanoparticles decreases. Infrared (IR) spectra of the complexes with different molar ratios of PVP/BiCl(3) show a strong interaction between the carboxyl oxygen (C=O) of PVP and Bi(3+) ion and a weak interaction between the carboxyl oxygen (C=O) of PVP and the Bi atom in nanoparticles. This indicates that PVP serves as an effective capping ligand, which prevents the nanoparticles from aggregation.

  7. Investigation of absorption spectra of Gafchromic EBT2 film's components and their impact on UVR dosimetry

    NASA Astrophysics Data System (ADS)

    Aydarous, Abdulkadir

    2016-05-01

    The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.

  8. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  9. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    NASA Astrophysics Data System (ADS)

    Ridder, T.; Warneke, T.; Notholt, J.

    2011-06-01

    The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm-1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  10. Change in the absorption spectra of blood exposed to a low-frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Mit'kovskaya, N. P.; Galai, O. A.; Kuchinskii, A. V.; Laskina, O. V.

    2007-03-01

    We have used the absorption spectra of whole blood in the UV-visible and IR regions of the spectrum to study changes in the structure of the molecular components of blood when exposed to a low-frequency pulsed magnetic field used to treat ischemic heart disease. We show that pronounced changes in the spectra when the blood is directly exposed in vivo to a magnetic field may be due to breaking of the bond between the heme group and the protein of the hemoglobin, as a consequence of changes in the intermolecular interactions in the polypeptide chains of the hemoglobin and also the spin states of the paramagnetic heme components. Exposure to a magnetic field results in changes in the conformations of the polypeptide chains of hemoglobin and the rate of dissociation of oxyhemoglobin. The structural changes in the hemoglobin molecule are considered as one of the possible primary mechanisms of action on blood in vivo for a low-frequency pulsed magnetic field.

  11. DFT study of the effect of substituents on the absorption and emission spectra of Indigo

    PubMed Central

    2012-01-01

    Background Theoretical analyses of the indigo dye molecule and its derivatives with Chlorine (Cl), Sulfur (S), Selenium (Se) and Bromine (Br) substituents, as well as an analysis of the Hemi-Indigo molecule, were performed using the Gaussian 03 software package. Results Calculations were performed based on the framework of density functional theory (DFT) with the Becke 3- parameter-Lee-Yang-Parr (B3LYP) functional, where the 6-31 G(d,p) basis set was employed. The configuration interaction singles (CIS) method with the same basis set was employed for the analysis of excited states and for the acquisition of the emission spectra. Conclusions The presented absorption and emission spectra were affected by the substitution position. When a hydrogen atom of the molecule was substituted by Cl or Br, practically no change in the absorbed and emitted energies relative to those of the indigo molecule were observed; however, when N was substituted by S or Se, the absorbed and emitted energies increased. PMID:22809100

  12. Linewidth Extraction From the THz Absorption Spectra Using a Modified Lorentz Model

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Zhang, Han; Lan, Jinhui

    2013-10-01

    Identification of specific materials is one of the most promising THz applications. It is commonly achieved by comparing the experimental peak central frequencies of the transmission or absorption spectra with a database for known materials while neglecting the linewidths. However, due to the restriction of the signal-to-noise ratio, only a narrow band, extending from several hundred GHz to several THz, can be used. It is difficult to distinguish two materials from each other if their peaks' central frequencies are similar. In this paper, we present a modified Lorentz model by taking the scattering effect into account. The modified Lorentz model can be used for the extraction of reliable absorption peak parameters, i.e. the central frequency and linewidth. On comparison with our experiments, we observed that the parameters extracted using the modified Lorentz model in glutamine samples of different concentrations exhibited a better agreement than those obtained using the traditional model. Therefore, the utilization of the narrow THz band to identify materials can be improved by comparing both the central frequency and linewidth obtained from this method.

  13. Absorption spectra of isomeric OH adducts of 1,3,7-trimethylxanthine

    SciTech Connect

    Vinchurkar, M.S.; Rao, B.S.M.; Mohan, H.; Mittal, J.P.; Schmidt, K.H.; Jonah, C.D.

    1997-04-17

    The reactions of OH{sup .}, O{sup .-}, and SO{sub 4}{sup .-} with 1,3,7-trimethylxanthine (caffeine) were studied by pulse radiolysis with optical and conductance detection techniques. The absorption spectra of transients formed in OH{sup .} reaction in neutral solutions exhibited peaks at 310 and 335 nm, as well as a broad absorption maximum at 500 nm, which decayed by first-order kinetics. The rate (k = (4.0 {+-} 0.5) x 10{sup 4} s{sup -1}) of this decay is independent of pH in the range 4-9 and is in agreement with that determined from the conductance detection (k = 4 x 10{sup 4} s{sup -1}). The spectrum in acidic solutions has only a broad peak around 330 nm with no absorption in the higher wavelength region. The intermediates formed in reaction of O{sup .-} absorb around 310 and at 350 nm, and the first-order decay at the latter wavelength was not seen. The OH radical adds to C-4 (X-40H{sup .}) and C-8 (X-80H{sup .}) positions of caffeine in the ratio 1:2 as determined from the redox titration and conductivity measurements. H abstraction from the methyl group is an additional reaction channel in O{sup .-} reaction. Dehydroxylation of the X-40H{sup .} adduct occurs, whereas the X-80H{sup .} adduct does not undergo ring opening. The spectrum obtained for OH{sup .} reaction in oxygenated solutions is similar to that observed in SO{sub 4}{sup .-} reaction in basic solutions. 25 refs., 5 figs., 1 tab.

  14. Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm

    NASA Astrophysics Data System (ADS)

    Riedel, D.; Castex, M. C.

    First measurements of effective absorption coefficient and penetration depth are given here from the ablation of poly-methylmethacrylate (PMMA) and poly-tetrafluoroethylene (PTFE) samples at 125 nm ( 10 eV). The coherent VUV source used which provides smooth, efficient and clean etched areas, is briefly described. Experimental curves of etch depth as a function of the number of laser shots and etch rate as a function of energy density are obtained and compared with previous works performed at 157 nm (F2 laser) and 193 nm (ArF laser). Experimental results are described with a Beer-Lambert absorption law and discussed.

  15. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  16. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    PubMed

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models. PMID:27529792

  17. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    PubMed

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface. PMID:27183273

  18. Measurements of standing waves and the absorption coefficients of Various materials with surface electromagnetic waves on Al.

    PubMed

    Bell, R J; Davarpanah, M; Goben, C A; Begley, D L; Bhasin, K; Alexander, R W

    1975-07-01

    The first measurements of the absorption coefficient of materials via surface electromagnetic wave (SEW) techniques are reported. By simply laying samples on a metal sheet on which SEW were passing, the transmittances and absorption coefficients of the sample have been determined. These measurements were made at microwave frequencies, but the general techniques are applicable over the entire frequency range from microwaves into the near ir. Solid samples were used in these measurements, but liquid or gases could also be studied by this new easy-to-use technique. Comments about the applicability of the technique to very thin samples are made. Another result reported is the existence of different propagating SEW modes as a function of the height of a sample (film thickness) measured from the metal-sample interface to the top of the sample at the sample-vacuum interface above.

  19. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  20. Absorption Coefficients of SF{6}, SF{4}, SOF{2} and SO{2}F{2} in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Pradayrol, C.; Casanovas, A. M.; Deharo, I.; Guelfucci, J. P.; Casanovas, J.

    1996-05-01

    Absorption coefficients k0(m^{-1} 100 kPa^{-1}) of SF{6} and of its main gaseous by-products SF{4}, SOF{2} and SO{2}F{2} were measured in the VUV region. The experiments were carried out at a temperature of 298 K and a spectral resolution of 0.1 nm over the wavelength range 115 - 180 nm for SF{6}, 115 - 220 nm for SF{4}, 120 - 195 nm for SOF{2} and 120 - 210 nm for SO{2}F{2}. The highest absorption coefficient values were obtained for SF{4} and the lowest for SF{6}. Les coefficients d'absorption k0(m^{-1} 100 kPa^{-1}) du SF{6} et de ses principaux produits de décomposition gazeux, SF{4}, SOF{2} et SO{2}F{2} ont été mesurés dans le domaine de l'ultraviolet sous vide. Les expériences ont été réalisées à la température de 298 K avec une résolution de 0,1 nm dans la gamme 115 180 nm pour le SF{6}, 115 220 nm pour le SF{4}, 120 195 nm pour le SOF{2} et 120 210 nm pour le SO{2}F{2}. Les coefficients d'absorption les plus élevés ont été mesurés pour le SF{4} et les plus faibles pour le SF{6}.

  1. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  2. Study on erythrosine-phen-Cd(II) systems by resonance Rayleigh scattering, absorption spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Zhang, Qiqi; Liu, Shaopu; Yang, Jidong; Teng, Ping; Zhu, Jinghui; Qiao, Man; Shi, Ying; Duan, Ruilin; Hu, Xiaoli

    2015-04-01

    In pH 7.0-8.0 KH2PO4-Na2HPO4 buffer solution, Cd(II) reacted with 1,10-phenanthroline to form chelate cation [Cd(phen)3]2+, which further reacted with anion of erythrosine to form ternary ion-association complex through electrostatic attraction and hydrophobic effect. This process could result in remarkable absorption spectra change and produce obvious fading reaction at 528 nm. Absorbance change (ΔA) of system was directly proportional to the concentration of Cd(II). Hereby, a highly sensitive spectrophotometric method for the determination of Cd(II) was established. The molar absorption coefficient was 2.29 × 105 L mol-1 cm-1 and the detection limit of Cd(II) was 26.5 ng mL-1. Furthermore, the resonance Rayleigh scattering (RRS) of this system with two peaks located at 371 and 590 nm enhanced significantly, and second-order scattering (SOS) and frequence doubling scattering (FDS) of this system changed notably at 640 and 350 nm, respectively. Under the optimum conditions, the scattering intensities (ΔIRRS, ΔIDWO-RRS, ΔISOS and ΔIFDS) had good linear relationship with the concentration of Cd(II) in certain ranges. The detection limits of Cd(II) were 1.27 ng mL-1, 1.39 ng mL-1, 4.03 ng mL-1, 5.92 ng mL-1 and 14.7 ng mL-1 for dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS), RRS (371 nm), RRS (590 nm), SOS and FDS, respectively. In addition, the suitable reaction conditions and effects of coexisting substances were investigated. The methods had been successfully applied to the determination of Cd(II) in environmental water samples. The recovery range was between 93.0% and 103.0% and the relative standard deviation (RSD) was between 2.5% and 4.3%. The results were in agreement with those obtained from atomic absorption spectroscopy.

  3. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    SciTech Connect

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  4. Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Wu, Qi; Chen, Lei; Wangmo, Sonam; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Dajun; Niehaus, Thomas A.; Frauenheim, Thomas

    2013-11-01

    To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in

  5. The absorption of trapped particles by the inner satellites of Jupiter and the radial diffusion coefficient of particle transport

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Fillius, W.

    1976-01-01

    The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.

  6. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  7. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2002-12-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127-22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg II, Fe II, V II, etc observed in STIS/E230H spectra (see accompanying posters by Gull, Vieira, and Danks). The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-1 above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30x30 arcsec for FUSE, 0.2x0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic miniumum in 2003.

  8. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2003-01-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127- 22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg 11, Fe II, V II, etc observed in STIS/E230H spectra. The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-l above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30 x 30 arcsec for FUSE, 0.2 x 0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic minimum in 2003.

  9. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  10. Optical Absorption Spectra of Cr3+ and Cr4+ in Sr3Ga2Ge4O14 Garnet Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Deng, Peizhen; Zhang, Qiang; Gan, Fuxi

    1995-07-01

    Single crystals of Sr3Ga2Ge4O14:Cr are grown by the Czochralski method. The polarized optical absorption spectra of Cr in visible and near-infrared wavelength are presented and analyzed. It is suggested that Cr enters the octahedral and tetrahedral positions as Cr3+ and Cr4+ respectively.

  11. Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star.

    PubMed

    Cottam, J; Paerels, F; Mendez, M

    2002-11-01

    The fundamental properties of neutron stars provide a direct test of the equation of state of cold nuclear matter, a relationship between pressure and density that is determined by the physics of the strong interactions between the particles that constitute the star. The most straightforward method of determining these properties is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere. The equation of state implies a mass-radius relation, while a measurement of the gravitational redshift at the surface of a neutron star provides a direct constraint on the mass-to-radius ratio. Here we report the discovery of significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO0748-676. We identify the most significant features with the Fe XXVI and XXV n = 2-3 and O VIII n = 1-2 transitions, all with a redshift of z = 0.35, identical within small uncertainties for the respective transitions. For an astrophysically plausible range of masses (M approximately 1.3-2.0 solar masses; refs 2-5), this value is completely consistent with models of neutron stars composed of normal nuclear matter, while it excludes some models in which the neutron stars are made of more exotic matter. PMID:12422210

  12. Temporal-frequency spectra for plane and spherical waves in a millimetric wave absorption band

    NASA Astrophysics Data System (ADS)

    Siqueira, Glaucio L.; Cole, Roy S.

    1991-02-01

    Complete analytical expressions for the temporal power spectral density functions in a millimetric wave absorption region for plane and spherical waves have been developed for both amplitude and phase fluctuations due to atmospheric turbulence. Asymptotic expressions for both high and low scintillation frequencies are derived. Theoretical expressions for the differential phase power spectrum (i.e., the phase difference between two frequencies) are also presented. Experimental results of amplitude and differential phase scintillations measured on a 4.1-km link across central London, are presented. Results show that the plane wave case gives the best agreement with theory for this particular link. It is also shown that neglecting the cross-spectral density term at the higher scintillation frequencies for the differential phase spectrum can lead to a large difference between the theoretical and experimental power spectra. In particular, for a small frequency separation and a large value of the outer scale of turbulence, the highest scintillation frequencies are too low to neglect the cross term.

  13. THz Absorption Spectra of Fe Water Complexes Interacting with O3 Calculated by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Huang, L.; Lambrakos, S. G.; Shabaev, A.; Massa, L.; Yapijakis, C.

    2013-05-01

    The need for better monitoring of water quality and levels of water contamination implies a need for determining the dielectric response properties of water contaminants with respect to electromagnetic wave excitation. In addition to monitoring contaminants, there is an associated need for monitoring chemical processes that are for deactivation or assistance in the removal of water contaminants. Iron and manganese are two naturally occurring water contaminants, where iron is in general at much higher concentrations. Correspondingly, a process that is highly effective for assisting filtration of water contaminants, including iron and manganese, is the addition in solution of Ozone, i.e., the preozonation process. The present study uses density functional theory (DFT) for the calculation of ground-state resonance structure associated with Fe water complexes interacting with Ozone in solution. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions can provide for different types of analyses concerning water contaminants. In particular, dielectric response functions can provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT-calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground-state resonance structure presented in this article.

  14. Absorption spectra and sunlight conversion efficiency in fullerene bonded supramolecules on nanostructured ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Erkin; Kokhkharov, Abdumutallib; Kuvondikov, Vakhobjon; Nematov, Sherzod; Nusretov, Rafael

    2015-10-01

    The efficiency of solar radiation conversion in a model system of artificial photosynthesis, the porphyrin-fullerene assembly, is analyzed. A study of the optical absorption spectra of the porphyrin and the fullerene molecules, as well as their assembly in organic solutions, made it possible to estimate the energy efficiency of the conversion. Numerical values of the energy efficiency, defined as the fraction of the light quantum energy converted to the chemical potential of separated charges, are calculated for low- and high-concentration solutions of such a supramolecular system. The possibility of the efficient utilization of long-wavelength solar radiation in the high-concentration porphyrin-fullerene assembly solution in toluene and benzene is shown. In the photovoltaic system consisting of such a supramolecular active element, a thin ZnO film with a nanostructured surface may be introduced as a secondary acceptor of electrons from fullerene molecules. An enhancement of the transformation of separated charges of the porphyrin-fullerene assembly into electrical current by means of the ZnO film deposited on the surface of the anode electrode in such a heterogenic photovoltaic unit is proposed.

  15. Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution.

    PubMed

    Cheng, Yuan-Yuan; Liu, Ya-Jun

    2016-07-01

    Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2 , phenolate ion form LH(-) and dianion form L(2-) ) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck-Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry-changing region during transition between the ground state and the first singlet excited state. PMID:27165852

  16. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    NASA Astrophysics Data System (ADS)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  17. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.

    PubMed Central

    Buck, D R; Savikhin, S; Struve, W S

    1997-01-01

    We describe simulations of absorption difference spectra in strongly coupled photosynthetic antennas. In the presence of large resonance couplings, distinctive features arise from excited-state absorption transitions between one- and two-exciton levels. We first outline the theory for the heterodimer and for the general N-pigment system, and we demonstrate the transition between the strong and weak coupling regimes. The theory is applied to Fenna-Matthews-Olson (FMO) bacteriochlorophyll a protein trimers from the green photosynthetic bacterium Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from the green bacterium Chlorobium tepidum. Images FIGURE 1 FIGURE 7 FIGURE 8 FIGURE 12 PMID:8994590

  18. Simultaneous Maximum-Likelihood Reconstruction of Absorption Coefficient, Refractive Index and Dark-Field Scattering Coefficient in X-Ray Talbot-Lau Tomography

    PubMed Central

    Ritter, André; Anton, Gisela; Weber, Thomas

    2016-01-01

    A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography. PMID:27695126

  19. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  20. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  1. Comparison of x-ray absorption spectra between water and ice: new ice data with low pre-edge absorption cross-section.

    PubMed

    Sellberg, Jonas A; Kaya, Sarp; Segtnan, Vegard H; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G M; Nilsson, Anders

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  2. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    SciTech Connect

    Sellberg, Jonas A.; Nilsson, Anders; Kaya, Sarp; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  3. On-the-Fly ab Initio Semiclassical Dynamics of Floppy Molecules: Absorption and Photoelectron Spectra of Ammonia.

    PubMed

    Wehrle, Marius; Oberli, Solène; Vaníček, Jiří

    2015-06-01

    We investigate the performance of on-the-fly ab initio (OTF-AI) semiclassical dynamics combined with the thawed Gaussian approximation (TGA) for computing vibrationally resolved absorption and photoelectron spectra. Ammonia is used as a prototype of floppy molecules, whose potential energy surfaces display strong anharmonicity. We show that despite complications due to the presence of large amplitude motion, the main features of the spectra are captured by the OTF-AI-TGA, which—by definition—does not require any a priori knowledge of the potential energy surface. Moreover, the computed spectra are significantly better than those based on the popular global harmonic approximation. Finally, we probe the limit of the TGA to describe higher-resolution spectra, where long time dynamics is required. PMID:25928833

  4. Collison-induced rototranslational absorption spectra of H/sub 2/-He pairs at temperatures from 40 to 3000 K

    SciTech Connect

    Borysow, J.; Frommhold, L.; Birnbaum, G.

    1988-03-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H/sub 2/-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K. 28 references.

  5. Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K

    NASA Technical Reports Server (NTRS)

    Borysow, Jacek; Frommhold, Lothar; Birnbaum, George

    1988-01-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H2-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K.

  6. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

    NASA Astrophysics Data System (ADS)

    Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.

    2015-10-01

    In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.

  7. Electronic absorption spectra of rare earth (III) species in NaCl-2CsCl eutectic based melts

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Ivanov, A. B.; Yakimov, S. M.; Tsarevskii, D. V.; Golovanova, O. A.; Sukhikh, V. V.; Griffiths, T. R.

    2016-09-01

    Electronic absorption spectra of ions of trivalent rare earth elements were measured in the melts based on NaCl-2CsCl eutectic in the wavelength ranges of 190-1350 and 1450-1700 nm. The measurements were performed at 550-850 °C. The EAS of Y, La, Ce and Lu containing melts have no absorption bands in the studied regions. For the remaining REEs (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) the absorption bands in the EAS were assigned to the corresponding f-f electron transitions. The Stark effect was observed for Yb(III) F5/2 excited state. Increasing temperature leads to decreasing intensity of the absorption bands, except for the bands resulting from hypersensitive transitions. Beer's law was confirmed up to 0.4 M solutions of REE.

  8. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    NASA Astrophysics Data System (ADS)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  9. Interpretation of X-ray absorption spectra of As(III) in solution using Monte Carlo simulations.

    PubMed

    Canche-Tello, Jesus; Vargas, M Cristina; Hérnandez-Cobos, Jorge; Ortega-Blake, Iván; Leclercq, Amelie; Solari, Pierre Lorenzo; Den Auwer, Christophe; Mustre de Leon, José

    2014-11-20

    We performed X-ray absorption spectroscopy measurements on the arsenic K-edge of As(III) in solution under acidic conditions. Extended X-ray absorption fine structure (EXAFS) and X-ray near edge structure (XANES) spectra were compared with theoretical calculations which use local atomic structure configurations, either derived from density functional theory (DFT) energy minimization (EM) calculations or based on classical Monte Carlo (MC) simulations, for a As(OH)3 cluster surrounded by water molecules. The nearest arsenic-oxygen distances obtained from the fit of the XAFS spectra are consistent with the distances present in configurations derived from Monte Carlo simulations but not with those obtained from DFT-EM calculations. Calculations of XANES using either DFT-EM or the average configuration obtained from MC simulations do not reproduce the XANES spectra in the vicinity of the absorption edge. However, specific local atomic structural configurations of the As(OH)3 and water molecules, obtained from MC simulations, which show some ordering of water molecules up to 5 Å from the arsenic, reproduce qualitatively the experimental spectra. These results highlight the capability of XANES to yield information about hydration of ions in solution.

  10. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    PubMed

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work.

  11. Interpretation of unexpected behavior of infrared absorption spectra of ScF3 beyond the quasiharmonic approximation

    NASA Astrophysics Data System (ADS)

    Piskunov, Sergei; Žguns, Pjotrs A.; Bocharov, Dmitry; Kuzmin, Alexei; Purans, Juris; Kalinko, Aleksandr; Evarestov, Robert A.; Ali, Shehab E.; Rocca, Francesco

    2016-06-01

    Scandium fluoride (ScF3), having cubic ReO3-type structure, has attracted much scientific attention due to its rather strong negative thermal expansion (NTE) in the broad temperature range from 10 to 1100 K. Here we use the results of diffraction and extended x-ray absorption fine-structure (EXAFS) spectroscopy to interpret the influence of NTE on the temperature dependence of infrared absorption spectra of ScF3. Original infrared absorption and EXAFS experiments in a large temperature range are presented and interpreted using ab initio lattice dynamics simulations within and beyond quasiharmonic approximations. We demonstrate that ab initio electronic structure calculations, based on the linear combination of atomic orbitals method with hybrid functionals, are able to reproduce well the experimental values of lattice parameter a0, band gap Eg, and lattice dynamics in ScF3. However, the simulations performed within quasiharmonic approximation fail to reproduce the temperature dependence of two infrared active bands due to the F-Sc-F bending (at 220 cm-1) and Sc-F stretching (at 520 cm-1) modes present in the infrared absorption spectra. To overcome this problem, an approach beyond the quasiharmonic approximation is proposed: It accounts for the negative thermal expansion of the lattice and for fluorine atom displacements due to strong F vibrational motion perpendicular to the cubic axes and allows us to explain qualitatively the temperature behavior of infrared spectra of ScF3.

  12. Measuring the acoustic absorption coefficient in biological tissue specimens using ultrasonic phase conjugation

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Zelenova, Z. V.; Brysev, A. P.

    2014-03-01

    Acoustic absorption has been measured in a series of biological tissue specimens—porcine muscle, renal and fat tissues—by the standard insert-substitution method, as well as by ultrasonic phase conjugation. Comparison of the experimental results and revealed differences confirm the promise of using phase conjugate waves to measure acoustic losses in biological objects. It is demonstrated that in inhomogeneous tissues, the phase conjugation method makes it possible to obtain a more reliable estimate of dissipative losses.

  13. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  14. Variability, absorption features, and parent body searches in "spectrally featureless" meteorite reflectance spectra: Case study - Tagish Lake

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Craig, M. A.; Applin, D. M.; Sanchez, J. A.; Reddy, V.; Le Corre, L.; Mann, P.; Cloutis, E. A.

    2015-07-01

    Reflectance spectra of many asteroids and other Solar System bodies are commonly reported as "featureless". Here, we show that weak but consistently detectable absorption bands are observable in 200-2500 nm spectra of the Tagish Lake meteorite, a likely compositional and spectral analogue for low-albedo, "spectrally-featureless" asteroids. Tagish Lake presents a rare opportunity to study multiple lithologies within a single meteorite. Reflectance spectra of Tagish Lake display significant variation between different lithologies. The spectral variations are due in part to mineralogical variations between different Tagish Lake lithologies. Ultraviolet reflectance spectra (200-400 nm), few of which have been reported in the literature to date, reveal albedo and spectral ratio variations as a function of mineralogy. Similarly visible-near infrared reflectance spectra reveal variations in albedo, spectral slope, and the presence of weak absorption features that persist across different lithologies and can be attributed to various phases present in Tagish Lake. These observations demonstrate that significant spectral variability may exist between different lithologies of Tagish Lake, which may affect the interpretation of potential source body spectra. It is also important to consider the spectral variability within the meteorite before excluding compositional links between possible parent bodies in the main belt and Tagish Lake. Tagish Lake materials may also be spectral-compositional analogues for materials on the surfaces of other dark asteroids, including some that are targets of upcoming spacecraft missions. Tagish Lake has been proposed as a spectral match for 'ultra-primitive' D or P-type asteroids, and the variability reported here may be reflected in spatially or rotationally-resolved spectra of possible Tagish Lake parent bodies and source objects in the Near-Earth Asteroid population. A search for objects with spectra similar to Tagish Lake has been carried

  15. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  16. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  17. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  18. Inspecting absorption in the spectra of extra-galactic gamma-ray sources for insight into Lorentz invariance violation

    SciTech Connect

    Jacob, Uri; Piran, Tsvi

    2008-12-15

    We examine what the absorbed spectra of extra-galactic TeV gamma-ray sources, such as blazars, would look like in the presence of Lorentz invariance violation. Pair production with the extra-galactic background light modifies the observed spectra of such sources, and we show that a violation of Lorentz invariance would generically have a dramatic effect on this absorption feature. Inspecting this effect, an experimental task likely practical in the near future, can provide unique insight on the possibility of Lorentz invariance violation.

  19. Near-infrared absorption spectra of C{sub 60} radical cations and anions prepared simultaneously in solid argon

    SciTech Connect

    Gasyna, Z.; Andrews, L.; Schatz, P.N.

    1992-02-20

    The codeposition of C{sub 60} vapor with excess argon and argon resonance radiation has produced strong new absorptions at 973 and 1068 nm in solid argon at 11 {+-} 1 K. A similar experiment with CCl{sub 4} added to serve as an electron trap reduced the yield of the 1068-nm band with little effect on the 973-nm absorption. The 973-nm band is assigned to C{sub 60}{sup {sm_bullet}+} produced by photoionization and the 1068-nm band to C{sub 60}{sup {sm_bullet}-} formed by electron capture. These identifications are in excellent agreement with glassy matrix, solution, and photoelectron spectra.

  20. Double photoexcitation involving 2p and 4f electrons in L3 -edge x-ray absorption spectra of protactinium

    NASA Astrophysics Data System (ADS)

    Hennig, Christoph; Le Naour, Claire; Auwer, Christophe Den

    2008-06-01

    The L3 -edge x-ray absorption spectrum of Pa(V) fluoride in aqueous solution show clear evidence for the double photoexcitation involving 2p and 4f electrons. A comparison with the [2p4f] double-electron excitations observed in the L3 -edge x-ray absorption spectra of other actinides (thorium, uranium, neptunium, plutonium, and americium) indicates a monotonic increase in the excitation energy. The sharp edgelike structure of the multielectron excitation reveals the origin of a shake-up channel.

  1. A Study of the Ultraviolet Absorptions in the Spectra of DA White Dwarfs and Ultraviolet Spectra of the Star HR6560

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1986-01-01

    Two projects in conjunction with the International Ultraviolet Explorer Satellite are discussed. These projects were to: (1) study the properties of the H2 and H2+ quasi-molecular absorption features at lambda lambda 1600 and 1400 in the ultraviolet spectra of the hydrogen-rich DA white dwarfs and to search for additional spectroscopic features in the spectra of these stars; and (2) use the ultraviolet portion of the spectrum of the peculiar rare earth-rich late F type star, HR6560 (HD159870), to establish whether or not the element abundance anomalies are produced in conjunction with its having a white dwarf binary companion. The data show that HR6560 is probably not associated with any hot subluminous or degenerate star.

  2. Mineral Specific IR Molar Absorption Coefficients for Routine Water Determination in Olivine, SiO2 polymorphs and Garnet

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Koch-Mueller, M.; Reichart, P.; Rhede, D.; Thomas, R.

    2007-12-01

    Conventionally applied Infrared (IR) calibrations [1, 2] for quantitative water analyses in solids are established on hydrous minerals and glasses with several wt% water. These calibrations are based on a negative correlation between the IR molar absorption coefficient (ɛ) for water and the mean wavenumber of the corresponding OH pattern. The correlation reflects the dependence of the OH band position on the appropriate O- H...O distances and thereby the magnitude of the dipole momentum which is proportional to the band intensity. However, it has been observed that these calibrations can not be adopted to nominally anhydrous minerals (NAMs) [3].To study the potential dependence of ɛ on structure and chemistry in NAMs we synthesized olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g. quartz, coesite and stishovite with B3++H+=Si4+ and/or Al3++H+=Si4+ substitutions. Experiments were performed with water in excess in piston cylinder and multi-anvil presses. Single crystal IR spectra demonstrate that we successfully managed to seperate generally complex OH patterns as e.g. observed in natural quartz and synthetic coesite. We quantified sample water contents of both natural samples and our run products by applying proton-proton-scattering [4], confocal microRaman spectroscopy [5] and Secondary Ion mass spectrometry. Resulting water concentrations were used to calculate new mineral specific ɛs. For olivine with the mean wavenumber of 3517 cm-1 we determined an ɛ value of 41,000±5,000 lmol-1H2Ocm-2. Quantification of olivine with the mean wavenumber of 3550 cm-1 in contrast resulted in an ɛ value of 47,000±1,000 lmol-1H2Ocm-2. Taking into account previous studies [6, 7] there is evidence to suggest a linear wavenumber dependent correlation for olivine, where ɛ increases with decreasing wavenumber. In case of the SiO2 system it turns out that the magnitude of ɛ within one structure type is independent of the liable OH point defect and

  3. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  4. First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl

    SciTech Connect

    Zhao, Shijun; Zhang, Shen; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-06-15

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics (FPMD) method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. It is shown that approximate description of ionization in FPMD has small influence on Hugoniot pressure due to mutual compensation of electronic kinetic pressure and virial pressure. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the 3p electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  5. Near infrared absorption spectra of C{sub 60} radical cations and anions prepared simultaneously in solid argon

    SciTech Connect

    Schatz, P.N.; Gasyna, Z.; Andrews, L.

    1992-12-01

    The codeposition of C{sub 60} vapor with excess argon and concurrent argon resonance radiation has produced strong new absorptions at 973 and 1068 nm in solid argon at 11 {plus_minus} 1 K. A similar experiment with CCl{sub 4}, added to serve as an electron trap, reduced the yield of the 1068 nm band with little effect on the 973 nm absorption. The 973 nm band is assigned to C{sub 60}{sup +} produced by photoionization and the 1068 nm band to C{sub 60}{sup {minus}} formed by electron capture. These identifications are in excellent agreement with glassy matrix, solution and photoelectron spectra. Preliminary magnetic circular dichroism (MCD) spectra of the 973 nm C{sub 60}{sup +} band have also been measured. Both the 1068 and 973 nm bands show a characteristic triplet structure which is tentatively attributed to the combined effects of spin-orbit and Jahn-Teller coupling.

  6. Recalibration of the absorption/photodissociation spectra of CO and its isotopes between 91 and 115 nm

    NASA Technical Reports Server (NTRS)

    Eidelsberg, M.; Benayoun, J. J.; Viala, Y.; Rostas, F.; Smith, P. L.; Yoshino, K.; Stark, G.; Shettle, C. A.

    1992-01-01

    A systematic error has been identified in the wavelengths and wavenumbers presented in two papers concerning the absorption/dissociation spectra of CO and isotopes between 91.2 and 115.2 nm. The published wavelengths are about 10 mA (0.001 nm) too small for lines in the 91-100 nm range. A table of corrected band origins is provided.

  7. Features in optical absorption and photocurrent spectra of organic solar cells due to organic/organic interface

    NASA Astrophysics Data System (ADS)

    Ismail, Yasser A. M.; Soga, Tetsuo; Jimbo, Takashi

    2011-05-01

    We surprisingly found that, organic/organic interface had a direct and pronounced impact on optical absorption and photocurrent spectra of organic solar cell at a favorable wavelength region of the visible solar spectrum. The organic/organic interface was formed as a result of connection between coumarin 6 (C6): [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blend films and indium-tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) electrode. Optical absorption measurement was carried out for ITO/PEDOT:PSS/C6:PCBM films, while external quantum efficiency measurement was carried out for ITO/PEDOT:PSS/C6:PCBM/Al solar cells, with varying C6:PCBM blend concentration. We found that, the C6:PCBM blend in the ITO/PEDOT:PSS/C6:PCBM films had an additional feature in the absorption spectra at the wavelength range of 520-800 nm, at which the C6 dye, PCBM, PEDOT:PSS, and ITO were transparent. An additional feature, also, appeared in photocurrent spectra of the C6:PCBM films in the ITO/PEDOT:PSS/C6:PCBM/Al solar cells at the same wavelength range. The new features in the optical absorption and photocurrent spectra of the investigated solar cells originated, in all probability, due to optically induced sup-band transitions in the C6:PCBM blend films at the interface with ITO/PEDOT:PSS electrode. Thus, the C6:PCBM blend films produced a charge carrier generation interface due to connection with ITO/PEDOT:PSS electrode. As a result of this charge carrier generation interface, the power conversion efficiency of the corresponding solar cell is improved. Taking into consideration these new findings, the high-band-gap organic materials will take more importance as sensitizers in organic optoelectronic applications.

  8. Conformational effects in the absorption spectra and photochemistry of [2, n](9,10)anthracenophanes ( n = 2,3)

    NASA Astrophysics Data System (ADS)

    Dunand, Albert; Ferguson, James; Puza, Miroslav; Robertson, Glen B.

    1980-11-01

    The absorption spectra of [2.2](9,10)anthracenophane (1) and [2.3](9,10)anthracenophane (II), in condensed media, contain overlapping contributions from two conformational isomers with quite different spectra. The spectra of the two conformations of I and of one conformation of II have been separately determined by a solid state method. This involved the incorporation of the photoisomers of I (1,2,7,8,-tetrahydro-2a,6b[1',2']:8a, 12b[1″,2″] -dibenzenodibenzo [a,c] dicyclo- buta[e.g]cyclooctene) and II (1,2,8,9-tetrahydro-2a,6b[1',2']:9a,13b[1″,2″]-dibenzeno-7H-dibenzo[a,e]cyclobuta[c]-cyclopenta[g]cyclooctene) in host single crystals of the photoisomer of 1,3-di(9-anthryl)propane, I and II were then obtained by thermal dissociation and their spectra measured at 8 K. The two conformers of 1 were separated by photoselection, the rotated conformer being between 4 and 5 times more photoreactive than the translated conformer. A modified molecular force field program was used to simulate the environment around the guest molecule (I) and the resultant geometries and orientations in the (disordered) site of the host crystal are in excellent agreement with the polarization analysis of the absorption spectra. Two crystal orientations of the rotated conformer were found. For II, the rotated conformation, with two orientations, dominates the absorption spectrum and the translated conformer could not be obtained by photoselection. The force field program was used to calculate the molecular geometries (gas phase) of both conformations of I and II and their photoisomers, I was also obtained by ultraviolet photodissociation of its photoisomer at 8 K. Both conformers were obtained with the same ratio as for the thermally treated crystals. This result considered with the photoselection experiments, demonstrates that the reversible photoisomerization does not proceed via biradical intermediate.

  9. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  10. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks. PMID:23601731

  11. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks.

  12. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  13. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  14. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  15. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  16. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  17. The fundamental quadrupole band of (N-14)2 - Line positions from high-resolution stratospheric solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Gunson, M. R.; Farmer, C. B.

    1991-01-01

    Accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen (N-14)2 are reported. Improved Dunham coefficients were derived from a simultaneous least squares analysis of these measurements and selected infrared and far infrared data. The new measurements were performed using stratospheric solar occultation spectra recorded with Fourier transform spectrometer instruments, operated at unapodized spectral resolutions of 0.002 and 0.01/cm.

  18. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    NASA Astrophysics Data System (ADS)

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  19. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  20. Absorption coefficients of the methane-nitrogen binary ice system: Implications for Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Grundy, W. M.; Tegler, S. C.; Bergonio, J. M.

    2015-06-01

    The methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983. Sov. J. Low Temp. Phys. 9, 94-98) indicates that at temperatures relevant to the surfaces of icy dwarf planets like Pluto, two phases contribute to the methane absorptions: nitrogen saturated with methane N2 ‾ :CH4 and methane saturated with nitrogen CH4 ‾ :N2 . No optical constants are available so far for the latter component limiting construction of a proper model, in compliance with thermodynamic equilibrium considerations. New optical constants for solid solutions of methane diluted in nitrogen (N2 :CH4) and nitrogen diluted in methane (CH4 :N2) are presented at temperatures between 40 and 90 K, in the wavelength range 1.1-2.7 μm at different mixing ratios. These optical constants are derived from transmission measurements of crystals grown from the liquid phase in closed cells. A systematic study of the changes of methane and nitrogen solid mixtures spectral behavior with mixing ratio and temperature is presented.

  1. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton

    NASA Astrophysics Data System (ADS)

    McKee, David; Röttgers, Rüdiger; Neukermans, Griet; Calzado, Violeta Sanjuan; Trees, Charles; Ampolo-Rella, Marina; Neil, Claire; Cunningham, Alex

    2014-12-01

    Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors. The copyright line for this article was changed on 16 JAN 2015 after original online publication.

  2. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    Despite of its importance, the possibilities to determine the direct radiative forcing by atmospheric aerosols is very limited due to lack of the reliable on-line instruments. Therefore there is an increasing concern for novel methods promising more accurate and reliable results in this field. The accuracy and reliability of the available on-line instruments like SP2 (Single Particle Soot Photometer), MAAP (Multi Angle Absorption Photometer), are limited by the weakness of the spectral resolution or the sampling artefact of filter matrix during the light attenuation measurement on the deposited filter. These methods neither suitable for direct determination of the light absorption by aerosols nor dispose the capability of the source apportionment. In this work we present a novel photoacoustic based instrument for direct light absorption measurements in the atmosphere and demonstrate the suitability of that both in laboratory and field circumstances. We have developed a novel Multi Wavelength PhotoAcoustic System (WaSul-MuWaPas) based on the diode laser pumped, high repetition rate, Q-switched Nd:YAG laser and its frequency converted harmonics for direct determination of light absorption by aerosols. This instrument has designed to make in situ measurements at four different wavelengths simultaneously from the NIR to the UV wavelength range (1064nm, 532nm, 355nm, 266nm). The Wasul-MuWaPas measures directly the optical absorption coefficient on airborne particles, not belong to the integrated plate type technique (filter-free operation), operating at wide wavelength range (source apportionment possibilities), due to the possibilities of the wavelength independent cell constant determination the measurement method is absolute. Because of these the Wasul-MuWaPas system may become one of the best candidate for absorption measurements of various atmospheric aerosols such as black carbon, mineral dust, and secondary organic and inorganic aerosols as well as for source

  3. Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3.

    PubMed

    Zhu, Xi; Su, Haibin; Marcus, Rudolph A; Michel-Beyerle, Maria E

    2014-09-01

    Electronic structure and light absorption properties of the perovskite CH3NH3PbI3 are investigated by relativistic density functional theory with quasiparticle GW corrections and many-body interactions. The nature of the Wannier exciton is studied by solving the Bethe-Salpeter equation augmented with the analysis of a conceptual hydrogen-like model. The computed absorption spectrum unravels a remarkable absorption "gap" between the first two absorption peaks. This discontinuity is maintained in the calculated tetragonal structure that, however, is not stable at low temperature. Most importantly, the discontinuity is also observed in the experimental absorption spectrum of the orthorhombic single crystal at low temperature (4 K). However, in contrast to the single crystal, in a polycrystalline perovskite film at 5 K the "gap" is filled by a monotonously increasing absorption throughout the visible range. This feature of thin films points to the potential significance of defect absorption for the excellent light harvesting properties of perovskite-based solar cells. PMID:26278260

  4. Effect of the concentration of magnetic grains on the linear-optical-absorption coefficient of ferrofluid-doped lyotropic mesophases: deviation from the Beer-Lambert law.

    PubMed

    Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M

    2004-04-01

    In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.

  5. Optical absorption coefficients in GaN/Al(Ga)N double inverse parabolic quantum wells under static external electric field

    NASA Astrophysics Data System (ADS)

    El Kadadra, A.; Fellaoui, K.; Abouelaoualim, D.; Oueriagli, A.

    2016-09-01

    In this work, we have investigated theoretically the effects of applied electric field on the linear and nonlinear optical properties in a GaN/AlxGa1-xN double inverse parabolic quantum well for different Al concentrations at the well center. Our calculations are based on the potential morphing method in the effective mass approximation. The systematic theoretical investigation contains results with all possible combinations of the involved parameters, such as quantum well width, quantum barrier width, Al concentration at each well center and magnitude of the external electric field. Our results show that the electric fields strengths, the parameter of nanostructure and incident optical intensity have a great effect on the optical characteristics of these nanostructures. Thus, the absorption coefficients which can be suitable for great performance optical modulators and multiple infrared optical device applications can be easily obtained by tuning the external electric field value and the Al concentration at the well center.

  6. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    SciTech Connect

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb{sub 2}O{sub 3}-SbPO{sub 4} were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n{sub 2}, of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n{sub 2} was observed by adding lead oxide to the Sb{sub 2}O{sub 3}-SbPO{sub 4} composition. Large values of n{sub 2}{approx_equal}10{sup -14} cm{sup 2}/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications.

  7. Absorption spectra of AgI at pressures to 136 kbar

    SciTech Connect

    Liebenberg, D.H.; Hudson, J.

    1981-01-01

    Spectral absorption measurements in AgI are reported at pressures up to 136 kbar using a diamond anvil cell. In the NaCl phase between 5 and 70 kbar the absorption edge shift is found to be nearly linear with pressure. No indication of a sudden jump into a CsCl phase is found near 100 kbar and the possible influence of larger pressure gradients in earlier measurements is discussed.

  8. Sticking to (first) principles: quantum molecular dynamics and Bayesian probabilistic methods to simulate aquatic pollutant absorption spectra.

    PubMed

    Trerayapiwat, Kasidet; Ricke, Nathan; Cohen, Peter; Poblete, Alex; Rudel, Holly; Eustis, Soren N

    2016-08-10

    This work explores the relationship between theoretically predicted excitation energies and experimental molar absorption spectra as they pertain to environmental aquatic photochemistry. An overview of pertinent Quantum Chemical descriptions of sunlight-driven electronic transitions in organic pollutants is presented. Second, a combined molecular dynamics (MD), time-dependent density functional theory (TD-DFT) analysis of the ultraviolet to visible (UV-Vis) absorption spectra of six model organic compounds is presented alongside accurate experimental data. The functional relationship between the experimentally observed molar absorption spectrum and the discrete quantum transitions is examined. A rigorous comparison of the accuracy of the theoretical transition energies (ΔES0→Sn) and oscillator strength (fS0→Sn) is afforded by the probabilistic convolution and deconvolution procedure described. This method of deconvolution of experimental spectra using a Gaussian Mixture Model combined with Bayesian Information Criteria (BIC) to determine the mean (μ) and standard deviation (σ) as well as the number of observed singlet to singlet transition energy state distributions. This procedure allows a direct comparison of the one-electron (quantum) transitions that are the result of quantum chemical calculations and the ensemble of non-adiabatic quantum states that produce the macroscopic effect of a molar absorption spectrum. Poor agreement between the vertical excitation energies produced from TD-DFT calculations with five different functionals (CAM-B3LYP, PBE0, M06-2X, BP86, and LC-BLYP) suggest a failure of the theory to capture the low energy, environmentally important, electronic transitions in our model organic pollutants. However, the method of explicit-solvation of the organic solute using the quantum Effective Fragment Potential (EFP) in a density functional molecular dynamics trajectory simulation shows promise as a robust model of the hydrated organic

  9. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    SciTech Connect

    Gronoff, G.; Mertens, C. J.; Norman, R. B.; Maggiolo, R.; Wedlund, C. Simon; Bell, J.; Bernard, D.; Parkinson, C. J.; Vidal-Madjar, A.

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  10. a Theoretical Model for Wide-Band Infrared-Absorption Molecular Spectra at any Pressure: Fiction or Reality?

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Vander Auwera, Jean

    2014-06-01

    Various atmospheric applications require modeling of infrared absorption by the main atmospheric species in wide ranges of frequencies, pressures and temperatures. For different pressure regimes, different mechanisms are responsible for the observed intensities of vibration-rotation line manifolds, and the structure of the bands changes drastically when going from low to high densities. Therefore, no universal theoretical model exists presently to interpret simultaneously collapsed band-shapes observed at very high pressures and isolated-line shapes recorded in sub-atmospheric regimes. Using CO_2 absorption spectra as an example, we introduce some improvements in the non-Markovian Energy-Corrected Sudden model, developed for high-density spectra of arbitrary tensorial rank and generalized recently to parallel and perpendicular infrared absorption bands, and test the applicability of this approach for the case of nearly Doppler pressure regime via comparisons with recently recorded experimental intensities. J.V. Buldyreva and L. Bonamy, Phys. Rev. A 60(1), 370-376 (1999). J. Buldyreva and L. Daneshvar, J. Chem. Phys. 139, 164107 (2013). L. Daneshvar, T. Földes, J. Buldyreva, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 2014 (to be submitted).

  11. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  12. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.

  13. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  14. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  15. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  16. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    PubMed

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect. PMID:26923428

  17. Investigation of the electronic absorption spectra and the circular dichroism spectra of binuclear tetra-. mu. -mandelato complexes of Mo/sub 2//sup 4 +/

    SciTech Connect

    Golovaneva, I.F.; Akhmedov, E.L.; Kotel'nikova, A.S.

    1987-05-01

    The IR, electronic absorption, and circular dichroism spectra of the binuclear tetra-..mu..-mandelates of molybdenum(II) (Mo/sub 2//D-(-)-OOCCH(OH)C/sub 6/H/sub 5///sub 4/) and (Mo/sub 2//L-(+)-OOCCH(OH)C/sub 6/H/sub 5///sub 4/) have been studied. It has been established that Cotton effects are induced in all the electronic transitions of the symmetric (Mo/sub 2/O/sub 8/)chromophore under the influence of the asymmetric atom of the optically active mandelato ligand. The observed electronic transitions have been assigned on the basis of an analysis of the spectroscopic data obtained.

  18. Depth profiling the optical absorption and thermal reflection coefficient via an analysis based on the method of images (abstract)

    NASA Astrophysics Data System (ADS)

    Power, J. F.

    2003-01-01

    The problem of depth profiling optical absorption in a thermally depth variable solid is a problem of direct interest for the analysis of complex structured materials. In this work, we introduce a new algorithm to solve this problem in a planar layered sample which is impulse irradiated. The sample is comprised of "N" model layers of thickness Δx, of constant diffusivity α, where the conductivity varies depth wise with each layer. This derivation extends to the general case of a depth variable thermal reflection coefficient with depth variable optical source density. In such a sample, at finite time, t, past excitation, thermal energy can only significantly penetrate NL model layers NL≈√4αt[-ln(ɛ)] /2Δx, where ɛ is a small error (ɛ⩽10-6) and a double transit through each layer is assumed. The depth profile of optical absorption in each layer, i, is approximated by δ(x-iΔx), weighted by the optical source density Si. The temperature at x=0- just inside a front medium contacting the sample is given by T(x=0,t)= ∑ i=12NL SiṡGR(x,x0=iΔx,t)]x=0, where GR(x,x0,t) represents an effective Green's function for optical absorption at the depth x0=iΔx in the sample. The method of images1 gives GR(x,x0=iΔx,t) in the following form: [GR(x,0Δx,t)GR(x,2Δx,t)…GR(x,2NLΔx,t)]=[A10A12 A14 A16 …..A1,2NL0A32A34 A36 …..A3,2NL….0……A2NL-1,2NL][G(x-0Δx,t)G(x-2Δx,t)……G(x-2NLΔx,t)]. The G(x-nΔx,t) are shifted image fields obtained from the infinite domain Green's function for one-dimensional heat conduction. They account for thermal wave reflection/transmission over the path length nΔx from the source (at interface i) to the surface (x=0). The Ain are lumped coefficients giving the efficiency of heat transmission from the ith source to the surface for each path order n. They are determined by a mapping procedure that identifies all propagation paths of each order, n, and computes the individual and lumped reflection coefficients. Equation (2) is

  19. Solvents effect on the absorption and fluorescence spectra of 7-diethylamino-3-thenoylcoumarin: Evaluation and correlation between solvatochromism and solvent polarity parameters

    NASA Astrophysics Data System (ADS)

    Basavaraja, Jana; Inamdar, S. R.; Suresh Kumar, H. M.

    2015-02-01

    Effect of solvents of varying polarities on absorption and fluorescence spectra and dipole moment of laser dye: 7-diethylamino-3-thenoylcoumarin (DETC) has been investigated. A small band shift is obtained in the absorption spectra compared to emission spectra. The spectral shifts were correlated with Catalan's parameters using linear solvation energy relationship. It reveals that non-specific interaction measured by solvent polarity has more influence on absorption and solvent dipolarity contribution is significant in case of fluorescence. A bathochromic shift observed in absorption and emission spectra with increasing solvent polarity, which implied that the transition involved is π → π∗. The solvatochromic correlations were used to estimate the excited state dipole moment using experimentally determined ground state dipole moment. The observed single-state excited state dipole moment is found to be greater than the ground state.

  20. Extraction of pigment information from near-UV vis absorption spectra of extra virgin olive oils.

    PubMed

    Domenici, Valentina; Ancora, Donatella; Cifelli, Mario; Serani, Andrea; Veracini, Carlo Alberto; Zandomeneghi, Maurizio

    2014-09-24

    This work reports a new approach to extract the maximum chemical information from the absorption spectrum of extra virgin olive oils (EVOOs) in the 390-720 nm spectral range, where "oil pigments" dominate the light absorption. Four most important pigments, i.e., two carotenoids (lutein and β-carotene) and two chlorophylls (pheophytin-a and pheophytin-b), are chosen as reference oil pigments, being present in all the reported analytical data regarding pigments of EVOOs. The method allows the quantification of the concentration values of these four pigments directly from the deconvolution of the measured absorption spectrum of EVOOs. Advantages and limits of the method and the reliability of the pigment family quantification are discussed. The main point of this work is the description of a fast and simple method to extract of such information in less than a minute, through the mathematical analysis of the UV-vis spectrum of untreated samples of oil.

  1. Disentangling vibronic and solvent broadening effects in the absorption spectra of coumarin derivatives for dye sensitized solar cells.

    PubMed

    Cerezo, Javier; Avila Ferrer, Francisco J; Santoro, Fabrizio

    2015-05-01

    We simulate from first-principles the absorption spectra of five structure-related coumarin derivatives utilized in dye sensitized solar cells (DSSCs), investigating the vibronic and solvent contributions to the position and width of the spectra in ethanol. Ground and excited state potential energy surfaces (PESs) are modeled by Density Functional Theory (DFT) and its time-dependent (TD) expression for the excited state (TD-DFT). The solute vibronic structure associated with the spectrum is calculated by a TD formalism, accounting for both Duschinsky and temperature effects, while solvent inhomogeneous broadening is evaluated according to Marcus' theory, computing the solvent reorganization energy by the state-specific implementation of the polarizable continuum model (PCM) within TD-DFT. We adopted both the standard hybrid PBE0 and the range separated CAM-B3LYP functionals showing that the latter performs better both concerning the vibronic and solvent-induced contributions to the absorption lineshape. The different predictions of the two functionals are then rationalized in terms of the charge transfer (CT) character of the transitions showing that, in this class of compounds, it is strongly dependent on the nuclear structure. Such a dependence introduces a bias in the PBE0 PES that has a drastic impact on the vibronic spectra. We show that both the intrinsic vibronic structure and the solvent broadening play a relevant role in differentiating the absorption width of the five dyes. In this sense, our results provide a guide to understand the sources of spectral broadening of this family of dyes, a valuable help for a rational design of new molecules to improve DSSC devices.

  2. All-electron first-principles GW+Bethe-Salpeter calculation for optical absorption spectra of sodium clusters

    SciTech Connect

    Noguchi, Yoshifumi; Ohno, Kaoru

    2010-04-15

    The optical absorption spectra of sodium clusters (Na{sub 2n}, n{<=} 4) are calculated by using an all-electron first-principles GW+Bethe-Salpeter method with the mixed-basis approach within the Tamm-Dancoff approximation. In these small systems, the excitonic effect strongly affects the optical properties due to the confinement of exciton in the small system size. The present state-of-the-art method treats the electron-hole two-particle Green's function by incorporating the ladder diagrams up to the infinite order and therefore takes into account the excitonic effect in a good approximation. We check the accuracy of the present method by comparing the resulting spectra with experiments. In addition, the effect of delocalization in particular in the lowest unoccupied molecular orbital in the GW quasiparticle wave function is also discussed by rediagonalizing the Dyson equation.

  3. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  4. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  5. Final State Projection Method in Charge-Transfer Multiplet Calculations: An analysis of Ti L-edge Absorption Spectra

    PubMed Central

    Kroll, Thomas; Solomon, Edward I.; de Groot, Frank M. F.

    2016-01-01

    A projection method to determine the final state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d0 system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a non-trivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  6. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  7. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra.

    PubMed

    Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo

    2005-07-01

    The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.

  8. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  9. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems.

  10. X-ray absorption spectra of water within a plane-wave Car-Parrinello molecular dynamics framework

    NASA Astrophysics Data System (ADS)

    Cavalleri, Matteo; Odelius, Michael; Nilsson, Anders; Pettersson, Lars G. M.

    2004-11-01

    We describe the implementation of a simple technique to simulate core-level spectra within the Car-Parrinello plane-waves molecular dynamics framework. The x-ray absorption (XA) spectra are generated using the transition potential technique with the effect of the core hole included through a specifically developed pseudopotential for the core-excited atom. Despite the lack of 1s core orbitals in the pseudopotential treatment, the required transition moments are accurately calculated without reconstruction of the all-electron orbitals. The method is applied to the oxygen XA spectra of water in its various aggregation states, but it is transferable to any first-row element. The computed spectra are compared favorably with the results from all-electron cluster calculations, as well as with experimental data. The periodicity of the plane-wave technique improves the description of condensed phases. The molecular dynamics simulation enables in principle a proper treatment of thermal effects and dynamical averaging in complex systems.

  11. Automatic phase correction of fourier transform NMR spectra based on the dispersion versus absorption (DISPA) lineshape analysis

    NASA Astrophysics Data System (ADS)

    Sotak, Christopher H.; Dumoulin, Charles L.; Newsham, Mark D.

    A method for automatic phase correction of Fourier transform NMR spectra bused on the dispersion versus absorption (DISPA) lineshape analysis is described. The DISPA display of a single misphased Lorentzian line gives a unit circle which has been rotated about the origin (relative to its "reference circle") by a number of degrees equal to the phase misadjustment. This rotation, Φ, is a combination of the zero- and first-order phase angles at the frequency of the resonance. Calculation of Φ for two or more resonances allows the spectral phasing parameters to be determined and applied to correct the spectrum. This approach has been implemented in both automatic and "semi-automatic" modes.

  12. Electronic properties and absorption spectra of ZnSnP{sub 2} using mBJ potential

    SciTech Connect

    Joshi, Ritu Ahuja, B. L.

    2015-06-24

    We present the energy bands and density of states of ZnSnP{sub 2} using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP{sub 2} in photovoltaic and optoelectronic devices.

  13. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-01

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  14. Far-infrared absorption spectra of cobalt(III), rhodium(III), and iridium(III). beta. -diketonates

    SciTech Connect

    Oglezneva, I.M.; Isakova, V.G.; Igumenov, I.K.

    1987-03-01

    The IR absorption spectra of the complexes of Co(II), Rh(III), and Ir(III) with acetylacetone, trifluoroacetylacetone, hexafluoroactylacetone, dipivaloylmethane, and pivaloyltrifluoroacetylacetone in the region from 30 to 700 cm/sup -1/ have been examined for the first time. The frequencies of the intramolecular vibrations associated with in-plane and out-of-plane deformations of the chelate rings and deformations of the radicals in the ligands have been assigned. The frequencies of the predominantly stretching nu(MO) vibrations of the metal-oxygen bonds have been identified. Their variation has been compared with NMR data on the redistribution of the electron density in the chelate rings.

  15. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  16. Continuum absorption spectra in the far wings of the Hg 1S0-->3P1 resonance line broadened by Ar

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Nakamura, T.; Okunishi, M.; Ohmori, K.; Chiba, H.; Ueda, K.

    1996-02-01

    Absolute reduced absorption coefficients for the Hg resonance line at 253.7 nm broadened by Ar were determined between 390 and 430 K in the spectral range from 20 to 1000 cm-1 on the red wing and from 20 to 400 cm-1 on the blue wing. The resultant reduced absorption coefficients are in fair agreement with those obtained by Petzold and Behmenburg [Z. Naturtorsch. Teil A 33, 1461 (1978)]. The observed A 30+<--X 10+ spectrum in the spectral range from 80 to 800 cm-1 on the red wing agrees remarkably well both in shape and magnitude with the quasistatic line shape calculated using the potential-energy curves of the HgAr van der Waals molecule given by Fuke, Saito, and Kaya [J. Chem. Phys. 81, 2591 (1984)], and Yamanouchi et al. [J. Chem. Phys. 88, 205 (1988)]. The blue-wing spectrum is interpreted as the B 31<--X 10+ free-free transition of HgAr by a simulation of the spectrum using uniform semiclassical treatment for the free-free Franck-Condon factor. The source of the satellites on the blue wing is attributed to the phase-interference effect arising from a stationary phase-shift difference between the B- and X-state translational wave functions. The stationary phase-shift difference arises owing to the existence of a maximum in the difference potential between the B and X states. The repulsive branches of the potential-energy curves of HgAr for the X and B states have been revised to give excellent agreement between the observed and calculated spectra, both in shape and magnitude.

  17. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  18. [Investigation of FTIR spectra analysis on carbon dioxide absorption with improved amine solution].

    PubMed

    Yin, Wen-xuan; Liu, Jian-zhou; Gao, Li-ping; Jiang, Jing-liang; Wang, Zhi-hua

    2011-05-01

    Carbon dioxide is a major sort of greenhouse gas as well as important carbon resource. With the developments of industries, emission of carbon dioxide has increased sharply. Hence, controls of carbon dioxide emission and resource transformation have become the hotspot of current study. As a new kind of carbon resource, the fields of CO2 research and application are very extensive. Among those methods, the amine absorption has good qualities of faster absorption rate, higher efficiency and so on, so it has been widely studied. But organic amine have such shortcomings: high consumption of heat energy, strong corrosive and easy oxidated, now pursuer mainly focused on the organic amine modified. The results showed that, when the time the amount of antioxidant 1010 is 0.152, the absorption capacity is 2503.53 mL. the volume of analysis is 982.00 mL, and the absorption rate changes more slowly, by FTIR, Samples of its renewable-OH associating is not apparent that the antioxidant content in 1010, oxidation products of the MEA is acid or less oxidation and antioxidant 1010 product in early to respond fully to form stable non-radical compounds. Therefore, the best dosage of antioxidant 1010 is 0.15%. When the time that the amount of Na2SO3 is 0.15%, the absorption capacity is 2922.88 mL. Analysis of the volume is 723.00 mL, by FTIR, which reveals the oxidation products of the MEA is amide -C=O which in alkaline solution can be transiting into primary amine, and be easy absorbing CO2. Comparing the antioxygenic proerty of antioxidant 1010 with Na2SO3, from the absorption rate, the amount of absorption , Na2SO3's antioxidant properties is superior than antioxidant 1010; by infrared spectral analysis, 1010/20% MEA solution's oxidation products is the acid, Na2SO3/20% MEA solutions, the oxidation product is amide, amide solution is advantaged for absorbing CO2, So Na2SO3's antioxidant properties is superior than antioxidant 1010.

  19. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  20. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  1. Two-photon absorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking.

    PubMed

    Hu, Honghua; Przhonska, Olga V; Terenziani, Francesca; Painelli, Anna; Fishman, Dmitry; Ensley, Trenton R; Reichert, Matthew; Webster, Scott; Bricks, Julia L; Kachkovski, Alexey D; Hagan, David J; Van Stryland, Eric W

    2013-05-28

    Polymethine dyes (PDs) with absorption bands in the near-infrared region undergo symmetry breaking in polar solvents. To investigate how symmetry breaking affects nonlinear optical responses of PDs, an extensive and challenging experimental characterization of a cationic 2-azaazulene polymethine dye, including linear absorption, fluorescence, two-photon absorption and excited-state absorption, has been performed in two solvents with different polarity. Based on this extensive set of experimental data, a three-electronic-state model, accounting for the coupling of electronic degrees of freedom to molecular vibrations and polar solvation, has been reliably parameterized and validated for this dye, fully rationalizing optical spectra in terms of spectral position, intensities and bandshapes. In low-polarity solvents where the dye is mainly in its symmetric form, a nominally forbidden two-photon absorption band is observed, due to a vibronic activation mechanism. Inhomogeneous broadening plays a major role in polar solvents: absorption spectra represent the weighted sum of contributions from states with a variable amount of symmetry breaking, leading to a complex evolution of linear and nonlinear optical spectra with solvent polarity. In more polar solvents, the dominant role of the asymmetric form leads to the activation of two-photon absorption as a result of the symmetry lowering. The subtle interplay between the two mechanisms for two-photon absorption activation, vibronic coupling and polar solvation, can be fully accounted for within the proposed microscopic model allowing a detailed interpretation of the optical spectra of PDs.

  2. An unidentified absorption in the spectra of C-S stars

    NASA Technical Reports Server (NTRS)

    Rybski, P. M.

    1973-01-01

    An absorption feature in the low-dispersion red spectrograms of carbon Mira variables and C-S stars shown to exhibit strikingly different behavior in these similarly appearing carbon and carbonlike stars. Evidence is presented that in the carbon Miras the feature may be due to unresolved bandheads of the (0,0) system of calcium iodide. In this group of stars the feature exhibits a temperature sensitivity similar to absorptions due to calcium chloride and to the neutral sodium doublet. No identification is suggested for the feature appearing among the C-S stars, though there is evidence against it being composed partially of a zero-volt line of neutral scandium.

  3. Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra.

    PubMed

    Lu, Heng; Zhang, Xuejuan; Li, Cuihong; Wei, Hedi; Liu, Qian; Li, Weiwei; Bo, Zhishan

    2015-07-01

    Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short-circuit current density and open-circuit voltage in comparison with the corresponding HD-PDFC-DTBT (HD)- and DT-PDPPTPT (DPP)-based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance.

  4. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  5. Electronic absorption spectra of H₂C₆O⁺ isomers: produced by ion-molecule reactions.

    PubMed

    Chakraborty, Arghya; Fulara, Jan; Maier, John P

    2015-01-01

    Three absorption systems with origins at 354, 497, and 528 nm were detected after mass-selected deposition of H2C6O(+) in a 6 K neon matrix. The ions were formed by the reaction of C2O with HC4H(+) in a mixture of C3O2 and diacetylene in a hot cathode source, or by dissociative ionization of tetrabromocyclohexadienone. The 497 and 354 nm systems are assigned to the 1(2)A″ ← X(2)A″ and 2(2)A″ ← X(2)A″ electronic transitions of B(+), (2-ethynylcycloallyl)methanone cation, and the 528 nm absorption to the 1(2)A2 ← X(2)B1 transition of F(+), 2-ethynylbut-3-yn-1-enone-1-ylide, on the basis of calculated excitation energies with CASPT2. PMID:25495044

  6. Influence of Diffraction Effects on the Result of Measuring the Absorption Coefficient of Ultrasound in Weakly Absorbing Liquids by the Pulse Method

    NASA Astrophysics Data System (ADS)

    Shatsky, A. V.

    2016-07-01

    We consider the problem of the influence of diffraction effects on the result of measuring the absorption coefficient of ultrasound in weakly absorbing liquids by the pulse method. Diffraction attenuation of an ultrasonic signal in a measuring cell using solid-state delay lines is calculated. It is shown that the use of delay lines of the ultrasonic signal leads to a considerable distortion of the measured absorption coefficient in the low-frequency range from the true value and can either overestimate or underestimate the results.

  7. A method to obtain the absorption coefficient spectrum of single grain coal in the aliphatic C-H stretching region using infrared transflection microspectroscopy.

    PubMed

    Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru

    2014-01-01

    A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.

  8. Study of absorption spectra of gasolines and other hydrocarbon mixtures in the second overtone region of the CH3, CH2, CH groups

    NASA Astrophysics Data System (ADS)

    Muradov, V. G.; Sannikov, D. G.

    2007-03-01

    We have obtained experimental and model absorption spectra for individual hydrocarbons (toluene, benzene, n-heptane, and iso-octane) and their mixtures in the near IR range (λ = 1080 1220 nm). We model the spectra of nonsynthetic gasolines obtained under the same conditions by combining the spectra of three pure hydrocarbons. We show that the octane number of the studied gasoline is linearly related to the toluene (or benzene) concentrations in the model mixture.

  9. X-ray Absorption Spectra of Dissolved Polysulfides in Lithium-Sulfur Batteries from First-Principles.

    PubMed

    Pascal, Tod A; Wujcik, Kevin H; Velasco-Velez, Juan; Wu, Chenghao; Teran, Alexander A; Kapilashrami, Mukes; Cabana, Jordi; Guo, Jinghua; Salmeron, Miquel; Balsara, Nitash; Prendergast, David

    2014-05-01

    The X-ray absorption spectra (XAS) of lithium polysulfides (Li2Sx) of various chain lengths (x) dissolved in a model solvent are obtained from first-principles calculations. The spectra exhibit two main absorption features near the sulfur K-edge, which are unambiguously interpreted as a pre-edge near 2471 eV due to the terminal sulfur atoms at either end of the linear polysulfide dianions and a main-edge near 2473 eV due to the (x - 2) internal atoms in the chain, except in the case of Li2S2, which only has a low-energy feature. We find an almost linear dependence between the ratio of the peaks and chain length, although the linear dependence is modified by the delocalized, molecular nature of the core-excited states that can span up to six neighboring sulfur atoms. Thus, our results indicate that the ratio of the peak area, and not the peak intensities, should be used when attempting to differentiate the polysulfides from XAS.

  10. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: The Role of Vibrational Effects.

    PubMed

    Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo

    2016-06-14

    Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one-photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment. PMID:27159495

  11. Absorption spectra of Fe I in the 1550-3215-A region

    NASA Technical Reports Server (NTRS)

    Brown, C. M.; Ginter, M. L.; Johansson, S.; Tilford, S. G.

    1988-01-01

    The high-dispersion absorption spectrum of Fe I is reported in the 1550-3215-A region. Included are wavelengths of about 3000 observed spectral features, improved spectral assignments, 248 new energy levels, and a value for the ionization potential of 63 737/cm obtained from extrapolation of Rydberg series. Improved wavelengths for several hundred V I and Ti I spectral lines determined on the same spectrograms as the iron data also are presented.

  12. Analyses of optical absorption and circular dichroism spectra of spinach ferredoxin at alkaline pH.

    PubMed

    Hasumi, H

    1982-10-01

    The whole protein structure and the microenvironments of the iron-sulfur cluster and of the side chains of amino acid residues of spinach ferredoxin were studied by optical absorption and circular dichroism (CD) spectroscopy in the alkaline pH range. From the pH-dependence of the optical absorption changes at 245 nm, the four tyrosyl residues of ferredoxin were classified into three groups: one exposed residue with a normal apparent pK value of 10.1, two exposed residues with abnormal apparent pK values of 12.0, and one buried residue showing time-dependent ionization. The absorption in the visible region disappeared gradually with the ionization of the buried residue rather than that of the three exposed residues. The apparent pK value of 10.0 was obtained from the rapid CD changes at 258 nm caused by pH elevation from neutral to alkaline pH. The structural alteration associated with the CD change had no effect on the secondary structure of the protein moiety other than the iron-sulfur cluster and the microenvironment of the cluster. The rate constants obtained from the time courses of the CD changes in the near-ultraviolet and visible regions were in good agreement with those obtained from the time courses of the optical absorption changes. These results lead to the conclusions that (1) the native ferredoxin structure is maintained through the interaction with the iron-sulfur cluster and (2) the protein structure in the neighborhood of the cluster, important for the physiological activity, is not perturbed even though the exposed tyrosyl residues are ionized.

  13. Toward panchromatic organic functional molecules: density functional theory study on the electronic absorption spectra of substituted tetraanthracenylporphyrins.

    PubMed

    Qi, Dongdong; Jiang, Jianzhuang

    2011-12-01

    To achieve full solar spectrum absorption of organic dyes for organic solar cells and organic solar antenna collectors, a series of tetraanthracenylporphyrin derivatives including H(2)(TAnP), H(2)(α-F(4)TAnP), H(2)(β,β'-F(8)TAnP), H(2)(γ,γ'-F(8)TAnP), H(2)(δ,δ'-F(8)TAnP), H(2)[α-(NH(2))(4)TAnP], H(2)[β,β'-(NH(2))(8)TAnP], H(2)[γ,γ'-(NH(2))(8)TAnP], and H(2)[δ,δ'-(NH(2))(8)TAnP] was designed and their electronic absorption spectra were systematically studied on the basis of TDDFT calculations. The nature of the broad and intense electronic absorptions of H(2)(TAnP) in the range of 500-1700 nm is clearly revealed, and different types of π → π* electronic transitions associated with different absorption bands are revealed to correspond to different electron density moving direction between peripherally fused 14-electron-π-conjugated anthracene units and the central 18-electron-π-conjugated porphyrin core. Introduction of electron-donating groups onto the periphery of the H(2)(TAnP) macrocycle is revealed to be able to lead to novel NIR dyes such as H(2)[α-(NH(2))(4)TAnP] and H(2)[δ,δ'-(NH(2))(8)TAnP] with regulated UV-vis-NIR absorption bands covering the full solar spectrum in the range of 300-2400 nm.

  14. Absorption spectra of blue-light-emitting oligoquinolines from time-dependent density functional theory.

    PubMed

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2008-11-01

    Recently, it has been discovered that a series of four conjugated oligomers, oligoquinolines, exhibits many desirable properties of organic materials for developing high-performance light-emitting diodes: good blue color purity, high brightness, high efficiency, and high glass-transition temperatures. In this work, we investigate the optical absorption of oligoquinolines in the gas phase and chloroform (CHCl3) solution, respectively, using time-dependent density functional theory with the adiabatic approximation for the dynamical exchange-correlation potential. Our calculations show that the first peak of optical absorption corresponds to the lowest singlet excited state, whereas several quasi-degenerate excited states contribute to the experimentally observed higher-frequency peak. We find that, compared with the gas phase, there is a moderate red shift in excitation energy in solution due to the solute-solvent interaction simulated using the polarizable continuum model. Our results show that the lowest singlet excitation energies of oligoquinolines in chloroform solution calculated with the adiabatic hybrid functional PBE0 are in a good agreement with experiments. Our simulated optical absorption agrees well with the experimental data. Finally, analysis of the natural transition orbitals corresponding to the excited states in question underscores the underlying electronic delocalization properties. PMID:18844398

  15. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  16. Statistical models for sediment/detritus and dissolved absorption coefficients in coastal waters of the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Green, Rebecca E.; Gould, Richard W., Jr.; Ko, Dong S.

    2008-06-01

    We developed statistically-based, optical models to estimate tripton (sediment/detrital) and colored dissolved organic matter (CDOM) absorption coefficients ( a sd, a g) from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data. First, empirical algorithms for satellite-derived a sd and a g were developed, based on comparison with a large data set of cruise measurements from northern Gulf shelf waters; these algorithms were then applied to a time series of ocean color (SeaWiFS) satellite imagery for 2002-2005. Unique seasonal timing was observed in satellite-derived optical properties, with a sd peaking most often in fall/winter on the shelf, in contrast to summertime peaks observed in a g. Next, the satellite-derived values were coupled with the physical data to form multiple regression models. A suite of physical forcing variables were tested for inclusion in the models: discharge from the Mississippi River and Mobile Bay, Alabama; gridded fields for winds, precipitation, solar radiation, sea surface temperature and height (SST, SSH); and modeled surface salinity and currents (Navy Coastal Ocean Model, NCOM). For satellite-derived a sd and a g time series (2002-2004), correlation and stepwise regression analyses revealed the most important physical forcing variables. Over our region of interest, the best predictors of tripton absorption were wind speed, river discharge, and SST, whereas dissolved absorption was best predicted by east-west wind speed, river discharge, and river discharge lagged by 1 month. These results suggest the importance of vertical mixing (as a function of winds and thermal stratification) in controlling a sd distribution patterns over large regions of the shelf, in comparison to advection as the most important control on a g. The multiple linear regression models for estimating a sd and a g were applied on a pixel-by-pixel basis and

  17. Calculating the density of states and optical-absorption spectra of large quantum systems by the plane-wave moments method

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Wang

    1994-04-01

    The moments method is used to calculate the density of states and optical-absorption spectra of large quantum systems. This method uses random wave functions to calculate 500 Chebyshev moments of the density of states (5002 for the optical-absorption spectra), and transforms these moments back to energy space. The results compare well with direct calculations on a large, 2048 Si-atom bulklike supercell system. To demonstrate its utility, the spectra of a realistic quantum dot with 1035 Si and 452 H atoms are calculated using an empirical pseudopotential Hamiltonian and a plane-wave basis of wave functions.

  18. Effect of deprotonation on absorption and emission spectra of Ru(II)-bpy complexes functionalized with carboxyl groups.

    PubMed

    Badaeva, Ekaterina; Albert, Victor V; Kilina, Svetlana; Koposov, Alexey; Sykora, Milan; Tretiak, Sergei

    2010-08-21

    Changes in the ground and excited state electronic structure of the [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) complex induced by functionalization of bpy ligands with carboxyl and methyl groups in their protonated and deprotonated forms are studied experimentally using absorption and emission spectroscopy and theoretically using density functional theory (DFT) and time dependent DFT (TDDFT). The introduction of the carboxyl groups shifts the metal-to-ligand-charge-transfer (MLCT) absorption and emission bands to lower energies in functionalized complexes. Our calculations show that this red-shift is due to the stabilization of the lowest unoccupied orbitals localized on the substituted ligands, while the energies of the highest occupied orbitals localized on the Ru-center are not significantly affected. Consistent with previously observed trends in optical spectra of related Ru(II) complexes, deprotonation of the carboxyl groups results in a blue shift in the absorption and phosphorescence spectra. The effect originates from interplay of positive and negative solvatochromism in the protonated and deprotonated complexes, respectively. This results in more delocalized character of the electron transition orbitals in the deprotonated species and a strong destabilization of the three lowest unoccupied orbitals localized on the substituted and unsubstituted ligands, all of which contribute to the lowest-energy optical transitions. We also found that owing to the complexity of the excited state potential energy surfaces, the calculated lowest triplet excited state can be either weakly optically allowed (3)MLCT or optically forbidden Ru (3)d-d transition depending on the initial wavefunction guess used in TDDFT calculations. PMID:20556275

  19. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  20. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation.

    PubMed

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong

    2016-09-19

    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties.

  1. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation.

    PubMed

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong

    2016-09-19

    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties. PMID:27661893

  2. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  3. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  4. Quantum mechanics-molecular dynamics approach to the interpretation of x-ray absorption spectra.

    PubMed

    Kuzmin, A; Evarestov, R A

    2009-02-01

    The quantum mechanics-molecular dynamics approach to the simulation of configuration-averaged EXAFS spectra is proposed, and its application is discussed for the example of the Ti K-edge EXAFS spectrum in cubic perovskite SrTiO(3). Proper use of ab initio quantum mechanics allows a number of empirical parameters, used in the molecular dynamics simulation, to be reduced, whereas the molecular dynamics allows us to account for temperature effects. All together, the approach provides a way of accounting for static and dynamic disorder in EXAFS signals from the coordination shells above the first one, where many-atom (multiple-scattering) effects are often important.

  5. Reflectance Spectra of Ureilites: Nature of the Mafic Silicate Absorption Features

    NASA Technical Reports Server (NTRS)

    Cloutis, E. A.; Hudon, P.

    2004-01-01

    Ureilites are unique carbon-bearing achondrites. They are composed primarily of olivine and pyroxene with minor amounts of finely dispersed matrix material consisting mostly of carbon, metal, sulfides and fine-grained silicates. As is the case with many classes of meteorites, no clear chain of evidence exists which can relate them to specific asteroidal parent bodies. In order to provide insights into parent body connections, visible and near-IR (VNIR) reflectance spectra of a number of ureilites have been measured and analyzed in light of their mineralogy.

  6. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    SciTech Connect

    Sargent, B. A.; Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C.; D'Alessio, P.; Calvet, N.; Furlan, E.; Green, J.; Pontoppidan, K.

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  7. Evaluation of conversion coefficients relating air-kerma to H*(10) using primary and transmitted x-ray spectra in the diagnostic radiology energy range.

    PubMed

    Santos, J C; Mariano, L; Tomal, A; Costa, P R

    2016-03-01

    According to the International Commission on Radiation Units and Measurements (ICRU), the relationship between effective dose and incident air-kerma is complex and depends on the attenuation of x-rays in the body. Therefore, it is not practical to use this quantity for shielding design purposes. This correlation is adopted in practical situations by using conversion coefficients calculated using validated mathematical models by the ICRU. The ambient dose equivalent, H*(10), is a quantity adopted by the IAEA for monitoring external exposure. Dose constraint levels are established in terms of H*(10), while the radiation levels in radiometric surveys are calculated by means of the measurements of air-kerma with ion chambers. The resulting measurements are converted into ambient dose equivalents by conversion factors. In the present work, an experimental study of the relationship between the air-kerma and the operational quantity ambient dose equivalent was conducted using different experimental scenarios. This study was done by measuring the primary x-ray spectra and x-ray spectra transmitted through materials used in dedicated chest radiographic facilities, using a CdTe detector. The air-kerma to ambient dose equivalent conversion coefficients were calculated from these measured spectra. The resulting values of the quantity ambient dose equivalent using these conversion coefficients are more realistic than those available in the literature, because they consider the real energy distribution of primary and transmitted x-ray beams. The maximum difference between the obtained conversion coefficients and the constant value recommended in national and international radiation protection standards is 53.4%. The conclusion based on these results is that a constant coefficient may not be adequate for deriving the ambient dose equivalent. PMID:26835613

  8. The Infrared Spectra and Absorption Intensities of Amorphous Ices: Methane and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark J.

    2015-11-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and the interstellar medium, with an emphasis on amorphous and crystalline ices below ~70 K. Our goal is to add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on two of the simplest and most abundant components of icy bodies in the solar system - methane (CH4) and carbon dioxide (CO2). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 70 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  9. Absorption spectra of first-row transition metal complexes of bacteriochlorins: a theoretical analysis.

    PubMed

    Petit, Laurence; Adamo, Carlo; Russo, Nino

    2005-06-23

    A theoretical study on a family of divalent transition metal bacteriochlorin complexes (M-BC, where M = Mn, Fe, Co, Ni Cu, and Zn) has been carried out to elucidate their potentialities as active molecules in photodynamic therapy (PDT). To draw a complete picture of their electronic properties, both for the ground and excited states, these complexes have been studied by the means of density functional theory (DFT). The time-dependent DFT (TDDFT) approach was used to interpret the electronic spectra, while solvent effects were taken into account by explicitly considering both two water molecules coordinated to the central metal atom and the contribution from the solvent bulk. Particular attention has been devoted to the analysis of the so-called Q bands, since these can be particularly important for medical applications. Metal substitution and environment (solvent) effects have been analyzed, and good agreement is found between computed and available UV-vis spectra. These theoretical data, especially those relative to the metallobacteriochlorins not yet completely characterized at the experimental level, could give some hints for future medical applications.

  10. The effect of pressure on the surface plasmon absorption spectra of colloidal gold and silver particles

    SciTech Connect

    Coffer, J.L.; Shapley, J.R.; Drickamer, H.G. )

    1990-05-09

    The first measurements of the effect of pressure on the peak position ({omega}{sub sp}) and line width (fwhm) of the surface plasmon absorption in several Au and Ag hydrosols have been recorded up to 10 kbar. Red shifts of the plasmon peak with increasing pressure are observed for relatively large metal particles prepared by the citrate procedure (Au, {anti d} = 265 {angstrom}; Ag, {anti d} = 230 {angstrom}). The shift for silver is over twice that of gold ({minus}420 cm{sup {minus}1} vs {minus} 200 cm{sup {minus}1}). These red shifts are interpreted in terms of pressure-induced volume changes within the context of a free-electron model. In contrast, particles prepared by the Faraday method (Au, {anti d} = 54 {angstrom}; Ag, d{anti d} = 60 {angstrom}) show initial blue shifts with pressure, with the magnitude again larger for silver. Upon aging (as well as upon heating in the case of Au), the Au and Ag Faraday sols exhibit an increase in their average particle size and degree of aggregation. Correspondingly, the pressure response of their plasmon absorption approaches that of the citrate sols.

  11. Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra

    NASA Astrophysics Data System (ADS)

    Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    Zn0.75Cd0.25S nanoparticles prepared at different temperatures were composited with polyvinyl alcohol for functionalization it in wide spectrum of applications such as in photocatalysis. The nanostructure of the Zn0.75Cd0.25S mother phase is confirmed by X-ray diffraction in addition to absorption and fluorescence spectra. UV/VIS. measurements show that, the transmittance coefficient of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA by 0.33% and varies upon increasing the preparation temperature; reaching a maximum value for the sample prepared at 300 °C. It was found that the optical band gap tunes with annealing temperature which, in turns, with particle size. The refractive index of the Zn0.75Cd0.25S/PVA nanocomposite films decrease with increasing wavelength and saturates at high wavelengths. The optical conductivity increases with increasing photon energy which may be due to the excitation of electrons by photon energy. The optical conductivity of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA and it decreases as the preparation temperature of Zn0.75Cd0.25S nanoparticles in PVA matrix increases which could be related to the decrease in the extinction coefficient and the density of localized states in the gap. Abroad peak deconvoluted, by Gaussian fitting function, into two violet and blue colors was observed in the fluorescence spectra under UV light irradiation. The two emission bands are attributed to band edge emission and neutral oxygen vacancies respectively. Analysis of fluorescence (FL) spectra reveals quenching in FL intensity and a peak shifting towards the lower wavelength side with increasing the preparation temperature of the mother phase. The results suggest that the 200 °C Zn0.75Cd0.25S/PVA nanocomposites have been regarded as a promising candidate in many technical fields, such as photocatalytic hydrogen production and/or photocatalytic degradation of organic dyes under UV irradiation due to its high optical

  12. Spectral particle absorption coefficients, single scattering albedos and imaginary parts of refractive indices from ground based in situ measurements at Cape Verde Island during SAMUM-2

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Kandler, K.; Wiedensohler, A.

    2011-09-01

    During the SAMUM-2 experiment, spectral absorption coefficients, single scattering albedos and imaginary parts of refractive indices of mineral dust particles were investigated at the Cape Verde Islands. Main absorbing constituents of airborne samples were mineral dust and soot. PM10 spectral absorption coefficients were measured using a Spectral Optical Absorption Photometer (SOAP) covering the wavelength range from 300 to 960 nm with a resolution of 25 nm. From SOAP, also information on the particle scattering coefficients could be retrieved. Spectral single scattering albedos were obtained in the wavelength range from 350 to 960 nm. Imaginary parts of the refractive index were inferred from measured particle number size distributions and absorption coefficients using Mie scattering theory. Imaginary parts for a dust case were 0.012, 0.0047 and 0.0019 at the wavelengths 450, 550 and 950 nm, respectively, and the single scattering albedos were 0.91, 0.96 and 0.98 at the same wavelengths. During a marine case, the imaginary parts of the refractive indices were 0.0045, 0.0040 and 0.0036 and single scattering albedos were 0.93, 0.95 and 0.96 at the wavelengths given above.

  13. Electronic absorption spectra of charge-transfer complexes based on ferrocene and polyhalohydrocarbons

    SciTech Connect

    Germanova, L.F.; Balabanova, L.V.; Kochetkova, N.S.; Nelyubin, B.V.; Shuekhgeimer, M.G.; Vasil'eva, T.T.

    1986-01-10

    Polyhalomethanes, being as a rule strong electron acceptors, can play the role of photosensitizers of various classes of compounds including organometallic donors such as ferrocene, benchrotrene, etc. The authors found that polyhalohydrocarbons containing CHHal/sub 2/ and CHal/sub 3/ groups from with ferrocene charge-transfer complexes (CTC). Polyhalomethanes and polyhalo-2-pentenes show the highest activity in the reaction of complex formation with ferrocene. The compounds with the CBr/sub 3/ group in CTC have the highest extinction. An elongation of the alkyl chain in the molecule of polyhalogen derivatives and the presence of an additional halogen atom in the gamma position with respect to the CHal/sub 3/ group do not exert any significant influence on their CTC spectra with ferrocene.

  14. Electronic absorption spectra of protonated pyrene and coronene in neon matrixes.

    PubMed

    Garkusha, Iryna; Fulara, Jan; Sarre, Peter J; Maier, John P

    2011-10-13

    Protonated pyrene and coronene have been isolated in 6 K neon matrixes. The cations were produced in the reaction of the parent aromatics with protonated ethanol in a hot-cathode discharge source, mass selected, and co-deposited with neon. Three electronic transitions of the most stable isomer of protonated pyrene and four of protonated coronene were recorded. The strongest, S(1) ← S(0) transitions, are in the visible region, with onset at 487.5 nm for protonated pyrene and 695.6 nm for protonated coronene. The corresponding neutrals were also observed. The absorptions were assigned on the basis of ab initio coupled-cluster and time-dependent density functional theory calculations. The astrophysical relevance of protonated polycyclic aromatic hydrocarbons is discussed.

  15. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  16. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  17. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; Garcia, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P. E-mail: claudio@ivic.gob.ve E-mail: alohfink@astro.umd.edu E-mail: michael.c.witthoeft@nasa.gov E-mail: palmeri@umons.ac.be

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N{sub H} = 1.38 {+-} 0.01 Multiplication-Sign 10{sup 21} cm{sup -2}; an ionization parameter of log {xi} = -2.70 {+-} 0.023; an oxygen abundance of A{sub O}= 0.689{sup +0.015}{sub -0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A{sub O}=0.952{sup +0.020}{sub -0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines-K{alpha}, K{beta}, and K{gamma} in O I and O II and K{alpha} in O III, O VI, and O VII-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  18. UV-visible and infrared absorption spectra of gamma irradiated CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses: A comparative study

    NASA Astrophysics Data System (ADS)

    ElBatal, H. A.; Abdelghany, A. M.; ElBatal, F. H.; ElBadry, Kh. M.; Moustaffa, F. A.

    2011-10-01

    Undoped and CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses were prepared. UV-visible and infrared absorption spectra of the prepared samples were measured before and after successive gamma irradiation. Experimental optical spectra of the undoped samples reveal strong UV absorption bands, which are attributed to the presence of trace iron impurities in both the lithium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV bands due to combined absorption of trace iron impurities and divalent lead ions. The CuO-doped glasses reveal an extra broad visible band due to Cu 2+ ions in octahedral coordination. The effects of gamma irradiation have been analyzed for both the sharing of all constituent components including trace iron impurities. Infrared absorption spectra of the prepared samples were investigated by the KBr disk technique. The FTIR spectra reveal main characteristic absorption bands due to different phosphate groups. The IR spectra are observed to be slightly affected by the increase of CuO in the doping level (0.2-3%) indicating the stability of the main network units.

  19. Detection of narrow C 4 and Si 4 absorption features in spectra of stars within 200 pc f the Sun

    NASA Technical Reports Server (NTRS)

    Molaro, P.; Beckman, J. E.; Franco, M.; Morossi, C.; Ramella, M.

    1984-01-01

    Detection of narrow (Beta lambda 0.5 A) absorption features in C 4 at lambda lambda 1548 and 1550 have been made in the spectra of 4 late B dwarfs within 200 pc of the Sun; the Si4 doublet at lambda lambda 1393 and 1403 shows up in two of them. It is argued that it is difficult to account for the strengths, widths, shapes, and C IV/Si IV ratios in terms consistent with a circumstellar origin except possibly for an asymmetric C IV component in one star (HD 185037). The most probable source is semi-torrid gas in the 50,000 K range forming the interfaces between cooler H 1 clouds and the ambient medium at coronal temperatures. Late B rapid rotators are used for local interstellar medium probing of this kind.

  20. Theoretical characterization of X-ray absorption, emission, and photoelectron spectra of nitrogen doped along graphene edges.

    PubMed

    Wang, Xianlong; Hou, Zhufeng; Ikeda, Takashi; Oshima, Masaharu; Kakimoto, Masa-aki; Terakura, Kiyoyuki

    2013-01-24

    K-edge X-ray absorption (XAS), emission (XES), and photoelectron (XPS) spectra of nitrogen doped along graphene edges are systematically investigated by using first-principles methods. In this study we considered pyridinium-like, pyridine-like, cyanide-like, and amine-like nitrogens at armchair and zigzag edges and pyrrole-like nitrogen at armchair edge as well as graphite-like nitrogen at graphene interior site. Our results indicate that nitrogen configuration and its location (armchair or zigzag edge) in nitrogen-doped graphene can be identified via the spectral analysis. Furthermore, some controversial spectral features observed in experiment for N-doped graphene-like materials are unambiguously assigned. The present analysis gives an explanation to the reason why the peak assignment is usually made differently between XPS and XAS.